WorldWideScience

Sample records for luteum function electronic

  1. Some aspects of endotoxins and corpus luteum function in ruminants

    International Nuclear Information System (INIS)

    Edqvist, L.E.; Fredriksson, G.; Kindahl, H.

    1984-01-01

    Following parturition in cattle, prostaglandin levels are high for 10-20 days. The duration and possibly the magnitude of the release seem to be related to the time required for completion of uterine involution. Animals showing clinical signs of postpartum uterine disorder have a prolonged release of prostaglandin. The intravenous administration of an endotoxin from Salmonella typhimurium to goats induces a massive prostaglandin release terminating corpus luteum function, resulting in short oestrous cycles in non-pregnant animals and abortions in pregnant animals. The possibility exists that postpartum uterine infections may be partly responsible for the postpartum prostaglandin release and that this bacteriologic/endocrine interrelationship represents a way in which the uterus eliminates infectious agents, particularly gram-negative bacteria. (author)

  2. Cholesterol transport and steroidogenesis by the corpus luteum

    Directory of Open Access Journals (Sweden)

    Christenson Lane K

    2003-11-01

    Full Text Available Abstract The synthesis of progesterone by the corpus luteum is essential for the establishment and maintenance of early pregnancy. Regulation of luteal steroidogenesis can be broken down into three major events; luteinization (i.e., conversion of an ovulatory follicle, luteal regression, and pregnancy induced luteal maintenance/rescue. While the factors that control these events and dictate the final steroid end products are widely varied among different species, the composition of the corpus luteum (luteinized thecal and granulosa cells and the enzymes and proteins involved in the steroidogenic pathway are relatively similar among all species. The key factors involved in luteal steroidogenesis and several new exciting observations regarding regulation of luteal steroidogenic function are discussed in this review.

  3. Hemoperitoneum from corpus luteum rupture in patients with aplastic anemia.

    Science.gov (United States)

    Wang, Huaquan; Guo, Lifang; Shao, Zonghong

    2015-01-01

    Aplastic anemia is a rare hematopoietic stem-cell disorder that results in pancytopenia and hypocellular bone marrow. Women with aplastic anemia usually are at increased risk of corpus luteum rupture due to thrombocytopenia and infection. Here we report two cases had hemoperitoneum from corpus luteum rupture in patients with aplastic anemia in our center. Case 1 involved two episodes of hemoperitoneum resulting from rupture of the corpus luteum in a 23-year-old unmarried female with severe aplastic anemia. This patient was managed conservatively with platelet and packed red cell transfusion. Case 2 involved two episodes of hemoperitoneum resulting from rupture of the corpus luteum in a 33-year-old married patient with aplastic anemia. Emergency laparoscopy revealed massive hemoperitoneum. Bilateral salpingo-oophorectomy were performed successively with platelet and packed red cell transfusion. Hemoperitoneum resulting from a ruptured corpus luteum is a life-threatening condition in patients with aplastic anemia. Prompt and appropriate evaluation of corpus luteum rupture and emergent therapy are needed.

  4. Neural analysis of bovine ovaries ultrasound images in the identification process of the corpus luteum

    Science.gov (United States)

    Górna, K.; Jaśkowski, B. M.; Okoń, P.; Czechlowski, M.; Koszela, K.; Zaborowicz, M.; Idziaszek, P.

    2017-07-01

    The aim of the paper is to shown the neural image analysis as a method useful for identifying the development stage of the domestic bovine corpus luteum on digital USG (UltraSonoGraphy) images. Corpus luteum (CL) is a transient endocrine gland that develops after ovulation from the follicle secretory cells. The aim of CL is the production of progesterone, which regulates many reproductive functions. In the presented studies, identification of the corpus luteum was carried out on the basis of information contained in ultrasound digital images. Development stage of the corpus luteum was considered in two aspects: just before and middle of domination phase and luteolysis and degradation phase. Prior to the classification, the ultrasound images have been processed using a GLCM (Gray Level Co-occurence Matrix). To generate a classification model, a Neural Networks module implemented in the STATISTICA was used. Five representative parameters describing the ultrasound image were used as learner variables. On the output of the artificial neural network was generated information about the development stage of the corpus luteum. Results of this study indicate that neural image analysis combined with GLCM texture analysis may be a useful tool for identifying the bovine corpus luteum in the context of its development phase. Best-generated artificial neural network model was the structure of MLP (Multi Layer Perceptron) 5:5-17-1:1.

  5. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    International Nuclear Information System (INIS)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-01-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol 125 I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function

  6. The significance of estradiol metabolites in human corpus luteum physiology.

    Science.gov (United States)

    Devoto, Luigi; Henríquez, Soledad; Kohen, Paulina; Strauss, Jerome F

    2017-07-01

    The human corpus luteum (CL) is a temporary endocrine gland derived from the ovulated follicle. Its formation and limited lifespan is critical for steroid hormone production required to support menstrual cyclicity, endometrial receptivity for successful implantation, and the maintenance of early pregnancy. Endocrine and paracrine-autocrine molecular mechanisms associated with progesterone production throughout the luteal phase are critical for the development, maintenance, regression, and rescue by hCG which sustains CL function into early pregnancy. However, the signaling systems driving the regression of the primate corpus luteum in non-conception cycles are not well understood. Recently, there has been interest in the functional roles of estradiol metabolites (EMs), mostly in estrogen-producing tissues. The human CL produces a number of EMs, and it has been postulated that the EMs acting via paracrine-autocrine pathways affect angiogenesis or LH-mediated events. The present review describes advances in understanding the role of EMs in the functional lifespan and regression of the human CL in non-conception cycles. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Estrogen and oxytocin receptors in the canine corpus luteum during pregnancy and parturition

    Directory of Open Access Journals (Sweden)

    Gisele Almeida Lima Veiga

    2015-02-01

    Full Text Available The expression of genes encoding the receptors for estrogen (ERαmRNA and oxytocin (OTRmRNA was studied in the corpus luteum during pregnancy and parturition in dogs. Real-time PCR was performed to quantify the levels of ERαmRNA and OTRmRNA in the corpus luteum of bitches during Early (up to 20 days of gestation, Mid (20 to 40 days and Late Pregnancy (40 to 60 days, and Parturition (first stage of labor. The corpus luteum expressed mRNA for OTR, however ERα mRNA was not detected. There was a reduction of OTR mRNA expression in the corpus luteum from gestational Day 20 onward, which suggests an important role of OTR mRNA in the mechanism of pregnancy recognition in dogs. We concluded that the expression of OTR mRNA in canine corpus luteum vary over time, which support the idea that the sensitivity and response to hormone therapy can vary along the course of pregnancy and labor. Moreover, the canine CL lacks ERα mRNA expression during pregnancy.

  8. Macroscopic morphometry of the corpus luteum of pregnant and non-pregnant zebu cows in the Colombian tropics

    Directory of Open Access Journals (Sweden)

    Marco González T

    2017-07-01

    Full Text Available The objective of the study was to determine the volume, weight, measures, ovarian location and shape of the corpus luteum of pregnant and non - pregnant cows from zebu cows of the Colombian tropics. 528 reproductive tracts were collected; 264 pregnant and 264 non-pregnant of cows benefited at the local slaughterhouse in Monteria, Córdoba, Colombia. The period of collection of the samples was extended for three months. After collection of each reproductive tract, the ovaries were separated, identified as right and left, weighed and measured. Then the drawing of the location of the corpus luteum was performed on the ovary according to the anatomical planes previously established in the corresponding form. Subsequently the corpus luteum was removed to perform their measurements, weighings and visualization of their shape. There were statistical differences between the locations of the corpus luteum in the ovary: Anterior pole, posterior pole, free edge, upper face and lower face (p≤0.05. The weight and volume of gestational corpus luteum was greater by 30 and 27.9% than the corpus luteum of non-pregnant cows. The predominant form por shape of the corpus luteum in both pregnant and non-pregnant cows was oval, then pyramidal and finally rounded. No gestation was observed contralateral to the location of the corpus luteum.

  9. Features of natural and gonadotropin-releasing hormone antagonist-induced corpus luteum regression and effects of in vivo human chorionic gonadotropin.

    Science.gov (United States)

    Del Canto, Felipe; Sierralta, Walter; Kohen, Paulina; Muñoz, Alex; Strauss, Jerome F; Devoto, Luigi

    2007-11-01

    The natural process of luteolysis and luteal regression is induced by withdrawal of gonadotropin support. The objectives of this study were: 1) to compare the functional changes and apoptotic features of natural human luteal regression and induced luteal regression; 2) to define the ultrastructural characteristics of the corpus luteum at the time of natural luteal regression and induced luteal regression; and 3) to examine the effect of human chorionic gonadotropin (hCG) on the steroidogenic response and apoptotic markers within the regressing corpus luteum. Twenty-three women with normal menstrual cycles undergoing tubal ligation donated corpus luteum at specific stages in the luteal phase. Some women received a GnRH antagonist prior to collection of corpus luteum, others received an injection of hCG with or without prior treatment with a GnRH antagonist. Main outcome measures were plasma hormone levels and analysis of excised luteal tissue for markers of apoptosis, histology, and ultrastructure. The progesterone and estradiol levels, corpus luteum DNA, and protein contents in induced luteal regression resembled those of natural luteal regression. hCG treatment raised progesterone and estradiol in both natural luteal regression and induced luteal regression. The increase in apoptosis detected in induced luteal regression by cytochrome c in the cytosol, activated caspase-3, and nuclear DNA fragmentation, was similar to that observed in natural luteal regression. The antiapoptotic protein Bcl-2 was significantly lower during natural luteal regression. The proapoptotic proteins Bax and Bak were at a constant level. Apoptotic and nonapoptotic death of luteal cells was observed in natural luteal regression and induced luteal regression at the ultrastructural level. hCG prevented apoptotic cell death, but not autophagy. The low number of apoptotic cells disclosed and the frequent autophagocytic suggest that multiple mechanisms are involved in cell death at luteal

  10. Chemokines in the corpus luteum: Implications of leukocyte chemotaxis

    Directory of Open Access Journals (Sweden)

    Liptak Amy R

    2003-11-01

    Full Text Available Abstract Chemokines are small molecular weight peptides responsible for adhesion, activation, and recruitment of leukocytes into tissues. Leukocytes are thought to influence follicular atresia, ovulation, and luteal function. Many studies in recent years have focused attention on the characterization of leukocyte populations within the ovary, the importance of leukocyte-ovarian cell interactions, and more recently, the mechanisms of ovarian leukocyte recruitment. Information about the role of chemokines and leukocyte trafficking (chemotaxis during ovarian function is important to understanding paracrine-autocrine relationships shared between reproductive and immune systems. Recent advances regarding chemokine expression and leukocyte accumulation within the ovulatory follicle and the corpus luteum are the subject of this mini-review.

  11. Antioxidant activity and phenolic compounds from Colchicum luteum ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-30

    Aug 30, 2010 ... Key words: Colchicum luteum, Liliaceae, chlorogenic acid, luteolin, antioxidant. INTRODUCTION .... (15), 185 (55), 145 (10). HREI-MS m/z: 399.7624 (Calcd for C22H25O6, 399.7619). ..... Glossary of Indian medicinal.

  12. Allelopathic activity of saponins exctracted from Rhododendron luteum Sweet

    Directory of Open Access Journals (Sweden)

    Iryna M. Yezhel

    2013-04-01

    Full Text Available Article deals with allelopathic activity of saponins exctracted from Rhododendron luteumSweet leaves. Investigations show nonlinear correlation between saponins concetration and growth of the roots of test-cultures.

  13. Cytokines and Angiogenesis in the Corpus Luteum

    Directory of Open Access Journals (Sweden)

    António M. Galvão

    2013-01-01

    Full Text Available In adults, physiological angiogenesis is a rare event, with few exceptions as the vasculogenesis needed for tissue growth and function in female reproductive organs. Particularly in the corpus luteum (CL, regulation of angiogenic process seems to be tightly controlled by opposite actions resultant from the balance between pro- and antiangiogenic factors. It is the extremely rapid sequence of events that determines the dramatic changes on vascular and nonvascular structures, qualifying the CL as a great model for angiogenesis studies. Using the mare CL as a model, reports on locally produced cytokines, such as tumor necrosis factor α (TNF, interferon gamma (IFNG, or Fas ligand (FASL, pointed out their role on angiogenic activity modulation throughout the luteal phase. Thus, the main purpose of this review is to highlight the interaction between immune, endothelial, and luteal steroidogenic cells, regarding vascular dynamics/changes during establishment and regression of the equine CL.

  14. Relationship between colour flow Doppler sonographic assessment of corpus luteum activity and progesterone concentrations in mares after embryo transfer

    NARCIS (Netherlands)

    Brogan, P. T.; Henning, H.; Stout, T. A E; de Ruijter-Villani, M.

    2016-01-01

    Colour-flow Doppler sonography has been described as a means of assessing corpus luteum (CL) function rapidly, because area of luteal blood vessels correlates well with circulating progesterone (P4) concentrations [P4] in oestrous cycling mares. The aim of this study was to assess the relationships

  15. Corpus luteum blood flow in normal and abnormal early pregnancy: evaluation and analysis with transvaginal color and pulsed doppler sonography

    International Nuclear Information System (INIS)

    Tang Xiaoyi; Lin Meifang; Zheng Meirong; Liang Xiaoxian; Liu Jianfeng

    2005-01-01

    Objective: Detecting and assessment the corpus luteum blood flow in normal and abnormal early pregnancy. Methods: Using transvaginal color and pulse Doppler sonography, we detected 215 pregnant women including 150 normal intrauterine pregnancies, 25 abortion, 29 ectopic pregnancies, and then recorded corpus luteum blood flow feature and the blood flow indexes (Vmax, RI and PI). Results: 1) Corpus luteum was successfully identified in 148 cases out of 150 of normal early pregnancies, 25 cases out of 26 of threatened abortion; 22 cases out of 29 of ectopic pregnancy. 2) Three groups shared the same feature of Color Doppler imaging: a circumferential rim around the entire corpus luteum. 3) The flow index revealed mean PVS, RI and PI had no statistical difference in normal and abnormal early pregnancy; The mean PVS was lower in ectopic pregnancy than in normal pregnancy (P<0.05), while PI and PR had no characteristic in ectopic pregnancy group compared with the indexes obtained in normal pregnancy group. Conclusion: The corpus luteum can be precisely identified in most pregnancy using transvaginal color Doppler and manifests a characterized rim Doppler imaging. PVS may help in differentiating the ectopic pregnancy from normal early pregnancy. (authors)

  16. Effects of hypo- and hyperthyroidism on proliferation, angiogenesis, apoptosis and expression of COX-2 in the corpus luteum of female rats.

    Science.gov (United States)

    Silva, J F; Ocarino, N M; Vieira, A L S; Nascimento, E F; Serakides, R

    2013-08-01

    Although thyroid dysfunction occurs frequently in humans and some animal species, the mechanisms by which hypo- and hyperthyroidism affect the corpus luteum have not been thoroughly elucidated. This study evaluated the levels of proliferative activity, angiogenesis, apoptosis and expression of cyclooxygenase-2 in the corpus luteum of female rats with thyroid dysfunction. These processes may be important in understanding the reproductive changes caused by thyroid dysfunction. A total of 18 adult female rats were divided into three groups (control, hypothyroid and hyperthyroid) with six animals per group. Three months after treatment to induce thyroid dysfunction, the rats were euthanized in the dioestrus phase. The ovaries were collected and immunohistochemically analysed for expression of the cell proliferation marker CDC-47, vascular endothelial growth factor (VEGF), VEGF receptor Flk-1 and cyclooxygenase-2 (COX-2). Apoptosis was evaluated using the TUNEL assay. Hypothyroidism reduced the intensity and area of COX-2 expression in the corpus luteum (p hyperthyroidism did not alter COX-2 expression in the dioestrus phase. Hypothyroidism significantly reduced the expression of CDC-47 in endothelial cells and pericytes in the corpus luteum, whereas hyperthyroidism did not induce a detectable change in CDC-47 expression (p > 0.05). Hypothyroidism reduced the level of apoptosis in luteal cells (p hyperthyroidism increased the level of apoptosis in the corpus luteum (p < 0.05). In conclusion, thyroid dysfunction differentially affects the levels of proliferative activity, angiogenesis and apoptosis and COX-2 expression in the corpus luteum of female rats. © 2013 Blackwell Verlag GmbH.

  17. Taxonomic, pharmacognostic and physicochemical authentication of colchicum luteum baker (suranjantalkh) from its commercial adulterant

    International Nuclear Information System (INIS)

    Ahmed, S.N.; Ahmad, M.; Shinwari, S.; Shinwari, Z.K.

    2016-01-01

    The main objective of current study is to elucidate taxonomic, pharmacognostic and physicochemical behavior of Colchicum luteum (Suranjantalkh) for its proper identification and authentication from its cheap and tasteless adulterant. Colchicum luteum is one of the most rare and hence expensive medicinal plants. It is an active part of many unani formulations due to presence of an alkaloid colchicine which is claimed to be effective in arthritis, gout, rheumatism and internal injuries. In order to overcome demand of its corm, suppliers and herb sellers adultered bulbs of a monocotyledon plant Narcissus tazetta. This type of study reveals to be helpful in differentiating plants on basis of leaf epidermal anatomy, palynology, phamacognosy and physicochemical values. It is an important step in field of herbal medicine to provide pure and original medicinal plants to yield their maximum effectiveness. (author)

  18. Neovascularization of the corpus luteum of rats during the estrus cycle.

    Science.gov (United States)

    Tsukada, K; Matsushima, T; Yamanaka, N

    1996-06-01

    In order to elucidate the chronological morphological changes of the corpus luteum (CL) of rats, as a physiological angiogenesis model, the CL of rat ovaries was studied light microscopically using periodic acid methenamine silver staining (PAM) and immunostaining for type IV collagen, laminin, thrombomodulin (TM), factor VIII related antigen (factor VIII) and alpha-smooth muscle actin (alpha-SMA). The CL was also studied electron microscopically. Female Wistar-Imamichi rats were used, which have a regular 4-day estrous cycle. The histological changes of the CL were observed in 6-hour intervals from 4 h before the ovulation to 28 h post-ovulation during the estrous cycle. Once the basement membrane (BM) of the follicle disintegrated following ovulation, developing capillaries entered into the CL and formed a vascular lumen with a surrounding BM, which showed positive for PAM staining, type IV collagen and laminin. The developing capillaries in the CL showed a weakly positive reaction for TM and factor VIII, but were negative for alpha-SMA. However, the appearance of immature pericytes around the well-developed capillary was obvious with electron microscopy. The study reported here provides detailed descriptions of angiogenesis during luteinization. It is concluded that the angiogenesis of the CL begins at the time of destruction of the BM of the ovarian follicle, and that the capillary BM appears when the capillary forms its lumen. Moreover, it was demonstrated that the capillary does not develop into an arteriole during luteinization.

  19. Corpus luteum mimics a pelvic lesion on FDG PET in women of childbearing age

    International Nuclear Information System (INIS)

    Kang, K.W.; Sim, J.S.

    2002-01-01

    Objectives: To find out the nature of incidental single pelvic lesion on F-18 FDG PET scan in the women of childbearing age, further investigation were done. Methods: Three women who had a single round hypermetabolic lesion in the pelvic cavity on FDG PET were further investigated through follow up PET scan or MRI scan. The purposes of PET scan were routine follow up of breast cancer after surgery and adjuvant chemotherapy for a patient and cancer screening for two women. The ages were 39, 45, and 48 years old respectively. The last menstrual periods (LMP) were 21, 22 and 24 days before PET examinations. The size and peak SUVs (standard uptake values) of lesions are presented. Results: The lesion in pelvic cavity disappeared in a patients with breast cancer on a follow up PET scan 2 months and 1 week later. The lesions in two women were proved to be corpus luteum cysts on MRI examination on the same day of PET examination. Conclusion: Single pelvic lesion in women of childbearing age should be ruled out a normal corpus luteum cyst. Also, schedule of PET imaging should be adjusted according to her menstrual period

  20. The corpus luteum of the dog: source and target of steroid hormones?

    Science.gov (United States)

    Papa, P C; Hoffmann, B

    2011-08-01

    Aim of this paper is to review our present understanding on the endocrine control of luteal function in the bitch and to add some new data generated in our laboratories in support of the hypothesis of a paracrine/autocrine role of corpus luteum (CL) derived steroid hormones. Luteal lifespan in non-pregnant dogs often exceeds that of pregnant dogs, where luteal regression terminates in a rapid luteolysis, immediately prior to parturition. In non-pregnant dogs, luteal regression occurs independently of a uterine luteolysin and in spite of increased gonadotropic support during the last third of dioestrus. The CL is the only source of progesterone (P(4)) maintaining pregnancy, and they have the capacity to synthesize oestrogens as substantiated by expression of the CYP19 (aromatase) gene observed in this study. Our data demonstrated that lutein and non-lutein cells of the canine CL express in a rather constant manner the progesterone receptor (PR) and the oestrogen receptor, classifying them as targets for an autocrine/paracrine activity of CL-derived steroids. Therefore, a functional role of P(4) within a positive loop feedback system, including StAR and 3β-hydroxysteroid dehydrogenase, has been postulated. © 2011 Blackwell Verlag GmbH.

  1. Transcriptomic and bioinformatics analysis of the early time-course of the response to prostaglandin F2 alpha in the bovine corpus luteum

    Directory of Open Access Journals (Sweden)

    Heather Talbott

    2017-10-01

    Full Text Available RNA expression analysis was performed on the corpus luteum tissue at five time points after prostaglandin F2 alpha treatment of midcycle cows using an Affymetrix Bovine Gene v1 Array. The normalized linear microarray data was uploaded to the NCBI GEO repository (GSE94069. Subsequent statistical analysis determined differentially expressed transcripts ± 1.5-fold change from saline control with P ≤ 0.05. Gene ontology of differentially expressed transcripts was annotated by DAVID and Panther. Physiological characteristics of the study animals are presented in a figure. Bioinformatic analysis by Ingenuity Pathway Analysis was curated, compiled, and presented in tables. A dataset comparison with similar microarray analyses was performed and bioinformatics analysis by Ingenuity Pathway Analysis, DAVID, Panther, and String of differentially expressed genes from each dataset as well as the differentially expressed genes common to all three datasets were curated, compiled, and presented in tables. Finally, a table comparing four bioinformatics tools’ predictions of functions associated with genes common to all three datasets is presented. These data have been further analyzed and interpreted in the companion article “Early transcriptome responses of the bovine mid-cycle corpus luteum to prostaglandin F2 alpha includes cytokine signaling” [1].

  2. A Corpus Luteum Is Not a Prerequisite for the Expression of Progesterone Induced Blocking Factor by T-Lymphocytes a Week After Implantation

    OpenAIRE

    Check, Jerome H.; Szekeres-Bartho, Julia; Nazari, Parvin; Katz, Youval; Check, Matthew L.

    2001-01-01

    Purpose: To determine if production of the immunomodulatory protein, progesterone induced blocking factor (PIBF), requires merely progesterone or whether other factors made by the corpus luteum are required.

  3. Effects of leptin administration on development, vascularization and function of Corpus luteum in alpacas submitted to pre-ovulatory fasting.

    Science.gov (United States)

    Norambuena, María Cecilia; Hernández, Francisca; Maureira, Jonathan; Rubilar, Carolina; Alfaro, Jorge; Silva, Gonzalo; Silva, Mauricio; Ulloa-Leal, César

    2017-07-01

    The objective of this study was to determine the effect of leptin administration on the development, vascularization and function of Corpus luteum (CL) in alpacas submitted to pre-ovulatory fasting. Fourteen alpacas were kept in fasting conditions for 72h and received five doses of o-leptin (2μg/kg e.v.; Leptin group) or saline (Control group) every 12h. Ovulation was induced with a GnRH dose (Day 0). The ovaries were examined every other day by trans-rectal ultrasonography (7.5MHz; mode B and power Doppler) from Day 0 to 13 to determine the pre-ovulatory follicle diameter and ovulation, and then to monitor CL diameter and vascularization until the regression phase. Serial blood samples were taken after GnRH treatment to determine plasma LH concentration; and every other day from Days 1 to 13 to determine plasma progesterone and leptin concentrations. The pre-ovulatory follicle and CL diameter, LH, progesterone and leptin plasma concentrations were not affected by treatment (P>0.05). The vascularization area of the CL was, nevertheless, affected by the treatment (P<0.01) with significant differences between groups at Days 3, 7 and 9 (P<0.05). The Leptin group had a larger maximum vascularization area (0.67±0.1 compared with 0.35±0.1cm 2 ; P<0.05). In addition, there was a positive correlation between CL vascularization, CL diameter and plasma progesterone. The exogenous administration of leptin during pre-ovulatory fasting increased the vascularization of the CL in alpacas in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Case of pregnancy in two cows with unicorn horn of the uterus either by artificial insemination at ipsilateral or embryo transfer at contralateral corpus luteum in the ovary.

    Science.gov (United States)

    Moriyama, C; Kobayashi, I; Tani, M; Oishi, T; Kajisa, M; Horii, Y; Kamimura, S

    2008-06-01

    Two Holstein heifers and a cow were diagnosed with White Heifer Disease by ultrasonography. Case 1 was a 14 month-old heifer with aplasia of both sides of the uterine horn. In case 2, a primiparous cow and case 3, an 18 month-old heifer, both showed aplasia of the right uterine horn. Case 2 became pregnant by artificial insemination at ipsilateral ovulatory follicle and corpus luteum in the left ovary, while case 3 became pregnant by embryo transfer at 7 days after oestrus with contralateral corpus luteum in the right ovary.

  5. Neofusicoccum luteum associated with leaf necrosis and fruit rot of olives in New South Wales, Australia

    Directory of Open Access Journals (Sweden)

    V. Sergeeva

    2009-09-01

    Full Text Available Neofusicoccum luteum is reported for the first time from olives (Olea europaea, causing fruit rot and leaf necrosis. Affected fruits initially became brown with pycnidia developing on the surface, later drying out and becoming mummified. The fungus was shown to be pathogenic on both fruits and leaves. The association of Botryosphaeriaceae with rotting olive fruits in Mediterranean regions and in New South Wales, Australia indicates that these fungi play a significant role in fruit rots of olives and deserve greater attention.

  6. Transcriptomic and bioinformatics analysis of the early time-course of the response to prostaglandin F2 alpha in the bovine corpus luteum

    Science.gov (United States)

    RNA expression analysis was performed on the corpus luteum tissue at five time points after prostaglandin F2 alpha treatment of midcycle cows using an Affymetrix Bovine Gene v1 Array. The normalized linear microarray data was uploaded to the NCBI GEO repository (GSE94069). Subsequent statistical ana...

  7. Effects of luteinizing hormone and human chorionic gonadotropin on corpus luteum cells in a spheroid cell culture system.

    Science.gov (United States)

    Walz, A; Keck, C; Weber, H; Kissel, C; Pietrowski, D

    2005-09-01

    The human corpus luteum (CL) is a highly vascularized, temporarily active endocrine gland and consists mainly of granulosa cells (GCs), theca cells (TCs), and endothelial cells (ECs). Its cyclic growth and development takes place under the influence of gonadotropic hormones. If pregnancy does occur, human chorionic gonadotropin (hCG) takes over the function of luteinizing hormone (LH) and, in contrast to LH, extends the functional life span of the CL. In this study, we investigated the effects of hCG and LH in a spheroidal cell culture model of CL development. Our data indicate that GCs secrete factors under the control of hCG that increase sprout formation of EC-spheroids. We demonstrate that the most prominent of these factors is VEGF-A. Furthermore, we found that both LH and hCG decrease sprout formation of GC-spheroids. After forming EC-GC coculture spheroids and consequently bringing GCs and ECs in close contact, sprouting increased under the influence of hCG, however not under LH. These experiments provide evidence for an hCG dependent functional switch in the GCs after coming in contact with ECs. Moreover, it demonstrates the considerably different effects of hCG and LH on GCs although their signaling is transmitted via the same receptor.

  8. Spannungsaktivierte Natriumkanäle im Corpus luteum des Primaten und ihre Rolle bei der Regulation von Steroidproduktion und Luteolyse

    OpenAIRE

    Bulling, Andreas

    2008-01-01

    Im Ovar des Menschen und im Corpus Luteum des Rhesusaffen konnte die mRNA für einen bislang nur im peripheren Nervensystem und in neuroendokrinen Zellen gefundenen spannungsaktivierten Natriumkanal (eNaK, SCN9A) nachgewiesen werden. In kultivierten humanen Granulosaluteinzellen wurden sowohl die Transkriptmenge, als auch die durch depolarisierende Spannungspulse ausgelösten, TTX-sensitiven transienten Ströme durch hCG negativ reguliert. Trotz des gleichzeitigen Vorkommens spannungsaktivierter...

  9. Follicle vascularity coordinates corpus luteum blood flow and progesterone production.

    Science.gov (United States)

    de Tarso, S G S; Gastal, G D A; Bashir, S T; Gastal, M O; Apgar, G A; Gastal, E L

    2017-03-01

    Colour Doppler ultrasonography was used to compare the ability of preovulatory follicle (POF) blood flow and its dimensions to predict the size, blood flow and progesterone production capability of the subsequent corpus luteum (CL). Cows (n=30) were submitted to a synchronisation protocol. Follicles ≥7mm were measured and follicular wall blood flow evaluated every 12h for approximately 3.5 days until ovulation. After ovulation, cows were scanned daily for 8 days and similar parameters were evaluated for the CL. Blood samples were collected and plasma progesterone concentrations quantified. All parameters were positively correlated. Correlation values ranged from 0.26 to 0.74 on data normalised to ovulation and from 0.31 to 0.74 on data normalised to maximum values. Correlations between calculated ratios of both POF and CL in data normalised to ovulation and to maximum values ranged from moderate (0.57) to strong (0.87). Significant (Pprogesterone concentrations of the resultant CL. These findings indicate that follicle vascularity coordinates CL blood flow and progesterone production in synchronised beef cows.

  10. Electron distribution function in electron-beam-excited plasmas

    International Nuclear Information System (INIS)

    Brau, C.A.

    1976-01-01

    In monatomic plasmas excited by high-intensity relativistic electron beams, the electron secondary distribution function is dominated by elastic electron-electron collisions at low electron energies and by inelastic electron-atom collisions at high electron energies (above the excitation threshold). Under these conditions, the total rate of excitation by inelastic collisions is limited by the rate at which electron-electron collisions relax the distribution function in the neighborhood of the excitation threshold. To describe this effect quantitatively, an approximate analytic solution of the electron Boltzmann equation is obtained, including both electron-electron and inelastic collisions. The result provides a simple formula for the total rate of excitation

  11. Equation satisfied by electron-electron mutual Coulomb repulsion energy density functional

    OpenAIRE

    Joubert, Daniel P.

    2011-01-01

    The electron-electron mutual Coulomb repulsion energy density functional satisfies an equation that links functionals and functional derivatives at N-electron and (N-1)-electron densities for densities determined from the same adiabatic scaled external potential for the N-electron system.

  12. Androgen deficiency during mid- and late pregnancy alters progesterone production and metabolism in the porcine corpus luteum.

    Science.gov (United States)

    Grzesiak, Malgorzata; Knapczyk-Stwora, Katarzyna; Ciereszko, Renata E; Golas, Aniela; Wieciech, Iwona; Slomczynska, Maria

    2014-06-01

    We determined whether androgen deficiency induced by flutamide treatment during mid- and late pregnancy affects the functions of the porcine corpus luteum (CL). Pregnant gilts were injected with flutamide between days 43 and 49 (gestation day [GD] 50F), days 83 and 89 (GD90F), or days 101 and 107 (GD108F) of gestation. Antiandrogen treatment increased the luteal progesterone concentration in the GD50F group and decreased progesterone content in the GD90F and GD108F groups. Luteal levels of side-chain cleavage cytochrome P450 (CYP11A1) mRNA and protein were significantly downregulated in the GD90F and GD108F groups as compared with the respective controls. The 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (HSD3B) mRNA and protein expression were significantly reduced only in the GD108F group as compared with the control. Decreased luteal 20α-hydroxysteroid dehydrogenase (AKR1C1) mRNA and protein levels were observed in the GD50F group. Thus, androgen deficiency during pregnancy in pigs led to CL dysfunction that is marked by decreased progesterone production. Furthermore, exposure to flutamide during late pregnancy downregulated steroidogenic enzymes (CYP11A1 and HSD3B) in pigs. We conclude that androgens are important regulators of CL function during pregnancy.

  13. Differentially Expressed Genes in Endometrium and Corpus Luteum of Holstein Cows Selected for High and Low Fertility Are Enriched for Sequence Variants Associated with Fertility.

    Science.gov (United States)

    Moore, Stephen G; Pryce, Jennie E; Hayes, Ben J; Chamberlain, Amanda J; Kemper, Kathryn E; Berry, Donagh P; McCabe, Matt; Cormican, Paul; Lonergan, Pat; Fair, Trudee; Butler, Stephen T

    2016-01-01

    Despite the importance of fertility in humans and livestock, there has been little success dissecting the genetic basis of fertility. Our hypothesis was that genes differentially expressed in the endometrium and corpus luteum on Day 13 of the estrous cycle between cows with either good or poor genetic merit for fertility would be enriched for genetic variants associated with fertility. We combined a unique genetic model of fertility (cattle that have been selected for high and low fertility and show substantial difference in fertility) with gene expression data from these cattle and genome-wide association study (GWAS) results in ∼20,000 cattle to identify quantitative trait loci (QTL) regions and sequence variants associated with genetic variation in fertility. Two hundred and forty-five QTL regions and 17 sequence variants associated primarily with prostaglandin F2alpha, steroidogenesis, mRNA processing, energy status, and immune-related processes were identified. Ninety-three of the QTL regions were validated by two independent GWAS, with signals for fertility detected primarily on chromosomes 18, 5, 7, 8, and 29. Plausible causative mutations were identified, including one missense variant significantly associated with fertility and predicted to affect the protein function of EIF4EBP3. The results of this study enhance our understanding of 1) the contribution of the endometrium and corpus luteum transcriptome to phenotypic fertility differences and 2) the genetic architecture of fertility in dairy cattle. Including these variants in predictions of genomic breeding values may improve the rate of genetic gain for this critical trait. © 2016 by the Society for the Study of Reproduction, Inc.

  14. Electron-cyclotron-resonant-heated electron distribution functions

    International Nuclear Information System (INIS)

    Matsuda, Y.; Nevins, W.M.; Cohen, R.H.

    1981-01-01

    Recent studies at Lawrence Livermore National Laboratory (LLNL) with a bounce-averaged Fokker-Planck code indicate that the energetic electron tail formed by electron-cyclotron resonant heating (ECRH) at the second harmonic is not Maxwellian. We present the results of our bounce-averaged Fokker-Planck code along with some simple analytic models of hot-electron distribution functions

  15. Electron distribution function in laser heated plasmas

    International Nuclear Information System (INIS)

    Fourkal, E.; Bychenkov, V. Yu.; Rozmus, W.; Sydora, R.; Kirkby, C.; Capjack, C. E.; Glenzer, S. H.; Baldis, H. A.

    2001-01-01

    A new electron distribution function has been found in laser heated homogeneous plasmas by an analytical solution to the kinetic equation and by particle simulations. The basic kinetic model describes inverse bremsstrahlung absorption and electron--electron collisions. The non-Maxwellian distribution function is comprised of a super-Gaussian bulk of slow electrons and a Maxwellian tail of energetic particles. The tails are heated due to electron--electron collisions and energy redistribution between superthermal particles and light absorbing slow electrons from the bulk of the distribution function. A practical fit is proposed to the new electron distribution function. Changes to the linear Landau damping of electron plasma waves are discussed. The first evidence for the existence of non-Maxwellian distribution functions has been found in the interpretation, which includes the new distribution function, of the Thomson scattering spectra in gold plasmas [Glenzer , Phys. Rev. Lett. 82, 97 (1999)

  16. Opposing Roles of Leptin and Ghrelin in the Equine Corpus Luteum Regulation: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    António Galvão

    2014-01-01

    Full Text Available Metabolic hormones have been associated with reproductive function modulation. Thus, the aim of this study was: (i to characterize the immunolocalization, mRNA and protein levels of leptin (LEP, Ghrelin (GHR and respective receptors LEPR and Ghr-R1A, throughout luteal phase; and (ii to evaluate the role of LEP and GHR on progesterone (P4, prostaglandin (PG E2 and PGF2α, nitric oxide (nitrite, tumor necrosis factor-α (TNF; macrophage migration inhibitory factor (MIF secretion, and on angiogenic activity (BAEC proliferation, in equine corpus luteum (CL from early and mid-luteal stages. LEPR expression was decreased in late CL, while GHR/Ghr-R1A system was increased in the same stage. Regarding secretory activity, GHR decreased P4 in early CL, but increased PGF2α, nitrite and TNF in mid CL. Conversely, LEP increased P4, PGE2, angiogenic activity, MIF, TNF and nitrite during early CL, in a dose-dependent manner. The in vitro effect of LEP on secretory activity was reverted by GHR, when both factors acted together. The present results evidence the presence of LEP and GHR systems in the equine CL. Moreover, we suggest that LEP and GHR play opposing roles in equine CL regulation, with LEP supporting luteal establishment and GHR promoting luteal regression. Finally, a dose-dependent luteotrophic effect of LEP was demonstrated.

  17. How do electron localization functions describe π-electron delocalization?

    Science.gov (United States)

    Steinmann, Stephan N; Mo, Yirong; Corminboeuf, Clemence

    2011-12-14

    Scalar fields provide an intuitive picture of chemical bonding. In particular, the electron localization function (ELF) has proven to be highly valuable in interpreting a broad range of bonding patterns. The discrimination between enhanced or reduced electron (de)localization within cyclic π-conjugated systems remains, however, challenging for ELF. In order to clearly distinguish between the local properties of ten highly and weakly π-(de)localized prototype systems, we compare the ELFs of both the canonical wave functions and electron-localized states (diabatic) with those of two closely related scalar fields: the electron localizability indicator (ELI-D) and the localized orbital locator (LOL). The simplest LOL function distinguishes enhanced from weak π-(de)localization in an insightful and reliable manner. LOL offers the finest contrast between annulenes with 4n/4n + 2 π electrons and their inorganic analogues as well as between hyperconjugated cyclopentadiene derivatives. LOL(π) also gives an appealing and intuitive picture of the π-bond. In contrast, the most popular ELF fails to capture subtle contrasting local electronic properties and suffers from the arbitrariness of the σ/π dissection. The orbital separation of the most recent ELI-D is clear-cut but the interpretations sometime less straightforward in the present context.

  18. Expression and localization of ghrelin and its functional receptor in corpus luteum during different stages of estrous cycle and the modulatory role of ghrelin on progesterone production in cultured luteal cells in buffalo.

    Science.gov (United States)

    Gupta, M; Dangi, S S; Chouhan, V S; Hyder, I; Babitha, V; Yadav, V P; Khan, F A; Sonwane, A; Singh, G; Das, G K; Mitra, A; Bag, S; Sarkar, M

    2014-07-01

    Evidence obtained during recent years provided has insight into the regulation of corpus luteum (CL) development, function, and regression by locally produced ghrelin. The present study was carried out to evaluate the expression and localization of ghrelin and its receptor (GHS-R1a) in bubaline CL during different stages of the estrous cycle and investigate the role of ghrelin on progesterone (P4) production along with messenger RNA (mRNA) expression of P4 synthesis intermediates. The mRNA and protein expression of ghrelin and GHS-R1a was significantly greater in mid- and late luteal phases. Both factors were localized in luteal cells, exclusively in the cytoplasm. Immunoreactivity of ghrelin and GHS-R1a was greater during mid- and late luteal phases. Luteal cells were cultured in vitro and treated with ghrelin each at 1, 10, and 100 ng/mL concentrations for 48 h after obtaining 75% to 80% confluence. At a dose of 1 ng/mL, there was no significant difference in P4 secretion between control and treatment group. At 10 and 100 ng/mL, there was a decrease (P production in buffalo. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The truth about false unicorn (Chamaelirium luteum): total synthesis of 23R,24S-chiograsterol B defines the structure and stereochemistry of the major saponins from this medicinal herb.

    Science.gov (United States)

    Matovic, Nicholas J; Stuthe, Julia M U; Challinor, Victoria L; Bernhardt, Paul V; Lehmann, Reginald P; Kitching, William; De Voss, James J

    2011-06-27

    Chamaelirium luteum is used in traditional medicine systems and commercial botanical dietary supplements for the treatment of female reproductive health problems. Despite the wide use of this herb, only very limited phytochemical characterisation is available. Our investigation of C. luteum roots led to the isolation of two new steroidal saponins 1 and 2 that contain an unusual aglycone 3. The absolute configurations of these molecules were unable to be determined spectroscopically and thus the total synthesis of 3 was undertaken and achieved in 16 steps and 1.6 % overall yield from pregnenolone. The key step in the synthesis was the stereoselective installation of the side chain at C-17 and C-20, which employed anion-accelerated oxy-Cope methodology. The relative configuration of aglycone 3 was determined by X-ray crystallography of an advanced synthetic intermediate. The absolute configuration was based upon that of the pregnenolone-derived steroidal skeleton and determined to be 23R,24S. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Phenomenology of the electron structure function

    International Nuclear Information System (INIS)

    Slominski, W.; Szwed, J.

    2001-01-01

    The advantages of introducing the electron structure function (ESF) in electron induced processes are demonstrated. Contrary to the photon structure function it is directly measured in such processes. At present energies, a simultaneous analysis of both the electron and the photon structure functions gives an important test of the experimentally applied methods. Estimates of the ESF at LEP momenta are given. At very high momenta contributions from W and Z bosons together with γ-Z interference can be observed. Predictions for the next generation of experiments are given. (orig.)

  1. GATA4 and GATA6 Knockdown During Luteinization Inhibits Progesterone Production and Gonadotropin Responsiveness in the Corpus Luteum of Female Mice.

    Science.gov (United States)

    Convissar, Scott M; Bennett, Jill; Baumgarten, Sarah C; Lydon, John P; DeMayo, Francesco J; Stocco, Carlos

    2015-12-01

    The surge of luteinizing hormone triggers the genomic reprogramming, cell differentiation, and tissue remodeling of the ovulated follicle, leading to the formation of the corpus luteum. During this process, called luteinization, follicular granulosa cells begin expressing a new set of genes that allow the resulting luteal cells to survive in a vastly different hormonal environment and to produce the extremely high amounts of progesterone (P4) needed to sustain pregnancy. To better understand the molecular mechanisms involved in the regulation of luteal P4 production in vivo, the transcription factors GATA4 and GATA6 were knocked down in the corpus luteum by crossing mice carrying Gata4 and Gata6 floxed genes with mice carrying Cre recombinase fused to the progesterone receptor. This receptor is expressed exclusively in granulosa cells after the luteinizing hormone surge, leading to recombination of floxed genes during follicle luteinization. The findings demonstrated that GATA4 and GATA6 are essential for female fertility, whereas targeting either factor alone causes subfertility. When compared to control mice, serum P4 levels and luteal expression of key steroidogenic genes were significantly lower in conditional knockdown mice. The results also showed that GATA4 and GATA6 are required for the expression of the receptors for prolactin and luteinizing hormone, the main luteotropic hormones in mice. The findings demonstrate that GATA4 and GATA6 are crucial regulators of luteal steroidogenesis and are required for the normal response of luteal cells to luteotropins. © 2015 by the Society for the Study of Reproduction, Inc.

  2. Immunolocalization of steroidogenic enzymes in the corpus luteum and placenta of the Japanese black bear, Ursus thibetanus japonicus, during pregnancy.

    Science.gov (United States)

    Tsubota, T; Taki, S; Nakayama, K; Mason, J I; Kominami, S; Harada, N; Kita, I

    2001-04-01

    The Japanese black bear, Ursus thibetanus japonicus, is a seasonal breeder and shows delayed implantation for several months during pregnancy. The objective of this study was to clarify the steroidogenic capability of the corpus luteum and placenta during pregnancy, including both delayed implantation and fetal development, by immunolocalization of steroidogenic enzymes in these organs of the Japanese black bear. Ovaries and placentae from 15 wild Japanese black bears, which had been killed legally by hunters and were thought to be pregnant, were used in an immunocytochemical study to localize the cholesterol side chain cleavage cytochrome P450 (P450scc), 3beta-hydroxysteroid dehydrogenase (3betaHSD), 17alpha-hydroxylase cytochrome P450 (P450c17) and aromatase cytochrome P450 (P450arom) by the avidin-biotin-peroxidase complex method using polyclonal antisera raised in mammals against P450scc, 3betaHSD, P450c17 and P450arom. P450scc and 3betaHSD were localized in all luteal cells throughout pregnancy. P450c17 was present in a few luteal cells, especially in the outer area of the corpus luteum throughout pregnancy, but the number of positively immunostained cells decreased during the post-implantation period. Cells positively immunostained for P450c17 were significantly smaller than negatively immunostained cells (P black bear, corpora lutea are a source of progesterone which may play an important role in the maintenance of delayed implantation and fetal development during pregnancy. Corpora lutea have a minimum capability to synthesize androgen in small luteal cells and oestrogen in normal-sized luteal cells during pregnancy, and placentae have the ability to synthesize oestrogen during late pregnancy.

  3. Structure and bioactivity of steroidal saponins isolated from the roots of Chamaelirium luteum (false unicorn).

    Science.gov (United States)

    Challinor, Victoria L; Stuthe, Julia M U; Parsons, Peter G; Lambert, Lynette K; Lehmann, Reginald P; Kitching, William; De Voss, James J

    2012-08-24

    Phytochemical investigation of Chamaelirium luteum ("false unicorn") resulted in the isolation of 15 steroidal glycosides. Twelve of these (1, 2, 4-9, 11-13, and 15) are apparently unique to this species, and eight of these (6-9, 11-13, and 15) are previously unreported compounds; one (15) possesses a new steroidal aglycone. In addition, the absolute configuration of (23R,24S)-chiograsterol A (10) was defined, and its full spectroscopic characterization is reported for the first time. The structures and configurations of the saponins were determined using a combination of multistage mass spectrometry (MS(n)), 1D and 2D NMR experiments, and chemical degradation. The antiproliferative activity of nine compounds obtained in the present work, and eight related compounds generated in previous work, was compared in six human tumor cell lines, with aglycones 3 and 10 and related derivatives 16, 17, 19, and 20 all displaying significant antiproliferative activity.

  4. Size of ovulatory follicles in cattle expressing multiple ovulations naturally and its influence on corpus luteum development and fertility.

    Science.gov (United States)

    Echternkamp, S E; Cushman, R A; Allan, M F

    2009-11-01

    Long-term genetic selection of cattle for fraternal twins has increased the frequency of twin and triplet ovulations. In contrast, the ratio of fetal numbers to ovulation sites in pregnant females with twin (0.83) or triplet (0.73) ovulations is conception in cyclic cattle expressing multiple ovulations naturally, including the effect of ovulation rate on follicle or corpus luteum (CL) size, and their relationship to conception. Diameter of the individual ovulatory follicles was measured by transrectal ultrasonography at AI and ranged from 8 to 30 mm, with a trend for diameter of the individual follicles, and associated CL, to decrease with increasing ovulation rate. Independent of ovulation rate, ovulatory follicles were smaller (P or =2.5 yr). Pregnancy and fetal status were diagnosed by transrectal ultrasonography between 42 and 72 d after AI. Fertility was reduced (P or =22 vs. 14 to 17.9 mm). Plasma progesterone concentrations increased with ovulation rate and were correlated positively with total CL or ovulatory follicle volume per female, indicating that CL size and function were influenced by the size of the follicle of origin. Progesterone was greater (P uterine crowding, especially when 2 or more fetuses were contained within 1 uterine horn.

  5. Matrix metalloproteinase 2 is required for ovulation and corpus luteum formation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Lylah D Deady

    2015-02-01

    Full Text Available Ovulation is critical for successful reproduction and correlates with ovarian cancer risk, yet genetic studies of ovulation have been limited. It has long been thought that the mechanism controlling ovulation is highly divergent due to speciation and fast evolution. Using genetic tools available in Drosophila, we now report that ovulation in Drosophila strongly resembles mammalian ovulation at both the cellular and molecular levels. Just one of up to 32 mature follicles per ovary pair loses posterior follicle cells ("trimming" and protrudes into the oviduct, showing that a selection process prefigures ovulation. Follicle cells that remain after egg release form a "corpus luteum (CL" at the end of the ovariole, develop yellowish pigmentation, and express genes encoding steroid hormone biosynthetic enzymes that are required for full fertility. Finally, matrix metalloproteinase 2 (Mmp2, a type of protease thought to facilitate mammalian ovulation, is expressed in mature follicle and CL cells. Mmp2 activity is genetically required for trimming, ovulation and CL formation. Our studies provide new insights into the regulation of Drosophila ovulation and establish Drosophila as a model for genetically investigating ovulation in diverse organisms, including mammals.

  6. The Adequate Corpus Luteum: miR-96 Promotes Luteal Cell Survival and Progesterone Production.

    Science.gov (United States)

    Mohammed, Bushra T; Sontakke, Sadanand D; Ioannidis, Jason; Duncan, W Colin; Donadeu, F Xavier

    2017-07-01

    Inadequate progesterone production from the corpus luteum is associated with pregnancy loss. Data available in model species suggest important roles of microRNAs (miRNAs) in luteal development and maintenance. To comprehensively investigate the involvement of miRNAs during the ovarian follicle-luteal transition. The effects of specific miRNAs on survival and steroid production by human luteinized granulosa cells (hLGCs) were tested using specific miRNA inhibitors. Candidate miRNAs were identified through microarray analyses of follicular and luteal tissues in a bovine model. An academic institution in the United Kingdom associated with a teaching hospital. hLGCs were obtained by standard transvaginal follicular-fluid aspiration from 35 women undergoing assisted conception. Inhibition of candidate miRNAs in vitro. Levels of miRNAs, mRNAs, FOXO1 protein, apoptosis, and steroids were measured in tissues and/or cultured cells. Two specific miRNA clusters, miR-183-96-182 and miR-212-132, were dramatically increased in luteal relative to follicular tissues. miR-96 and miR-132 were the most upregulated miRNAs within each cluster. Database analyses identified FOXO1 as a putative target of both these miRNAs. In cultured hLGCs, inhibition of miR-96 increased apoptosis and FOXO1 protein levels, and decreased progesterone production. These effects were prevented by small interfering RNA-mediated downregulation of FOXO1. In bovine luteal cells, miR-96 inhibition also led to increases in apoptosis and FOXO1 protein levels. miR-96 targets FOXO1 to regulate luteal development through effects on cell survival and steroid production. The miR-183-96-182 cluster could provide a novel target for the manipulation of luteal function. Copyright © 2017 Endocrine Society

  7. Microscopy of electronic wave function

    International Nuclear Information System (INIS)

    Harb, M.

    2010-01-01

    This work of thesis aims to visualize, on a position sensitive detector, the spatial oscillations of slow electrons (∼ meV) emitted by a threshold photoionization in the presence of an external electric field. The interference figure obtained represents the square magnitude of electronic wavefunction. This fundamental work allows us to have access to the electronic dynamics and thus to highlight several quantum mechanisms that occur at the atomic scale (field Coulomb, electron/electron interaction..). Despite the presence an electronic core in Li atom, we have succeeded, experimentally and for the first time, in visualizing the wave function associated with the quasi-discrete Stark states coupled to the ionization continuum. Besides, using simulations of wave packet propagation, based on the 'Split-operator' method, we have conducted a comprehensive study of the H, Li and Cs atoms while revealing the significant effects of the Stark resonances. A very good agreement, on and off resonances, was obtained between simulated and experimental results. In addition, we have developed a generalized analytical model to understand deeply the function of VMI (Velocity-Map Imaging) spectrometer. This model is based on the paraxial approximation; it is based on matrix optics calculation by making an analogy between the electronic trajectory and the light beam. An excellent agreement was obtained between the model predictions and the experimental results. (author)

  8. Auroal electron distribution function

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Dusenbery, P.B.; Thomas, B.J.; Arnoldy, R.L.

    1978-01-01

    The electron velocity distribution function is presented in the energy range 25 eV 8 cm/s (E=300 eV) are nearly isotropic in pitch angle throughout the flight. Upgoing electrons show almost no pitch angle dependence beyond 120 0 , and their fluxes decline smoothly as energy increases, with little or no evidence of a plateau. Preliminary results of numerical integrations, to study bulk properties and stability of the plasma are presented

  9. Equine Chorionic Gonadotropin Modulates the Expression of Genes Related to the Structure and Function of the Bovine Corpus Luteum.

    Science.gov (United States)

    Sousa, Liza Margareth Medeiros de Carvalho; Mendes, Gabriela Pacheco; Campos, Danila Barreiro; Baruselli, Pietro Sampaio; Papa, Paula de Carvalho

    2016-01-01

    We hypothesized that stimulatory and superovulatory treatments, using equine chorionic gonadotropin (eCG), modulate the expression of genes related to insulin, cellular modelling and angiogenesis signaling pathways in the bovine corpus luteum (CL). Therefore, we investigated: 1-the effect of these treatments on circulating insulin and somatomedin C concentrations and on gene and protein expression of INSR, IGF1 and IGFR1, as well as other insulin signaling molecules; 2-the effects of eCG on gene and protein expression of INSR, IGF1, GLUT4 and NFKB1A in bovine luteal cells; and 3-the effect of stimulatory and superovulatory treatments on gene and protein expression of ANG, ANGPT1, NOS2, ADM, PRSS2, MMP9 and PLAU. Serum insulin did not differ among groups (P = 0.96). However, serum somatomedin C levels were higher in both stimulated and superovulated groups compared to the control (P = 0.01). In stimulated cows, lower expression of INSR mRNA and higher expression of NFKB1A mRNA and IGF1 protein were observed. In superovulated cows, lower INSR mRNA expression, but higher INSR protein expression and higher IGF1, IGFR1 and NFKB1A gene and protein expression were observed. Expression of angiogenesis and cellular modelling pathway-related factors were as follows: ANGPT1 and PLAU protein expression were higher and MMP9 gene and protein expression were lower in stimulated animals. In superovulated cows, ANGPT1 mRNA expression was higher and ANG mRNA expression was lower. PRSS2 gene and protein expression were lower in both stimulated and superovulated animals related to the control. In vitro, eCG stimulated luteal cells P4 production as well as INSR and GLUT4 protein expression. In summary, our results suggest that superovulatory treatment induced ovarian proliferative changes accompanied by increased expression of genes providing the CL more energy substrate, whereas stimulatory treatment increased lipogenic activity, angiogenesis and plasticity of the extracellular matrix

  10. Equine Chorionic Gonadotropin Modulates the Expression of Genes Related to the Structure and Function of the Bovine Corpus Luteum.

    Directory of Open Access Journals (Sweden)

    Liza Margareth Medeiros de Carvalho Sousa

    Full Text Available We hypothesized that stimulatory and superovulatory treatments, using equine chorionic gonadotropin (eCG, modulate the expression of genes related to insulin, cellular modelling and angiogenesis signaling pathways in the bovine corpus luteum (CL. Therefore, we investigated: 1-the effect of these treatments on circulating insulin and somatomedin C concentrations and on gene and protein expression of INSR, IGF1 and IGFR1, as well as other insulin signaling molecules; 2-the effects of eCG on gene and protein expression of INSR, IGF1, GLUT4 and NFKB1A in bovine luteal cells; and 3-the effect of stimulatory and superovulatory treatments on gene and protein expression of ANG, ANGPT1, NOS2, ADM, PRSS2, MMP9 and PLAU. Serum insulin did not differ among groups (P = 0.96. However, serum somatomedin C levels were higher in both stimulated and superovulated groups compared to the control (P = 0.01. In stimulated cows, lower expression of INSR mRNA and higher expression of NFKB1A mRNA and IGF1 protein were observed. In superovulated cows, lower INSR mRNA expression, but higher INSR protein expression and higher IGF1, IGFR1 and NFKB1A gene and protein expression were observed. Expression of angiogenesis and cellular modelling pathway-related factors were as follows: ANGPT1 and PLAU protein expression were higher and MMP9 gene and protein expression were lower in stimulated animals. In superovulated cows, ANGPT1 mRNA expression was higher and ANG mRNA expression was lower. PRSS2 gene and protein expression were lower in both stimulated and superovulated animals related to the control. In vitro, eCG stimulated luteal cells P4 production as well as INSR and GLUT4 protein expression. In summary, our results suggest that superovulatory treatment induced ovarian proliferative changes accompanied by increased expression of genes providing the CL more energy substrate, whereas stimulatory treatment increased lipogenic activity, angiogenesis and plasticity of the

  11. Molecular-Scale Electronics: From Concept to Function.

    Science.gov (United States)

    Xiang, Dong; Wang, Xiaolong; Jia, Chuancheng; Lee, Takhee; Guo, Xuefeng

    2016-04-13

    Creating functional electrical circuits using individual or ensemble molecules, often termed as "molecular-scale electronics", not only meets the increasing technical demands of the miniaturization of traditional Si-based electronic devices, but also provides an ideal window of exploring the intrinsic properties of materials at the molecular level. This Review covers the major advances with the most general applicability and emphasizes new insights into the development of efficient platform methodologies for building reliable molecular electronic devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. First, we summarize a number of different approaches of forming molecular-scale junctions and discuss various experimental techniques for examining these nanoscale circuits in details. We then give a full introduction of characterization techniques and theoretical simulations for molecular electronics. Third, we highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits. Finally, we provide a critical discussion of limitations and main challenges that still exist for the development of molecular electronics. These analyses should be valuable for deeply understanding charge transport through molecular junctions, the device fabrication process, and the roadmap for future practical molecular electronics.

  12. Electron energy-distribution functions in gases

    International Nuclear Information System (INIS)

    Pitchford, L.C.

    1981-01-01

    Numerical calculation of the electron energy distribution functions in the regime of drift tube experiments is discussed. The discussion is limited to constant applied fields and values of E/N (ratio of electric field strength to neutral density) low enough that electron growth due to ionization can be neglected

  13. Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence

    International Nuclear Information System (INIS)

    Gori-Giorgi, Paola; Savin, Andreas

    2006-01-01

    The combination of density-functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parametrization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ''extended Overhauser model.'' The results of this work can be used to build self-interaction corrected short-range correlation energy functionals

  14. Dechanneling function for relativistic axially channeled electrons

    International Nuclear Information System (INIS)

    Muralev, V.A.; Telegin, V.I.

    1981-01-01

    Behaviour of the x(t) dechanneling function depending on the depth is theoretically studied. Theoretical consideration of x(t) for axial channeled relativistic electrons in anisotropic medium results in two-dimensional kinetic equation with mixed derivatives of the parabolic type. The kinetic equation in the approximation of the continuous Lindchard model for relativistic axial channeled electrons is numerically solved. The depth dependence of the x(t) dechanneling function is obtained [ru

  15. Electron work function-a promising guiding parameter for material design.

    Science.gov (United States)

    Lu, Hao; Liu, Ziran; Yan, Xianguo; Li, Dongyang; Parent, Leo; Tian, Harry

    2016-04-14

    Using nickel added X70 steel as a sample material, we demonstrate that electron work function (EWF), which largely reflects the electron behavior of materials, could be used as a guide parameter for material modification or design. Adding Ni having a higher electron work function to X70 steel brings more "free" electrons to the steel, leading to increased overall work function, accompanied with enhanced e(-)-nuclei interactions or higher atomic bond strength. Young's modulus and hardness increase correspondingly. However, the free electron density and work function decrease as the Ni content is continuously increased, accompanied with the formation of a second phase, FeNi3, which is softer with a lower work function. The decrease in the overall work function corresponds to deterioration of the mechanical strength of the steel. It is expected that EWF, a simple but fundamental parameter, may lead to new methodologies or supplementary approaches for metallic materials design or tailoring on a feasible electronic base.

  16. Relations among several nuclear and electronic density functional reactivity indexes

    Science.gov (United States)

    Torrent-Sucarrat, Miquel; Luis, Josep M.; Duran, Miquel; Toro-Labbé, Alejandro; Solà, Miquel

    2003-11-01

    An expansion of the energy functional in terms of the total number of electrons and the normal coordinates within the canonical ensemble is presented. A comparison of this expansion with the expansion of the energy in terms of the total number of electrons and the external potential leads to new relations among common density functional reactivity descriptors. The formulas obtained provide explicit links between important quantities related to the chemical reactivity of a system. In particular, the relation between the nuclear and the electronic Fukui functions is recovered. The connection between the derivatives of the electronic energy and the nuclear repulsion energy with respect to the external potential offers a proof for the "Quantum Chemical le Chatelier Principle." Finally, the nuclear linear response function is defined and the relation of this function with the electronic linear response function is given.

  17. The ion-electron correlation function in liquid metals

    International Nuclear Information System (INIS)

    Takeda, S.; Tamaki, S.; Waseda, Y.

    1985-01-01

    The structure factors of liquid Zn at 723 K, Sn at 523 K and Bi at 573 K have been determined by neutron diffraction with sufficient accuracy and compared with those of X-ray diffraction. A remarkable difference in the structural information between the two methods is clearly found around the first peak region as well as in the slightly varied peak positions, and it is apparently larger than the experimental errors. With these facts in mind, a new method evaluating the ion-electron correlation function in liquid metals has been proposed by using the measured structural data of X-rays and neutrons, with the help of theoretical values of the electron-electron correlation function by he Utsumi-Ichimaru scheme. This method has been applied to liquid Zn, Sn and Bi, and the radial distribution function of valence electrons around an ion has been estimated, from which the ionic radius and the schematic diagram of the electron distribution map are obtained. The ionic radii evaluated in this work have been found to agree well with those proposed by Pauling. (author)

  18. Electronic states of aryl radical functionalized graphenes: Density functional theory study

    Science.gov (United States)

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2016-06-01

    Functionalized graphenes are known as a high-performance molecular device. In the present study, the structures and electronic states of the aryl radical functionalized graphene have been investigated by the density functional theory (DFT) method to elucidate the effects of functionalization on the electronic states of graphene (GR). Also, the mechanism of aryl radical reaction with GR was investigated. The benzene, biphenyl, p-terphenyl, and p-quaterphenyl radicals [denoted by (Bz) n (n = 1-4), where n means numbers of benzene rings in aryl radical] were examined as aryl radicals. The DFT calculation of GR-(Bz) n (n = 1-4) showed that the aryl radical binds to the carbon atom of GR, and a C-C single bond was formed. The binding energies of aryl radicals to GR were calculated to be ca. 6.0 kcal mol-1 at the CAM-B3LYP/6-311G(d,p) level. It was found that the activation barrier exists in the aryl radical addition: the barrier heights were calculated to be 10.0 kcal mol-1. The electronic states of GR-(Bz) n were examined on the basis of theoretical results.

  19. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Protein Profile in Corpus Luteum during Pregnancy in Korean Native Cows

    Directory of Open Access Journals (Sweden)

    H. J. Chung

    2012-11-01

    Full Text Available Steroidogenesis requires coordination of the anabolic and catabolic pathways of lipid metabolism, but the profile of proteins associated with progesterone synthesis in cyclic and pregnant corpus luteum (CL is not well-known in cattle. In Experiment 1, plasma progesterone level was monitored in cyclic cows (n = 5 and pregnant cows (n = 6; until d-90. A significant decline in the plasma progesterone level occurred at d-19 of cyclic cows. Progesterone level in abbatoir-derived luteal tissues was also determined at d 1 to 5, 6 to 13 and 14 to 20 of cyclic cows, and d-60 and -90 of pregnant cows (n = 5 each. Progesterone level in d-60 CL was not different from those in d 6 to 13 CL and d-90 CL, although the difference between d 6 to 13 and d-90 was significant. In Experiment 2, protein expression pattern in CL at d-90 (n = 4 was compared with that in CL of cyclic cows at d 6 to 13 (n = 5. Significant changes in the level of protein expression were detected in 32 protein spots by two-dimensional polyacrylamide gel electrophoresis (2-DE, and 23 of them were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS. Six proteins were found only in pregnant CL, while the other 17 proteins were found only in cyclic CL. Among the above 6 proteins, vimentin which is involved in the regulation of post-implantation development was included. Thus, the protein expression pattern in CL was disorientated from cyclic luteal phase to mid pregnancy, and alterations in specific CL protein expression may contribute to the maintenance of pregnancy in Korean native cows.

  1. Using the electron localization function to correct for confinement physics in semi-local density functional theory

    International Nuclear Information System (INIS)

    Hao, Feng; Mattsson, Ann E.; Armiento, Rickard

    2014-01-01

    We have previously proposed that further improved functionals for density functional theory can be constructed based on the Armiento-Mattsson subsystem functional scheme if, in addition to the uniform electron gas and surface models used in the Armiento-Mattsson 2005 functional, a model for the strongly confined electron gas is also added. However, of central importance for this scheme is an index that identifies regions in space where the correction provided by the confined electron gas should be applied. The electron localization function (ELF) is a well-known indicator of strongly localized electrons. We use a model of a confined electron gas based on the harmonic oscillator to show that regions with high ELF directly coincide with regions where common exchange energy functionals have large errors. This suggests that the harmonic oscillator model together with an index based on the ELF provides the crucial ingredients for future improved semi-local functionals. For a practical illustration of how the proposed scheme is intended to work for a physical system we discuss monoclinic cupric oxide, CuO. A thorough discussion of this system leads us to promote the cell geometry of CuO as a useful benchmark for future semi-local functionals. Very high ELF values are found in a shell around the O ions, and take its maximum value along the Cu–O directions. An estimate of the exchange functional error from the effect of electron confinement in these regions suggests a magnitude and sign that could account for the error in cell geometry

  2. Changes in insulin-like growth factor-binding protein-3 messenger ribonucleic acid in endothelial cells of the human corpus luteum: a possible role in luteal development and rescue.

    Science.gov (United States)

    Fraser, H M; Lunn, S F; Kim, H; Duncan, W C; Rodger, F E; Illingworth, P J; Erickson, G F

    2000-04-01

    In the human menstrual cycle, extensive angiogenesis accompanies luteinization; and the process is physiologically important for corpus luteum (CL) function. During luteolysis, the vasculature collapses, and the endothelial cells die. In a conceptual cycle, the CL persists both functionally and structurally beyond the luteoplacental shift. Although luteal rescue is not associated with increased angiogenesis, endothelial survival is extended. Despite the central role of the luteal vasculature in fertility, the mechanisms regulating its development and demise are poorly understood. There is increasing evidence that insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) may be important effectors of luteal function. Here, we have found that IGFBP-3 messenger RNA is expressed in the endothelium of the human CL and that the levels of message change during luteal development and rescue by human CG. The signal was strong during the early luteal phase, but it showed significant reduction during the mid- and late luteal phases. Interestingly, administration of human CG caused a marked increase in the levels of IGFBP-3 messenger RNA in luteal endothelial cells that was comparable to that observed during the early luteal phase. We conclude that endothelial cell IGFBP-3 expression is a physiological property of the CL of menstruation and pregnancy. These observations raise the intriguing possibility that the regulated expression of endothelial IGFBP-3 may play a role in controlling angiogenesis and cell responses in the human CL by autocrine/paracrine mechanisms.

  3. Electron energy distribution function, effective electron temperature, and dust charge in the temporal afterglow of a plasma

    International Nuclear Information System (INIS)

    Denysenko, I. B.; Azarenkov, N. A.; Kersten, H.

    2016-01-01

    Analytical expressions describing the variation of electron energy distribution function (EEDF) in an afterglow of a plasma are obtained. Especially, the case when the electron energy loss is mainly due to momentum-transfer electron-neutral collisions is considered. The study is carried out for different EEDFs in the steady state, including Maxwellian and Druyvesteyn distributions. The analytical results are not only obtained for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy but also for the case when the collisions are a power function of electron energy. Using analytical expressions for the EEDF, the effective electron temperature and charge of the dust particles, which are assumed to be present in plasma, are calculated for different afterglow durations. An analytical expression for the rate describing collection of electrons by dust particles for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy is also derived. The EEDF profile and, as a result, the effective electron temperature and dust charge are sufficiently different in the cases when the rate for momentum-transfer electron-neutral collisions is independent on electron energy and when the rate is a power function of electron energy.

  4. Existence of time-dependent density-functional theory for open electronic systems: time-dependent holographic electron density theorem.

    Science.gov (United States)

    Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua

    2011-08-28

    We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.

  5. Electron distribution functions in Io plasma torus

    International Nuclear Information System (INIS)

    Boev, A.G.

    2003-01-01

    Electron distribution functions measured by the Voyager 1 in different shares of the Io plasma torus are explained. It is proved that their suprathermal tails are formed by the electrical field induced by the 'Jupiter wind'. The Maxwellian parts of all these spectra characterize thermal equilibrium populations of electrons and the radiation of exited ions

  6. Wave function of free electron in a strong laser plasma

    International Nuclear Information System (INIS)

    Zhu Shitong; Shen Wenda; Guo Qizhi

    1993-01-01

    The wave function of free electron in a strong laser plasma is obtained by solving exactly the Dirac equation in a curved space-time with optical metric for the laser plasma. When the laser field is diminished to zero, the wave function is naturally reduced to relativistic wave function of free electron. The possible application of the wave function is discussed

  7. Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma.

    Science.gov (United States)

    Finster, Kai Waldemar; Herbert, Rodney Andrew; Lomstein, Bente Aagaard

    2009-04-01

    Two pigmented, Gram-negative, non-motile, pleomorphic rod-shaped bacteria (strains SPM-9(T) and SPM-10(T)) were isolated from a permafrost soil collected from the Adventdalen valley, Spitsbergen, northern Norway. A third isolate (strain M5-H2) was recovered from the same soil sample after the sample had been exposed to simulated Martian environmental conditions. The three strains were characterized taxonomically by using a polyphasic approach. Phylogenetic, chemotaxonomic, physiological and morphological analyses demonstrated that the three isolates were most closely related to members of the genus Spirosoma. 16S rRNA gene sequence data indicated that the three isolates could be divided into two clusters: (i) strain SPM-9(T) and (ii) strains SPM-10(T) and M5-H2. This grouping was confirmed by DNA-DNA hybridization experiments. Strains SPM-9(T) and SPM-10(T) exhibited 92 % 16S rRNA gene sequence similarity to both Spirosoma linguale LMG 10896(T) and Spirosoma rigui WPCB 118(T). The major fatty acids present in all three isolates were summed feature 3 (comprising iso-C(15:0) 2-OH and/or C(16 : 1)omega7c; 43.0-48.2 % of the total), C(16 : 1)omega5c (19.1-21.3 %), C(16 : 0) (6.7-7.3 %), iso-C(17 : 0) 3-OH (4.7-6.0 %) and iso-C(15 : 0) (2.6-5.7 %). On the basis of their phenotypic and genotypic characteristics, the new strains are assigned to two novel species of the genus Spirosoma, for which the names Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov. are proposed. The type strain of Spirosoma spitsbergense is SPM-9(T) (=NCIMB 14407(T)=DSM 19989(T)) and the type strain of Spirosoma luteum is SPM-10(T) (=NCIMB 14406(T)=DSM 19990(T)). An emended description of the genus Spirosoma is also proposed.

  8. Electronic fitness function for screening semiconductors as thermoelectric materials

    International Nuclear Information System (INIS)

    Xing, Guangzong; Sun, Jifeng; Li, Yuwei; Fan, Xiaofeng

    2017-01-01

    Here, we introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between σ and S based on the complexity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full- and half-Heuslers, binary semiconductors, and Zintl phases. We find an efficient screening using this transport function. The EFF identifies known high-performance p- and n-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF.

  9. Electronic structure and correlated wave functions of a few electron quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Tokuei [Laboratory of Physics, College of Science and Technology, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba 274-8501 (Japan); Ishida, Hiroshi [College of Humanities and Sciences, Nihon University, Tokyo 156-8550 (Japan); Fujikawa, Kazuo [Institute of Quantum Science, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2015-01-22

    The energy spectra and wave functions of a few electrons confined by a quasi-one-dimensional harmonic and anharmonic potentials have been studied by using a full configuration interaction method employing a Cartesian anisotropic Gaussian basis set. The energy spectra are classified into three regimes of the strength of confinement, namely, large, medium and small. The polyad quantum number defined by a total number of nodes in the wave functions is shown to be a key ingredient to interpret the energy spectra for the whole range of the confinement strength. The nodal pattern of the wave functions exhibits normal modes for the harmonic confining potential, indicating collective motions of electrons. These normal modes are shown to undergo a transition to local modes for an anharmonic potential with large anharmonicity.

  10. Strict calculation of electron energy distribution functions in inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Winkler, R.

    1996-01-01

    It is objective of the paper to report on strict calculations of the velocity or energy distribution function function and related macroscopic properties of the electrons from appropriate electron kinetic equations under various plasma conditions and to contribute to a better understanding of the electron behaviour in inhomogeneous plasma regions. In particular, the spatial relaxation of plasma electrons acted upon by uniform electric fields, the response of plasma electrons on spatial disturbances of the electric field, the electron kinetics under the impact of space charge field confinement in the dc column plasma and the electron velocity distribution is stronger field as occurring in the electrode regions of a dc glow discharge is considered. (author)

  11. Electron and ion distribution functions in magnetopause reconnection

    Science.gov (United States)

    Wang, S.; Chen, L. J.; Bessho, N.; Hesse, M.; Kistler, L. M.; Torbert, R. B.; Mouikis, C.; Pollock, C. J.

    2015-12-01

    We investigate electron and ion velocity distribution functions in dayside magnetopause reconnection events observed by the Cluster and MMS spacecraft. The goal is to build a spatial map of electron and ion distribution features to enable the indication of the spacecraft location in the reconnection structure, and to understand plasma energization processes. Distribution functions, together with electromagnetic field structures, plasma densities, and bulk velocities, are organized and compared with particle-in-cell simulation results to indicate the proximities to the reconnection X-line. Anisotropic features in the distributions of magnetospheric- and magnetosheath- origin electrons at different locations in the reconnection inflow and exhaust are identified. In particular, parallel electron heating is observed in both the magnetosheath and magnetosphere inflow regions. Possible effects of the guide field strength, waves, and upstream density and temperature asymmetries on the distribution features will be discussed.

  12. Response function and optimum configuration of semiconductor backscattered-electron detectors for scanning electron microscopes

    International Nuclear Information System (INIS)

    Rau, E. I.; Orlikovskiy, N. A.; Ivanova, E. S.

    2012-01-01

    A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1–50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.

  13. Effects of electron-electron interactions on the electron distribution function of a plasma in the presence of an external electric field

    International Nuclear Information System (INIS)

    Molinari, V.G.; Pizzio, F.; Spiga, G.

    1979-01-01

    The electron distribution function, the electron temperature and some transport parameters (electrical conductivity and energy flow coefficient) are obtained starting from the nonlinear Boltzmann equation for a plasma under the action of an external electric field. The Fokker-Planck approximation is used for electron-electron and electron-ion interactions. The effects of electron-electron collisions are studied for different values of collision frequencies and electric field. (author)

  14. The Work Function Associated with Ultra-relativistic Electron ...

    Indian Academy of Sciences (India)

    The energy required to liberate an electron in the Fermi level is the work function and is ... potential difference will be developed across a thin gap, called the polar gap. This ... The emission of electrons from the polar region of neutron stars is.

  15. Memory function formalism applied to electronic transport in disordered systems

    International Nuclear Information System (INIS)

    Cunha Lima, I.C. da

    1984-01-01

    Memory function formalism is briefly reviewed and applied to electronic transport using the projection operator technique. The resistivity of a disordered 2-D electron gas under strong magnetic field is obtained in terms of force-force correlation function. (Author) [pt

  16. Mathematical analysis of a model for the growth of the bovine corpus luteum

    KAUST Repository

    Prokopiou, Sotiris A.

    2013-12-13

    The corpus luteum (CL) is an ovarian tissue that grows in the wound space created by follicular rupture. It produces the progesterone needed in the uterus to maintain pregnancy. Rapid growth of the CL and progesterone transport to the uterus require angiogenesis, the creation of new blood vessels from pre-existing ones, a process which is regulated by proteins that include fibroblast growth factor 2 (FGF2). In this paper we develop a system of time-dependent ordinary differential equations to model CL growth. The dependent variables represent FGF2, endothelial cells (ECs), luteal cells, and stromal cells (like pericytes), by assuming that the CL volume is a continuum of the three cell types. We assume that if the CL volume exceeds that of the ovulated follicle, then growth is inhibited. This threshold volume partitions the system dynamics into two regimes, so that the model may be classified as a Filippov (piecewise smooth) system. We show that normal CL growth requires an appropriate balance between the growth rates of luteal and stromal cells. We investigate how angiogenesis influences CL growth by considering how the system dynamics depend on the dimensionless EC proliferation rate, {Mathematical expression}. We find that weak (low {Mathematical expression}) or strong (high {Mathematical expression}) angiogenesis leads to \\'pathological\\' CL growth, since the loss of CL constituents compromises progesterone production or delivery. However, for intermediate values of {Mathematical expression}, normal CL growth is predicted. The implications of these results for cow fertility are also discussed. For example, inadequate angiogenesis has been linked to infertility in dairy cows. © 2013 Springer-Verlag Berlin Heidelberg.

  17. Development of Colle-Salvetti type electron-nucleus correlation functional for MC-DFT

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, Taro [Department of Chemistry and Biomolecuar Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193 (Japan); Tsuneda, Takao [Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae-cho 6-43, Kofu 400-0021 (Japan); Tachikawa, Masanori [Quqnatum Chemistry Division, Graduate School of Science, Yokohama City University, Seto 22-2, Kanazawa, Yokohama 236-0027 (Japan)

    2015-12-31

    A Colle-Salvetti type electron-nucleus correlation functional for multicomponent density-functional theory is proposed. We demonstrate that our correlation functional quantitatively reproduces the quantum nuclear effects of protons; the mean absolute deviation value is 2.8 millihartrees for the optimized structure of hydrogen-containing molecules. We also show other practical calculations with our new electron-deuteron and electron-triton correlation functionals. Since this functional is derived without any unphysical assumption, the strategy taken in this development will be a promising recipe to make new functionals for the potentials of other particles’ interactions.

  18. Suppression of electron waves in relation to the deformation of the electron beam distribution function

    International Nuclear Information System (INIS)

    Fukumasa, O.; Itatani, R.

    1978-01-01

    The change of the electron beam distribution function due to the wave excited by the beam density modulation is observed, in relation to the suppression of electron waves in a beam-plasma system. (Auth.)

  19. A system to measure suprathermal electron distribution functions in toroidal plasmas by electron cyclotron wave absorption

    International Nuclear Information System (INIS)

    Boyd, D.A.; Skiff, F.; Gulick, S.

    1997-01-01

    A two-chord, four-beam suprathermal electron diagnostic has been installed on TdeV (B>1.5 T, R=0.86 m, a=0.25 m). Resonant absorption of extraordinary mode electron cyclotron waves is measured to deduce the chordal averaged suprathermal electron distribution function amplitude at the resonant momentum. Simultaneously counterpropagating beams permit good refractive loss cancellation. A nonlinear frequency sweep leads to a concentration of appropriately propagating power in a narrow range of time of flight, thus increasing the signal-to-noise ratio and facilitating the rejection of spurious reflections. Numerous measurements of electron distribution functions have been obtained during lower-hybrid current-drive experiments. copyright 1997 American Institute of Physics

  20. Studies on functional polymer films utilizing low energy electron beam

    International Nuclear Information System (INIS)

    Ando, Masayuki

    1992-01-01

    Also in adhesives and tackifiers, with the expansion of the fields of application, the required characteristics have become high grade and complex. As one of them, the instantaneous hardening of adhesives can be taken up. In the field of lamination works, the low energy type electron beam accelerators having the linear filament of accelerating voltage below 300 kV were developed in 1970s, and the interest in the development of electron beam-handened adhesives has heightend. The authors have carried out research aiming at heightening the functions of the polymer films obtained by electron beam hardening reaction, and developed the adhesives. In this report, the features of electron beam hardening reaction, the structure and properties of electron beam-hardened polymer films and the molecular design of electron beam-hardened monomer oligomers are described. The feature of electron beam hardening reaction is the cross-linking of high degree as the structure of oligomers is maintained. By controlling the structure at the time of electron beam hardening, the heightening of the functions of electron beam-hardened polymer films is feasible. (K.I.)

  1. Electron-beam induced structural and function change of microbial peroxiredoxin

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S. H.; An, B. C.; Lee, S. S.; Lee, E. M.; Chung, B. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Pseudomonas aerogenes peroxiredoxin (PaPrx) has dual functions acting as thioredoxin (Trx)-dependent peroxidase and molecular chaperone. The function of PaPrx is controlled by its structural status. In this study, we examined the effect of electron beam on structural modification related to chaperone activity. When irradiated electron beam at 1 kGy, the structural and functional changes of PaPrx were initiated. The enhanced chaperone activity was increased about 3- 40 4-fold at 2 kGy compared with non-irradiated, while the peroxidase activity was decreased. We also investigated the influence of the electron beam on protein physical property factors such as hydrophobicity and secondary structure. The exposure of hydrophobic domains reached a peak at 2 kGy of electron beam and then dose-dependently decreased with increasing electron beam irradiation. In addition, the electron beam irradiated PaPrx significantly increased exposure of {beta}-sheet and random coil elements on the protein surface whereas exposure of {alpha}-helix and turn elements was decreased. Our results suggest that highly enhanced chaperone activity could be applied to use in bio-engineering system and various industrial applications.

  2. Electron-beam induced structural and function change of microbial peroxiredoxin

    International Nuclear Information System (INIS)

    Hong, S. H.; An, B. C.; Lee, S. S.; Lee, E. M.; Chung, B. Y.

    2012-01-01

    Pseudomonas aerogenes peroxiredoxin (PaPrx) has dual functions acting as thioredoxin (Trx)-dependent peroxidase and molecular chaperone. The function of PaPrx is controlled by its structural status. In this study, we examined the effect of electron beam on structural modification related to chaperone activity. When irradiated electron beam at 1 kGy, the structural and functional changes of PaPrx were initiated. The enhanced chaperone activity was increased about 3- 40 4-fold at 2 kGy compared with non-irradiated, while the peroxidase activity was decreased. We also investigated the influence of the electron beam on protein physical property factors such as hydrophobicity and secondary structure. The exposure of hydrophobic domains reached a peak at 2 kGy of electron beam and then dose-dependently decreased with increasing electron beam irradiation. In addition, the electron beam irradiated PaPrx significantly increased exposure of β-sheet and random coil elements on the protein surface whereas exposure of α-helix and turn elements was decreased. Our results suggest that highly enhanced chaperone activity could be applied to use in bio-engineering system and various industrial applications

  3. Synthesis and electronic properties of chemically functionalized graphene on metal surfaces

    International Nuclear Information System (INIS)

    Grüneis, Alexander

    2013-01-01

    A review on the electronic properties, growth and functionalization of graphene on metals is presented. Starting from the derivation of the electronic properties of an isolated graphene layer using the nearest neighbor tight-binding (TB) approximation for π and σ electrons, the TB model is then extended to third-nearest neighbors and interlayer coupling. The latter is relevant to few-layer graphene and graphite. Next, the conditions under which epitaxial graphene can be obtained by chemical vapor deposition are reviewed with a particular emphasis on the Ni(111) surface. Regarding functionalization, I first discuss the intercalation of monolayer Au into the graphene/Ni(111) interface, which renders graphene quasi-free-standing. The Au intercalated quasi-free-standing graphene is then the basis for chemical functionalization. Functionalization of graphene is classified into covalent, ionic and substitutional functionalization. As archetypical examples for these three possibilities I discuss covalent functionalization by hydrogen, ionic functionalization by alkali metals and substitutional functionalization by nitrogen heteroatoms.

  4. Multiple roles of hypoxia in ovarian function: roles of hypoxia-inducible factor-related and -unrelated signals during the luteal phase

    OpenAIRE

    Nishimura, Ryo; Okuda, Kiyoshi

    2015-01-01

    There is increasing interest in the role of oxygen conditions in the microenvironment of organs because of the discovery of a hypoxia-specific transcription factor, namely hypoxia-inducible factor (HIF) 1. Ovarian function has several phases that change day by day, including ovulation, follicular growth and corpus luteum formation and regression. These phases are regulated by many factors, including pituitary hormones and local hormones, such as steroids, peptides and cytokines, as well as ox...

  5. Radioimmunological progesteron determination in peripheral bovine blood

    International Nuclear Information System (INIS)

    Ender, M.

    1974-01-01

    A radioimmunological method of determination of the progesterone level in peripheral bovine blood is described which enables a monitoring of the corpus luteum function under varying conditions. There is no dependence of the corpus luteum function on the pituitary gland after endogenous prolactin inhibition with a synthetic prolactin inhibitor in the oestrus cycle and in the end-phase of gravidity. In hysterectomized animals, however, the inhibition of endogenous LH leads to luteolysis. The release of endogenous LH, induced by the administration of an LH release hormone, causes a short increase in progesterone production in the middle phase of the cycle only. The administration of exogenous glucocorticoids during the oestrus cycle did not influence the corpus luteum function. The method described is used in a field test to determine the right time for artificial insemination. There is a significant difference between the progesterone values of impregnated and non-pregnant animals at 16-18 days after insemination. (BSC/AK) [de

  6. Repertoire of noncoding RNAs in corpus luteum of early pregnancy in buffalo (Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    A. Jerome

    2017-09-01

    Full Text Available Aim: The present study was designed to identify other noncoding RNAs (ncRNAs in the corpus luteum (CL during early pregnancy in buffalo. Materials and Methods: For this study, CL (n=2 from two buffalo gravid uteri, obtained from the slaughter house, was transported to laboratory after snap freezing in liquid nitrogen (-196°C. The stage of pregnancy was determined by measuring the crown-rump region of the fetus. This was followed by isolation of RNA and deep sequencing. Post-deep sequencing, the obtained reads were checked and aligned against various ncRNA databases (GtRNA, RFAM, and deep guide. Various parameters, namely, frequency of specific ncRNAs, length, mismatch, and genomic location target in several model species were deciphered. Results: Frequency of piwi-interacting RNAs (piwi-RNAs, having target location in rodents and human genomes, were significantly higher compared to other piwi-RNAs and ncRNAs. Ribosomal RNAs (rRNAs deduced had nucleotides (nts ranging from 17 to 50 nts, but the occurrence of small length rRNAs was more than lengthier fragments. The target on 16S rRNA species confirms the conservation of 16S rRNA across species. With respect to transfer RNA (tRNA, the abundantly occurring tRNAs were unique with no duplication. Small nucleolar RNAs (snoRNAs, identified in this study, showed a strong tendency for coding box C/D snoRNAs in comparison to H/ACA snoRNAs. Regulatory and evolutionary implications of these identified ncRNAs are yet to be delineated in many species, including buffaloes. Conclusion: This is the first report of identification of other ncRNAs in CL of early pregnancy in buffalo.

  7. Mitogen-Activated Protein Kinase 8 (MAP3K8) Mediates the Signaling Pathway of Estradiol Stimulating Progesterone Production Through G Protein-Coupled Receptor 30 (GPR30) in Mouse Corpus Luteum.

    Science.gov (United States)

    Liu, Ying; Li, Yueqin; Zhang, Di; Liu, Jiali; Gou, Kemian; Cui, Sheng

    2015-05-01

    The corpus luteum (CL) is a transient endocrine gland developed from the ovulated follicles, and the most important function is to synthesize and secrete progesterone (P(4)), a key hormone to maintain normal pregnancy and estrous cycle in most mammals. It is known that estrogen has a vital role in stimulating P(4) synthesis in CL, but it still remains unclear about the mechanism of estradiol (E(2)) regulating P(4) production in CL. Our results here first show that all of the CL cells express MAPK 8 (MAP3K8), and the MAP3K8 level is much higher at the midstage than at the early and late stages during CL development. The further functional studies show that the forced inhibition of endogenous MAP3K8 by using MAP3K8 small interfering RNA and MAP3K8 signaling inhibitor (MAP3K8i) in the luteal cells significantly block the P(4) synthesis and neutralize the enhancing effect of E(2) on P(4) production in the CL. In addition, our results here demonstrate that the stimulating effect of E(2) on P(4) synthesis relies on the estrogen no-classical protein-coupled receptor 30, and MAP3K8 is involved in mediating the protein-coupled receptor 30signaling of E(2) affecting P(4) synthesis via stimulating ERK phosphorylation. These novel findings are critical for our understanding the ovary physiology and pathological mechanism.

  8. Iterative scheme for electronic systems: using one-electron Green's functions

    International Nuclear Information System (INIS)

    Hyslop, J.; Rees, D.

    1976-01-01

    An iterative generalization of the minimum principle proposed for electronic systems by Hall, Hyslop, and Rees is investigated. It is shown that this generalization still retains the advantage of using members of a larger class of trial wave functions, for example those with discontinuities, as initial approximations to the wave functions. This scheme has the advantage that, at each stage of iteration, an upper bound is obtained which is at least as good as that obtained previously. The theory is first applied to the hydrogen atom. It is then adapted to estimate the Hartree--Fock energy of the helium atom, the Hartree--Fock limit being obtained after a relatively small number of iterations

  9. Biofabricated film with enzymatic and redox-capacitor functionalities to harvest and store electrons

    International Nuclear Information System (INIS)

    Liba, Benjamin D; Kim, Eunkyoung; Martin, Alexandra N; Liu Yi; Bentley, William E; Payne, Gregory F

    2013-01-01

    Exciting opportunities in bioelectronics will be facilitated by materials that can bridge the chemical logic of biology and the digital logic of electronics. Here we report the fabrication of a dual functional hydrogel film that can harvest electrons from its chemical environment and store these electrons by switching the film's redox-state. The hydrogel scaffold was formed by the anodic deposition of the aminopolysaccharide chitosan. Electron-harvesting function was conferred by co-depositing the enzyme glucose dehydrogenase (GDH) with chitosan. GDH catalyzes the transfer of electrons from glucose to the soluble redox-shuttle NADP + . Electron-storage function was conferred by the redox-active food phenolic chlorogenic acid (CA) that was enzymatically grafted to the chitosan scaffold using tyrosinase. The grafted CA undergoes redox-cycling reactions with NADPH resulting in the net transfer of electrons to the film where they are stored in the reduced state of CA. The individual and dual functionalities of these films were demonstrated experimentally. There are three general conclusions from this proof-of-concept study. First, enzymatically-grafted catecholic moieties confer redox-capacitor function to the chitosan scaffold. Second, biological materials (i.e. chitosan and CA) and mechanisms (i.e. tyrosinase-mediated grafting) allow the reagentless fabrication of functional films that should be environmentally-friendly, safe and potentially even edible. Finally, the film's ability to mediate the transfer of electrons from a biological metabolite to an electrode suggests an approach to bridge the chemical logic of biology with the digital logic of electronics. (paper)

  10. Nonequilibrium statistical Zubarev's operator and Green's functions for an inhomogeneous electron gas

    Directory of Open Access Journals (Sweden)

    P.Kostrobii

    2006-01-01

    Full Text Available Nonequilibrium properties of an inhomogeneous electron gas are studied using the method of the nonequilibrium statistical operator by D.N. Zubarev. Generalized transport equations for the mean values of inhomogeneous operators of the electron number density, momentum density, and total energy density for weakly and strongly nonequilibrium states are obtained. We derive a chain of equations for the Green's functions, which connects commutative time-dependent Green's functions "density-density", "momentum-momentum", "enthalpy-enthalpy" with reduced Green's functions of the generalized transport coefficients and with Green's functions for higher order memory kernels in the case of a weakly nonequilibrium spatially inhomogeneous electron gas.

  11. Roles of prostaglandin F2alpha and hydrogen peroxide in the regulation of Copper/Zinc superoxide dismutase in bovine corpus luteum and luteal endothelial cells

    Directory of Open Access Journals (Sweden)

    Vu Hai V

    2012-10-01

    Full Text Available Abstract Background Prostaglandin F2alpha (PGF induces luteolysis in cow by inducing a rapid reduction in progesterone production (functional luteolysis followed by tissue degeneration (structural luteolysis. However the mechanisms of action of PGF remain unclear. Reactive oxygen species (ROS play important roles in regulating the luteolytic action of PGF. The local concentration of ROS is controlled by superoxide dismutase (SOD, the main enzyme involved in the control of intraluteal ROS. Thus SOD seems to be involved in luteolysis process induced by PGF in cow. Methods To determine the dynamic relationship between PGF and ROS in bovine corpus luteum (CL during luteolysis, we determined the time-dependent change of Copper/Zinc SOD (SOD1 in CL tissues after PGF treatment in vivo. We also investigated whether PGF and hydrogen peroxide (H2O2 modulates SOD1 expression and SOD activity in cultured bovine luteal endothelial cells (LECs in vitro. Results Following administration of a luteolytic dose of PGF analogue (0 h to cows at the mid-luteal stage, the expression of SOD1 mRNA and protein, and total SOD activity in CL tissues increased between 0.5 and 2 h, but fell below the initial (0 h level at 24 h post-treatment. In cultured LECs, the expression of SOD1 mRNA was stimulated by PGF (1–10 microM and H2O2 (10–100 microM at 2 h (P

  12. Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.

    Science.gov (United States)

    Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon

    2018-04-05

    The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.

  13. Towards double-functionalized small diamondoids: selective electronic band-gap tuning

    International Nuclear Information System (INIS)

    Adhikari, Bibek; Fyta, Maria

    2015-01-01

    Diamondoids are nanoscale diamond-like cage structures with hydrogen terminations, which can occur in various sizes and with a diverse type of modifications. In this work, we focus on the structural alterations and the effect of doping and functionalization on the electronic properties of diamondoids, from the smallest adamantane to heptamantane. The results are based on quantum mechanical calculations. We perform a self-consistent study, starting with doping the smallest diamondoid, adamantane. Boron, nitrogen, silicon, oxygen, and phosphorus are chosen as dopants at sites which have been previously optimized and are also consistent with the literature. At a next step, an amine- and a thiol- group are separately used to functionalize the adamantane molecule. We mainly focus on a double functionalization of diamondoids up to heptamantane using both these atomic groups. The effect of isomeration in the case of tetramantane is also studied. We discuss the higher efficiency of a double-functionalization compared to doping or a single-functionalization of diamondoids in tuning the electronic properties, such as the electronic band-gap, of modified small diamondoids in view of their novel nanotechnological applications. (paper)

  14. Vertex function of an electron in a constant electromagnetic field

    International Nuclear Information System (INIS)

    Morozov, D.A.; Narozhnyj, N.B.; Ritus, V.I.

    1981-01-01

    The third order with respect to radiation field vertex function for an electron located in a constant crossed field of arbitrary intensity is determined. It is shown that radiative interaction smears out the Airy function which describes the intensity of the interaction between electrons and photons in an external field as a function of the nonconserving momentum component. The qualitative relation Vsup((3)) approximately αchisup(2/3)Vsup((1)) between the third and first order vertex functions is found for large values of the dynamic parameter chi=((eFp)sup(2))sup(1/2)msup(-2). It is also shown that radiative interaction does not alter the order of magnitude of the squared mass of the system transferred at the vertex. The vertex function satisfies the Ward identity modified by the external field [ru

  15. Structure functions in electron-nucleon deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-E-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1982-06-26

    The phenomenological expressions for the structure functions in electron-nucleon deep inelastic scattering are proposed and are shown to satisfy the experimental data as well as a number of sum rules.

  16. 125I-luteinizing hormone (LH) binding to soluble receptors from the primate (Macaca mulatta) corpus luteum: effects of ethanol exposure

    International Nuclear Information System (INIS)

    Danforth, D.R.; Stouffer, R.L.

    1988-01-01

    In the current study, we compared the effects of ethanol on gonadotropin receptors solubilized from macaque luteal membranes to those on receptors associated with the lipid bilayer. Treatment with 1% Triton X-100 for 30 min at 4C, followed by precipitation with polyethylene glycol, resulted in recovery of 50% more binding sites for 125 I-human luteinizing hormone (hLH) than were available in particulate preparations. However, the soluble receptors displayed a 3-fold lower affinity for 125 I-hLH. Conditions which enhanced LH binding to particulates, i.e., 1-8% ethanol at 25C, decreased specific 125 I-hLH binding to soluble receptors. Steady-state LH binding to soluble receptors during incubation at 4C was half of that observed at 25C. The presence of 8% ethanol at 4C restored LH binding to levels observed in the absence of ethanol at 25C. Thus, LH binding sites in the primate corpus luteum can be effectively solubilized with Triton X-100. The different binding characteristics of particulate and soluble receptors, including the response to ethanol exposure, suggest that the lipid environment in the luteal membrane modulates the availability and affinity of gonadotropin receptors

  17. Electron-photon shower distribution function tables for lead, copper and air absorbers

    CERN Document Server

    Messel, H

    2013-01-01

    Electron-Photon Shower Distribution Function: Tables for Lead, Copper and Air Absorbers presents numerical results of the electron-photon shower distribution function for lead, copper, and air absorbers. Electron or photon interactions, including Compton scattering, elastic Coulomb scattering, and the photo-electric effect, are taken into account in the calculations. This book consists of four chapters and begins with a review of both theoretical and experimental work aimed at deducing the characteristics of the cascade produced from the propagation of high energy electrons and photons through

  18. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems

    International Nuclear Information System (INIS)

    Meer, R. van; Gritsenko, O. V.; Baerends, E. J.

    2014-01-01

    Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ω α and oscillator strengths f α for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ω α (R) curves along the bond dissociation coordinate R for the molecules LiH, Li 2 , and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate

  19. Benchmark calculations of excess electrons in water cluster cavities: balancing the addition of atom-centered diffuse functions versus floating diffuse functions.

    Science.gov (United States)

    Zhang, Changzhe; Bu, Yuxiang

    2016-09-14

    Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.

  20. Imaging electron wave functions inside open quantum rings.

    Science.gov (United States)

    Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S

    2007-09-28

    Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).

  1. A Concept for Measuring Electron Distribution Functions Using Collective Thomson Scattering

    Science.gov (United States)

    Milder, A. L.; Froula, D. H.

    2017-10-01

    A.B. Langdon proposed that stable non-Maxwellian distribution functions are realized in coronal inertial confinement fusion plasmas via inverse bremsstrahlung heating. For Zvosc2 Zvosc2 vth2 > 1 , vth2 > 1 , the inverse bremsstrahlung heating rate is sufficiently fast to compete with electron-electron collisions. This process preferentially heats the subthermal electrons leading to super-Gaussian distribution functions. A method to identify the super-Gaussian order of the distribution functions in these plasmas using collective Thomson scattering will be proposed. By measuring the collective Thomson spectra over a range of angles the density, temperature and super-Gaussian order can be determined. This is accomplished by fitting non-Maxwellian distribution data with a super-Gaussian model; in order to match the density and electron temperature to within 10%, the super-Gaussian order must be varied. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Decacyclene Trianhydride at Functional Interfaces: An Ideal Electron Acceptor Material for Organic Electronics

    DEFF Research Database (Denmark)

    de Oteyza, Dimas G.; García Lastra, Juan Maria; Toma, Francesca M.

    2016-01-01

    , respectively, reveal that electron transfer from substrate to surface sets in. Density functional theory calculations confirm our experimental findings and provide an understanding not only of the photoemission and X-ray absorption spectral features of this promising organic semiconductor but also...

  3. Nodal Structure of the Electronic Wigner Function

    DEFF Research Database (Denmark)

    Schmider, Hartmut; Dahl, Jens Peder

    1996-01-01

    On the example of several atomic and small molecular systems, the regular behavior of nodal patterns in the electronic one-particle reduced Wigner function is demonstrated. An expression found earlier relates the nodal pattern solely to the dot-product of the position and the momentum vector......, if both arguments are large. An argument analogous to the ``bond-oscillatory principle'' for momentum densities links the nuclear framework in a molecule to an additional oscillatory term in momenta parallel to bonds. It is shown that these are visible in the Wigner function in terms of characteristic...

  4. Undernutrition and laterality of the corpus luteum affects gene expression in oviduct and uterus of pregnant ewes

    Directory of Open Access Journals (Sweden)

    V. de Brun

    2013-11-01

    Full Text Available The effect of undernutrition on gene expression of progesterone and oestrogen receptors (PGR and ESR1, and insulin-like growth factors 1 and 2 (IGF1 and IGF2 in the uterus and oviducts of ewes on day 5 after oestrus was investigated. The effect of the side of the uterus/oviduct regarding the ovary bearing a corpus luteum (CL (ipsi vs. contralateral was also analyzed. Fourteen oestrous synchronized ewes were fed either 1.5 (C, n=7 or 0.5 (L, n=7 times their maintenance requirements from the onset of the hormonal treatment (day -14, till slaughter on day 5 post-oestrus. Oviducts and samples of uterus were collected and their gene expression studied by real time RT-PCR. Undernourished ewes had greater PGR expression in the oviduct than control ewes, but lower expression of IGF1 in uterus and of IGF2 in oviducts. The ipsilateral oviduct presented lower expression of PGR, ESR1 and IGF2 mRNA than the contralateral one, but this did not occur in the uterus. In conclusion, there is an effect of undernutrition on gene expression that is transcript and organ dependent (uterus/oviduct. This work reports for the first time that growth factors and sex steroid receptor expression on day 5 after oestrus vary depending on the side of the CL-bearing ovary and the region of the reproductive tract.

  5. Electron energy distribution function control in gas discharge plasmas

    International Nuclear Information System (INIS)

    Godyak, V. A.

    2013-01-01

    The formation of the electron energy distribution function (EEDF) and electron temperature in low temperature gas discharge plasmas is analyzed in frames of local and non-local electron kinetics. It is shown, that contrary to the local case, typical for plasma in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local electron kinetics in strongly non-uniform electric fields. Such conditions “naturally” occur in some self-organized steady state dc and rf discharge plasmas, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and electron temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of plasma disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge plasmas are formulated

  6. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.

    Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  7. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    1998-10-01

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  8. Hybrid functional microfibers for textile electronics and biosensors

    Science.gov (United States)

    Nanda Sahoo, Bichitra; Choi, Byungwoo; Seo, Jungmok; Lee, Taeyoon

    2018-01-01

    Fibers are low-cost substrates that are abundantly used in our daily lives. This review highlights recent advances in the fabrication and application of multifunctional fibers to achieve fibers with unique functions for specific applications ranging from textile electronics to biomedical applications. By incorporating various nanomaterials such as carbon nanomaterials, metallic nanomaterials, and hydrogel-based biomaterials, the functions of fibers can be precisely engineered. This review also highlights the performance of the functional fibers and electronic materials incorporated with textiles and demonstrates their practical application in pressure/tensile sensors, chemical/biosensors, and drug delivery. Textile technologies in which fibers containing biological factors and cells are formed and assembled into constructions with biomimetic properties have attracted substantial attention in the field of tissue engineering. We also discuss the current limitations of functional textile-based devices and their prospects for use in various future applications. Project supported by the Priority Research Centers Program (No. 2012-0006689) through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (MEST) and the R&D program of MOTIE/KEIT [10064081, Development of fiber-based flexible multimodal pressure sensor and algorithm for gesture/posture-recognizable wearable devices]. We gratefully acknowledge partial support from the National Research Foundation of Korea (No. NRF-2017K2A9A2A06013377, NRF-2017M3A7B4049466) and the Yonsei University Future-leading Research Initiative and Implantable artificial electronic skin for an ubiquitous healthcare system of 2016-12-0050. This work is also supported by KIST Project (Nos. 2E26900, 2E27630). Dr. Seo was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1A6A3A03006491).

  9. Total-dielectric-function approach to electron and phonon response in solids

    International Nuclear Information System (INIS)

    Penn, D.R.; Lewis, S.P.; Cohen, M.L.

    1995-01-01

    The interaction between two test charges, the response of a solid to an external field, and the normal modes of the solid can be determined from a total dielectric function that includes both electronic and lattice polarizabilities as well as local-field effects. In this paper we examine the relationship between superconductivity and the stability of a solid and derive sum rules for the electronic part of the dielectric function. It is also shown that there are negative eigenvalues of the total static dielectric function, implying the possibility of an attractive interaction between test charges. An attractive interaction is required for superconductivity

  10. Charge symmetry of electron wave functions in a quantized electromagnetic wave field

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, M V [AN SSSR, Moscow. Fizicheskij Inst.

    1975-01-01

    An attempt to clear up the reasons of the electron charge symmetry violation in the quantum wave field was made in this article. For this purpose the connection between the Dirac equation and the electron wave functions in the external field with the exact equation of quantum electrodynamics is established. Attention is paid to the fact that a number of equations for single-electron wave functions can be used in the framework of the same assumptions. It permits the construction of the charge-symmetric solutions in particular.

  11. Time-dependent density functional theory for many-electron systems interacting with cavity photons.

    Science.gov (United States)

    Tokatly, I V

    2013-06-07

    Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.

  12. Density functional study of the electronic structure of dye-functionalized fullerenes and their model donor-acceptor complexes containing P3HT

    International Nuclear Information System (INIS)

    Baruah, Tunna; Garnica, Amanda; Paggen, Marina; Basurto, Luis; Zope, Rajendra R.

    2016-01-01

    We study the electronic structure of C 60 fullerenes functionalized with a thiophene-diketo-pyrrolopyrrole-thiophene based chromophore using density functional theory combined with large polarized basis sets. As the attached chromophore has electron donor character, the functionalization of the fullerene leads to a donor-acceptor (DA) system. We examine in detail the effect of the linker and the addition site on the electronic structure of the functionalized fullerenes. We further study the electronic structure of these DA complexes with a focus on the charge transfer excitations. Finally, we examine the interface of the functionalized fullerenes with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor. Our results show that all functionalized fullerenes with an exception of the C 60 -pyrrolidine [6,6], where the pyrrolidine is attached at a [6,6] site, have larger electron affinities relative to the pristine C 60 fullerene. We also estimate the quasi-particle gap, lowest charge transfer excitation energy, and the exciton binding energies of the functionalized fullerene-P3MT model systems. Results show that the exciton binding energies in these model complexes are slightly smaller compared to a similarly prepared phenyl-C 61 -butyric acid methyl ester (PCBM)-P3MT complex.

  13. EDF: Computing electron number probability distribution functions in real space from molecular wave functions

    Science.gov (United States)

    Francisco, E.; Pendás, A. Martín; Blanco, M. A.

    2008-04-01

    Given an N-electron molecule and an exhaustive partition of the real space ( R) into m arbitrary regions Ω,Ω,…,Ω ( ⋃i=1mΩ=R), the edf program computes all the probabilities P(n,n,…,n) of having exactly n electrons in Ω, n electrons in Ω,…, and n electrons ( n+n+⋯+n=N) in Ω. Each Ω may correspond to a single basin (atomic domain) or several such basins (functional group). In the later case, each atomic domain must belong to a single Ω. The program can manage both single- and multi-determinant wave functions which are read in from an aimpac-like wave function description ( .wfn) file (T.A. Keith et al., The AIMPAC95 programs, http://www.chemistry.mcmaster.ca/aimpac, 1995). For multi-determinantal wave functions a generalization of the original .wfn file has been introduced. The new format is completely backwards compatible, adding to the previous structure a description of the configuration interaction (CI) coefficients and the determinants of correlated wave functions. Besides the .wfn file, edf only needs the overlap integrals over all the atomic domains between the molecular orbitals (MO). After the P(n,n,…,n) probabilities are computed, edf obtains from them several magnitudes relevant to chemical bonding theory, such as average electronic populations and localization/delocalization indices. Regarding spin, edf may be used in two ways: with or without a splitting of the P(n,n,…,n) probabilities into α and β spin components. Program summaryProgram title: edf Catalogue identifier: AEAJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5387 No. of bytes in distributed program, including test data, etc.: 52 381 Distribution format: tar.gz Programming language: Fortran 77 Computer

  14. Electron energy distributions and electron impact source functions in Ar/N{sub 2} inductively coupled plasmas using pulsed power

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Michael D., E-mail: mdlogue@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States)

    2015-01-28

    In plasma materials processing, such as plasma etching, control of the time-averaged electron energy distributions (EEDs) in the plasma allows for control of the time-averaged electron impact source functions of reactive species in the plasma and their fluxes to surfaces. One potential method for refining the control of EEDs is through the use of pulsed power. Inductively coupled plasmas (ICPs) are attractive for using pulsed power in this manner because the EEDs are dominantly controlled by the ICP power as opposed to the bias power applied to the substrate. In this paper, we discuss results from a computational investigation of EEDs and electron impact source functions in low pressure (5–50 mTorr) ICPs sustained in Ar/N{sub 2} for various duty cycles. We find there is an ability to control EEDs, and thus source functions, by pulsing the ICP power, with the greatest variability of the EEDs located within the skin depth of the electromagnetic field. The transit time of hot electrons produced in the skin depth at the onset of pulse power produces a delay in the response of the EEDs as a function of distance from the coils. The choice of ICP pressure has a large impact on the dynamics of the EEDs, whereas duty cycle has a small influence on time-averaged EEDs and source functions.

  15. Transfer function restoration in 3D electron microscopy via iterative data refinement

    International Nuclear Information System (INIS)

    Sorzano, C O S; Marabini, R; Herman, G T; Censor, Y; Carazo, J M

    2004-01-01

    Three-dimensional electron microscopy (3D-EM) is a powerful tool for visualizing complex biological systems. As with any other imaging device, the electron microscope introduces a transfer function (called in this field the contrast transfer function, CTF) into the image acquisition process that modulates the various frequencies of the signal. Thus, the 3D reconstructions performed with these CTF-affected projections are also affected by an implicit 3D transfer function. For high-resolution electron microscopy, the effect of the CTF is quite dramatic and limits severely the achievable resolution. In this work we make use of the iterative data refinement (IDR) technique to ameliorate the effect of the CTF. It is demonstrated that the approach can be successfully applied to noisy data

  16. Wave function for harmonically confined electrons in time-dependent electric and magnetostatic fields.

    Science.gov (United States)

    Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht

    2014-01-14

    We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.

  17. Variations in erosive wear of metallic materials with temperature via the electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaochen; Yu, Bin [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Yan, X.G. [School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China); Li, D.Y., E-mail: dongyang.li@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China)

    2016-04-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  18. Variations in erosive wear of metallic materials with temperature via the electron work function

    International Nuclear Information System (INIS)

    Huang, Xiaochen; Yu, Bin; Yan, X.G.; Li, D.Y.

    2016-01-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  19. Functional Requirements for an Electronic Work Package System

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna H. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    This document provides a set of high level functional requirements for a generic electronic work package (eWP) system. The requirements have been identified by the U.S. nuclear industry as a part of the Nuclear Electronic Work Packages - Enterprise Requirements (NEWPER) initiative. The functional requirements are mainly applied to eWP system supporting Basic and Moderate types of smart documents, i.e., documents that have fields for recording input such as text, dates, numbers, and equipment status, and documents which incorporate additional functionalities such as form field data “type“ validation (e.g. date, text, number, and signature) of data entered and/or self-populate basic document information (usually from existing host application meta data) on the form when the user first opens it. All the requirements are categorized by the roles; Planner, Supervisor, Craft, Work Package Approval Reviewer, Operations, Scheduling/Work Control, and Supporting Functions. The categories Statistics, Records, Information Technology are also included used to group the requirements. All requirements are presented in Section 2 through Section 11. Examples of more detailed requirements are provided for the majority of high level requirements. These examples are meant as an inspiration to be used as each utility goes through the process of identifying their specific requirements. The report’s table of contents provides a summary of the high level requirements.

  20. Electron Distribution Functions in the Diffusion Region of Asymmetric Magnetic Reconnection

    Science.gov (United States)

    Bessho, N.; Chen, L.-J.; Hesse, M.

    2016-01-01

    We study electron distribution functions in a diffusion region of antiparallel asymmetric reconnection by means of particle-in-cell simulations and analytical theory. At the electron stagnation point, the electron distribution comprises a crescent-shaped population and a core component. The crescent-shaped distribution is due to electrons coming from the magnetosheath toward the stagnation point and accelerated mainly by electric field normal to the current sheet. Only a part of magnetosheath electrons can reach the stagnation point and form the crescent-shaped distribution that has a boundary of a parabolic curve. The penetration length of magnetosheath electrons into the magnetosphere is derived. We expect that satellite observations can detect crescent-shaped electron distributions during magnetopause reconnection.

  1. Correlation function and electronic spectral line broadening in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    Douis S.

    2013-01-01

    Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.

  2. Five- and six-electron harmonium atoms: Highly accurate electronic properties and their application to benchmarking of approximate 1-matrix functionals

    Science.gov (United States)

    Cioslowski, Jerzy; Strasburger, Krzysztof

    2018-04-01

    Electronic properties of several states of the five- and six-electron harmonium atoms are obtained from large-scale calculations employing explicitly correlated basis functions. The high accuracy of the computed energies (including their components), natural spinorbitals, and their occupation numbers makes them suitable for testing, calibration, and benchmarking of approximate formalisms of quantum chemistry and solid state physics. In the case of the five-electron species, the availability of the new data for a wide range of the confinement strengths ω allows for confirmation and generalization of the previously reached conclusions concerning the performance of the presently known approximations for the electron-electron repulsion energy in terms of the 1-matrix that are at heart of the density matrix functional theory (DMFT). On the other hand, the properties of the three low-lying states of the six-electron harmonium atom, computed at ω = 500 and ω = 1000, uncover deficiencies of the 1-matrix functionals not revealed by previous studies. In general, the previously published assessment of the present implementations of DMFT being of poor accuracy is found to hold. Extending the present work to harmonically confined systems with even more electrons is most likely counterproductive as the steep increase in computational cost required to maintain sufficient accuracy of the calculated properties is not expected to be matched by the benefits of additional information gathered from the resulting benchmarks.

  3. Hybrid functional calculation of electronic and phonon structure of BaSnO3

    International Nuclear Information System (INIS)

    Kim, Bog G.; Jo, J.Y.; Cheong, S.W.

    2013-01-01

    Barium stannate, BaSnO 3 (BSO), with a cubic perovskite structure, has been highlighted as a promising host material for the next generation transparent oxide electrodes. This study examined theoretically the electronic structure and phonon structure of BSO using hybrid density functional theory based on the HSE06 functional. The electronic structure results of BSO were corrected by extending the phonon calculations based on the hybrid density functional. The fundamental thermal properties were also predicted based on a hybrid functional calculation. Overall, a detailed understanding of the electronic structure, phonon modes and phonon dispersion of BSO will provide a theoretical starting-point for engineering applications of this material. - Graphical Abstract: (a) Crystal structure of BaSnO 3 . The center ball is Ba and small (red) ball on edge is oxygen and SnO 6 octahedrons are plotted as polyhedron. (b) Electronic band structure along the high symmetry point in the Brillouin zone using the HSE06 hybrid functional. (c) The phonon dispersion curve calculated using the HSE06 hybrid functional (d) Zone center lowest energy F 1u phonon mode. Highlights: ► We report the full hybrid functional calculation of not only the electronic structure but also the phonon structure for BaSnO 3 . ► The band gap calculation of HSE06 revealed an indirect gap with 2.48 eV. ► The effective mass at the conduction band minimum and valence band maximum was calculated. ► In addition, the phonon structure of BSO was calculated using the HSE06 functional. ► Finally, the heat capacity was calculated and compared with the recent experimental result.

  4. Work function and surface stability of tungsten-based thermionic electron emission cathodes

    Science.gov (United States)

    Jacobs, Ryan; Morgan, Dane; Booske, John

    2017-11-01

    Materials that exhibit a low work function and therefore easily emit electrons into vacuum form the basis of electronic devices used in applications ranging from satellite communications to thermionic energy conversion. W-Ba-O is the canonical materials system that functions as the thermionic electron emitter commercially used in a range of high-power electron devices. However, the work functions, surface stability, and kinetic characteristics of a polycrystalline W emitter surface are still not well understood or characterized. In this study, we examined the work function and surface stability of the eight lowest index surfaces of the W-Ba-O system using density functional theory methods. We found that under the typical thermionic cathode operating conditions of high temperature and low oxygen partial pressure, the most stable surface adsorbates are Ba-O species with compositions in the range of Ba0.125O-Ba0.25O per surface W atom, with O passivating all dangling W bonds and Ba creating work function-lowering surface dipoles. Wulff construction analysis reveals that the presence of O and Ba significantly alters the surface energetics and changes the proportions of surface facets present under equilibrium conditions. Analysis of previously published data on W sintering kinetics suggests that fine W particles in the size range of 100-500 nm may be at or near equilibrium during cathode synthesis and thus may exhibit surface orientation fractions well described by the calculated Wulff construction.

  5. Construction of energy loss function for low-energy electrons in helium

    Energy Technology Data Exchange (ETDEWEB)

    Dayashankar, [Bhabha Atomic Research Centre, Bombay (India). Div. of Radiation Protection

    1976-02-01

    The energy loss function for electrons in the energy range from 50 eV to 1 keV in helium gas has been constructed by considering separately the energy loss in overcoming the ionization threshold, the loss manifested as kinetic energy of secondary electrons and the loss in the discrete state excitations. This has been done by utilizing recent measurements of Opal et al. on the energy spectrum of secondary electrons and incorporating the experimental data on cross sections for twenty-four excited states. The present results of the energy loss function are in good agreement with the Bethe formula for energies above 500 eV. For lower energies, where the Bethe formula is not applicable, the present results should be particularly useful.

  6. Modulation transfer function and detective quantum efficiency of electron bombarded charge coupled device detector for low energy electrons

    Czech Academy of Sciences Publication Activity Database

    Horáček, Miroslav

    2005-01-01

    Roč. 76, č. 9 (2005), 093704:1-6 ISSN 0034-6748 R&D Projects: GA ČR(CZ) GA202/03/1575 Keywords : electron bombarded CCD * modulation transfer function * detective quantum efficiency Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.235, year: 2005

  7. Anisotropy of electron work function and reticular compacting of friable faces of metallic crystals

    International Nuclear Information System (INIS)

    Vladimirov, A.F.

    1999-01-01

    The review and statistical estimate of experimental data on work functions for BCC-, FCC- and HCP - metals (W, Mo, Ta, Nb, Cr, V, Ni, Y) as well as the earlier developed quantum-mechanical statistical model of double electrical layer formation at metal surface and the calculation of an electron work function dipole constituent serve as a basis for the development of a semi-empirical theory of electron work function anisotropy. A coefficient of reticular compacting of friable crystal faces is introduced and statistically estimated. A coefficient of crystal emission anisotropy is also introduced and estimated both theoretically and empirically. The theory permits calculating work functions for all crystal faces and a volumetric constituent of the work function from the measured value of electron work function for a single face [ru

  8. Functional electronic screen printing – electroluminescent smart fabric watch

    OpenAIRE

    de Vos, Marc; Torah, Russel; Beeby, Steve; Tudor, John

    2013-01-01

    Motivation for screen printed smart fabrics.Introduce functional electronic screen printing on fabrics.Printed smart fabric watch design.Printing process for electroluminescent watch.Demonstration video.Conclusions and further work.Examples of other screen printed smart fabrics.

  9. Measurement of the electron structure function F2e at LEP energies

    Directory of Open Access Journals (Sweden)

    J. Abdallah

    2014-10-01

    Full Text Available The hadronic part of the electron structure function F2e has been measured for the first time, using e+e− data collected by the DELPHI experiment at LEP, at centre-of-mass energies of s=91.2–209.5 GeV. The data analysis is simpler than that of the measurement of the photon structure function. The electron structure function F2e data are compared to predictions of phenomenological models based on the photon structure function. It is shown that the contribution of large target photon virtualities is significant. The data presented can serve as a cross-check of the photon structure function F2γ analyses and help in refining existing parameterisations.

  10. FUNCTIONAL DETERMINATION AND COMPLEMENTARITY AS PRINCIPLES OF ELECTRONIC TEXTBOOKS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Olena Yu. Balalaieva

    2015-04-01

    Full Text Available The article deals with specific principles for creating and using e-learning tools presented in the modern pedagogical literature. The author has analyzed which of these principles could be applied to electronic textbooks (in particular, the validity of such principles as individualization, interactivity, structurization was proved. Based on critical analysis of psychological and pedagogical sources the mechanical spread of completeness (integrity and continuity of the didactic cycle principle to all electronic educational editions has been stated. The invalidation of absolute and imperative application of this principle to the electronic textbooks was proved. New specific principles of electronic textbooks development — functional determination and complementarity – are proposed and theoretically grounded.

  11. The Structural Characterisation of Risk in the R&D Process of Functional Raw Materials for Electronic Devices

    OpenAIRE

    Chikamori, Yoji; Nasu, Seigo

    2017-01-01

    The electronic materials and electronics device industries remain important to Japan in spite of the general decline of the Japanese electronics industry. There is risk and uncertainty when developing functional materials in the electronics industry. However, studies examining the uncertainty and risk variables in the development of functional materials are scarce. This study examines incremental research and development (R&D) developed for raw functional materials for electronics. Our analys...

  12. Discontinuous approximate molecular electronic wave-functions

    International Nuclear Information System (INIS)

    Stuebing, E.W.; Weare, J.H.; Parr, R.G.

    1977-01-01

    Following Kohn, Schlosser and Marcus and Weare and Parr an energy functional is defined for a molecular problem which is stationary in the neighborhood of the exact solution and permits the use of trial functions that are discontinuous. The functional differs from the functional of the standard Rayleigh--Ritz method in the replacement of the usual kinetic energy operators circumflex T(μ) with operators circumflex T'(μ) = circumflex T(μ) + circumflex I(μ) generates contributions from surfaces of nonsmooth behavior. If one uses the nabla PSI . nabla PSI way of writing the usual kinetic energy contributions, one must add surface integrals of the product of the average of nabla PSI and the change of PSI across surfaces of discontinuity. Various calculations are carried out for the hydrogen molecule-ion and the hydrogen molecule. It is shown that ab initio calculations on molecules can be carried out quite generally with a basis of atomic orbitals exactly obeying the zero-differential overlap (ZDO) condition, and a firm basis is thereby provided for theories of molecular electronic structure invoking the ZDO aoproximation. It is demonstrated that a valence bond theory employing orbitals exactly obeying ZDO can provide an adequate account of chemical bonding, and several suggestions are made regarding molecular orbital methods

  13. A CALCULATION OF SEMI-EMPIRICAL ONE-ELECTRON WAVE FUNCTIONS FOR MULTI-ELECTRON ATOMS USED FOR ELEMENTARY PROCESS SIMULATION IN NONLOCAL PLASMA

    Directory of Open Access Journals (Sweden)

    M. V. Tchernycheva

    2017-01-01

    Full Text Available Subject of Research. The paper deals with development outcomes for creation method of one-electron wave functions of complex atoms, relatively simple, symmetrical for all atom electrons and free from hard computations. The accuracy and resource intensity of the approach are focused on systematic calculations of cross sections and rate constants of elementary processes of inelastic collisions of atoms or molecules with electrons (ionization, excitation, excitation transfer, and others. Method. The method is based on a set of two iterative processes. At the first iteration step the Schrödinger equation was solved numerically for the radial parts of the electron wave functions in the potential of the atomic core self-consistent field. At the second iteration step the new approximationfor the atomic core field is created that uses found solutions for all one-electron wave functions. The solution optimization for described multiparameter problem is achieved by the use of genetic algorithm. The suitability of the developed method was verified by comparing the calculation results with numerous data on the energies of atoms in the ground and excited states. Main Results. We have created the run-time version of the program for creation of sets of one-electron wave functions and calculation of the cross sections and constants of collisional transition rates in the first Born approximation. The priori available information about binding energies of the electrons for any many-particle system for creation of semi-empirical refined solutions for the one-electron wave functions can be considered at any step of this procedure. Practical Relevance. The proposed solution enables a simple and rapid preparation of input data for the numerical simulation of nonlocal gas discharge plasma. The approach is focused on the calculation of discharges in complex gas mixtures requiring inclusion in the model of a large number of elementary collisional and radiation

  14. Exchange-correlation energies of atoms from efficient density functionals: influence of the electron density

    Science.gov (United States)

    Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua

    2017-12-01

    The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.

  15. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    International Nuclear Information System (INIS)

    Tait, E W; Payne, M C; Ratcliff, L E; Haynes, P D; Hine, N D M

    2016-01-01

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable. (paper)

  16. Computational Benchmarking for Ultrafast Electron Dynamics: Wave Function Methods vs Density Functional Theory.

    Science.gov (United States)

    Oliveira, Micael J T; Mignolet, Benoit; Kus, Tomasz; Papadopoulos, Theodoros A; Remacle, F; Verstraete, Matthieu J

    2015-05-12

    Attosecond electron dynamics in small- and medium-sized molecules, induced by an ultrashort strong optical pulse, is studied computationally for a frozen nuclear geometry. The importance of exchange and correlation effects on the nonequilibrium electron dynamics induced by the interaction of the molecule with the strong optical pulse is analyzed by comparing the solution of the time-dependent Schrödinger equation based on the correlated field-free stationary electronic states computed with the equationof-motion coupled cluster singles and doubles and the complete active space multi-configurational self-consistent field methodologies on one hand, and various functionals in real-time time-dependent density functional theory (TDDFT) on the other. We aim to evaluate the performance of the latter approach, which is very widely used for nonlinear absorption processes and whose computational cost has a more favorable scaling with the system size. We focus on LiH as a toy model for a nontrivial molecule and show that our conclusions carry over to larger molecules, exemplified by ABCU (C10H19N). The molecules are probed with IR and UV pulses whose intensities are not strong enough to significantly ionize the system. By comparing the evolution of the time-dependent field-free electronic dipole moment, as well as its Fourier power spectrum, we show that TD-DFT performs qualitatively well in most cases. Contrary to previous studies, we find almost no changes in the TD-DFT excitation energies when excited states are populated. Transitions between states of different symmetries are induced using pulses polarized in different directions. We observe that the performance of TD-DFT does not depend on the symmetry of the states involved in the transition.

  17. Inverse electronic scattering by Green's functions and singular values decomposition

    International Nuclear Information System (INIS)

    Mayer, A.; Vigneron, J.-P.

    2000-01-01

    An inverse scattering technique is developed to enable a sample reconstruction from the diffraction figures obtained by electronic projection microscopy. In its Green's functions formulation, this technique takes account of all orders of diffraction by performing an iterative reconstruction of the wave function on the observation screen. This scattered wave function is then backpropagated to the sample to determine the potential-energy distribution, which is assumed real valued. The method relies on the use of singular values decomposition techniques, thus providing the best least-squares solutions and enabling a reduction of noise. The technique is applied to the analysis of a two-dimensional nanometric sample that is observed in Fresnel conditions with an electronic energy of 25 eV. The algorithm turns out to provide results with a mean relative error of the order of 5% and to be very stable against random noise

  18. Density-functional theory based on the electron distribution on the energy coordinate

    Science.gov (United States)

    Takahashi, Hideaki

    2018-03-01

    We developed an electronic density functional theory utilizing a novel electron distribution n(ɛ) as a basic variable to compute ground state energy of a system. n(ɛ) is obtained by projecting the electron density n({\\boldsymbol{r}}) defined on the space coordinate {\\boldsymbol{r}} onto the energy coordinate ɛ specified with the external potential {\\upsilon }ext}({\\boldsymbol{r}}) of interest. It was demonstrated that the Kohn-Sham equation can also be formulated with the exchange-correlation functional E xc[n(ɛ)] that employs the density n(ɛ) as an argument. It turned out an exchange functional proposed in our preliminary development suffices to describe properly the potential energies of several types of chemical bonds with comparable accuracies to the corresponding functional based on local density approximation. As a remarkable feature of the distribution n(ɛ) it inherently involves the spatially non-local information of the exchange hole at the bond dissociation limit in contrast to conventional approximate functionals. By taking advantage of this property we also developed a prototype of the static correlation functional E sc including no empirical parameters, which showed marked improvements in describing the dissociations of covalent bonds in {{{H}}}2,{{{C}}}2{{{H}}}4 and {CH}}4 molecules.

  19. Boson structure functions from inelastic electron scattering

    International Nuclear Information System (INIS)

    De Jager, C.W.

    1986-01-01

    The even /sup 104-110/Pd isotopes and /sup 196/Pt have been investigated at NIKHEF-K by high-resolution inelastic electron scattering. A new IBA-2 calculation has been performed for the Pd isotopes, in which the ratio of the proton and neutron coupling constants is taken from pion scattering. One set of boson structure functions sufficed for the description of the first and second E2-excitations in all Pd isotopes. The data showed no sensitivity for different structure functions for proton and neutron bosons. A preliminary analysis of a number of negative parity states (3/sup -/,5/sup -/ and 7/sup -/), observed in /sup 196/Pt, was performed through the introduction of an f-boson. The first E4-excitation in the palladium isotopes can be reasonably described with a β-structure function, but all other E4-excitations require the introduction of g-boson admixtures

  20. Relationship between colour flow Doppler sonographic assessment of corpus luteum activity and progesterone concentrations in mares after embryo transfer.

    Science.gov (United States)

    Brogan, P T; Henning, H; Stout, T A E; de Ruijter-Villani, M

    2016-03-01

    Colour-flow Doppler sonography has been described as a means of assessing corpus luteum (CL) function rapidly, because area of luteal blood vessels correlates well with circulating progesterone (P4) concentrations [P4] in oestrous cycling mares. The aim of this study was to assess the relationships between CL size and vascularity, and circulating [P4] during early pregnancy in mares, and to determine whether luteal blood flow was a useful aid for selecting an embryo transfer recipient. Equine embryos (n=48) were recovered 8 days after ovulation and were transferred to available recipient mares as part of a commercial program with the degree of synchrony in timing of recipient ovulation ranging from 1 day before to 4 days after the donor. Immediately prior to embryo transfer (ET), maximum CL cross-section and blood vessel areas were assessed sonographically, and jugular blood was collected to measure plasma [P4]. Sonographic measurements and jugular blood collection were repeated at day 4 after ET for all mares, and again at days 11, 18 and 25 after ET in mares that were pregnant. The number of grey-scale and colour pixels within the CL was subsequently quantified using ImageJ software. The CL blood flow correlated significantly but weakly with plasma [P4] on the day of transfer and on day 4 after ET in all mares, and on days 11 and 25 after ET in pregnant mares (r=0.30-0.36). The CL area and plasma [P4] were also correlated on each day until day 11 after ET (r=0.49-0.60). The CL colour pixel area decreased significantly after day 18, whereas CL area was already decreasing by day 4 after ET. The CL area, area of blood flow, or [P4] was predictive of pregnancy. Findings in the present study suggest that both CL area and blood flow are correlated with circulating [P4] at the time of transfer and in early pregnancy. Evaluation of the CL using B-mode or CF sonography, although practical, provides no improvement in the selection of recipients or prediction of pregnancy

  1. Tuning of electronic properties and dynamical stability of graphene oxide with different functional groups

    Science.gov (United States)

    Dabhi, Shweta D.; Jha, Prafulla K.

    2017-09-01

    The structural, electronic and vibrational properties of graphene oxide (GO) with varying proportion of epoxy and hydroxyl functional groups have been studied using density functional theory. The functional groups and oxygen density have an obvious influence on the electronic and vibrational properties. The dependence of band gap on associated functional groups and oxygen density shows a possibility of tuning the band gap of graphene by varying the functional groups as well as oxidation level. The absorption of high oxygen content in graphene leads to the gap opening and resulting in a transition from semimetal to semiconductor. Phonon dispersion curves show no imaginary frequency or no softening of any phonon mode throughout the Brillouin zone which confirms the dynamical stability of all considered GO models. Different groups and different oxygen density result into the varying characteristics of phonon modes. The computed results show good agreement with the experimental observations. Our results present interesting possibilities for engineering the electronic properties of graphene and GO and impact the fabrication of new electronics.

  2. Determination of many-electron basis functions for a quantum Hall ground state using Schur polynomials

    Science.gov (United States)

    Mandal, Sudhansu S.; Mukherjee, Sutirtha; Ray, Koushik

    2018-03-01

    A method for determining the ground state of a planar interacting many-electron system in a magnetic field perpendicular to the plane is described. The ground state wave-function is expressed as a linear combination of a set of basis functions. Given only the flux and the number of electrons describing an incompressible state, we use the combinatorics of partitioning the flux among the electrons to derive the basis wave-functions as linear combinations of Schur polynomials. The procedure ensures that the basis wave-functions form representations of the angular momentum algebra. We exemplify the method by deriving the basis functions for the 5/2 quantum Hall state with a few particles. We find that one of the basis functions is precisely the Moore-Read Pfaffian wave function.

  3. Reconstructing Regional Ionospheric Electron Density: A Combined Spherical Slepian Function and Empirical Orthogonal Function Approach

    Science.gov (United States)

    Farzaneh, Saeed; Forootan, Ehsan

    2018-03-01

    The computerized ionospheric tomography is a method for imaging the Earth's ionosphere using a sounding technique and computing the slant total electron content (STEC) values from data of the global positioning system (GPS). The most common approach for ionospheric tomography is the voxel-based model, in which (1) the ionosphere is divided into voxels, (2) the STEC is then measured along (many) satellite signal paths, and finally (3) an inversion procedure is applied to reconstruct the electron density distribution of the ionosphere. In this study, a computationally efficient approach is introduced, which improves the inversion procedure of step 3. Our proposed method combines the empirical orthogonal function and the spherical Slepian base functions to describe the vertical and horizontal distribution of electron density, respectively. Thus, it can be applied on regional and global case studies. Numerical application is demonstrated using the ground-based GPS data over South America. Our results are validated against ionospheric tomography obtained from the constellation observing system for meteorology, ionosphere, and climate (COSMIC) observations and the global ionosphere map estimated by international centers, as well as by comparison with STEC derived from independent GPS stations. Using the proposed approach, we find that while using 30 GPS measurements in South America, one can achieve comparable accuracy with those from COSMIC data within the reported accuracy (1 × 1011 el/cm3) of the product. Comparisons with real observations of two GPS stations indicate an absolute difference is less than 2 TECU (where 1 total electron content unit, TECU, is 1016 electrons/m2).

  4. Effects of non-Maxwellian electron velocity distribution function on two-stream instability in low-pressure discharges

    International Nuclear Information System (INIS)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2007-01-01

    Electron emission from discharge chamber walls is important for plasma maintenance in many low-pressure discharges. The electrons emitted from the walls are accelerated by the sheath electric field and are injected into the plasma as an electron beam. Penetration of this beam through the plasma is subject to the two-stream instability, which tends to slow down the beam electrons and heat the plasma electrons. In the present paper, a one-dimensional particle-in-cell code is used to simulate these effects both in a collisionless plasma slab with immobile ions and in a cross-field discharge of a Hall thruster. The two-stream instability occurs if the total electron velocity distribution function of the plasma-beam system is a nonmonotonic function of electron speed. Low-pressure plasmas can be depleted of electrons with energy above the plasma potential. This study reveals that under such conditions the two-stream instability depends crucially on the velocity distribution function of electron emission. It is shown that propagation of the secondary electron beams in Hall thrusters may be free of the two-stream instability if the velocity distribution of secondary electron emission is a monotonically decaying function of speed. In this case, the beams propagate between the walls with minimal loss of the beam current and the secondary electron emission does not affect the thruster plasma properties

  5. Electronic zero-point oscillations in the strong-interaction limit of density functional theory

    NARCIS (Netherlands)

    Gori Giorgi, P.; Vignale, G.; Seidl, M.

    2009-01-01

    The exchange-correlation energy in Kohn-Sham density functional theory can be expressed exactly in terms of the change in the expectation of the electron-electron repulsion operator when, in the many-electron Hamiltonian, this same operator is multiplied by a real parameter λ varying between 0

  6. Nonlocal exchange and kinetic-energy density functionals for electronic systems

    International Nuclear Information System (INIS)

    Glossman, M.D.; Rubio, A.; Balbas, L.C.; Alonso, J.A.

    1992-01-01

    The nonlocal weighted density approximation (WDA) to the exchange and kinetic-energy functionals of many electron systems proposed several years ago by Alonso and Girifalco is used to compute, within the framework of density functional theory, the ground-state electronic density and total energy of noble gas atoms and of neutral jellium-like sodium clusters containing up to 500 atoms. These results are compared with analogous calculations using the well known Thomas-Fermi-Weizsacker-Dirac (TFWD) approximations for the kinetic (TFW) and exchange (D) energy density functionals. An outstanding improvement of the total and exchange energies, of the density at the nucleus and of the expectation values is obtained for atoms within the WDA scheme. For sodium clusters the authors notice a sizeable contribution of the nonlocal effects to the total energy and to the density profiles. In the limit of very large clusters these effects should affect the surface energy of the bulk metal

  7. Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shunsuke A. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Taniguchi, Yasutaka [Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan); Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435 (Japan); Shinohara, Yasushi [Max Planck Institute of Microstructure Physics, 06120 Halle (Germany); Yabana, Kazuhiro [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2015-12-14

    We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.

  8. Imaging the square of the correlated two-electron wave function of a hydrogen molecule.

    Science.gov (United States)

    Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R

    2017-12-22

    The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.

  9. Characterization of functional LB films using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Kuroda, Shin-ichi

    1995-01-01

    The role of ESR spectroscopy in the characterization of functional LB films is discussed. Unpaired electrons in LB films are associated with isolated radical molecules produced by charge transfer, paramagnetic metallic ions such as Cu 2+ , strongly interacting spins in the mixed valence states in charge-transfer salts, and so on. These spins often manifest the functions of materials. They can also act as microscopic probes in the ESR analysis devoted for the elucidation of characteristic properties of LB films. In structural studies, ESR is of particular importance in the analysis of molecular orientation of LB films. ESR can unambiguously determine the orientation of molecules through g-value anisotropy: different g value, different resonance field. Two types of new control methods of molecular orientation in LB films originated from the ESR analysis: study of in-plane orientation in dye LB films which led to the discovery of flow-orientation effect, and observation of drastic change of orientation of Cu-porphyrin in LB films using the trigger molecule, n-hexatriacontane. In the studies of electronic properties, hyperfine interactions between electron and nuclear spins provide information about molecular orbitals and local structures. Stable isotopes have been successfully applied to the stable radicals in merocyanine LB films to identify hyperfine couplings. In conducting LB films composed of charge-transfer salts, quasi-one-dimensional antiferromagnetism in semiconducting films and spin resonance of conduction electrons in metallic films are observed. Results provide microscopic evidence for the development of columnar structures of constituent molecules. Development of new functional LB films may provide more cases where ESR spectroscopy will clarify the nature of such films. (author)

  10. Double-continuum wave functions and double-photoionization cross sections of two-electron systems

    International Nuclear Information System (INIS)

    Tiwary, S.N.

    1996-09-01

    The present review briefly presents the growing experimental as well as theoretical interests in recent years in the double-continuum wave functions and double-photoionization cross sections of two-electron systems. The validity of existing double-continuum wave functions is analyzed and the importance of electronic correlations in both the initial as well as final states wave functions involved in the transition amplitude for double-photoionization process is demonstrated. At present, we do not have comprehensive and practical double-continuum wave functions which account the full correlation of two-electron in the continuum. Basic difficulties in making accurate theoretical calculations of double ionization by a single high energy photon especially in the vicinity of the threshold, where the correlation plays an important role, are discussed. Illuminating, illustrative and representative examples are presented in order to show the present status and the progress in this field. Future challenges and directions, in high-precision double-photoionization cross sections calculations, have been discussed and suggested. (author). 133 refs, 9 figs

  11. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    International Nuclear Information System (INIS)

    Sundararaman, Ravishankar; Goddard, William A. III; Arias, Tomas A.

    2017-01-01

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.

  12. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    Science.gov (United States)

    Sundararaman, Ravishankar; Goddard, William A.; Arias, Tomas A.

    2017-03-01

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.

  13. Functional size of photosynthetic electron transport chain determined by radiation inactivation

    International Nuclear Information System (INIS)

    Pan, R.S.; Chen, L.F.; Wang, M.Y.; Tsal, M.Y.; Pan, R.L.; Hsu, B.D.

    1987-01-01

    Radiation inactivation technique was employed to determine the functional size of photosynthetic electron transport chain of spinach chloroplasts. The functional size for photosystem I+II(H 2 O to methylviologen) was 623 +/- 37 kilodaltons; for photosystem II (H 2 O to dimethylquinone/ferricyanide), 174 +/- 11 kilodaltons; and for photosystem I (reduced diaminodurene to methylviologen), 190 +/- 11 kilodaltons. The difference between 364 +/- 22 (the sum of 174 +/- 11 and 190 +/- 11) kilodaltons and 623 +/- 37 kilodaltons is partially explained to be due to the presence of two molecules of cytochrome b 6 /f complex of 280 kilodaltons. The molecular mass for other partial reactions of photosynthetic electron flow, also measured by radiation inactivation, is reported. The molecular mass obtained by this technique is compared with that determined by other conventional biochemical methods. A working hypothesis for the composition, stoichiometry, and organization of polypeptides for photosynthetic electron transport chain is proposed

  14. Biomimetic self-assembly of a functional asymmetrical electronic device.

    Science.gov (United States)

    Boncheva, Mila; Gracias, David H; Jacobs, Heiko O; Whitesides, George M

    2002-04-16

    This paper introduces a biomimetic strategy for the fabrication of asymmetrical, three-dimensional electronic devices modeled on the folding of a chain of polypeptide structural motifs into a globular protein. Millimeter-size polyhedra-patterned with logic devices, wires, and solder dots-were connected in a linear string by using flexible wire. On self-assembly, the string folded spontaneously into two domains: one functioned as a ring oscillator, and the other one as a shift register. This example demonstrates that biomimetic principles of design and self-organization can be applied to generate multifunctional electronic systems of complex, three-dimensional architecture.

  15. Wavelets as basis functions in electronic structure calculations

    International Nuclear Information System (INIS)

    Chauvin, C.

    2005-11-01

    This thesis is devoted to the definition and the implementation of a multi-resolution method to determine the fundamental state of a system composed of nuclei and electrons. In this work, we are interested in the Density Functional Theory (DFT), which allows to express the Hamiltonian operator with the electronic density only, by a Coulomb potential and a non-linear potential. This operator acts on orbitals, which are solutions of the so-called Kohn-Sham equations. Their resolution needs to express orbitals and density on a set of functions owing both physical and numerical properties, as explained in the second chapter. One can hardly satisfy these two properties simultaneously, that is why we are interested in orthogonal and bi-orthogonal wavelets basis, whose properties of interpolation are presented in the third chapter. We present in the fourth chapter three dimensional solvers for the Coulomb's potential, using not only the preconditioning property of wavelets, but also a multigrid algorithm. Determining this potential allows us to solve the self-consistent Kohn-Sham equations, by an algorithm presented in chapter five. The originality of our method consists in the construction of the stiffness matrix, combining a Galerkin formulation and a collocation scheme. We analyse the approximation properties of this method in case of linear Hamiltonian, such as harmonic oscillator and hydrogen, and present convergence results of the DFT for small electrons. Finally we show how orbital compression reduces considerably the number of coefficients to keep, while preserving a good accuracy of the fundamental energy. (author)

  16. Electron energy distribution function in the divertor region of the COMPASS tokamak during neutral beam injection heating

    Science.gov (United States)

    Hasan, E.; Dimitrova, M.; Havlicek, J.; Mitošinková, K.; Stöckel, J.; Varju, J.; Popov, Tsv K.; Komm, M.; Dejarnac, R.; Hacek, P.; Panek, R.; the COMPASS Team

    2018-02-01

    This paper presents the results from swept probe measurements in the divertor region of the COMPASS tokamak in D-shaped, L-mode discharges, with toroidal magnetic field BT = 1.15 T, plasma current Ip = 180 kA and line-average electron densities varying from 2 to 8×1019 m-3. Using neutral beam injection heating, the electron energy distribution function is studied before and during the application of the beam. The current-voltage characteristics data are processed using the first-derivative probe technique. This technique allows one to evaluate the plasma potential and the real electron energy distribution function (respectively, the electron temperatures and densities). At the low average electron density of 2×1019 m-3, the electron energy distribution function is bi-Maxwellian with a low-energy electron population with temperatures 4-6 eV and a high-energy electron group 12-25 eV. As the line-average electron density is increased, the electron temperatures decrease. At line-average electron densities above 7×1019 m-3, the electron energy distribution function is found to be Maxwellian with a temperature of 6-8.5 eV. The effect of the neutral beam injection heating power in the divertor region is also studied.

  17. The structural and electronic properties of monovalent sidewall functionalized double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Jalili, Seifollah; Jamali, Maryam

    2012-01-01

    Highlights: ► (6,0)-(13,0) DWCNT, built from (6,0) and (13,0) SWCNTs, is a metallic nanotubes. ► NH 2 /(6,0)-(13,0) and COOH/(6,0)-(13,0) is semimetal and semiconductor, respectively. ► In NH 2 /(6,0)-(13,0) electrons transferred mainly from inner tube to NH 2 group. - Abstract: The structural and electronic properties of (6,0)-(13,0) double-walled carbon nanotubes (DWCNTs) and monovalent sidewall functionalized DWCNTs with –NH 2 and –COOH groups were studied using density functional theory. The results show that pure (6,0)-(13,0) DWCNTs are metallic. However, by functionalizing a DWCNT, local distortions are induced in the outer tube sidewall along the radial direction. The resulting structures, NH 2 /(6,0)-(13,0) and COOH/(6,0)-(13,0) DWCNTs, exhibit significant structural changes, and are semimetal with no energy gap and semiconducting with a small energy gap, respectively. In NH 2 /(6,0)-(13,0) DWCNTs, new electronic states are created and distributed on the outer wall and NH 2 group by electron transfer from the inner tube to the NH 2 group. In COOH/(6,0)-(13,0) DWCNTs, new states are created and distributed on the inner wall, but there is insignificant charge transfer between the inner tube and the COOH group. These results confirm that local atomic structural distortion on DWCNTs caused by sidewall functionalization can modify the electronic structures of DWCNTs.

  18. Electron work function of stepped tungsten surfaces

    International Nuclear Information System (INIS)

    Krahl-Urban, B.

    1976-03-01

    The electron work function of tungsten (110) vicinal faces was measured with the aid of thermionic emission, and its dependence on the crystallographic orientation and the surface structure was investigated. The thermionic measurements were evaluated with the aid of the Richardson plot. The real temperature of the emitting tungsten faces was determined with an accuracy of +- 0.5% in the range between 2,200 and 2,800 K. The vicinal faces under investigation have been prepared with an orientation exactness of +- 15'. In the tungsten (110) vicinal faces under investigation, a strong dependence of the temperature coefficient d PHI/dT of the work function on the crystallographic orientation was found. A strong influence of the edge structure as well as of the step density on the temperature coefficient was observed. (orig./HPOE) [de

  19. Levy-Lieb-Based Monte Carlo Study of the Dimensionality Behaviour of the Electronic Kinetic Functional

    Directory of Open Access Journals (Sweden)

    Seshaditya A.

    2017-06-01

    Full Text Available We consider a gas of interacting electrons in the limit of nearly uniform density and treat the one dimensional (1D, two dimensional (2D and three dimensional (3D cases. We focus on the determination of the correlation part of the kinetic functional by employing a Monte Carlo sampling technique of electrons in space based on an analytic derivation via the Levy-Lieb constrained search principle. Of particular interest is the question of the behaviour of the functional as one passes from 1D to 3D; according to the basic principles of Density Functional Theory (DFT the form of the universal functional should be independent of the dimensionality. However, in practice the straightforward use of current approximate functionals in different dimensions is problematic. Here, we show that going from the 3D to the 2D case the functional form is consistent (concave function but in 1D becomes convex; such a drastic difference is peculiar of 1D electron systems as it is for other quantities. Given the interesting behaviour of the functional, this study represents a basic first-principle approach to the problem and suggests further investigations using highly accurate (though expensive many-electron computational techniques, such as Quantum Monte Carlo.

  20. Wave functions and two-electron probability distributions of the Hooke's-law atom and helium

    International Nuclear Information System (INIS)

    O'Neill, Darragh P.; Gill, Peter M. W.

    2003-01-01

    The Hooke's-law atom (hookium) provides an exactly soluble model for a two-electron atom in which the nuclear-electron Coulombic attraction has been replaced by a harmonic one. Starting from the known exact position-space wave function for the ground state of hookium, we present the momentum-space wave function. We also look at the intracules, two-electron probability distributions, for hookium in position, momentum, and phase space. These are compared with the Hartree-Fock results and the Coulomb holes (the difference between the exact and Hartree-Fock intracules) in position, momentum, and phase space are examined. We then compare these results with analogous results for the ground state of helium using a simple, explicitly correlated wave function

  1. Fast Transverse Beam Instability Caused by Electron Cloud Trapped in Combined Function Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey [Univ. of Chicago, IL (United States)

    2017-03-01

    Electron cloud instabilities affect the performance of many circular high-intensity particle accelerators. They usually have a fast growth rate and might lead to an increase of the transverse emittance and beam loss. A peculiar example of such an instability is observed in the Fermilab Recycler proton storage ring. Although this instability might pose a challenge for future intensity upgrades, its nature had not been completely understood. The phenomena has been studied experimentally by comparing the dynamics of stable and unstable beam, numerically by simulating the build-up of the electron cloud and its interaction with the beam, and analytically by constructing a model of an electron cloud driven instability with the electrons trapped in combined function dipoles. Stabilization of the beam by a clearing bunch reveals that the instability is caused by the electron cloud, trapped in beam optics magnets. Measurements of microwave propagation confirm the presence of the cloud in the combined function dipoles. Numerical simulations show that up to 10$^{-2}$ of the particles can be trapped by their magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated fast instability growth rate of about 30 revolutions and low mode frequency of 0.4 MHz are consistent with experimental observations and agree with the simulations. The created instability model allows investigating the beam stability for the future intensity upgrades.

  2. Electron transport in furfural: dependence of the electron ranges on the cross sections and the energy loss distribution functions

    Science.gov (United States)

    Ellis-Gibbings, L.; Krupa, K.; Colmenares, R.; Blanco, F.; Muńoz, A.; Mendes, M.; Ferreira da Silva, F.; Limá Vieira, P.; Jones, D. B.; Brunger, M. J.; García, G.

    2016-09-01

    Recent theoretical and experimental studies have provided a complete set of differential and integral electron scattering cross section data from furfural over a broad energy range. The energy loss distribution functions have been determined in this study by averaging electron energy loss spectra for different incident energies and scattering angles. All these data have been used as input parameters for an event by event Monte Carlo simulation procedure to obtain the electron energy deposition patterns and electron ranges in liquid furfural. The dependence of these results on the input cross sections is then analysed to determine the uncertainty of the simulated values.

  3. Three-dimensional optical transfer functions in the aberration-corrected scanning transmission electron microscope.

    Science.gov (United States)

    Jones, L; Nellist, P D

    2014-05-01

    In the scanning transmission electron microscope, hardware aberration correctors can now correct for the positive spherical aberration of round electron lenses. These correctors make use of nonround optics such as hexapoles or octupoles, leading to the limiting aberrations often being of a nonround type. Here we explore the effect of a number of potential limiting aberrations on the imaging performance of the scanning transmission electron microscope through their resulting optical transfer functions. In particular, the response of the optical transfer function to changes in defocus are examined, given that this is the final aberration to be tuned just before image acquisition. The resulting three-dimensional optical transfer functions also allow an assessment of the performance of a system for focal-series experiments or optical sectioning applications. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  4. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions

    Science.gov (United States)

    Pernal, Katarzyna

    2018-01-01

    An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of multireference wave functions. The AC expression recovers dynamic correlation energy and assures a balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase approximation allows one to find the correlation energy only from reference one- and two-electron reduced density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the computation cost making the method one of the most efficient multireference approaches accounting for dynamic electron correlation also for the strongly correlated systems.

  5. The effect of electron range on electron beam induced current collection and a simple method to extract an electron range for any generation function

    International Nuclear Information System (INIS)

    Lahreche, A.; Beggah, Y.; Corkish, R.

    2011-01-01

    The effect of electron range on electron beam induced current (EBIC) is demonstrated and the problem of the choice of the optimal electron ranges to use with simple uniform and point generation function models is resolved by proposing a method to extract an electron range-energy relationship (ERER). The results show that the use of these extracted electron ranges remove the previous disagreement between the EBIC curves computed with simple forms of generation model and those based on a more realistic generation model. The impact of these extracted electron ranges on the extraction of diffusion length, surface recombination velocity and EBIC contrast of defects is discussed. It is also demonstrated that, for the case of uniform generation, the computed EBIC current is independent of the assumed shape of the generation volume. -- Highlights: → Effect of electron ranges on modeling electron beam induced current is shown. → A method to extract an electron range for simple form of generation is proposed. → For uniform generation the EBIC current is independent of the choice of it shape. → Uses of the extracted electron ranges remove some existing literature ambiguity.

  6. Development of functional requirements for electronic health communication: preliminary results from the ELIN project.

    Science.gov (United States)

    Christensen, Tom; Grimsmo, Anders

    2005-01-01

    User participation is important for developing a functional requirements specification for electronic communication. General practitioners and practising specialists, however, often work in small practices without the resources to develop and present their requirements. It was necessary to find a method that could engage practising doctors in order to promote their needs related to electronic communication. Qualitative research methods were used, starting a process to develop and study documents and collect data from meetings in project groups. Triangulation was used, in that the participants were organised into a panel of experts, a user group, a supplier group and an editorial committee. The panel of experts created a list of functional requirements for electronic communication in health care, consisting of 197 requirements, in addition to 67 requirements selected from an existing Norwegian standard for electronic patient records (EPRs). Elimination of paper copies sent in parallel with electronic messages, optimal workflow, a common electronic 'envelope' with directory services for units and end-users, and defined requirements for content with the possibility of decision support were the most important requirements. The results indicate that we have found a method of developing functional requirements which provides valid results both for practising doctors and for suppliers of EPR systems.

  7. Electronic structure of low work function electrodes modified by C{sub 16}H{sub 33}SH

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunbok [Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003 (United States); Cho, Sang Wan, E-mail: dio8027@yonsei.ac.kr [Department of Physics, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 220-710 (Korea, Republic of); Park, Sang Han; Cho, Mann-Ho; Yi, Yeonjin [Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemoon-Gu, Seoul, 120-749 (Korea, Republic of)

    2014-10-15

    Highlights: • The electronic structure of pentacene/C{sub 16}H{sub 33}SH/Au is investigated. • The work function of Au is significantly decreased with C{sub 16}H{sub 33}SH treatment. • The reduced work function is attributed to its permanent dipole moment. - Abstract: Organic and printed electronics technologies require electrodes with low work functions to facilitate the transport of electrons in and out of various optoelectronic devices. We show that the surface modifier of 1-hexadecanethiol reduces the work function of conductors using in situ ultraviolet photoemission spectroscopy, and we combine experimental and theoretical methods to investigate the origin of the work function changes. The interfacial electronic structures of pentacene/1-hexadecanethiol/Au were investigated via in situ ultraviolet photoemission spectroscopy and X-ray photoemission spectroscopy in order to understand the change in the carrier injection barrier and chemical reactions upon surface modification. Theoretical calculations using density functional theory were also performed to understand the charge distribution of 1-hexadecanethiol, which affects the reduction of the work function. The 1-hexadecanethiol surface modifier is processed in air from solution, providing an appealing alternative to chemically-reactive low-work-function metals.

  8. Configurational forces in electronic structure calculations using Kohn-Sham density functional theory

    Science.gov (United States)

    Motamarri, Phani; Gavini, Vikram

    2018-04-01

    We derive the expressions for configurational forces in Kohn-Sham density functional theory, which correspond to the generalized variational force computed as the derivative of the Kohn-Sham energy functional with respect to the position of a material point x . These configurational forces that result from the inner variations of the Kohn-Sham energy functional provide a unified framework to compute atomic forces as well as stress tensor for geometry optimization. Importantly, owing to the variational nature of the formulation, these configurational forces inherently account for the Pulay corrections. The formulation presented in this work treats both pseudopotential and all-electron calculations in a single framework, and employs a local variational real-space formulation of Kohn-Sham density functional theory (DFT) expressed in terms of the nonorthogonal wave functions that is amenable to reduced-order scaling techniques. We demonstrate the accuracy and performance of the proposed configurational force approach on benchmark all-electron and pseudopotential calculations conducted using higher-order finite-element discretization. To this end, we examine the rates of convergence of the finite-element discretization in the computed forces and stresses for various materials systems, and, further, verify the accuracy from finite differencing the energy. Wherever applicable, we also compare the forces and stresses with those obtained from Kohn-Sham DFT calculations employing plane-wave basis (pseudopotential calculations) and Gaussian basis (all-electron calculations). Finally, we verify the accuracy of the forces on large materials systems involving a metallic aluminum nanocluster containing 666 atoms and an alkane chain containing 902 atoms, where the Kohn-Sham electronic ground state is computed using a reduced-order scaling subspace projection technique [P. Motamarri and V. Gavini, Phys. Rev. B 90, 115127 (2014), 10.1103/PhysRevB.90.115127].

  9. Electron transport in polycyclic aromatic hydrocarbons/boron nitride hybrid structures: density functional theory combined with the nonequilibrium Green's function.

    Science.gov (United States)

    Panahi, S F K S; Namiranian, Afshin; Soleimani, Maryam; Jamaati, Maryam

    2018-02-07

    We investigate the electronic transport properties of two types of junction based on single polyaromatic hydrocarbons (PAHs) and PAHs embedded in boron nitride (h-BN) nanoribbons, using nonequilibrium Green's functions (NEGF) and density functional theory (DFT). In the PAH junctions, a Fano resonance line shape at the Fermi energy in the transport feature can be clearly seen. In hybrid junctions, structural asymmetries enable interactions between the electronic states, leading to observation of interface-based transport. Our findings reveal that the interface of PAH/h-BN strongly affects the transport properties of the structures.

  10. Valence electronic structure of cobalt phthalocyanine from an optimally tuned range-separated hybrid functional.

    Science.gov (United States)

    Brumboiu, Iulia Emilia; Prokopiou, Georgia; Kronik, Leeor; Brena, Barbara

    2017-07-28

    We analyse the valence electronic structure of cobalt phthalocyanine (CoPc) by means of optimally tuning a range-separated hybrid functional. The tuning is performed by modifying both the amount of short-range exact exchange (α) included in the hybrid functional and the range-separation parameter (γ), with two strategies employed for finding the optimal γ for each α. The influence of these two parameters on the structural, electronic, and magnetic properties of CoPc is thoroughly investigated. The electronic structure is found to be very sensitive to the amount and range in which the exact exchange is included. The electronic structure obtained using the optimal parameters is compared to gas-phase photo-electron data and GW calculations, with the unoccupied states additionally compared with inverse photo-electron spectroscopy measurements. The calculated spectrum with tuned γ, determined for the optimal value of α = 0.1, yields a very good agreement with both experimental results and with GW calculations that well-reproduce the experimental data.

  11. Theoretical and experimental study of the electron distribution function in the plasma of an electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Girard, A.; Perret, C.; Bourg, F.; Khodja, H.; Melin, G.; Lecot, C.

    1997-01-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are mirror machines which can deliver important fluxes of Highly Charged Ions (HCI). These performances are strongly correlated with hot electrons sustained by an RF wave. This paper presents an analysis of the EDF in an ECR source. In the first part of the paper a one-dimensional Fokker-Planck code for the Electron Distribution Function is presented: this code includes a quasilinear diffusion operator for the RF wave, a collision term and a source term due to electron impact ionization. The present status of this code is presented. In the second part of the paper experiments related to the measurement of the EDF are presented: electron density, diamagnetism, electron endloss current have been measured at the Quadrumafios ECRIS. With these results it is possible to give a precise description of the EDF. (author)

  12. Influence of the excited states on the electron-energy distribution function in low-pressure microwave argon plasmas

    International Nuclear Information System (INIS)

    Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.

    2005-01-01

    In this work the influence of the excited states on the electron-energy distribution function has been determined for an argon microwave discharge at low pressure. A collisional-radiative model of argon has been developed taking into account the most recent experimental and theoretical values of argon-electron-impact excitation cross sections. The model has been solved along with the electron Boltzmann equation in order to study the influence of the inelastic collisions from the argon excited states on the electron-energy distribution function. Results show that under certain conditions the excited states can play an important role in determining the shape of the distribution function and the mean kinetic energy of the electrons, deplecting the high-energy tail due to inelastic processes from the excited states, especially from the 4s excited configuration. It has been found that from the populations of the excited states an excitation temperature can be defined. This excitation temperature, which can be experimentally determined by optical emission spectroscopy, is lower than the electron kinetic temperature obtained from the electron-energy distribution function

  13. Modulation transfer function and detective quantum efficiency of electron bombarded charge coupled device detector for low energy electrons

    International Nuclear Information System (INIS)

    Horacek, Miroslav

    2005-01-01

    The use of a thinned back-side illuminated charge coupled device chip as two-dimensional sensor working in direct electron bombarded mode at optimum energy of the incident signal electrons is demonstrated and the measurements of the modulation transfer function (MTF) and detective quantum efficiency (DQE) are described. The MTF was measured for energy of electrons 4 keV using an edge projection method and a stripe projection method. The decrease of the MTF for a maximum spatial frequency of 20.8 cycles/mm, corresponding to the pixel size 24x24 μm, is 0.75≅-2.5 dB, and it is approximately the same for both horizontal and vertical directions. DQE was measured using an empty image and the mixing factor method. Empty images were acquired for energies of electrons from 2 to 5 keV and for various doses, ranging from nearly dark image to a nearly saturated one. DQE increases with increasing energy of bombarded electrons and reaches 0.92 for electron energy of 5 keV. For this energy the detector will be used for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope

  14. Substituent effects on the electronic characteristics of pentacene derivatives for organic electronic devices: dioxolane-substituted pentacene derivatives with triisopropylsilylethynyl functional groups.

    Science.gov (United States)

    Griffith, Olga Lobanova; Anthony, John E; Jones, Adolphus G; Shu, Ying; Lichtenberger, Dennis L

    2012-08-29

    The intramolecular electronic structures and intermolecular electronic interactions of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene), 6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]-pentacene (TP-5 pentacene), and 2,2,10,10-tetraethyl-6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]pentacene (EtTP-5 pentacene) have been investigated by the combination of gas-phase and solid-phase photoelectron spectroscopy measurements. Further insight has been provided by electrochemical measurements in solution, and the principles that emerge are supported by electronic structure calculations. The measurements show that the energies of electron transfer such as the reorganization energies, ionization energies, charge-injection barriers, polarization energies, and HOMO-LUMO energy gaps are strongly dependent on the particular functionalization of the pentacene core. The ionization energy trends as a function of the substitution observed for molecules in the gas phase are not reproduced in measurements of the molecules in the condensed phase due to polarization effects in the solid. The electronic behavior of these materials is impacted less by the direct substituent electronic effects on the individual molecules than by the indirect consequences of substituent effects on the intermolecular interactions. The ionization energies as a function of film thickness give information on the relative electrical conductivity of the films, and all three molecules show different material behavior. The stronger intermolecular interactions in TP-5 pentacene films lead to better charge transfer properties versus those in TIPS pentacene films, and EtTP-5 pentacene films have very weak intermolecular interactions and the poorest charge transfer properties of these molecules.

  15. Reconstruction of the electron energy distribution function from probe characteristics at intermediate and high pressures

    International Nuclear Information System (INIS)

    Arslanbekov, R.R.; Kolokolov, N.B.; Kudryavtsev, A.A.; Khromov, N.A.

    1991-01-01

    Gorbunov et al. have developed a kinetic theory of the electron current drawn by a probe, which substantially extends the region of applicability of the probe method for determining the electron energy distribution function, enabling probes to be used for intermediate and high pressures (up to p ≤ 0.5 atm for monatomic gases). They showed that for λ var-epsilon >> a + d (where a is the probe radius, d is the sheath thickness, and λ var-epsilon is the electron energy relaxation length) the current density j e (V) drawn by the probe is related to the unperturbed distribution function by an integral equation involving the distribution function. The kernal of the integral equation can be written as a function of the diffusion parameter. In the present paper the method of quadrature sums is employed in order to obtain the electron energy distribution function from probe characteristics at intermediate and high pressures. This technique enables them to recover the distribution function from the integral equation when the diffusion parameter has an arbitrary energy dependence ψ 0 (var-epsilon) in any given energy range. The effectiveness of the method is demonstrated by application to both model problems and experimental data

  16. Advanced nanoimprint patterning for functional electronics and biochemical sensing

    Science.gov (United States)

    Wang, Chao

    Nano-fabrication has been widely used for a variety of disciplines, including electronics, material science, nano-optics, and nano-biotechnology. This dissertation focuses on nanoimprint lithography (NIL) based novel nano-patterning techniques for fabricating functional structures, and discusses their applications in advanced electronics and high-sensitivity molecular sensing. In this dissertation, examples of using nano-fabricated structures for promising electronic applications are presented. For instance, 10 nm and 18 nm features are NIL-fabricated for Si/SiGe heterojunction tunneling transistors and graphene nano-ribbon transistors, using shadow evaporation and line-width shrinking techniques, respectively. An ultrafast laser melting based method is applied on flexible plastic substrates to correct defects of nano-features. Nano-texturing of sapphire substrate is developed to improve the light extraction of GaN light emitting diodes (LEDs) by 70 %. A novel multi-layer nano-patterned Si-mediated catalyst is discovered to grow straight and uniform Si nanowires with optimized properties in size, location, and crystallization on amorphous SiO2 substrate. Nano-structures are also functionalized into highly sensitive bio-chemical sensors. Plasmonic nano-bar antenna arrays are demonstrated to effectively sense infrared molecules >10 times better than conventional plasmonic sensors. As small as 20 nm wide nano-channel fluidic devices are developed to linearize and detect DNA molecules for potential DNA sequencing. An integrated fluidic system is built to incorporate plasmonic nano-structures for 30X-enhanced fluorescence detection of large DNA molecules.

  17. Correlation functions of electronic and nuclear spins in a Heisenberg antiferromagnet semi-infinite media

    International Nuclear Information System (INIS)

    Sarmento, E.F.

    1980-01-01

    Results are found for the correlation dynamic functions (or the correspondent green functions) between any combination including pairs of electronic anel nuclear spin operators in an antiferromagnet semi-infinite media., at low temperature T N . These correlation functions, are used to investigate, at the same time, the properties of surface spin waves in volume and surface. The dispersion relatons of nuclear and electronic spin waves coupled modes, in surface are found, resolving a system of linearized equatons of spin operators a system of linearized equations of spin operators. (author) [pt

  18. A generalized electron energy probability function for inductively coupled plasmas under conditions of nonlocal electron kinetics

    Science.gov (United States)

    Mouchtouris, S.; Kokkoris, G.

    2018-01-01

    A generalized equation for the electron energy probability function (EEPF) of inductively coupled Ar plasmas is proposed under conditions of nonlocal electron kinetics and diffusive cooling. The proposed equation describes the local EEPF in a discharge and the independent variable is the kinetic energy of electrons. The EEPF consists of a bulk and a depleted tail part and incorporates the effect of the plasma potential, Vp, and pressure. Due to diffusive cooling, the break point of the EEPF is eVp. The pressure alters the shape of the bulk and the slope of the tail part. The parameters of the proposed EEPF are extracted by fitting to measure EEPFs (at one point in the reactor) at different pressures. By coupling the proposed EEPF with a hybrid plasma model, measurements in the gaseous electronics conference reference reactor concerning (a) the electron density and temperature and the plasma potential, either spatially resolved or at different pressure (10-50 mTorr) and power, and (b) the ion current density of the electrode, are well reproduced. The effect of the choice of the EEPF on the results is investigated by a comparison to an EEPF coming from the Boltzmann equation (local electron kinetics approach) and to a Maxwellian EEPF. The accuracy of the results and the fact that the proposed EEPF is predefined renders its use a reliable alternative with a low computational cost compared to stochastic electron kinetic models at low pressure conditions, which can be extended to other gases and/or different electron heating mechanisms.

  19. Anomalous Skin Effect for Anisotropic Electron Velocity Distribution Function

    International Nuclear Information System (INIS)

    Igor Kaganovich; Edward Startsev; Gennady Shvets

    2004-01-01

    The anomalous skin effect in a plasma with a highly anisotropic electron velocity distribution function (EVDF) is very different from skin effect in a plasma with the isotropic EVDF. An analytical solution was derived for the electric field penetrated into plasma with the EVDF described as a Maxwellian with two temperatures Tx >> Tz, where x is the direction along the plasma boundary and z is the direction perpendicular to the plasma boundary. The skin layer was found to consist of two distinctive regions of width of order nTx/w and nTz/w, where nTx,z/w = (Tx,z/m)1/2 is the thermal electron velocity and w is the incident wave frequency

  20. Electron beam technology for modifying the functional properties of maize starch

    International Nuclear Information System (INIS)

    Nemtanu, M.R.; Minea, R.; Kahraman, K.; Koksel, H.; Ng, P.K.W.; Popescu, M.I.; Mitru, E.

    2007-01-01

    Maize starch is a versatile biopolymer with a wide field of applications (e.g. foods, pharmaceutical products, adhesives, etc.). Nowadays there is a continuous and intensive search for new methods and techniques to modify its functional properties due to the fact that native form of starch may exhibit some disadvantages in certain applications. Radiation technology is frequently used to change the properties of different polymeric materials. Thus, the goal of the work is to discuss the application of accelerated electron beams on maize starch in the view of changing some of its functional properties. Maize starch has been irradiated with doses up to 52.15 kGy by using electron beam technology and the modifications of differential scanning calorimetry (DSC) and pasting characteristics, paste clarity, freezing and thawing stability as well as colorimetric characteristics have been investigated. The results of the study revealed that the measured properties can be modified by electron beam treatment and, therefore, this method can be an efficient and ecological alternative to obtain modified maize starch

  1. The electronic fine structure of 4-nitrophenyl functionalized single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Chakraborty, Amit K; Coleman, Karl S; Dhanak, Vinod R

    2009-01-01

    Controlling the electronic structure of carbon nanotubes (CNTs) is of great importance to various CNT based applications. Herein the electronic fine structure of single-walled carbon nanotube films modified with 4-nitrophenyl groups, produced following reaction with 4-nitrobenzenediazonium tetrafluoroborate, was investigated for the first time. Various techniques such as x-ray and ultra-violet photoelectron spectroscopy, and near edge x-ray absorption fine structure studies were used to explore the electronic structure, and the results were compared with the measured electrical resistances. A reduction in number of the π electronic states in the valence band consistent with the increased resistance of the functionalized nanotube films was observed.

  2. Change of the functional properties in polysaccharides irradiated by electron beam

    International Nuclear Information System (INIS)

    Sakaue, Kazushi; Murata, Yoshiyuki; Tada, Mikiro; Hayashi, Toru; Todoriki, Setsuko; Asai, Kazuo

    1998-01-01

    Polysaccharides widely used in the food industry were studied in terms of sterilization of bacteria by irradiation. 12 items of polysaccharides irradiated by electron beam ware investigated for bacteria count and the functional property of pH, gel strength, bloom and viscosity. This study aims to determine the sterilization effect by absorption dose and the applicability of the electron beam irradiation toward polysaccharides. Results shows that 1) Over 5kGy absorption dose are enough to be able to sterilize bacteria in the polysaccharide themselves. 2) We reconfirm that Arabic gum will be applicable for the electron beam irradiation, which has been used in some foreign countries. 3) Electron beam irradiation will be useful for Gellan gum b (acetyl type), as gelling agents in the food application. (author)

  3. Measurement of the electron structure function F{sub 2}{sup e} at LEP energies

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J. [LPNHE, IN2P3-CNRS, Univ. Paris VI et VII, 4 place Jussieu, FR-75252 Paris Cedex 05 (France); Abreu, P. [LIP, IST, FCUL, Av. Elias Garcia, 14-1" o, PT-1000 Lisboa Codex (Portugal); Adam, W. [Institut für Hochenergiephysik, Österr. Akad. d. Wissensch., Nikolsdorfergasse 18, AT-1050 Vienna (Austria); Adzic, P. [Institute of Nuclear Physics, N.C.S.R. Demokritos, P.O. Box 60228, GR-15310 Athens (Greece); Albrecht, T. [Institut für Experimentelle Kernphysik, Universität Karlsruhe, Postfach 6980, DE-76128 Karlsruhe (Germany); Alemany-Fernandez, R. [CERN, CH-1211 Geneva 23 (Switzerland); Allmendinger, T. [Institut für Experimentelle Kernphysik, Universität Karlsruhe, Postfach 6980, DE-76128 Karlsruhe (Germany); Allport, P.P. [Department of Physics, University of Liverpool, P.O. Box 147, Liverpool L69 3BX (United Kingdom); Amaldi, U. [Dipartimento di Fisica, Univ. di Milano-Bicocca and INFN-Milano, Piazza della Scienza 3, IT-20126 Milan (Italy); Amapane, N. [Dipartimento di Fisica Sperimentale, Università di Torino and INFN, Via P. Giuria 1, IT-10125 Turin (Italy); Amato, S. [Univ. Federal do Rio de Janeiro, C.P. 68528 Cidade Univ., Ilha do Fundão, BR-21945-970 Rio de Janeiro (Brazil); Anashkin, E. [Dipartimento di Fisica, Università di Padova and INFN, Via Marzolo 8, IT-35131 Padua (Italy); Andreazza, A. [Dipartimento di Fisica, Università di Milano and INFN-Milano, Via Celoria 16, IT-20133 Milan (Italy); Andringa, S.; Anjos, N. [LIP, IST, FCUL, Av. Elias Garcia, 14-1" o, PT-1000 Lisboa Codex (Portugal); Antilogus, P. [LPNHE, IN2P3-CNRS, Univ. Paris VI et VII, 4 place Jussieu, FR-75252 Paris Cedex 05 (France); and others

    2014-10-07

    The hadronic part of the electron structure function F{sub 2}{sup e} has been measured for the first time, using e{sup +}e{sup −} data collected by the DELPHI experiment at LEP, at centre-of-mass energies of √(s)=91.2–209.5 GeV. The data analysis is simpler than that of the measurement of the photon structure function. The electron structure function F{sub 2}{sup e} data are compared to predictions of phenomenological models based on the photon structure function. It is shown that the contribution of large target photon virtualities is significant. The data presented can serve as a cross-check of the photon structure function F{sub 2}{sup γ} analyses and help in refining existing parameterisations.

  4. Electron Spin Resonance Shift and Linewidth Broadening of Nitrogen-Vacancy Centers in Diamond as a Function of Electron Irradiation Dose

    OpenAIRE

    Kim, Edwin; Acosta, Victor M.; Bauch, Erik; Budker, Dmitry; Hemmer, Philip R.

    2009-01-01

    A high-nitrogen-concentration diamond sample was subject to 200-keV electron irradiation using a transmission electron microscope. The optical and spin-resonance properties of the nitrogen-vacancy (NV) color centers were investigated as a function of the irradiation dose up to 6.4\\times1021 e-/cm2. The microwave transition frequency of the NV- center was found to shift by up to 0.6% (17.1 MHz) and the linewidth broadened with increasing electron-irradiation dose. Unexpectedly, the measured ma...

  5. Giant titanium electron wave function in gallium oxide: A potential electron-nuclear spin system for quantum information processing

    Science.gov (United States)

    Mentink-Vigier, Frédéric; Binet, Laurent; Vignoles, Gerard; Gourier, Didier; Vezin, Hervé

    2010-11-01

    The hyperfine interactions of the unpaired electron with eight surrounding G69a and G71a nuclei in Ti-doped β-Ga2O3 were analyzed by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies. They are dominated by strong isotropic hyperfine couplings due to a direct Fermi contact interaction with Ga nuclei in octahedral sites of rutile-type chains oriented along b axis, revealing a large anisotropic spatial extension of the electron wave function. Titanium in β-Ga2O3 is thus best described as a diffuse (Ti4+-e-) pair rather than as a localized Ti3+ . Both electron and G69a nuclear spin Rabi oscillations could be observed by pulsed EPR and pulsed ENDOR, respectively. The electron spin decoherence time is about 1μs (at 4 K) and an upper bound of 520μs (at 8 K) is estimated for the nuclear decoherence time. Thus, β-Ga2O3:Ti appears to be a potential spin-bus system for quantum information processing with a large nuclear spin quantum register.

  6. Density functional application to strongly correlated electron systems

    International Nuclear Information System (INIS)

    Eschrig, H.; Koepernik, K.; Chaplygin, I.

    2003-01-01

    The local spin density approximation plus onsite Coulomb repulsion approach (LSDA+U) to density functional theory is carefully reanalyzed. Its possible link to single-particle Green's function theory is occasionally discussed. A simple and elegant derivation of the important sum rules for the on-site interaction matrix elements linking them to the values of U and J is presented. All necessary expressions for an implementation of LSDA+U into a non-orthogonal basis solver for the Kohn-Sham equations are given, and implementation into the full-potential local-orbital solver (Phys. Rev. B 59 (1999) 1743) is made. Results of application to several planar cuprate structures are reported in detail and conclusions on the interpretation of the physics of the electronic structure of the cuprates are drawn

  7. Quantum electrodynamical time-dependent density functional theory for many-electron systems on a lattice

    Science.gov (United States)

    Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team

    2015-03-01

    We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).

  8. Van der Waals epitaxy of functional MoO{sub 2} film on mica for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chun-Hao [Department of Electrical Engineering, National Tsing Hua University, 30013 Hsinchu, Taiwan (China); Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Lin, Jheng-Cyuan [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Liu, Heng-Jui; Do, Thi Hien [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Zhu, Yuan-Min; Zhan, Qian [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Ha, Thai Duy; Juang, Jenh-Yih [Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); He, Qing [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Arenholz, Elke [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Chiu, Po-Wen, E-mail: pwchiu@ee.nthu.edu.tw [Department of Electrical Engineering, National Tsing Hua University, 30013 Hsinchu, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Chu, Ying-Hao, E-mail: yhc@nctu.edu.tw [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2016-06-20

    Flexible electronics have a great potential to impact consumer electronics and with that our daily life. Currently, no direct growth of epitaxial functional oxides on commercially available flexible substrates is possible. In this study, in order to address this challenge, muscovite, a common layered oxide, is used as a flexible substrate that is chemically similar to typical functional oxides. We fabricated epitaxial MoO{sub 2} films on muscovite via pulsed laser deposition technique. A combination of X-ray diffraction and transmission electron microscopy confirms van der Waals epitaxy of the heterostructures. The electrical transport properties of MoO{sub 2} films are similar to those of the bulk. Flexible or free-standing MoO{sub 2} thin film can be obtained and serve as a template to integrate additional functional oxide layers. Our study demonstrates a remarkable concept to create flexible electronics based on functional oxides.

  9. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    Science.gov (United States)

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  10. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2009-11-01

    Full Text Available The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving many-electronic systems.

  11. Counterintuitive electron localisation from density-functional theory with polarisable solvent models

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Stephen G., E-mail: sdale@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Johnson, Erin R., E-mail: erin.johnson@dal.ca [Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2 (Canada)

    2015-11-14

    Exploration of the solvated electron phenomena using density-functional theory (DFT) generally results in prediction of a localised electron within an induced solvent cavity. However, it is well known that DFT favours highly delocalised charges, rendering the localisation of a solvated electron unexpected. We explore the origins of this counterintuitive behaviour using a model Kevan-structure system. When a polarisable-continuum solvent model is included, it forces electron localisation by introducing a strong energetic bias that favours integer charges. This results in the formation of a large energetic barrier for charge-hopping and can cause the self-consistent field to become trapped in local minima thus converging to stable solutions that are higher in energy than the ground electronic state. Finally, since the bias towards integer charges is caused by the polarisable continuum, these findings will also apply to other classical polarisation corrections, as in combined quantum mechanics and molecular mechanics (QM/MM) methods. The implications for systems beyond the solvated electron, including cationic DNA bases, are discussed.

  12. An open-source framework for analyzing N-electron dynamics. II. Hybrid density functional theory/configuration interaction methodology.

    Science.gov (United States)

    Hermann, Gunter; Pohl, Vincent; Tremblay, Jean Christophe

    2017-10-30

    In this contribution, we extend our framework for analyzing and visualizing correlated many-electron dynamics to non-variational, highly scalable electronic structure method. Specifically, an explicitly time-dependent electronic wave packet is written as a linear combination of N-electron wave functions at the configuration interaction singles (CIS) level, which are obtained from a reference time-dependent density functional theory (TDDFT) calculation. The procedure is implemented in the open-source Python program detCI@ORBKIT, which extends the capabilities of our recently published post-processing toolbox (Hermann et al., J. Comput. Chem. 2016, 37, 1511). From the output of standard quantum chemistry packages using atom-centered Gaussian-type basis functions, the framework exploits the multideterminental structure of the hybrid TDDFT/CIS wave packet to compute fundamental one-electron quantities such as difference electronic densities, transient electronic flux densities, and transition dipole moments. The hybrid scheme is benchmarked against wave function data for the laser-driven state selective excitation in LiH. It is shown that all features of the electron dynamics are in good quantitative agreement with the higher-level method provided a judicious choice of functional is made. Broadband excitation of a medium-sized organic chromophore further demonstrates the scalability of the method. In addition, the time-dependent flux densities unravel the mechanistic details of the simulated charge migration process at a glance. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Economic analysis of evolution/devolution of electronic devices functionality

    Directory of Open Access Journals (Sweden)

    Esipov A. S.

    2017-12-01

    Full Text Available the researcher of this article has presented the analysis of evolution/devolution of electronic devices functionality as well as the analysis of the current situation at the computers and mobile devices market, and some thoughts about new products. Is a newer device better? Are corporations producing really new devices or they are only the improvement of old ones.

  14. Efficient and Flexible Computation of Many-Electron Wave Function Overlaps.

    Science.gov (United States)

    Plasser, Felix; Ruckenbauer, Matthias; Mai, Sebastian; Oppel, Markus; Marquetand, Philipp; González, Leticia

    2016-03-08

    A new algorithm for the computation of the overlap between many-electron wave functions is described. This algorithm allows for the extensive use of recurring intermediates and thus provides high computational efficiency. Because of the general formalism employed, overlaps can be computed for varying wave function types, molecular orbitals, basis sets, and molecular geometries. This paves the way for efficiently computing nonadiabatic interaction terms for dynamics simulations. In addition, other application areas can be envisaged, such as the comparison of wave functions constructed at different levels of theory. Aside from explaining the algorithm and evaluating the performance, a detailed analysis of the numerical stability of wave function overlaps is carried out, and strategies for overcoming potential severe pitfalls due to displaced atoms and truncated wave functions are presented.

  15. Electronic diffraction tomography by Green's functions and singular values decompositions

    International Nuclear Information System (INIS)

    Mayer, A.

    2001-01-01

    An inverse scattering technique is developed to enable a three-dimensional sample reconstruction from the diffraction figures obtained for different sample orientations by electronic projection microscopy, thus performing a diffraction tomography. In its Green's-functions formulation, this technique takes account of all orders of diffraction by performing an iterative reconstruction of the wave function on the observation screen and in the sample. In a final step, these quantities enable a reconstruction of the potential-energy distribution, which is assumed real valued. The method relies on the use of singular values decomposition techniques, thus providing the best least-squares solutions and enabling a reduction of noise. The technique is applied to the analysis of a three-dimensional nanometric sample that is observed in Fresnel conditions with an electron energy of 40 eV. The algorithm turns out to provide results with a mean relative error around 3% and to be stable against random noise

  16. Large work function difference driven electron transfer from electrides to single-walled carbon nanotubes

    KAUST Repository

    Menamparambath, Mini Mol

    2014-06-23

    A difference in work function plays a key role in charge transfer between two materials. Inorganic electrides provide a unique opportunity for electron transfer since interstitial anionic electrons result in a very low work function of 2.4-2.6 eV. Here we investigated charge transfer between two different types of electrides, [Ca2N]+·e- and [Ca 24Al28O64]4+·4e-, and single-walled carbon nanotubes (SWNTs) with a work function of 4.73-5.05 eV. [Ca2N]+·e- with open 2-dimensional electron layers was more effective in donating electrons to SWNTs than closed cage structured [Ca24Al28O64] 4+·4e- due to the higher electron concentration (1.3 × 1022 cm-3) and mobility (∼200 cm 2 V-1 s-1 at RT). A non-covalent conjugation enhanced near-infrared fluorescence of SWNTs as high as 52%. The field emission current density of electride-SWNT-silver paste dramatically increased by a factor of 46000 (14.8 mA cm-2) at 2 V μm-1 (3.5 wt% [Ca2N]+·e-) with a turn-on voltage of 0.85 V μm-1. This journal is © the Partner Organisations 2014.

  17. Density functional theory of electron transfer beyond the Born-Oppenheimer approximation: Case study of LiF

    Science.gov (United States)

    Li, Chen; Requist, Ryan; Gross, E. K. U.

    2018-02-01

    We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = Rc, where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical Rc by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M-1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇Rχ(R) and ∇Rn(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation—an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).

  18. 2nd derivatives of the electronic energy in density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Dam, H. van

    2001-08-01

    This document details the equations needed to implement the calculation of vibrational frequencies within the density functional formalism of electronic structure theory. This functionality has been incorporated into the CCP1 DFT module and the required changes to the application programmers interface are outlined. Throughout it is assumed that an implementation of Hartree-Fock vibrational frequencies is available that can be modified to incorporate the density functional formalism. Employing GAMESS-UK as an example the required changes to the Hartree-Fock code are outlined. (author)

  19. Relationships between electronic game play, obesity, and psychosocial functioning in young men.

    Science.gov (United States)

    Wack, Elizabeth; Tantleff-Dunn, Stacey

    2009-04-01

    Most estimates suggest that American youth are spending a large amount of time playing video and computer games, spurring researchers to examine the impact this media has on various aspects of health and psychosocial functioning. The current study investigated relationships between frequency of electronic game play and obesity, the social/emotional context of electronic game play, and academic performance among 219 college-aged males. Current game players reported a weekly average of 9.73 hours of game play, with almost 10% of current players reporting an average of 35 hours of play per week. Results indicated that frequency of play was not significantly related to body mass index or grade point average. However, there was a significant positive correlation between frequency of play and self-reported frequency of playing when bored, lonely, or stressed. As opposed to the general conception of electronic gaming as detrimental to functioning, the results suggest that gaming among college-aged men may provide a healthy source of socialization, relaxation, and coping.

  20. A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter......This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components...

  1. Ab-initio Study of the Electron Mobility in a Functionalized UiO-66 Metal Organic Framework

    Science.gov (United States)

    Musho, Terence D.; Yasin, Alhassan S.

    2018-03-01

    This study leverages density functional theory accompanied with Boltzmann transport equation approaches to investigate the electronic mobility as a function of inorganic substitution and functionalization in a thermally stable UiO-66 metal-organic framework (MOF). The MOFs investigated are based on Zr-UiO-66 MOF with three functionalization groups of benzene dicarboxylate (BDC), BDC functionalized with an amino group (BDC + NH_2 ) and a nitro group (BDC + NO_2 ). The design space of this study is bound by UiO-66(M)-R, [M=Zr , Ti, Hf; R=BDC , BDC+NO_2 , BDC+NH_2 ]. The elastic modulus was not found to vary significantly over the structural modification of the design space for either functionalization or inorganic substitution. However, the electron-phonon scattering potential was found to be controllable by up to 30% through controlled inorganic substitution in the metal clusters of the MOF structure. The highest electron mobility was predicted for a UiO-66(Hf_5Zr_1 ) achieving a value of approximately 1.4× 10^{-3} cm^2 /V s. It was determined that functionalization provides a controlled method of modulating the charge density, while inorganic substitution provides a controlled method of modulating the electronic mobility. Within the proposed design space the electrical conductivity was able to be increased by approximately three times the base conductivity through a combination of inorganic substitution and functionalization.

  2. Evaluating blood perfusion of the corpus luteum in beef cows during fescue toxicosis.

    Science.gov (United States)

    Cline, G F; Muth-Spurlock, A M; Voelz, B E; Lemley, C O; Larson, J E

    2016-01-01

    The aim of this study was to determine if fescue toxicosis altered blood perfusion in the corpus luteum (CL) and peripheral concentrations of progesterone in cattle. The estrous cycles of 36 nonpregnant Angus or Charolais cows were synchronized in 2 replicates using the CO-Synch+CIDR protocol. Seven days after initiation of the protocol, cows were assigned (d 0) to 1 of 2 dietary treatments: 2.5 kg of 1) Kentucky-31 endophyte-infected (KY31; = 14) or 2) MaxQ novel endophyte (MaxQ; = 12) tall fescue seed. On d 7, ovaries were examined using ultrasonography, and only cows that had 1 CL present remained on the study ( = 26). Images of blood perfusion of CL, blood samples, rectal temperatures, and blood pressure of tails were collected on d 10, 13, 15, and 18. Images of CL blood perfusion were analyzed using ImageJ software for pixel density, and scored visually (0 to 9 with 0 = no perfusion, 9 = complete perfusion) by 2 independent technicians. The MIXED procedure of SAS was used with day as a repeated measure. Least squares means and SEM are reported. Cows receiving KY31 had greater rectal temperatures ( 0.003; 38.76 ± 0.08°C) than those receiving MaxQ (38.44 ± 0.08°C), providing evidence that the cows treated with KY31 were influenced by fescue toxicosis. Pulse pressure and mean arterial pressure were decreased ( cows receiving KY31 (55.26 ± 2.81 and 80.06 ± 2.72 mmHg, respectively) than MaxQ (66.58 ± 3.03 and 91.38 ± 2.93 mmHg, respectively). Concentrations of progesterone were similar ( = 0.54) between cows receiving KY31 (6.04 ± 0.53 ng/mL) or MaxQ (6.36 ± 0.63 ng/mL). Pixel densities ( = 0.14) and visual perfusion scores were similar ( = 0.11) between cows receiving KY31 (1477.20 ± 655.62 pixels and 2.23 ± 0.34, respectively) or MaxQ (2934.70 ± 718.20 pixels and 3.00 ± 0.36, respectively). Mean CL volume was similar ( 0.95) between treatments. In conclusion, blood perfusion of CL or peripheral concentrations of progesterone were not altered at the

  3. Effects of the reconnection electric field on crescent electron distribution functions in asymmetric guide field reconnection

    Science.gov (United States)

    Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.

    2017-12-01

    In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the

  4. Tunable Electronic and Topological Properties of Germanene by Functional Group Modification

    Directory of Open Access Journals (Sweden)

    Ceng-Ceng Ren

    2018-03-01

    Full Text Available Electronic and topological properties of two-dimensional germanene modified by functional group X (X = H, F, OH, CH3 at full coverage are studied with first-principles calculation. Without considering the effect of spin-orbit coupling (SOC, all functionalized configurations become semiconductors, removing the Dirac cone at K point in pristine germanene. We also find that their band gaps can be especially well tuned by an external strain. When the SOC is switched on, GeX (X = H, CH3 is a normal insulator and strain leads to a phase transition to a topological insulator (TI phase. However, GeX (X = F, OH becomes a TI with a large gap of 0.19 eV for X = F and 0.24 eV for X = OH, even without external strains. More interestingly, when all these functionalized monolayers form a bilayer structure, semiconductor-metal states are observed. All these results suggest a possible route of modulating the electronic properties of germanene and promote applications in nanoelectronics.

  5. Electronic Structures of Strained InAs x P1-x by Density Functional Theory.

    Science.gov (United States)

    Lee, Seung Mi; Kim, Min-Young; Kim, Young Heon

    2018-09-01

    We investigated the effects of strain on the electronic structures of InAsxP1-x using quantum mechanical density functional theory calculations. The electronic band gap and electron effective mass decreased with the increase of the uniaxial tensile strain along the [0001] direction of wurtzite InAs0.75P0.25. Therefore, faster electron movements are expected. These theoretical results are in good agreement with the experimental measurements of InAs0.75P0.25 nanowire.

  6. Evidence that polymorphonuclear neutrophils infiltrate into the developing corpus luteum and promote angiogenesis with interleukin-8 in the cow

    Directory of Open Access Journals (Sweden)

    Shimizu Takashi

    2011-06-01

    Full Text Available Abstract Background After ovulation in the cow, the corpus luteum (CL rapidly develops within a few days with angiogenesis and progesterone production. CL formation resembles an inflammatory response due to the influx of immune cells. Neutrophils play a role in host defense and inflammation, and secrete chemoattractants to stimulate angiogenesis. We therefore hypothesized that neutrophils infiltrate in the developing CL from just after ovulation and may play a role in angiogenesis of the CL. Methods and Results Polymorphonuclear neutrophils (PMN were detected in CL tissue by Pas-staining, and interleukin-8 (IL-8, a neutrophil-specific chemoattractant was measured in supernatant of the CL tissue culture: considerable amounts of PMNs and the high level of IL-8 were observed during the early luteal phase (days 1-4 of the estrous cycle. PMNs and IL-8 were low levels in the mid and late luteal phases, but IL-8 was increased during luteal regression. The PMN migration in vitro was stimulated by the supernatant from the early CL but not from the mid CL, and this activity was inhibited by neutralizing with an anti-IL-8 antibody, indicating the major role of IL-8 in inducing active PMN migration in the early CL. Moreover, IL-8 stimulated proliferation of CL-derived endothelial cells (LECs, and both the supernatant of activated PMNs and IL-8 stimulated formation of capillary-like structures of LECs. Conclusion PMNs migrate into the early CL partially due to its major chemoattractant IL-8 produced at high levels in the CL, and PMNs is a potential regulator of angiogenesis together with IL-8 in developing CL in the cow.

  7. Monte Carlo study of the effective Sherman function for electron polarimetry

    International Nuclear Information System (INIS)

    Drągowski, M.; Włodarczyk, M.; Weber, G.; Ciborowski, J.; Enders, J.; Fritzsche, Y.; Poliszczuk, A.

    2016-01-01

    The PEBSI Monte Carlo simulation was upgraded towards usefulness for electron Mott polarimetry. The description of Mott scattering was improved and polarisation transfer in Møller scattering was included in the code. An improved agreement was achieved between the simulation and available experimental data for a 100 keV polarised electron beam scattering off gold foils of various thicknesses. The dependence of the effective Sherman function on scattering angle and target thickness, as well as the method of finding optimal conditions for Mott polarimetry measurements were analysed.

  8. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems

    Science.gov (United States)

    Sun, Jianwei; Perdew, John P.; Yang, Zenghui; Peng, Haowei

    2016-05-01

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  9. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jianwei; Yang, Zenghui; Peng, Haowei [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Perdew, John P. [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2016-05-21

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  10. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems

    International Nuclear Information System (INIS)

    Sun, Jianwei; Yang, Zenghui; Peng, Haowei; Perdew, John P.

    2016-01-01

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  11. Electron-hydrogen atom inelastic scattering through a correlated wave function

    International Nuclear Information System (INIS)

    Serpa Vieira, A.E. de.

    1984-01-01

    The inelastic collision between an electron and a hydrogen atom is studied. A correlated function, used previously to the same system in elastic collisions in which there are two parameters fitted in the energy range studied, is utilized. With this functions an equation is developed for the direct and exchange transition matrix elements to the 15-25 and 15-2 p transitions. The obtained results are compared with Willians experimental measurements, as well the results given by the theoretical treatments of Kingston, Fon and Burke. (L.C.) [pt

  12. Electronic Structure Calculation of Permanent Magnets using the KKR Green's Function Method

    Science.gov (United States)

    Doi, Shotaro; Akai, Hisazumi

    2014-03-01

    Electronic structure and magnetic properties of permanent magnetic materials, especially Nd2Fe14B, are investigated theoretically using the KKR Green's function method. Important physical quantities in magnetism, such as magnetic moment, Curie temperature, and anisotropy constant, which are obtained from electronics structure calculations in both cases of atomic-sphere-approximation and full-potential treatment, are compared with past band structure calculations and experiments. The site preference of heavy rare-earth impurities are also evaluated through the calculation of formation energy with the use of coherent potential approximations. Further, the development of electronic structure calculation code using the screened KKR for large super-cells, which is aimed at studying the electronic structure of realistic microstructures (e.g. grain boundary phase), is introduced with some test calculations.

  13. Study of electron transport in the functionalized nanotubes and their impact on the electron transfer in the active site of horseradish peroxidase

    Science.gov (United States)

    Feizabadi, Mina; Ajloo, Davood; Soleymanpour, Ahmad; Faridnouri, Hassan

    2018-05-01

    Electrochemical characterization of functionalized carbon nanotubes (f-CNT) including carboxyl (CNT-COOH), amine (CNT-NH2) and hydroxyl (CNT-OH) functional groups were studied using differential pulse voltammetry (DPV). The current-voltage (I-V) curves were obtained from each system and the effect of f-CNT on redox interaction of horseradish peroxidase (HRP) immobilized on the electrode surface was investigated. The non-equilibrium Green's function (NEGF) combined with density functional theory (DFT) were used to study the transport properties of f-CNT. Additionally, the effect of the number of functional groups on transport properties of CNT, I-V characteristics, electronic transmission coefficients and spatial distribution of f-CNTs have been calculated and analyzed. The results showed that the carboxyl derivative has larger transmission coefficients and current value than other f-CNTs. Then, the effect of functional groups on the electron transport in heme group of HRP is discussed. Finally, the effect of a covalent bond between active site amino acids and amine functional group of CNT was investigated and discussed.

  14. Theoretical characterization of electron energy distribution function in RF plasmas

    International Nuclear Information System (INIS)

    Capitelli, M.; Capriati, G.; Dilonardo, M.; Gorse, C.; Longo, S.

    1993-01-01

    Different methods for the modeling of low-temperature plasmas of both technological and fundamental interest are discussed. The main concept of all these models is the electron energy distribution function (eedf) which is necessary to calculate the rate coefficients for any chemical reaction involving electrons. Results of eedf calculations in homogeneous SF 6 and SiH 4 plasmas are discussed based on solution of the time-dependent Boltzmann equation. The space-dependent eedf in an RF discharge in He is calculated taking into account the sheath oscillations by a Monte Carlo model assuming the plasma heating mechanism and the electric field determined by using a fluid model. The need to take into account the ambipolar diffusion of electrons in RF discharge modeling is stressed. A self-consistent model based on coupling the equations of the fluid model and the chemical kinetics ones is presented. (orig.)

  15. Ultrasound monitoring of blood flow and echotexture of the corpus luteum and uterus during early pregnancy of beef heifers.

    Science.gov (United States)

    Scully, S; Evans, A C O; Carter, F; Duffy, P; Lonergan, P; Crowe, M A

    2015-02-01

    The aim was to characterize changes in the ultrasound characteristics of the CL and uterus in pregnant, inseminated nonpregnant, and cyclic beef heifers and to correlate findings with systemic progesterone (P4) concentrations with the intention of identifying possible markers for early identification of pregnancy. Heifers were randomly selected for artificial insemination after estrus synchronization. Ultrasound examinations of the CL and uterus were carried out by transrectal ultrasonography using a high-resolution ultrasound scanner equipped with a 12 MHz linear array probe on Days 7, 11, 14, 16, and 18 after artificial insemination (Day 0; i.e., estrus). Cross-sectional B-mode images of the CL were captured for calculation of CL tissue area and echotexture. Images of the CL and associated blood flow were captured and stored for analysis of luteal blood flow area and ratio. Longitudinal B-mode images of the uterine horns were captured just beyond the bifurcation of the uterine horns and stored for analysis of contrast and homogeneity (MaZda v4.6; Technical University of Lodz, Institute of Electronics, Poland). A total of three images were captured for each structure of interest. Serum concentrations of P4 were determined from blood samples collected at each ultrasound examination. After pregnancy diagnosis by ultrasound, heifers were retrospectively allocated as being pregnant (embryonic heartbeat on Day 28; n = 14) or nonpregnant (interestrous interval 18-21 days; n = 8) and their data were compared with noninseminated cyclic heifers (n = 10). Corpus luteum tissue area did not appear to change between pregnant, nonpregnant, or cyclic control groups between Days 7 and 18 (P > 0.05). No significant differences in CL echotexture characteristics were found between groups at any time point. There were no significant differences between pregnant, nonpregnant, and cyclic control groups for CL blood flow area (P > 0.05). However, CL blood flow ratio

  16. Electron emission and work function-Past, present and future

    International Nuclear Information System (INIS)

    Yamamoto, Shigehiko

    2005-01-01

    The history of electron emission is reviewed from a standpoint of the work function and the applications. For years, in the field of thermionic emission, a great deal of efforts have been devoted to search for low work function materials with a high melting temperature, while the reduction of the local change in time of the work function rather than the work function itself has been the main issue of field emission investigations. High brightness and long life are the central targets of the emission material investigations for the scientific instrument application, while high current density and low power consumption are the guiding principles for the display application. In both fields, field emission has recently become dominant in research and development. In all above cases, the main issue in the future research works will be to analyze the work function in atomic level and thereby to understand the mechanism of the work function reduction by atom adsorption, the change in time of the local work function leading to the current fluctuation, and the relationship between microscopic and macroscopic work functions. Our attempt is discussed, where the work function in atomic level is measured by utilizing the STM technique and it is made clear how far the work function in atomic level extends its influence over the neighboring sites. As a result, a simple relationship is established between microscopic and macroscopic work functions

  17. International Workshop on Electronic Density Functional Theory : Recent Progress and New Directions

    CERN Document Server

    Vignale, Giovanni; Das, Mukunda

    1998-01-01

    This book is an outcome of the International Workshop on Electronic Density Functional Theory, held at Griffith University in Brisbane, Australia, in July 1996. Density functional theory, standing as it does at the boundary between the disciplines of physics, chemistry, and materials science, is a great mixer. Invited experts from North America, Europe, and Australia mingled with students from several disciplines, rapidly taking up the informal style for which Australia is famous. A list of participants is given at the end of the book. Density functional theory (DFT) is a subtle approach to the very difficult problem of predicting the behavior of many interacting particles. A major application is the study of many-electron systems. This was the workshop theme, embracing inter alia computational chemistry and condensed matter physics. DFT circumvents the more conceptually straightforward (but more computationally intensive) approach in which one solves the many-body Schrodinger equation. It relies instead on r...

  18. Green functions for an electron in an external electromagnetic field

    International Nuclear Information System (INIS)

    Khokhlov, I.A.

    1982-01-01

    New representations permitting to considerably simplify their calculation have been obtained for the Green functions of electron. These representations are based on an idea, used in the quantum electrodynamics formulation in variables of a zero plane, of writing down the Dirac field operator psi through its part psisub((-)). It is shown that T product of psi and psi + operators can be expressed through T product of their parts psisub((-)) and psisub((-))sup(+). At that, if the anticommutator of the operators psisub((-)) and psisub((-))sup(+) satisfies the initial condition, the operations of the chronological ordering of the operator product psi(-) and psisub((-))sup(+) with respect to variable x 0 and variable u 0 playing a part of time in the formulation of the zero plane (Pu 0 product) coincide. In correspondence with this fact all the Green functions of electron can be expressed depending on the convenience of concrete calculations through vacuum averages of either from T product or from Pu 0 product of psisub((-)) and psisub((-))sup(+) operators only [ru

  19. Electron energy distribution function in a cathode fall region of DC-glow discharge

    International Nuclear Information System (INIS)

    Elakshar, F.F.; Garamoon, A.A.; Hassouba, M.A.

    1997-01-01

    Recently a substantial effort has been devoted towards the development of a quantitative microscopic measurements in the cathode fall region of the DC-glow discharge magnetron sputtering unit. The electron energy distribution function (EEDF) has been measured using a single Langmuir probe at the edge of the cathode fall. Two groups of electrons are observed in helium and argon gas discharges. The two groups have no chance to be thermalized since they leave the cathode fall region fast. The electron temperature measurements have been compared with spectroscopic determination. Plasma density has been computed and compared with probe measurements. Sources of the two groups of electrons are also discussed. (author)

  20. Correlation functions of electronic and nuclear spins in a Heisenberg antiferromagnet semi-infinite medium

    International Nuclear Information System (INIS)

    Sarmento, E.F.

    1981-01-01

    Results are found for the dynamical correlation functions (or its corresponding Green's functions) among any combination including operator pairs of electronic and nuclear spins in an antiferromagnet semi-infinite medium, at low temperatures T [pt

  1. Fabrication of submicron conducting and chemically functionalized structures from poly(3-octylthiophene) by an electron beam

    International Nuclear Information System (INIS)

    Cai, S.X.; Kanskar, M.; Nabity, J.C.; Keana, J.F.W.; Wybourne, M.N.

    1992-01-01

    The authors present a novel method of using an electron beam to both functionalize and cross-link poly (3-octylthiophene) (P3OT) in a single step to produce submicron scale polymer structures carrying functionalized groups. P3OT is shown to be a negative electron-beam resist with a sensitivity of 15-30 μC cm -2 .The electrical conductivity of doped P3OT wire structures was measured at room temperature and was found to be in the range 4.0-5.9 Ω -1 cm -1 . Electron-beam exposure of P3OT films containing 7 wt % of N-hydroxysuccinimide (NHS) functionalized perfluorophenyl azide 2 resulted in the incorporation of the NHS functional groups in the polymer, as well as cross-linking. The functionalized submicron structures were found to be weakly fluorescent under fluorescein excitation (450-490 nm), but after treatment with a solution of 5-(aminoacetamido)fluorescein in ethanol the structures became strongly fluorescent. 27 refs., 3 figs

  2. Non-equilibrium Green function method: theory and application in simulation of nanometer electronic devices

    International Nuclear Information System (INIS)

    Do, Van-Nam

    2014-01-01

    We review fundamental aspects of the non-equilibrium Green function method in the simulation of nanometer electronic devices. The method is implemented into our recently developed computer package OPEDEVS to investigate transport properties of electrons in nano-scale devices and low-dimensional materials. Concretely, we present the definition of the four real-time Green functions, the retarded, advanced, lesser and greater functions. Basic relations among these functions and their equations of motion are also presented in detail as the basis for the performance of analytical and numerical calculations. In particular, we review in detail two recursive algorithms, which are implemented in OPEDEVS to solve the Green functions defined in finite-size opened systems and in the surface layer of semi-infinite homogeneous ones. Operation of the package is then illustrated through the simulation of the transport characteristics of a typical semiconductor device structure, the resonant tunneling diodes. (review)

  3. On the normalization of total wave function of the system of an atom and a colliding electron

    International Nuclear Information System (INIS)

    Nashlenas, Eh.P.; Trinkunas, G.P.

    1976-01-01

    The scattering of an electron by an atom is considered which causes an excitation of fine structure levels. For this purpose the wave function of a system consisting of an atom and an uncoupled electron is constructed. Boundary conditions formulated in the form of an asymptotic expression are taken into account for such a function by means of scattering amplitudes. To determine scattering amplitudes it is suggested to make use of the condition of wave function normalization into the Dirac delta function. After certain mathematical transformations the unknown relations between the scattering amplitudes are obtained. The special cases of the relations obtained are discussed. When quantum numbers of the wave functions coincide, the resulting relations express the equality of fluxes of converging and diverging waves for a certain value of the total angular momentum. In the limiting case when there are no electrons in an atom (it corresponds to elastic scattering of an electron on a potential) the relations obtained express the unitarity conditions of the scattering matrix

  4. A real-space stochastic density matrix approach for density functional electronic structure.

    Science.gov (United States)

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  5. The growth and electronic structure of azobenzene-based functional molecules on layered crystals

    International Nuclear Information System (INIS)

    Iwicki, J; Ludwig, E; Buck, J; Kalläne, M; Kipp, L; Rossnagel, K; Köhler, F; Herges, R

    2012-01-01

    In situ ultraviolet photoelectron spectroscopy is used to study the growth of ultrathin films of azobenzene-based functional molecules (azobenzene, Disperse Orange 3 and a triazatriangulenium platform with an attached functional azo-group) on the layered metal TiTe 2 and on the layered semiconductor HfS 2 at liquid nitrogen temperatures. Effects of intermolecular interactions, of the substrate electronic structure, and of the thermal energy of the sublimated molecules on the growth process and on the adsorbate electronic structure are identified and discussed. A weak adsorbate-substrate interaction is particularly observed for the layered semiconducting substrate, holding the promise of efficient molecular photoswitching.

  6. Nanomaterials on flexible substrates to explore innovative functions: From energy harvesting to bio-integrated electronics

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Ja Hoon; Seo, Jungmok; Lee, Taeyoon, E-mail: taeyoon.lee@yonsei.ac.kr

    2012-12-01

    Recent efforts in the semiconductor industry have focused on the realization of electronics with unusual form factors and functions which are not achievable using the current planar Si-based technology. Deposition of high-quality films or nanomaterials on low-temperature elastomeric substrates has been a technical challenge for flexible electronics. However, together with the development of new synthesis routes that enable the formation of robust thin films and nanomaterials on compliant substrates, including the dry transfer printing technique and fabrication of uniform nanogaps/nanowrinkles using the unique stretchable characteristics of elastomeric substrates, flexible electronics has emerged as a promising technology that can enrich our lives in a variety of ways. As examples, potential applications include skin-like smart prostheses, paper-like displays, disposable electronic noses, and hemispherically-shaped electronic eye cameras. Here, we review recent results demonstrating ingenious new functionalities using nanomaterials on flexible substrates, focusing on fabrication techniques, materials, operation mechanisms, and signal outputs.

  7. Nanomaterials on flexible substrates to explore innovative functions: From energy harvesting to bio-integrated electronics

    International Nuclear Information System (INIS)

    Koo, Ja Hoon; Seo, Jungmok; Lee, Taeyoon

    2012-01-01

    Recent efforts in the semiconductor industry have focused on the realization of electronics with unusual form factors and functions which are not achievable using the current planar Si-based technology. Deposition of high-quality films or nanomaterials on low-temperature elastomeric substrates has been a technical challenge for flexible electronics. However, together with the development of new synthesis routes that enable the formation of robust thin films and nanomaterials on compliant substrates, including the dry transfer printing technique and fabrication of uniform nanogaps/nanowrinkles using the unique stretchable characteristics of elastomeric substrates, flexible electronics has emerged as a promising technology that can enrich our lives in a variety of ways. As examples, potential applications include skin-like smart prostheses, paper-like displays, disposable electronic noses, and hemispherically-shaped electronic eye cameras. Here, we review recent results demonstrating ingenious new functionalities using nanomaterials on flexible substrates, focusing on fabrication techniques, materials, operation mechanisms, and signal outputs.

  8. Construction of New Electronic Density Functionals with Error Estimation Through Fitting

    DEFF Research Database (Denmark)

    Petzold, V.; Bligaard, T.; Jacobsen, K. W.

    2012-01-01

    We investigate the possibilities and limitations for the development of new electronic density functionals through large-scale fitting to databases of binding energies obtained experimentally or through high-quality calculations. We show that databases with up to a few hundred entries allow for u...

  9. Study of the electron energy distribution function in plasma produced by a rf discharge in a mixture of inert gases

    International Nuclear Information System (INIS)

    Vagner, S.D.; Ignat'ev, B.K.

    1983-01-01

    Electron energy distribution functions (EEDF) are recorded in an rf discharge in a mixture of neon and argon. The rates of different ionization processes and the energy losses of the electrons in the bulk of the discharge are calculated. The experimentally recorded electron energy distribution functions are compared with distributions calculated using a nonlocal theory. The effect of an rf voltage in the probe circuit on the recorded electron energy distribution functions is investigated experimentally

  10. Electron-trapping probability in natural dosemeters as a function of irradiation temperature

    DEFF Research Database (Denmark)

    Wallinga, J.; Murray, A.S.; Wintle, A.G.

    2002-01-01

    The electron-trapping probability in OSL traps as a function of irradiation temperature is investigated for sedimentary quartz and feldspar. A dependency was found for both minerals; this phenomenon could give rise to errors in dose estimation when the irradiation temperature used in laboratory...... procedures is different from that in the natural environment. No evidence was found for the existence of shallow trap saturation effects that Could give rise to a dose-rate dependency of electron trapping....

  11. New real space correlated-basis-functions approach for the electron correlations of the semiconductor inversion layer

    International Nuclear Information System (INIS)

    Feng Weiguo; Wang Hongwei; Wu Xiang

    1989-12-01

    Based on the real space Correlated-Basis-Functions theory and the collective oscillation behaviour of the electron gas with effective Coulomb interaction, the many body wave function is obtained for the quasi-two-dimensional electron system in the semiconductor inversion layer. The pair-correlation function and the correlation energy of the system have been calculated by the integro-differential method in this paper. The comparison with the other previous theoretical results is also made. The new theoretical approach and its numerical results show that the pair-correlation functions are definitely positive and satisfy the normalization condition. (author). 10 refs, 2 figs

  12. On extending Kohn-Sham density functionals to systems with fractional number of electrons.

    Science.gov (United States)

    Li, Chen; Lu, Jianfeng; Yang, Weitao

    2017-06-07

    We analyze four ways of formulating the Kohn-Sham (KS) density functionals with a fractional number of electrons, through extending the constrained search space from the Kohn-Sham and the generalized Kohn-Sham (GKS) non-interacting v-representable density domain for integer systems to four different sets of densities for fractional systems. In particular, these density sets are (I) ensemble interacting N-representable densities, (II) ensemble non-interacting N-representable densities, (III) non-interacting densities by the Janak construction, and (IV) non-interacting densities whose composing orbitals satisfy the Aufbau occupation principle. By proving the equivalence of the underlying first order reduced density matrices associated with these densities, we show that sets (I), (II), and (III) are equivalent, and all reduce to the Janak construction. Moreover, for functionals with the ensemble v-representable assumption at the minimizer, (III) reduces to (IV) and thus justifies the previous use of the Aufbau protocol within the (G)KS framework in the study of the ground state of fractional electron systems, as defined in the grand canonical ensemble at zero temperature. By further analyzing the Aufbau solution for different density functional approximations (DFAs) in the (G)KS scheme, we rigorously prove that there can be one and only one fractional occupation for the Hartree Fock functional, while there can be multiple fractional occupations for general DFAs in the presence of degeneracy. This has been confirmed by numerical calculations using the local density approximation as a representative of general DFAs. This work thus clarifies important issues on density functional theory calculations for fractional electron systems.

  13. Positron-electron autocorrelation function study of E-center in phosphorus-doped silicon

    International Nuclear Information System (INIS)

    Ho, K.F.; Beling, C.D.; Fung, S.; Biasini, M.; Ferro, G.; Gong, M.

    2004-01-01

    Two dimensional fourier transformed angular correlation of annihilation radiation (2D-FT-ACAR) spectra have been taken for 10 19 cm -3 phosphorus-doped Si in the as grown state and after being subjected to 1.8 MeV e - fluences of 2 x 10 18 cm -2 . In the spectra of the irradiated samples, the zero-crossing points are observed to displace outwards from the bravais lattice positions. It is suggested that this results from positrons annihilating with electrons in localized orbitals at the defect site. An attempt is made to extract just the component of the defect's positron-electron autocorrelation function that relates to the localized defect orbitals. It is argued that such an extracted real-space function may provide a suitable means for obtaining a mapping of localized defect orbitals. (orig.)

  14. Origin of the 20-electron structure of Mg3 MnH7 : Density functional calculations

    Science.gov (United States)

    Gupta, M.; Singh, D. J.; Gupta, R.

    2005-03-01

    The electronic structure and stability of the 20-electron complex hydride, Mg3MnH7 is studied using density functional calculations. The heat of formation is larger in magnitude than that of MgH2 . The deviation from the 18-electron rule is explained by the predominantly ionic character of the band structure and a large crystal-field splitting of the Mn d bands. In particular, each H provides one deep band accomodating two electrons, while the Mn t2g bands hold an additional six electrons per formula unit.

  15. Effects of surface functionalization on the electronic and structural properties of carbon nanotubes: A computational approach

    Science.gov (United States)

    Ribeiro, M. S.; Pascoini, A. L.; Knupp, W. G.; Camps, I.

    2017-12-01

    Carbon nanotubes (CNTs) have important electronic, mechanical and optical properties. These features may be different when comparing a pristine nanotube with other presenting its surface functionalized. These changes can be explored in areas of research and application, such as construction of nanodevices that act as sensors and filters. Following this idea, in the current work, we present the results from a systematic study of CNT's surface functionalized with hydroxyl and carboxyl groups. Using the entropy as selection criterion, we filtered a library of 10k stochastically generated complexes for each functional concentration (5, 10, 15, 20 and 25%). The structurally related parameters (root-mean-square deviation, entropy, and volume/area) have a monotonic relationship with functionalization concentration. Differently, the electronic parameters (frontier molecular orbital energies, electronic gap, molecular hardness, and electrophilicity index) present and oscillatory behavior. For a set of concentrations, the nanotubes present spin polarized properties that can be used in spintronics.

  16. Hylleraas-like functions with the correct cusp conditions: K-shell electrons for the neutral atoms

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, K.V. [Universidad Nacional del Sur, 8000 Bahia Blanca and Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)], E-mail: krodri@criba.edu.ar; Gasaneo, G. [Universidad Nacional del Sur, 8000 Bahia Blanca and Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Mitnik, D.M.; Miraglia, J.E. [Instituto de Astronomia y Fisica del Espacio and Universidad de Buenos Aires (Argentina)

    2007-10-15

    We present simple correlated wavefunctions for the two K-shell electrons of neutral atoms. A variational method was chosen to calculate the mean energy of the ground state, in which the electrons are subject to a local Hartree potential representing the presence of the outer shell electrons. The functions are constructed in terms of exponential and power series, where special care has been taken in order to fulfill the exact behavior at the electron-electron and electron-nucleus coalescence points (Kato cusp conditions). Global properties, such as the energies and virial coefficients, as well as local properties, such as spatial mean values, are also analyzed.

  17. Density-density functionals and effective potentials in many-body electronic structure calculations

    International Nuclear Information System (INIS)

    Reboredo, Fernando A.; Kent, Paul R.

    2008-01-01

    We demonstrate the existence of different density-density functionals designed to retain selected properties of the many-body ground state in a non-interacting solution starting from the standard density functional theory ground state. We focus on diffusion quantum Monte Carlo applications that require trial wave functions with optimal Fermion nodes. The theory is extensible and can be used to understand current practices in several electronic structure methods within a generalized density functional framework. The theory justifies and stimulates the search of optimal empirical density functionals and effective potentials for accurate calculations of the properties of real materials, but also cautions on the limits of their applicability. The concepts are tested and validated with a near-analytic model.

  18. Optimization and stability of the contrast transfer function in aberration-corrected electron microscopy

    International Nuclear Information System (INIS)

    Tromp, R.M.; Schramm, S.M.

    2013-01-01

    The Contrast Transfer Function (CTF) describes the manner in which the electron microscope modifies the object exit wave function as a result of objective lens aberrations. For optimum resolution in C 3 -corrected microscopes it is well established that a small negative value of C 3 , offset by positive values of C 5 and defocus C 1 results in the most optimal instrument resolution, and optimization of the CTF has been the subject of several studies. Here we describe a simple design procedure for the CTF that results in a most even transfer of information below the resolution limit. We address not only the resolution of the instrument, but also the stability of the CTF in the presence of small disturbances in C 1 and C 3 . We show that resolution can be traded for stability in a rational and transparent fashion. These topics are discussed quantitatively for both weak-phase and strong-phase (or amplitude) objects. The results apply equally to instruments at high electron energy (TEM) and at very low electron energy (LEEM), as the basic optical properties of the imaging lenses are essentially identical. - Highlights: ► An optimized Contrast Transfer Function for aberration corrected electron microscopes is proposed. ► Based on the properties of the CTF near optimum settings, we address its stability. ► Over some range of parameters resolution can be traded for stability. ► These issues are addressed for weak-phase objects, as well as strong-phase and amplitude object. ► We compare our results with CTF settings previously proposed

  19. Ferrocene-Functionalized Graphene Oxide Nanosheets: Efficient Electronic Communication between Ferrocene Centers across Graphene Nanosheets

    International Nuclear Information System (INIS)

    Lu, Yizhong; Jiang, Yuanyuan; Wu, Haibin; Chen, Wei

    2015-01-01

    Highlights: • Graphene oxide (GO) nanosheets functionalized with ferrocenyl moieties (GO-Fc) are fabricated. • GO-Fc shows efficient electronic communication between ferrocene centers. • GO-Fc exhibits two pairs of voltammetric peaks with a large potential spacing of 0.515 V. • GO-Fc shows a broad absorption peak in the near-infrared range (∼ 1428 nm) at mixed valence. - Abstract: Graphene oxide (GO) nanosheets functionalized with ferrocenyl moieties (GO-Fc) were fabricated through strong covalent C−C bonds. The resulting hybrid showed efficient electronic communication between ferrocene centers due to the strong electron delocalization facilitated by the large pi-pi conjugated structure of graphene sheets. The obtained hybrid exhibited two pairs of voltammetric peaks with a large potential spacing of 0.515 V and a broad absorption peak in the near-infrared range (∼ 1428 nm) at mixed valence. The electrochemical and near IR spectroscopic features suggested a Class II/III behavior of the intervalence charge transfer. This work indicates clearly that strong electronic coupling between ferrocene centers can be easily realized across graphene nanosheets with sp 2 -hybridized carbon

  20. Spatially resolved electron density and electron energy distribution function in Ar magnetron plasmas used for sputter-deposition of ZnO-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Maaloul, L.; Gangwar, R. K.; Morel, S.; Stafford, L., E-mail: luc.stafford@umontreal.ca [Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7 (Canada)

    2015-11-15

    Langmuir probe and trace rare gases optical emission spectroscopy were used to analyze the spatial structure of the electron density and electron energy distribution function (EEDF) in a cylindrical Ar magnetron plasma reactor used for sputter-deposition of ZnO-based thin films. While a typical Bessel (zero order) diffusion profile was observed along the radial direction for the number density of charged particles at 21 cm from the ZnO target, a significant rise of these populations with respect to the Bessel function was seen in the center of the reactor at 4 cm from the magnetron surface. As for the EEDF, it was found to transform from a more or less Maxwellian far from the target to a two-temperature Maxwellian with a depletion of high-energy electrons where magnetic field confinement effects become important. No significant change in the behavior of the electron density and EEDF across a wide range of pressures (5–100 mTorr) and self-bias voltages (115–300 V) was observed during magnetron sputtering of Zn, ZnO, and In{sub 2}O{sub 3} targets. This indicates that sputtering of Zn, In, and O atoms do not play a very significant role on the electron particle balance and electron heating dynamics, at least over the range of experimental conditions investigated.

  1. Vertex function for the coupling of an electron with intramolecular phonons: Exact results in the antiadiabatic limit

    International Nuclear Information System (INIS)

    Takada, Y.; Higuchi, T.

    1995-01-01

    The Green's-function techniques, especially the one developed in the preceding paper [Takada, Phys. Rev. B 52, 12 708 (1995)], are employed to calculate the electron-phonon vertex part as well as the electronic self-energy exactly on both real- and imaginary-frequency axes in the electron-phonon Holstein model with the on-site Coulomb repulsion in the limit in which the intramolecular phonon energy ω 0 is much larger than the electronic bandwidth. The rigorous vertex part is found to diverge at the frequencies at which an electron is locked by such local phonons with an infinitely strong effective coupling. Characteristic frequencies of this divergence, which are not equal to multiples of ω 0 , are calculated as a function of the electron-phonon bare coupling constant. Our results for the self-energy are checked successfully with the exact ones obtained by the Lang-Firsov canonical transformation

  2. Assessment of oscillator strengths with multiconfigurational short-range density functional theory for electronic excitations in organic molecules

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan

    2017-01-01

    considered the large collection of organic molecules whose excited states were investigated with a range of electronic structure methods by Thiel et al. As a by-product of our calculations of oscillator strengths, we also obtain electronic excitation energies, which enable us to compare the performance......We have in a series of recent papers investigated electronic excited states with a hybrid between a complete active space self-consistent field (CASSCF) wave function and density functional theory (DFT). This method has been dubbed the CAS short-range DFT method (CAS–srDFT). The previous papers...

  3. The electronic work function of the different faces of tungsten

    International Nuclear Information System (INIS)

    Modinos, A.

    1978-01-01

    A semi-empirical theory of the electronic work function of the different faces of tungsten is presented. All the parameters entering the theory, except one, are estimated independently. The one adjustable parameter relates to the isotropic contribution to the work function, and, can, in principle, be determined from a self-consistent calculation of the band-structure of the energy levels in the bulk of the metal. The calculated values for the work function are in reasonably good agreement with available experimental data for practically all of the crystallographic planes with the exception of the (100) plane. For the latter, the calculated value is 0.3 eV above the experimental value. It is suggested that a negative contribution to the surface dipole potential from surface states, that exist on this plane, may be the reason of this discrepancy. (Auth.)

  4. Study of real space wave functions with electron energy loss spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Löffler, S.

    2013-07-01

    In this work, new methods to study the real space wave functions of electrons in a solid using transmission electron microscopy (TEM) and electron energy loss spectrometry (EELS) are presented. To this end, the theory of both elastic and inelastic electron scattering is treated in a density-matrix formalism. In the process, the central quantities of inelastic electron scattering - the mixed dynamic form factor (MDFF) and the double differential scattering cross section (DDSCS) - are introduced. In addition to the formal theory, several approximations and simplifications, as well as their respective validities, are discussed. Furthermore, a method for diagonalizing the mixed dynamic form factor is described, which allows calculating high resolution energy filtered TEM images with unprecedented accuracy. Subsequently, several applications of the aforementioned theory to real-world examples are presented. On the one hand, the example of Silicon serves to demonstrate how the radial wave functions in the bulk can be measured; the agreement with the theoretical predictions proves to be very good. On the other hand, the determination of the wave functions' azimuthal dependence is derived. It turns out that the symmetry of the system under investigation is crucial to the success of this endeavor. With the new techniques presented here, it will be possible to measure electronic properties with atomic resolution, which can be of great importance, particularly in material science. (author) [German] In der vorliegenden Arbeit werden neue Methoden vorgestellt, mit deren Hilfe Elektronenwellenfunktionen in Festkörpern mittels Transmissionselektronenmikroskopie (TEM) und Elektronenenergieverlustspektrometrie (EELS) direkt im Realraum vermessen werden können. Zu diesem Zweck wird sowohl die Theorie der elastischen Elektronenbeugung als auch die der inelastischen Elektronenstreuung im Dichtematrixformalismus dargestellt. Dabei werden die zentralen Größen der inelastischen

  5. van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections

    International Nuclear Information System (INIS)

    Angyan, Janos G.; Gerber, Iann C.; Savin, Andreas; Toulouse, Julien

    2005-01-01

    Long-range exchange and correlation effects, responsible for the failure of currently used approximate density functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-electron interaction in the Hamiltonian into short- and long-range components. We propose a 'range-separated hybrid' functional based on a local density approximation for the short-range exchange-correlation energy, combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order perturbational treatment. The resulting scheme is general and is particularly well adapted to describe van der Waals complexes, such as rare gas dimers

  6. Quark decay functions as measured in electron positron annihilation and semi-inclusive process in electron proton collisions

    International Nuclear Information System (INIS)

    Meng, R.

    1988-01-01

    The modern theory describing the strong interaction, which holds the quarks together in the hadrons, is quantum chromodynamics (QCD), in which the interaction is mediated by the exchange of spin 1 particles called gluons. Today good qualitative agreement between the theory and experimental results has been found in the investigation of the interactions in which there is a large momentum transfer. This situation has prompted us to look for other detailed tests of the theory. We study the order α s measurement of the MS parton decay functions, which play an important role in the application of high order perturbative QCD calculations. We calculate the hard scattering cross section for e + + e - → parton + anything. Then, by carefully analyzing the electron positron annihilation data, we obtain the order α s MS quark decay function. We also study the gluon bremsstrahlung effects predicted by QCD in a semi-inclusive process at the future HERA electron proton collider, p + e - → h + e - + X. In analogy to studies of Drell-Yan process we study the transverse momentum distribution and angular distribution of the final state hadrons, which are sensitive to the gluon bremsstrahlung effects. Then we investigate the general structure of the hadronic tensor, which appears in the formula for the cross section, including both the parity conserving and parity violating terms. Using the soft gluon resummation technique, the singular and the nonsingular structure functions are all calculated for the process p + e - → γ → h + e - + X

  7. Application of the generalized multi structural (GMS) wave function to photoelectron spectra and electron scattering processes

    International Nuclear Information System (INIS)

    Nascimento, M.A.C. do

    1992-01-01

    A Generalized Multi Structural (GMS) wave function is presented which combines the advantages of the SCF-MO and VB models, preserving the classical chemical structures but optimizing the orbitals in a self-consistent way. This wave function is particularly suitable to treat situations where the description of the molecular state requires localized wave functions. It also provides a very convenient way of treating the electron correlation problem, avoiding large CI expansions. The final wave functions are much more compact and easier to interpret than the ones obtained by the conventional methods, using orthogonal orbitals. Applications of the GMS wave function to the study of the photoelectron spectra of the trans-glyoxal molecule and to electron impact excitation processes in the nitrogen molecule are presented as an illustration of the method. (author)

  8. Calculation of the nonlinear relativistic Thomson scattering fields and Its application to electron distribution function diagnostic

    Science.gov (United States)

    Guasp, J.; Pastor, I.; Álvarez-Estrada, R. F.; Castejón, F.

    2015-02-01

    Analytical results obtained recently of the ab-initio classical incoherent Thomson Scattering (TS) spectrum from a single-electron (Alvarez-Estrada et al 2012 Phys. Plasmas 19 062302) have been numerically implemented in a paralelized code to efficiently compute the TS emission from a given electron distribution function, irrespective of its characteristics and/or the intensity of the incoming radiation. These analytical results display certain differences, when compared with other authors, in the general case of incoming linearly and circularly polarized radiation and electrons with arbitrary initial directions. We regard such discrepancies and the ubiquitous interest in TS as motivations for this work. Here, we implement some analytical advances (like generalized Bessel functions for incoming linearly polarized radiation) in TS. The bulk of this work reports on the efficient computation of TS spectra (based upon our analytical approach), for an electron population having an essentially arbitrary distribution function and for both incoming linearly and circularly polarized radiation. A detailed comparison between the present approach and a previous Monte Carlo one (Pastor et al 2011 Nuclear Fusion 51 043011), dealing with the ab-initio computation of TS spectra, is reported. Both approaches are shown to fully agree with each other. As key computational improvements, the analytical technique yields a × 30 to × 100 gain in computation time and is a very flexible tool to compute the scattered spectrum and eventually the scattered electromagnetic fields in the time domain. The latter are computed explicitly here for the first time, as far as we know. Scaling laws for the power integrated over frequency versus initial kinetic energy are studied for the case of isotropic and monoenergetic electron distribution functions and their potential application as diagnostic tools for high-energy populations is briefly discussed. Finally, we discuss the application of these

  9. Electronic properties of T graphene-like C-BN sheets: A density functional theory study

    Science.gov (United States)

    Majidi, R.

    2015-11-01

    We have used density functional theory to study the electronic properties of T graphene-like C, C-BN and BN sheets. The planar T graphene with metallic property has been considered. The results show that the presence of BN has a considerable effect on the electronic properties of T graphene. The T graphene-like C-BN and BN sheets show semiconducting properties. The energy band gap is increased by enhancing the number of BN units. The possibility of opening and controlling band gap opens the door for T graphene in switchable electronic devices.

  10. Two-electron Rabi oscillations in real-time time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Habenicht, Bradley F.; Tani, Noriyuki P.; Provorse, Makenzie R.; Isborn, Christine M.

    2014-01-01

    We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S 0 state and the doubly-excited S 2 state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation

  11. Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-Da)

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, E. M. [University of California—San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA; Parks, P. B. [General Atomics, PO Box 85608, San Diego, California 92186, USA; Commaux, N. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, USA; Eidietis, N. W. [General Atomics, PO Box 85608, San Diego, California 92186, USA; Moyer, R. A. [University of California—San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA; Shiraki, D. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, USA; Austin, M. E. [Institute for Fusion Studies, University of Texas—Austin, 2100 San Jacinto Blvd, Austin, Texas 78712, USA; Lasnier, C. J. [Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA; Paz-Soldan, C. [General Atomics, PO Box 85608, San Diego, California 92186, USA; Rudakov, D. L. [University of California—San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA

    2015-05-01

    The evolution of the runaway electron (RE) energy distribution function fεfε during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, fεfε is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle θ is not uniform, but tends to be large at low energies and small θ ~0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy.

  12. Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-D

    International Nuclear Information System (INIS)

    Hollmann, E. M.; Moyer, R. A.; Rudakov, D. L.; Parks, P. B.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Austin, M. E.; Lasnier, C. J.

    2015-01-01

    The evolution of the runaway electron (RE) energy distribution function f ε during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, f ε is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle θ is not uniform, but tends to be large at low energies and small θ ∼ 0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy

  13. Measuring use of electronic health record functionality using system audit information.

    Science.gov (United States)

    Bowes, Watson A

    2010-01-01

    Meaningful and efficient methods for measuring Electronic Health Record (EHR) adoption and functional usage patterns have recently become important for hospitals, clinics, and health care networks in the United State due to recent government initiatives to increase EHR use. To date, surveys have been the method of choice to measure EHR adoption. This paper describes another method for measuring EHR adoption which capitalizes on audit logs, which are often common components of modern EHRs. An Audit Data Mart is described which identified EHR functionality within 836 Departments, within 22 Hospitals and 170 clinics at Intermountain Healthcare, a large integrated delivery system. The Audit Data Mart successfully identified important and differing EHR functional usage patterns. These patterns were useful in strategic planning, tracking EHR implementations, and will likely be utilized to assist in documentation of "Meaningful Use" of EHR functionality.

  14. The Electronic Structure and Spectra of Triphenylamines Functionalized by Phenylethynyl Groups

    Science.gov (United States)

    Baryshnikov, G. V.; Minaeva, V. A.; Minaev, B. F.; Grigoras, M.

    2018-01-01

    We study the features of the electronic structure and the IR, UV, and visible spectra of a series of triphenylamines substituted with phenylethynyl groups. The analysis is performed at the level of the density functional theory (DFT) and its nonstationary version in comparison with the experimental data of IR and electron spectroscopy. It is shown that, in the excited state, there is a change in the alternation of single, double, and triple bonds in accordance with the character of bonding and antibonding in the lowest vacant molecular orbital. The gradual introduction of additional phenylethynyl groups does not cause frequency shifts in the IR spectra of the molecules under study, but significantly affects the intensity of the corresponding IR bands. A similar effect is also observed in the electronic-absorption spectra of these compounds. This can be used for optical tuning of triphenylamines as promising materials for organic light-emitting diodes and solar cells.

  15. Lowering the density of electronic defects on organic-functionalized Si(100) surfaces

    International Nuclear Information System (INIS)

    Peng, Weina; DeBenedetti, William J. I.; Kim, Seonjae; Chabal, Yves J.; Hines, Melissa A.

    2014-01-01

    The electrical quality of functionalized, oxide-free silicon surfaces is critical for chemical sensing, photovoltaics, and molecular electronics applications. In contrast to Si/SiO 2 interfaces, the density of interface states (D it ) cannot be reduced by high temperature annealing because organic layers decompose above 300 °C. While a reasonable D it is achieved on functionalized atomically flat Si(111) surfaces, it has been challenging to develop successful chemical treatments for the technologically relevant Si(100) surfaces. We demonstrate here that recent advances in the chemical preparation of quasi-atomically-flat, H-terminated Si(100) surfaces lead to a marked suppression of electronic states of functionalized surfaces. Using a non-invasive conductance-voltage method to study functionalized Si(100) surfaces with varying roughness, a D it as low as 2.5 × 10 11  cm −2 eV −1 is obtained for the quasi-atomically-flat surfaces, in contrast to >7 × 10 11  cm −2 eV −1 on atomically rough Si(100) surfaces. The interfacial quality of the organic/quasi-atomically-flat Si(100) interface is very close to that obtained on organic/atomically flat Si(111) surfaces, opening the door to applications previously thought to be restricted to Si(111)

  16. Local electronic and electrical properties of functionalized graphene nano flakes

    International Nuclear Information System (INIS)

    Chutia, Arunabhiram; Sahnoun, Riadh; Deka, Ramesh C.; Zhu, Zhigang; Tsuboi, Hideyuki; Takaba, Hiromitsu; Miyamoto, Akira

    2011-01-01

    Based on experimental findings models of amorphous graphene related carbon materials were generated using graphene nano flakes. On the optimized structures detailed local electronic properties were investigated using density functional theory. The electrical conductivities of all these models were also estimated using an in-house program based on tight-binding method. The calculated electrical conductivity values of all the models agreed well with the trend of calculated energy gap and graphitic character.

  17. Temporal evolution of electron energy distribution function and plasma parameters in the afterglow of drifting magnetron plasma

    International Nuclear Information System (INIS)

    Seo, Sang-Hun; In, Jung-Hwan; Chang, Hong-Young

    2005-01-01

    The temporal behaviour of the electron energy distribution function (EEDF) and the plasma parameters such as electron density, electron temperature and plasma and floating potentials in a mid-frequency pulsed dc magnetron plasma are investigated using time-resolved probe measurements. A negative-voltage dc pulse with an average power of 160 W during the pulse-on period, a repetition frequency of 20 kHz and a duty cycle of 50% is applied to the cathode of a planar unbalanced magnetron discharge with a grounded substrate. The measured electron energy distribution is found to exhibit a bi-Maxwellian distribution, which can be resolved with the low-energy electron group and the high-energy tail part during the pulse-on period, and a Maxwellian distribution only with low-energy electrons as a consequence of initially rapid decay of the high-energy tail part during the pulse-off period. This characteristic evolution of the EEDF is reflected in the decay characteristics of the electron density and temperature in the afterglow. These parameters exhibit twofold decay represented by two characteristic decay times of an initial fast decay time τ 1 , and a subsequent slower decay time τ 2 in the afterglow when approximated with a bi-exponential function. While the initial fast decay times are of the order of 1 μs (τ T1 ∼ 0.99 μs and τ N1 ∼ 1.5 μs), the slower decay times are of the order of a few tens of microseconds (τ T2 ∼ 7 μs and τ N2 ∼ 40 μs). The temporal evolution of the plasma parameters are qualitatively explained by considering the formation mechanism of the bi-Maxwellian electron distribution function and the electron transports of these electron groups in bulk plasma

  18. Topological analysis of the electron density and of the electron localization function of pyrene and its radicals

    International Nuclear Information System (INIS)

    Hernandez-Trujillo, Jesus; Garcia-Cruz, Isidoro; Martinez-Magadan, Jose Manuel

    2005-01-01

    The topological properties of the charge distribution of pyrene and the three derived monoradicals in their ground state and of didehydrogenated pyrenes in the lowest singlet and triplet electronic states are discussed in detail by means of the quantum theory of atoms in molecules (TAIM) and by the electron localization function (ELF). The non-equivalence of the fused aromatic rings of pyrene prevents one from anticipating the stability and reactivity of these species from the chemistry of didehydrogenated species derived from benzene only. Whereas some of these didehydrogenated molecules were found to display a diradical character in the singlet ground state, the topological analysis reveals that others correspond to normal closed shells. Using these theoretical tools, the energetic and geometric details of o-, m- and p-benzyne-like pyrene derivatives are explained

  19. Electron energy distribution functions and thermalization times in methane and in argon--methane mixtures: An effect of vibrational excitation processes

    International Nuclear Information System (INIS)

    Krajcar-Bronic, I.; Kimura, M.

    1995-01-01

    Electron thermalization in methane and argon--methane mixtures is studied by using the Boltzmann equation. The presence of low-lying vibrational excited states in methane significantly changes electron energy distribution functions and relaxation times. We found that (i) the mean electron energy just below the first vibrational excited state is reached faster by 1000 times when the vibrational states are taken into account, and (ii) electron energy distribution functions have distinct peaks at energy intervals equal to the vibrational threshold energies. Both these effects are due to large vibrational stopping cross section. The thermalization time in mixtures of argon--methane (without vibrational states) smoothly changes as the mixture composition varies, and no significant difference in the electron energy distribution function is observed. When the vibrational excited states are taken into account, thermalization is almost completely defined by CH 4 , even at very low fractional concentrations of CH 4 . The sensitivity of the electron energy distribution functions on the momentum transfer cross sections used in calculation on the thermalization is discussed. copyright 1995 American Institute of Physics

  20. Density-functional theory for f-electron systems. The α-γ phase transition in cerium

    International Nuclear Information System (INIS)

    Casadei, Marco

    2013-01-01

    Rare earths are technologically important and scientifically highly interesting elements. The description of the volume collapse exhibited by some rare earth metals poses a great challenge to density-functional theory (DFT) since local/semi-local functionals (LDA/GGA) only partially capture the associated phase transitions. In this work this problem is approached by treating all electrons at the same quantum mechanical level, using both hybrid functionals (e.g. PBE0 and HSE06) and exact-exchange plus correlation in the random-phase approximation (EX+cRPA). The performance of recently developed beyond RPA schemes is also assessed. The isostructural α-γ phase transition in cerium is the most studied. The exact exchange contribution in PBE0 and HSE06 is crucial to produce two distinct solutions that can be associated with the α and γ phases. The two solutions emerge in bulk as well as in cluster calculations. Most notable is their presence in the cerium dimer. However, quantitative agreement with the extrapolated phase diagram requires EX+cRPA. So far the EX+cRPA correction can only be applied to cerium clusters and not to the bulk. A cluster of 19 atoms cut from the fcc crystal structure (the same that characterizes the α and γ phases) was therefore determined as representative. (EX+cRPA) rate at PBE0 for Ce 19 provides good agreement with the extrapolated transition pressure to zero temperature. We predict that a pressure induced phase transition should exist at or close to zero. A finite temperature phase diagram can be drawn in reasonable agreement with experiment by adding entropic effects. The cerium neighbors are also studied: lanthanum, which has no f electrons, praseodymium, with three f electrons and a volume collapse, and neodymium, with four f electrons and no volume collapse. Multiple solutions are also present for these f electron elements, confirming the importance of exact-exchange for f electron systems.

  1. Nuclear structure functions at a future electron-ion collider

    Science.gov (United States)

    Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.; Paukkunen, H.; Zurita, P.

    2017-12-01

    The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x —robust experimental constraints below x ˜10-2 at low resolution scale Q2 are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in Deep Inelastic Scattering (DIS) measurements down to x ˜10-5 at perturbative resolution scales. The construction of an electron-ion collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the present paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-to-leading order global fit of nuclear Parton Distribution Functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon parton distribution function, the partonic component most prone to nonlinear effects at low Q2. In comparison to the current knowledge, we find that the gluon parton distribution function can be measured at an EIC with significantly reduced uncertainties.

  2. Efficient Ab-Initio Electron Transport Calculations for Heterostructures by the Nonequilibrium Green’s Function Method

    Directory of Open Access Journals (Sweden)

    Hirokazu Takaki

    2014-01-01

    Full Text Available We present an efficient computation technique for ab-initio electron transport calculations based on density functional theory and the nonequilibrium Green’s function formalism for application to heterostructures with two-dimensional (2D interfaces. The computational load for constructing the Green’s functions, which depends not only on the energy but also on the 2D Bloch wave vector along the interfaces and is thus catastrophically heavy, is circumvented by parallel computational techniques with the message passing interface, which divides the calculations of the Green’s functions with respect to energy and wave vectors. To demonstrate the computational efficiency of the present code, we perform ab-initio electron transport calculations of Al(100-Si(100-Al(100 heterostructures, one of the most typical metal-semiconductor-metal systems, and show their transmission spectra, density of states (DOSs, and dependence on the thickness of the Si layers.

  3. Correlated electron dynamics and memory in time-dependent density functional theory

    International Nuclear Information System (INIS)

    Thiele, Mark

    2009-01-01

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  4. Correlated electron dynamics and memory in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Mark

    2009-07-28

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  5. Shape of electron lines emitted by a fast particle in atomic collisions. Influence of the acceptance function

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Gleizes, A.; Benoit-Cattin, P.; Boudjema, M.

    1980-01-01

    In order to explain the large energy broadening of the lines observed in energy spectra of electrons emitted by fast particles, an accurate knowledge of the angular acceptance function of the electron energy analyser is necessary. A simple method is proposed which can give an accurate function for most atomic collisions: the various approximations are discussed. It is also shown that the analyser transmission depends on the acceptance angle. (author)

  6. Electron-electron Bremsstrahlung for bound target electrons

    International Nuclear Information System (INIS)

    Haug, E.

    2008-01-01

    For the process of electron-electron (e-e) Bremsstrahlung the momentum and energy distributions of the recoiling electrons are calculated in the laboratory frame. In order to get the differential cross section and the photon spectrum for target electrons which are bound to an atom, these formulae are multiplied by the incoherent scattering function and numerically integrated over the recoil energy. The effect of atomic binding is most pronounced at low energies of the incident electrons and for target atoms of high atomic numbers. The results are compared to those of previous calculations. (authors)

  7. Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport

    Science.gov (United States)

    Kershaw, Vincent F.; Kosov, Daniel S.

    2017-12-01

    We develop nonequilibrium Green's function-based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast time scales in the equations of motion for Green's functions by means of the Wigner representation. Time derivatives with respect to central time serve as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce a series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives), which depend not solely on the instantaneous molecular geometry but likewise on nuclear velocities and accelerations. An extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction.

  8. Green's function for electrons in a narrow quantum well in a parallel magnetic field

    International Nuclear Information System (INIS)

    Horing, Norman J. Morgenstern; Glasser, M. Lawrence; Dong Bing

    2005-01-01

    Electron dynamics in a narrow quantum well in a parallel magnetic field of arbitrary strength are examined here. We derive an explicit analytical closed-form solution for the Green's function of Landau-quantized electrons in skipping states of motion between the narrow well walls coupled with in-plane translational motion and hybridized with the zero-field lowest subband energy eigenstate. Such Landau-quantized modes are not uniformly spaced

  9. Corrections to the density-functional theory electronic spectrum: Copper phthalocyanine

    DEFF Research Database (Denmark)

    Vazquez, Hector; Jelinek, P.; Brandbyge, Mads

    2009-01-01

    A method for improving the electronic spectrum of standard Density-Functional Theory (DFT) calculations (i.e., LDA or GGA approximations) is presented, and its application is discussed for the case of the copper phthalocyanine (CuPc) molecule. The method is based on a treatment of exchange...... and correlation in a many-body Hamiltonian, and it leads to easy-to-evaluate corrections to the DFT eigenvalues. Self-interaction is largely corrected, so that the modified energy levels do not suffer from spurious crossings, as often encountered for CuPc in DFT, and they remedy the standard underestimation...... or semiempirical functionals for molecular levels, it can be easily applied to any local-orbital DFT approach, improving on several important limitations of standard DFT methods....

  10. Development of electronic barcodes for use in plant pathology and functional genomics.

    Science.gov (United States)

    Kumagai, Monto H; Miller, Philip

    2006-06-01

    We have developed a novel 'electronic barcode' system that uses radio frequency identification (RFID) tags, cell phones, and portable computers to link phenotypic, environmental, and genomic data. We describe a secure, inexpensive system to record and retrieve data from plant samples. It utilizes RFID tags, computers, PDAs, and cell phones to link, record, and retrieve positional, and functional genomic data. Our results suggest that RFID tags can be used in functional genomic screens to record information that is involved in plant development or disease.

  11. Hartree-Fock implementation using a Laguerre-based wave function for the ground state and correlation energies of two-electron atoms.

    Science.gov (United States)

    King, Andrew W; Baskerville, Adam L; Cox, Hazel

    2018-03-13

    An implementation of the Hartree-Fock (HF) method using a Laguerre-based wave function is described and used to accurately study the ground state of two-electron atoms in the fixed nucleus approximation, and by comparison with fully correlated (FC) energies, used to determine accurate electron correlation energies. A variational parameter A is included in the wave function and is shown to rapidly increase the convergence of the energy. The one-electron integrals are solved by series solution and an analytical form is found for the two-electron integrals. This methodology is used to produce accurate wave functions, energies and expectation values for the helium isoelectronic sequence, including at low nuclear charge just prior to electron detachment. Additionally, the critical nuclear charge for binding two electrons within the HF approach is calculated and determined to be Z HF C =1.031 177 528.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  12. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  13. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-01-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  14. Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions

    International Nuclear Information System (INIS)

    Havu, V.; Blum, V.; Havu, P.; Scheffler, M.

    2009-01-01

    We consider the problem of developing O(N) scaling grid-based operations needed in many central operations when performing electronic structure calculations with numeric atom-centered orbitals as basis functions. We outline the overall formulation of localized algorithms, and specifically the creation of localized grid batches. The choice of the grid partitioning scheme plays an important role in the performance and memory consumption of the grid-based operations. Three different top-down partitioning methods are investigated, and compared with formally more rigorous yet much more expensive bottom-up algorithms. We show that a conceptually simple top-down grid partitioning scheme achieves essentially the same efficiency as the more rigorous bottom-up approaches.

  15. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    Science.gov (United States)

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; Nazarewicz, Witold

    2018-02-01

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7 p electronic shell becomes so large (˜10 eV ) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. This effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  16. The electron energy distribution function of noble gases with flow

    International Nuclear Information System (INIS)

    Karditsas, P.J.

    1989-01-01

    The treatment of the Boltzmann equation by several investigators, for the determination of the electron energy distribution function (EEDF) in noble gases was restricted to static discharges. It is of great interest to magnetoplasmadynamic power generation to develop the Boltzmann equation to account for the effect of the bulk fluid flow on the EEDF. The two term expansion of the Boltzmann equation, as given, results in additional terms introduced to the equations due to the bulk fluid flow, with velocity u

  17. Non-local exchange correlation functionals impact on the structural, electronic and optical properties of III-V arsenides

    KAUST Repository

    Anua, N. Najwa

    2013-08-20

    Exchange correlation (XC) energy functionals play a vital role in the efficiency of density functional theory (DFT) calculations, more soundly in the calculation of fundamental electronic energy bandgap. In the present DFT study of III-arsenides, we investigate the implications of XC-energy functional and corresponding potential on the structural, electronic and optical properties of XAs (X = B, Al, Ga, In). Firstly we report and discuss the optimized structural lattice parameters and the band gap calculations performed within different non-local XC functionals as implemented in the DFT-packages: WIEN2k, CASTEP and SIESTA. These packages are representative of the available code in ab initio studies. We employed the LDA, GGA-PBE, GGA-WC and mBJ-LDA using WIEN2k. In CASTEP, we employed the hybrid functional, sX-LDA. Furthermore LDA, GGA-PBE and meta-GGA were employed using SIESTA code. Our results point to GGA-WC as a more appropriate approximation for the calculations of structural parameters. However our electronic bandstructure calculations at the level of mBJ-LDA potential show considerable improvements over the other XC functionals, even the sX-LDA hybrid functional. We report also the optical properties within mBJ potential, which show a nice agreement with the experimental measurements in addition to other theoretical results. © 2013 IOP Publishing Ltd.

  18. Study of the fast electron distribution function in lower hybrid and electron cyclotron current driven plasmas in the WT-3 tokamak

    International Nuclear Information System (INIS)

    Ogura, K.; Tanaka, H.; Ide, S.

    1991-01-01

    The distribution function f(p-vector) of fast electrons produced by lower hybrid current drive (LHCD) is investigated in the WT-3 tokamak, using a combination of measurements of the hard X-ray (HXR) angular distribution with respect to the toroidal magnetic field and observations of the HXR radial profile. The data obtained indicate the formation of a plateau-like region in f(p-vector) which corresponds to a region of resonant interaction between the lower hybrid (LH) wave and the electrons. The energy of the fast electrons in the peripheral plasma region is observed to be higher than that in the central plasma region under operational conditions with a high plasma current (I p ≥ 80 kA). At low current (I p < or approx. 50 kA), however, the energy of fast electrons is constant along the plasma radius. In the current ramp-up phase, fast electrons are generated in the directions normal to and opposite to the LH wave propagation. The latter case is ascribed to a negatively biased toroidal electric field induced by the current ramp-up. To study the characteristic change of f(p-vector) for various current drive mechanisms, HXR measurements are performed in electron cyclotron current driven (ECCD) plasma and in Ohmic heating (OH) plasma. In ECCD plasma, the perpendicular energy of fast electrons increases, which indicates that fast electrons are accelerated perpendicularly by electron cyclotron heating. In both LHCD and ECCD plasmas, fast electrons flow in the direction opposite to the wave propagation, while no such fast electrons are formed in OH plasma. (author). 33 refs, 16 figs, 1 tab

  19. Nonadiabatic Dynamics in Single-Electron Tunneling Devices with Time-Dependent Density-Functional Theory

    Science.gov (United States)

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-04-01

    We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.

  20. Electron attachment cross sections obtained from electron attachment spectroscopy

    International Nuclear Information System (INIS)

    Popp, P.; Baumbach, J.I.; Leonhardt, J.W.; Mothes, S.

    1988-01-01

    Electron capture detectors have a high sensitivity for substances with high thermal electron attachment cross sections. The electron attachment spectroscopy makes it possible to change the mean electron energy in such a way that the maximum for dissociative electron attachment is reached. Thus, best operation modes of the detection system as well as significant dependencies of electron attachment coefficients are available. Cross sections for electron attachment as a function of the electron energy are obtained with the knowledge of electron energy distribution functions from Boltzmann equation analysis by a special computer code. A disadvantage of this electron attachment spectroscopy is the superposition of space charge effects due to the decrease of the electron drift velocity with increasing mean electron energy. These influences are discussed. (author)

  1. The energy distribution function of excess electrons trapped in the pulse irradiated low density polyethylene (LDPE)

    International Nuclear Information System (INIS)

    Wysocki, S.; Mazurek, L.; Karolczak, S.; Kroh, J.

    1995-01-01

    Distribution function D (E) of electrons trapped in irradiated LDPE was calculated on the basis of time resolved absorption spectra recorded at temperatures of 20-250 K. Variation of absorption spectra with time and temperature were observed and discussed in terms of simultaneous decay and relocation of electrons from shallow to deeper traps. Results obtained imply domination of trap limited transport for shallowly trapped electrons. For deeper traps, hopping mechanism is prevailing. (author)

  2. Electron and ion energy distribution functions in slide-away regime of TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazuo; Satoh, Takemichi; Toi, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi

    1983-02-01

    The plasma properties, and the electron and ion energy distribution functions in particular, are studied in the slide-away regime of the TRIAM-1 tokamak, with the streaming parameter averaged over the plasma cross-section being varied up to 0.4. In the range >= 0.1, the soft X-ray spectrum has a tail component, and the electrical resistivity derived from the loop voltage/plasma current characteristics is lower than the Spitzer-Harm resistivity, which is estimated from the experimentally-obtained Zsub(eff)-value, electron temperature and electron density. Anomalous ion heating, however, does not occur, and the ion temperature agrees well with Artsimovich's scaling law.

  3. Method to map one-dimensional electronic wave function by using multiple Brillouin zone angle resolved photoemission

    Directory of Open Access Journals (Sweden)

    Dong-Wook Lee

    2010-10-01

    Full Text Available Angle resolved photoemission spectroscopy (ARPES is a powerful tool to investigate electronic structures in solids and has been widely used in studying various materials. The electronic structure information by ARPES is obtained in the momentum space. However, in the case of one-dimensional system, we here show that we extract the real space information from ARPES data taken over multiple Brillouin zones (BZs. Intensities in the multiple BZs are proportional to the photoemission matrix element which contains information on the coefficient of the Bloch wave function. It is shown that the Bloch wave function coefficients can be extracted from ARPES data, which allows us to construct the real space wave function. As a test, we use ARPES data from proto-typical one-dimensional system SrCuO2 and construct the real space wave function.

  4. Analytic and numeric Green's functions for a two-dimensional electron gas in an orthogonal magnetic field

    International Nuclear Information System (INIS)

    Cresti, Alessandro; Grosso, Giuseppe; Parravicini, Giuseppe Pastori

    2006-01-01

    We have derived closed analytic expressions for the Green's function of an electron in a two-dimensional electron gas threaded by a uniform perpendicular magnetic field, also in the presence of a uniform electric field and of a parabolic spatial confinement. A workable and powerful numerical procedure for the calculation of the Green's functions for a large infinitely extended quantum wire is considered exploiting a lattice model for the wire, the tight-binding representation for the corresponding matrix Green's function, and the Peierls phase factor in the Hamiltonian hopping matrix element to account for the magnetic field. The numerical evaluation of the Green's function has been performed by means of the decimation-renormalization method, and quite satisfactorily compared with the analytic results worked out in this paper. As an example of the versatility of the numerical and analytic tools here presented, the peculiar semilocal character of the magnetic Green's function is studied in detail because of its basic importance in determining magneto-transport properties in mesoscopic systems

  5. Resonances in a two-dimensional electron waveguide with a single δ-function scatterer

    International Nuclear Information System (INIS)

    Boese, Daniel; Lischka, Markus; Reichl, L. E.

    2000-01-01

    We study the conductance properties of a straight two-dimensional electron waveguide with an s-like scatterer modeled by a single δ-function potential with a finite number of modes. Even such a simple system exhibits interesting resonance phenomena. These resonances are explained in terms of quasibound states both by using a direct solution of the Schroedinger equation and by studying the Green's function of the system. Using the Green's function we calculate the survival probability as well as the power absorption, and show the influence of the quasibound states on these two quantities. (c) 2000 The American Physical Society

  6. A density functional theory investigation of the electronic structure and spin moments of magnetite

    KAUST Repository

    Noh, Junghyun

    2014-08-01

    We present the results of density functional theory (DFT) calculations on magnetite, Fe3O4, which has been recently considered as electrode in the emerging field of organic spintronics. Given the nature of the potential applications, we evaluated the magnetite room-temperature cubic phase in terms of structural, electronic, and magnetic properties. We considered GGA (PBE), GGA + U (PBE + U), and range-separated hybrid (HSE06 and HSE(15%)) functionals. Calculations using HSE06 and HSE(15%) functionals underline the impact that inclusion of exact exchange has on the electronic structure. While the modulation of the band gap with exact exchange has been seen in numerous situations, the dramatic change in the valence band nature and states near the Fermi level has major implications for even a qualitative interpretation of the DFT results. We find that HSE06 leads to highly localized states below the Fermi level while HSE(15%) and PBE + U result in delocalized states around the Fermi level. The significant differences in local magnetic moments and atomic charges indicate that describing room-temperature bulk materials, surfaces and interfaces may require different functionals than their low-temperature counterparts.

  7. A density functional theory investigation of the electronic structure and spin moments of magnetite

    KAUST Repository

    Noh, Junghyun; Osman, Osman I; Aziz, Saadullah G; Winget, Paul; Bredas, Jean-Luc

    2014-01-01

    We present the results of density functional theory (DFT) calculations on magnetite, Fe3O4, which has been recently considered as electrode in the emerging field of organic spintronics. Given the nature of the potential applications, we evaluated the magnetite room-temperature cubic phase in terms of structural, electronic, and magnetic properties. We considered GGA (PBE), GGA + U (PBE + U), and range-separated hybrid (HSE06 and HSE(15%)) functionals. Calculations using HSE06 and HSE(15%) functionals underline the impact that inclusion of exact exchange has on the electronic structure. While the modulation of the band gap with exact exchange has been seen in numerous situations, the dramatic change in the valence band nature and states near the Fermi level has major implications for even a qualitative interpretation of the DFT results. We find that HSE06 leads to highly localized states below the Fermi level while HSE(15%) and PBE + U result in delocalized states around the Fermi level. The significant differences in local magnetic moments and atomic charges indicate that describing room-temperature bulk materials, surfaces and interfaces may require different functionals than their low-temperature counterparts.

  8. Charged Particles Multiplicity and Scaling Violation of Fragmentation Functions in Electron-Positron Annihilation

    International Nuclear Information System (INIS)

    Ghaffary, Tooraj

    2016-01-01

    By the use of data from the annihilation process of electron-positron in AMY detector at 60 GeV center of mass energy, charged particles multiplicity distribution is obtained and fitted with the KNO scaling. Then, momentum spectra of charged particles and momentum distribution with respect to the jet axis are obtained, and the results are compared to the different models of QCD; also, the distribution of fragmentation functions and scaling violations are studied. It is being expected that the scaling violations of the fragmentation functions of gluon jets are stronger than the quark ones. One of the reasons for such case is that splitting function of quarks is larger than splitting function of gluon.

  9. The Non-Equilibrium Statistical Distribution Function for Electrons and Holes in Semiconductor Heterostructures in Steady-State Conditions

    Directory of Open Access Journals (Sweden)

    Krzysztof Jόzwikowska

    2015-06-01

    Full Text Available The main goal of this work is to determine a statistical non-equilibrium distribution function for the electron and holes in semiconductor heterostructures in steady-state conditions. Based on the postulates of local equilibrium, as well as on the integral form of the weighted Gyarmati’s variational principle in the force representation, using an alternative method, we have derived general expressions, which have the form of the Fermi–Dirac distribution function with four additional components. The physical interpretation of these components has been carried out in this paper. Some numerical results of a non-equilibrium distribution function for an electron in HgCdTe structures are also presented.

  10. A paradox in the electronic partition function or how to be cautious with mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, E.N. [CRICYT - CONICET, Mendoza (Argentina); Departamento de Fisica, Universidad Nacional de San Luis, San Luis (Argentina)

    2001-09-01

    When the electronic partition functions of atoms or molecules are evaluated in textbooks, only the contribution of the ground state is considered. The excited states' contribution is argued to be negligible. However, a closer look shows that the partition function diverges if such states are taken into account. This paper shows that the blind use of mathematics is the reason behind this odd behaviour. (author)

  11. A paradox in the electronic partition function or how to be cautious with mathematics

    International Nuclear Information System (INIS)

    Miranda, E.N.

    2001-01-01

    When the electronic partition functions of atoms or molecules are evaluated in textbooks, only the contribution of the ground state is considered. The excited states' contribution is argued to be negligible. However, a closer look shows that the partition function diverges if such states are taken into account. This paper shows that the blind use of mathematics is the reason behind this odd behaviour. (author)

  12. Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2012-10-08

    A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

  13. Compact two-electron wave function for bond dissociation and Van der Waals interactions: a natural amplitude assessment.

    Science.gov (United States)

    Giesbertz, Klaas J H; van Leeuwen, Robert

    2014-05-14

    Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r12) depending on the interelectronic distance r12. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r12) needs to diverge for large r12 at large internuclear distances while for shorter bond distances it increases as a function of r12 to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.

  14. Periodic density functional theory study of structural and electronic properties of single-walled zinc oxide and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Marana, Naiara L. [Modeling and Molecular Simulations Group, São Paulo State University, UNESP, 17033-360 Bauru, SP (Brazil); Albuquerque, Anderson R. [Federal Institute of Education, Science and Technology of Sertão Pernambucano, 56400-000 Floresta, PE (Brazil); La Porta, Felipe A. [Chemistry Department, Federal Technological University of Paraná, 86036-370 Londrina, PR (Brazil); Longo, Elson [São Paulo State University, Chemistry Institute, UNESP, 14801-907 Araraquara, SP (Brazil); Sambrano, Julio R. [Modeling and Molecular Simulations Group, São Paulo State University, UNESP, 17033-360 Bauru, SP (Brazil)

    2016-05-15

    Periodic density functional theory calculations with the B3LYP hybrid functional and all-electron Gaussian basis set were performed to simulate the structural and electronic properties as well as the strain and formation energies of single-walled ZnO nanotubes (SWZnONTs) and Carbon nanotubes (SWCNTs) with different chiralities as functions of their diameters. For all SWZnONTs, the band gap, strain energy, and formation energy converge to ~4.5 eV, 0.0 eV/atom, and 0.40 eV/atom, respectively. This result suggests that the nanotubes are formed more easily from the surface than from the bulk. For SWCNTs, the strain energy is always positive, while the formation energy is negative for armchair and zigzag nanotubes, therefore suggesting that these types of nanotubes can be preferentially formed from the bulk. The electronic properties of SWCNTs depend on the chirality; all armchair nanotubes are metallic, while zigzag and chiral nanotubes can be metallic or semiconducting, depending on the n and m vectors. - Graphical abstract: DFT/B3LYP were performed to simulate the structural and electronic properties as well as the strain and formation energies of SWZnONTs and SWCNTs with different chiralities as functions of their diameters. - Highlights: • The energies of SWZnONTs converge for chirality with diameters up 20 Å. • SWCNTs electronic properties depend on the chirality. • The properties of SWZnONTs are very similar to those of monolayer surface.

  15. Non-thermal plasma instabilities induced by deformation of the electron energy distribution function

    Science.gov (United States)

    Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.

    2014-08-01

    Non-thermal plasma is a key component in gas lasers, microelectronics, medical applications, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and others. A specific feature of non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). This sensitivity is due to complex deformations of the electron energy distribution function (EEDF) shape induced by variations in electric field strength, electron and ion number densities and gas excitation degree. Particular attention in this article is paid to mechanisms of instabilities based on non-linearity of plasma properties for specific conditions: gas composition, steady-state and decaying plasma produced by the electron beam, or by an electric current pulse. The following effects are analyzed: the negative differential electron conductivity; the absolute negative electron mobility; the stepwise changes of plasma properties induced by the EEDF bi-stability; thermo-current instability and the constriction of the glow discharge column in rare gases. Some of these effects were observed experimentally and some of them were theoretically predicted and still wait for experimental confirmation.

  16. Spin structure function measurements with polarized protons and electrons at HERA

    International Nuclear Information System (INIS)

    Ball, R.D.; Deshpande, A.; Forte, S.; Hughes, V.W.; Lichtenstadt, J.; Ridolfi, G.

    1995-01-01

    Useful insights into the spin structure functions of the nucleon can be achieved by measurements of spin-dependent asymmetries in inclusive scattering of high energy polarized electrons by high energy polarized protons at HERA. Such an experiment would be a natural extension of the polarized lepton-nucleon scattering experiments presently carried out at CERN and SLAC. We present here estimates of possible data in the extended kinematic range of HERA and associated statistical errors. (orig.)

  17. Accurate core-electron binding energy shifts from density functional theory

    International Nuclear Information System (INIS)

    Takahata, Yuji; Marques, Alberto Dos Santos

    2010-01-01

    Current review covers description of density functional methods of calculation of accurate core-electron binding energy (CEBE) of second and third row atoms; applications of calculated CEBEs and CEBE shifts (ΔCEBEs) in elucidation of topics such as: hydrogen-bonding, peptide bond, polymers, DNA bases, Hammett substituent (σ) constants, inductive and resonance effects, quantitative structure activity relationship (QSAR), and solid state effect (WD). This review limits itself to works of mainly Chong and his coworkers for the period post-2002. It is not a fully comprehensive account of the current state of the art.

  18. Electron-Beam Lithographic Grafting of Functional Polymer Structures from Fluoropolymer Substrates.

    Science.gov (United States)

    Gajos, Katarzyna; Guzenko, Vitaliy A; Dübner, Matthias; Haberko, Jakub; Budkowski, Andrzej; Padeste, Celestino

    2016-10-07

    Well-defined submicrometer structures of poly(dimethylaminoethyl methacrylate) (PDMAEMA) were grafted from 100 μm thick films of poly(ethene-alt-tetrafluoroethene) after electron-beam lithographic exposure. To explore the possibilities and limits of the method under different exposure conditions, two different acceleration voltages (2.5 and 100 keV) were employed. First, the influence of electron energy and dose on the extent of grafting and on the structure's morphology was determined via atomic force microscopy. The surface grafting with PDMAEMA was confirmed by advanced surface analytical techniques such as time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Additionally, the possibility of effective postpolymerization modification of grafted structures was demonstrated by quaternization of the grafted PDMAEMA to the polycationic QPDMAEMA form and by exploiting electrostatic interactions to bind charged organic dyes and functional proteins.

  19. Mitochondrial electron transport chain functions in long-lived Ames dwarf mice

    Science.gov (United States)

    Choksi, Kashyap B.; Nuss, Jonathan E.; DeFord, James H.; Papaconstantinou, John

    2011-01-01

    The age-associated decline in tissue function has been attributed to ROS-mediated oxidative damage due to mitochondrial dysfunction. The long-lived Ames dwarf mouse exhibits resistance to oxidative stress, a physiological characteristic of longevity. It is not known, however, whether there are differences in the electron transport chain (ETC) functions in Ames tissues that are associated with their longevity. In these studies we analyzed enzyme activities of ETC complexes, CI-CV and the coupled CI-CII and CII-CIII activities of mitochondria from several tissues of young, middle aged and old Ames dwarf mice and their corresponding wild type controls to identify potential mitochondrial prolongevity functions. Our studies indicate that post-mitotic heart and skeletal muscle from Ames and wild-type mice show similar changes in ETC complex activities with aging, with the exception of complex IV. Furthermore, the kidney, a slowly proliferating tissue, shows dramatic differences in ETC functions unique to the Ames mice. Our data show that there are tissue specific mitochondrial functions that are characteristic of certain tissues of the long-lived Ames mouse. We propose that this may be a factor in the determination of extended lifespan of dwarf mice. PMID:21934186

  20. Investigation of Multiconfigurational Short-Range Density Functional Theory for Electronic Excitations in Organic Molecules

    DEFF Research Database (Denmark)

    Hubert, Mickaël; Hedegård, Erik D.; Jensen, Hans Jørgen Aa

    2016-01-01

    -srDFT for a selected benchmark set of electronic excitations of organic molecules, covering the most common types of organic chromophores. This investigation confirms the expectation that the MC-srDFT method is accurate for a broad range of excitations and comparable to accurate wave function methods such as CASPT2......Computational methods that can accurately and effectively predict all types of electronic excitations for any molecular system are missing in the toolbox of the computational chemist. Although various Kohn-Sham density-functional methods (KS-DFT) fulfill this aim in some cases, they become...... and double excitations have been promising, it is nevertheless important that the accuracy of MC-srDFT is at least comparable to the best KS-DFT methods also for organic molecules that are typically of single-reference character. In this paper we therefore systematically investigate the performance of MC...

  1. Electron beam produced in a transient hollow cathode discharge: beam electron distribution function, X-ray emission and solid target ablation

    International Nuclear Information System (INIS)

    Nistor, Magdalena

    2000-01-01

    This research thesis aims at a better knowledge of phenomena occurring during transient hollow cathode discharges. The author first recalls the characteristics of such a discharge which make it different from conventional pseudo-spark discharges. The objective is to characterise the electron beam produced within the discharge, and the phenomena associated with its interaction with a solid or gaseous target, leading to the production of an X ray or visible radiation. Thus, the author reports the measurement (by magnetic deflection) of the whole time-averaged electronic distribution function. Such a knowledge is essential for a better use of the electron beam in applications such as X-ray source or material ablation. As high repetition frequency pulse X ray sources are very interesting tools, he reports the development and characterisation of Bremsstrahlung X rays during a beam-target interaction. He finally addresses the implementation of a spectroscopic diagnosis for the filamentary plasma and the ablation of a solid target by the beam [fr

  2. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  3. Two-extremum electrostatic potential of metal-lattice plasma and the work function of an electron

    Directory of Open Access Journals (Sweden)

    Surma S.A.

    2015-06-01

    Full Text Available Metal-lattice plasma is treated as a neutral two-component two-phase system of 2D surface and 3D bulk. Free electron density and bulk chemical potential are used as intensive parameters of the system with the phase boundary position determined in the crystalline lattice. A semiempirical expression for the electron screened electrostatic potential is constructed using the lattice-plasma polarization concept. It comprises an image term and three repulsion/attraction terms of second and fourth orders. The novel curve has two extremes and agrees with certain theoretical forms of potential. A practical formula for the electron work function of metals and a simplified schema of electronic structure at the metal/vacuum interface are proposed. This yields 10.44 eV for the Fermi energy of free electron gas; -5.817 eV for the Fermi energy level; 4.509 eV for the average work function of bcc tungsten. Selected data are also given for fcc Cu and hcp Re. For harmonic frequencies ~ 10E16 per s of the self-excited metal-lattice plasma, energy gaps of 14.54 and 8.02 eV are found, which correspond to the bulk and surface plasmons, respectively. Further extension of this thermodynamics and metal-lattice theory based approach may contribute to a better understanding of theoretical models which are employed in chemical physics, catalysis and materials science of nanostructures.

  4. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  5. Calculation of the two-electron Darwin term using explicitly correlated wave functions

    International Nuclear Information System (INIS)

    Middendorf, Nils; Höfener, Sebastian; Klopper, Wim; Helgaker, Trygve

    2012-01-01

    Graphical abstract: The two-electron Darwin term is computed analytically at the MP2-F12 level of theory using density fitted integrals. Highlights: ► Two-electron Darwin term computed analytically at the MP2-F12 level. ► Darwin two-electron integrals computed using density fitting techniques. ► Two-electron Darwin term dominated by singlet pair contributions. ► Much improved basis set convergence is achieved with F12 methods. ► Interference correction works well for the two-electron Darwin term. - Abstract: This article is concerned with the calculation of the two-electron Darwin term (D2). At the level of explicitly correlated second-order perturbation theory (MP2-F12), the D2 term is obtained as an analytic energy derivative; at the level of explicitly correlated coupled-cluster theory, it is obtained from finite differences. To avoid the calculation of four-center integrals, a density-fitting approximation is applied to the D2 two-electron integrals without loss of accuracy, even though the absolute value of the D2 term is typically about 0.1 mE h . Explicitly correlated methods provide a qualitatively correct description of the short-range region around the Coulomb hole, even for small orbital basis sets. Therefore, explicitly correlated wave functions remedy the otherwise extremely slow convergence of the D2 contribution with respect to the basis-set size, yielding more accurate results than those obtained by two-point basis-set extrapolation. Moreover, we show that the interference correction of Petersson’s complete-basis-set model chemistry can be used to compute a D2 basis-set correction at the MP2-F12 level to improve standard coupled-cluster singles-and-doubles results.

  6. Fully printable, strain-engineered electronic wrap for customizable soft electronics.

    Science.gov (United States)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-24

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  7. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    Science.gov (United States)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  8. Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics.

    Science.gov (United States)

    Gao, Yunxia; Li, Haiyan; Liu, Jing

    2013-01-01

    The current strategies for making electronic devices are generally time, water, material and energy consuming. Here, the direct writing of composite functional circuits through comprehensive use of GaIn10-based liquid metal inks and matching material is proposed and investigated, which is a rather easy going and cost effective electronics fabrication way compared with the conventional approaches. Owing to its excellent adhesion and electrical properties, the liquid metal ink was demonstrated as a generalist in directly making various basic electronic components such as planar resistor, inductor and capacitor or their combination and thus composing circuits with expected electrical functions. For a precise control of the geometric sizes of the writing, a mask with a designed pattern was employed and demonstrated. Mechanisms for justifying the chemical components of the inks and the magnitudes of the target electronic elements so as to compose various practical circuits were disclosed. Fundamental tests on the electrical components including capacitor and inductor directly written on paper with working time up to 48 h and elevated temperature demonstrated their good stability and potential widespread adaptability especially when used in some high frequency circuits. As the first proof-of-concept experiment, a typical functional oscillating circuit including an integrated chip of 74HC04 with a supply voltage of 5 V, a capacitor of 10 nF and two resistors of 5 kΩ and 1 kΩ respectively was directly composed on paper through integrating specific electrical elements together, which presented an oscillation frequency of 8.8 kHz. The present method significantly extends the roles of the metal ink in recent works serving as only a single electrical conductor or interconnecting wires. It opens the way for directly writing out complex functional circuits or devices on different substrates. Such circuit composition strategy has generalized purpose and can be extended to more

  9. Determination of the electron-electron collisional frequency by means of plasma electron spectroscopy

    International Nuclear Information System (INIS)

    Kolokolov, N.B.; Kudryavtsev, A.A.; Romanenko, V.A.

    1989-01-01

    Methods of controlling fast part of electron distribution function (DF) in nonlocal regime of current-free plasma are suggested and realized. Artificially created step in DF fast part has a simple link with frequencies of electron-electron and elastic electron-atom collisions that may be defined in the corresponding experiments

  10. Expression and localization of vascular endothelial growth factor A (VEGFA) and its two receptors (VEGFR1/FLT1 and VEGFR2/FLK1/KDR) in the canine corpus luteum and utero-placental compartments during pregnancy and at normal and induced parturition.

    Science.gov (United States)

    Gram, Aykut; Hoffmann, Bernd; Boos, Alois; Kowalewski, Mariusz P

    2015-11-01

    VEGFA is one of the most potent known inducers of angiogenesis. However, the function of angiogenic factors in the canine corpus luteum (CL) of pregnancy and in the pregnant uterus and placenta has not yet been elucidated. Therefore, here we investigated the expression and localization of VEGFA and its receptors (VEGFR1/FLT1 and VEGFR2/FLK1/KDR) in the canine CL and utero-placental compartments (ut-pl) throughout pregnancy until prepartum luteolysis. Antigestagen-mediated effects on expression of VEGF system in ut-pl were elucidated in mid-pregnant dogs. While displaying high individual variation, the luteal VEGFA was elevated during pre-implantation and post-implantation, followed by a decrease during mid-gestation, which was more pronounced at the mRNA level, and showed constant expression afterwards. Within the uterus, it increased following implantation and during mid-gestation in ut-pl compartments, but was downregulated at prepartum luteolysis. Luteal VEGFR1 expression resembled that of VEGFA; VEGFR2 remained unaffected throughout pregnancy. In ut-pl compartments, both receptors increased gradually towards mid-gestation; a prepartum decrease was observed for VEGFR1. Antigestagen-treatment resulted in decreased expression of ut-pl VEGFR1. In the CL, VEGFA stained in luteal cells. Uterine signals of VEGFA and its two receptors were observed in epithelial and vascular compartments, and in myometrium. In placental labyrinth, additionally, trophoblast stained positively. Luteal VEGFR1 was localized to the luteal cells and tunica media of blood vessels, whereas VEGFR2 stained only in capillary endothelial cells. The upregulation of luteal and the ut-pl VEGF system during early gestational stages supports the increased vascularization rate during this time. The diminishing effects of the prepartum endocrine milieu on VEGFA function seem to be more pronounced in the ut-pl units. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Structural, electronic, and optical properties of GaInO{sub 3}: A hybrid density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, V., E-mail: wangvei@icloud.com; Ma, D.-M.; Liu, R.-J.; Yang, C.-M. [Department of Applied Physics, Xi' an University of Technology, Xi' an 710054 (China); Xiao, W. [State Key Lab of Nonferrous Metals and Processes, General Research Institute for Nonferrous Metals, Beijing 100088 (China)

    2014-01-28

    The structural, electronic, and optical properties of GaInO{sub 3} have been studied by first-principles calculations based on Heyd-Scuseria-Ernzerhof hybrid functional theory. The optical properties, including the optical reflectivity, refractive index, extinction coefficient, absorption coefficient, and electron energy loss are discussed for radiation up to 60 eV together with the calculated electronic structure. Our results predicted that GaInO{sub 3} displays good transparency over the whole vision region, which is in good agreement with the experimental data available in the literature.

  12. Pseudogap in the Eliashberg approach based on electron-phonon and electron-electron-phonon interaction

    Energy Technology Data Exchange (ETDEWEB)

    Szczesniak, R. [Institute of Physics, Czestochowa University of Technology (Poland); Institute of Physics, Jan Dlugosz University in Czestochowa (Poland); Durajski, A.P.; Duda, A.M. [Institute of Physics, Czestochowa University of Technology (Poland)

    2017-04-15

    The properties of the superconducting and the anomalous normal state were described by using the Eliashberg method. The pairing mechanism was reproduced with the help of the Hamiltonian, which models the electron-phonon and the electron-electron-phonon interaction (EEPh). The set of the Eliashberg equations, which determines the order parameter function (φ), the wave function renormalization factor (Z), and the energy shift function (χ), was derived. It was proven that for the sufficiently large values of the EEPh potential, the doping dependence of the order parameter (φ/Z) has the analogous course to that observed experimentally in cuprates. The energy gap in the electron density of states is induced by Z and χ - the contribution from φ is negligible. The electron density of states possesses the characteristic asymmetric form and the pseudogap is observed above the critical temperature. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Strain Effect on Electronic Structure and Work Function in α-Fe2O3 Films

    Directory of Open Access Journals (Sweden)

    Li Chen

    2017-03-01

    Full Text Available We investigate the electronic structure and work function modulation of α-Fe2O3 films by strain based on the density functional method. We find that the band gap of clean α-Fe2O3 films is a function of the strain and is influenced significantly by the element termination on the surface. The px and py orbitals keep close to Fermi level and account for a pronounced narrowing band gap under compressive strain, while unoccupied dz2 orbitals from conduction band minimum draw nearer to Fermi level and are responsible for the pronounced narrowing band gap under tensile strain. The spin polarized surface state, arising from localized dangling-bond states, is insensitive to strain, while the bulk band, especially for pz orbital, arising from extended Bloch states, is very sensitive to strain, which plays an important role for work function decreasing (increasing under compressive (tensile strain in Fe termination films. In particular, the work function in O terminated films is insensitive to strain because pz orbitals are less sensitive to strain than that of Fe termination films. Our findings confirm that the strain is an effective means to manipulate electronic structures and corrosion potential.

  14. A DATABASE OF >20 keV ELECTRON GREEN'S FUNCTIONS OF INTERPLANETARY TRANSPORT AT 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Agueda, N.; Sanahuja, B. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona, Barcelona (Spain); Vainio, R. [Department of Physics, University of Helsinki, Helsinki (Finland)

    2012-10-15

    We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.

  15. Non-local exchange correlation functionals impact on the structural, electronic and optical properties of III-V arsenides

    KAUST Repository

    Anua, N. Najwa; Ahmed, Rashid; Shaari, Amiruddin; Saeed, Mohammad Alam; Ul Haq, Bakhtiar; Goumri-Said, Souraya

    2013-01-01

    our electronic bandstructure calculations at the level of mBJ-LDA potential show considerable improvements over the other XC functionals, even the sX-LDA hybrid functional. We report also the optical properties within mBJ potential, which show a nice

  16. Electron work function of metallic surfaces, covered with by metal adatoms, and two-dimensional structure of adlayer

    International Nuclear Information System (INIS)

    Rudnitskij, L.A.

    1986-01-01

    Change in electron work function during metal adatom (Ti, W, Ag, Au) adsorption on different tungsten surfaces in ''polycrystalline'' and epitaxial types of adsorpted layers is studied. Calculational and experimental dependences of work function change on coating thickness are built

  17. Development of utility generic functional requirements for electronic work packages and computer-based procedures

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    The Nuclear Electronic Work Packages - Enterprise Requirements (NEWPER) initiative is a step toward a vision of implementing an eWP framework that includes many types of eWPs. This will enable immediate paper-related cost savings in work management and provide a path to future labor efficiency gains through enhanced integration and process improvement in support of the Nuclear Promise (Nuclear Energy Institute 2016). The NEWPER initiative was organized by the Nuclear Information Technology Strategic Leadership (NITSL) group, which is an organization that brings together leaders from the nuclear utility industry and regulatory agencies to address issues involved with information technology used in nuclear-power utilities. NITSL strives to maintain awareness of industry information technology-related initiatives and events and communicates those events to its membership. NITSL and LWRS Program researchers have been coordinating activities, including joint organization of NEWPER-related meetings and report development. The main goal of the NEWPER initiative was to develop a set of utility generic functional requirements for eWP systems. This set of requirements will support each utility in their process of identifying plant-specific functional and non-functional requirements. The NEWPER initiative has 140 members where the largest group of members consists of 19 commercial U.S. nuclear utilities and eleven of the most prominent vendors of eWP solutions. Through the NEWPER initiative two sets of functional requirements were developed; functional requirements for electronic work packages and functional requirements for computer-based procedures. This paper will describe the development process as well as a summary of the requirements.

  18. Difficulties in applying pure Kohn-Sham density functional theory electronic structure methods to protein molecules

    Science.gov (United States)

    Rudberg, Elias

    2012-02-01

    Self-consistency-based Kohn-Sham density functional theory (KS-DFT) electronic structure calculations with Gaussian basis sets are reported for a set of 17 protein-like molecules with geometries obtained from the Protein Data Bank. It is found that in many cases such calculations do not converge due to vanishing HOMO-LUMO gaps. A sequence of polyproline I helix molecules is also studied and it is found that self-consistency calculations using pure functionals fail to converge for helices longer than six proline units. Since the computed gap is strongly correlated to the fraction of Hartree-Fock exchange, test calculations using both pure and hybrid density functionals are reported. The tested methods include the pure functionals BLYP, PBE and LDA, as well as Hartree-Fock and the hybrid functionals BHandHLYP, B3LYP and PBE0. The effect of including solvent molecules in the calculations is studied, and it is found that the inclusion of explicit solvent molecules around the protein fragment in many cases gives a larger gap, but that convergence problems due to vanishing gaps still occur in calculations with pure functionals. In order to achieve converged results, some modeling of the charge distribution of solvent water molecules outside the electronic structure calculation is needed. Representing solvent water molecules by a simple point charge distribution is found to give non-vanishing HOMO-LUMO gaps for the tested protein-like systems also for pure functionals.

  19. Difficulties in applying pure Kohn-Sham density functional theory electronic structure methods to protein molecules

    International Nuclear Information System (INIS)

    Rudberg, Elias

    2012-01-01

    Self-consistency-based Kohn-Sham density functional theory (KS-DFT) electronic structure calculations with Gaussian basis sets are reported for a set of 17 protein-like molecules with geometries obtained from the Protein Data Bank. It is found that in many cases such calculations do not converge due to vanishing HOMO-LUMO gaps. A sequence of polyproline I helix molecules is also studied and it is found that self-consistency calculations using pure functionals fail to converge for helices longer than six proline units. Since the computed gap is strongly correlated to the fraction of Hartree-Fock exchange, test calculations using both pure and hybrid density functionals are reported. The tested methods include the pure functionals BLYP, PBE and LDA, as well as Hartree-Fock and the hybrid functionals BHandHLYP, B3LYP and PBE0. The effect of including solvent molecules in the calculations is studied, and it is found that the inclusion of explicit solvent molecules around the protein fragment in many cases gives a larger gap, but that convergence problems due to vanishing gaps still occur in calculations with pure functionals. In order to achieve converged results, some modeling of the charge distribution of solvent water molecules outside the electronic structure calculation is needed. Representing solvent water molecules by a simple point charge distribution is found to give non-vanishing HOMO-LUMO gaps for the tested protein-like systems also for pure functionals. (fast track communication)

  20. Estimation of cluster stability using the theory of electron density functional

    International Nuclear Information System (INIS)

    Borisov, Yu.A.

    1985-01-01

    Prospects of using simple versions of the electron density functional for studying the energy characteristics of cluster compounds Was discussed. These types of cluster compounds were considered: clusters of Cs, Be, B, Sr, Cd, Sc, In, V, Tl, I elements as intermediate form between molecule and solid body, metalloorganic Mo, W, Tc, Re, Rn clusters and elementoorganic compounds of nido-cluster type. The problem concerning changes in the binding energy of homoatomic clusters depending on their size and three-dimensional structure was analysed

  1. Modification Of The Electron Energy Distribution Function During Lithium Experiments On The National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, M A; Gray, T K; Kaita, R; Kallman, J; Kugel, H; LeBlanc, B; McLean, A; Sabbagh, S A; Soukanovskii, V; Stotler, D P

    2011-06-03

    The National Spherical Torus Experiment (NSTX) has recently studied the use of a liquid lithium divertor (LLD). Divertor Langmuir probes have also been installed for making measurements of the local plasma conditions. A non-local probe interpretation method is used to supplement the classical probe interpretation and obtain measurements of the electron energy distribution function (EEDF) which show the occurrence of a hot-electron component. Analysis is made of two discharges within a sequence that exhibited changes in plasma fueling efficiency. It is found that the local electron temperature increases and that this increase is most strongly correlated with the energy contained within the hot-electron population. Preliminary interpretative modeling indicates that kinetic effects are likely in the NSTX.

  2. Effects of wave function correlations on scaling violation in quasi-free electron scattering

    International Nuclear Information System (INIS)

    Tornow, V.; Drechsel, D.; Orlandini, G.; Traini, M.

    1981-01-01

    The scaling law in quasi-free electron scattering is broken due to the existence of exchange forces, leading to a finite mean value of the scaling variable anti y. This effect is considerably increased by wave function correlations, in particular by tensor correlations, similar to the case of the photonuclear enhancement factor k. (orig.)

  3. Application of the Wigner-Function Formulation to Mesoscopic Systems in Presence of Electron-Phonon Interaction

    National Research Council Canada - National Science Library

    Jacoboni, C

    1997-01-01

    A theoretical and computational analysis of the quantum dynamics of charge carriers in presence of electron-phonon interaction based on the Wigner function is here applied to the study of transport in mesoscopic systems...

  4. Electronic and optical properties of families of polycyclic aromatic hydrocarbons: A systematic (time-dependent) density functional theory study

    International Nuclear Information System (INIS)

    Malloci, G.; Cappellini, G.; Mulas, G.; Mattoni, A.

    2011-01-01

    Graphical abstract: Electronic absorption spectra of the neutral molecules of the four PAH classes considered, as computed using the real-time real-space TD-DFT. Highlights: →We present a systematic comparative study of families of PAHs. → We computed electronic, optical, and transport properties as a function of size. → We considered oligoacenes, phenacenes, circumacenes, and oligorylenes. → Circumacenes have the best transport properties compared to the other classes. → Oligorylenes are much more efficient in absorbing low-energy photons. - Abstract: Homologous classes of polycyclic aromatic hydrocarbons (PAHs) in their crystalline state are among the most promising materials for organic opto-electronics. Following previous works on oligoacenes we present a systematic comparative study of the electronic, optical, and transport properties of oligoacenes, phenacenes, circumacenes, and oligorylenes. Using density functional theory (DFT) and time-dependent DFT we computed: (i) electron affinities and first ionization energies; (ii) quasiparticle correction to the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap; (iii) molecular reorganization energies and (iv) electronic absorption spectra of neutral and ±1 charged systems. The excitonic effects are estimated by comparing the optical gap and the quasiparticle corrected HOMO-LUMO energy gap. For each molecular property computed, general trends as a function of molecular size and charge state are discussed. Overall, we find that circumacenes have the best transport properties, displaying a steeper decrease of the molecular reorganization energy at increasing sizes, while oligorylenes are much more efficient in absorbing low-energy photons in comparison to the other classes.

  5. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels

    2009-01-01

    Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab init...

  6. Electron-electron scattering in linear transport in two-dimensional systems

    DEFF Research Database (Denmark)

    Hu, Ben Yu-Kuang; Flensberg, Karsten

    1996-01-01

    We describe a method for numerically incorporating electron-electron scattering in quantum wells for small deviations of the distribution function from equilibrium, within the framework of the Boltzmann equation. For a given temperature T and density n, a symmetric matrix needs to be evaluated only...... once, and henceforth it can be used to describe electron-electron scattering in any Boltzmann equation linear-response calculation for that particular T and n. Using this method, we calculate the distribution function and mobility for electrons in a quantum well, including full finite...

  7. The appropriateness of density-functional theory for the calculation of molecular electronics properties.

    Science.gov (United States)

    Reimers, Jeffrey R; Cai, Zheng-Li; Bilić, Ante; Hush, Noel S

    2003-12-01

    As molecular electronics advances, efficient and reliable computation procedures are required for the simulation of the atomic structures of actual devices, as well as for the prediction of their electronic properties. Density-functional theory (DFT) has had widespread success throughout chemistry and solid-state physics, and it offers the possibility of fulfilling these roles. In its modern form it is an empirically parameterized approach that cannot be extended toward exact solutions in a prescribed way, ab initio. Thus, it is essential that the weaknesses of the method be identified and likely shortcomings anticipated in advance. We consider four known systematic failures of modern DFT: dispersion, charge transfer, extended pi conjugation, and bond cleavage. Their ramifications for molecular electronics applications are outlined and we suggest that great care is required when using modern DFT to partition charge flow across electrode-molecule junctions, screen applied electric fields, position molecular orbitals with respect to electrode Fermi energies, and in evaluating the distance dependence of through-molecule conductivity. The causes of these difficulties are traced to errors inherent in the types of density functionals in common use, associated with their inability to treat very long-range electron correlation effects. Heuristic enhancements of modern DFT designed to eliminate individual problems are outlined, as are three new schemes that each represent significant departures from modern DFT implementations designed to provide a priori improvements in at least one and possible all problem areas. Finally, fully semiempirical schemes based on both Hartree-Fock and Kohn-Sham theory are described that, in the short term, offer the means to avoid the inherent problems of modern DFT and, in the long term, offer competitive accuracy at dramatically reduced computational costs.

  8. Current trends in follow-up of trophoblastic function in ruminant species.

    Science.gov (United States)

    Sousa, N M; Beckers, J F; Gajewski, Z

    2008-12-01

    During the pregnancy of ruminants, different hormones and proteins are secreted by placenta or corpus luteum allowing the follow up of gestation. Among them, progesterone (P4) and pregnancy-associated glycoproteins (PAG) were proposed as laboratory tools to establish or to confirm pregnancy diagnosis. In last years, PAG assay also provided useful information for researchers working in programs focused on the follow up of trophoblastic function. Concentrations of PAG appeared as altered after the use of embryo biotechnology (in vitro fertilization, cloning by nuclear transfer, inter-specific pregnancies), according to nutritional status of pregnant females (overnourished or undernourished), or consecutive to infectious diseases leading to pathologies affecting the pregnancy in cows (Actynomyces pyogenes and Neospora caninum) and goats (Toxoplasma gondii, Listeria monocytogenes and Trypanosoma congolense). As well, in numerous studies, the association of repeated ultrasound examinations with P4 and PAG determinations allowed a better understanding of mechanisms related to embryonic and fetal mortalities: failure after artificial insemination or embryo transfer techniques, large offspring syndrome after in vitro fecundation and cloning.

  9. First-principles electronic functionalization of silicene and germanene by adatom chemisorption

    Energy Technology Data Exchange (ETDEWEB)

    Broek, B. van den; Houssa, M.; Scalise, E. [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Pourtois, G. [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Chemistry, Plasmant Research Group, University of Antwerp, B-2610 Wilrijk-Antwerp (Belgium); Afanas‘ev, V.V.; Stesmans, A. [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium)

    2014-02-01

    This study presents first-principles results on the electronic functionalization of silicene and germanene monolayers by means of chemisorption of adatom species H, Li, F, Sc, Ti, V. Three general adatom-monolayer configurations are considered, each having its distinct effect on the electronic structure, yielding metallic or semiconducting dispersions depending on the adatom species and configuration. The induced bandgap is a (in)direct Γ gap ranging from 0.2 to 2.3 eV for both silicene and germanene. In general the alternating configuration was found to be the most energetically stable. The boatlike and chairlike conformers are degenerate with the former having anisotropic effective carrier masses. The top configuration leads to the planar monolayer and predominately to a gapped dispersion. The hollow configuration with V adatoms retains the Dirac cone, but with strong orbital planar hybridization at the Fermi level. We also observe a planar surface state the Fermi level for the latter systems.

  10. Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities

    International Nuclear Information System (INIS)

    Pegoraro, F.; Palodhi, L.; Califano, F.

    2013-01-01

    Electron distribution functions that are anisotropic in phase space are a common feature of collisionless plasmas both in space and in the laboratory and the investigation of the processes through which these distributions relax is of primary interest. In fact, the free energy that is made available by the unbalance of the particle “temperatures” in the different directions can be transferred, depending on the plasma conditions, to quasistatic magnetic fields, to electromagnetic or electrostatic coherent structures or to particle acceleration. The anisotropy of the electron distribution function in an unmagnetized plasma can give rise to the onset of the well known Weibel instability which generates a quasistatic magnetic field. If a magnetic field is already present in the plasma, the Weibel instability driven by the anisotropy of the electron energy distribution turns into the so called whistler instability, in which case circularly polarized whistler waves are generated by the relaxation of the electron distribution function. Whistler waves are actually ubiquitous in plasmas and their generation has been extensively studied in recent years in the laboratory. Whistler instabilities have been reported in space where bursts of whistler mode magnetic noise are found to be present in the magnetosphere, close to the magnetopause and are also a likely source of several different magnetospheric fluctuations including plasmaspheric hiss and magnetospheric chorus. In this presentation the transition between non resonant (Weibel-type) and resonant (whistler) instabilities is investigated numerically in plasma configurations with an ambient magnetic field of increasing amplitudes. The Vlasov-Maxwell system is solved in a configuration where the fields have three components but depend only on one coordinate and on time. The nonlinear evolution of these instabilities is shown to lead to the excitation of electromagnetic and electrostatic modes at the first few harmonics

  11. Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

    Science.gov (United States)

    Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.

    2016-04-01

    We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.

  12. First-principles calculation of the superconducting gap function due to electron-electron interaction for YBa2Cu3O/sub 7-//sub x/

    International Nuclear Information System (INIS)

    Chui, S.T.; Kasowski, R.V.; Hsu, W.Y.

    1989-01-01

    We argue that because of the anisotropic nature of YBa 2 Cu 3 O/sub 7-//sub x/, one-dimensional-type charge- and spin-density fluctuations produce an effective attraction that overcomes the electron-electron Coulomb repulsion, but only at large distances. This effective attraction is further enhanced by band-structure effects such that a substantial superconducting transition temperature can be obtained. Without making any assumption of the symmetry of the gap function, we solve the Bardeen-Cooper-Schrieffer (BCS) superconducting gap equation for the six bands closest to the Fermi level. A highly anisotropic gap function with a maximum of about 0.11 eV is found. From the linearized gap equation, a transition temperature of about 0.035 eV is obtained. This is about one-quarter the maximum of the gap function, consistent with the experimental ratio of the transition temperature to the gap determined from tunneling, infrared, and nuclear quadrupole resonance measurements. The important participants to the superconducting pair come from electrons close to planar copper [Cu(2)] and chain oxygen [O(1) and O(4)] sites, consistent with recent quadrupole resonance measurements. Our calculation produces a coherence length of the order of 30 A in the xy direction, the same order of magnitude as the experimental result and considerably smaller than the conventional magnitude of ordinary BCS materials. Similar calculations for YBa 2 Cu 3 O/sub 6.5/ where periodic O vacancies are introduced along the one-dimensional Cu-O chains shows that the transition temperature is reduced by half

  13. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    Science.gov (United States)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  14. Collisional spin-oriented Sherman function in electron-hole semiconductor plasmas: Landau damping effect

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2018-04-01

    The influence of Landau damping on the spin-oriented collisional asymmetry is investigated in electron-hole semiconductor plasmas. The analytical expressions of the spin-singlet and the spin-triplet scattering amplitudes as well as the spin-oriented asymmetry Sherman function are obtained as functions of the scattering angle, the Landau parameter, the effective Debye length, and the collision energy. It is found that the Landau damping effect enhances the spin-singlet and spin-triplet scattering amplitudes in the forward and back scattering domains, respectively. It is also found that the Sherman function increases with an increase in the Landau parameter. In addition, the spin-singlet scattering process is found to be dominant rather than the spin-triplet scattering process in the high collision energy domain.

  15. Macromolecular scaffolding: the relationship between nanoscale architecture and function in multichromophoric arrays for organic electronics.

    Science.gov (United States)

    Palermo, Vincenzo; Schwartz, Erik; Finlayson, Chris E; Liscio, Andrea; Otten, Matthijs B J; Trapani, Sara; Müllen, Klaus; Beljonne, David; Friend, Richard H; Nolte, Roeland J M; Rowan, Alan E; Samorì, Paolo

    2010-02-23

    The optimization of the electronic properties of molecular materials based on optically or electrically active organic building blocks requires a fine-tuning of their self-assembly properties at surfaces. Such a fine-tuning can be obtained on a scale up to 10 nm by mastering principles of supramolecular chemistry, i.e., by using suitably designed molecules interacting via pre-programmed noncovalent forces. The control and fine-tuning on a greater length scale is more difficult and challenging. This Research News highlights recent results we obtained on a new class of macromolecules that possess a very rigid backbone and side chains that point away from this backbone. Each side chain contains an organic semiconducting moiety, whose position and electronic interaction with neighboring moieties are dictated by the central macromolecular scaffold. A combined experimental and theoretical approach has made it possible to unravel the physical and chemical properties of this system across multiple length scales. The (opto)electronic properties of the new functional architectures have been explored by constructing prototypes of field-effect transistors and solar cells, thereby providing direct insight into the relationship between architecture and function.

  16. The structural and electronic properties of amine-functionalized boron nitride nanotubes via ammonia plasmas: a density functional theory study

    International Nuclear Information System (INIS)

    Cao Fenglei; Ji Yuemeng; Zhao Cunyuan; Ren Wei

    2009-01-01

    The reaction behavior of the chemical modification of boron nitride nanotubes (BNNTs) with ammonia plasmas has been investigated by density functional theory (DFT) calculations. Unlike previously studied functionalization with NH 3 and amino functional groups, we found that NH 2 * radicals involved in the ammonia plasmas can be covalently incorporated to BNNTs through a strong single B-N bond. Subsequently, the H * radicals also involved in the ammonia plasmas would prefer to combine with the N atoms neighboring the NH 2 -functionalized B atoms. Our study revealed that this reaction behavior can be elucidated using the frontier orbital theory. The calculated band structures and density of states (DOS) indicate that this modification is an effective method to modulate the electronic properties of BNNTs. We have discussed various defects on the surface of BNNTs generated by collisions of N 2 + ions. For most defects considered, the reactivity of the functionalization of BNNTs with NH 2 * are enhanced. Our conclusions are independent of the chirality, and the diameter dependence of the reaction energies is presented.

  17. Application of the Green's function method to some nonlinear problems of an electron storage ring

    International Nuclear Information System (INIS)

    Kheifets, S.

    1984-01-01

    One of the most important characteristics of an electron storage ring is the size of the beam. However analytical calculations of beam size are beset with problems and the computational methods and programs which are used to overcome these are inadequate for all problems in which stochastic noise is an essential part. Two examples are, for an electron storage ring, beam-size evaluation including beam-beam interactions, and finding the beam size for a nonlinear machine. The method described should overcome some of the problems. It uses the Green's function method applied to the Fokker-Planck equation governing the distribution function in the phase space of particle motion. The new step is to consider the particle motion in two degrees of freedom rather than in one dimension. The technique is described fully and is then applied to a strong-focusing machine. (U.K.)

  18. IMPLEMENTATION OF FUNCTIONS OF ELECTRONIC DEAN'S OFFICE USING PLATFORM MOODLE

    Directory of Open Access Journals (Sweden)

    Oleksandr A. Shcherbyna

    2016-01-01

    Full Text Available The introduction of information and communication technologies (ICT allows to more effectively and efficiently solve planning and organization tasks, as well as implementation and monitoring of educational process, which are usually handled by the dean's office. The article shows how the functions of electronic dean's office can be implemented in Moodle learning management system using public plugins. In particular, the methods for collection, processing and generalization of operational information about students’ performance are considered. A method of students’ enrollment is offered. The method uses the meta courses and cohorts mechanisms, which allow significantly reduce the amount of work for site administration.

  19. Electron energy distribution function in a low-power Hall thruster discharge and near-field plume

    Science.gov (United States)

    Tichý, M.; Pétin, A.; Kudrna, P.; Horký, M.; Mazouffre, S.

    2018-06-01

    Electron temperature and plasma density, as well as the electron energy distribution function (EEDF), have been obtained inside and outside the dielectric channel of a 200 W permanent magnet Hall thruster. Measurements were carried out by means of a cylindrical Langmuir probe mounted onto a compact fast moving translation stage. The 3D particle-in cell numerical simulations complement experiments. The model accounts for the crossed electric and magnetic field configuration in a weakly collisional regime where only electrons are magnetized. Since only the electron dynamics is of interest in this study, an artificial mass of ions corresponding to mi = 30 000me was used to ensure ions could be assumed at rest. The simulation domain is located at the thruster exit plane and does not include the cathode. The measured EEDF evidences a high-energy electron population that is superimposed onto the low energy bulk population outside the channel. Inside the channel, the EEDF is close to Maxwellian. Both the experimental and numerical EEDF depart from an equilibrium distribution at the channel exit plane, a region of high magnetic field. We therefore conclude that the fast electron group found in the experiment corresponds to the electrons emitted by the external cathode that reach the thruster discharge without experiencing collision events.

  20. Estrous cycle regulatory mechanisms of the uterus are altered in cows that do not demonstrate behavioral estrus during an ovulation induction protocol

    Science.gov (United States)

    Estrus is the start of an estrous cycle in cows, and triggers several precisely timed events including receptivity to the bull, ovulation, conception, formation of the corpus luteum, and recognition of pregnancy. In the absence of a pregnancy signal, the corpus luteum (CL) must regress in response ...

  1. Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics.

    Directory of Open Access Journals (Sweden)

    Yunxia Gao

    Full Text Available BACKGROUND: The current strategies for making electronic devices are generally time, water, material and energy consuming. Here, the direct writing of composite functional circuits through comprehensive use of GaIn10-based liquid metal inks and matching material is proposed and investigated, which is a rather easy going and cost effective electronics fabrication way compared with the conventional approaches. METHODS: Owing to its excellent adhesion and electrical properties, the liquid metal ink was demonstrated as a generalist in directly making various basic electronic components such as planar resistor, inductor and capacitor or their combination and thus composing circuits with expected electrical functions. For a precise control of the geometric sizes of the writing, a mask with a designed pattern was employed and demonstrated. Mechanisms for justifying the chemical components of the inks and the magnitudes of the target electronic elements so as to compose various practical circuits were disclosed. RESULTS: Fundamental tests on the electrical components including capacitor and inductor directly written on paper with working time up to 48 h and elevated temperature demonstrated their good stability and potential widespread adaptability especially when used in some high frequency circuits. As the first proof-of-concept experiment, a typical functional oscillating circuit including an integrated chip of 74HC04 with a supply voltage of 5 V, a capacitor of 10 nF and two resistors of 5 kΩ and 1 kΩ respectively was directly composed on paper through integrating specific electrical elements together, which presented an oscillation frequency of 8.8 kHz. CONCLUSIONS: The present method significantly extends the roles of the metal ink in recent works serving as only a single electrical conductor or interconnecting wires. It opens the way for directly writing out complex functional circuits or devices on different substrates. Such circuit

  2. Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramics

    DEFF Research Database (Denmark)

    Zhang, Wei; Kuhn, Luise Theil; Jørgensen, Peter Stanley

    2013-01-01

    An optimum method is proposed to prepare thin foil transmission electron microscopy (TEM) lamellae of multiphase porous functional ceramics: prefilling the pore space of these materials with an epoxy resin prior to focused ion beam milling. Several advantages of epoxy impregnation are demonstrated...... by successful preparation of TEM specimens that maintain the structural integrity of the entire lamella. Feasibility of the TEM alignment procedure is demonstrated, and ideal TEM analyses are illustrated on solid oxide fuel cell and solid oxide electrolysis cell materials. Some potential drawbacks of the TEM...

  3. Electron Resonance Decay into a Biological Function: Decrease in Viability of E. coli Transformed by Plasmid DNA Irradiated with 0.5-18 eV Electrons.

    Science.gov (United States)

    Kouass Sahbani, S; Cloutier, P; Bass, A D; Hunting, D J; Sanche, L

    2015-10-01

    Transient negative ions (TNIs) are ubiquitous in electron-molecule scattering at low electron impact energies (0-20 eV) and are particularly effective in damaging large biomolecules. Because ionizing radiation generates mostly 0-20 eV electrons, TNIs are expected to play important roles in cell mutagenesis and death during radiotherapeutic cancer treatment, although this hypothesis has never been directly verified. Here, we measure the efficiency of transforming E. coli bacteria by inserting into the cells, pGEM-3ZfL(-) plasmid DNA that confers resistance to the antibiotic ampicillin. Before transformation, plasmids are irradiated with electrons of specific energies between 0.5 and 18 eV. The loss of transformation efficiency plotted as a function of irradiation energy reveals TNIs at 5.5 and 9.5 eV, corresponding to similar states observed in the yields of DNA double strand breaks. We show that TNIs are detectable in the electron-energy dependence of a biological process and can decrease cell viability.

  4. Detector line spread functions determined analytically by transport of Compton recoil electrons

    International Nuclear Information System (INIS)

    Veld, A.A. van't; Luijk, P. van; Praamstra, F.; Hulst, P.C. van der

    2001-01-01

    To achieve the maximum benefit of conformal radiation therapy it is necessary to obtain accurate knowledge of radiation beam penumbras based on high-resolution relative dosimetry of beam profiles. For this purpose there is a need to perform high-resolution dosimetry with well-established routine dosimeters, such as ionization chambers or diodes. Profiles measured with these detectors must be corrected for the dosimeter's nonideal response, caused by finite dimensions and, in the case of an ionization chamber, the alteration of electron transport and a contribution of electrons recoiled in the chamber wall and the central electrode. For this purpose the line spread function (LSF) of the detector is needed. The experimental determination of LSFs is cumbersome and restricted to the specific detector and beam energy spectrum used. Therefore, a previously reported analytical model [Med. Phys. 27, 923-934 (2000)] has been extended to determine response profiles of routine dosimeters: shielded diodes and, in particular, ionization chambers, in primary dose slit beams. The model combines Compton scattering of incident photons, the transport of recoiled electrons by Fermi-Eyges small-angle multiple scattering theory, and functions to limit electron transport. It yields the traveling direction and the energy of electrons upon incidence on the detector surface. In the case of ionization chambers, geometrical considerations are then sufficient to calculate the relative amount of ionization in chamber air, i.e., the detector response, as a function of the detector location in the slit beam. In combination with the previously reported slit beam dose profiles, the LSF can then readily be derived by reconstruction techniques. Since the spectral contributions are preserved, the LSF of a dosimeter is defined for any beam for which the effective spectrum is known. The detector response profiles calculated in this study have been verified in a telescopic slit beam geometry, and were

  5. Modified Monte Carlo method for study of electron transport in degenerate electron gas in the presence of electron-electron interactions, application to graphene

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-07-01

    Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron-electron (e-e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e-e interactions. This required adapting the treatment of e-e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.

  6. Electronic emission and electron guns

    International Nuclear Information System (INIS)

    Roy, Amitava

    2010-01-01

    This paper reviews the process of electron emission from metal surface. Although electrons move freely in conductors like metals, they normally do not leave the metal without some manipulation. In fact, heating and bombardment are the two primary ways in which electrons are emitted through the use of a heating element behind the cathode (termed thermionic emission) or as a result of bombardment with a beam of electrons, ions, or metastable atoms (termed secondary emission). Another important emission mechanism called Explosive Electron Emission (EEE) is also often used in various High Voltage Pulse Power Systems to generate very high current (few hundreds of kA) pulsed electron beams. The electron gun is the device in that it shoots off a continuous (or pulsed) stream of electrons. A brief idea about the evolution of the electron gun components and their basis of functioning are also discussed. (author)

  7. Recent progress in predicting structural and electronic properties of organic solids with the van der Waals density functional

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Susumu, E-mail: shou@sci.u-ryukyu.ac.jp [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan); Okuma, Koji; Inaoka, Takeshi [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan); Hamada, Ikutaro, E-mail: Hamada.Ikutaro@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan)

    2015-10-01

    Highlights: • Review of theoretical studies on organic solids with the density-functional methods. • van der Waals (vdW)-inclusive methods to predict cohesive properties of oligoacenes. • A variant of the vdW density functional describes the structures accurately. • The molecular configuration and conformation crucially affects the band dispersion. - Abstract: We review recent studies on electronic properties of the organic solids with the first-principles electronic structure methods, with the emphasis on the roles of the intermolecular van der Waals (vdW) interaction in electronic properties of the organic semiconductors. After a brief summary of the recent vdW inclusive first-principle theoretical methods, we discuss their performance in predicting cohesive properties of oligoacene crystals as examples of organic crystals. We show that a variant of the van der Waals density functional describes structure and energetics of organic crystals accurately. In addition, we review our recent study on the zinc phthalocyanine crystal and discuss the importance of the intermolecular distance and orientational angle in the band dispersion. Finally, we draw some general conclusions and the future perspectives.

  8. Recent progress in predicting structural and electronic properties of organic solids with the van der Waals density functional

    International Nuclear Information System (INIS)

    Yanagisawa, Susumu; Okuma, Koji; Inaoka, Takeshi; Hamada, Ikutaro

    2015-01-01

    Highlights: • Review of theoretical studies on organic solids with the density-functional methods. • van der Waals (vdW)-inclusive methods to predict cohesive properties of oligoacenes. • A variant of the vdW density functional describes the structures accurately. • The molecular configuration and conformation crucially affects the band dispersion. - Abstract: We review recent studies on electronic properties of the organic solids with the first-principles electronic structure methods, with the emphasis on the roles of the intermolecular van der Waals (vdW) interaction in electronic properties of the organic semiconductors. After a brief summary of the recent vdW inclusive first-principle theoretical methods, we discuss their performance in predicting cohesive properties of oligoacene crystals as examples of organic crystals. We show that a variant of the van der Waals density functional describes structure and energetics of organic crystals accurately. In addition, we review our recent study on the zinc phthalocyanine crystal and discuss the importance of the intermolecular distance and orientational angle in the band dispersion. Finally, we draw some general conclusions and the future perspectives.

  9. Understanding the corrosion behavior of isomorphous Cu–Ni alloy from its electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.C.; Lu, H.; Li, D.Y., E-mail: dongyang.li@ualberta.ca

    2016-04-15

    The electrode potential or galvanic series is usually used to reflect the nobility of metals and semi-metals. However, this potential is environment-dependent and the intrinsic nobility of a metal is ultimately governed by its electron stability, which can be represented by the electron work function (EWF). This article reports our studies on the corrosion behavior of isomorphous Cu–Ni alloy in HCl and NaCl solutions, respectively. It was demonstrated that the EWF of the alloy increased as the Ni concentration was increased, so did the corrosion resistance in the acidic solution. In the sodium chloride solution, however, the trend was reversed due to adsorption, hydrolysis and the formation of oxide scale on Cu-rich samples, which more or less prevented them from further corrosion in this solution. In order to confirm this, corrosive wear tests were performed to analyze the performance of the alloy when the effect of oxide scale was eliminated or minimized by the mechanical action. - Highlights: • Increasing %Ni resulted in higher overall electron work function of Cu–Ni alloy. • Higher EWF corresponded to higher resistance to corrosion in a HCl solution. • Trend was reversed in a NaCl solution due to the formation of oxide scale. • During slurry-jet tests, alloys with higher EWFs performed better.

  10. Understanding the corrosion behavior of isomorphous Cu–Ni alloy from its electron work function

    International Nuclear Information System (INIS)

    Huang, X.C.; Lu, H.; Li, D.Y.

    2016-01-01

    The electrode potential or galvanic series is usually used to reflect the nobility of metals and semi-metals. However, this potential is environment-dependent and the intrinsic nobility of a metal is ultimately governed by its electron stability, which can be represented by the electron work function (EWF). This article reports our studies on the corrosion behavior of isomorphous Cu–Ni alloy in HCl and NaCl solutions, respectively. It was demonstrated that the EWF of the alloy increased as the Ni concentration was increased, so did the corrosion resistance in the acidic solution. In the sodium chloride solution, however, the trend was reversed due to adsorption, hydrolysis and the formation of oxide scale on Cu-rich samples, which more or less prevented them from further corrosion in this solution. In order to confirm this, corrosive wear tests were performed to analyze the performance of the alloy when the effect of oxide scale was eliminated or minimized by the mechanical action. - Highlights: • Increasing %Ni resulted in higher overall electron work function of Cu–Ni alloy. • Higher EWF corresponded to higher resistance to corrosion in a HCl solution. • Trend was reversed in a NaCl solution due to the formation of oxide scale. • During slurry-jet tests, alloys with higher EWFs performed better.

  11. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence

    Science.gov (United States)

    Danylovych, H V

    2016-01-01

    We prove the feasibility of evaluation of mitochondrial electron transport chain function in isolated mitochondria of smooth muscle cells of rats from uterus using fluorescence of NADH and FAD coenzymes. We found the inversely directed changes in FAD and NADH fluorescence intensity under normal functioning of mitochondrial electron transport chain. The targeted effect of inhibitors of complex I, III and IV changed fluorescence of adenine nucleotides. Rotenone (5 μM) induced rapid increase in NADH fluorescence due to inhibition of complex I, without changing in dynamics of FAD fluorescence increase. Antimycin A, a complex III inhibitor, in concentration of 1 μg/ml caused sharp increase in NADH fluorescence and moderate increase in FAD fluorescence in comparison to control. NaN3 (5 mM), a complex IV inhibitor, and CCCP (10 μM), a protonophore, caused decrease in NADH and FAD fluorescence. Moreover, all the inhibitors caused mitochondria swelling. NO donors, e.g. 0.1 mM sodium nitroprusside and sodium nitrite similarly to the effects of sodium azide. Energy-dependent Ca2+ accumulation in mitochondrial matrix (in presence of oxidation substrates and Mg-ATP2- complex) is associated with pronounced drop in NADH and FAD fluorescence followed by increased fluorescence of adenine nucleotides, which may be primarily due to Ca2+- dependent activation of dehydrogenases of citric acid cycle. Therefore, the fluorescent signal of FAD and NADH indicates changes in oxidation state of these nucleotides in isolated mitochondria, which may be used to assay the potential of effectors of electron transport chain.

  12. The Positron-Electron Correlation Energy In ZnO Calculated With The Modified Single Wave Function Of Positron

    International Nuclear Information System (INIS)

    Chau Van Tao; Trinh Hoa Lang; Le Hoang Chien; Nguyen Huu Loc; Nguyen Anh Tuan

    2011-01-01

    Positron-electron correlation energy of the ZnO - positron system is studied on assumption that positron binds with the outer shell electrons of Zinc and Oxygen to form the pseudo ZnO - positron molecule before it annihilates with one of these electrons. In this work, the single wave function for positron is form by LCAO approximation and is modified according to the principle of linear superposition, and by using Variational Quantum Monte Carlo method (VQMC) [7] the correlation energy of this system is estimated with the value E c e-p = - 9.3 ± 1.1 eV. In the theoretical aspect it turns out that this result is more reasonable and closer to those of other methods [3] than the one which is done without modifying the wave function of positron [1]. To confirm this legitimate approach, however, the further calculations of positron annihilation rate in ZnO have to be carried out in our next work. (author)

  13. The effects of electron and hole transport layer with the electrode work function on perovskite solar cells

    Science.gov (United States)

    Deng, Quanrong; Li, Yiqi; Chen, Lian; Wang, Shenggao; Wang, Geming; Sheng, Yonglong; Shao, Guosheng

    2016-09-01

    The effects of electron and hole transport layer with the electrode work function on perovskite solar cells with the interface defects were simulated by using analysis of microelectronic and photonic structures-one-dimensional (AMPS-1D) software. The simulation results suggest that TiO2 electron transport layer provides best device performance with conversion efficiency of 25.9% compared with ZnO and CdS. The threshold value of back electrode work function for Spiro-OMeTAD, NiO, CuI and Cu2O hole transport layer are calculated to be 4.9, 4.8, 4.7 and 4.9 eV, respectively, to reach the highest conversion efficiency. The mechanisms of device physics with various electron and hole transport materials are discussed in details. The device performance deteriorates gradually as the increased density of interface defects located at ETM/absorber or absorber/HTM. This research results can provide helpful guidance for materials and metal electrode choice for perovskite solar cells.

  14. 6-Electron exchange function as a simple estimator of aromaticity in large polyaromatic hydrocarbons

    Science.gov (United States)

    Mandado, Marcos; Mosquera, Ricardo A.

    2009-02-01

    The 6-electron exchange function (6-EEF) is defined and calculated for a series of large polyaromatic hydrocarbons (PAHs). It is shown that the 6-EEF, computed at selected points in space, is able to reproduce in PAHs the same relative values as the multicenter electron delocalization indices with an affordable computational cost and without using any definition of the atom in the molecule. Calculations for a series of D 6h PAHs ranging from C 6H 6 to C 216H 36 are performed. The results can be extrapolated to even larger PAHs and allow predicting the behaviour of a benzene ring in an infinite sheet of graphite.

  15. Ab initio density functional theory investigation of structural and electronic properties of double-walled silicon carbide nanotubes

    Science.gov (United States)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-12-01

    By using ab initio density functional theory, the structural and electronic properties of (n,n)@(11,11) double-walled silicon carbide nanotubes (SiCNTs) are investigated. Our calculations reveal the existence of an energetically favorable double-walled nanotube whose interwall distance is about 4.3 Å. Interwall spacing and curvature difference are found to be essential for the electronic states around the Fermi level.

  16. Electron beam effects in auger electron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Fontaine, J.M.; Duraud, J.P.; Le Gressus, C.

    1979-01-01

    Electron beam effects on Si(100) and 5% Fe/Cr alloy samples have been studied by measurements of the secondary electron yield delta, determination of the surface composition by Auger electron spectroscopy and imaging with scanning electron microscopy. Variations of delta as a function of the accelerating voltage Esub(p) (0.5 -9 Torr has no effect on technological samples covered with their reaction layers; the sensitivities to the beam depend rather on the earlier mechanical, thermal and chemical treatment of the surfaces. (author)

  17. Density functional theory studies on the structures and electronic communication of meso-ferrocenylporphyrins: long range orbital coupling via porphyrin core.

    Science.gov (United States)

    Zhang, Lijuan; Qi, Dongdong; Zhang, Yuexing; Bian, Yongzhong; Jiang, Jianzhuang

    2011-02-01

    The molecular and electronic structures together with the electronic absorption spectra of a series of metal free meso-ferrocenylporphyrins, namely 5-ferrocenylporphyrin (1), 5,10-diferrocenylporphyrin (2), 5,15-diferrocenylporphyrin (3), 5,10,15-triferrocenylporphyrin (4), and 5,10,15,20-tetraferrocenylporphyrin (5) have been studied with the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. For the purpose of comparative studies, metal free porphyrin without any ferrocenyl group (0) and isolated ferrocene (6) were also calculated. The effects of the number and position of meso-attached ferrocenyl substituents on their molecular and electronic structures, atomic charges, molecular orbitals, and electronic absorption spectra of 1-5 were systematically investigated. The orbital coupling is investigated in detail, explaining well the long range coupling of ferrocenyl substituents connected via porphyrin core and the systematic change in the electronic absorption spectra of porphyrin compounds. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Electronic plants

    Science.gov (United States)

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  19. Accurate density functional prediction of molecular electron affinity with the scaling corrected Kohn–Sham frontier orbital energies

    Science.gov (United States)

    Zhang, DaDi; Yang, Xiaolong; Zheng, Xiao; Yang, Weitao

    2018-04-01

    Electron affinity (EA) is the energy released when an additional electron is attached to an atom or a molecule. EA is a fundamental thermochemical property, and it is closely pertinent to other important properties such as electronegativity and hardness. However, accurate prediction of EA is difficult with density functional theory methods. The somewhat large error of the calculated EAs originates mainly from the intrinsic delocalisation error associated with the approximate exchange-correlation functional. In this work, we employ a previously developed non-empirical global scaling correction approach, which explicitly imposes the Perdew-Parr-Levy-Balduz condition to the approximate functional, and achieve a substantially improved accuracy for the calculated EAs. In our approach, the EA is given by the scaling corrected Kohn-Sham lowest unoccupied molecular orbital energy of the neutral molecule, without the need to carry out the self-consistent-field calculation for the anion.

  20. Influence of size-corrected bound-electron contribution on nanometric silver dielectric function. Sizing through optical extinction spectroscopy

    International Nuclear Information System (INIS)

    Santillán, J M J; Videla, F A; Scaffardi, L B; Schinca, D C; Fernández van Raap, M B; Muraca, D

    2013-01-01

    The study of metal nanoparticles (NPs) is of great interest due to their ability to enhance optical fields on the nanometric scale, which makes them interesting for various applications in several fields of science and technology. In particular, their optical properties depend on the dielectric function of the metal, its size, shape and surrounding environment. This work analyses the contributions of free and bound electrons to the complex dielectric function of spherical silver NPs and their influence on the optical extinction spectra. The contribution of free electrons is usually corrected for particle size under 10 nm, introducing a modification of the damping constant to account for the extra collisions with the particle's boundary. For the contribution of bound electrons, we considered the interband transitions from the d-band to the conduction band including the size dependence of the electronic density states for radii below 2 nm. Bearing in mind these specific modifications, it was possible to determine optical and band energy parameters by fitting the bulk complex dielectric function. The results obtained from the optimum fit are: K bulk = 2 × 10 24 (coefficient for bound-electron contribution), E g = 1.91 eV (gap energy), E F = 4.12 eV (Fermi energy), and γ b = 1.5 × 10 14 Hz (damping constant for bound electrons). Based on this size-dependent dielectric function, extinction spectra of silver particles in the nanometric–subnanometric radius range can be calculated using Mie's theory, and its size behaviour analysed. These studies are applied to fit experimental extinction spectrum of very small spherical particles fabricated by fs laser ablation of a solid target in water. From the fitting, the structure and size distribution of core radius and shell thickness of the colloidal suspension could be determined. The spectroscopic results suggest that the colloidal suspension is composed by two types of structures: bare core and core–shell. The former

  1. Organic electronic materials: Recent advances in the dft description of the ground and excited states using tuned range-separated hybrid functionals

    KAUST Repository

    Körzdörfer, Thomas

    2014-11-18

    Density functional theory (DFT) and its time-dependent extension (TD-DFT) are powerful tools enabling the theoretical prediction of the ground- and excited-state properties of organic electronic materials with reasonable accuracy at affordable computational costs. Due to their excellent accuracy-to-numerical-costs ratio, semilocal and global hybrid functionals such as B3LYP have become the workhorse for geometry optimizations and the prediction of vibrational spectra in modern theoretical organic chemistry. Despite the overwhelming success of these out-of-the-box functionals for such applications, the computational treatment of electronic and structural properties that are of particular interest in organic electronic materials sometimes reveals severe and qualitative failures of such functionals. Important examples include the overestimation of conjugation, torsional barriers, and electronic coupling as well as the underestimation of bond-length alternations or excited-state energies in low-band-gap polymers.In this Account, we highlight how these failures can be traced back to the delocalization error inherent to semilocal and global hybrid functionals, which leads to the spurious delocalization of electron densities and an overestimation of conjugation. The delocalization error for systems and functionals of interest can be quantified by allowing for fractional occupation of the highest occupied molecular orbital. It can be minimized by using long-range corrected hybrid functionals and a nonempirical tuning procedure for the range-separation parameter.We then review the benefits and drawbacks of using tuned long-range corrected hybrid functionals for the description of the ground and excited states of π-conjugated systems. In particular, we show that this approach provides for robust and efficient means of characterizing the electronic couplings in organic mixed-valence systems, for the calculation of accurate torsional barriers at the polymer limit, and for the

  2. Ab initio density functional theory investigation of electronic properties of semiconducting single-walled carbon nanotube bundles

    Science.gov (United States)

    Moradian, Rostam; Behzad, Somayeh; Azadi, Sam

    2008-09-01

    By using ab initio density functional theory we investigated the structural and electronic properties of semiconducting (7, 0), (8, 0) and (10, 0) carbon nanotube bundles. The energetic and electronic evolutions of nanotubes in the bundling process are also studied. The effects of inter-tube coupling on the electronic dispersions of semiconducting carbon nanotube bundles are demonstrated. Our results show that the inter-tube coupling decreases the energy gap in semiconducting nanotubes. We found that bundles of (7, 0) and (8, 0) carbon nanotubes have metallic feature, while (10, 0) bundle is a semiconductor with an energy gap of 0.22 eV. To clarify our results the band structures of isolated and bundled nanotubes are compared.

  3. Combination of Wavefunction and Density Functional Approximations for Describing Electronic Correlation

    Science.gov (United States)

    Garza, Alejandro J.

    Perhaps the most important approximations to the electronic structure problem in quantum chemistry are those based on coupled cluster and density functional theories. Coupled cluster theory has been called the ``gold standard'' of quantum chemistry due to the high accuracy that it achieves for weakly correlated systems. Kohn-Sham density functionals based on semilocal approximations are, without a doubt, the most widely used methods in chemistry and material science because of their high accuracy/cost ratio. The root of the success of coupled cluster and density functionals is their ability to efficiently describe the dynamic part of the electron correlation. However, both traditional coupled cluster and density functional approximations may fail catastrophically when substantial static correlation is present. This severely limits the applicability of these methods to a plethora of important chemical and physical problems such as, e.g., the description of bond breaking, transition states, transition metal-, lanthanide- and actinide-containing compounds, and superconductivity. In an attempt to tackle this problem, nonstandard (single-reference) coupled cluster-based techniques that aim to describe static correlation have been recently developed: pair coupled cluster doubles (pCCD) and singlet-paired coupled cluster doubles (CCD0). The ability to describe static correlation in pCCD and CCD0 comes, however, at the expense of important amounts of dynamic correlation so that the high accuracy of standard coupled cluster becomes unattainable. Thus, the reliable and efficient description of static and dynamic correlation in a simultaneous manner remains an open problem for quantum chemistry and many-body theory in general. In this thesis, different ways to combine pCCD and CCD0 with density functionals in order to describe static and dynamic correlation simultaneously (and efficiently) are explored. The combination of wavefunction and density functional methods has a long

  4. Large work function difference driven electron transfer from electrides to single-walled carbon nanotubes

    KAUST Repository

    Menamparambath, Mini Mol; Park, Jong Ho; Yoo, Ho Sung; Patole, Shashikant P.; Yoo, Ji Beom; Kim, Sung Wng; Baik, Seunghyun

    2014-01-01

    V. Here we investigated charge transfer between two different types of electrides, [Ca2N]+·e- and [Ca 24Al28O64]4+·4e-, and single-walled carbon nanotubes (SWNTs) with a work function of 4.73-5.05 eV. [Ca2N]+·e- with open 2-dimensional electron layers

  5. A massively-parallel electronic-structure calculations based on real-space density functional theory

    International Nuclear Information System (INIS)

    Iwata, Jun-Ichi; Takahashi, Daisuke; Oshiyama, Atsushi; Boku, Taisuke; Shiraishi, Kenji; Okada, Susumu; Yabana, Kazuhiro

    2010-01-01

    Based on the real-space finite-difference method, we have developed a first-principles density functional program that efficiently performs large-scale calculations on massively-parallel computers. In addition to efficient parallel implementation, we also implemented several computational improvements, substantially reducing the computational costs of O(N 3 ) operations such as the Gram-Schmidt procedure and subspace diagonalization. Using the program on a massively-parallel computer cluster with a theoretical peak performance of several TFLOPS, we perform electronic-structure calculations for a system consisting of over 10,000 Si atoms, and obtain a self-consistent electronic-structure in a few hundred hours. We analyze in detail the costs of the program in terms of computation and of inter-node communications to clarify the efficiency, the applicability, and the possibility for further improvements.

  6. Molecular Functionalization of Graphene Oxide for Next-Generation Wearable Electronics.

    Science.gov (United States)

    Zarrin, Hadis; Sy, Serubbabel; Fu, Jing; Jiang, Gaopeng; Kang, Keunwoo; Jun, Yun-Seok; Yu, Aiping; Fowler, Michael; Chen, Zhongwei

    2016-09-28

    Acquiring reliable and efficient wearable electronics requires the development of flexible electrolyte membranes (EMs) for energy storage systems with high performance and minimum dependency on the operating conditions. Herein, a freestanding graphene oxide (GO) EM is functionalized with 1-hexyl-3-methylimidazolium chloride (HMIM) molecules via both covalent and noncovalent bonds induced by esterification reactions and electrostatic πcation-π stacking, respectively. Compared to the commercial polymeric membrane, the thin HMIM/GO membrane demonstrates not only slightest performance sensitivity to the operating conditions but also a superior hydroxide conductivity of 0.064 ± 0.0021 S cm(-1) at 30% RH and room temperature, which was 3.8 times higher than that of the commercial membrane at the same conditions. To study the practical application of the HMIM/GO membranes in wearable electronics, a fully solid-state, thin, flexible zinc-air battery and supercapacitor are made exhibiting high battery performance and capacitance at low humidified and room temperature environment, respectively, favored by the bonded HMIM molecules on the surface of GO nanosheets. The results of this study disclose the strong potential of manipulating the chemical structure of GO to work as a lightweight membrane in wearable energy storage devices, possessing highly stable performance at different operating conditions, especially at low relative humidity and room temperature.

  7. Ion and electron Kappa distribution functions in the plasma sheet.

    Science.gov (United States)

    Moya, P. S.; Stepanova, M. V.; Espinoza, C.; Antonova, E. E.; Valdivia, J. A.

    2017-12-01

    We present a study of ion and electron flux spectra in the Earth's plasma sheet using kappa distribution functions. Satellite data from the THEMIS mission were collected for thousands of crossings through the plasma sheet, between 7 and 35 Re and during the years 2008-2009. The events were separated according to the geomagnetic activity at the time. Our results show the distribution of the kappa index and characteristic energies across the plasma sheet and its evolution with distance to Earth for quiet times and for the substorm expansion and recovery phases. For the ions, it is observed that the kappa values tend to decrease outwards and that this effect is more significant in the dusk sector, where the smallest values are found for distances beyond 15 Re. The main effect of the substorms appears as an enhancement of this behavior. The electrons show a much more homogeneous distribution in quiet times, with a mild tendency for larger kappa values at larger distances. During substorms, the kappa values tend to equalize and appear very homogenous during expansion. However, they exhibit a significant increase in the dusk sector during the recovery substorm phase. Finally, we observe that the characteristic energy of the particles during substorms increases and concentrate at distances less than 15 Re.

  8. A partitioned correlation function interaction approach for describing electron correlation in atoms

    International Nuclear Information System (INIS)

    Verdebout, S; Godefroid, M; Rynkun, P; Jönsson, P; Gaigalas, G; Fischer, C Froese

    2013-01-01

    The traditional multiconfiguration Hartree–Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core–valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the

  9. A partitioned correlation function interaction approach for describing electron correlation in atoms

    Science.gov (United States)

    Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.

    2013-04-01

    The traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core-valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the MR

  10. The effect of electron-electron interaction induced dephasing on electronic transport in graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Kahnoj, Sina Soleimani; Touski, Shoeib Babaee [School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395-515, Tehran (Iran, Islamic Republic of); Pourfath, Mahdi, E-mail: pourfath@ut.ac.ir, E-mail: pourfath@iue.tuwien.ac.at [School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395-515, Tehran (Iran, Islamic Republic of); Institute for Microelectronics, TU Wien, Gusshausstrasse 27–29/E360, 1040 Vienna (Austria)

    2014-09-08

    The effect of dephasing induced by electron-electron interaction on electronic transport in graphene nanoribbons is theoretically investigated. In the presence of disorder in graphene nanoribbons, wavefunction of electrons can set up standing waves along the channel and the conductance exponentially decreases with the ribbon's length. Employing the non-equilibrium Green's function formalism along with an accurate model for describing the dephasing induced by electron-electron interaction, we show that this kind of interaction prevents localization and transport of electrons remains in the diffusive regime where the conductance is inversely proportional to the ribbon's length.

  11. Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description.

    Science.gov (United States)

    Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta

    2015-12-08

    We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.

  12. Electron mobility in supercritical ethane as a function of density and temperature

    International Nuclear Information System (INIS)

    Nishikawa, M.; Holroyd, R.A.; Sowada, U.

    1980-01-01

    The electron mobility is reported for ethane as a function of density at various temperatures above T/sub c/. The high pressure cell used permits measurements to 200 atm. Our analysis shows that theory is consistent with the ethane mobility results at low and intermediate densities. At densities less than 1 x 10 21 molecules/cm 3 electrons are scattered by isolated ethane molecules and the Lorentz equation is valid. At intermediate densities, μ/sub e/ correlates with the square of the velocity of sound, indicating that in dense fluids the adiabatic compressibility must be included. The data are consistent with a modified Cohen--Lekner equation, and the minimum in μ/sub e/N observed at densities just below d/sub c/ is qualitatively accounted for by changes in the adiabatic compressibility. Thus the concept of quasilocalization, suggested by others to qualitatively explain such minima, is unnecessary here. At higher densities an additional, unspecified, scattering mechanism becomes important

  13. Electronic properties of B and Al doped graphane: A hybrid density functional study

    Science.gov (United States)

    Mapasha, R. E.; Igumbor, E.; Andriambelaza, N. F.; Chetty, N.

    2018-04-01

    Using a hybrid density functional theory approach parametrized by Heyd, Scuseria and Ernzerhof (HSE06 hybrid functional), we study the energetics, structural and electronic properties of a graphane monolayer substitutionally doped with the B (BCH) and Al (AlCH) atoms. The BCH defect can be integrated within a graphane monolayer at a relative low formation energy, without major structural distortions and symmetry breaking. The AlCH defect relaxes outward of the monolayer and breaks the symmetry. The density of states plots indicate that BCH doped graphane monolayer is a wide band gap semiconductor, whereas the AlCH defect introduces the spin dependent mid gap states at the vicinity of the Fermi level, revealing a metallic character with the pronounced magnetic features. We further examine the response of the Al dependent spin states on the multiple charge states doping. We find that the defect formation energy, structural and electronic properties can be altered via charge state modulation. The +1 charge doping opens an energy band gap of 1.75 eV. This value corresponds to the wavelength in the visible spectrum, suggesting an ideal material for solar cell absorbers. Our study fine tunes the graphane band gap through the foreign atom doping as well as via defect charge state modulation.

  14. Study of transmission function and electronic transport in one dimensional silver nanowire: Ab-initio method using density functional theory (DFT)

    Science.gov (United States)

    Thakur, Anil; Kashyap, Rajinder

    2018-05-01

    Single nanowire electrode devices have their application in variety of fields which vary from information technology to solar energy. Silver nanowires, made in an aqueous chemical reduction process, can be reacted with gold salt to create bimetallic nanowires. Silver nanowire can be used as electrodes in batteries and have many other applications. In this paper we investigated structural and electronic transport properties of Ag nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Ag nanowire have been studied theoretically. First of all an optimized geometry for Ag nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations respectively. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Bulk properties of Ag are in agreement with experimental values which make the study of electronic and transport properties in silver nanowires interesting because they are promising materials as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Ag nano wire reveals that silver nanowire can be used as an electrode device.

  15. Benchmark study of ionization potentials and electron affinities of armchair single-walled carbon nanotubes using density functional theory

    Science.gov (United States)

    Zhou, Bin; Hu, Zhubin; Jiang, Yanrong; He, Xiao; Sun, Zhenrong; Sun, Haitao

    2018-05-01

    The intrinsic parameters of carbon nanotubes (CNTs) such as ionization potential (IP) and electron affinity (EA) are closely related to their unique properties and associated applications. In this work, we demonstrated the success of optimal tuning method based on range-separated (RS) density functionals for both accurate and efficient prediction of vertical IPs and electron affinities (EAs) of a series of armchair single-walled carbon nanotubes C20n H20 (n  =  2–6) compared to the high-level IP/EA equation-of-motion coupled-cluster method with single and double substitutions (IP/EA-EOM-CCSD). Notably, the resulting frontier orbital energies (–ε HOMO and –ε LUMO) from the tuning method exhibit an excellent approximation to the corresponding IPs and EAs, that significantly outperform other conventional density functionals. In addition, it is suggested that the RS density functionals that possess both a fixed amount of exact exchange in the short-range and a correct long-range asymptotic behavior are suitable for calculating electronic structures of finite-sized CNTs. Next the performance of density functionals for description of various molecular properties such as chemical potential, hardness and electrophilicity are assessed as a function of tube length. Thanks to the efficiency and accuracy of this tuning method, the related behaviors of much longer armchair single-walled CNTs until C200H20 were studied. Lastly, the present work is proved to provide an efficient theoretical tool for future materials design and reliable characterization of other interesting properties of CNT-based systems.

  16. The calibration of spectrometers for Auger electron and X-ray photoelectron spectrometers part II - the determination of the electron spectrometer transmission function and the detector sensitivity energy dependencies

    International Nuclear Information System (INIS)

    Smith, G.C.; Seah, M.P.

    1991-01-01

    For the use of published general or theoretical sensitivity factors in quantitative AES and XPS the energy dependence of both the spectrometer transmission function and the detector sensitivity must be known. Here we develop simple procedures which allow these dependencies to be determined experimentally. Detailed measurements for a modified VG Scientific ESCALAB II, the metrology spectrometer, operated in both the constant ΔE/E and constant ΔE modes, are presented and compared with theoretical estimates. It is shown that an exceptionally detailed electron-optical calculation, involving proprietary information, would be required to match the accuracy of the experimental procedures developed. Removal of the spectrometer transmission function and the detector sensitivity terms allows the measured spectrum to be converted to the true electron emission spectrum irrespective of the mode of operation. This provides the first step to the provision of reference samples to calibrate the transmission functions and detector sensitivities of all instruments so that they, in turn, may produce true electron emission spectra. This is vital if (i) all instruments are to give consistent results, (ii) theoretical terms are to be used in quantifying either AES or XPS and (iii) reference data banks are to be established for AES or XPS

  17. The effect of X-radiation on the endocrine function of ovaries in ewes irradiated in the mating season

    International Nuclear Information System (INIS)

    Halagan, J.; Arendarcik, J.; Balun, J.; Chlebovsky, O.

    1980-01-01

    The endocrine activity of the ovaries of ewes was studied after local irradiati n of the ovaries and the hypothalamo-hypophysial region. The ovaries were subjected to direct exposure to X-rays after laparotomy in four ewes. The total radiation dose was 2.39 Gy ( 50 R). The other four ewes the hypothalamo-hypophysial region was irradiated with X-rays, in this case the radiation dose was 19.40 Gy (2000 R). The endocrine activity of the ovaries was determined according to changes in the values of the concentration of free 17-beta estradiol and progesterone in the blood plasma. The values were obtained by radioimmunological assays. After laparotomy before exposure to X-rays, all the experimental animals had ovaries with the well-developed corpus luteum. The results indicated that a single exposure of a part of the hypothalamus-hypophysis-ovaries system to X-rays interfered with the endocrine function of ovaries and considerably affected the estrogen-synthetizing parts

  18. Sculpturing the electron wave function using nanoscale phase masks

    Energy Technology Data Exchange (ETDEWEB)

    Shiloh, Roy, E-mail: royshilo@post.tau.ac.il; Lereah, Yossi; Lilach, Yigal; Arie, Ady

    2014-09-15

    Electron beams are extensively used in lithography, microscopy, material studies and electronic chip inspection. Today, beams are mainly shaped using magnetic or electric forces, enabling only simple shaping tasks such as focusing or scanning. Recently, binary amplitude gratings achieved complex shapes. These, however, generate multiple diffraction orders, hence the desired shape, appearing only in one order, retains little of the beam energy. Here we demonstrate a method in electron-optics for arbitrarily shaping electron beams into a single desired shape, by precise patterning of a thin-membrane. It is conceptually similar to shaping light beams using refractive or diffractive glass elements such as lenses or holograms – rather than applying electromagnetic forces, the beam is controlled by spatially modulating its wavefront. Our method allows for nearly-maximal energy transference to the designed shape, and may avoid physical damage and charging effects that are the scorn of commonly-used (e.g. Zernike and Hilbert) phase-plates. The experimental demonstrations presented here – on-axis Hermite–Gauss and Laguerre–Gauss (vortex) beams, and computer-generated holograms – are a first example of nearly-arbitrary manipulation of electron beams. Our results herald exciting prospects for microscopic material studies, enables electron lithography with fixed sample and beam and high resolution electronic chip inspection by structured electron illumination. - Highlights: • Nanoscale-patterned membranes are used to shape electron beams. • Designing on-axis phase plates outside the back focal plane is possible. • Computer-generated holograms enable nearly-arbitrary beam shaping. • Applications in microscopy, lithography, chip inspection and material sciences.

  19. Non-Maxwellian electron energy probability functions in the plume of a SPT-100 Hall thruster

    Science.gov (United States)

    Giono, G.; Gudmundsson, J. T.; Ivchenko, N.; Mazouffre, S.; Dannenmayer, K.; Loubère, D.; Popelier, L.; Merino, M.; Olentšenko, G.

    2018-01-01

    We present measurements of the electron density, the effective electron temperature, the plasma potential, and the electron energy probability function (EEPF) in the plume of a 1.5 kW-class SPT-100 Hall thruster, derived from cylindrical Langmuir probe measurements. The measurements were taken on the plume axis at distances between 550 and 1550 mm from the thruster exit plane, and at different angles from the plume axis at 550 mm for three operating points of the thruster, characterized by different discharge voltages and mass flow rates. The bulk of the electron population can be approximated as a Maxwellian distribution, but the measured distributions were seen to decline faster at higher energy. The measured EEPFs were best modelled with a general EEPF with an exponent α between 1.2 and 1.5, and their axial and angular characteristics were studied for the different operating points of the thruster. As a result, the exponent α from the fitted distribution was seen to be almost constant as a function of the axial distance along the plume, as well as across the angles. However, the exponent α was seen to be affected by the mass flow rate, suggesting a possible relationship with the collision rate, especially close to the thruster exit. The ratio of the specific heats, the γ factor, between the measured plasma parameters was found to be lower than the adiabatic value of 5/3 for each of the thruster settings, indicating the existence of non-trivial kinetic heat fluxes in the near collisionless plume. These results are intended to be used as input and/or testing properties for plume expansion models in further work.

  20. Effect of the double-counting functional on the electronic and magnetic properties of half-metallic magnets using the GGA+U method

    International Nuclear Information System (INIS)

    Tsirogiannis, Christos; Galanakis, Iosif

    2015-01-01

    Methods based on the combination of the usual density functional theory (DFT) codes with the Hubbard models are widely used to investigate the properties of strongly correlated materials. Using first-principle calculations we study the electronic and magnetic properties of 20 half-metallic magnets performing self-consistent GGA+U calculations using both the atomic-limit (AL) and around-mean-field (AMF) functionals for the double counting term, used to subtract the correlation part from the DFT total energy, and compare these results to the usual generalized-gradient-approximation (GGA) calculations. Overall the use of AMF produces results similar to the GGA calculations. On the other hand the effect of AL is diversified depending on the studied material. In general the AL functional produces a stronger tendency towards magnetism leading in some cases to unphysical electronic and magnetic properties. Thus the choice of the adequate double-counting functional is crucial for the results obtained using the GGA+U method. - Highlights: • Ab initio study of half-metallic magnets. • Role of electronic correlations. • Double-counting term. • Atomic-limit vs around-mean-field functionals

  1. Electron mobility in supercritical pentanes as a function of density and temperature

    International Nuclear Information System (INIS)

    Itoh, Kengo; Nakagawa, Kazumichi; Nishikawa, Masaru

    1988-01-01

    The excess electron mobility in supercritical n-, iso- and neopentane was measured isothermally as a function of density. The density-normalized mobility μN in all three isomers goes through a minimum at a density below the respective critical densities, and the mobility is quite temperature-dependent in this region, then goes through a minimum. The μN behavior around the minimum in n-pentane is well accounted for by the Cohen-Lekner model with the structure factor S(K) estimated from the speed of sound, while that in iso- and neopentane is not. (author)

  2. Density functional theory study on the electronic structure of UAl3 and USn3

    International Nuclear Information System (INIS)

    Tan Mingqiu; Tao Xiangming; Xu Xiaojun; Cai Jianqiu

    2003-01-01

    Authors report an ab initio study on the electronic properties of 5f states in U X 3 (X=Al, Sn) by full-potential linear muffin-tin orbitals L(S)DA calculations. The relativistic effects which are quite remarkable for heavy atoms such as U, have been treated by using scalar relativistic and spin-orbital coupling corrections. The calculations presented in this article have addressed following issues: firstly, the numerical results illustrates the different U 5f itineracy in UAl 3 and USn 3 qualitatively, and then the heavy fermion behavior of USn 3 ; secondly, using Stuttgart-fatband analysis, authors have confirmed the above conclusion quantitatively. In addition to the above results, the calculation involved in this research has resolved the discrepancy between previous density functional theory studies on these compounds, especially the band structure dispersion in M-X direction of simple cubic USn 3 . In conclusion, this study has approached a more precise description for these uranium compounds on the basis of modern density functional theory calculation and described USn 3 as a heavy fermion system due to its localized U 5f electronic states theoretically

  3. Effects of varying doses of β-nerve growth factor on the timing of ovulation, plasma progesterone concentration and corpus luteum size in female alpacas (Vicugna pacos).

    Science.gov (United States)

    Stuart, C C; Vaughan, J L; Kershaw-Young, C M; Wilkinson, J; Bathgate, R; de Graaf, S P

    2015-11-01

    Ovulation in camelids is induced by the seminal plasma protein ovulation-inducing factor (OIF), recently identified as β-nerve growth factor (β-NGF). The present study measured the total protein concentration in alpaca seminal plasma using a bicinchoninic acid (BCA) protein quantification assay and found it to be 22.2±2.0mgmL(-1). To measure the effects of varying doses of β-NGF on the incidence and timing of ovulation, corpus luteum (CL) size and plasma progesterone concentration, 24 female alpacas were synchronised and treated with either: (1) 1mL 0.9% saline (n=5); (2) 4µg buserelin (n=5); (3) 1mg β-NGF protein (n=5); (4) 0.1mg β-NGF (n=5); or (5) 0.01mg β-NGF (n=4). Females were examined by transrectal ultrasonography at 1-2-h intervals between 20 and 45h after treatment or until ovulation occurred, as well as on Day 8 to observe the size of the CL, at which time blood was collected to measure plasma progesterone concentrations. Ovulation was detected in 0/5, 5/5, 5/5, 3/5 and 0/4 female alpacas treated with saline, buserelin, 1, 0.1 and 0.01mg β-NGF, respectively. Mean ovulation interval (P=0.76), CL diameter (P=0.96) and plasma progesterone concentration (P=0.96) did not differ between treatments. Mean ovulation interval overall was 26.2±1.0h. In conclusion, buserelin and 1mg β-NGF are equally effective at inducing ovulation in female alpacas, but at doses ≤0.1mg, β-NGF is not a reliable method for the induction of ovulation.

  4. Electronic structure of ZrS{sub x}Se{sub 2-x} by density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, Ailakbar; Moustafa, Mohamed; Janowitz, Christoph; Dwelk, Helmut; Manzke, Recardo [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Bouchani, Arash [Physics Department, Islamic Azad University, Kermanshah Branch (Iran, Islamic Republic of)

    2011-07-01

    The electronic properties of the ZrS{sub x}Se{sub 2-x} (x varies between zero and two) semiconductors have been calculated by density functional theory (using the Wien2K code) employing the full potential Hamiltonian within the Generalized Gradient Approximation (GGA) method. The results obtained for the end members of the series, i.e. ZrS{sub 2} and ZrSe{sub 2} reveal that the valence band maximum and conduction band minimum are located at {gamma} and between {gamma} and K respectively which is in agreement with our photoemission experimental data. Trends in the electronic structure for the whole substitution series are discussed.

  5. Structural, elastic, electronic and dynamical properties of OsB and ReB: Density functional calculations

    Science.gov (United States)

    Li, Yanling; Zeng, Zhi; Lin, Haiqing

    2010-06-01

    The structural, elastic, electronic and dynamical properties of ReB and OsB are investigated by first-principles calculations based on density functional theory. It turns out that ReB and OsB are metallic ultra-incompressible solids with small elastic anisotropy and high hardness. The change of c/ a ratio in OsB indicates that there is a structural phase transition at about 31 GPa. Phonon spectra calculations show that both OsB and ReB are stable dynamically and there are abnormal phonon dispersions along special directions in Brillouin zone. OsB and ReB do not show superconductivity due to very weak electron-phonon interactions in them.

  6. Ab initio/interpolated quantum dynamics on coupled electronic states with full configuration interaction wave functions

    International Nuclear Information System (INIS)

    Thompson, K.; Martinez, T.J.

    1999-01-01

    We present a new approach to first-principles molecular dynamics that combines a general and flexible interpolation method with ab initio evaluation of the potential energy surface. This hybrid approach extends significantly the domain of applicability of ab initio molecular dynamics. Use of interpolation significantly reduces the computational effort associated with the dynamics over most of the time scale of interest, while regions where potential energy surfaces are difficult to interpolate, for example near conical intersections, are treated by direct solution of the electronic Schroedinger equation during the dynamics. We demonstrate the concept through application to the nonadiabatic dynamics of collisional electronic quenching of Li(2p). Full configuration interaction is used to describe the wave functions of the ground and excited electronic states. The hybrid approach agrees well with full ab initio multiple spawning dynamics, while being more than an order of magnitude faster. copyright 1999 American Institute of Physics

  7. Magnetic form factor of NpAs2: a crystal field wave function for 5f electrons

    International Nuclear Information System (INIS)

    Amoretti, G.; Blaise, A.; Bonnet, M.; Boucherle, J.X.; Delapalme, A.; Fournier, J.M.; Vigneron, F.

    1982-10-01

    Neptunium magnetic form factor measurements in the ferromagnetic phase of NpAs 2 (T = 4.2 K, H = 4.6 T) are analysed under different assumptions: Np 3 + , Np 4 + or Np 5 + , with a free ion wave-function (Russel-Saunders and intermediate coupling scheme) or with a Crystal Field Wave function for 5f electrons: sub(m)sup(μ)asub(m)asub(m)/J,m>. The experimental results are compatible with either a 3+ or 4+ state

  8. The Agr quorum-sensing system regulates fibronectin binding but not hemolysis in the absence of a functional electron transport chain.

    Science.gov (United States)

    Pader, Vera; James, Ellen H; Painter, Kimberley L; Wigneshweraraj, Sivaramesh; Edwards, Andrew M

    2014-10-01

    Staphylococcus aureus is responsible for numerous chronic and recurrent infections, which are frequently associated with the emergence of small-colony variants (SCVs) that lack a functional electron transport chain. SCVs exhibit enhanced expression of fibronectin-binding protein (FnBP) and greatly reduced hemolysin production, although the basis for this is unclear. One hypothesis is that these phenotypes are a consequence of the reduced Agr activity of SCVs, while an alternative is that the lack of a functional electron transport chain and the resulting reduction in ATP production are responsible. Disruption of the electron transport chain of S. aureus genetically (hemB and menD) or chemically, using 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), inhibited both growth and Agr activity and conferred an SCV phenotype. Supplementation of the culture medium with synthetic autoinducing peptide (sAIP) significantly increased Agr expression in both hemB mutant strains and S. aureus grown with HQNO and significantly reduced staphylococcal adhesion to fibronectin. However, sAIP did not promote hemolysin expression in hemB mutant strains or S. aureus grown with HQNO. Therefore, while Agr regulates fibronectin binding in SCVs, it cannot promote hemolysin production in the absence of a functional electron transport chain. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. High-Frequency Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Functionalized Nanodiamonds in Aqueous Solution.

    Science.gov (United States)

    Akiel, R D; Stepanov, V; Takahashi, S

    2017-06-01

    Nanodiamond (ND) is an attractive class of nanomaterial for fluorescent labeling, magnetic sensing of biological molecules, and targeted drug delivery. Many of those applications require tethering of target biological molecules on the ND surface. Even though many approaches have been developed to attach macromolecules to the ND surface, it remains challenging to characterize dynamics of tethered molecule. Here, we show high-frequency electron paramagnetic resonance (HF EPR) spectroscopy of nitroxide-functionalized NDs. Nitroxide radical is a commonly used spin label to investigate dynamics of biological molecules. In the investigation, we developed a sample holder to overcome water absorption of HF microwave. Then, we demonstrated HF EPR spectroscopy of nitroxide-functionalized NDs in aqueous solution and showed clear spectral distinction of ND and nitroxide EPR signals. Moreover, through EPR spectral analysis, we investigate dynamics of nitroxide radicals on the ND surface. The demonstration sheds light on the use of HF EPR spectroscopy to investigate biological molecule-functionalized nanoparticles.

  10. Comparative analysis of electron-density and electron-localization function for dinuclear manganese complexes with bridging boron- and carbon-centered ligands.

    Science.gov (United States)

    Götz, Kathrin; Kaupp, Martin; Braunschweig, Holger; Stalke, Dietmar

    2009-01-01

    Bonding in borylene-, carbene-, and vinylidene-bridged dinuclear manganese complexes [MnCp(CO)(2)](2)X (X = B-tBu, B = NMe(2), CH(2), C=CH(2)) has been compared by analyses based on quantum theory of atoms in molecules (QTAIM), on the electron-localization function (ELF), and by natural-population analyses. All of the density functional theory based analyses agree on the absence of a significant direct Mn-Mn bond in these complexes and confirm a dominance of delocalized bonding via the bridging ligand. Interestingly, however, the topology of both charge density and ELF related to the Mn-bridge-Mn bonding depend qualitatively on the chosen density functional (except for the methylene-bridged complex, which exhibits only one three-center-bonding attractor both in -nabla(2)rho and in ELF). While gradient-corrected functionals provide a picture with localized two-center X-Mn bonding, increasing exact-exchange admixture in hybrid functionals concentrates charge below the bridging atom and suggests a three-center bonding situation. For example, the bridging boron ligands may be described either as substituted boranes (e.g., at BLYP or BP86 levels) or as true bridging borylenes (e.g., at BHLYP level). This dependence on the theoretical level appears to derive from a bifurcation between two different bonding situations and is discussed in terms of charge transfer between X and Mn, and in the context of self-interaction errors exhibited by popular functionals.

  11. Insight into mitochondrial structure and function from electron tomography.

    Science.gov (United States)

    Frey, T G; Renken, C W; Perkins, G A

    2002-09-10

    In recent years, electron tomography has provided detailed three-dimensional models of mitochondria that have redefined our concept of mitochondrial structure. The models reveal an inner membrane consisting of two components, the inner boundary membrane (IBM) closely apposed to the outer membrane and the cristae membrane that projects into the matrix compartment. These two components are connected by tubular structures of relatively uniform size called crista junctions. The distribution of crista junction sizes and shapes is predicted by a thermodynamic model based upon the energy of membrane bending, but proteins likely also play a role in determining the conformation of the inner membrane. Results of structural studies of mitochondria during apoptosis demonstrate that cytochrome c is released without detectable disruption of the outer membrane or extensive swelling of the mitochondrial matrix, suggesting the formation of an outer membrane pore large enough to allow passage of holo-cytochrome c. The possible compartmentation of inner membrane function between the IBM and the cristae membrane is also discussed.

  12. Electron-phonon relaxation and excited electron distribution in gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, V. P. [Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, Pervomayskaya st. 91, Yekaterinburg (Russian Federation); Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Tyuterev, V. G., E-mail: valtyut00@mail.ru [Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Tomsk State Pedagogical University, Kievskaya st. 60, Tomsk (Russian Federation); Tomsk State University, Lenin st. 36, Tomsk (Russian Federation); Chulkov, E. V. [Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Tomsk State University, Lenin st. 36, Tomsk (Russian Federation); Departamento de Fisica de Materiales, Facultad de Ciencias Qumicas, UPV/EHU and Centro de Fisica de Materiales CFM-MPC and Centro Mixto CSIC-UPV/EHU, Apdo. 1072, 20080 San Sebastian (Spain); Echenique, P. M. [Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Facultad de Ciencias Qumicas, UPV/EHU and Centro de Fisica de Materiales CFM-MPC and Centro Mixto CSIC-UPV/EHU, Apdo. 1072, 20080 San Sebastian (Spain)

    2016-08-28

    We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this function breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers' generation, the speed of electron-phonon relaxation, rates of inter-band recombination, and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy “tail” largely covers the conduction band. The shape of the high-energy “tail” strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in an irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of the electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi “tail” is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can essentially affect the charge transport in the irradiated and highly doped semiconductors.

  13. Inverse electron-demand 1,3-dipolar cycloaddition of nitrile oxide with common nitriles leading to 3-functionalized 1,2,4-oxadiazoles.

    Science.gov (United States)

    Nishiwaki, Nagatoshi; Kobiro, Kazuya; Hirao, Shotaro; Sawayama, Jun; Saigo, Kazuhiko; Ise, Yumiko; Okajima, Yoshikazu; Ariga, Masahiro

    2011-10-07

    A carbamoyl-substituted nitrile oxide was generated upon treatment of easily available 2-methyl-4-nitro-3-isoxazolin-5(2H)-one with THF (not dried); the reaction proceeded efficiently even in the absence of any special reagents and reaction conditions. The nitrile oxide caused 1,3-dipolar cycloaddition with common aliphatic nitriles or electron-rich aromatic nitriles to afford 3-functionalized 1,2,4-oxadiazoles, which are expected to serve as precursors for the preparation of a variety of functional materials by the chemical transformation of the carbamoyl group. While conventional preparative methods for 1,2,4-oxadiazoles involve the cycloaddition of an electron-rich nitrile oxide with an electron-deficient nitrile or a nitrile activated by a Lewis acid, our method employs the complementary combination of an electron-rich nitrile and an electron-deficient nitrile oxide- the inverse electron-demand 1,3-cycloaddition. The DFT calculations using B3LYP 6-31G* supported the abovementioned inverse reactivity, and also suggested the presence of an accelerating effect by the carbamoyl group as a result of hydrogen bond formation with a dipolarophilic nitrile.

  14. Free electrons and ionic liquids: study of excited states by means of electron-energy loss spectroscopy and the density functional theory multireference configuration interaction method.

    Science.gov (United States)

    Regeta, Khrystyna; Bannwarth, Christoph; Grimme, Stefan; Allan, Michael

    2015-06-28

    The technique of low energy (0-30 eV) electron impact spectroscopy, originally developed for gas phase molecules, is applied to room temperature ionic liquids (IL). Electron energy loss (EEL) spectra recorded near threshold, by collecting 0-2 eV electrons, are largely continuous, assigned to excitation of a quasi-continuum of high overtones and combination vibrations of low-frequency modes. EEL spectra recorded by collecting 10 eV electrons show predominantly discrete vibrational and electronic bands. The vibrational energy-loss spectra correspond well to IR spectra except for a broadening (∼0.04 eV) caused by the liquid surroundings, and enhanced overtone activity indicating a contribution from resonant excitation mechanism. The spectra of four representative ILs were recorded in the energy range of electronic excitations and compared to density functional theory multireference configuration interaction (DFT/MRCI) calculations, with good agreement. The spectra up to about 8 eV are dominated by π-π* transitions of the aromatic cations. The lowest bands were identified as triplet states. The spectral region 2-8 eV was empty in the case of a cation without π orbitals. The EEL spectrum of a saturated solution of methylene green in an IL band showed the methylene green EEL band at 2 eV, indicating that ILs may be used as a host to study nonvolatile compounds by this technique in the future.

  15. Electronic and thermoelectric properties of InN studied using ab initio density functional theory and Boltzmann transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P. D., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu; Scolfaro, L., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu [Department of Physics, Texas State University, San Marcos, Texas 78666 (United States)

    2014-12-14

    The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.

  16. Effects of functional group substitution on electron spectra and solvation dynamics in a family of ionic liquids

    International Nuclear Information System (INIS)

    Wishart, James F.; Lall-Ramnarine, Sharon I.; Raju, Ravinder; Scumpia, Alexander; Bellevue, Sherly; Ragbir, Revans; Engel, Robert

    2005-01-01

    Ionic liquids containing ether-, alcohol- and alkyl-functionalized quaternary ammonium dications were studied by pulse radiolysis. Spectra on nanosecond timescales revealed that solvation of the excess electron is particularly slow in the case of the alcohol-derivatized ionic liquids. The blue shift of the electron spectrum to the customary 650 nm peak takes 25-40 ns at 21 deg. C. Comparison with the relaxation dynamics observed in viscous 1,2,6-trihydroxyhexane reveals the hindering effect of the ionic liquid lattice on hydroxypropyl side chain reorientation

  17. Examining real-time time-dependent density functional theory nonequilibrium simulations for the calculation of electronic stopping power

    Science.gov (United States)

    Yost, Dillon C.; Yao, Yi; Kanai, Yosuke

    2017-09-01

    In ion irradiation processes, electronic stopping power describes the energy transfer rate from the irradiating ion to the target material's electrons. Due to the scarcity and significant uncertainties in experimental electronic stopping power data for materials beyond simple solids, there has been growing interest in the use of first-principles theory for calculating electronic stopping power. In recent years, advances in high-performance computing have opened the door to fully first-principles nonequilibrium simulations based on real-time time-dependent density functional theory (RT-TDDFT). While it has been demonstrated that the RT-TDDFT approach is capable of predicting electronic stopping power for a wide range of condensed matter systems, there has yet to be an exhaustive examination of the physical and numerical approximations involved and their effects on the calculated stopping power. We discuss the results of such a study for crystalline silicon with protons as irradiating ions. We examine the influences of key approximations in RT-TDDFT nonequilibrium simulations on the calculated electronic stopping power, including approximations related to basis sets, finite size effects, exchange-correlation approximation, pseudopotentials, and more. Finally, we propose a simple and efficient correction scheme to account for the contribution from core-electron excitations to the stopping power, as it was found to be significant for large proton velocities.

  18. Time-dependent reduced density matrix functional theory applied to laser-driven, correlated two-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins; Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Time-dependent density functional theory (TDDFT) with known and practicable exchange-correlation potentials does not capture highly correlated electron dynamics such as single-photon double ionization, autoionization, or nonsequential ionization. Time-dependent reduced density matrix functional theory (TDRDMFT) may remedy these problems. The key ingredients in TDRDMFT are the natural orbitals (NOs), i.e., the eigenfunctions of the one-body reduced density matrix (1-RDM), and the occupation numbers (OCs), i.e., the respective eigenvalues. The two-body reduced density matrix (2-RDM) is then expanded in NOs, and equations of motion for the NOs can be derived. If the expansion coefficients of the 2-RDM were known exactly, the problem at hand would be solved. In practice, approximations have to be made. We study the prospects of TDRDMFT following a top-down approach. We solve the exact two-electron time-dependent Schroedinger equation for a model Helium atom in intense laser fields in order to study highly correlated phenomena such as the population of autoionizing states or single-photon double ionization. From the exact wave function we calculate the exact NOs, OCs, the exact expansion coefficients of the 2-RDM, and the exact potentials in the equations of motion. In that way we can identify how many NOs and which level of approximations are necessary to capture such phenomena.

  19. Electronic structure and physical properties of the spinel-type phase of BeP2N4 from all-electron density functional calculations

    International Nuclear Information System (INIS)

    Ching, W. Y.; Aryal, Sitram; Rulis, Paul; Schnick, Wolfgang

    2011-01-01

    Using density-functional-theory-based ab initio methods, the electronic structure and physical properties of the newly synthesized nitride BeP 2 N 4 with a phenakite-type structure and the predicted high-pressure spinel phase of BeP 2 N 4 are studied in detail. It is shown that both polymorphs are wide band-gap semiconductors with relatively small electron effective masses at the conduction-band minima. The spinel-type phase is more covalently bonded due to the increased number of P-N bonds for P at the octahedral sites. Calculations of mechanical properties indicate that the spinel-type polymorph is a promising superhard material with notably large bulk, shear, and Young's moduli. Also calculated are the Be K, P K, P L 3 , and N K edges of the electron energy-loss near-edge structure for both phases. They show marked differences because of the different local environments of the atoms in the two crystalline polymorphs. These differences will be very useful for the experimental identification of the products of high-pressure syntheses targeting the predicted spinel-type phase of BeP 2 N 4 .

  20. Electronic states of thiophene/phenylene co-oligomers: Extreme-ultra violet excited photoelectron spectroscopy observations and density functional theory calculations

    International Nuclear Information System (INIS)

    Kawaguchi, Yoshizo; Sasaki, Fumio; Mochizuki, Hiroyuki; Ishitsuka, Tomoaki; Tomie, Toshihisa; Ootsuka, Teruhisa; Watanabe, Shuji; Shimoi, Yukihiro; Yamao, Takeshi; Hotta, Shu

    2013-01-01

    We have investigated electronic states in the valence electron bands for the thin films of three thiophene/phenylene co-oligomer (TPCO) compounds, 2,5-bis(4-biphenylyl)thiophene (BP1T), 1,4-bis(5-phenylthiophen-2-yl)benzene (AC5), and 1,4-bis{5-[4-(trifluoromethyl)phenyl]thiophen-2-yl}benzene (AC5-CF 3 ), by using extreme-UV excited photoelectron spectroscopy (EUPS). By comparing both EUPS spectra and secondary electron spectra between AC5 and AC5-CF 3 , we confirm that CF 3 substitution to AC5 deepens valence states by 2 eV, and increases the ionization energy by 3 eV. From the cut-off positions of secondary electron spectra, the work functions of AC5, AC5-CF 3 , and BP1T are evaluated to be 3.8 eV, 4.8 eV, and 4.0 eV, respectively. We calculate molecular orbital (MO) energy levels by the density functional theory and compare results of calculations with those of experiments. Densities of states obtained by broadening MO levels well explain the overall features of experimental EUPS spectra of three TPCOs.

  1. Communication: a density functional with accurate fractional-charge and fractional-spin behaviour for s-electrons.

    Science.gov (United States)

    Johnson, Erin R; Contreras-García, Julia

    2011-08-28

    We develop a new density-functional approach combining physical insight from chemical structure with treatment of multi-reference character by real-space modeling of the exchange-correlation hole. We are able to recover, for the first time, correct fractional-charge and fractional-spin behaviour for atoms of groups 1 and 2. Based on Becke's non-dynamical correlation functional [A. D. Becke, J. Chem. Phys. 119, 2972 (2003)] and explicitly accounting for core-valence separation and pairing effects, this method is able to accurately describe dissociation and strong correlation in s-shell many-electron systems. © 2011 American Institute of Physics

  2. Single-site Green function of the Dirac equation for full-potential electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kordt, Pascal

    2012-05-30

    I present an elaborated analytical examination of the Green function of an electron scattered at a single-site potential, for both the Schroedinger and the Dirac equation, followed by an efficient numerical solution, in both cases for potentials of arbitrary shape without an atomic sphere approximation. A numerically stable way to calculate the corresponding regular and irregular wave functions and the Green function is via the angular Lippmann-Schwinger integral equations. These are solved based on an expansion in Chebyshev polynomials and their recursion relations, allowing to rewrite the Lippmann-Schwinger equations into a system of algebraic linear equations. Gonzales et al. developed this method for the Schroedinger equation, where it gives a much higher accuracy compared to previous perturbation methods, with only modest increase in computational effort. In order to apply it to the Dirac equation, I developed relativistic Lippmann-Schwinger equations, based on a decomposition of the potential matrix into spin spherical harmonics, exploiting certain properties of this matrix. The resulting method was embedded into a Korringa-Kohn-Rostoker code for density functional calculations. As an example, the method is applied by calculating phase shifts and the Mott scattering of a tungsten impurity. (orig.)

  3. Single-site Green function of the Dirac equation for full-potential electron scattering

    International Nuclear Information System (INIS)

    Kordt, Pascal

    2012-01-01

    I present an elaborated analytical examination of the Green function of an electron scattered at a single-site potential, for both the Schroedinger and the Dirac equation, followed by an efficient numerical solution, in both cases for potentials of arbitrary shape without an atomic sphere approximation. A numerically stable way to calculate the corresponding regular and irregular wave functions and the Green function is via the angular Lippmann-Schwinger integral equations. These are solved based on an expansion in Chebyshev polynomials and their recursion relations, allowing to rewrite the Lippmann-Schwinger equations into a system of algebraic linear equations. Gonzales et al. developed this method for the Schroedinger equation, where it gives a much higher accuracy compared to previous perturbation methods, with only modest increase in computational effort. In order to apply it to the Dirac equation, I developed relativistic Lippmann-Schwinger equations, based on a decomposition of the potential matrix into spin spherical harmonics, exploiting certain properties of this matrix. The resulting method was embedded into a Korringa-Kohn-Rostoker code for density functional calculations. As an example, the method is applied by calculating phase shifts and the Mott scattering of a tungsten impurity. (orig.)

  4. The auroral electron accelerator

    International Nuclear Information System (INIS)

    Bryant, D.A.; Hall, D.S.

    1989-01-01

    A model of the auroral electron acceleration process is presented in which the electrons are accelerated resonantly by lower-hybrid waves. The essentially stochastic acceleration process is approximated for the purposes of computation by a deterministic model involving an empirically derived energy transfer function. The empirical function, which is consistent with all that is known of electron energization by lower-hybrid waves, allows many, possibly all, observed features of the electron distribution to be reproduced. It is suggested that the process occurs widely in both space and laboratory plasmas. (author)

  5. After 65 years, research is still fun.

    Science.gov (United States)

    Hansel, William

    2013-01-01

    In 1946, at the end of World War II, I entered graduate school at Cornell University, where I remained for 44 years. During that time, my laboratory produced more than 300 publications in the field of reproductive biology, including studies on nutrition and reproduction, the role of the hypothalamus in pituitary gonadotropin release, corpus luteum formation and function, hormone assays, and estrous cycle synchronization. At age seventy, I retired from Cornell and accepted the Gordon Cain Endowed Professorship at Louisiana State University, where I continued my work on the bovine corpus luteum and added research on the collection, maturation, in vitro fertilization, and culture of bovine oocytes. In 1994, I moved to the Pennington Biomedical Research Center and soon thereafter started the research that led to development of the lytic peptide-gonadotropin conjugates, which target and destroy cancer cell membranes. I am continuing my work on the development of targeted cancer cell drugs and, yes, research is still fun!

  6. Radioisotopic techniques for the study of reproductive physiology in domestic animals: 2. Physiological implications

    International Nuclear Information System (INIS)

    Stabenfeldt, G.H.; Edqvist, L.E.

    1976-01-01

    Radioisotopic techniques have been important for studying endocrinological reproductive function in domestic animals. Normal physiological events in which hormone determination has been useful for elucidation of basic concepts include the ovulatory process, cyclic regression of the corpus luteum, hormone requirements for the manifestation of sexual receptivity, establishment of pregnancy and the termination of gestation (parturition). Hormone assays have been useful for understanding the mechanism by which intra-uterine infusion and/or prostaglandin administration in both the cow and the mare shortens the oestrus cycle, namely, through the initiation of regression of the corpus luteum. Endocrine assay has also been valuable in understanding the physiology of premature parturition (abortion), as well as the abnormal prolongation of gestation. Practical uses for hormone assays include the identification of prolonged luteal syndromes such as occur in the mare, cyclic ovarian activity in the absence of sexual receptivity, and follicular or luteal cysts as well as the determination of pregnancy (progesterone in milk or blood) about three weeks post-breeding. (author)

  7. Electronic states of Ca/PC61BM: Mechanism of low work function metal as interfacial material

    Directory of Open Access Journals (Sweden)

    Ying-Ying Du

    2018-03-01

    Full Text Available We have studied the electronic states at Ca/PC61BM interface using photoemission spectroscopy. It is found that the state of unoccupied molecular orbitals of the top molecular layer (TML becomes occupied by the electrons transferred from the Ca atoms. The work function of the heavily doped TML of PC61BM film is smaller than that of metal Ca, and thus the contact between the TML and metal Ca is Ohmic. A transition layer (TL of several molecular layers forms beneath the TML due to the diffusion of the Ca atoms. The TL is conductive and aligns its Fermi level with the negative integer charge transfer level of the interior PC61BM. The built-in electric field in the TL facilitates the electron transport from the interior of the PC61BM film to the TML.

  8. Comparison between static LFC and Mermin dielectric functions on proton stopping in a degenerate electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Barriga-Carrasco, Manuel D. [E.T.S.I. Industriales, Universisdad de Castilla La Mancha, Ciudad Real E13071 (Spain)], E-mail: ManuelD.Barriga@uclm.es

    2009-07-11

    If plasmas are considered fully ionized, the electronic stopping of a charged particle that traverses them will only be due to free electrons. This stopping can be obtained in first view through random phase approximation (RPA). However, free electrons interact between them affecting the stopping. These interactions can be taken into account in the dielectric formalism in two different ways: the local field correction (LFC) and the Mermin dielectric functions. LFC produces an enhancement in stopping before the maximum and recovers the RPA values just after it. The Mermin method also produces first a high increase at very low energies, then a small enhancement at low energies and finally decreases below RPA values before and after the maximum. Differences between the two methods are very important at very low energies and 30% around the stopping maximum.

  9. Comparison between static LFC and Mermin dielectric functions on proton stopping in a degenerate electron gas

    International Nuclear Information System (INIS)

    Barriga-Carrasco, Manuel D.

    2009-01-01

    If plasmas are considered fully ionized, the electronic stopping of a charged particle that traverses them will only be due to free electrons. This stopping can be obtained in first view through random phase approximation (RPA). However, free electrons interact between them affecting the stopping. These interactions can be taken into account in the dielectric formalism in two different ways: the local field correction (LFC) and the Mermin dielectric functions. LFC produces an enhancement in stopping before the maximum and recovers the RPA values just after it. The Mermin method also produces first a high increase at very low energies, then a small enhancement at low energies and finally decreases below RPA values before and after the maximum. Differences between the two methods are very important at very low energies and 30% around the stopping maximum.

  10. Density Functional Study of Structures and Electron Affinities of BrO4F/BrO4F-

    Directory of Open Access Journals (Sweden)

    Wei Li

    2009-07-01

    Full Text Available The structures, electron affinities and bond dissociation energies of BrO4F/BrO4F− species have been investigated with five density functional theory (DFT methods with DZP++ basis sets. The planar F-Br…O2…O2 complexes possess 3A' electronic state for neutral molecule and 4A' state for the corresponding anion. Three types of the neutral-anion energy separations are the adiabatic electron affinity (EAad, the vertical electron affinity (EAvert, and the vertical detachment energy (VDE. The EAad value predicted by B3LYP method is 4.52 eV. The bond dissociation energies De (BrO4F → BrO4-mF + Om (m = 1-4 and De- (BrO4F- → BrO4-mF- + Om and BrO4F- → BrO4-mF + Om- are predicted. The adiabatic electron affinities (EAad were predicted to be 4.52 eV for F-Br…O2…O2 (3A'← 4A' (B3LYP method.

  11. Electronic structure of copper nitrides as a function of nitrogen content

    International Nuclear Information System (INIS)

    Gordillo, N.; Gonzalez-Arrabal, R.; Diaz-Chao, P.; Ares, J.R.; Ferrer, I.J.; Yndurain, F.; Agulló-López, F.

    2013-01-01

    The nitrogen content dependence of the electronic properties for copper nitride thin films with an atomic percentage of nitrogen ranging from 26 ± 2 to 33 ± 2 have been studied by means of optical (spectroscopic ellipsometry), thermoelectric (Seebeck), and electrical resistivity measurements. The optical spectra are consistent with direct optical transitions corresponding to the stoichiometric semiconductor Cu 3 N plus a free-carrier contribution, essentially independent of temperature, which can be tuned in accordance with the N-excess. Deviation of the N content from stoichiometry drives to significant decreases from − 5 to − 50 μV/K in the Seebeck coefficient and to large enhancements, from 10 −3 up to 10 Ω cm, in the electrical resistivity. Band structure and density of states calculations have been carried out on the basis of the density functional theory to account for the experimental results. - Highlights: ► Electronic structure of N-rich Cu 3 N ► Stoichiometric films behave as an intrinsic semiconductor. ► N excess drives to the introduction of a narrow band at the Fermi level. ► Decrease of the Seebeck coefficient when increasing nitrogen content ► Increase of the electrical resistivity when increasing nitrogen content

  12. Quantum inelastic electron-vibration scattering in molecular wires: Landauer-like versus Green's function approaches and temperature effects

    International Nuclear Information System (INIS)

    Ness, H

    2006-01-01

    In this paper, we consider the problem of inelastic electron transport in molecular systems in which both electronic and vibrational degrees of freedom are considered on the quantum level. The electronic transport properties of the corresponding molecular nanojunctions are obtained by means of a non-perturbative Landauer-like multi-channel inelastic scattering technique. The connections between this approach and other Green's function techniques that are useful in particular cases are studied in detail. The validity of the wide-band approximation, the effects of the lead self-energy and the dynamical polaron shift are also studied for a wide range of parameters. As a practical application of the method, we consider the effects of the temperature on the conductance properties of molecular breakjunctions in relation to recent experiments

  13. DNA-Based Single-Molecule Electronics: From Concept to Function

    Science.gov (United States)

    2018-01-01

    Beyond being the repository of genetic information, DNA is playing an increasingly important role as a building block for molecular electronics. Its inherent structural and molecular recognition properties render it a leading candidate for molecular electronics applications. The structural stability, diversity and programmability of DNA provide overwhelming freedom for the design and fabrication of molecular-scale devices. In the past two decades DNA has therefore attracted inordinate amounts of attention in molecular electronics. This review gives a brief survey of recent experimental progress in DNA-based single-molecule electronics with special focus on single-molecule conductance and I–V characteristics of individual DNA molecules. Existing challenges and exciting future opportunities are also discussed. PMID:29342091

  14. DNA-Based Single-Molecule Electronics: From Concept to Function.

    Science.gov (United States)

    Wang, Kun

    2018-01-17

    Beyond being the repository of genetic information, DNA is playing an increasingly important role as a building block for molecular electronics. Its inherent structural and molecular recognition properties render it a leading candidate for molecular electronics applications. The structural stability, diversity and programmability of DNA provide overwhelming freedom for the design and fabrication of molecular-scale devices. In the past two decades DNA has therefore attracted inordinate amounts of attention in molecular electronics. This review gives a brief survey of recent experimental progress in DNA-based single-molecule electronics with special focus on single-molecule conductance and I-V characteristics of individual DNA molecules. Existing challenges and exciting future opportunities are also discussed.

  15. Quadrupole moments as measures of electron correlation in two-electron atoms

    International Nuclear Information System (INIS)

    Ceraulo, S.C.; Berry, R.S.

    1991-01-01

    We have calculated quadrupole moments, Q zz , of helium in several of its doubly excited states and in two of its singly excited Rydberg states, and of the alkaline-earth atoms Be, Mg, Ca, Sr, and Ba in their ground and low-lying excited states. The calculations use well-converged, frozen-core configuration-interaction (CI) wave functions and, for interpretive purposes, Hartree-Fock (HF) atomic wave functions and single-term, optimized, molecular rotor-vibrator (RV) wave functions. The quadrupole moments calculated using RV wave functions serve as a test of the validity of the correlated, moleculelike model, which has been used to describe the effects of electron correlation in these two-electron and pseudo-two-electron atoms. Likewise, the quadrupole moments calculated with HF wave functions test the validity of the independent-particle model. In addition to their predictive use and their application to testing simple models, the quadrupole moments calculated with CI wave functions reveal previously unavailable information about the electronic structure of these atoms. Experimental methods by which these quadrupole moments might be measured are also discussed. The quadrupole moments computed from CI wave functions are presented as predictions; measurements of Q zz have been made for only two singly excited Rydberg states of He, and a value of Q zz has been computed previously for only one of the states reported here. We present these results in the hope of stimulating others to measure some of these quadrupole moments

  16. Curly arrows meet electron density transfers in chemical reaction mechanisms: from electron localization function (ELF) analysis to valence-shell electron-pair repulsion (VSEPR) inspired interpretation.

    Science.gov (United States)

    Andrés, Juan; Berski, Sławomir; Silvi, Bernard

    2016-07-07

    Probing the electron density transfers during a chemical reaction can provide important insights, making possible to understand and control chemical reactions. This aim has required extensions of the relationships between the traditional chemical concepts and the quantum mechanical ones. The present work examines the detailed chemical insights that have been generated through 100 years of work worldwide on G. N. Lewis's ground breaking paper on The Atom and the Molecule (Lewis, G. N. The Atom and the Molecule, J. Am. Chem. Soc. 1916, 38, 762-785), with a focus on how the determination of reaction mechanisms can be reached applying the bonding evolution theory (BET), emphasizing how curly arrows meet electron density transfers in chemical reaction mechanisms and how the Lewis structure can be recovered. BET that combines the topological analysis of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool providing insight into molecular mechanisms of chemical rearrangements. In agreement with physical laws and quantum theoretical insights, BET can be considered as an appropriate tool to tackle chemical reactivity with a wide range of possible applications. Likewise, the present approach retrieves the classical curly arrows used to describe the rearrangements of chemical bonds for a given reaction mechanism, providing detailed physical grounds for this type of representation. The ideas underlying the valence-shell-electron pair-repulsion (VSEPR) model applied to non-equilibrium geometries provide simple chemical explanations of density transfers. For a given geometry around a central atom, the arrangement of the electronic domain may comply or not with the VSEPR rules according with the valence shell population of the considered atom. A deformation yields arrangements which are either VSEPR defective (at least a domain is missing to match the VSEPR arrangement corresponding to the geometry of the ligands), VSEPR compliant

  17. Transverse Momentum Dependent Parton Distribution/Fragmentation Functions at an Electron-Ion Collider

    International Nuclear Information System (INIS)

    Anselmino, M.; Avakian, H.; Boer, D.; Bradamante, F.; Burkardt, M.; Chen, J.P.; Cisbani, E.; Contalbrigo, M.; Crabb, D.; Dutta, D.; Gamberg, L.; Gao, H.; Hasch, D.; Huang, J.; Huang, M.; Kang, Z.; Keppel, C.; Laskaris, G.; Liang, Z.-T.; Liu, M.X.; Makins, N.; Mckeown, R.D.; Metz, A.; Meziani, Z.-E.; Musch, B.; Peng, J.-C.; Prokudin, A.; Qian, X.; Qiang, Y.; Qiu, J.W.; Rossi, P.; Schweitzer, P.; Soffer, J.; Sulkosky, V.; Wang, Y.; Xiao, B.; Ye, Q.; Ye, Q.-J.; Yuan, F.; Zhan, X.; Zhang, Y.; Zheng, W.; Zhou, J.

    2011-01-01

    We present a summary of a recent workshop held at Duke University on Partonic Transverse Momentum in Hadrons: Quark Spin-Orbit Correlations and Quark-Gluon Interactions. The transverse momentum dependent parton distribution functions (TMDs), parton-to-hadron fragmentation functions, and multi-parton correlation functions, were discussed extensively at the Duke workshop. In this paper, we summarize first the theoretical issues concerning the study of partonic structure of hadrons at a future electron-ion collider (EIC) with emphasis on the TMDs. We then present simulation results on experimental studies of TMDs through measurements of single spin asymmetries (SSA) from semi-inclusive deep-inelastic scattering (SIDIS) processes with an EIC, and discuss the requirement of the detector for SIDIS measurements. The dynamics of parton correlations in the nucleon is further explored via a study of SSA in D ((bar D)) production at large transverse momenta with the aim of accessing the unexplored tri-gluon correlation functions. The workshop participants identified the SSA measurements in SIDIS as a golden program to study TMDs in both the sea and valence quark regions and to study the role of gluons, with the Sivers asymmetry measurements as examples. Such measurements will lead to major advancement in our understanding of TMDs in the valence quark region, and more importantly also allow for the investigation of TMDs in the sea quark region along with a study of their evolution.

  18. Narrow electron injector for ballistic electron spectroscopy

    International Nuclear Information System (INIS)

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-01-01

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔE inj =10 meV is derived. [copyright] 2001 American Institute of Physics

  19. Electronic energy distribution function at high electron swarm energies in neon

    International Nuclear Information System (INIS)

    Brown, K.L.; Fletcher, J.

    1995-01-01

    Electron swarms moving through a gas under the influence of an applied electric field have been extensively investigated. Swarms at high energies, as measured by the ratio of the applied field to the gas number density, E/N, which are predominant in many applications have, in general, been neglected. Discharges at E/N in the range 300 0 < 133 Pa using a differentially pumped vacuum system in which the swarm electrons are extracted from the discharge and energy analysed in both a parallel plate retarded potential analyser and a cylindrical electrostatic analyser. Both pre-breakdown and post-breakdown discharges have been studied. Initial results indicate that as the discharge traverses breakdown no sudden change in the nature of the discharge occurs and that the discharge can be described by both a Monte Carlo simulation and by a Boltzmann treatment given by Phelps et al. (1987). 18 refs., 8 figs

  20. Constructive definition of functional derivatives in density-functional theory

    International Nuclear Information System (INIS)

    Luo Ji

    2006-01-01

    It is shown that the functional derivatives in density-functional theory (DFT) can be explicitly defined within the domain of electron densities restricted by the electron number, and a constructive definition of such restricted derivatives is suggested. With this definition, Kohn-Sham (KS) equations can be established for an N-electron system without extending the functional domain and introducing a Lagrange multiplier. This may clarify some of the fundamental questions raised by Nesbet (1998 Phys. Rev. A 58 R12). The definition naturally leads to the fact that the KS effective potential is determined only to within an additive constant, thus the KS levels can shift freely and the relation between the highest occupied molecular orbital (HOMO) energy and the ionization potential of the system depends on the choice of the constant. On the other hand, if the domain of functionals is indeed extended beyond the electron number restriction, conclusions depend on whether the extended functionals have unrestricted derivatives or not. It is shown that the ensemble extension of DFT to open systems of mixed states (Perdew et al 1982 Phys. Rev. Lett. 49 1691) leads to an energy functional which has no unrestricted derivative at integer electron numbers. Hence after this extension, the relation between the HOMO energy and the ionization potential for an N-electron system is still uncertain. Besides, there are different extensions of the energy functional to a domain of densities unrestricted by the integer electron number, resulting in different unrestricted derivatives and electron systems with different chemical potentials. Even for the exact exchange-correlation potential, there is still an undetermined constant, whether it is a restricted or unrestricted derivative

  1. Good Security Practices for Electronic Commerce, Including Electronic Data Interchange

    National Research Council Canada - National Science Library

    Saltman, Roy

    1993-01-01

    Electronic commerce (EC) is the use of documents in electronic form, rather than paper, for carrying out functions of business or government that require interchange of information, obligations, or monetary value between organizations...

  2. Printed Electronics

    Science.gov (United States)

    Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Crain, John M. (Inventor); Aksay, Ilhan A. (Inventor); Lettow, John S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2018-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  3. Pressure-Dependent Electronic and Transport Properties of Bulk Platinum Oxide by Density Functional Theory

    Science.gov (United States)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.

    2018-02-01

    The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.

  4. Structural and electronic properties of graphene–ZnO interfaces: dispersion-corrected density functional theory investigations

    International Nuclear Information System (INIS)

    Xu Pengtao; Tang Qing; Zhou Zhen

    2013-01-01

    Detailed first-principles computations were performed on the geometric and electronic properties of the interfaces between graphene and ZnO polar surfaces. A notable van der Waals force exists at the interface, and charge transfer occurs between graphene and ZnO as a result of the difference in their work functions. The Dirac point of graphene remains intact despite its adsorption on ZnO, implying that its interaction with ZnO does not affect the superior conductivity of graphene. Excited electrons within the energy range of 0–3 eV (versus Fermi energy) in the hybrid systems are mainly accumulated on graphene. The computations provide a theoretical explanation for the good performance of graphene/ZnO hybrid materials in photocatalysts and solar cells. (paper)

  5. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modele...... resonance and the lowering of the resonance energy due to an image charge effect. Finally we apply the TDDFT procedure to only consider the decay of molecular excitations and find that it agrees quite well with the width of the projected density of Kohn-Sham states....

  6. EFFECTIVE ELECTRONIC TUTORIAL

    Directory of Open Access Journals (Sweden)

    Andrei A. Fedoseev

    2014-01-01

    Full Text Available The article analyzes effective electronic tutorials creation and application based on the theory of pedagogy. Herewith the issues of necessary electronic tutorial functional, ways of the educational process organization with the use of information and communication technologies and the logistics of electronic educational resources are touched upon. 

  7. Possibility to Probe Negative Values of a Wigner Function in Scattering of a Coherent Superposition of Electronic Wave Packets by Atoms.

    Science.gov (United States)

    Karlovets, Dmitry V; Serbo, Valeriy G

    2017-10-27

    Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.

  8. Fermi-degeneracy and discrete-ion effects in the spherical-cell model and electron-electron correlation effects in hot dense plasmas

    International Nuclear Information System (INIS)

    Furukawa, H.; Nishihara, K.

    1992-01-01

    The spherical-cell model [F. Perrot, Phys. Rev. A 25, 489 (1982); M. W. C. Dharma-wardana and F. Perrot, ibid. 26, 2096 (1982)] is improved to investigate laser-produced hot, dense plasmas. The free-electron distribution function around a test free electron is calculated by using the Fermi integral in order that the free-electron--free-electron correlation function includes Fermi-degeneracy effects, and also that the calculation includes the discrete-ion effect. The free-electron--free-electron, free-electron--ion, and ion-ion correlation effects are coupled, within the framework of the hypernetted-chain approximation, through the Ornstein-Zernike relation. The effective ion-ion potential includes the effect of a spatial distribution of bound electrons. The interparticle correlation functions and the effective potential acting on either an electron or an ion in hot, dense plasmas are calculated numerically. The Fermi-degeneracy effect on the correlation functions between free electrons becomes clear for the degeneracy parameter θ approx-lt 1. The discrete-ion effect in the calculation of the correlation functions between free electrons affects the electron-ion pair distribution functions for r s approx-gt 3. As an application of the proposed model, the strong-coupling effect on the stopping power of charged particles [Xin-Zhong Yan, S. Tanaka, S. Mitake, and S. Ichimaru, Phys. Rev. A 32, 1785 (1985)] is estimated. While the free-electron--ion strong-coupling effect and the Fermi-degeneracy effect incorporated in the calculation of the free-electron distribution function around a test free electron enhance the stopping number, the quantum-diffraction effect incorporated in the quantal hypernetted-chain equations [J. Chihara, Prog. Theor. Phys. 72, 940 (1984); Phys. Rev. A 44, 1247 (1991); J. Phys. Condens. Matter 3, 8715 (1991)] reduces the stopping number substantially

  9. Impact Analysis of Electrical Current Characteristics in Relay Function for Electrical and Electronic Protection

    International Nuclear Information System (INIS)

    Syirrazie Che Soh; Harzawadi Hasim

    2013-01-01

    This paper is to study effect of electrical current on relay reaction, which has coil and switch inside the relay. An analysis on the electrical current will be conducted to determine current limitation for relay activation purpose. The result of analysis showing that current characteristic of relay and applied load will present their affect to the relay function performance. Finding from this result will bring the idea to develop a suitable design circuit for electrical and electronic protection. (author)

  10. Impact of the implementation of a well-designed electronic laboratory notebook on bioanalytical laboratory function.

    Science.gov (United States)

    Zeng, Jianing; Hillman, Mark; Arnold, Mark

    2011-07-01

    This paper shares experiences of the Bristol-Myers Squibb Company during the design, validation and implementation of an electronic laboratory notebook (ELN) into the GLP/regulated bioanalytical analysis area, as well as addresses the impact on bioanalytical laboratory functions with the implementation of the electronic notebook. Some of the key points covered are: knowledge management - the project-based electronic notebook takes full advantage of the available technology that focuses on data organization and sharing so that scientific data generated by individual scientists became department knowledge; bioanalytical workflows in the ELN - the custom-built workflows that include data entry templates, validated calculation processes, integration with laboratory information management systems/laboratory instruments, and reporting capability improve the data quality and overall workflow efficiency; regulatory compliance - carefully designed notebook reviewing processes, cross referencing of distributed information, audit trail and software validation reduce compliance risks. By taking into consideration both data generation and project documentation needs, a well-designed ELN can deliver significant improvements in laboratory efficiency, work productivity, and regulatory compliance.

  11. Absolute total and one and two electron transfer cross sections for Ar8+ on Ar as a function of energy

    International Nuclear Information System (INIS)

    Vancura, J.; Kostroun, V.O.

    1992-01-01

    The absolute total and one and two electron transfer cross sections for Ar 8+ on Ar were measured as a function of projectile laboratory energy from 0.090 to 0.550 keV/amu. The effective one electron transfer cross section dominates above 0.32 keV/amu, while below this energy, the effective two electron transfer starts to become appreciable. The total cross section varies by a factor over the energy range explored. The overall error in the cross section measurement is estimated to be ± 15%

  12. An open library of relativistic core electron density function for the QTAIM analysis with pseudopotentials.

    Science.gov (United States)

    Zou, Wenli; Cai, Ziyu; Wang, Jiankang; Xin, Kunyu

    2018-04-29

    Based on two-component relativistic atomic calculations, a free electron density function (EDF) library has been developed for nearly all the known ECPs of the elements Li (Z = 3) up to Ubn (Z = 120), which can be interfaced into modern quantum chemistry programs to save the .wfx wavefunction file. The applicability of this EDF library is demonstrated by the analyses of the quantum theory of atoms in molecules (QTAIM) and other real space functions on HeCuF, PtO42+, OgF 4 , and TlCl 3 (DMSO) 2 . When a large-core ECP is used, it shows that the corrections by EDF may significantly improve the properties of some density-derived real space functions, but they are invalid for the wavefunction-depending real space functions. To classify different chemical bonds and especially some nonclassical interactions, a list of universal criteria has also been proposed. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  13. Wave-function functionals for the density

    International Nuclear Information System (INIS)

    Slamet, Marlina; Pan Xiaoyin; Sahni, Viraht

    2011-01-01

    We extend the idea of the constrained-search variational method for the construction of wave-function functionals ψ[χ] of functions χ. The search is constrained to those functions χ such that ψ[χ] reproduces the density ρ(r) while simultaneously leading to an upper bound to the energy. The functionals are thereby normalized and automatically satisfy the electron-nucleus coalescence condition. The functionals ψ[χ] are also constructed to satisfy the electron-electron coalescence condition. The method is applied to the ground state of the helium atom to construct functionals ψ[χ] that reproduce the density as given by the Kinoshita correlated wave function. The expectation of single-particle operators W=Σ i r i n , n=-2,-1,1,2, W=Σ i δ(r i ) are exact, as must be the case. The expectations of the kinetic energy operator W=-(1/2)Σ i ∇ i 2 , the two-particle operators W=Σ n u n , n=-2,-1,1,2, where u=|r i -r j |, and the energy are accurate. We note that the construction of such functionals ψ[χ] is an application of the Levy-Lieb constrained-search definition of density functional theory. It is thereby possible to rigorously determine which functional ψ[χ] is closer to the true wave function.

  14. Exact wave functions of two-electron quantum rings.

    Science.gov (United States)

    Loos, Pierre-François; Gill, Peter M W

    2012-02-24

    We demonstrate that the Schrödinger equation for two electrons on a ring, which is the usual paradigm to model quantum rings, is solvable in closed form for particular values of the radius. We show that both polynomial and irrational solutions can be found for any value of the angular momentum and that the singlet and triplet manifolds, which are degenerate, have distinct geometric phases. We also study the nodal structure associated with these two-electron states.

  15. The core contribution of transmission electron microscopy to functional nanomaterials engineering.

    Science.gov (United States)

    Carenco, Sophie; Moldovan, Simona; Roiban, Lucian; Florea, Ileana; Portehault, David; Vallé, Karine; Belleville, Philippe; Boissière, Cédric; Rozes, Laurence; Mézailles, Nicolas; Drillon, Marc; Sanchez, Clément; Ersen, Ovidiu

    2016-01-21

    Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano)materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research.

  16. Electron cyclotron waves transmission: new approach for the characterization of electron distribution functions in Tokamak hot plasmas

    International Nuclear Information System (INIS)

    Michelot, Y.

    1995-10-01

    Fast electrons are one of the basic ingredients of plasma operations in many existing thermonuclear fusion research devices. However, the understanding of fast electrons dynamics during creation and sustainment of the superthermal electrons tail is far for being satisfactory. For this reason, the Electron Cyclotron Transmission (ECT) diagnostic was implemented on Tore Supra tokamak. It consists on a microwave transmission system installed on a vertical chord crossing the plasma center and working in the frequency range 77-109 GHz. Variations of the wave amplitude during the propagation across the plasma may be due to refraction and resonant absorption. For the ECT, the most common manifestation of refraction is a reduction of the received power density with respect to the signal detected in vacuum, due to the spreading and deflection of the wave beam. Wave absorption is observed in the vicinity of the electron cyclotron harmonics and may be due both to thermal plasma and to superthermal electron tails. It has a characteristic frequency dependence due to the relativistic mass variation in the wave-electron resonance condition. This thesis presents the first measurements of: the extraordinary mode optical depth at the third harmonics, the electron temperature from the width of a cyclotron absorption line and the relaxation times of the electron distribution during lower hybrid current drive from the ordinary mode spectral superthermal absorption line at the first harmonic. (J.S.). 175 refs., 110 figs., 9 tabs., 3 annexes

  17. Dissipation Effects in Schrödinger and Quantal Density Functional Theories of Electrons in an Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Xiao-Yin Pan

    2018-03-01

    Full Text Available Dissipative effects arise in an electronic system when it interacts with a time-dependent environment. Here, the Schrödinger theory of electrons in an electromagnetic field including dissipative effects is described from a new perspective. Dissipation is accounted for via the effective Hamiltonian approach in which the electron mass is time-dependent. The perspective is that of the individual electron: the corresponding equation of motion for the electron or time-dependent differential virial theorem—the ‘Quantal Newtonian’ second law—is derived. According to the law, each electron experiences an external field comprised of a binding electric field, the Lorentz field, and the electromagnetic field. In addition, there is an internal field whose components are representative of electron correlations due to the Pauli exclusion principle and Coulomb repulsion, kinetic effects, and density. There is also an internal contribution due to the magnetic field. The response of the electron is governed by the current density field in which a damping coefficient appears. The law leads to further insights into Schrödinger theory, and in particular the intrinsic self-consistent nature of the Schrödinger equation. It is proved that in the presence of dissipative effects, the basic variables (gauge-invariant properties, knowledge of which determines the Hamiltonian are the density and physical current density. Finally, a local effective potential theory of dissipative systems—quantal density functional theory (QDFT—is developed. This constitutes the mapping from the interacting dissipative electronic system to one of noninteracting fermions possessing the same dissipation and basic variables. Attributes of QDFT are the separation of the electron correlations due to the Pauli exclusion principle and Coulomb repulsion, and the determination of the correlation contributions to the kinetic energy. Hence, Schrödinger theory in conjunction with QDFT

  18. An electronic implementation for Liao's chaotic delayed neuron model with non-monotonous activation function

    International Nuclear Information System (INIS)

    Duan Shukai; Liao Xiaofeng

    2007-01-01

    A new chaotic delayed neuron model with non-monotonously increasing transfer function, called as chaotic Liao's delayed neuron model, was recently reported and analyzed. An electronic implementation of this model is described in detail. At the same time, some methods in circuit design, especially for circuit with time delayed unit and non-monotonously increasing activation unit, are also considered carefully. We find that the dynamical behaviors of the designed circuits are closely similar to the results predicted by numerical experiments

  19. Publisher Correction: Imaging the square of the correlated two-electron wave function of a hydrogen molecule.

    Science.gov (United States)

    Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R

    2018-06-05

    The original version of this Article contained an error in the fifth sentence of the first paragraph of the 'Application on H 2 ' section of the Results, which incorrectly read 'The role of electron correlation is quite apparent in this presentation: Fig. 1a is empty for the uncorrelated Hartree-Fock wave function, since projection of the latter wave function onto the 2pσ u orbital is exactly zero, while this is not the case for the fully correlated wave function (Fig. 1d); also, Fig. 1b, c for the uncorrelated description are identical, while Fig. 1e, f for the correlated case are significantly different.' The correct version replaces 'Fig. 1e, f' with 'Fig. 2e and f'.

  20. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection

    Energy Technology Data Exchange (ETDEWEB)

    Golda-Cepa, M., E-mail: golda@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Syrek, K. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Brzychczy-Wloch, M. [Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow (Poland); Sulka, G.D. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kotarba, A., E-mail: kotarba@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function–bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. - Highlights: • The correlation between work function and bacteria adhesion was discovered. • The discovered correlation is rationalized in terms of electrostatic bacteria–surface repulsion. • The results provide basis for the simple evaluation of implant surfaces against infection.

  1. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection

    International Nuclear Information System (INIS)

    Golda-Cepa, M.; Syrek, K.; Brzychczy-Wloch, M.; Sulka, G.D.; Kotarba, A.

    2016-01-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function–bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. - Highlights: • The correlation between work function and bacteria adhesion was discovered. • The discovered correlation is rationalized in terms of electrostatic bacteria–surface repulsion. • The results provide basis for the simple evaluation of implant surfaces against infection.

  2. Multicomponent density functional theory embedding formulation

    Energy Technology Data Exchange (ETDEWEB)

    Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, Illinois 61801 (United States)

    2016-07-28

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  3. Short communication: Development of the first follicular wave dominant follicle on the ovary ipsilateral to the corpus luteum is associated with decreased conception rate in dairy cattle.

    Science.gov (United States)

    Miura, R; Haneda, S; Kayano, M; Matsui, M

    2015-01-01

    In this study, we examined the effect of the locations of the first-wave dominant follicle (DF) and corpus luteum (CL) on fertility. In total, 350 artificial insemination (AI) procedures were conducted (lactating dairy cows: n=238, dairy heifers: n=112). Ovulation was confirmed 24 h after AI. The locations of the first-wave DF and CL were examined 5 to 9d after AI using rectal palpation or transrectal ultrasonography. Lactating dairy cows and dairy heifers were divided into 2 groups: (1) the ipsilateral group (IG), in which the DF was ipsilateral to the CL; and (2) the contralateral group (CG), in which the DF was contralateral to the CL. Pregnancy was diagnosed using transrectal ultrasonography 40d after AI. Conception rates were 54.0% in all cattle: 48.9% in lactating dairy cows, and 58.9% in dairy heifers. The incidence of the first-wave DF location did not differ between IG and CG (all cattle: 184 vs. 166; lactating cows: 129 vs. 109; heifers: 55 vs. 57 for IG vs. CG). Conception rates were lower in IG than in CG (all cattle: 40.2 vs. 69.3%; lactating dairy cows: 38.0 vs. 67.0%; dairy heifers: 45.5 vs. 73.7%, for IG vs. CG). Conception rate was not affected by season or live weight in heifers and lactating cows. In addition, days in milk at AI, milk production, body condition score, and parity did not affect conception in lactating cows. In summary, development of the first-wave DF in the ovary ipsilateral to the CL was associated with reduced conception rates in both lactating cows and heifers. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Electronic Transport Properties of One Dimensional Zno Nanowires Studied Using Maximally-Localized Wannier Functions

    Science.gov (United States)

    Sun, Xu; Gu, Yousong; Wang, Xueqiang

    2012-08-01

    One dimensional ZnO NWs with different diameters and lengths have been investigated using density functional theory (DFT) and Maximally Localized Wannier Functions (MLWFs). It is found that ZnO NWs are direct band gap semiconductors and there exist a turn on voltage for observable current. ZnO nanowires with different diameters and lengths show distinctive turn-on voltage thresholds in I-V characteristics curves. The diameters of ZnO NWs are greatly influent the transport properties of ZnO NWs. For the ZnO NW with large diameter that has more states and higher transmission coefficients leads to narrow band gap and low turn on voltage. In the case of thinner diameters, the length of ZnO NW can effects the electron tunneling and longer supercell lead to higher turn on voltage.

  5. Bio-equivalent doses of recombinent HCG and recombinent LH during ovarian stimulation result in similar oestradiol output

    DEFF Research Database (Denmark)

    Alsbjerg, Birgit; Elbaek, Helle Olesen; Laursen, Rita Jakubcionyte

    2017-01-01

    In nature, HCG is secreted by the implanting embryo from peri-implantation and onwards. In contrast, LH is mandatory for steroidogenesis and follicular development during the follicular phase, working in synergy with FSH. Moreover, LH is mandatory for the function of the corpus luteum. Although LH...... and HCG bind to the same receptor, significant molecular, structural and functional differences exist, inducing differences in bioactivity. This randomized controlled study compared the effect of recombinant FSH stimulation combined with daily either micro-dose recombinant HCG or recombinant LH...

  6. Electron-electron collision effects on the bremsstrahlung emission in Lorentzian plasmas

    International Nuclear Information System (INIS)

    Jung, Young-Dae; Kato, Daiji

    2009-01-01

    Electron-electron collision effects on the electron-ion bremsstrahlung process are investigated in Lorentzian plasmas. The effective electron-ion interaction potential is obtained by including the far-field terms caused by electron-electron collisions with an effective Debye length in Lorentzian plasmas. The bremsstrahlung radiation cross section is obtained as a function of the electron energy, photon energy, collision frequency, spectral index and Debye length using the Born approximation for the initial and final states of the projectile electron. It is shown that the non-Maxwellian character suppresses the bremsstrahlung radiation cross section. It is also shown that the electron-electron collision effect enhances the bremsstrahlung emission spectrum. In addition, the bremsstrahlung radiation cross section decreases with an increase in the plasma temperature.

  7. Electronic, Magnetic, and Transport Properties of Polyacrylonitrile-Based Carbon Nanofibers of Various Widths: Density-Functional Theory Calculations

    Science.gov (United States)

    Partovi-Azar, P.; Panahian Jand, S.; Kaghazchi, P.

    2018-01-01

    Edge termination of graphene nanoribbons is a key factor in determination of their physical and chemical properties. Here, we focus on nitrogen-terminated zigzag graphene nanoribbons resembling polyacrylonitrile-based carbon nanofibers (CNFs) which are widely studied in energy research. In particular, we investigate magnetic, electronic, and transport properties of these CNFs as functions of their widths using density-functional theory calculations together with the nonequilibrium Green's function method. We report on metallic behavior of all the CNFs considered in this study and demonstrate that the narrow CNFs show finite magnetic moments. The spin-polarized electronic states in these fibers exhibit similar spin configurations on both edges and result in spin-dependent transport channels in the narrow CNFs. We show that the partially filled nitrogen dangling-bond bands are mainly responsible for the ferromagnetic spin ordering in the narrow samples. However, the magnetic moment becomes vanishingly small in the case of wide CNFs where the dangling-bond bands fall below the Fermi level and graphenelike transport properties arising from the π orbitals are recovered. The magnetic properties of the CNFs as well as their stability have also been discussed in the presence of water molecules and the hexagonal boron nitride substrate.

  8. SU-E-T-240: Design and Implement of An Electronic Records Function for Treatment Plan Checked Meeting

    International Nuclear Information System (INIS)

    Wu, Q

    2015-01-01

    Purpose: To replace the paper records, we designed an electronic records function for plan checked meeting in our in-house developed radiotherapy information management system(RTIMS). Methods: Since 2007, the RTIMS has been developed on a database and web service of Apache+PHP+MySQL, and almost all computers and smartphones could access the RTIMS through IE browser, to input, search, count, and print the data. In 2012, we also established an radiation therapy case conference multi-media system(RTCCMMS) based on Windows Remote Desktop feature. Since 2013, we have carried out the treatment plan checked meeting of the physics division in every afternoon for about half an hour. In 2014, we designed an electronic records function, which includes a meeting information record and a checked plan record. And the meeting record includes the following items: meeting date, name, place, length, status, attendee, content, etc. The plan record includes the followings: meeting date, meeting name, patient ID, gender, age, patient name, course, plan, purpose, position, technique, CTsim type, plan type, primary doctor, other doctor, primary physicist, other physicist, difficulty, quality, score, opinion, status, note, etc. Results: In the past year, the electronic meeting records function has been successfully developed and implemented in the division, and it could be accessed from an smartphone. Almost all items have the corresponding pull-down menu selection, and each option would try to intelligently inherit default value from the former record or other form. According to the items, we could do big data mining to the input data. It also has both Chinese and English two versions. Conclusion: It was demonstrated to be user-friendly and was proven to significantly improve the clinical efficiency and quality of treatment plan. Since the RTIMS is an in-house developed system, more functions can be added or modified to further enhance its potentials in research and clinical practice

  9. SU-E-T-240: Design and Implement of An Electronic Records Function for Treatment Plan Checked Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q [Beijing Hospital, Beijing (China)

    2015-06-15

    Purpose: To replace the paper records, we designed an electronic records function for plan checked meeting in our in-house developed radiotherapy information management system(RTIMS). Methods: Since 2007, the RTIMS has been developed on a database and web service of Apache+PHP+MySQL, and almost all computers and smartphones could access the RTIMS through IE browser, to input, search, count, and print the data. In 2012, we also established an radiation therapy case conference multi-media system(RTCCMMS) based on Windows Remote Desktop feature. Since 2013, we have carried out the treatment plan checked meeting of the physics division in every afternoon for about half an hour. In 2014, we designed an electronic records function, which includes a meeting information record and a checked plan record. And the meeting record includes the following items: meeting date, name, place, length, status, attendee, content, etc. The plan record includes the followings: meeting date, meeting name, patient ID, gender, age, patient name, course, plan, purpose, position, technique, CTsim type, plan type, primary doctor, other doctor, primary physicist, other physicist, difficulty, quality, score, opinion, status, note, etc. Results: In the past year, the electronic meeting records function has been successfully developed and implemented in the division, and it could be accessed from an smartphone. Almost all items have the corresponding pull-down menu selection, and each option would try to intelligently inherit default value from the former record or other form. According to the items, we could do big data mining to the input data. It also has both Chinese and English two versions. Conclusion: It was demonstrated to be user-friendly and was proven to significantly improve the clinical efficiency and quality of treatment plan. Since the RTIMS is an in-house developed system, more functions can be added or modified to further enhance its potentials in research and clinical practice

  10. Simulations of nanocrystals under pressure: Combining electronic enthalpy and linear-scaling density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Corsini, Niccolò R. C., E-mail: niccolo.corsini@imperial.ac.uk; Greco, Andrea; Haynes, Peter D. [Department of Physics and Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Hine, Nicholas D. M. [Department of Physics and Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Cavendish Laboratory, J. J. Thompson Avenue, Cambridge CB3 0HE (United Kingdom); Molteni, Carla [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom)

    2013-08-28

    We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett.94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.

  11. Electronic structure and physical properties of ScN in pressure: density-functional theory calculations

    International Nuclear Information System (INIS)

    Guan Pengfei; Wang Chongyu; Yu Tao

    2008-01-01

    Local density functional is investigated by using the full-potential linearized augmented plane wave (FP-LAPW) method for ScN in the hexagonal structure and the rocksalt structure and for hexagonal structures linking a layered hexagonal phase with wurtzite structure along a homogeneous strain transition path. It is found that the wurtzite ScN is unstable and the layered hexagonal phase, labelled as h o , in which atoms are approximately fivefold coordinated, is metastable, and the rocksalt ScN is stable. The electronic structure, the physical properties of the intermediate structures and the energy band structure along the transition are presented. It is found that the band gaps change from 4.0 to 1.0 eV continuously when c/a value varies from 1.68 to 1.26. It is noticeable that the study of ScN provides an opportunity to apply this kind of material (in wurtzite[h]-derived phase). (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Analytic expressions for the dielectric screening function of strongly coupled electron liquids at metallic and lower densities

    International Nuclear Information System (INIS)

    Ishimaru, S.; Utsumi, K.

    1981-01-01

    We propose a fitting formula for the dielectric screening function of the degenerate electron liquids at metallic and lower densities which accurately reproduces the recent Monte Carlo results as well as those of the microscopic calculations, and which satisfies the self-consistency conditions in the compressibility sum rule and the short-range correlation

  13. Changes in keratin 8/18 expression in human granulosa cell lineage are associated to cell death/survival events: potential implications for the maintenance of the ovarian reserve.

    Science.gov (United States)

    Gaytan, F; Morales, C; Roa, J; Tena-Sempere, M

    2018-04-01

    Is keratin 8/18 (K8/K18) expression linked to cell death/survival events in the human granulosa cell lineage? A close association exists between changes in K8/K18 expression and cell death/survival events along the human granulosa cell lineage lifespan. In addition to their structural and mechanical functions, K8/K18 play essential roles regulating cell death, survival and differentiation in several non-gonadal epithelial tissues. Transfection of the granulosa-like tumor KGN cells with siRNA to interfere KRT8 and KRT18 expression increases FAS-mediated apoptosis, while an inverse association between K8/K18 expression and cell death has been found in the bovine antral follicles and corpus luteum. Yet, only fragmentary and inconclusive information exists regarding K8/K18 expression in the human ovary. Expression of K8/K18 was assessed by immunohistochemistry at different stages of the granulosa cell lineage, from flattened granulosa cells in primordial follicles to fully luteinized granulosa-lutein cells in the corpus luteum (including corpus luteum of pregnancy). Immunohistochemical detection of K8/K18 was conducted in 40 archival ovarian samples from women aged 17-39 years. K8/K18 expression was analyzed at the different stages of follicle development and corpus luteum lifespan. The proportions of primordial follicles showing all K8/K18-positive, all K8/K18 negative, or a mixture of K8/K18 negative and positive granulosa cells were quantified in 18 ovaries, divided into three age groups: ≤ 25 years (N = 6), 26-30 (N = 6) and 31-36 (N = 6) years. A total number of 1793 primordial, 750 transitional and 140 primary follicles were scored. A close association was found between changes in K8/K18 expression and cell death/cell survival events in the human granulosa cell lineage. Large secondary and early antral follicles (most of them undergoing atresia) and regressing corpora lutea displayed low/absent K8/K18 expression. Conversely, early growing and some large antral

  14. Optical and electronic properties of microcrystalline silicon as a function of microcrystallinity

    International Nuclear Information System (INIS)

    Han, Daxing; Yue, Guozhen; Lorentzen, J. D.; Lin, Jing; Habuchi, H.; Wang, Qi

    2000-01-01

    Films were prepared by hot wire chemical vapor deposition at ∼240 degree sign C with varied hydrogen dilution ratios R=H 2 :SiH 4 from 1 to 20. The optical and electronic properties as a function of microcrystallinity were studied. We found: (a) At low H dilution R≤2, there is no measurable crystallinity by Raman spectroscopy and x-ray diffraction in the a-Si:H matrix, but an optical absorption peak at ∼1.25 eV appears; when R=2, the film shows the lowest subgap absorption, the highest photosensitivity, and the largest optical gap. (b) When R≥3, the c-Si phase is measurable by Raman and a low-energy photoluminescence (PL) band (0.84-1.0 eV) appears in addition to the high-energy band (1.3-1.4 eV). Meanwhile, all the absorption spectra show a featureless line shape. (c) An energy redshift is observed for both PL peaks as the film grows thicker. Finally, (d) the conductivity activation energy first decreases from 0.68 to 0.12 eV, then increases with increasing microcrystallinity. A mode of two sets of energy bands of electronic states for these two-phase materials is suggested. (c) 2000 American Institute of Physics

  15. Electron-Ion Dynamics with Time-Dependent Density Functional Theory: Towards Predictive Solar Cell Modeling: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Maitra, Neepa [Hunter College City University of New York, New York, NY (United States)

    2016-07-14

    This project investigates the accuracy of currently-used functionals in time-dependent density functional theory, which is today routinely used to predict and design materials and computationally model processes in solar energy conversion. The rigorously-based electron-ion dynamics method developed here sheds light on traditional methods and overcomes challenges those methods have. The fundamental research undertaken here is important for building reliable and practical methods for materials discovery. The ultimate goal is to use these tools for the computational design of new materials for solar cell devices of high efficiency.

  16. Modified Monte Carlo method for study of electron transport in degenerate electron gas in the presence of electron–electron interactions, application to graphene

    International Nuclear Information System (INIS)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-01-01

    Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron–electron (e–e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e–e interactions. This required adapting the treatment of e–e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.

  17. Modified Monte Carlo method for study of electron transport in degenerate electron gas in the presence of electron–electron interactions, application to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Piotr, E-mail: pborow@poczta.onet.pl [Warsaw University of Technology, Faculty of Physics, ul. Koszykowa 75, 00-662 Warszawa (Poland); Thobel, Jean-Luc, E-mail: jean-luc.thobel@iemn.univ-lille1.fr [Institut d' Electronique, de Microélectronique et de Nanotechnologies, UMR CNRS 8520, Université Lille 1, Avenue Poincaré, CS 60069, 59652 Villeneuve d' Ascq Cédex (France); Adamowicz, Leszek, E-mail: adamo@if.pw.edu.pl [Warsaw University of Technology, Faculty of Physics, ul. Koszykowa 75, 00-662 Warszawa (Poland)

    2017-07-15

    Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron–electron (e–e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e–e interactions. This required adapting the treatment of e–e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.

  18. DFT calculations of electronic and optical properties of SrS with LDA, GGA and mGGA functionals

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shatendra, E-mail: shatendra@gmai.com [University Science Instrumentation Centre, Jawaharlal Nehru University, New Delhi-110067 (India); Sharma, Jyotsna [School of Basic & Applied Sciences, K. R. Mangalam University, Sohna Road, Gurgaon-122103 (India); Sharma, Yogita [Department of Applied Sciences, KIIT, Sohna Road, Gurgaon-122103 (India)

    2016-05-06

    The theoretical investigations of electronic and optical properties of SrS are made using the first principle DFT calculations. The calculations are performed for the local-density approximation (LDA), generalized gradient approximation (GGA) and for an alternative form of GGA i.e. metaGGA for both rock salt type (B1, Fm3m) and cesium chloride (B2, Pm3m) structures. The band structure, density of states and optical spectra are calculated under various available functional. The calculations with LDA and GGA functional underestimate the values of band gaps with all functional, however the values with mGGA show reasonably good agreement with experimental and those calculated by using other methods.

  19. Photonic Free-Electron Lasers

    NARCIS (Netherlands)

    van der Slot, Petrus J.M.; Denis, T.; Lee, J.H.H.; van Dijk, M.W.; Boller, Klaus J.

    2012-01-01

    A photonic free-electron laser (pFEL) produces coherent Cerenkov radiation from a set of parallel electron beams streaming through a photonic crystal. The function of the crystal is to slow down the phase velocity of a copropagating electromagnetic wave, such that also mildly relativistic electrons

  20. Effects of side-chain and electron exchange correlation on the band structure of perylene diimide liquid crystals: a density functional study.

    Science.gov (United States)

    Arantes, J T; Lima, M P; Fazzio, A; Xiang, H; Wei, Su-Huai; Dalpian, G M

    2009-04-23

    The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (DFT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials.

  1. Structural predictions for Correlated Electron Materials Using the Functional Dynamical Mean Field Theory Approach

    Science.gov (United States)

    Haule, Kristjan

    2018-04-01

    The Dynamical Mean Field Theory (DMFT) in combination with the band structure methods has been able to address reach physics of correlated materials, such as the fluctuating local moments, spin and orbital fluctuations, atomic multiplet physics and band formation on equal footing. Recently it is getting increasingly recognized that more predictive ab-initio theory of correlated systems needs to also address the feedback effect of the correlated electronic structure on the ionic positions, as the metal-insulator transition is almost always accompanied with considerable structural distortions. We will review recently developed extension of merger between the Density Functional Theory (DFT) and DMFT method, dubbed DFT+ embedded DMFT (DFT+eDMFT), whichsuccessfully addresses this challenge. It is based on the stationary Luttinger-Ward functional to minimize the numerical error, it subtracts the exact double-counting of DFT and DMFT, and implements self-consistent forces on all atoms in the unit cell. In a few examples, we will also show how the method elucidated the important feedback effect of correlations on crystal structure in rare earth nickelates to explain the mechanism of the metal-insulator transition. The method showed that such feedback effect is also essential to understand the dynamic stability of the high-temperature body-centered cubic phase of elemental iron, and in particular it predicted strong enhancement of the electron-phonon coupling over DFT values in FeSe, which was very recently verified by pioneering time-domain experiment.

  2. Estimation of electron temperature and density by de convolving the absorption part of the plasma dispersion function

    International Nuclear Information System (INIS)

    Jimenez D, H.; Cabral P, A.; Melendez L, L.; Lopez C, R.; Colunga S, S.; Valencia A, R.; Cruz J, S.; Gaytan G, E.; Chavez A, E.

    1992-04-01

    In this work a method to estimate the temperature and density of the electron (T e , n e ), based on the deconvolution of the part of absorption of the dispersion function of the plasma is suggested. The absorptive part of this function, is proportional to the convolution of a Gauss distribution with a Lorentz function. The Gaussian represents to the Maxwell function of velocities distribution of the electrons of the plasma. The Lorentzian represents to the form of it lines of an linearized electrostatic wave that spreads with reduction in the plasma. The complex variable z of the plasma dispersion function is written as: z = u + ia, where u = 2 (w-w 0 ) √ Ln 2 /Γ G is the dimensionless frequency variable, a = Γ L √ Ln 2 /Γ G is the Posener parameter, Γ G = k Γ ' G where k is the wave number of the oscillatory phenomenon, Γ ' G is the FWHM of the Gaussian and Γ L = 2 α, α being the damping constant; i.e the imaginary part of the frequency ω. In this method, it will be assumed that a wave of frequency , and of amplitude small enough to avoid non-linear effects, propagates in the plasma and decays in such a way α is the Landau damping. With this assumption, the method is only valid in the interval k D , where k D is the Debye wave number. Deconvolution of the detected absorption frequency spectrum of the signal, gives the values of Γ G and Γ L from which the values of n e and T e can be deduced. (Author)

  3. Evaluation of crystallographic strain, rotation and defects in functional oxides by the moiré effect in scanning transmission electron microscopy

    Science.gov (United States)

    Naden, A. B.; O'Shea, K. J.; MacLaren, D. A.

    2018-04-01

    Moiré patterns in scanning transmission electron microscopy (STEM) images of epitaxial perovskite oxides are used to assess strain and defect densities over fields of view extending over several hundred nanometers. The patterns arise from the geometric overlap of the rastered STEM electron beam and the samples’ crystal periodicities and we explore the emergence and application of these moiré fringes for rapid strain analysis. Using the epitaxial functional oxide perovskites BiFeO3 and Pr1-x Ca x MnO3, we discuss the impact of large degrees of strain on the quantification of STEM moiré patterns, identify defects in the fringe patterns and quantify strain and lattice rotation. Such a wide-area analysis of crystallographic strain and defects is crucial for developing structure-function relations of functional oxides and we find the STEM moiré technique to be an attractive means of structural assessment that can be readily applied to low dose studies of damage sensitive crystalline materials.

  4. Polynomial expressions of electron depth dose as a function of energy in various materials: application to thermoluminescence (TL) dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Deogracias, E.C.; Wood, J.L.; Wagner, E.C.; Kearfott, K.J

    1999-02-11

    The CEPXS/ONEDANT code package was used to produce a library of depth-dose profiles for monoenergetic electrons in various materials for energies ranging from 500 keV to 5 MeV in 10 keV increments. The various materials for which depth-dose functions were derived include: lithium fluoride (LiF), aluminium oxide (Al{sub 2}O{sub 3}), beryllium oxide (BeO), calcium sulfate (CaSO{sub 4}), calcium fluoride (CaF{sub 2}), lithium boron oxide (LiBO), soft tissue, lens of the eye, adiopose, muscle, skin, glass and water. All materials data sets were fit to five polynomials, each covering a different range of electron energies, using a least squares method. The resultant three dimensional, fifth-order polynomials give the dose as a function of depth and energy for the monoenergetic electrons in each material. The polynomials can be used to describe an energy spectrum by summing the doses at a given depth for each energy, weighted by the spectral intensity for that energy. An application of the polynomial is demonstrated by explaining the energy dependence of thermoluminescent detectors (TLDs) and illustrating the relationship between TLD signal and actual shallow dose due to beta particles.

  5. Hydrogen detachment driven by a repulsive 1πσ* state - an electron localization function study of 3-amino-1,2,4-triazole.

    Science.gov (United States)

    Bil, Andrzej; Latajka, Zdzisław; Biczysko, Malgorzata

    2018-02-14

    Electron localization function analysis reveals the details of a charge induced hydrogen detachment mechanism of 3-amino-1,2,4-triazole, identified recently to be responsible for phototautomerization of the molecule. In this process vertical excitation to the 1 πσ* state is followed by the barrier-less migration of a H atom along the N-H bond toward the conical intersection with the S0 ground state. The most striking feature revealed for the 1 πσ* state is partial ejection of σ* electrons outside the molecule, even beyond the NH group, at the Franck-Condon point. Further gradual spatial localization of the electron around the proton moving along the N-H stretching coordinate gives a plausible explanation for the repulsive character of the 1 πσ* potential energy surface with the proton wading through the region of space where some negative charge is accumulated ('a virtual acceptor'), dragging some electron density. This mechanism resembles the one postulated for the hydrogen transfer from a donor molecule (D-H) to an acceptor one (A) in a class of vertically excited molecules with a preexisting inter- or intramolecular D-HA motif, even though the acceptor molecule is absent. The present analysis demonstrates also that the bond evolution and changes in the electron density along the excited state reaction path can be effectively studied with the use of an electron localization function.

  6. `Twisted' electrons

    Science.gov (United States)

    Larocque, Hugo; Kaminer, Ido; Grillo, Vincenzo; Leuchs, Gerd; Padgett, Miles J.; Boyd, Robert W.; Segev, Mordechai; Karimi, Ebrahim

    2018-04-01

    Electrons have played a significant role in the development of many fields of physics during the last century. The interest surrounding them mostly involved their wave-like features prescribed by the quantum theory. In particular, these features correctly predict the behaviour of electrons in various physical systems including atoms, molecules, solid-state materials, and even in free space. Ten years ago, new breakthroughs were made, arising from the new ability to bestow orbital angular momentum (OAM) to the wave function of electrons. This quantity, in conjunction with the electron's charge, results in an additional magnetic property. Owing to these features, OAM-carrying, or twisted, electrons can effectively interact with magnetic fields in unprecedented ways and have motivated materials scientists to find new methods for generating twisted electrons and measuring their OAM content. Here, we provide an overview of such techniques along with an introduction to the exciting dynamics of twisted electrons.

  7. High-temperature electronic structure with the Korringa-Kohn-Rostoker Green's function method

    Science.gov (United States)

    Starrett, C. E.

    2018-05-01

    Modeling high-temperature (tens or hundreds of eV), dense plasmas is challenging due to the multitude of non-negligible physical effects including significant partial ionization and multisite effects. These effects cause the breakdown or intractability of common methods and approximations used at low temperatures, such as pseudopotentials or plane-wave basis sets. Here we explore the Korringa-Kohn-Rostoker Green's function method at these high-temperature conditions. The method is all electron, does not rely on pseudopotentials, and uses a spherical harmonic basis set, and so avoids the aforementioned limitations. It is found to be accurate for solid density aluminum and iron plasmas when compared to a plane-wave method at low temperature, while being able to access high temperatures.

  8. Starting electronics

    CERN Document Server

    Brindley, Keith

    2005-01-01

    Starting Electronics is unrivalled as a highly practical introduction for hobbyists, students and technicians. Keith Brindley introduces readers to the functions of the main component types, their uses, and the basic principles of building and designing electronic circuits. Breadboard layouts make this very much a ready-to-run book for the experimenter; and the use of multimeter, but not oscilloscopes, puts this practical exploration of electronics within reach of every home enthusiast's pocket. The third edition has kept the simplicity and clarity of the original. New material

  9. Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines

    International Nuclear Information System (INIS)

    Zhou, Junle; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2016-01-01

    Ecological performance of a single resonance ESE heat engine with heat leakage is conducted by applying finite time thermodynamics. By introducing Nielsen function and numerical calculations, expressions about power output, efficiency, entropy generation rate and ecological objective function are derived; relationships between ecological objective function and power output, between ecological objective function and efficiency as well as between power output and efficiency are demonstrated; influences of system parameters of heat leakage, boundary energy and resonance width on the optimal performances are investigated in detail; a specific range of boundary energy is given as a compromise to make ESE heat engine system work at optimal operation regions. Comparing performance characteristics with different optimization objective functions, the significance of selecting ecological objective function as the design objective is clarified specifically: when changing the design objective from maximum power output into maximum ecological objective function, the improvement of efficiency is 4.56%, while the power output drop is only 2.68%; when changing the design objective from maximum efficiency to maximum ecological objective function, the improvement of power output is 229.13%, and the efficiency drop is only 13.53%. - Highlights: • An irreversible single resonance energy selective electron heat engine is studied. • Heat leakage between two reservoirs is considered. • Power output, efficiency and ecological objective function are derived. • Optimal performance comparison for three objective functions is carried out.

  10. Physisorption of functionalized gold nanoparticles on AlGaN/GaN high electron mobility transistors for sensing applications.

    Science.gov (United States)

    Makowski, M S; Kim, S; Gaillard, M; Janes, D; Manfra, M J; Bryan, I; Sitar, Z; Arellano, C; Xie, J; Collazo, R; Ivanisevic, A

    2013-02-18

    AlGaN/GaN high electron mobility transistors (HEMTs) were used to measure electrical characteristics of physisorbed gold nanoparticles (Au NPs) functionalized with alkanethiols with a terminal methyl, amine, or carboxyl functional group. Additional alkanethiol was physisorbed onto the NP treated devices to distinguish between the effects of the Au NPs and alkanethiols on HEMT operation. Scanning Kelvin probe microscopy and electrical measurements were used to characterize the treatment effects. The HEMTs were operated near threshold voltage due to the greatest sensitivity in this region. The Au NP/HEMT system electrically detected functional group differences on adsorbed NPs which is pertinent to biosensor applications.

  11. Electron transport in a bilayer graphene/layered superconductor NbSe2 junction: effect of work function difference

    Science.gov (United States)

    Yarimizu, Katsuhide; Tomori, Hikari; Watanabe, Kenji; Taniguchi, Takashi; Kanda, Akinobu

    2018-03-01

    We have experimentally studied electron transport in a bilayer graphene (BLG)/layered superconductor NbSe2 junction encapsulated with hexagonal boron nitride. The junction exhibits nonlinear current-voltage characteristics which strongly depend on the gate voltage around the charge neutrality point (CNP) of the BLG. Besides, we observe that the gate voltage dependence of electron transport in the BLG portion close to the junction interface is different from that of the BLG portion apart from the interface, indicating that the spatial variation of the Dirac point in the charge transfer region due to the difference in work function between superconductor and graphene needs to be considered in the analysis of the superconducting proximity effect.

  12. Photo double ionization of He: C3-like wave function for the two electron continuum

    Energy Technology Data Exchange (ETDEWEB)

    Otranto, S.; Garibotti, C.R. [Conicet and Centro Atomico Bariloche (Argentina); Otranto, S. [Universidad Nacional del Sur, Dept. de Fisica, Bahia Blanca (Argentina)

    2002-12-01

    We evaluate the triply differential cross-section (TDCS) for photo double ionization (PDI) of helium. A first approximation to the final state can be obtained by neglecting the e-e interaction and the non-orthogonal kinetic energy. This leads to the C2 model which proposes as solution a product of 2 independent Coulomb wave plane waves. A better approximation is the C3 model where the C3 wave describes the e-e motion as independent of the presence of the nucleus and represents it by a Coulomb continuum wave. The C3 wave function mainly consists in the product of 3 Coulomb waves, each one representing the interaction between a pair of particles. We use a C3 final continuum wave function with an inter-electronic effective coordinate to express the nuclear screening. Comparison with the standard C3 model shows that the TDCS is enhanced in the threshold region by effect of the reduced inter-electronic repulsion introduced by the present model. A more accurate description of the intermediate energy region is also obtained. Comparison with recent experimental data shows a good overall agreement of the angular distributions. The theoretical PDI total cross-section shows a relevant improvement in the intermediate energy region relative to the C3 model, which converges to data for photon energies larger than 1 keV.

  13. Photo double ionization of He: C3-like wave function for the two electron continuum

    International Nuclear Information System (INIS)

    Otranto, S.; Garibotti, C.R.; Otranto, S.

    2002-01-01

    We evaluate the triply differential cross-section (TDCS) for photo double ionization (PDI) of helium. A first approximation to the final state can be obtained by neglecting the e-e interaction and the non-orthogonal kinetic energy. This leads to the C2 model which proposes as solution a product of 2 independent Coulomb wave plane waves. A better approximation is the C3 model where the C3 wave describes the e-e motion as independent of the presence of the nucleus and represents it by a Coulomb continuum wave. The C3 wave function mainly consists in the product of 3 Coulomb waves, each one representing the interaction between a pair of particles. We use a C3 final continuum wave function with an inter-electronic effective coordinate to express the nuclear screening. Comparison with the standard C3 model shows that the TDCS is enhanced in the threshold region by effect of the reduced inter-electronic repulsion introduced by the present model. A more accurate description of the intermediate energy region is also obtained. Comparison with recent experimental data shows a good overall agreement of the angular distributions. The theoretical PDI total cross-section shows a relevant improvement in the intermediate energy region relative to the C3 model, which converges to data for photon energies larger than 1 keV

  14. Features of atomic images reconstructed from photoelectron, Auger electron, and internal detector electron holography using SPEA-MEM

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Tomohiro, E-mail: matusita@spring8.or.jp [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Matsui, Fumihiko [Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192 (Japan)

    2014-08-15

    Highlights: • We develop a 3D atomic image reconstruction algorithm for photoelectron, Auger electron, and internal detector holography. • We examine the shapes of the atomic images reconstructed by using a developed kernel function. • We examine refraction effect at surface, limitation effect of the hologram data, energy resolution effect, and angular resolution effect. • These discussions indicate the experimental requirements to obtain the clear 3D atomic image. - Abstract: Three-dimensional atomic images can be reconstructed from photoelectron, Auger electron, and internal detector electron holograms using a scattering pattern extraction algorithm using the maximum entropy method (SPEA-MEM) that utilizes an integral transform. An integral kernel function for the integral transform is the key to clear atomic image reconstruction. We composed the kernel function using a scattering pattern function and estimated its ability. Image distortion caused by multiple scattering was also evaluated. Four types of Auger electron wave functions were investigated, and the effect of these wave function types was estimated. In addition, we addressed refraction at the surface, the effects of data limitation, and energy and angular resolutions.

  15. Extending the precision and efficiency of the all-electron full-potential linearized augmented plane-wave density-functional theory method

    International Nuclear Information System (INIS)

    Michalicek, Gregor

    2015-01-01

    Density functional theory (DFT) is the most widely-used first-principles theory for analyzing, describing and predicting the properties of solids based on the fundamental laws of quantum mechanics. The success of the theory is a consequence of powerful approximations to the unknown exchange and correlation energy of the interacting electrons and of sophisticated electronic structure methods that enable the computation of the density functional equations on a computer. A widely used electronic structure method is the full-potential linearized augmented plane-wave (FLAPW) method, that is considered to be one of the most precise methods of its kind and often referred to as a standard. Challenged by the demand of treating chemically and structurally increasingly more complex solids, in this thesis this method is revisited and extended along two different directions: (i) precision and (ii) efficiency. In the full-potential linearized augmented plane-wave method the space of a solid is partitioned into nearly touching spheres, centered at each atom, and the remaining interstitial region between the spheres. The Kohn-Sham orbitals, which are used to construct the electron density, the essential quantity in DFT, are expanded into a linearized augmented plane-wave basis, which consists of plane waves in the interstitial region and angular momentum dependent radial functions in the spheres. In this thesis it is shown that for certain types of materials, e.g., materials with very broad electron bands or large band gaps, or materials that allow the usage of large space-filling spheres, the variational freedom of the basis in the spheres has to be extended in order to represent the Kohn-Sham orbitals with high precision over a large energy spread. Two kinds of additional radial functions confined to the spheres, so-called local orbitals, are evaluated and found to successfully eliminate this error. A new efficient basis set is developed, named linearized augmented lattice

  16. Nonlocal kinetic energy functionals by functional integration

    Science.gov (United States)

    Mi, Wenhui; Genova, Alessandro; Pavanello, Michele

    2018-05-01

    Since the seminal studies of Thomas and Fermi, researchers in the Density-Functional Theory (DFT) community are searching for accurate electron density functionals. Arguably, the toughest functional to approximate is the noninteracting kinetic energy, Ts[ρ], the subject of this work. The typical paradigm is to first approximate the energy functional and then take its functional derivative, δ/Ts[ρ ] δ ρ (r ) , yielding a potential that can be used in orbital-free DFT or subsystem DFT simulations. Here, this paradigm is challenged by constructing the potential from the second-functional derivative via functional integration. A new nonlocal functional for Ts[ρ] is prescribed [which we dub Mi-Genova-Pavanello (MGP)] having a density independent kernel. MGP is constructed to satisfy three exact conditions: (1) a nonzero "Kinetic electron" arising from a nonzero exchange hole; (2) the second functional derivative must reduce to the inverse Lindhard function in the limit of homogenous densities; (3) the potential is derived from functional integration of the second functional derivative. Pilot calculations show that MGP is capable of reproducing accurate equilibrium volumes, bulk moduli, total energy, and electron densities for metallic (body-centered cubic, face-centered cubic) and semiconducting (crystal diamond) phases of silicon as well as of III-V semiconductors. The MGP functional is found to be numerically stable typically reaching self-consistency within 12 iterations of a truncated Newton minimization algorithm. MGP's computational cost and memory requirements are low and comparable to the Wang-Teter nonlocal functional or any generalized gradient approximation functional.

  17. Modelling of non-thermal electron cyclotron emission during ECRH

    International Nuclear Information System (INIS)

    Tribaldos, V.; Krivenski, V.

    1990-01-01

    The existence of suprathermal electrons during Electron Cyclotron Resonance Heating experiments in tokamaks is today a well established fact. At low densities the creation of large non-thermal electron tails affects the temperature profile measurements obtained by 2 nd harmonic, X-mode, low-field side, electron cyclotron emission. At higher densities suprathermal electrons can be detected by high-field side emission. In electron cyclotron current drive experiments a high energy suprathermal tail, asymmetric in v, is observed. Non-Maxwellian electron distribution functions are also typically observed during lower-hybrid current drive experiments. Fast electrons have been observed during ionic heating by neutral beams as well. Two distinct approaches are currently used in the interpretation of the experimental results: simple analytical models which reproduce some of the expected non-Maxwellian characteristics of the electron distribution function are employed to get a qualitative picture of the phenomena; sophisticated numerical Fokker-Planck calculations give the electron distribution function from which the emission spectra are computed. No algorithm is known to solve the inverse problem, i.e. to compute the electron distribution function from the emitted spectra. The proposed methods all relay on the basic assumption that the electron distribution function has a given functional dependence on a limited number of free parameters, which are then 'measured' by best fitting the experimental results. Here we discuss the legitimacy of this procedure. (author) 7 refs., 5 figs

  18. Wave function of an electron infinitely moving in the field of a one-dimensional layered structure

    International Nuclear Information System (INIS)

    Khachatrian, A.Zh.; Andreasyan, A.G.; Mgerian, G.G.; Badalyan, V.D.

    2003-01-01

    A method for finding the wave function of an electron infinitely moving in the field of an arbitrary layered structure bordered on both sides with two different semi infinite media is proposed. It is shown that this problem in the general form can be reduced to the solution of some system of linear finite-difference equations. The proposed approach is discussed in detail for the case of a periodic structure

  19. Light and electron microscopic observation of regenerated fungiform taste buds in patients with recovered taste function after severing chorda tympani nerve.

    Science.gov (United States)

    Saito, Takehisa; Ito, Tetsufumi; Narita, Norihiko; Yamada, Takechiyo; Manabe, Yasuhiro

    2011-11-01

    The aim of this study was to evaluate the mean number of regenerated fungiform taste buds per papilla and perform light and electron microscopic observation of taste buds in patients with recovered taste function after severing the chorda tympani nerve during middle ear surgery. We performed a biopsy on the fungiform papillae (FP) in the midlateral region of the dorsal surface of the tongue from 5 control volunteers (33 total FP) and from 7 and 5 patients with and without taste recovery (34 and 29 FP, respectively) 3 years 6 months to 18 years after surgery. The specimens were observed by light and transmission electron microscopy. The taste function was evaluated by electrogustometry. The mean number of taste buds in the FP of patients with completely recovered taste function was significantly smaller (1.9 +/- 1.4 per papilla; p taste buds. Nerve fibers and nerve terminals were also found in the taste buds. It was clarified that taste buds containing taste cells and nerve endings do regenerate in the FP of patients with recovered taste function.

  20. Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field

    DEFF Research Database (Denmark)

    Orlof, A.; Shylau, Artsem; Zozoulenko, I. V.

    2015-01-01

    We study the effect of electron-electron interaction in graphene quantum dots defined by an external electrostatic potential and a high magnetic field. To account for the electron-electron interaction, we use the Thomas-Fermi approximation and find that electron screening causes the formation...... of compressible strips in the potential profile and the electron density. We numerically solve the Dirac equations describing the electron dynamics in quantum dots, and we demonstrate that compressible strips lead to the appearance of plateaus in the electron energies as a function of the magnetic field. Finally...

  1. Relativistic density functional theory with picture-change corrected electron density based on infinite-order Douglas-Kroll-Hess method

    Science.gov (United States)

    Oyama, Takuro; Ikabata, Yasuhiro; Seino, Junji; Nakai, Hiromi

    2017-07-01

    This Letter proposes a density functional treatment based on the two-component relativistic scheme at the infinite-order Douglas-Kroll-Hess (IODKH) level. The exchange-correlation energy and potential are calculated using the electron density based on the picture-change corrected density operator transformed by the IODKH method. Numerical assessments indicated that the picture-change uncorrected density functional terms generate significant errors, on the order of hartree for heavy atoms. The present scheme was found to reproduce the energetics in the four-component treatment with high accuracy.

  2. Current functional theory for multi-electron configuration

    DEFF Research Database (Denmark)

    Bang, Jens N.; Bohr, Henrik

    2010-01-01

    of the method to ZnO and H2O to calculate the occupation probabilities of the orbitals lead to the results that compare favorably with those obtained from DFT. Furthermore, evolution equations for electrons in both atoms and molecules can be derived. Applications to specific examples of small molecules (being...

  3. Estimation of electron temperature and density by de convolving the absorption part of the plasma dispersion function

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez D, H.; Cabral P, A.; Melendez L, L.; Lopez C, R.; Colunga S, S.; Valencia A, R.; Cruz J, S.; Gaytan G, E.; Chavez A, E

    1992-04-15

    In this work a method to estimate the temperature and density of the electron (T{sub e}, n{sub e}), based on the deconvolution of the part of absorption of the dispersion function of the plasma is suggested. The absorptive part of this function, is proportional to the convolution of a Gauss distribution with a Lorentz function. The Gaussian represents to the Maxwell function of velocities distribution of the electrons of the plasma. The Lorentzian represents to the form of it lines of an linearized electrostatic wave that spreads with reduction in the plasma. The complex variable z of the plasma dispersion function is written as: z = u + ia, where u = 2 (w-w{sub 0}) {radical} Ln 2 /{gamma}{sub G} is the dimensionless frequency variable, a = {gamma}{sub L} {radical} Ln 2 /{gamma}{sub G} is the Posener parameter, {gamma}{sub G} = k {gamma}{sup '}{sub G} where k is the wave number of the oscillatory phenomenon, {gamma}{sup '}{sub G} is the FWHM of the Gaussian and {gamma}{sub L} = 2 {alpha}, {alpha} being the damping constant; i.e the imaginary part of the frequency {omega}. In this method, it will be assumed that a wave of frequency , and of amplitude small enough to avoid non-linear effects, propagates in the plasma and decays in such a way {alpha} is the Landau damping. With this assumption, the method is only valid in the interval k < < k{sub D}, where k{sub D} is the Debye wave number. Deconvolution of the detected absorption frequency spectrum of the signal, gives the values of {gamma}{sub G} and {gamma}{sub L} from which the values of n{sub e} and T{sub e} can be deduced. (Author)

  4. Correction: Conceptual design of tetraazaporphyrin- and subtetraazaporphyrin-based functional nanocarbon materials: electronic structures, topologies, optical properties, and methane storage capacities.

    Science.gov (United States)

    Belosludov, Rodion V; Rhoda, Hannah M; Zhdanov, Ravil K; Belosludov, Vladimir R; Kawazoe, Yoshiyuki; Nemykin, Victor N

    2017-08-02

    Correction for 'Conceptual design of tetraazaporphyrin- and subtetraazaporphyrin-based functional nanocarbon materials: electronic structures, topologies, optical properties, and methane storage capacities' by Rodion V. Belosludov et al., Phys. Chem. Chem. Phys., 2016, 18, 13503-13518.

  5. Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations

    International Nuclear Information System (INIS)

    Johansson, Malin B; Niklasson, Gunnar A; Österlund, Lars; Baldissera, Gustavo; Persson, Clas; Valyukh, Iryna; Arwin, Hans

    2013-01-01

    The optical and electronic properties of nanocrystalline WO 3 thin films prepared by reactive dc magnetron sputtering at different total pressures (P tot ) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low P tot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies E g ≈ 3.1 eV, which increase with increasing P tot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO 3 , and monoclinic γ- and ε-WO 3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO 3 and γ-WO 3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that E g in ε-WO 3 is higher than in the δ-WO 3 and γ-WO 3 phases, which provides an explanation for the P tot dependence of the optical data. (paper)

  6. Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations

    Science.gov (United States)

    Johansson, Malin B.; Baldissera, Gustavo; Valyukh, Iryna; Persson, Clas; Arwin, Hans; Niklasson, Gunnar A.; Österlund, Lars

    2013-05-01

    The optical and electronic properties of nanocrystalline WO3 thin films prepared by reactive dc magnetron sputtering at different total pressures (Ptot) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low Ptot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies Eg ≈ 3.1 eV, which increase with increasing Ptot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO3, and monoclinic γ- and ε-WO3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO3 and γ-WO3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that Eg in ε-WO3 is higher than in the δ-WO3 and γ-WO3 phases, which provides an explanation for the Ptot dependence of the optical data.

  7. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    International Nuclear Information System (INIS)

    Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto

    2015-01-01

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model

  8. Electrografting of diazonium-functionalized polyoxometalates: synthesis, immobilisation and electron-transfer characterisation from glassy carbon.

    Science.gov (United States)

    Rinfray, Corentin; Izzet, Guillaume; Pinson, Jean; Gam Derouich, Sarra; Ganem, Jean-Jacques; Combellas, Catherine; Kanoufi, Frédéric; Proust, Anna

    2013-10-04

    Polyoxometalates (POMs) are attractive candidates for the rational design of multi-level charge-storage materials because they display reversible multi-step reduction processes in a narrow range of potentials. The functionalization of POMs allows for their integration in hybrid complementary metal oxide semiconductor (CMOS)/molecular devices, provided that fine control of their immobilisation on various substrates can be achieved. Owing to the wide applicability of the diazonium route to surface modification, a functionalized Keggin-type POM [PW11 O39 {Ge(p-C6 H4 -CC-C6 H4 -${{\\rm N}{{+\\hfill \\atop 2\\hfill}}}$)}](3-) bearing a pending diazonium group was prepared and subsequently covalently anchored onto a glassy carbon electrode. Electron transfer with the immobilised POM was thoroughly investigated and compared to that of the free POM in solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Density functional study of electronic structure, elastic and optical properties of MNH2 (M=Li, Na, K, Rb)

    International Nuclear Information System (INIS)

    Babu, K Ramesh; Vaitheeswaran, G

    2014-01-01

    We report a systematic first principles density functional study on the electronic structure, elastic and optical properties of nitrogen based solid hydrogen storage materials LiNH 2 , NaNH 2 , KNH 2 , and RbNH 2 . The ground state structural properties are calculated by using standard density functional theory, and also dispersion corrected density functional theory. We find that van der Waals interactions are dominant in LiNH 2 whereas they are relatively weak in other alkali metal amides. The calculated elastic constants show that all the compounds are mechanically stable and LiNH 2 is found to be a stiffer material among the alkali metal amides. The melting temperatures are calculated and follow the order RbNH 2 2 2 2 . The electronic band structure is calculated by using the Tran–Blaha modified Becke–Johnson potential and found that all the compounds are insulators, with a considerable band gap. The [NH 2 ] − derived states completely dominate in the entire valence band region while the metal atom states occupy the conduction band. The calculated band structure is used to analyze the different interband optical transitions occurring between valence and conduction bands. Our calculations show that these materials have considerable optical anisotropy. (paper)

  10. Secondary Electron Yield on Cryogenic Surfaces as a Function of Physisorbed Gases

    CERN Document Server

    Kuzucan, Asena; Taborelli, Mauro

    2011-01-01

    In LHC the electron cloud induced by photoelectrons, gas ionization and secondary electrons emitted from the beam pipe walls could be a limitation of the performance. The electron cloud induce heat load on the cryogenic system, cause pressure rise, emittance growth and beam instabilities, which in the end will limit the beam’s lifetime. Beam- induced multipacting, which can arise through oscillatory motion of photoelectrons and low-energy secondary electrons bouncing back and forth between opposite walls of the vacuum chamber during successive passage of proton bunches, represent therefore a potential problem for the machine. The secondary electron yield (SEY) is one of the key parameters for the electron cloud build up and multipacting phenomenon. An electron cloud occurs if the metal surface secondary electron yield is high enough for electron multiplication. This parameter has been extensively studied on room temperature samples but uncertainties remain for samples at cryogenic temperature. Indeed, at l...

  11. Practical considerations in the calculation of orientation distribution functions from electron back-scattered diffraction patterns

    International Nuclear Information System (INIS)

    Bowen, A.W.

    1994-01-01

    Using model data sets for the Brass orientation, the importance of scatter width, angular accuracy and grain size and volume fraction on the sensitivity of the calculated Orientation Distribution Functions have been determined in order to highlight some of the practical considerations needed in the processing of experimental data from individual grain orientation measurements determined by the Electron Back-Scattered Diffraction technique. It is suggested that the most appropriate scatter width can be calculated from the maximum function height versus scatter width curve in order to accommodate variations in texture sharpness. The sensitivity of the ODF to careful sample preparation, mounting and pattern analysis, in order to keep errors in angular accuracy to 1 or less is demonstrated, as is the imperative need to correct for the size of grains, and their volume fractions. (orig.)

  12. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.

    Science.gov (United States)

    Chader, Gerald J; Weiland, James; Humayun, Mark S

    2009-01-01

    Hundreds of thousands around the world have poor vision or no vision at all due to inherited retinal degenerations (RDs) like retinitis pigmentosa (RP). Similarly, millions suffer from vision loss due to age-related macular degeneration (AMD). In both of these allied diseases, the primary target for pathology is the retinal photoreceptor cells that dysfunction and die. Secondary neurons though are relatively spared. To replace photoreceptor cell function, an electronic prosthetic device can be used such that retinal secondary neurons receive a signal that simulates an external visual image. The composite device has a miniature video camera mounted on the patient's eyeglasses, which captures images and passes them to a microprocessor that converts the data to an electronic signal. This signal, in turn, is transmitted to an array of electrodes placed on the retinal surface, which transmits the patterned signal to the remaining viable secondary neurons. These neurons (ganglion, bipolar cells, etc.) begin processing the signal and pass it down the optic nerve to the brain for final integration into a visual image. Many groups in different countries have different versions of the device, including brain implants and retinal implants, the latter having epiretinal or subretinal placement. The device furthest along in development is an epiretinal implant sponsored by Second Sight Medical Products (SSMP). Their first-generation device had 16 electrodes with human testing in a Phase 1 clinical trial beginning in 2002. The second-generation device has 60+ electrodes and is currently in Phase 2/3 clinical trial. Increased numbers of electrodes are planned for future versions of the device. Testing of the device's efficacy is a challenge since patients admitted into the trial have little or no vision. Thus, methods must be developed that accurately and reproducibly record small improvements in visual function after implantation. Standard tests such as visual acuity, visual

  13. Electronic and Optical Properties of Sodium Niobate: A Density Functional Theory Study

    Directory of Open Access Journals (Sweden)

    Daniel Fritsch

    2018-01-01

    Full Text Available In recent years, much effort has been devoted to replace the most commonly used piezoelectric ceramic lead zirconate titanate Pb[ZrxTi1−x]O3 (PZT with a suitable lead-free alternative for memory or piezoelectric applications. One possible alternative to PZT is sodium niobate as it exhibits electrical and mechanical properties that make it an interesting material for technological applications. The high-temperature simple cubic perovskite structure undergoes a series of structural phase transitions with decreasing temperature. However, particularly the phases at room temperature and below are not yet fully characterised and understood. Here, we perform density functional theory calculations for the possible phases at room temperature and below and report on the structural, electronic, and optical properties of the different phases in comparison to experimental findings.

  14. Effect of electron-electron collisions on the phase transition and kinetics of nonequilibrium superconductors

    International Nuclear Information System (INIS)

    Elesin, V.F.; Kashurnikov, V.A.; Kondrashov, V.E.; Shamraev, B.N.

    1983-01-01

    An explicit expression is obtained for the distribution function of excess quasiparticles, taking into account electron-electron collisions in nonequilibrium superconductors. It is shown that the character of the phase transition may change at a definite ratio of the electron-electron and electron-phonon interaction constants: the dependence of the order parameter on the power of the source becomes single-valued. In addition, diffusion instability and paramagnetism of the superconductors arise. The multiplication factor of the excess quasiparticles due to electron-electron collisions and to reabsorption of phonons is calculated

  15. Optimization Parameters and Some Electronic Properties of AlSb Diamondoids: A Density Function Theory Study

    Directory of Open Access Journals (Sweden)

    Hayder M. Abduljalil

    2018-05-01

    Full Text Available Density function theory with LSDA/3-21G basis set is used to investigate the optimization parameters such as (angles and bonds and some electronic properties include (cohesive energy, energy gap and lattice constant of AlSb at nano diamantine and different size of(Linear, Ring, Diamantine and Tetramantine. The results of the present work show that the angles of AlSbH nano molecule in range (96,21-126.05 Å are near to standard angle of diamond (109.47 Å. Therefore, it is found that the cohesive energy for molecules of studied in decrease state with increase size but the energy gap decreased in gradually shape from (5.2-2.1eV with increase of the number of atoms, that typical is on the lattice constant. It is finally shown that the size molecules has direct effect on electronic properties to material studied that can used this material in different applications and according to the purpose asked for

  16. Electron-vibron coupling effects on electron transport via a single-molecule magnet

    NARCIS (Netherlands)

    McCaskey, A.; Yamamoto, Y.; Warnock, M.; Burzuri, E.; Van der Zant, H.S.J.; Park, K.

    2015-01-01

    We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters,

  17. Electron dynamics and optical properties modulation of monolayer MoS{sub 2} by femtosecond laser pulse: a simulation using time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xiaoxing; Jiang, Lan [Beijing Institute of Technology, Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing (China); Wang, Feng [Beijing Institute of Technology, School of Physics, Beijing (China); Su, Gaoshi [Beijing Institute of Technology, School of Mechatronical Engineering, Beijing (China); Qu, Liangti [Beijing Institute of Technology, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry, Beijing (China); Lu, Yongfeng [University of Nebraska-Lincoln, Department of Electrical Engineering, Lincoln, NE (United States)

    2017-07-15

    In this study, we adopted time-dependent density functional theory to investigate the optical properties of monolayer MoS{sub 2} and the effect of intense few-cycle femtosecond laser pulses on these properties. The electron dynamics of monolayer MoS{sub 2} under few-cycle and multi-cycle laser irradiation were described. The polarization direction of the laser had a marked effect on the energy absorption and electronic excitation of monolayer MoS{sub 2} because of anisotropy. Change in the polarization direction of few-cycle pulse changed the absorbed energy by a factor over 4000. Few-cycle pulse showed a higher sensitivity to the electronic property of material than multi-cycle pulse. The modulation of the dielectric properties of the material was observed on the femtosecond time scale. The negative divergence appeared in the real part of the function at low frequencies and photoinduced blue shift occurred due to Burstein-Moss effect. The irradiation of femtosecond laser caused the dielectric response within the infrared region and introduced anisotropy to the in-plane optical properties. Laser-based engineering of optical properties through controlling transient electron dynamics expands the functionality of MoS{sub 2} and has potential applications in direction-dependent optoelectronic devices. (orig.)

  18. Recent development of transient electronics

    Directory of Open Access Journals (Sweden)

    Huanyu Cheng

    2016-01-01

    Full Text Available Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be used in the human body as a diagnostic tool, for instance, or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water. Thus, the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research. In the past, only partial dissolution of transient electronics was possible, however, total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis. The use of single- and multi-layered structures has also been explored as a way to extend the lifetime of the electronics. Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.

  19. Post coital hemoperitoneum: The pain of love

    Directory of Open Access Journals (Sweden)

    Subramanian Senthilkumaran

    2018-06-01

    Full Text Available Acute abdominal pain in women of reproductive age is common and frequent cause for visit to emergency department which warrants emergent evaluation. We present the case of a 23-year-old nulliparous women presenting with post-coital haemoperitoneum secondary to a ruptured corpus luteum cyst. This is a rare case demonstrating the need to elicit sexual history in patients presenting with an acute abdomen in emergency department. Keywords: Post coital, Haemoperitoneum, Corpus luteum cyst, Sexual history, Acute abdominal pain

  20. Correlation between electron work functions of multiphase Cu-8Mn-8Al and de-alloying corrosion

    Science.gov (United States)

    Punburi, P.; Tareelap, N.; Srisukhumbowornchai, N.; Euaruksakul, C.; Yordsri, V.

    2018-05-01

    Low energy electron emission microscopy (LEEM) was used to measure local transition energy that was directly correlated to electron work function (EWF) of multiphase manganese-aluminum bronze alloys. We developed color mapping to distinguish the EWF of multiple phases and clarified that the EWF were in the following order: EWF of α > EWF of β > EWF of κ (EWFα > EWFβ > EWFκ). De-alloying corrosion took place due to the micro-galvanic cell at grain boundaries before it propagated into the β phase that had lower EWF than the α phase. The α phase was a stable phase because it contained high Cu while the β phase contained high Al and Mn. In addition, XRD analysis showed that the texture coefficient of the β phase revealed that almost all of the grains had (2 2 0) orientation, the lowest EWF compared to (1 1 1) and (2 0 0). Furthermore, transmission electron microscopy illustrated that there were fine Cu3Mn2Al precipitates in the Cu2MnAl matrix of the β phase. These precipitates formed micro-galvanic cells which played an important role in accelerating de-alloying corrosion.