WorldWideScience

Sample records for lutetium aluminum perovskite

  1. Cerium-doped single crystal and transparent ceramic lutetium aluminum garnet scintillators

    International Nuclear Information System (INIS)

    Cherepy, Nerine J.; Kuntz, Joshua D.; Tillotson, Thomas M.; Speaks, Derrick T.; Payne, Stephen A.; Chai, B.H.T.; Porter-Chapman, Yetta; Derenzo, Stephen E.

    2007-01-01

    For rapid, unambiguous isotope identification, scintillator detectors providing high-resolution gamma ray spectra are required. We have fabricated Lutetium Aluminum Garnet (LuAG) using transparent ceramic processing, and report a 2-mm thick ceramic exhibiting 75% transmission and light yield comparable to single-crystal LuAG:Ce. The LuAG:Ce luminescence peaks at 550 nm, providing an excellent match for Silicon Photodiode readout. LuAG is dense (6.67 g/cm 3 ) and impervious to water, exhibits good proportionality and a fast decay (∼40 ns), and we measure light yields in excess of 20,000 photons/MeV

  2. Hydrothermal synthesis and characterization of polycrystalline gadolinium aluminum perovskite (GdAlO3, GAP

    Directory of Open Access Journals (Sweden)

    N. Girish H.

    2015-06-01

    Full Text Available Gadolinium aluminum perovskite (GdAlO3, GAP is a promising high temperature ceramic material, known for its wide applications in phosphors. Polycrystalline gadolinium aluminum perovskites were synthesized using a precursor of co-precipitate gel of GdAlO3 by employing hydrothermal supercritical fluid technique under pressure and temperature ranging from 150 to 200 MPa and 600 to 700 °C, respectively. The resulted products of GAP were studied using the characterization techniques, such as powder X-ray diffraction analysis (XRD, infrared spectroscopy (IR, scanning electron microscopy (SEM and energy dispersive analysis of X-ray (EDX. The X-ray diffraction pattern matched well with the reported orthorhombic GAP pattern (JCPDS-46-0395.

  3. Lutetium pyrophosphates

    International Nuclear Information System (INIS)

    Dzhabishvili, N.A.; Davitashvili, E.G.; Orlovskij, V.P.; Kargareteli, L.N.

    1986-01-01

    Reaction between lutetium nitrate and pyrophosphates of sodium, potassium and ammonium in aqueous solution is studied, using the method of residual concentrations. New compounds are isolated, their composition and physicochemical properties are considered. Data on solubility in the systems at 25 deg C are given. All the hydrate pyrophosphates are roentgenoamorphous, they are crystallized only when heated. Thermal decomposition of lutetium pyrophosphate is investigated

  4. Low temperature heat capacity of lutetium and lutetium hydrogen alloys

    International Nuclear Information System (INIS)

    Thome, D.K.

    1977-10-01

    The heat capacity of high purity electrotransport refined lutetium was measured between 1 and 20 0 K. Results for theta/sub D/ were in excellent agreement with theta values determined from elastic constant measurements. The heat capacity of a series of lutetium-hydrogen solid solution alloys was determined and results showed an increase in γ from 8.2 to about 11.3 mJ/g-atom-K 2 for hydrogen content increasing from zero to about one atomic percent. Above one percent hydrogen γ decreased with increasing hydrogen contents. The C/T data showed an increase with temperature decreasing below about 2.5 0 K for samples with 0.1 to 1.5 atomic percent hydrogen. This accounts for a large amount of scatter in theta/sub D/ versus hydrogen content in this range. The heat capacity of a bulk sample of lutetium dihydride was measured between 1 and 20 0 K and showed a large increase in theta/sub D/ and a large decrease in γ compared to pure lutetium

  5. Temperature-independent sensors based on perovskite-type oxides

    International Nuclear Information System (INIS)

    Zaza, F.; Frangini, S.; Masci, A.; Leoncini, J.; Pasquali, M.; Luisetto, I.; Tuti, S.

    2013-01-01

    The need of energy security and environment sustainability drives toward the development of energy technology in order to enhance the performance of internal combustion engines. Gas sensors play a key role for controlling the fuel oxygen ratio and monitoring the pollution emissions. The perovskite-type oxides can be synthesized for an extremely wide variety of combinations of chemical elements, allowing to design materials with suitable properties for sensing application. Lanthanum strontium ferrites, such as La 0.7 Sr 0.3 FeO 3 , are suitable oxygen sensing materials with temperature-independence conductivity, but they have low chemical stability under reducing conditions. The addition of aluminum into the perovskite structure improves the material properties in order to develop suitable oxygen sensing probes for lean burn engine control systems. Perovskite-type oxides with formula (La 0.7 Sr 0.3 )(Al x Fe 1−x )O 3 was synthesized by the citrate-nitrate combustion synthesis method. XRD analyses, show that it was synthesized a phase-pure powder belonging to the perovskite structure. Aluminum affects both the unit cell parameters, by shrinking the unit cell, and the powder morphology, by promoting the synthesis of particles with small crystallite size and large specific surface area. The partial substitution of iron with aluminum improves the chemical stability under reducing gas conditions and modulates the oxygen sensitivity by affecting the relative amount of Fe 4+ and Fe 3+ , as confirmed from TPR profiles. In the same time, the addition of aluminum does not affects the temperature-independent properties of lanthanum strontium ferrites. Indeed, the electrical measurements show that (La 0.7 Sr 0.3 )(Al x Fe 1−x )O 3 perovskites have temperature-independence conductivity from 900 K

  6. Temperature-independent sensors based on perovskite-type oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zaza, F.; Frangini, S.; Masci, A. [ENEA-Casaccia R.C., Via Anguillarese 301, 00123 S.Maria di Galeria, Rome (Italy); Leoncini, J.; Pasquali, M. [University La Sapienza, Piazza Via del Castro Laurenziano 7, 00161 Rome (Italy); Luisetto, I.; Tuti, S. [University RomaTre, Rome 00146 (Italy)

    2014-06-19

    The need of energy security and environment sustainability drives toward the development of energy technology in order to enhance the performance of internal combustion engines. Gas sensors play a key role for controlling the fuel oxygen ratio and monitoring the pollution emissions. The perovskite-type oxides can be synthesized for an extremely wide variety of combinations of chemical elements, allowing to design materials with suitable properties for sensing application. Lanthanum strontium ferrites, such as La{sub 0.7}Sr{sub 0.3}FeO{sub 3}, are suitable oxygen sensing materials with temperature-independence conductivity, but they have low chemical stability under reducing conditions. The addition of aluminum into the perovskite structure improves the material properties in order to develop suitable oxygen sensing probes for lean burn engine control systems. Perovskite-type oxides with formula (La{sub 0.7}Sr{sub 0.3})(Al{sub x}Fe{sub 1−x})O{sub 3} was synthesized by the citrate-nitrate combustion synthesis method. XRD analyses, show that it was synthesized a phase-pure powder belonging to the perovskite structure. Aluminum affects both the unit cell parameters, by shrinking the unit cell, and the powder morphology, by promoting the synthesis of particles with small crystallite size and large specific surface area. The partial substitution of iron with aluminum improves the chemical stability under reducing gas conditions and modulates the oxygen sensitivity by affecting the relative amount of Fe{sup 4+} and Fe{sup 3+}, as confirmed from TPR profiles. In the same time, the addition of aluminum does not affects the temperature-independent properties of lanthanum strontium ferrites. Indeed, the electrical measurements show that (La{sub 0.7}Sr{sub 0.3})(Al{sub x}Fe{sub 1−x})O{sub 3} perovskites have temperature-independence conductivity from 900 K.

  7. (La1-xSrx)0.98MnO3 perovskite with A-site deficiencies toward oxygen reduction reaction in aluminum-air batteries

    Science.gov (United States)

    Xue, Yejian; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2017-02-01

    The strontium doped Mn-based perovskites have been proposed as one of the best oxygen reduction reaction catalysts (ORRCs) to substitute the noble metal. However, few studies have investigated the catalytic activities of LSM with the A-site deficiencies. Here, the (La1-xSrx)0.98MnO3 (LSM) perovskites with A-site deficiencies are prepared by a modified solid-liquid method. The structure, morphology, valence state and oxygen adsorption behaviors of these LSM samples are characterized, and their catalytic activities toward ORR are studied by the rotating ring-disk electrode (RRDE) and aluminum-air battery technologies. The results show that the appropriate doping with Sr and introducing A-site stoichiometry can effectively tailor the Mn valence and increase the oxygen adsorption capacity of LSM. Among all the LSM samples in this work, the (La0.7Sr0.3)0.98MnO3 perovskite composited with 50% carbon (50%LSM30) exhibits the best ORR catalytic activity due to the excellent oxygen adsorption capacity. Also, this catalyst has much higher durability than that of commercial 20%Pt/C. Moreover, the maximum power density of the aluminum-air battery using 50%LSM30 as the ORRC can reach 191.3 mW cm-2. Our work indicates that the LSM/C composite catalysts with A-site deficiencies can be used as a promising ORRC in the metal-air batteries.

  8. Preparation of aluminum doped zinc oxide films with low resistivity and outstanding transparency by a sol–gel method for potential applications in perovskite solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xingyue; Shen, Heping; Zhou, Chen [State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 10084 (China); Lin, Shiwei [Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228 (China); Li, Xin [State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 10084 (China); Zhao, Xiaochong [State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 10084 (China); Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907 (China); Deng, Xiangyun [Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228 (China); College of Physics and Electronic Information, Tianjin, Normal University, Tianjin 300387 (China); Li, Jianbao [State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 10084 (China); Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228 (China); Lin, Hong [State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 10084 (China)

    2016-04-30

    Highly transparent and conductive aluminum doped zinc oxide (AZO) films were prepared by sol–gel method on the glass substrates. The effects of doping concentration, annealing temperature and facing direction during annealing on the structural, electrical and optical properties of AZO films were studied by performing a series of characterizations including X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis spectrophotometry, four-point probe method and Hall effect measurement system. The results showed that the AZO films were wurtzite crystallized with c-axis preferred orientation. A minimum resistivity of 1.8 × 10{sup −3} Ω cm and a transmittance above 90% were obtained for the film doped with 1.5 at.% aluminum, annealed at 510 °C and faced-down in the oven, which was among the best performance of the currently reported works based on sol–gel process. Moreover, energy level analysis revealed that the AZO film has a work function of 4.3 eV, exhibiting great potential in perovskite solar cell applications. - Highlights: • Highly transparent and conductive AZO films were prepared by sol–gel based process. • Different facing directions during annealing had effects on the carrier mobility. • Less aluminum ions at the grain boundary would favor the carrier transport. • The potential of AZO film in the perovskite solar cell application was discussed.

  9. Lutetium oxide-based transparent ceramic scintillators

    Science.gov (United States)

    Seeley, Zachary; Cherepy, Nerine; Kuntz, Joshua; Payne, Stephen A.

    2016-01-19

    In one embodiment, a transparent ceramic of sintered nanoparticles includes gadolinium lutetium oxide doped with europium having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YEu.sub.YO.sub.3, where X is any value within a range from about 0.05 to about 0.45 and Y is any value within a range from about 0.01 to about 0.2, and where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm. In another embodiment, a transparent ceramic scintillator of sintered nanoparticles, includes a body of sintered nanoparticles including gadolinium lutetium oxide doped with a rare earth activator (RE) having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YRE.sub.YO.sub.3, where RE is selected from the group consisting of: Sm, Eu, Tb, and Dy, where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm.

  10. Low-temperature thermal properties and features of the phonon spectrum of lutetium tetraboride

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, V.V., E-mail: vvnovikov@mail.ru [Bryansk Petrovsky State University, 14 Bezhitskaya St., Bryansk 241037, Russia, (Russian Federation); Mitroshenkov, N.V., E-mail: weerm@yandex.ru [Bryansk Petrovsky State University, 14 Bezhitskaya St., Bryansk 241037, Russia, (Russian Federation); Matovnikov, A.V.; Avdashchenko, D.V. [Bryansk Petrovsky State University, 14 Bezhitskaya St., Bryansk 241037, Russia, (Russian Federation); Morozov, A.V. [Russian Timiryazev State Agrarian University, 49 Timiryazevskaya St., Moscow 127550 (Russian Federation); Pavlova, L.M.; Koltsov, V.B. [National Research University of Electronic Technology “MIET”, Moscow 124498 (Russian Federation)

    2014-11-15

    Highlights: • The coefficients of thermal expansion (α{sub ‖}, α{sub ⊥}) were measured for lutetium tetraboride. • The simplified Lutetium tetraboride phonon spectrum model is developed. • The Grüneisen parameters Γ, Γ{sub ‖}, Γ{sub ⊥} for lutetium tetraboride is calculated. • The anomalies of Γ{sub ‖}(T), Γ{sub ⊥}(T) at about 25 K are due to Einstein vibrations of boron sublattices. - Abstract: The coefficients of thermal expansion to the c axis (α{sub ‖}, α{sub ⊥}) were measured for lutetium tetraboride over the temperature range 4.2–300 K. The heat capacity data for lutetium tetraboride were used for the calculation of tetraboride phonon spectrum moments and also for the development of a simplified tetraboride spectrum model. The use of the heat capacity and thermal expansion data allowed the temperature changes of the Grüneisen parameters Γ, Γ{sub ‖}, Γ{sub ⊥} for tetraboride to be calculated. As a result of the approximation of Γ{sub ⊥}(T), Γ{sub ‖}(T) temperature dependencies in accordance with the chosen phonon spectrum model have been found: the anomalies of Γ{sub ⊥}(T), Γ{sub ‖}(T) are at about 25 K and then drop at lower temperatures due to the Einstein vibrations of boron sublattices.

  11. Growth of MAPbBr3 perovskite crystals and its interfacial properties with Al and Ag contacts for perovskite solar cells

    Science.gov (United States)

    Najeeb, Mansoor Ani; Ahmad, Zubair; Shakoor, R. A.; Alashraf, Abdulla; Bhadra, Jolly; Al-Thani, N. J.; Al-Muhtaseb, Shaheen A.; Mohamed, A. M. A.

    2017-11-01

    In this work, the MAPbBr3 perovskite crystals were grown and the interfacial properties of the poly-crystalline MAPbBr3 with Aluminum (Al) and Silver (Ag) contacts has been investigated. MAPbBr3 crystals are turned into the poly-crystalline pellets (PCP) using compaction technique and the Al/PCP, Al/interface layer/PCP, Ag/PCP, and Ag/interface layer/PCP contacts were investigated. Scanning Electron Microscopic (SEM), Energy-dispersive X-ray spectroscopy (EDX) and current-voltage (I-V) characteristic technique were used to have an insight of the degradation mechanism happening at the Metal/perovskite interface. The Ag/PCP contact appears to be stable, whereas Al is found to be highly reactive with the MAPbBr3 perovskite crystals due to the infiltration setback of Al in to the perovskite crystals. The interface layer showed a slight effect on the penetration of Al in to the perovskite crystals however it does not seem to be an appropriate solution. It is noteworthy that the stability of the underlying metal/perovskite contact is very crucial towards the perovskite solar cells with extended device lifetime.

  12. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    International Nuclear Information System (INIS)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100 deg. C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed

  13. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    Science.gov (United States)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100°C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed.

  14. Validation of GEANT3 simulation studies with a dual-head PMT ClearPET TM prototype

    CERN Document Server

    Ziemons, K; Streun, M; Pietrzyk, U

    2004-01-01

    The ClearPET TM project is proposed by working groups of the Crystal Clear Collaboration (CCC) to develop a 2/sup nd/ generation high performance small animal positron emission tomograph (PET). High sensitivity and high spatial resolution is foreseen for the ClearPET TM camera by using a phoswich arrangement combining mixed lutetium yttrium aluminum perovskite (LuYAP:Ce) and lutetium oxyorthosilicate (LSO) scintillating crystals. Design optimizations for the first photomultiplier tube (PMT) based ClearPET camera are done with a Monte-Carlo simulation package implemented on GEANT3 (CERN, Geneva, Switzerland). A dual-head prototype has been built to test the frontend electronics and was used to validate the implementation of the GEANT3 simulation tool. Multiple simulations were performed following the experimental protocols to measure the intrinsic resolution and the sensitivity profile in axial and radial direction. Including a mean energy resolution of about 27.0% the simulated intrinsic resolution is about (...

  15. PMR investigation into complexes of lanthanum and lutetium with ethylenediaminediacetic acid

    International Nuclear Information System (INIS)

    Kostromina, N.A.; Novikova, L.B.

    1975-01-01

    Proton resonance spectra of ethylendiaminediacetic acid (EDDA) and EDDA mixtures with La and Lu as function of pH of solution was studied. Sequence of EDDA (A 2- ) protonation was established; cations H 3 A + and H 4 A 2+ were found; dissociation constants of above mentioned cations were determined. Formation of H 2 LnA 3+ , HLnA 2+ and LnA + complexes in EDDA-Ln (1:1) system was found. Difference in the bonds mobility of lanthanum and lutetium complexes was determined: lanthanum forms complexes with labile, lutetium with non-labile bonds. Information on complexes structure is collected. Acid dissociation constants of protonated complexes of lanthanum with EDDA were determined

  16. Saturated vapor pressure of lutetium tris-acetylacetonate

    Energy Technology Data Exchange (ETDEWEB)

    Trembovetskij, G.V.; Berdonosov, S.S.; Murav' eva, I.A.; Martynenko, L.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1983-12-01

    By the statical method using /sup 177/Lu radioactive isotope the saturated vapor pressure of anhydrous lutetium acetylacetonate at 130 to 160 deg is determined. The calculations are carried out assuming the vapor to be monomolecular. The equation of lgP versus 1/T takes the form: lg Psub((mmHg))=(8.7+-1.6)-(4110+-690)/T. The thermodynamical characteristics of LuA/sub 3/ sublimation are calculated to be ..delta..Hsub(subl.)=79+-13 kJ/mol; ..delta..Ssub(subl.)=111+-20 J/kxmol.

  17. Low-cost electrodes for stable perovskite solar cells

    Science.gov (United States)

    Bastos, João P.; Manghooli, Sara; Jaysankar, Manoj; Tait, Jeffrey G.; Qiu, Weiming; Gehlhaar, Robert; De Volder, Michael; Uytterhoeven, Griet; Poortmans, Jef; Paetzold, Ulrich W.

    2017-06-01

    Cost-effective production of perovskite solar cells on an industrial scale requires the utilization of exclusively inexpensive materials. However, to date, highly efficient and stable perovskite solar cells rely on expensive gold electrodes since other metal electrodes are known to cause degradation of the devices. Finding a low-cost electrode that can replace gold and ensure both efficiency and long-term stability is essential for the success of the perovskite-based solar cell technology. In this work, we systematically compare three types of electrode materials: multi-walled carbon nanotubes (MWCNTs), alternative metals (silver, aluminum, and copper), and transparent oxides [indium tin oxide (ITO)] in terms of efficiency, stability, and cost. We show that multi-walled carbon nanotubes are the only electrode that is both more cost-effective and stable than gold. Devices with multi-walled carbon nanotube electrodes present remarkable shelf-life stability, with no decrease in the efficiency even after 180 h of storage in 77% relative humidity (RH). Furthermore, we demonstrate the potential of devices with multi-walled carbon nanotube electrodes to achieve high efficiencies. These developments are an important step forward to mass produce perovskite photovoltaics in a commercially viable way.

  18. First principles study of electronic, elastic and thermal properties of lutetium intermetallics

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Chouhan, Sunil Singh; Soni, Pooja; Sanyal, S.P.; Rajagopalan, M.

    2011-01-01

    In the present work, the electronic, elastic and thermal properties of lutetium intermetallics LuX have been studied theoretically by using first principles calculations based on density functional theory (DFT) with the generalized gradient approximation (GCA)

  19. Synthesis of Lutetium Phosphate/Apoferritin Core-Shell Nanoparticles for Potential Applications in Radioimmunoimaging and Radioimmunotherapy of Cancers

    International Nuclear Information System (INIS)

    Wu, Hong; Engelhard, Mark H.; Wang, Jun; Fisher, Darrell R.; Lin, Yuehe

    2008-01-01

    We report a novel approach for synthesizing LuPO4/apoferritin core-shell nanoparticles based on an apoferritin template, conjugated to the protein biotin. To prepare the nanoparticle conjugates, we used non-radioactive lutetium as a model target or surrogate for radiolutetium (177Lu). The central cavity, multi-channel structure, and chemical properties of apoferritin are well-suited for sequentially diffusing lutetium and phosphate ions into the cavity--resulting in a stable core-shell composite. We characterized the synthesized LuPO4/apoferritin nanoparticle using transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). We tested the pre-targeting capability of biotin-modified lutetium/apoferritin nanoparticle using streptavidin-modified magnetic beads and streptavidin-modified fluorescein isothiocyanate (FITC) tracer. This paper presents a simple, fast, and efficient method for synthesizing LuPO4/apoferritin nanoparticle conjugates with biotin for potential applications in radioimmunotherapy and radioimmunoimaging of cancer

  20. Lutetium(III) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex

    Energy Technology Data Exchange (ETDEWEB)

    Sessa, Francesco; D’Angelo, Paola, E-mail: p.dangelo@uniroma1.it [Dipartimento di Chimica, Università di Roma “La Sapienza,” P. le A. Moro 5, 00185 Roma (Italy); Spezia, Riccardo [CNRS, UMR 8587, Laboratoire Analyse et Modelisation Pour la Biologie et l’Environnement, Université d’Evry Val d’Essonne, Blvd. F. Mitterrand, 91025 Evry Cedex (France)

    2016-05-28

    The structure and dynamics of the lutetium(III) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(III) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(III) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms.

  1. Apparent molar volumes and compressibilities of lanthanum, gadolinium and lutetium trifluoromethanesulfonates in dimethylsulfoxide

    International Nuclear Information System (INIS)

    Warmińska, Dorota; Wawer, Jarosław

    2012-01-01

    Highlights: ► Sequence of volumes and compressibilities of Ln 3+ ions in DMSO is: La 3+ > Gd 3+ 3+ . ► Sequence of the partial molar volumes do not change with temperature. ► These results are the consequence of nature of the ion–solvent bonding. - Abstract: Temperature dependencies of the densities of dimethylsulfoxide solutions of lanthanum, gadolinium and lutetium trifluoromethanesulfonates have been determined over a wide range of concentrations. The apparent molar volumes and partial molar volumes of the salts at infinite dilution, as well as the expansibilities of the salts, have been calculated from density data. Additionally, the apparent molar isentropic compressibilities of lanthanum, gadolinium and lutetium trifluoromethanesulfonates have been calculated from sound velocity data at 298.15 K. The data obtained have been interpreted in terms of ion−solvent interactions.

  2. Perovskite-Perovskite Homojunctions via Compositional Doping.

    Science.gov (United States)

    Dänekamp, Benedikt; Müller, Christian; Sendner, Michael; Boix, Pablo P; Sessolo, Michele; Lovrincic, Robert; Bolink, Henk J

    2018-05-11

    One of the most important properties of semiconductors is the possibility of controlling their electronic behavior via intentional doping. Despite the unprecedented progress in the understanding of hybrid metal halide perovskites, extrinsic doping of perovskite remains nearly unexplored and perovskite-perovskite homojunctions have not been reported. Here we present a perovskite-perovskite homojunction obtained by vacuum deposition of stoichiometrically tuned methylammonium lead iodide (MAPI) films. Doping is realized by adjusting the relative deposition rates of MAI and PbI 2 , obtaining p-type (MAI excess) and n-type (MAI defect) MAPI. The successful stoichiometry change in the thin films is confirmed by infrared spectroscopy, which allows us to determine the MA content in the films. We analyzed the resulting thin-film junction by cross-sectional scanning Kelvin probe microscopy (SKPM) and found a contact potential difference (CPD) of 250 mV between the two differently doped perovskite layers. Planar diodes built with the perovskite-perovskite homojunction show the feasibility of our approach for implementation in devices.

  3. Determination of Kps and β1,H in a wide interval of initial concentrations of lutetium

    International Nuclear Information System (INIS)

    Lopez-G, H.; Jimenez R, M.; Solache R, M.; Rojas H, A.

    2006-01-01

    The solubility product constants and the first of lutetium hydrolysis in the interval of initial concentration of 3.72 X 10 -5 to 2.09 X 10 -3 M of lutetium, in a 2M of NaCIO 4 media, at 303 K and under conditions free of CO 2 its were considered. The solubility diagrams (pLu (ac) -pC H ) by means of a radiochemical method were obtained, and starting from its the pC H values that limit the saturation and no-saturation zones of the solutions were settled down. Those diagrams allowed, also, to calculate the solubility product constants of Lu(OH) 3 . The experimental data to the polynomial solubility equation were adjusted, what allowed to calculate those values of the solubility product constants of Lu(OH) 3 and to determine the first hydrolysis constant. The value of precipitation pC H diminishes when the initial concentration of the lutetium increases, while the values of K ps and β 1,H its remain constant. (Author)

  4. Curtailing Perovskite Processing Limitations via Lamination at the Perovskite/Perovskite Interface

    Energy Technology Data Exchange (ETDEWEB)

    Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moore, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Klein, Talysa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christians, Jeffrey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beard, Matthew C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Joseph J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dunfield, Sean P. [University of Colorado; Fabian, David M. [University of California Irvine; Dixon, Alex G. [University of Colorado; Dou, Benjia [University of Colorado; Ardo, Shane [University of California Irvine; Shaheen, Sean E. [University of Colorado

    2018-04-24

    Standard layer-by-layer solution processing methods constrain lead-halide perovskite device architectures. The layer below the perovskite must be robust to the strong organic solvents used to form the perovskite while the layer above has a limited thermal budget and must be processed in nonpolar solvents to prevent perovskite degradation. To circumvent these limitations, we developed a procedure where two transparent conductive oxide/transport material/perovskite half stacks are independently fabricated and then laminated together at the perovskite/perovskite interface. Using ultraviolet-visible absorption spectroscopy, external quantum efficiency, X-ray diffraction, and time-resolved photoluminesence spectroscopy, we show that this procedure improves photovoltaic properties of the perovskite layer. Applying this procedure, semitransparent devices employing two high-temperature oxide transport layers were fabricated, which realized an average efficiency of 9.6% (maximum: 10.6%) despite series resistance limitations from the substrate design. Overall, the developed lamination procedure curtails processing constraints, enables new device designs, and affords new opportunities for optimization.

  5. Thermal decomposition of lutetium propionate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2010-01-01

    The thermal decomposition of lutetium(III) propionate monohydrate (Lu(C2H5CO2)3·H2O) in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy and X-ray diffraction. Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous...... °C. Full conversion to Lu2O3 is achieved at about 1000 °C. Whereas the temperatures and solid reaction products of the first two decomposition steps are similar to those previously reported for the thermal decomposition of lanthanum(III) propionate monohydrate, the final decomposition...... of the oxycarbonate to the rare-earth oxide proceeds in a different way, which is here reminiscent of the thermal decomposition path of Lu(C3H5O2)·2CO(NH2)2·2H2O...

  6. Laser resonance ionization spectroscopy on lutetium for the MEDICIS project

    Energy Technology Data Exchange (ETDEWEB)

    Gadelshin, V., E-mail: gadelshin@uni-mainz.de [University of Mainz, Institute of Physics (Germany); Cocolios, T. [KU Leuven, Institute for Nuclear and Radiation Physics (Belgium); Fedoseev, V. [CERN, EN Department (Switzerland); Heinke, R.; Kieck, T. [University of Mainz, Institute of Physics (Germany); Marsh, B. [CERN, EN Department (Switzerland); Naubereit, P. [University of Mainz, Institute of Physics (Germany); Rothe, S.; Stora, T. [CERN, EN Department (Switzerland); Studer, D. [University of Mainz, Institute of Physics (Germany); Duppen, P. Van [KU Leuven, Institute for Nuclear and Radiation Physics (Belgium); Wendt, K. [University of Mainz, Institute of Physics (Germany)

    2017-11-15

    The MEDICIS-PROMED Innovative Training Network under the Horizon 2020 EU program aims to establish a network of early stage researchers, involving scientific exchange and active cooperation between leading European research institutions, universities, hospitals, and industry. Primary scientific goal is the purpose of providing and testing novel radioisotopes for nuclear medical imaging and radionuclide therapy. Within a closely linked project at CERN, a dedicated electromagnetic mass separator system is presently under installation for production of innovative radiopharmaceutical isotopes at the new CERN-MEDICIS laboratory, directly adjacent to the existing CERN-ISOLDE radioactive ion beam facility. It is planned to implement a resonance ionization laser ion source (RILIS) to ensure high efficiency and unrivaled purity in the production of radioactive ions. To provide a highly efficient ionization process, identification and characterization of a specific multi-step laser ionization scheme for each individual element with isotopes of interest is required. The element lutetium is of primary relevance, and therefore was considered as first candidate. Three two-step excitation schemes for lutetium atoms are presented in this work, and spectroscopic results are compared with data of other authors.

  7. Laser resonance ionization spectroscopy on lutetium for the MEDICIS project

    Science.gov (United States)

    Gadelshin, V.; Cocolios, T.; Fedoseev, V.; Heinke, R.; Kieck, T.; Marsh, B.; Naubereit, P.; Rothe, S.; Stora, T.; Studer, D.; Van Duppen, P.; Wendt, K.

    2017-11-01

    The MEDICIS-PROMED Innovative Training Network under the Horizon 2020 EU program aims to establish a network of early stage researchers, involving scientific exchange and active cooperation between leading European research institutions, universities, hospitals, and industry. Primary scientific goal is the purpose of providing and testing novel radioisotopes for nuclear medical imaging and radionuclide therapy. Within a closely linked project at CERN, a dedicated electromagnetic mass separator system is presently under installation for production of innovative radiopharmaceutical isotopes at the new CERN-MEDICIS laboratory, directly adjacent to the existing CERN-ISOLDE radioactive ion beam facility. It is planned to implement a resonance ionization laser ion source (RILIS) to ensure high efficiency and unrivaled purity in the production of radioactive ions. To provide a highly efficient ionization process, identification and characterization of a specific multi-step laser ionization scheme for each individual element with isotopes of interest is required. The element lutetium is of primary relevance, and therefore was considered as first candidate. Three two-step excitation schemes for lutetium atoms are presented in this work, and spectroscopic results are compared with data of other authors.

  8. Separation of thulium, ytterbium and lutetium from uranium

    International Nuclear Information System (INIS)

    Lopez, G.H.

    1987-01-01

    The behaviour at different temperatures, shaking times and hydrochloric acid concentrations on the solvent extraction system UO 2 2+ - (Tm 3+ , Yb 3+ , Lu 3+ ) - H 2 O - HCl - TBP was studied. Quantitative determinations of the elements were performed by visible spectrophotometry and X-ray fluorescence. The uranyl ion was efficiently extracted by TBP from an aqueous hydrochloric acid solution (4-7M) shaken during 10 minutes at room temperature. On these conditions the separation factors for uranium from thulium and ytterbium were found to be 3000 and from lutetium 140. (author)

  9. Electrochemistry and spectroelectrochemistry of tert-butylcalix[4]arene bridged bis double-decker lutetium(III) phthalocyanine, Lu2Pc4 and dimeric lutetium(III) phthalocyanine, Lu2Pc2(OAc)2

    International Nuclear Information System (INIS)

    Koca, Atif; Ceyhan, Tanju; Erbil, Mehmet K.; Ozkaya, Ali Riza; Bekaroglu, Ozer

    2007-01-01

    In this study, electrochemical, electrochromic and spectroelectrochemical properties of a tert-butylcalix[4]arene bridged bis double-decker lutetium(III) phthalocyanine (Lu 2 Pc 4 2) were investigated explicitly as compared with a tert-butylcalix[4]arene bridged dimeric lutetium(III) phthalocyanine [Lu 2 Pc 2 (OAc) 2 1]. Distinctive differences between electrochemical and electrochromic properties of 1 and 2 were detected. Moreover, the properties of 1 and 2 were compared with previously reported S 4 (CH 2 ) 4 bridged Lu 2 Pc 2 (OAc) 2 and Lu 2 Pc 4 . The calixarene bridged phthalocyanine (Pc) compounds, 1 and 2 showed well-defined electrochromic behaviour with green-blue and blue-purple colour transitions. The enhanced electrochromic properties of 2, as compared to 1, were attributed to its double-decker structure, probably allowing the formation of suitable ion channels for the counter ion movement in the solid film

  10. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    Science.gov (United States)

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  11. Independent fissile inventory verification in a large tank employing lutetium double spikes

    International Nuclear Information System (INIS)

    Carter, J.A.; Walker, R.L.; May, M.P.; Smith, D.H.; Hebble, T.L.

    1987-01-01

    A 3000-liter feed adjustment tank containing over 2400 L of uranium solution was assayed for its contents using the double spiking technique of isotope dilution mass spectrometry. Lutetium was the double spike, with the natural element used as the initial spike and enriched 176-Lu as the second. The ability of a remote sampling system was evaluated for its ability to introduce the lutetium and also to produce homogeneous sample solutions. The system was found to be satisfactory. Volumes of the tank can be measured to a precision of about 0.2%. The concentration of uranium was measured as 154.5 g/L uranium, thus giving a total of 382.3 kg in the tank as compared to the plant's best estimate of 383 kg. Uranium measurements were subjected to internal calibration calculations, with 233-U and 236-U being used as the reference isotopes. A diversion of 5% of the tank contents was simulated to evaluate the method's sensitivity in this regard. The ability of this method to give timely results of good precision makes it a strong candidate for use in material balance and inventory accountability applications; it also has potential use in quality assurance areas

  12. Perovskites in the comb roof base of hornets: their possible function.

    Science.gov (United States)

    Ishay, J S; Joseph, Z; Galushko, D; Ermakov, N; Bergman, D J; Barkay, Z; Stokroos, I; van der Want, J

    2005-04-01

    On the ceiling of the Oriental hornet comb cell, there are mineral granules of polycrystalline material known to belong to the group of perovskites. In a comb cell intended to house a worker hornet, the roof base usually carries one or several such perovskite granules containing titanium (Ti), whereas in the roof base of a cell housing a developing queen, there are usually several granules containing a high percentage of silicon (Si), aluminum (Al), calcium (Ca), and iron (Fe), but very little if any Ti. In worker comb cells, Ti usually appears as ilmenite (FeTiO3). Besides documenting the above-mentioned facts, this report discusses possible reasons for the appearance of ilmenite crystals in worker cells only and not in queen cells. (c) 2005 Wiley-Liss, Inc.

  13. Comparison of Cadmium-Zinc-Telluride semiconductor and Yttrium-Aluminum-Perovskite scintillator as photon detectors for epithermal neutron spectroscopy

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Gorini, G.; Imberti, S.; Perelli-Cippo, E.; Senesi, R.; Rhodes, N.; Schooneveld, E.M.

    2006-01-01

    The range of applications of epithermal neutron scattering experiments has been recently extended by the development of the Resonance Detector. In a Resonance Detector, resonant neutron absorption in an analyzer foil results in prompt emission of X- and γ-rays which are detected by a photon counter. Several combinations of analyzer foils and photon detectors have been studied and tested over the years and best results have been obtained with the combination of a natural uranium and (i) Cadmium-Zinc-Telluride (CZT) semiconductor (ii) Yttrium-Aluminum-Perovskite (YAP) scintillators. Here we compare the performance of the CZT semiconductor and YAP scintillator as Resonance Detector units. Two Resonance Detector prototypes made of natural uranium foil viewed by CZT and YAP were tested on the VESUVIO spectrometer at the ISIS spallation neutron source. The results show that both YAP and CZT can be used to detect epithermal neutrons in the energy range from 1 up to 66 eV. It was found that the signal-to-background ratio of the measurement can significantly be improved by raising the lower level discrimination threshold on the γ energy to about 600 keV. The advantages/disadvantages of the choice of a Resonance Detector based on YAP or CZT are discussed together with some potential applications

  14. DOTA-TATE peptides labelling with Lutetium 177: Preliminary study

    International Nuclear Information System (INIS)

    Aliaga, Eleazar; Robles, Anita; Ramos, Bertha; Martinez, Flor

    2014-01-01

    he peptide DOTA-TATE was labeled with lutetium 177 according to the methodology provided under the regional project RLA/6/074, sponsored by the IAEA. The labeling was done in 0.26 M gentisic acid solution in 0.8 M sodium acetate buffer, pH 5, at 100 °C for 30 minutes in a dry heating block. The radiochemical purity was assessed by thin layer chromatography, using ITLC SG strips and a mixture of 0.15 M ammonium acetate - methanol (1:1) as solvent. The radiolabeled peptide 177 Lu-DOTA-TATE reached a radiochemical purity of 98 % with a specific activity of 2,8 mCi/µg of peptide. (authors).

  15. Electrochemistry and spectroelectrochemistry of tert-butylcalix[4]arene bridged bis double-decker lutetium(III) phthalocyanine, Lu{sub 2}Pc{sub 4} and dimeric lutetium(III) phthalocyanine, Lu{sub 2}Pc{sub 2}(OAc){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif [Chemical Engineering Department, Engineering Faculty, Marmara University, TR34722 Goeztepe, Istanbul (Turkey); Ceyhan, Tanju; Erbil, Mehmet K. [Department of Biochemistry, Division of Organic Chemistry, Guelhane Medical Academy (GATA), Ankara (Turkey); Ozkaya, Ali Riza [Department of Chemistry, Marmara University, TR34722 Goeztepe, Istanbul (Turkey)], E-mail: aliozkaya@marmara.edu.tr; Bekaroglu, Ozer [Department of Chemistry, Technical University of Istanbul, TR34469 Maslak, Istanbul (Turkey)], E-mail: obek@itu.edu.tr

    2007-11-09

    In this study, electrochemical, electrochromic and spectroelectrochemical properties of a tert-butylcalix[4]arene bridged bis double-decker lutetium(III) phthalocyanine (Lu{sub 2}Pc{sub 4}2) were investigated explicitly as compared with a tert-butylcalix[4]arene bridged dimeric lutetium(III) phthalocyanine [Lu{sub 2}Pc{sub 2}(OAc){sub 2}1]. Distinctive differences between electrochemical and electrochromic properties of 1 and 2 were detected. Moreover, the properties of 1 and 2 were compared with previously reported S{sub 4}(CH{sub 2}){sub 4} bridged Lu{sub 2}Pc{sub 2}(OAc){sub 2} and Lu{sub 2}Pc{sub 4}. The calixarene bridged phthalocyanine (Pc) compounds, 1 and 2 showed well-defined electrochromic behaviour with green-blue and blue-purple colour transitions. The enhanced electrochromic properties of 2, as compared to 1, were attributed to its double-decker structure, probably allowing the formation of suitable ion channels for the counter ion movement in the solid film.

  16. Constructing Efficient and Stable Perovskite Solar Cells via Interconnecting Perovskite Grains.

    Science.gov (United States)

    Hou, Xian; Huang, Sumei; Ou-Yang, Wei; Pan, Likun; Sun, Zhuo; Chen, Xiaohong

    2017-10-11

    A high-quality perovskite film with interconnected perovskite grains was obtained by incorporating terephthalic acid (TPA) additive into the perovskite precursor solution. The presence of TPA changed the crystallization kinetics of the perovskite film and promoted lateral growth of grains in the vicinity of crystal boundaries. As a result, sheet-shaped perovskite was formed and covered onto the bottom grains, which made some adjacent grains partly merge together to form grains-interconnected perovskite film. Perovskite solar cells (PSCs) with TPA additive exhibited a power conversion efficiency (PCE) of 18.51% with less hysteresis, which is obviously higher than that of pristine cells (15.53%). PSCs without and with TPA additive retain 18 and 51% of the initial PCE value, respectively, aging for 35 days exposed to relative humidity 30% in air without encapsulation. Furthermore, MAPbI 3 film with TPA additive shows superior thermal stability to the pristine one under 100 °C baking. The results indicate that the presence of TPA in perovskite film can greatly improve the performance of PSCs as well as their moisture resistance and thermal stability.

  17. Effect of pressure on the bandstructure and superconductivity in lutetium

    International Nuclear Information System (INIS)

    Asokamani, R.; Natarajan, S.; Rajagopalan, M.; Sundararajan, V.; Suvasini, M.B.; Iyakutti, K.

    1984-08-01

    The detailed bandstructure and superconducting behaviour of lutetium at 230 kbar pressure is reported here. The electronic contribution eta to the electron-phonon mass enhancement lambda is studied within the rigid muffin-tin (RMT) approximation. The pd and df matrix elements are expressed in terms of 'd' bandwidth, Fermi energy and muffin-tin zero. The variations of Grueneisen parameter and Debye temperature with pressure are studied and applied in the calculation of Tsub(c). The calculated Tsub(c) value agrees fairly well with the experimental value. The changes in the conduction bandwidth and the electronic specific heat coefficient with pressure are found to be in agreement with theoretical prediction. (author)

  18. Trace Element Abundances in an Unusual Hibonite-Perovskite Refractory Inclusion from Allende

    Science.gov (United States)

    Mane, Prajkta; Wadhwa, M.; Keller, L. P.

    2013-01-01

    Calcium-aluminum-rich refractory inclusions (CAIs) are thought to be the first-formed solids in the Solar protoplanetary disk and can provide information about the earliest Solar System processes (e.g., [1]). A hibonite-perovskitebearing CAI from the Allende CV3 chondrite (SHAL, [2]) contains a single of 500 micrometers hibonite grain and coarse-grained perovskite. The mineralogy and oxygen isotopic composition of this CAI shows similarities with FUN inclusions, especially HAL [2]. Here we present trace element abundances in SHAL.

  19. Determination of lutetium (III) hydrolysis constants in the middle of ion force 1M sodium chloride at 303 K

    International Nuclear Information System (INIS)

    Jimenez R, M.; Solache R, M.J.; Ramirez G, J.J.; Rojas H, A.

    1997-01-01

    With the purpose to complete information about the lutetium (III) hydrolysis constants here is used the potentiometric method to determine those in the middle of ion force 1M sodium chloride at 303 K. (Author)

  20. X-ray fluorescence analysis of lutetium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.

    1985-01-01

    An X-ray fluorescence spectrometric method for the analysis of lutetium oxide is described. The sample in the oxalate form is mixed with boric acid binding material and pressed into a pellet over supporting pellet of boric acid. A Philips PW 1220 wavelength dispersive semiautomatic X-ray fluorescence spectrometer is used for the analysis. The minimum determination limit is 0.002 percent for Y, Er and Yb and 0.005 percent for Tm. Calculations for theoretical minimum detection limits and percent standard deviations at each concentration of the standard are carried out. (author)

  1. Hyperfine interactions in 111Cd-doped lutetium sesquioxide

    International Nuclear Information System (INIS)

    Errico, L.A.; Renteria, M.; Bibiloni, A.G.; Requejo, F.G.

    1999-01-01

    We report here first Perturbed Angular Correlation (PAC) results of the electric field gradient (EFG) characterisation at 111 Cd impurities located at both non-equivalent cation sites of the bixbyite structure of Lutetium sesquioxide, between room temperature (RT) and 1273 K. The comparison with results coming from a systematic 111 Cd PAC study in bixbyites and with point-charge model (PCM) predictions shows the presence of a trapped defect at RT in the neighbourhood of the asymmetric cation site, which is completely removed at T > 623 K. The anomalous EFG temperature dependence in Lu 2 O 3 can be described in the frame of a 'two-state' model with fluctuating interactions, which enables the experimental determination of the acceptor energy level introduced by the Cd impurity in the band-gap of the semiconductor and the estimation of the oxygen vacancy density in the sample

  2. Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.; Yang, Y.; Zhao, Y.L., E-mail: sdyulong@cumt.edu.cn; Che, M.; Zhu, L.; Gu, X.Q.; Qiang, Y.H., E-mail: yhqiang@cumt.edu.cn

    2017-03-15

    Highlights: • Perovskite films were post-treated by DMF/CBZ, DMSO/CBZ, or GBL/CBZ blend solvents. • This process could repair pinholes and enhance coverage in perovskite film. • This technique could modify charge transfer process at TiO{sub 2}/perovskite interface. - Abstract: A homogenous perovskite thin film with high coverage is a determining factor for high performance perovskite solar cells. Unlike previous pre-treatments aiming at perovskite precursor, we proposed a simple method to modify the morphology of perovskite films by post-treatment process using mixed solvents of N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or 1,4-butyrolactone (GBL) with chlorobenzene (CBZ) in this paper. As good solvent of perovskite, DMF, DMSO, and GBL could dissolve the formed perovskite film. Meanwhile, CBZ, anti-solvent of perovskite film, could decrease the dissolving capacity of these good solvents. Therefore, the perovskite film coverage might be improved by the partial dissolution and recrystallization after solvent post-treatment process. Electrochemical impedance spectrometry (EIS) and time-resolved photoluminescence (TRPL) indicated that this post-treatment process could enhance charge transfer at TiO{sub 2}/perovskite interface. Finally, the conversion efficiency increased from 10.10% to 11.82%, 11.68%, and 10.66% using perovskite films post-treated by DMF/CBZ, DMSO/CBZ, and GBL/CBZ blend solvents, respectively.

  3. Hybrid Organic-Inorganic Perovskite Photodetectors.

    Science.gov (United States)

    Tian, Wei; Zhou, Huanping; Li, Liang

    2017-11-01

    Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Study of lutetium nitrate reaction with orthophosphates of alkali metals and ammonium

    International Nuclear Information System (INIS)

    Davitashvili, E.G.; Dzhabishvili, N.A.; Orlovskij, V.P.; Kargareteli, L.N.

    1986-01-01

    The process of lutetium phosphate precipitation in systems Lu(NO 3 ) 3 - M 3 PO 4 -H 2 O, where M=K + , Na, NH 4 , at 25 deg was studied. Compounds LuPO 4 x2H 2 O, 5LuPO 4 xNa 3 PO 4 x16H 2 O, 2LuPO 4 xK 3 PO 4 x6H 2 O and 2LuPO 4 (NH 4 ) 3 PO 4 x6H 2 O were isolated. The compounds prepared are roentgenoamorphous. Results of thermal decomposition of the compounds are presented

  5. Resonant halide perovskite nanoparticles

    Science.gov (United States)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  6. Optical emission spectrographic analysis of lutetium oxide for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Dixit, V.S.

    1986-01-01

    An optical emission spectrographic (OES) method has been developed for the analysis of high purity lutetium oxide to determine rare earths Er, Tm, Yb and Y. The spectra are excited by a d.c. arc run at 10 A current after mixing the sample with graphite buffer in the weight ratio 1:1. A 1200 grooves/mm grating blazed at 3300 A is used for dispersion and a Kodak SA-1 plate for recording the spectrum. The detection limit is 0.001 per cent for Tm, Yb and Y while it is 0.005 per cent for Er. The relative standard deviation of the method is ± 13.4 per cent. (author)

  7. Aluminum‐Doped Cesium Lead Bromide Perovskite Nanocrystals with Stable Blue Photoluminescence Used for Display Backlight

    Science.gov (United States)

    Liu, Ming; Zhong, Guohua; Yin, Yongming; Miao, Jingsheng; Li, Ke; Wang, Chengqun; Xu, Xiuru; Shen, Clifton

    2017-01-01

    Abstract Bright and stable blue emitters with narrow full‐width at half‐maxima are particularly desirable for applications in television displays and related technologies. Here, this study shows that doping aluminum (Al3+) ion into CsPbBr3 nanocrystals (NCs) using AlBr3 can afford lead‐halide perovskites NCs with stable blue photoluminescence. First, theoretical and experimental analyses reveal that the extended band gap and quantum confinement effect of elongated shape give rise to the desirable blueshifted emission. Second, the aluminum ion incorporation path is rationalized qualitatively by invoking fundamental considerations about binding relations in AlBr3 and its dimer. Finally, the absence of anion‐exchange effect is corroborated when green CsPbBr3 and blue Al:CsPbBr3 NCs are mixed. Combinations of the above two NCs with red‐emitting CdSe@ZnS NCs result in UV‐pumped white light‐emitting diodes (LED) with an National Television System Committee (NTSC) value of 116% and ITU‐R Recommendation B.T. 2020 (Rec. 2020) of 87%. The color coordinates of the white LED are optimized at (0.32, 0.34) in CIE 1931. The results suggest that low‐cost, earth‐abundant, solution‐processable Al‐doped perovskite NCs can be promising candidate materials for blue down‐conversion layer in backlit displays. PMID:29201628

  8. Novel Solvent-free Perovskite Deposition in Fabrication of Normal and Inverted Architectures of Perovskite Solar Cells

    Science.gov (United States)

    Nejand, Bahram Abdollahi; Gharibzadeh, Saba; Ahmadi, Vahid; Shahverdi, H. Reza

    2016-01-01

    We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells. PMID:27640991

  9. Crystal growth and characterization of Tm doped mixed rare-earth aluminum perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Totsuka, Daisuke, E-mail: totsuka@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Nihon Kessho Kogaku Co., Ltd., 810-5 Nobe-cho, Tatebayashi, Gunma 374-0047 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Sugiyama, Makoto; Fujimoto, Yutaka; Yokota, Yuui [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer (Lu{sub x}Gd{sub y}Y{sub 0.99-x-y}Tm{sub 0.01})AP single crystals were grown by the {mu}-PD method. Black-Right-Pointing-Pointer The grown crystals were single phase with perovskite structure (Pbnm). Significant segregation of Lu and Gd was detected in the growth direction. Black-Right-Pointing-Pointer Some absorption bands due to Tm{sup 3+}, Gd{sup 3+} and color centers were exhibited. Black-Right-Pointing-Pointer Radioluminescence spectra showed several emission peaks ascribed to Tm{sup 3+} and Gd{sup 3+}. -- Abstract: In this work, we present results of structural characterization and optical properties including radio luminescence of (Lu{sub x}Gd{sub y}Y{sub 0.99-x-y}Tm{sub 0.01})AP single crystal scintillators for (x, y) = (0.30, 0.19), (0, 0.19) and (0, 0) grown by the micro-pulling-down ({mu}-PD) method. The grown crystals were single phase materials with perovskite structure (Pbnm) as confirmed by XRD and had a good crystallinity. The distribution of the crystal constituents in growth direction was evaluated, and significant segregation of Lu and Gd was detected in (Lu{sub 0.30}Gd{sub 0.19}Y{sub 0.50}Tm{sub 0.01})AP sample. The crystals demonstrated 70% transmittance in visible wavelength range and some absorption bands due to Tm{sup 3+}, Gd{sup 3+} and color centers were exhibited in 190-900 nm. The radioluminescence measurement under X-ray irradiation demonstrated several emission peaks ascribed to 4f-4f transitions of Tm{sup 3+} and Gd{sup 3+}. The ratio of emission intensity in longer wavelength range was increased when Y was replaced by Lu or Gd.

  10. Apparent molar volumes and compressibilities of lanthanum, gadolinium, lutetium and sodium trifluoromethanesulfonates in N,N-dimethylformamide and N,N-dimethylacetamide

    International Nuclear Information System (INIS)

    Warmińska, Dorota; Fuchs, Anna; Lundberg, Daniel

    2013-01-01

    Highlights: ► In DMF the sequence values of both volumes and compressibilities of Ln 3+ ions are: La 3+ ≈ Gd 3+ > Lu 3+ . ► In DMA the ionic volumes of lanthanoid(III) metal ions are, within error limits, identical. ► Obtained results are the consequence of an ion–solvent bonding nature. -- Abstract: The concentration and temperature dependencies of density of lanthanum, gadolinium, lutetium and sodium trifluoromethanesulfonates in N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMA) have been determined. From density data the apparent molar volumes and partial molar volumes of the salts at infinite dilution as well as the expansibilities have been evaluated. The apparent molar isentropic compressibilities of lanthanum, gadolinium, lutetium and sodium trifluoromethanesulfonates in DMF and DMA have been calculated from sound velocity data obtained at 298.15 K. The results have been discussed in terms of ion–solvent interactions

  11. Hyperfine interactions in {sup 111}Cd-doped lutetium sesquioxide

    Energy Technology Data Exchange (ETDEWEB)

    Errico, L.A.; Renteria, M.; Bibiloni, A.G.; Requejo, F.G. [Universidad Nacional de La Plata, Programa TENAES (CONICET), Departamento de Fisica, Facultad de Ciencias Exactas (Argentina)

    1999-09-15

    We report here first Perturbed Angular Correlation (PAC) results of the electric field gradient (EFG) characterisation at {sup 111}Cd impurities located at both non-equivalent cation sites of the bixbyite structure of Lutetium sesquioxide, between room temperature (RT) and 1273 K. The comparison with results coming from a systematic {sup 111}Cd PAC study in bixbyites and with point-charge model (PCM) predictions shows the presence of a trapped defect at RT in the neighbourhood of the asymmetric cation site, which is completely removed at T > 623 K. The anomalous EFG temperature dependence in Lu{sub 2}O{sub 3} can be described in the frame of a 'two-state' model with fluctuating interactions, which enables the experimental determination of the acceptor energy level introduced by the Cd impurity in the band-gap of the semiconductor and the estimation of the oxygen vacancy density in the sample.

  12. High-pressure stability relations, crystal structures, and physical properties of perovskite and post-perovskite of NaNiF3

    International Nuclear Information System (INIS)

    Shirako, Y.; Shi, Y.G.; Aimi, A.; Mori, D.; Kojitani, H.; Yamaura, K.; Inaguma, Y.; Akaogi, M.

    2012-01-01

    NaNiF 3 perovskite was found to transform to post-perovskite at 16–18 GPa and 1273–1473 K. The equilibrium transition boundary is expressed as P (GPa)=−2.0+0.014×T (K). Structure refinements indicated that NaNiF 3 perovskite and post-perovskite have almost regular NiF 6 octahedra consistent with absence of the first-order Jahn–Teller active ions. Both NaNiF 3 perovskite and post-perovskite are insulators. The perovskite underwent a canted antiferromagnetic transition at 156 K, and the post-perovskite antiferromagnetic transition at 22 K. Magnetic exchange interaction of NaNiF 3 post-perovskite is smaller than that of perovskite, reflecting larger distortion of Ni–F–Ni network and lower dimension of octahedral arrangement in post-perovskite than those in perovskite. - Graphical abstract: Perovskite–post-perovskite transition in NaNiF 3 at high pressure Highlights: ► NaNiF 3 perovskite (Pv) transforms to post-perovskite (pPv) at 16 GPa and 1300 K. ► The equilibrium transition boundary is expressed as P (GPa)=−2.0+0.014 T (K). ► Antiferromagnetic transition occurs at 156 K in Pv and 22 K in pPv.

  13. Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage.

    Science.gov (United States)

    Rajagopal, Adharsh; Yang, Zhibin; Jo, Sae Byeok; Braly, Ian L; Liang, Po-Wei; Hillhouse, Hugh W; Jen, Alex K-Y

    2017-09-01

    Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss ) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V oc,loss . A fullerene variant, Indene-C 60 bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High-Performance Low-Cost Portable Radiological and Nuclear Detectors Based on Colloidal Nanocrystals (TOPIC 07-B)

    Science.gov (United States)

    2016-07-01

    The synthesized CNCs were optically very active and demonstrated very bright luminescence even under UV lamp excitation at room...temperature (Fig. 8.15). Fig. 8.16 shows absorption, Fig. 8.15. Visible luminescence from Pb3O2I2 under UV lamp excitation. M. Osiński, High-Performance Low...QCS - low-dimensional quantum confinement system LEDs – light-emitting diodes LuAG – lutetium aluminum garnet LYSO – lutetium yttrium

  15. Neutron capture cross section measurements: case of lutetium isotopes

    International Nuclear Information System (INIS)

    Roig, O.; Meot, V.; Belier, G.

    2011-01-01

    The neutron radiative capture is a nuclear reaction that occurs in the presence of neutrons on all isotopes and on a wide energy range. The neutron capture range on Lutetium isotopes, presented here, illustrates the variety of measurements leading to the determination of cross sections. These measurements provide valuable fundamental data needed for the stockpile stewardship program, as well as for nuclear astrophysics and nuclear structure. Measurements, made in France or in United-States, involving complex detectors associated with very rare targets have significantly improved the international databases and validated models of nuclear reactions. We present results concerning the measurement of neutron radiative capture on Lu 173 , Lu 175 , Lu 176 and Lu 177m , the measurement of the probability of gamma emission in the substitution reaction Yb 174 (He 3 ,pγ)Lu 176 . The measurement of neutron cross sections on Lu 177m have permitted to highlight the process of super-elastic scattering

  16. Formulation and characterization of lutetium-177-labeled stannous (tin) colloid for radiosynovectomy.

    Science.gov (United States)

    Arora, Geetanjali; Singh, Manoranjan; Jha, Pragati; Tripathy, Sarthak; Bal, Chandrasekhar; Mukherjee, Anirban; Shamim, Shamim A

    2017-07-01

    Easy large-scale production, easy availability, cost-effectiveness, long half-life, and favorable radiation characteristics have made lutetium-177 (Lu) a preferred radionuclide for use in therapy. Lutetium-177-labeled stannous (Lu-Sn) colloid particles were formulated for application in radiosynovectomy, followed by in-vitro and in-vivo characterization. Stannous chloride (SnCl2) solution and Lu were heated together, the pH was adjusted, and the particles were recovered by centrifugation. The heating time and amount of SnCl2 were varied to optimize the labeling protocol. The labeling efficiency (LE) and radiochemical purity (RCP) of the product were determined. The size and shape of the particles were determined by means of electron microscopy. In-vitro stability was tested in PBS and synovial fluid, and in-vivo stability was tested in humans. LE and RCP were greater than 95% and ∼99% (Rf=0-0.1), respectively. Aggregated colloidal particles were spherical (mean size: 241±47 nm). The product was stable in vitro for up to 7 days in PBS as well as in synovial fluid. Injection of the product into the infected knee joint of a patient resulted in its homogenous distribution in the intra-articular space, as seen on the scan. No leakage of activity was seen outside the knee joint even 7 days after injection, indicating good tracer binding and in-vivo stability. Lu-Sn colloid was successfully prepared with a high LE (>95%) and high RCP (99%) under optimized reaction conditions. Because of the numerous benefits of Lu and the ease of preparation of tin colloid particles, Lu-Sn colloid particles are significantly superior to its currently available counterparts for use in radiosynovectomy.

  17. Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness

    Science.gov (United States)

    Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong

    2018-05-01

    The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.

  18. Enhanced planar perovskite solar cell efficiency and stability using a perovskite/PCBM heterojunction formed in one step.

    Science.gov (United States)

    Zhou, Long; Chang, Jingjing; Liu, Ziye; Sun, Xu; Lin, Zhenhua; Chen, Dazheng; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2018-02-08

    Perovskite/PCBM heterojunctions are efficient for fabricating perovskite solar cells with high performance and long-term stability. In this study, an efficient perovskite/PCBM heterojunction was formed via conventional sequential deposition and one-step formation processes. Compared with conventional deposition, the one-step process was more facile, and produced a perovskite thin film of substantially improved quality due to fullerene passivation. Moreover, the resulting perovskite/PCBM heterojunction exhibited more efficient carrier transfer and extraction, and reduced carrier recombination. The perovskite solar cell device based on one-step perovskite/PCBM heterojunction formation exhibited a higher maximum PCE of 17.8% compared with that from the conventional method (13.7%). The device also showed exceptional stability, retaining 83% of initial PCE after 60 days of storage under ambient conditions.

  19. Stability Issues on Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2015-11-01

    Full Text Available Organo lead halide perovskite materials like methylammonium lead iodide (CH3NH3PbI3 and formamidinium lead iodide (HC(NH22PbI3 show superb opto-electronic properties. Based on these perovskite light absorbers, power conversion efficiencies of the perovskite solar cells employing hole transporting layers have increased from 9.7% to 20.1% within just three years. Thus, it is apparent that perovskite solar cell is a promising next generation photovoltaic technology. However, the unstable nature of perovskite was observed when exposing it to continuous illumination, moisture and high temperature, impeding the commercial development in the long run and thus becoming the main issue that needs to be solved urgently. Here, we discuss the factors affecting instability of perovskite and give some perspectives about further enhancement of stability of perovskite solar cell.

  20. Photoelectric conversion and electrochromic properties of lutetium tetrakis(tert-butyl)bisphthalocyaninate

    International Nuclear Information System (INIS)

    Hu, Andrew Teh; Hu Tenyi; Liu Lungchang

    2003-01-01

    Both photoelectric and electrochromic effects on lutetium tetrakis(tert-butyl)bisphthalocyaninate (Lu(TBPc) 2 ) have been carried out in this study. Lu(TBPc) 2 is known for its electrochromic performance, but its photoelectric effect has not mentioned in the literature. The electrochromic properties of Lu(TBPc) 2 have been measured by cyclic voltammetry (CV) and UV-Vis spectrometer at the same time. It takes less than 1.5 s for the color to change from red to green under 0.9 V. Its cycle life is at least over 500 times. Furthermore, we also investigate its photoelectric conversion properties. Its photoelectric cell exhibits a positive photo-electricity conversion effect with a short-circuit photocurrent (46.4 μA/cm 2 ) under illumination of white light (1.201 mW/cm 2 )

  1. Ligand-Stabilized Reduced-Dimensionality Perovskites

    KAUST Repository

    Quan, Li Na; Yuan, Mingjian; Comin, Riccardo; Voznyy, Oleksandr; Beauregard, Eric M.; Hoogland, Sjoerd; Buin, Andrei; Kirmani, Ahmad R.; Zhao, Kui; Amassian, Aram; Kim, Dong Ha; Sargent, Edward H.

    2016-01-01

    Metal halide perovskites have rapidly advanced thin film photovoltaic performance; as a result, the materials’ observed instabilities urgently require a solution. Using density functional theory (DFT), we show that a low energy of formation, exacerbated in the presence of humidity, explains the propensity of perovskites to decompose back into their precursors. We find, also using DFT, that intercalation of phenylethylammonium between perovskite layers introduces quantitatively appreciable van der Waals interactions; and these drive an increased formation energy and should therefore improve material stability. Here we report the reduced-dimensionality (quasi-2D) perovskite films that exhibit improved stability while retaining the high performance of conventional three-dimensional perovskites. Continuous tuning of the dimensionality, as assessed using photophysical studies, is achieved by the choice of stoichiometry in materials synthesis. We achieved the first certified hysteresis-free solar power conversion in a planar perovskite solar cell, obtaining a 15.3% certified PCE, and observe greatly improved performance longevity.

  2. Ligand-Stabilized Reduced-Dimensionality Perovskites

    KAUST Repository

    Quan, Li Na

    2016-02-03

    Metal halide perovskites have rapidly advanced thin film photovoltaic performance; as a result, the materials’ observed instabilities urgently require a solution. Using density functional theory (DFT), we show that a low energy of formation, exacerbated in the presence of humidity, explains the propensity of perovskites to decompose back into their precursors. We find, also using DFT, that intercalation of phenylethylammonium between perovskite layers introduces quantitatively appreciable van der Waals interactions; and these drive an increased formation energy and should therefore improve material stability. Here we report the reduced-dimensionality (quasi-2D) perovskite films that exhibit improved stability while retaining the high performance of conventional three-dimensional perovskites. Continuous tuning of the dimensionality, as assessed using photophysical studies, is achieved by the choice of stoichiometry in materials synthesis. We achieved the first certified hysteresis-free solar power conversion in a planar perovskite solar cell, obtaining a 15.3% certified PCE, and observe greatly improved performance longevity.

  3. Improving the Morphology of the Perovskite Absorber Layer in Hybrid Organic/Inorganic Halide Perovskite MAPbI3 Solar Cells

    Directory of Open Access Journals (Sweden)

    I. J. Ogundana

    2017-01-01

    Full Text Available Recently, perovskite solar cells have attracted tremendous attention due to their excellent power conversion efficiency, low cost, simple fabrications, and high photovoltaic performance. Furthermore, the perovskite solar cells are lightweight and possess thin film and semitransparency. However, the nonuniformity in perovskite layer constitutes a major setback to the operation mechanism, performance, reproducibility, and degradation of perovskite solar cells. Therefore, one of the main challenges in planar perovskite devices is the fabrication of high quality films with controlled morphology and least amount of pin-holes for high performance thin film perovskite devices. The poor reproducibility in perovskite solar cells hinders the accurate fabrication of practical devices for use in real world applications, and this is primarily as a result of the inability to control the morphology of perovskites, leading to large variability in the characteristics of perovskite solar cells. Hence, the focus of research in perovskites has been mostly geared towards improving the morphology and crystallization of perovskite absorber by selecting the optimal annealing condition considering the effect of humidity. Here we report a controlled ambient condition that is necessary to grow uniform perovskite crystals. A best PCE of 7.5% was achieved along with a short-circuit current density of 15.2 mA/cm2, an open-circuit voltage of 0.81 V, and a fill factor of 0.612 from the perovskite solar cell prepared under 60% relative humidity.

  4. Perovskite Solar Cell

    Indian Academy of Sciences (India)

    Organic–inorganic halide perovskite, a newcomerin the solar cell industry has proved its potential forincreasing efficiency rapidly from 3.8% in 2009 to 22.1% in2016. High efficiency, flexibility, and cell architecture of theemerging hybrid halide perovskite have caught the attentionof researchers and technologists in the field.

  5. Tensile strain effect in ferroelectric perovskite oxide thin films on spinel magnesium aluminum oxide substrate

    Science.gov (United States)

    Zhou, Xiaolan

    Ferroelectrics are used in FeRAM (Ferroelectric random-access memory). Currently (Pb,Zr)TiO3 is the most common ferroelectric material. To get lead-free and high performance ferroelectric material, we investigated perovskite ferroelectric oxides (Ba,Sr)TiO3 and BiFeO3 films with strain. Compressive strain has been investigated intensively, but the effects of tensile strain on the perovskite films have yet to be explored. We have deposited (Ba,Sr)TiO3, BiFeO3 and related films by pulsed laser deposition (PLD) and analyzed the films by X-ray diffractometry (XRD), atomic force microscopy (AFM), etc. To obtain inherently fully strained films, the selection of the appropriate substrates is crucial. MgAl2O4 matches best with good quality and size, yet the spinel structure has an intrinsic incompatibility to that of perovskite. We introduced a rock-salt structure material (Ni 1-xAlxO1+delta) as a buffer layer to mediate the structural mismatch for (Ba,Sr)TiO3 films. With buffer layer Ni1-xAlxO1+delta, we show that the BST films have high quality crystallization and are coherently epitaxial. AFM images show that the films have smoother surfaces when including the buffer layer, indicating an inherent compatibility between BST-NAO and NAO-MAO. In-plane Ferroelectricity measurement shows double hysteresis loops, indicating an antiferroelectric-like behavior: pinned ferroelectric domains with antiparallel alignments of polarization. The Curie temperatures of the coherent fully strained BST films are also measured. It is higher than 900°C, at least 800°C higher than that of bulk. The improved Curie temperature makes the use of BST as FeRAM feasible. We found that the special behaviors of ferroelectricity including hysteresis loop and Curie temperature are due to inherent fully tensile strain. This might be a clue of physics inside ferroelectric stain engineering. An out-of-plane ferroelectricity measurement would provide a full whole story of the tensile strain. However, a

  6. O3 perovskite ceramic

    Indian Academy of Sciences (India)

    The prepared sample remains as double phases with the perovskite struc- ture. The structure ... Ferroelectric oxides with perovskite structure are the subject of many investigations. ... in optical devices and heterojunction solar cells. 1765 ...

  7. Perovskite classification: An Excel spreadsheet to determine and depict end-member proportions for the perovskite- and vapnikite-subgroups of the perovskite supergroup

    Science.gov (United States)

    Locock, Andrew J.; Mitchell, Roger H.

    2018-04-01

    Perovskite mineral oxides commonly exhibit extensive solid-solution, and are therefore classified on the basis of the proportions of their ideal end-members. A uniform sequence of calculation of the end-members is required if comparisons are to be made between different sets of analytical data. A Microsoft Excel spreadsheet has been programmed to assist with the classification and depiction of the minerals of the perovskite- and vapnikite-subgroups following the 2017 nomenclature of the perovskite supergroup recommended by the International Mineralogical Association (IMA). Compositional data for up to 36 elements are input into the spreadsheet as oxides in weight percent. For each analysis, the output includes the formula, the normalized proportions of 15 end-members, and the percentage of cations which cannot be assigned to those end-members. The data are automatically plotted onto the ternary and quaternary diagrams recommended by the IMA for depiction of perovskite compositions. Up to 200 analyses can be entered into the spreadsheet, which is accompanied by data calculated for 140 perovskite compositions compiled from the literature.

  8. Hybrid perovskites: Approaches towards light-emitting devices

    KAUST Repository

    Alias, Mohd Sharizal

    2016-10-06

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted extensive research for photonic device applications. Using the bromide halide as an example, we present key approaches of our work towards realizing efficient perovskites based light-emitters. The approaches involved determination of optical constants for the hybrid perovskites thin films, fabrication of photonic nanostructures in the form of subwavelength grating reflector patterned directly on the hybrid perovskites as light manipulation layer, and enhancing the emission property of the hybrid perovskites by using microcavity structure. Our results provide a platform for realization of hybrid perovskites based light-emitting devices for solid-state lighting and display applications. © 2016 IEEE.

  9. Hybrid perovskites: Approaches towards light-emitting devices

    KAUST Repository

    Alias, Mohd Sharizal; Dursun, Ibrahim; Priante, Davide; Saidaminov, Makhsud I.; Ng, Tien Khee; Bakr, Osman; Ooi, Boon S.

    2016-01-01

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted extensive research for photonic device applications. Using the bromide halide as an example, we present key approaches of our work towards realizing efficient perovskites based light-emitters. The approaches involved determination of optical constants for the hybrid perovskites thin films, fabrication of photonic nanostructures in the form of subwavelength grating reflector patterned directly on the hybrid perovskites as light manipulation layer, and enhancing the emission property of the hybrid perovskites by using microcavity structure. Our results provide a platform for realization of hybrid perovskites based light-emitting devices for solid-state lighting and display applications. © 2016 IEEE.

  10. Light-Independent Ionic Transport in Inorganic Perovskite and Ultrastable Cs-Based Perovskite Solar Cells.

    Science.gov (United States)

    Zhou, Wenke; Zhao, Yicheng; Zhou, Xu; Fu, Rui; Li, Qi; Zhao, Yao; Liu, Kaihui; Yu, Dapeng; Zhao, Qing

    2017-09-07

    Due to light-induced effects in CH 3 NH 3 -based perovskites, such as ion migration, defects formation, and halide segregation, the degradation of CH 3 NH 3 -based perovskite solar cells under maximum power point is generally implicated. Here we demonstrated that the effect of light-enhanced ion migration in CH 3 NH 3 PbI 3 can be eliminated by inorganic Cs substitution, leading to an ultrastable perovskite solar cell. Quantitatively, the ion migration barrier for CH 3 NH 3 PbI 3 is 0.62 eV under dark conditions, larger than that of CsPbI 2 Br (0.45 eV); however, it reduces to 0.07 eV for CH 3 NH 3 PbI 3 under illumination, smaller than that for CsPbI 2 Br (0.43 eV). Meanwhile, photoinduced halide segregation is also suppressed in Cs-based perovskites. Cs-based perovskite solar cells retained >99% of the initial efficiency (10.3%) after 1500 h of maximum power point tracking under AM1.5G illumination, while CH 3 NH 3 PbI 3 solar cells degraded severely after 50 h of operation. Our work reveals an uncovered mechanism for stability improvement by inorganic cation substitution in perovskite-based optoelectronic devices.

  11. Cerium luminescence in nd0 perovskites

    International Nuclear Information System (INIS)

    Setlur, A.A.; Happek, U.

    2010-01-01

    The luminescence of Ce 3+ in perovskite (ABO 3 ) hosts with nd 0 B-site cations, specifically Ca(Hf,Zr)O 3 and (La,Gd)ScO 3 , is investigated in this report. The energy position of the Ce 3+ excitation and emission bands in these perovskites is compared to those of typical Al 3+ perovskites; we find a Ce 3+ 5d 1 centroid shift and Stokes shift that are larger versus the corresponding values for the Al 3+ perovskites. It is also shown that Ce 3+ luminescence quenching is due to Ce 3+ photoionization. The comparison between these perovskites shows reasonable correlations between Ce 3+ luminescence quenching, the energy position of the Ce 3+ 5d 1 excited state with respect to the host conduction band, and the host composition. - Graphical abstract: Ce 3+ decay times versus temperature for perovskites with nd 0 B-site cations.

  12. Non-collinear magnetism in multiferroic perovskites.

    Science.gov (United States)

    Bousquet, Eric; Cano, Andrés

    2016-03-31

    We present an overview of the current interest in non-collinear magnetism in multiferroic perovskite crystals. We first describe the different microscopic mechanisms giving rise to the non-collinearity of spins in this class of materials. We discuss, in particular, the interplay between non-collinear magnetism and ferroelectric and antiferrodistortive distortions of the perovskite structure, and how this can promote magnetoelectric responses. We then provide a literature survey on non-collinear multiferroic perovskites. We discuss numerous examples of spin cantings driving weak ferromagnetism in transition metal perovskites, and of spin-induced ferroelectricity as observed in the rare-earth based perovskites. These examples are chosen to best illustrate the fundamental role of non-collinear magnetism in the design of multiferroicity.

  13. Perovskite Solar Cells: Progress and Advancements

    Directory of Open Access Journals (Sweden)

    Naveen Kumar Elumalai

    2016-10-01

    Full Text Available Organic–inorganic hybrid perovskite solar cells (PSCs have emerged as a new class of optoelectronic semiconductors that revolutionized the photovoltaic research in the recent years. The perovskite solar cells present numerous advantages include unique electronic structure, bandgap tunability, superior charge transport properties, facile processing, and low cost. Perovskite solar cells have demonstrated unprecedented progress in efficiency and its architecture evolved over the period of the last 5–6 years, achieving a high power conversion efficiency of about 22% in 2016, serving as a promising candidate with the potential to replace the existing commercial PV technologies. This review discusses the progress of perovskite solar cells focusing on aspects such as superior electronic properties and unique features of halide perovskite materials compared to that of conventional light absorbing semiconductors. The review also presents a brief overview of device architectures, fabrication methods, and interface engineering of perovskite solar cells. The last part of the review elaborates on the major challenges such as hysteresis and stability issues in perovskite solar cells that serve as a bottleneck for successful commercialization of this promising PV technology.

  14. Development of Perovskite-Type Materials for Thermoelectric Application

    Directory of Open Access Journals (Sweden)

    Tingjun Wu

    2018-06-01

    Full Text Available Oxide perovskite materials have a long history of being investigated for thermoelectric applications. Compared to the state-of-the-art tin and lead chalcogenides, these perovskite compounds have advantages of low toxicity, eco-friendliness, and high elemental abundance. However, because of low electrical conductivity and high thermal conductivity, the total thermoelectric performance of oxide perovskites is relatively poor. Variety of methods were used to enhance the TE properties of oxide perovskite materials, such as doping, inducing oxygen vacancy, embedding crystal imperfection, and so on. Recently, hybrid perovskite materials started to draw attention for thermoelectric application. Due to the low thermal conductivity and high Seebeck coefficient feature of hybrid perovskites materials, they can be promising thermoelectric materials and hold the potential for the application of wearable energy generators and cooling devices. This mini-review will build a bridge between oxide perovskites and burgeoning hybrid halide perovskites in the research of thermoelectric properties with an aim to further enhance the relevant performance of perovskite-type materials.

  15. Ambipolar solution-processed hybrid perovskite phototransistors

    KAUST Repository

    Li, Feng

    2015-09-08

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors based on hybrid perovskite films and provide direct evidence for their superior carrier transport property with ambipolar characteristics. The field-effect mobilities for triiodide perovskites at room temperature are measured as 0.18 (0.17) cm2 V−1 s−1 for holes (electrons), which increase to 1.24 (1.01) cm2 V−1 s−1 for mixed-halide perovskites. The photoresponsivity of our hybrid perovskite devices reaches 320 A W−1, which is among the largest values reported for phototransistors. Importantly, the phototransistors exhibit an ultrafast photoresponse speed of less than 10 μs. The solution-based process and excellent device performance strongly underscore hybrid perovskites as promising material candidates for photoelectronic applications.

  16. Electrochromism of solid films of blue form of lutetium phthalocyanine complexe

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, V I; Konstantinov, A P; Luk' yanets, E A; Shelepin, I V

    1986-12-01

    Results of spectral-electrochemical study on electrochromic films of blue form of tret-butyl-substituted lutetium diphthalocyanine deposited on the surface of an electrode contacting with electrolyte aqueous solution are presented. In the 0.2-1.15 V potential range sweep of the electrode potential is followed by reversible change of the film colour in the following succession: blue reversible green reversible red. Electrochromic properties of the film confirm the corresponding spectral transitions from the initial state to monoelectron-oxidized and further on to the product of two-electron oxidation. Under potential sweeping towards the anode in the 1.4 V range and irreversible wave arises; potential achievement of this wave brings about complete change in the form of j, E-curves. The consequent electrode processes are followed by change in the film colour green - red that is associated witn mechanical fracture of the film.

  17. Photovoltaic Effect of 2D Homologous Perovskites

    International Nuclear Information System (INIS)

    Jung, Mi-Hee

    2017-01-01

    Highlights: • The mixed perovskite was prepared by exposure of MAI gas on the BAPbI_4 film. • The increased dimensional perovskite shows a smaller band gap than 2D perovskite. • The mixed perovskite system shows the vertical crystal orientation. • The mixed perovskite cell exhibits the higher Jsc and FF than 2D perovskite cell. - Abstract: The controlled growth of mixed dimensional perovskite structures, (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1, through the introduction of CH_3NH_3I molecule vapor into the two-dimensional perovskite C_6H_5CH_2NH_3PbI_4 structure and its application in photovoltaic devices is reported. The dimensionality of (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1 is controlled using the exposure time to the CH_3NH_3I vapor on the C_6H_5CH_2NH_3PbI_4 perovskite film. As the stacking of the lead iodide lattice increases, the crystallographic planes of the inorganic perovskite compound exhibit vertical growth in order to facilitate efficient charge transport. Furthermore, the devices have a smaller band gap, which offers broader absorption and the potential to increase the photocurrent density in the solar cell. As a result, the photovoltaic device based on the (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1 perovskite exhibits a power conversion efficiency of 5.43% with a short circuit current density of 14.49 mA cm"−"2, an open circuit voltage of 0.85 V, and a fill factor of 44.30 for the best power conversion efficiency under AM 1.5G solar irradiation (100 mW cm"−"2), which is significantly higher than the 0.34% of the pure two-dimensional BAPbI_4 perovskite-based solar cell.

  18. Labelling of the peptide Dota-Octreotate with Lutetium 177

    International Nuclear Information System (INIS)

    Hernandez B, C.A.

    2004-01-01

    In this work is described the optimization of the reaction conditions to obtain the complex 177 Lu-Dota-TATE with a radiochemical purity > 95%, even so the studies of stability In vitro to the dilution in saline solution, stability in human serum and challenge to the cystein. The biodistribution studies are presented in mice Balb-C and the tests of biological recognition using one lines cellular of pancreatic adenoma (AR42-J). The obtained results show a high stability of the radio complex in vitro, since it doesn't suffer trans chelation from the Lutetium-177 to plasmatic proteins. The biodistribution tests in mice Balb-C demonstrated an appropriate lipophilly of the complex to be excreted in more proportion by the kidneys without significant accumulation in healthy tissues. It is necessary to mention that the drop activity specifies (3.54 μg / 37 MBq) obtained in the irradiation of 176 Lu 2 O 3 it allowed to verify the union of the 177 Lu-Dota-Tate to membrane receivers but without being able to obtain the saturation curves and competition required to characterize quantitatively the biological recognition. (Author)

  19. Amine treatment induced perovskite nanowire network in perovskite solar cells: efficient surface passivation and carrier transport

    Science.gov (United States)

    Xiao, Ke; Cui, Can; Wang, Peng; Lin, Ping; Qiang, Yaping; Xu, Lingbo; Xie, Jiangsheng; Yang, Zhengrui; Zhu, Xiaodong; Yu, Xuegong; Yang, Deren

    2018-02-01

    In the fabrication of high efficiency organic-inorganic metal halide perovskite solar cells (PSCs), an additional interface modifier is usually applied for enhancing the interface passivation and carrier transport. In this paper, we develop an innovative method with in-situ growth of one-dimensional perovskite nanowire (1D PNW) network triggered by Lewis amine over the perovskite films. To our knowledge, this is the first time to fabricate PSCs with shape-controlled perovskite surface morphology, which improved power conversion efficiency (PCE) from 14.32% to 16.66% with negligible hysteresis. The amine molecule can passivate the trap states on the polycrystalline perovskite surface to reduce trap-state density. Meanwhile, as a fast channel, the 1D PNWs would promote carrier transport from the bulk perovskite film to the electron transport layer. The PSCs with 1D PNW modification not only exhibit excellent photovoltaic performances, but also show good stability with only 4% PCE loss within 30 days in the ambient air without encapsulation. Our results strongly suggest that in-situ grown 1D PNW network provides a feasible and effective strategy for nanostructured optoelectronic devices such as PSCs to achieve superior performances.

  20. Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells

    KAUST Repository

    Bera, Ashok

    2014-12-11

    In this work, we explored perovskite oxide SrTiO3 (STO) for the first time as the electron-transporting layer in organolead trihalide perovskite solar cells. The steady-state photoluminescence (PL) quenching and transient absorption experiments revealed efficient photoelectron transfer from CH3NH3PbI3-xClx to STO. Perovskite solar cells with meso-STO exhibit an open circuit voltage of 1.01 V, which is 25% higher than the value of 0.81 V achieved in the control device with the conventional meso-TiO2. In addition, an increase of 17% in the fill factor was achieved by tailoring the thickness of the meso-STO layer. We found that the application of STO leads to uniform perovskite layers with large grains and complete surface coverage, leading to a high shunt resistance and improved performance. These findings suggest STO as a competitive candidate as electron transport material in organometal perovskite solar cells.

  1. Paintable Carbon-Based Perovskite Solar Cells with Engineered Perovskite/Carbon Interface Using Carbon Nanotubes Dripping Method.

    Science.gov (United States)

    Ryu, Jaehoon; Lee, Kisu; Yun, Juyoung; Yu, Haejun; Lee, Jungsup; Jang, Jyongsik

    2017-10-01

    Paintable carbon electrode-based perovskite solar cells (PSCs) are of particular interest due to their material and fabrication process costs, as well as their moisture stability. However, printing the carbon paste on the perovskite layer limits the quality of the interface between the perovskite layer and carbon electrode. Herein, an attempt to enhance the performance of the paintable carbon-based PSCs is made using a modified solvent dripping method that involves dripping of the carbon nanotubes (CNTs), which is dispersed in chlorobenzene solution. This method allows CNTs to penetrate into both the perovskite film and carbon electrode, facilitating fast hole transport between the two layers. Furthermore, this method is results in increased open circuit voltage (V oc ) and fill factor (FF), providing better contact at the perovskite/carbon interfaces. The best devices made with CNT dripping show 13.57% power conversion efficiency and hysteresis-free performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells

    KAUST Repository

    Bera, Ashok; Wu, Kewei; Sheikh, Arif D.; Alarousu, Erkki; Mohammed, Omar F.; Wu, Tao

    2014-01-01

    In this work, we explored perovskite oxide SrTiO3 (STO) for the first time as the electron-transporting layer in organolead trihalide perovskite solar cells. The steady-state photoluminescence (PL) quenching and transient absorption experiments revealed efficient photoelectron transfer from CH3NH3PbI3-xClx to STO. Perovskite solar cells with meso-STO exhibit an open circuit voltage of 1.01 V, which is 25% higher than the value of 0.81 V achieved in the control device with the conventional meso-TiO2. In addition, an increase of 17% in the fill factor was achieved by tailoring the thickness of the meso-STO layer. We found that the application of STO leads to uniform perovskite layers with large grains and complete surface coverage, leading to a high shunt resistance and improved performance. These findings suggest STO as a competitive candidate as electron transport material in organometal perovskite solar cells.

  3. Oxyfluoride Chemistry of Layered Perovskite Compounds

    Directory of Open Access Journals (Sweden)

    Yoshihiro Tsujimoto

    2012-03-01

    Full Text Available In this paper, we review recent progress and new challenges in the area of oxyfluoride perovskite, especially layered systems including Ruddlesden-Popper (RP, Dion-Jacobson (DJ and Aurivillius (AV type perovskite families. It is difficult to synthesize oxyfluoride perovskite using a conventional solid-state reaction because of the high chemical stability of the simple fluoride starting materials. Nevertheless, persistent efforts made by solid-state chemists have led to a major breakthrough in stabilizing such a mixed anion system. In particular, it is known that layered perovskite compounds exhibit a rich variety of O/F site occupation according to the synthesis used. We also present the synthetic strategies to further extend RP type perovskite compounds, with particular reference to newly synthesized oxyfluorides, Sr2CoO3F and Sr3Fe2O5+xF2−x (x ~ 0.44.

  4. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  5. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon; Yassitepe, Emre; Voznyy, Oleksandr; Comin, Riccardo; Walters, Grant; Gong, Xiwen; Kanjanaboos, Pongsakorn; Nogueira, Ana F.; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  6. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon

    2015-11-18

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals\\' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  7. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells.

    Science.gov (United States)

    Lee, Kyu-Tae; Guo, L Jay; Park, Hui Joon

    2016-04-11

    In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite "islands" and transparent electrodes-the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency-are investigated. Moreover, the perovskite solar cells with distinctive color generation, which are enabled by engineering the band gap of the perovskite light-harvesting semiconductors with chemical management and integrating with photonic nanostructures, including microcavity, are discussed. We conclude by providing future research directions toward further performance improvements of the semitransparent perovskite solar cells.

  8. Development of High Efficiency Four-Terminal Perovskite-Silicon Tandems

    Science.gov (United States)

    Duong, The Duc

    This thesis is concerned with the development of high efficiency four-terminal perovskite-silicon tandem solar cells with the potential to reduce the cost of solar energy. The work focuses on perovskite top cells and can be divided into three main parts: developing low parasitic absorption and efficient semi-transparent perovskite cells, doping perovskite materials with rubidium, and optimizing perovskite material's bandgap with quadruple-cation and mixed-halide. A further section investigates the light stability of optimized bandgap perovskite cells. In a four-terminal mechanically stacked tandem, the perovskite top cell requires two transparent contacts at both the front and rear sides. Through detailed optical and electrical power loss analysis of the tandem efficiency due to non-ideal properties of the two transparent contacts, optimal contact parameters in term of sheet resistance and transparency are identified. Indium doped tin oxide by sputtering is used for both two transparent contacts and their deposition parameters are optimized separately. The semi-transparent perovskite cell using MAPbI3 has an efficiency of more than 12% with less than 12% parasitic absorption and up to 80% transparency in the long wavelength region. Using a textured foil as anti-reflection coating, an outstanding average transparency of 84% in the long wavelength is obtained. The low parasitic absorption allows an opaque version of the semi-transparent perovskite cell to operate efficiently in a filterless spectrum splitting perovskite-silicon tandem configuration. To further enhance the performance of perovskite cells, it is essential to improve the quality of perovskite films. This can be achieved with mixed-perovskite FAPbI3/MAPbBr3. However, mixed-perovskite films normally contain small a small amount of a non-perovskite phase, which is detrimental for the cell performance. Rb-doping is found to eliminate the formation of the non-perovskite phase and enhance the crystallinity of

  9. Photocatalysis: HI-time for perovskites

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard

    2017-01-01

    Organolead halide perovskite solar absorbers demonstrate high photovoltaic efficiencies but they are notorious for their intolerance to water. Now, methylammonium lead iodide perovskites are used to harvest solar energy — in water — via photocatalytic generation of hydrogen from solutions...

  10. Planar-integrated single-crystalline perovskite photodetectors

    KAUST Repository

    Saidaminov, Makhsud I.

    2015-11-09

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors.

  11. Making and Breaking of Lead Halide Perovskites

    KAUST Repository

    Manser, Joseph S.

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80–150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic–inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  12. Parity-Forbidden Transitions and Their Impact on the Optical Absorption Properties of Lead-Free Metal Halide Perovskites and Double Perovskites.

    Science.gov (United States)

    Meng, Weiwei; Wang, Xiaoming; Xiao, Zewen; Wang, Jianbo; Mitzi, David B; Yan, Yanfa

    2017-07-06

    Using density functional theory calculations, we analyze the optical absorption properties of lead (Pb)-free metal halide perovskites (AB 2+ X 3 ) and double perovskites (A 2 B + B 3+ X 6 ) (A = Cs or monovalent organic ion, B 2+ = non-Pb divalent metal, B + = monovalent metal, B 3+ = trivalent metal, X = halogen). We show that if B 2+ is not Sn or Ge, Pb-free metal halide perovskites exhibit poor optical absorptions because of their indirect band gap nature. Among the nine possible types of Pb-free metal halide double perovskites, six have direct band gaps. Of these six types, four show inversion symmetry-induced parity-forbidden or weak transitions between band edges, making them not ideal for thin-film solar cell applications. Only one type of Pb-free double perovskite shows optical absorption and electronic properties suitable for solar cell applications, namely, those with B + = In, Tl and B 3+ = Sb, Bi. Our results provide important insights for designing new metal halide perovskites and double perovskites for optoelectronic applications.

  13. Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures.

    Science.gov (United States)

    Zhang, Jing; Zhong, Zhicheng; Guan, Xiangxiang; Shen, Xi; Zhang, Jine; Han, Furong; Zhang, Hui; Zhang, Hongrui; Yan, Xi; Zhang, Qinghua; Gu, Lin; Hu, Fengxia; Yu, Richeng; Shen, Baogen; Sun, Jirong

    2018-05-15

    Grouping different transition metal oxides together by interface engineering is an important route toward emergent phenomenon. While most of the previous works focused on the interface effects in perovskite/perovskite heterostructures, here we reported on a symmetry mismatch-driven spin reorientation toward perpendicular magnetic anisotropy in perovskite/brownmillerite heterostructures, which is scarcely seen in tensile perovskite/perovskite heterostructures. We show that alternately stacking perovskite La 2/3 Sr 1/3 MnO 3 and brownmillerite LaCoO 2.5 causes a strong interface reconstruction due to symmetry discontinuity at interface: neighboring MnO 6 octahedra and CoO 4 tetrahedra at the perovskite/brownmillerite interface cooperatively relax in a manner that is unavailable for perovskite/perovskite interface, leading to distinct orbital reconstructions and thus the perpendicular magnetic anisotropy. Moreover, the perpendicular magnetic anisotropy is robust, with an anisotropy constant two orders of magnitude greater than the in-plane anisotropy of the perovskite/perovskite interface. The present work demonstrates the great potential of symmetry engineering in designing artificial materials on demand.

  14. Planar-integrated single-crystalline perovskite photodetectors

    KAUST Repository

    Saidaminov, Makhsud I.; Adinolfi, Valerio; Comin, Riccardo; Abdelhady, Ahmed L.; Peng, Wei; Dursun, Ibrahim; Yuan, Mingjian; Hoogland, Sjoerd; Sargent, Edward H.; Bakr, Osman

    2015-01-01

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals

  15. Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes.

    Science.gov (United States)

    Tian, Yu; Zhou, Chenkun; Worku, Michael; Wang, Xi; Ling, Yichuan; Gao, Hanwei; Zhou, Yan; Miao, Yu; Guan, Jingjiao; Ma, Biwu

    2018-05-01

    Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m -2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Water-Induced Dimensionality Reduction in Metal-Halide Perovskites

    KAUST Repository

    Turedi, Bekir

    2018-03-30

    Metal-halide perovskite materials are highly attractive materials for optoelectronic applications. However, the instability of perovskite materials caused by moisture and heat-induced degradation impairs future prospects of using these materials. Here we employ water to directly transform films of the three-dimensional (3D) perovskite CsPbBr3 to stable two-dimensional (2D) perovskite-related CsPb2Br5. A sequential dissolution-recrystallization process governs this water induced transformation under PbBr2 rich condition. We find that these post-synthesized 2D perovskite-related material films exhibit excellent stability against humidity and high photoluminescence quantum yield. We believe that our results provide a new synthetic method to generate stable 2D perovskite-related materials that could be applicable for light emitting device applications.

  17. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-01

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  18. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology.

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-10

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  19. Dissolution-recrystallization method for high efficiency perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Luo, Junsheng; Wan, Zhongquan; Liu, Xingzhao; Jia, Chunyang, E-mail: cyjia@uestc.edu.cn

    2017-06-30

    Highlights: • Dissolution-recrystallization method can improve perovskite crystallization. • Dissolution-recrystallization method can improve TiO{sub 2}/perovskite interface. • The optimal perovskite solar cell obtains the champion PCE of 16.76%. • The optimal devices are of high reproducibility. - Abstract: In this work, a dissolution-recrystallization method (DRM) with chlorobenzene and dimethylsulfoxide treating the perovskite films during the spin-coating process is reported. This is the first time that DRM is used to control perovskite crystallization and improve the device performance. Furthermore, the DRM is good for reducing defects and grain boundaries, improving perovskite crystallization and even improving TiO{sub 2}/perovskite interface. By optimizing, the DRM2-treated perovskite solar cell (PSC) obtains the best photoelectric conversion efficiency (PCE) of 16.76% under AM 1.5 G illumination (100 mW cm{sup −2}) with enhanced J{sub sc} and V{sub oc} compared to CB-treated PSC.

  20. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant

    2015-07-21

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  1. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P.; Bakr, Osman; Sargent, Edward H.

    2015-01-01

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  2. Group theoretical analysis of octahedral tilting in perovskites

    International Nuclear Information System (INIS)

    Howard, C.J.; Stokes, H.T.

    1998-01-01

    Full text: Structures of the perovskite family, ABX 3 , have interested crystallographers over many years, and continue to attract attention on account of their fascinating electrical and magnetic properties, for example the giant magnetoresistive effects exhibited by certain perovskite materials. The ideal perovskite (cubic, space group Pm -/3 m) is a particularly simple structure, but also a demanding one, since aside from the lattice parameter there are no variable parameters in the structure. Consequently, the majority of perovskite structures are distorted perovskites (hettotypes), the most common distortion being the corner-linked tilting of the practically rigid BX 6 octahedral units. In this work, group theoretical methods have been applied to the study of octahedral tilting in perovskites. The only irreducible representations of the parent group (Pm -/3 m) which produce octahedral tilting subject to corner-linking constraints are M + / 3 and R 4 ' + . A six-dimensional order parameter in the reducible representation space of M + / 3 + R + / 4 describes the different possible tilting patterns. The space groups for the different perovskites are then simply the isotropy subgroups, comprising those operations which leave the order parameter invariant. The isotropy subgroups are obtained from a computer program or tabulations. The analysis yields a list of fifteen possible space groups for perovskites derived through octahedral tilting. A connection is made to the (twenty-three) tilt systems given previously by Glazer. The group-subgroup relationships have been derived and displayed. It is interesting to note that all known perovskites based on octahedral tilting conform with the fifteen space groups on our list, with the exception of one perovskite at high temperature, the structure of which seems poorly determined

  3. {sup 177}Lutetium-DOTATATE peptide radio-receptor therapy for patients with endocrine neoplasm and the individualized semi-automatic dosimetry. A retrospective analysis; {sup 177}Lutetium-DOTATATE-Peptid-Radio-Rezeptor-Therapie bei Patienten mit neuroendokrinen Neoplasien und die individualisierte, semi-automatische-Dosimetrie. Eine retrospektive Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Loeser, Anastassia

    2016-09-28

    The {sup 177}lutetium-DOTATATE peptide radio-receptor therapy is a promising approach for the palliative treatment of patients with inoperable endocrine neoplasm. The individually variable biological dispersion and the tumor uptake including the protection of critical organs require a precise and reliable organ and tumor dosimetry. The HERMES Hybrid dosimetry module has appeared as reliable and user-friendly tool for clinical application. The next step is supposed to by the complete integration of 3D SPECT imaging.

  4. Thermochromic halide perovskite solar cells.

    Science.gov (United States)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A; Xie, Chenlu; Cui, Fan; Alivisatos, A Paul; Limmer, David T; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  5. Thermochromic halide perovskite solar cells

    Science.gov (United States)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S.; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A.; Xie, Chenlu; Cui, Fan; Alivisatos, A. Paul; Limmer, David T.; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  6. NaIrO3-A pentavalent post-perovskite

    International Nuclear Information System (INIS)

    Bremholm, M.; Dutton, S.E.; Stephens, P.W.; Cava, R.J.

    2011-01-01

    Sodium iridium (V) oxide, NaIrO 3, was synthesized by a high pressure solid state method and recovered to ambient conditions. It is found to be isostructural with CaIrO 3 , the much-studied structural analog of the high-pressure post-perovskite phase of MgSiO 3 . Among the oxide post-perovskites, NaIrO 3 is the first example with a pentavalent cation. The structure consists of layers of corner- and edge-sharing IrO 6 octahedra separated by layers of NaO 8 bicapped trigonal prisms. NaIrO 3 shows no magnetic ordering and resistivity measurements show non-metallic behavior. The crystal structure, electrical and magnetic properties are discussed and compared to known post-perovskites and pentavalent perovskite metal oxides. -- Graphical abstract: Sodium iridium(V) oxide, NaIrO 3 , synthesized by a high pressure solid state method and recovered to ambient conditions is found to crystallize as the post-perovskite structure and is the first example of a pentavalent ABO 3 post-perovskite. Research highlights: → NaIrO 3 post-perovskite stabilized by pressure. → First example of a pentavalent oxide post-perovskite. → Non-metallic and non-magnetic behavior of NaIrO 3 .

  7. Improved perovskite phototransistor prepared using multi-step annealing method

    Science.gov (United States)

    Cao, Mingxuan; Zhang, Yating; Yu, Yu; Yao, Jianquan

    2018-02-01

    Organic-inorganic hybrid perovskites with good intrinsic physical properties have received substantial interest for solar cell and optoelectronic applications. However, perovskite film always suffers from a low carrier mobility due to its structural imperfection including sharp grain boundaries and pinholes, restricting their device performance and application potential. Here we demonstrate a straightforward strategy based on multi-step annealing process to improve the performance of perovskite photodetector. Annealing temperature and duration greatly affects the surface morphology and optoelectrical properties of perovskites which determines the device property of phototransistor. The perovskite films treated with multi-step annealing method tend to form highly uniform, well-crystallized and high surface coverage perovskite film, which exhibit stronger ultraviolet-visible absorption and photoluminescence spectrum compare to the perovskites prepared by conventional one-step annealing process. The field-effect mobilities of perovskite photodetector treated by one-step direct annealing method shows mobility as 0.121 (0.062) cm2V-1s-1 for holes (electrons), which increases to 1.01 (0.54) cm2V-1s-1 for that treated with muti-step slow annealing method. Moreover, the perovskite phototransistors exhibit a fast photoresponse speed of 78 μs. In general, this work focuses on the influence of annealing methods on perovskite phototransistor, instead of obtains best parameters of it. These findings prove that Multi-step annealing methods is feasible to prepared high performance based photodetector.

  8. Self-Assembled PbSe Nanowire:Perovskite Hybrids

    KAUST Repository

    Yang, Zhenyu

    2015-12-02

    © 2015 American Chemical Society. Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  9. Self-Assembled PbSe Nanowire:Perovskite Hybrids

    KAUST Repository

    Yang, Zhenyu; Yassitepe, Emre; Voznyy, Oleksandr; Janmohamed, Alyf; Lan, Xinzheng; Levina, Larissa; Comin, Riccardo; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  10. Systems and methods for scalable perovskite device fabrication

    Science.gov (United States)

    Huang, Jinsong; Dong, Qingfeng; Sao, Yuchuan

    2017-02-28

    Continuous processes for fabricating a perovskite device are described that include using a doctor blade for continuously forming a perovskite layer and using a conductive tape lamination process to form an anode or a cathode layer on the perovskite device.

  11. Post-perovskite transitions in CaB4+O3 at high pressure

    International Nuclear Information System (INIS)

    Akaogi, M; Shirako, Y; Kojitani, H; Takamori, S; Yamaura, K; Takayama-Muromachi, E

    2010-01-01

    High-pressure phase transitions in CaRhO 3 were examined using a multianvil apparatus up to 27 GPa and 1930 o C. CaRhO 3 perovskite transforms to post-perovskite via a monoclinic intermediate phase with increasing pressure. Volume changes for the transitions of perovskite - intermediate phase and of intermediate phase - post-perovskite are -1.1 and -0.7 %, respectively. CaRhO 3 post-perovskite is the fourth quenchable post-perovskite oxide found so far. By high-temperature calorimetric experiments, enthalpy of the perovskite - post-perovskite transition in CaRuO 3 was measured as 15.2±3.3 kJ/mol. Combining the datum with those of CaIrO 3 , it is shown that CaIrO 3 perovskite is energetically less stable than CaRuO 3 perovskite. This is consistent with the fact that orthorhombic distortion of CaIrO 3 perovskite is larger than CaRuO 3 , as indicated with the tilt-angle of octahedral framework of perovskite structure. The transition pressure from perovskite to post-perovskite in CaBO 3 (B = Ru, Rh, Ir) increases almost linearly with decreasing the tilt-angle, suggesting that the perovskite - post-perovskite transition may result from instability of the perovskite structure with pressure.

  12. Multifunctional optoelectronic devices based on perovskites

    KAUST Repository

    Saidaminov, Makhsud I.; Bakr, Osman

    2017-01-01

    Embodiments of the present disclosure provide methods of growing halide films (e.g., single crystal halide perovskites or multi-crystal halide perovskites) on a structure, dual-mode photodetectors, methods of use, and the like.

  13. Multifunctional optoelectronic devices based on perovskites

    KAUST Repository

    Saidaminov, Makhsud I.

    2017-10-19

    Embodiments of the present disclosure provide methods of growing halide films (e.g., single crystal halide perovskites or multi-crystal halide perovskites) on a structure, dual-mode photodetectors, methods of use, and the like.

  14. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    KAUST Repository

    Buin, Andrei; Comin, Riccardo; Xu, Jixian; Ip, Alexander H.; Sargent, Edward H.

    2015-01-01

    -based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability

  15. Miscellaneous Lasing Actions in Organo-Lead Halide Perovskite Films.

    Science.gov (United States)

    Duan, Zonghui; Wang, Shuai; Yi, Ningbo; Gu, Zhiyuan; Gao, Yisheng; Song, Qinghai; Xiao, Shumin

    2017-06-21

    Lasing actions in organo-lead halide perovskite films have been heavily studied in the past few years. However, due to the disordered nature of synthesized perovskite films, the lasing actions are usually understood as random lasers that are formed by multiple scattering. Herein, we demonstrate the miscellaneous lasing actions in organo-lead halide perovskite films. In addition to the random lasers, we show that a single or a few perovskite microparticles can generate laser emissions with their internal resonances instead of multiple scattering among them. We experimentally observed and numerically confirmed whispering gallery (WG)-like microlasers in polygon shaped and other deformed microparticles. Meanwhile, owing to the nature of total internal reflection and the novel shape of the nanoparticle, the size of the perovskite WG laser can be significantly decreased to a few hundred nanometers. Thus, wavelength-scale lead halide perovskite lasers were realized for the first time. All of these laser behaviors are complementary to typical random lasers in perovskite film and will help the understanding of lasing actions in complex lead halide perovskite systems.

  16. Effects of Fe-Enrichment on the Equation of State and Stability of (Mg,Fe)SiO3 Perovskite and Post-Perovskite

    Science.gov (United States)

    Dorfman, S. M.; Holl, C. M.; Meng, Y.; Prakapenka, V.; Duffy, T. S.

    2010-12-01

    Fe-enrichment in the deep lower mantle has been proposed as an explanation for seismic anomalies such as large low shear velocity provinces (LLSVPs) and ultralow velocity zones (ULVZs). In order to resolve the effect of Fe on the stability and equation of state of the lower mantle’s dominant constituent, (Mg,Fe)SiO3 perovskite, we have studied Fe-rich natural orthopyroxenes, (Mg0.61Fe0.37Ca0.02)SiO3 and (Mg0.25Fe0.70Ca0.05)SiO3 (compositions determined by microprobe analysis), at lower mantle P-T conditions. Pyroxene starting materials were mixed with Au (pressure calibrant and laser absorber) and loaded with NaCl or Ne (pressure medium and thermal insulator) in a symmetric diamond anvil cell. X-ray diffraction experiments at pressures up to 122 GPa with in-situ laser heating were performed at the GSECARS (13-ID-D) and HPCAT (16-ID-B) sectors of the Advanced Photon Source. Heating samples to 2000 K produced single-phase orthorhombic GdFeO3-type perovskite at 63 GPa for the Mg# 61 composition and at 72 GPa for the Mg# 25 composition. At lower pressures (56 GPa for Mg# 61, 67 GPa for Mg# 25), heating both compositions resulted in a mixture of perovskite, SiO2 and (Mg,Fe)O. These measurements provide new constraints on the dependence of (Mg,Fe)SiO3 perovskite stability on pressure and composition. Upon further compression to 93 GPa and higher pressures with laser heating, Mg# 25 perovskite transformed to a two-phase mixture of perovskite and post-perovskite. This is consistent with previous findings that Fe substitution destabilizes (Mg,Fe)SiO3 perovskite relative to (Mg,Fe)SiO3 post-perovskite (Mao et al. 2004, Caracas and Cohen 2005). The bulk modulus at 80 GPa (K80) is ~550 GPa for both Fe-rich perovskites, comparable to values measured for MgSiO3 perovskite (Lundin et al. 2008). However, the volume of Fe-rich perovskites increases linearly with Fe-content. The (Mg0.25Fe0.70Ca0.05)SiO3 perovskite is 3% greater at 80 GPa than V80 for the Mg end

  17. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    KAUST Repository

    Buin, Andrei

    2015-06-23

    © 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention both at the experimental and theoretical levels. These materials, in particular methylammonium triiodide, are still limited by poor chemical and structural stability under ambient conditions. Today this represents one of the major challenges for polycrystalline perovskite-based photovoltaic technology. In addition to this, the performance of perovskite-based devices is degraded by deep localized states, or traps. To achieve better-performing devices, it is necessary to understand the nature of these states and the mechanisms that lead to their formation. Here we show that the major sources of deep traps in the different halide systems have different origin and character. Halide vacancies are shallow donors in I-based perovskites, whereas they evolve into a major source of traps in Cl-based perovskites. Lead interstitials, which can form lead dimers, are the dominant source of defects in Br-based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability in relation to the reaction enthalpies of mixtures of bulk precursors with respect to final perovskite product. Methylammonium lead triiodide is characterized by the lowest reaction enthalpy, explaining its low stability. At the opposite end, the highest stability was found for the methylammonium lead trichloride, also consistent with our experimental findings which show no observable structural variations over an extended period of time.

  18. Impact of Ultrathin C60 on Perovskite Photovoltaic Devices.

    Science.gov (United States)

    Liu, Dianyi; Wang, Qiong; Traverse, Christopher J; Yang, Chenchen; Young, Margaret; Kuttipillai, Padmanaban S; Lunt, Sophia Y; Hamann, Thomas W; Lunt, Richard R

    2018-01-23

    Halide perovskite solar cells have seen dramatic progress in performance over the past several years. Certified efficiencies of inverted structure (p-i-n) devices have now exceeded 20%. In these p-i-n devices, fullerene compounds are the most popular electron-transfer materials. However, the full function of fullerenes in perovskite solar cells is still under investigation, and the mechanism of photocurrent hysteresis suppression by fullerene remains unclear. In previous reports, thick fullerene layers (>20 nm) were necessary to fully cover the perovskite film surface to make good contact with perovskite film and avoid large leakage currents. In addition, the solution-processed fullerene layer has been broadly thought to infiltrate into the perovskite film to passivate traps on grain boundary surfaces, causing suppressed photocurrent hysteresis. In this work, we demonstrate an efficient perovskite photovoltaic device with only 1 nm C 60 deposited by vapor deposition as the electron-selective material. Utilizing a combination of fluorescence microscopy and impedance spectroscopy, we show that the ultrathin C 60 predominately acts to extract electrons from the perovskite film while concomitantly suppressing the photocurrent hysteresis by reducing space charge accumulation at the interface. This work ultimately helps to clarify the dominant role of fullerenes in perovskite solar cells while simplifying perovskite solar cell design to reduce manufacturing costs.

  19. Two-Dimensional Perovskite Activation with an Organic Luminophore.

    Science.gov (United States)

    Jemli, Khaoula; Audebert, Pierre; Galmiche, Laurent; Trippé-Allard, Gaelle; Garrot, Damien; Lauret, Jean-Sébastien; Deleporte, Emmanuelle

    2015-10-07

    A great advantage of the hybrid organic-inorganic perovskites is the chemical flexibility and the possibility of a molecular engineering of each part of the material (the inorganic part and the organic part respectively) in order to improve or add some functionalities. An adequately chosen organic luminophore has been introduced inside a lead bromide type organic-inorganic perovskite, while respecting the two-dimensional perovskite structure. A substantial increase of the brilliance of the perovskite is obtained. This activation of the perovskite luminescence by the adequate engineering of the organic part is an original approach, and is particularly interesting in the framework of the light-emitting devices such as organic light-emitting diodes (OLEDs) or lasers.

  20. Impact of Interfacial Layers in Perovskite Solar Cells.

    Science.gov (United States)

    Cho, An-Na; Park, Nam-Gyu

    2017-10-09

    Perovskite solar cells (PCSs) are composed of organic-inorganic lead halide perovskite as the light harvester. Since the first report on a long-term-durable, 9.7 % efficient, solid-state perovskite solar cell, organic-inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine-doped tin oxide (FTO)/electron-transport layer (ETL), ETL/perovskite, perovskite/hole-transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain-boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Perovskite Materials for Light-Emitting Diodes and Lasers.

    Science.gov (United States)

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Patterning of Perovskite Single Crystals

    KAUST Repository

    Corzo, Daniel

    2017-06-12

    As the internet-of-things hardware integration continues to develop and the requirements for electronics keep diversifying and expanding, the necessity for specialized properties other than the classical semiconductor performance becomes apparent. The success of emerging semiconductor materials depends on the manufacturability and cost as much as on the properties and performance they offer. Solution-based semiconductors are an emerging concept that offers the advantage of being compatible with large-scale manufacturing techniques and have the potential to yield high-quality electronic devices at a lower cost than currently available solutions. In this work, patterns of high-quality MAPbBr3 perovskite single crystals in specific locations are achieved through the modification of the substrate properties and solvent engineering. The fabrication of the substrates involved modifying the surface adhesion forces through functionalization with self-assembled monolayers and patterning them by photolithography processes. Spin coating and blade coating were used to deposit the perovskite solution on the modified silicon substrates. While single crystal perovskites were obtained with the modification of substrates alone, solvent engineering helped with improving the Marangoni flows in the deposited droplets by increasing the contact angle and lowering the evaporation rate, therefore controlling and improving the shape of the grown perovskite crystals. The methodology is extended to other types of perovskites such as the transparent MAPbCl3 and the lead-free MABi2I9, demonstrating the adaptability of the process. Adapting the process to electrode arrays opened up the path towards the fabrication of optoelectronic devices including photodetectors and field-effect transistors, for which the first iterations are demonstrated. Overall, manufacturing and integration techniques permitting the fabrication of single crystalline devices, such as the method in this thesis work, are

  3. Molecular behavior of zero-dimensional perovskites

    KAUST Repository

    Yin, Jun

    2017-12-16

    Low-dimensional perovskites offer a rare opportunity to investigate lattice dynamics and charge carrier behavior in bulk quantum-confined solids, in addition to them being the leading materials in optoelectronic applications. In particular, zero-dimensional (0D) inorganic perovskites of the Cs4PbX6 (X = Cl, Br, or I) kind have crystal structures with isolated lead halide octahedra [PbX6]4− surrounded by Cs+ cations, allowing the 0D crystals to exhibit the intrinsic properties of an individual octahedron. Using both experimental and theoretical approaches, we studied the electronic and optical properties of the prototypical 0D perovskite Cs4PbBr6. Our results underline that this 0D perovskite behaves akin to a molecule, demonstrating low electrical conductivity and mobility as well as large polaron binding energy. Density functional theory calculations and transient absorption measurements of Cs4PbBr6 perovskite films reveal the polaron band absorption and strong polaron localization features of the material. A short polaron lifetime of ~2 ps is observed in femtosecond transient absorption experiments, which can be attributed to the fast lattice relaxation of the octahedra and the weak interactions among them.

  4. Aqueous-Containing Precursor Solutions for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Liu, Dianyi; Traverse, Christopher J; Chen, Pei; Elinski, Mark; Yang, Chenchen; Wang, Lili; Young, Margaret; Lunt, Richard R

    2018-01-01

    Perovskite semiconductors have emerged as competitive candidates for photovoltaic applications due to their exceptional optoelectronic properties. However, the impact of moisture instability on perovskite films is still a key challenge for perovskite devices. While substantial effort is focused on preventing moisture interaction during the fabrication process, it is demonstrated that low moisture sensitivity, enhanced crystallization, and high performance can actually be achieved by exposure to high water content (up to 25 vol%) during fabrication with an aqueous-containing perovskite precursor. The perovskite solar cells fabricated by this aqueous method show good reproducibility of high efficiency with average power conversion efficiency (PCE) of 18.7% and champion PCE of 20.1% under solar simulation. This study shows that water-perovskite interactions do not necessarily negatively impact the perovskite film preparation process even at the highest efficiencies and that exposure to high contents of water can actually enable humidity tolerance during fabrication in air.

  5. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin; Blasi, Benedikt; Eisenlohr, Johannes; Kohlstadt, Markus; Lee, Seunghun; Mastroianni, Simone; Mundt, Laura; Mundus, Markus; Ndione, Paul; Reichel, Christian; Schubert, Martin; Schulze, Patricia S.; Tucher, Nico; Veit, Clemens; Veurman, Welmoed; Wienands, Karl; Winkler, Kristina; Wurfel, Uli; Glunz, Stefan W.; Hermle, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  6. Study of transport properties of bodies with a perovskite structure: application to the MgSiO3 perovskite

    International Nuclear Information System (INIS)

    Kapusta, Benedicte

    1990-01-01

    After some recalls on transport in ionic solids (Nernst-Einstein relationship, variation of ionic conductivity, hybrid conduction, fast ionic conduction), this research thesis presents the physical properties of perovskites and more particularly the structure and stability of the MgSiO 3 perovskite: structure and elastic properties, electric conductivity and transport properties in compounds with a perovskite structure. Then, the author reports the experimental study of the KZnF 3 perovskite (a structural analogous of MgSiO 3 ): measurements of electric conductivity under pressure, measurements under atmospheric pressure, result discussion. The next part addresses the numerical simulation of MgSiO 3 : simulation techniques (generalities on molecular dynamics, model description), investigation of structural, elastic and thermodynamic properties, diffusion properties in quadratic phase [fr

  7. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  8. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun

    2015-07-15

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned \\'dots-in-a-matrix\\' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  9. Random lasing actions in self-assembled perovskite nanoparticles

    Science.gov (United States)

    Liu, Shuai; Sun, Wenzhao; Li, Jiankai; Gu, Zhiyuan; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai

    2016-05-01

    Solution-based perovskite nanoparticles have been intensively studied in the past few years due to their applications in both photovoltaic and optoelectronic devices. Here, based on the common ground between solution-based perovskite and random lasers, we have studied the mirrorless lasing actions in self-assembled perovskite nanoparticles. After synthesis from a solution, discrete lasing peaks have been observed from optically pumped perovskites without any well-defined cavity boundaries. We have demonstrated that the origin of the random lasing emissions is the scattering between the nanostructures in the perovskite microplates. The obtained quality (Q) factors and thresholds of random lasers are around 500 and 60 μJ/cm2, respectively. Both values are comparable to the conventional perovskite microdisk lasers with polygon-shaped cavity boundaries. From the corresponding studies on laser spectra and fluorescence microscope images, the lasing actions are considered random lasers that are generated by strong multiple scattering in random gain media. In additional to conventional single-photon excitation, due to the strong nonlinear effects of perovskites, two-photon pumped random lasers have also been demonstrated for the first time. We believe this research will find its potential applications in low-cost coherent light sources and biomedical detection.

  10. Determination of K{sub ps} and {beta}{sub 1,H} in a wide interval of initial concentrations of lutetium; Determinacion de K{sub ps} y {beta}{sub 1,H} en un amplio intervalo de concentraciones iniciales del lutecio

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-G, H.; Jimenez R, M.; Solache R, M. [ININ. Apdo. Postal 18-1027, Mexico D.F. (Mexico); Rojas H, A. [UAM-I, A.P. 55-534, 09340, Mexico. D.F. (Mexico)

    2006-07-01

    solubility product constants and the first of lutetium hydrolysis in the interval of initial concentration of 3.72 X 10{sup -5} to 2.09 X 10{sup -3} M of lutetium, in a 2M of NaCIO{sub 4} media, at 303 K and under conditions free of CO{sub 2} its were considered. The solubility diagrams (pLu{sub (ac)}-pC{sub H}) by means of a radiochemical method were obtained, and starting from its the pC{sub H} values that limit the saturation and no-saturation zones of the solutions were settled down. Those diagrams allowed, also, to calculate the solubility product constants of Lu(OH){sub 3}. The experimental data to the polynomial solubility equation were adjusted, what allowed to calculate those values of the solubility product constants of Lu(OH){sub 3} and to determine the first hydrolysis constant. The value of precipitation pC{sub H} diminishes when the initial concentration of the lutetium increases, while the values of K{sub ps} and {beta}{sub 1,H} its remain constant. (Author)

  11. Scalable fabrication of perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen; Klein, Talysa R.; Kim, Dong Hoe; Yang, Mengjin; Berry, Joseph J.; van Hest, Maikel F. A. M.; Zhu, Kai

    2018-03-27

    Perovskite materials use earth-abundant elements, have low formation energies for deposition and are compatible with roll-to-roll and other high-volume manufacturing techniques. These features make perovskite solar cells (PSCs) suitable for terawatt-scale energy production with low production costs and low capital expenditure. Demonstrations of performance comparable to that of other thin-film photovoltaics (PVs) and improvements in laboratory-scale cell stability have recently made scale up of this PV technology an intense area of research focus. Here, we review recent progress and challenges in scaling up PSCs and related efforts to enable the terawatt-scale manufacturing and deployment of this PV technology. We discuss common device and module architectures, scalable deposition methods and progress in the scalable deposition of perovskite and charge-transport layers. We also provide an overview of device and module stability, module-level characterization techniques and techno-economic analyses of perovskite PV modules.

  12. On the effect of ammonia and wet atmospheres on the conducting properties of different lutetium bisphthalocyanine thin films

    International Nuclear Information System (INIS)

    Parra, Vicente; Bouvet, Marcel; Brunet, Jerome; Rodriguez-Mendez, Maria Luz; Saja, Jose Antonio de

    2008-01-01

    In this article, we present new experimental data regarding the influence of ammonia (NH 3 ) and water (from wet atmospheres) in the conducting properties of lutetium bisphthalocyanine (LuPc 2 )-based films in two very different structural features, namely Langmuir-Blodgett (LB) and vacuum evaporated (VE) films, deposited onto interdigitated electrodes. We pay particular attention to the effect of the mass flow rate ratios of the active gases, which certainly influence the mechanism of conduction of the chemiresistors. The particular trends observed are discussed on the basis of two main contributions: the electronic effects and the competition between gases in the adsorption process

  13. Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Wei Yin

    2016-06-01

    Full Text Available Organic-inorganic hybrid perovskite solar cells are considered as one of the most promising next-generation solar cells due to their advantages of low-cost precursors, high power conversion efficiency (PCE and easy of processing. In the past few years, the PCEs have climbed from a few to over 20% for perovskite solar cells. Recent developments demonstrate that perovskite exhibits ambipolar semiconducting characteristics, which allows for the construction of planar heterojunction (PHJ perovskite solar cells. PHJ perovskite solar cells can avoid the use of high-temperature sintered mesoporous metal oxides, enabling simple processing and the fabrication of flexible and tandem perovskite solar cells. In planar heterojunction materials, hole/electron transport layers are introduced between a perovskite film and the anode/cathode. The hole and electron transporting layers are expected to enhance exciton separation, charge transportation and collection. Further, the supporting layer for the perovskite film not only plays an important role in energy-level alignment, but also affects perovskite film morphology, which have a great effect on device performance. In addition, interfacial layers also affect device stability. In this review, recent progress in interfacial engineering for PHJ perovskite solar cells will be reviewed, especially with the molecular interfacial materials. The supporting interfacial layers for the optimization of perovskite films will be systematically reviewed. Finally, the challenges remaining in perovskite solar cells research will be discussed.

  14. Low-Dimensional Organic-Inorganic Halide Perovskite: Structure, Properties, and Applications.

    Science.gov (United States)

    Misra, Ravi K; Cohen, Bat-El; Iagher, Lior; Etgar, Lioz

    2017-10-09

    Three-dimensional (3 D) perovskite has attracted a lot of attention owing to its success in photovoltaic (PV) solar cells. However, one of its major crucial issues lies in its stability, which has limited its commercialization. An important property of organic-inorganic perovskite is the possibility of forming a layered material by using long organic cations that do not fit into the octahedral cage. These long organic cations act as a "barrier" that "caps" 3 D perovskite to form the layered material. Controlling the number of perovskite layers could provide a confined structure with chemical and physical properties that are different from those of 3 D perovskite. This opens up a whole new batch of interesting materials with huge potential for optoelectronic applications. This Minireview presents the synthesis, properties, and structural orientation of low-dimensional perovskite. It also discusses the progress of low-dimensional perovskite in PV solar cells, which, to date, have performance comparable to that of 3 D perovskite but with enhanced stability. Finally, the use of low-dimensional perovskite in light-emitting diodes (LEDs) and photodetectors is discussed. The low-dimensional perovskites are promising candidates for LED devices, mainly because of their high radiative recombination as a result of the confined low-dimensional quantum well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    Science.gov (United States)

    Chen, Kun; Tüysüz, Harun

    2015-11-09

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Phonon model of perovskite thermal capacity

    International Nuclear Information System (INIS)

    Kesler, Ya.A.; Poloznikova, M.Eh.; Petrov, K.I.

    1983-01-01

    A model for calculating the temperature curve of thermal capacity of perovskite family crystals on the basis of vibrational spectra is proposed. Different representatives of the perovskite family: cubic SrTiO 3 , tetragonal BaTiO 3 and orthorbombic CaTiO 3 and LaCrO 3 are considered. The total frequency set is used in thermal capacity calcUlations. Comparison of the thermal capacity values of compounds calculated on the basis of the proposed model with the experimental values shows their good agreement. The method is also recommended for other compounds with the perovskite-like structure

  17. Preparation of LuAG Powders with Single Phase and Good Dispersion for Transparent Ceramics Using Co-Precipitation Method

    Science.gov (United States)

    Pan, Liangjie; Jiang, Benxue; Fan, Jintai; Yang, Qiuhong; Zhou, Chunlin; Zhang, Pande; Mao, Xiaojian; Zhang, Long

    2015-01-01

    The synthesis of pure and well dispersed lutetium aluminum garnet (LuAG) powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC) was used as the precipitant. The influence of aging time, pH value, and dripping speed on the prepared LuAG powders were investigated. It showed that long aging duration (>15 h) with high terminal pH value (>7.80) resulted in segregation of rhombus Lu precipitate and Al precipitate. By decreasing the initial pH value or accelerating the dripping speed, rhombus Lu precipitate was eliminated and pure LuAG nano powders were synthesized. High quality LuAG transparent ceramics with transmission >75% at 1064 nm were fabricated using these well dispersed nano LuAG powders. PMID:28793510

  18. Preparation of LuAG Powders with Single Phase and Good Dispersion for Transparent Ceramics Using Co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Liangjie Pan

    2015-08-01

    Full Text Available The synthesis of pure and well dispersed lutetium aluminum garnet (LuAG powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC was used as the precipitant. The influence of aging time, pH value, and dripping speed on the prepared LuAG powders were investigated. It showed that long aging duration (>15 h with high terminal pH value (>7.80 resulted in segregation of rhombus Lu precipitate and Al precipitate. By decreasing the initial pH value or accelerating the dripping speed, rhombus Lu precipitate was eliminated and pure LuAG nano powders were synthesized. High quality LuAG transparent ceramics with transmission >75% at 1064 nm were fabricated using these well dispersed nano LuAG powders.

  19. Perovskite Solar Cells for High-Efficiency Tandems

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-09-30

    The first monolithic perovskite/silicon tandem was made with a diffused silicon p-n junction, a tunnel junction made of n++ hydrogenated amorphous silicon, a titania electron transport layer, a methylammonium lead iodide absorber, and a Spiro-OMeTAD hole transport layer (HTL). The power conversion efficiency (PCE) was only 13.7% due to excessive parasitic absorption of light in the HTL, limiting the matched current density to 11.5 mA/cm2. Werner et al.15 raised the PCE to a record 21.2% by switching to a silicon heterojunction bottom cell and carefully tuning layer thicknesses to achieve lower optical loss and a higher current density of 15.9 mA/cm2. It is clear from these reports that minimizing parasitic absorption in the window layers is crucial to achieving higher current densities and efficiencies in monolithic tandems. To this end, the window layers through which light first passes before entering the perovskite and silicon absorber materials must be highly transparent. The front electrode must also be conductive to carry current laterally across the top of the device. Indium tin oxide (ITO) is widely utilized as a transparent electrode in optoelectronic devices such as flat-panel displays, smart windows, organic light-emitting diodes, and solar cells due to its high conductivity and broadband transparency. ITO is typically deposited through magnetron sputtering; however, the high kinetic energy of sputtered particles can damage underlying layers. In perovskite solar cells, a sputter buffer layer is required to protect the perovskite and organic carrier extraction layers from damage during sputter deposition. The ideal buffer layer should also be energetically well aligned so as to act as a carrier-selective contact, have a wide bandgap to enable high optical transmission, and have no reaction with the halides in the perovskite. Additionally, this buffer layer should act as a diffusion barrier layer to prevent both

  20. Conducting Layered Organic-inorganic Halides Containing -Oriented Perovskite Sheets.

    Science.gov (United States)

    Mitzi, D B; Wang, S; Feild, C A; Chess, C A; Guloy, A M

    1995-03-10

    Single crystals of the layered organic-inorganic perovskites, [NH(2)C(I=NH(2)](2)(CH(3)NH(3))m SnmI3m+2, were prepared by an aqueous solution growth technique. In contrast to the recently discovered family, (C(4)H(9)NH(3))(2)(CH(3)NH(3))n-1SnnI3n+1, which consists of (100)-terminated perovskite layers, structure determination reveals an unusual structural class with sets of m -oriented CH(3)NH(3)SnI(3) perovskite sheets separated by iodoformamidinium cations. Whereas the m = 2 compound is semiconducting with a band gap of 0.33 +/- 0.05 electron volt, increasing m leads to more metallic character. The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovskites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovskites.

  1. Generalized trends in the formation energies of perovskite oxides

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Calle-Vallejo, Federico; Mogensen, Mogens Bjerg

    2013-01-01

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied...... elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we...... extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site...

  2. Generalized trends in the formation energies of perovskite oxides.

    Science.gov (United States)

    Zeng, ZhenHua; Calle-Vallejo, Federico; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-28

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site usually have quite different but ordered formation energies. On the other hand, for a given A-site cation, (III) the formation energies of perovskites vary linearly with respect to the atomic number of the elements at the B site within the same period of the periodic table, and the slopes depend systematically on the oxidation state of the A-site cation; and (IV) the trends in formation energies of perovskites with elements from different periods at the B site depend on the oxidation state of A-site cations. Since the energetics of perovskites is shown to be the superposition of the individual contributions of their constituent oxides, the trends can be rationalized in terms of A-O and B-O interactions in the ionic crystal. These findings reveal the existence of general systematic trends in the formation energies of perovskites and provide further insight into the role of ion-ion interactions in the properties of ternary compounds.

  3. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    International Nuclear Information System (INIS)

    Wang, Fenggong; Grinberg, Ilya; Rappe, Andrew M.

    2014-01-01

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics

  4. Highly efficient light management for perovskite solar cells.

    Science.gov (United States)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  5. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites

    Science.gov (United States)

    Xiao, Zhengguo; Kerner, Ross A.; Zhao, Lianfeng; Tran, Nhu L.; Lee, Kyung Min; Koh, Tae-Wook; Scholes, Gregory D.; Rand, Barry P.

    2017-01-01

    Organic-inorganic hybrid perovskite materials are emerging as highly attractive semiconductors for use in optoelectronics. In addition to their use in photovoltaics, perovskites are promising for realizing light-emitting diodes (LEDs) due to their high colour purity, low non-radiative recombination rates and tunable bandgap. Here, we report highly efficient perovskite LEDs enabled through the formation of self-assembled, nanometre-sized crystallites. Large-group ammonium halides added to the perovskite precursor solution act as a surfactant that dramatically constrains the growth of 3D perovskite grains during film forming, producing crystallites with dimensions as small as 10 nm and film roughness of less than 1 nm. Coating these nanometre-sized perovskite grains with longer-chain organic cations yields highly efficient emitters, resulting in LEDs that operate with external quantum efficiencies of 10.4% for the methylammonium lead iodide system and 9.3% for the methylammonium lead bromide system, with significantly improved shelf and operational stability.

  6. Zero-Dimensional Cs4PbBr6 Perovskite Nanocrystals

    KAUST Repository

    Zhang, Yuhai

    2017-02-09

    Perovskite nanocrystals (NCs) have become leading candidates for solution-processed optoelectronics applications. While substantial work has been published on 3-D perovskite phases, the NC form of the zero-dimensional (0-D) phase of this promising class of materials remains elusive. Here we report the synthesis of a new class of colloidal semiconductor NCs based on Cs4PbBr6, the 0-D perovskite, enabled through the design of a novel low-temperature reverse microemulsion method with 85% reaction yield. These 0-D perovskite NCs exhibit high photoluminescence quantum yield (PLQY) in the colloidal form (PLQY: 65%), and, more importantly, in the form of thin film (PLQY: 54%). Notably, the latter is among the highest values reported so far for perovskite NCs in the solid form. Our work brings the 0-D phase of perovskite into the realm of colloidal NCs with appealingly high PLQY in the film form, which paves the way for their practical application in real devices.

  7. Ceramic materials on perovskite-type structure for electronic applications

    International Nuclear Information System (INIS)

    Surowiak, Z.

    2003-01-01

    Ceramic materials exhibiting the perovskite-type structure constitute among others, resource base for many fields of widely understood electronics (i.e., piezoelectronics, accustoelectronics, optoelectronics, computer science, tele- and radioelectronics etc.). Most often they are used for fabrication of different type sensors (detectors), transducers, ferroelectric memories, limiters of the electronic current intensity, etc., and hence they are numbered among so-called intelligent materials. Prototype structure of this group of materials is the structure of the mineral called perovskite (CaTiO 3 ). By means of right choice of the chemical composition of ABO 3 and deforming the regular perovskite structure (m3m) more than 5000 different chemical compounds and solid solutions exhibiting the perovskite-type structure have been fabricated. The concept of perovskite functional ceramics among often things ferroelectric ceramics, pyroelectric ceramics, piezoelectric ceramics, electrostrictive ceramics, posistor ceramics, superconductive ceramics and ferromagnetic ceramics. New possibilities of application of the perovskite-type ceramics are opened by nanotechnology. (author)

  8. Hybrid Perovskites: Prospects for Concentrator Solar Cells.

    Science.gov (United States)

    Lin, Qianqian; Wang, Zhiping; Snaith, Henry J; Johnston, Michael B; Herz, Laura M

    2018-04-01

    Perovskite solar cells have shown a meteoric rise of power conversion efficiency and a steady pace of improvements in their stability of operation. Such rapid progress has triggered research into approaches that can boost efficiencies beyond the Shockley-Queisser limit stipulated for a single-junction cell under normal solar illumination conditions. The tandem solar cell architecture is one concept here that has recently been successfully implemented. However, the approach of solar concentration has not been sufficiently explored so far for perovskite photovoltaics, despite its frequent use in the area of inorganic semiconductor solar cells. Here, the prospects of hybrid perovskites are assessed for use in concentrator solar cells. Solar cell performance parameters are theoretically predicted as a function of solar concentration levels, based on representative assumptions of charge-carrier recombination and extraction rates in the device. It is demonstrated that perovskite solar cells can fundamentally exhibit appreciably higher energy-conversion efficiencies under solar concentration, where they are able to exceed the Shockley-Queisser limit and exhibit strongly elevated open-circuit voltages. It is therefore concluded that sufficient material and device stability under increased illumination levels will be the only significant challenge to perovskite concentrator solar cell applications.

  9. Structures and Phase Transitions in Ordered Double Perovskites

    International Nuclear Information System (INIS)

    Kennedy, Brendan; Zhou, Qingdi; Cheah, Melina

    2005-01-01

    Full text: The basic perovskite structure is ubiquitous in the study of metal oxides, yet very few oxides actually adopt the archetypal cubic structure. The perovskite structure is based on corner sharing octahedra and in most cases cooperative rotations of successive octahedra lower the symmetry of the perovskite structure. Solid State Chemists have been fascinated by these distortions for many years, not only for their intrinsic interest but also to understand how these distortions control the electronic and magnetic properties of perovskite oxides. In this presentation we will describe the use of high-resolution powder diffraction methods to unravel the temperature and composition dependence of the structures in two series of double perovskites, Sr 1-x A x NiWO 6 (A = Ba, Ca) where there is essentially complete ordering of Ni and W cations and in Sr 1-x Ca x CrNbO 6 where there is extensive disorder of the Cr and Nb cations. (authors)

  10. Perovskites As Electrocatalysts for Alkaline Water Electrolysis

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; De La Osa Puebla, Ana Raquel; Jensen, Jens Oluf

    2014-01-01

    such as X-ray diffraction, electrical conductivity, scanning electron microscopy (SEM), energy dispersive microscopy (EDX) and rotating disk electrode. The perovskites tested in this work were both produced by a ball-milling technique and by an auto-combustion synthesis, which appeared to be a fast...... and robust method for synthesis of perovskites with various chemical compositions1. The electrochemical performance of the materials was tested through pellet pressing of the perovskite powders. This involved in some case a time consuming preparation process. Furthermore the technique should show...... the adequate reproducibility.2 In this work we show the development of the method, which was further used to compare the activity of various electrocatalysts (Figures 1,2). The electrocatalytic activity of all prepared perovskites was tested in 1M KOH at 80 °C, using an ink consisting of potassium exchanged...

  11. On the effect of ammonia and wet atmospheres on the conducting properties of different lutetium bisphthalocyanine thin films

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Vicente [Ecole Superieure de Physique et Chimie Industrielles (ESPCI) and Laboratoire de Chimie Inorganique et Materiaux Moleculaires-CNRS UMR 7071, Universite Pierre et Marie Curie (Paris 6) (France); Bouvet, Marcel [Ecole Superieure de Physique et Chimie Industrielles (ESPCI) and Laboratoire de Chimie Inorganique et Materiaux Moleculaires-CNRS UMR 7071, Universite Pierre et Marie Curie (Paris 6) (France)], E-mail: marcel.bouvet@espci.fr; Brunet, Jerome [Universite Blaise Pascal, LASMEA-CNRS UMR 6602, Clermont-Ferrand (France); Rodriguez-Mendez, Maria Luz [Dept. Quimica Fisica y Quimica Inorganica, Escuela Tecnica Superior de Ingenieros Industriales (E.T.S.I.I), Universidad de Valladolid (Spain); Saja, Jose Antonio de [Dept. Fisica de la Materia Condensada, Facultad de Ciencias, Universidad de Valladolid (Spain)

    2008-10-31

    In this article, we present new experimental data regarding the influence of ammonia (NH{sub 3}) and water (from wet atmospheres) in the conducting properties of lutetium bisphthalocyanine (LuPc{sub 2})-based films in two very different structural features, namely Langmuir-Blodgett (LB) and vacuum evaporated (VE) films, deposited onto interdigitated electrodes. We pay particular attention to the effect of the mass flow rate ratios of the active gases, which certainly influence the mechanism of conduction of the chemiresistors. The particular trends observed are discussed on the basis of two main contributions: the electronic effects and the competition between gases in the adsorption process.

  12. Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Di Zhou

    2018-01-01

    Full Text Available A novel all-solid-state, hybrid solar cell based on organic-inorganic metal halide perovskite (CH3NH3PbX3 materials has attracted great attention from the researchers all over the world and is considered to be one of the top 10 scientific breakthroughs in 2013. The perovskite materials can be used not only as light-absorbing layer, but also as an electron/hole transport layer due to the advantages of its high extinction coefficient, high charge mobility, long carrier lifetime, and long carrier diffusion distance. The photoelectric power conversion efficiency of the perovskite solar cells has increased from 3.8% in 2009 to 22.1% in 2016, making perovskite solar cells the best potential candidate for the new generation of solar cells to replace traditional silicon solar cells in the future. In this paper, we introduce the development and mechanism of perovskite solar cells, describe the specific function of each layer, and focus on the improvement in the function of such layers and its influence on the cell performance. Next, the synthesis methods of the perovskite light-absorbing layer and the performance characteristics are discussed. Finally, the challenges and prospects for the development of perovskite solar cells are also briefly presented.

  13. On the use of X-ray absorption spectroscopy to elucidate the structure of lutetium adenosine mono- and triphosphate complexes.

    Science.gov (United States)

    Mostapha, S; Berthon, C; Fontaine-Vive, F; Gaysinski, M; Guérin, L; Guillaumont, D; Massi, L; Monfardini, I; Solari, P L; Thomas, O P; Charbonnel, M C; Den Auwer, C

    2014-02-01

    Although the physiological impact of the actinide elements as nuclear toxicants has been widely investigated for half a century, a description of their interactions with biological molecules remains limited. It is however of primary importance to better assess the determinants of actinide speciation in cells and more generally in living organisms to unravel the molecular processes underlying actinide transport and deposition in tissues. The biological pathways of this family of elements in case of accidental contamination or chronic natural exposure (in the case of uranium rich soils for instance) are therefore a crucial issue of public health and of societal impact. Because of the high chemical affinity of those actinide elements for phosphate groups and the ubiquity of such chemical functions in biochemistry, phosphate derivatives are considered as probable targets of these cations. Among them, nucleotides and in particular adenosine mono- (AMP) and triphosphate (ATP) nucleotides occur in more chemical reactions than any other compounds on the earth's surface, except water, and are therefore critical target molecules. In the present study, we are interested in trans-plutonium actinide elements, in particular americium and curium that are more rarely considered in environmental and bioaccumulation studies than early actinides like uranium, neptunium and plutonium. A first step in this strategy is to work with chemical analogues like lanthanides that are not radioactive and therefore allow extended physical chemical characterization to be conducted that are difficult to perform with radioactive materials. We describe herein the interaction of lutetium(III) with adenosine AMP and ATP. With AMP and ATP, insoluble amorphous compounds have been obtained with molar ratios of 1:2 and 1:1, respectively. With an excess of ATP, with 1:2 molar ratio, a soluble complex has been obtained. A combination of spectroscopic techniques (IR, NMR, ESI-MS, EXAFS) together with quantum

  14. Two-Dimensional Halide Perovskites for Emerging New- Generation Photodetectors

    DEFF Research Database (Denmark)

    Tang, Yingying; Cao, Xianyi; Chi, Qijin

    2018-01-01

    Compared to their conventional three-dimensional (3D) counterparts, two-dimensional (2D) halide perovskites have attracted more interests recently in a variety of areas related to optoelectronics because of their unique structural characteristics and enhanced performances. In general, there are two...... distinct types of 2D halide perovskites. One represents those perovskites with an intrinsic layered crystal structure (i.e. MX6 layers, M = metal and X = Cl, Br, I), the other defines the perovskites with a 2D nanostructured morphology such as nanoplatelets and nanosheets. Recent studies have shown that 2D...... halide perovskites hold promising potential for the development of new-generation photodetectors, mainly arising from their highly efficient photoluminescence and absorbance, color tunability in the visible-light range and relatively high stability. In this chapter, we present the summary and highlights...

  15. Fast Postmoisture Treatment of Luminescent Perovskite Films for Efficient Light-Emitting Diodes.

    Science.gov (United States)

    Wang, Haoran; Li, Xiaomin; Yuan, Mingjian; Yang, Xuyong

    2018-04-01

    Despite the recent advances in the performance of perovskite light-emitting diodes (PeLEDs), the effects of water on the perovskite emissive layer and its electroluminescence are still unclear, even though it has been previously demonstrated that moisture has a significant impact on the quality of perovskite films in the fabrication process of perovskite solar cells and is a prerequisite for obtaining high-performance PeLEDs. Here, the effects of postmoisture on the luminescent CH 3 NH 3 PbBr 3 (MAPbBr 3 ) perovskite films are systematically investigated. It is found that postmoisture treatment can efficiently control the morphology and growth of perovskite films and only a fast moisture exposure at a 60% high relative humidity results in significantly improved crystallinity, carrier lifetime, and photoluminescence quantum yield of perovskite films. With the optimized moisture-treated perovskite films, a high-performance PeLED is fabricated, exhibiting a maximum current efficiency of 20.4 cd A -1 , which is an almost 20-fold enhancement when compared with perovskite films without moisture treatment. The results provide valuable insights into the moisture-assisted growth of luminescent perovskite films and will aid in the development of high-performance perovskite light-emitting devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites.

    Science.gov (United States)

    Sutter-Fella, Carolin M; Ngo, Quynh P; Cefarin, Nicola; Gardner, Kira L; Tamura, Nobumichi; Stan, Camelia V; Drisdell, Walter S; Javey, Ali; Toma, Francesca M; Sharp, Ian D

    2018-06-13

    Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2 ) 2 CsPb-halide (FACsPb-) and CH 3 NH 3 Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials. However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.

  17. Electrodeposition of organic-inorganic tri-halide perovskites solar cell

    Science.gov (United States)

    Charles, U. A.; Ibrahim, M. A.; Teridi, M. A. M.

    2018-02-01

    Perovskite (CH3NH3PbI3) semiconductor materials are promising high-performance light energy absorber for solar cell application. However, the power conversion efficiency of perovskite solar cell is severely affected by the surface quality of the deposited thin film. Spin coating is a low-cost and widely used deposition technique for perovskite solar cell. Notably, film deposited by spin coating evolves surface hydroxide and defeats from uncontrolled precipitation and inter-diffusion reaction. Alternatively, vapor deposition (VD) method produces uniform thin film but requires precise control of complex thermodynamic parameters which makes the technique unsuitable for large scale production. Most deposition techniques for perovskite require tedious surface optimization to improve the surface quality of deposits. Optimization of perovskite surface is necessary to significantly improve device structure and electrical output. In this review, electrodeposition of perovskite solar cell is demonstrated as a scalable and reproducible technique to fabricate uniform and smooth thin film surface that circumvents the need for high vacuum environment. Electrodeposition is achieved at low temperatures, supports precise control and optimization of deposits for efficient charge transfer.

  18. Lutetium 177-Labeled Cetuximab Evaluation for Radioimmunotherapeutic Applications

    Directory of Open Access Journals (Sweden)

    Kamal Yavari

    2012-06-01

    Full Text Available Background & Objectives: The monoclonal antibody cetuximab binds to EGFR and thus provides an opportunity to create both imaging and therapeutic modalities that target this receptor. The potential of cetuximab as a radioimmunoconjugate was investigated and quality control tests (in vitro and in vivo were performed as a first step in the production of a new radiopharmaceutical.   Methods : Cetuximab solution was dialyzed and concentrated using an Amicon Ultra-15 filter. Purified antibody was labeled with lutetium-177 using the acyclic bifunctional chelator, DOTA-NHS, and radioimmunoconjugates were purified by PD10 columns. Radiochemical purity and stability in buffer and human blood serum were determined using thin layer chromatography. Integrity of the radiolabeled complex was checked by SDS-PAGE. Preliminary biodistribution studies in normal mice model performed to determine radioimmunoconjugates distribution up to 72h.   Results: The radiochemical purity of the complex was 98±1%. The stabilities in phosphate buffer and in human blood serum at 96 hours post-preparation were 96±2 % and 78±4%, respectively. All of the samples, controls and radiolabeled antibodies, showed a similar pattern of migration in the gel electrophoresis. Biodistribution of Lu177-cetuximab was evaluated in normal mice and the highest ID/g% was observed in the blood (13.2±1.3% at 24 hours and the liver (9.1±1.3% at 24 hours.   Conclusion: Our results show that DOTA-cituximab can be labeled with 177Lu. Lu177-cetuximab has sufficient stability and retains its integrity. The new complex could be considered for further evaluation in animals and possibly in humans as a new radiopharmaceutical for use in radioimmunotherapy of cancers.

  19. Chitosan-Assisted Crystallization and Film Forming of Perovskite Crystals through Biomineralization.

    Science.gov (United States)

    Yang, Yang; Sun, Chen; Yip, Hin-Lap; Sun, Runcang; Wang, Xiaohui

    2016-03-18

    Biomimetic mineralization is a powerful approach for the synthesis of advanced composite materials with hierarchical organization and controlled structure. Herein, chitosan was introduced into a perovskite precursor solution as a biopolymer additive to control the crystallization and to improve the morphology and film-forming properties of a perovskite film by way of biomineralization. The biopolymer additive was able to control the size and morphology of the perovskite crystals and helped to form smooth films. The mechanism of chitosan-mediated nucleation and growth of the perovskite crystals was explored. As a possible application, the chitosan-perovskite composite film was introduced into a planar heterojunction solar cell and increased power conversion efficiency relative to that observed for the pristine perovskite film was achieved. The biomimetic mineralization method proposed in this study provides an alternative way of preparing perovskite crystals with well-controlled morphology and properties and extends the applications of perovskite crystals in photoelectronic fields, including planar-heterojunction solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Formability of ABX3 (X=F,Cl,Br,I) halide perovskites

    International Nuclear Information System (INIS)

    Li Chonghea; Lu Xionggang; Ding Weizhong; Feng Liming; Gao Yonghui; Guo Ziming

    2008-01-01

    In this study a total of 186 complex halide systems were collected; the formabilities of ABX 3 (X = F, Cl, Br and I) halide perovskites were investigated using the empirical structure map, which was constructed by Goldschmidt's tolerance factor and the octahedral factor. A model for halide perovskite formability was built up. In this model obtained, for all 186 complex halides systems, only one system (CsF-MnF 2 ) without perovskite structure and six systems (RbF-PbF 2 , CsF- BeF 2 , KCl-FeCl 2 , TlI-MnI 2 , RbI-SnI 2 , TlI-PbI 2 ) with perovskite structure were wrongly classified, so its predicting accuracy reaches 96%. It is also indicated that both the tolerance factor and the octahedral factor are a necessary but not sufficient condition for ABX 3 halide perovskite formability, and a lowest limit of the octahedral factor exists for halide perovskite formation. This result is consistent with our previous report for ABO 3 oxide perovskite, and may be helpful to design novel halide materials with the perovskite structure. (orig.)

  1. Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering.

    Science.gov (United States)

    Son, Dae-Yong; Kim, Seul-Gi; Seo, Ja-Young; Lee, Seon-Hee; Shin, Hyunjung; Lee, Donghwa; Park, Nam-Gyu

    2018-01-31

    Organic-inorganic halide perovskite is believed to be a potential candidate for high efficiency solar cells because power conversion efficiency (PCE) was certified to be more than 22%. Nevertheless, mismatch of PCE due to current density (J)-voltage (V) hysteresis in perovskite solar cells is an obstacle to overcome. There has been much lively debate on the origin of J-V hysteresis; however, effective methodology to solve the hysteric problem has not been developed. Here we report a universal approach for hysteresis-free perovskite solar cells via defect engineering. A severe hysteresis observed from the normal mesoscopic structure employing TiO 2 and spiro-MeOTAD is almost removed or does not exist upon doping the pure perovskites, CH 3 NH 3 PbI 3 and HC(NH 2 ) 2 PbI 3 , and the mixed cation/anion perovskites, FA 0.85 MA 0.15 PbI 2.55 Br 0.45 and FA 0.85 MA 0.1 Cs 0.05 PbI 2.7 Br 0.3 , with potassium iodide. Substantial reductions in low-frequency capacitance and bulk trap density are measured from the KI-doped perovskite, which is indicative of trap-hysteresis correlation. A series of experiments with alkali metal iodides of LiI, NaI, KI, RbI and CsI reveals that potassium ion is the right element for hysteresis-free perovskite. Theoretical studies suggest that the atomistic origin of the hysteresis of perovskite solar cells is not the migration of iodide vacancy but results from the formation of iodide Frenkel defect. Potassium ion is able to prevent the formation of Frenkel defect since K + energetically prefers the interstitial site. A complete removal of hysteresis is more pronounced at mixed perovskite system as compared to pure perovskites, which is explained by lower formation energy of K interstitial (-0.65 V for CH 3 NH 3 PbI 3 vs -1.17 V for mixed perovskite). The developed KI doping methodology is universally adapted for hysteresis-free perovskite regardless of perovskite composition and device structure.

  2. Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency.

    Science.gov (United States)

    Yu, Yu; Yang, Songwang; Lei, Lei; Cao, Qipeng; Shao, Jun; Zhang, Sheng; Liu, Yan

    2017-02-01

    Most antisolvents employed in previous research were miscible with perovskite precursor solution. They always led to fast formation of perovskite even if the intermediate stage existed, which was not beneficial to obtain high quality perovskite films and made the formation process less controllable. In this work, a novel ethyl ether/n-hexane mixed antisolvent (MAS) was used to achieve high nucleation density and slow down the formation process of perovskite, producing films with improved orientation of grains and ultrasmooth surfaces. These high quality films exhibited efficient charge transport at the interface of perovskite/hole transport material and perovskite solar cells based on these films showed greatly improved performance with the best power conversion efficiency of 17.08%. This work also proposed a selection principle of MAS and showed that solvent engineering by designing the mixed antisolvent system can lead to the fabrication of high-performance perovskite solar cells.

  3. Perovskite Catalysts—A Special Issue on Versatile Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Yu-Chuan Lin

    2014-08-01

    Full Text Available Perovskite-type catalysts have been prominent oxide catalysts for many years due to attributes such as flexibility in choosing cations, significant thermal stability, and the unique nature of lattice oxygen. Nearly 90% metallic elements of the Periodic Table can be stabilized in perovskite’s crystalline framework [1]. Moreover, by following the Goldschmidt rule [2], the A- and/or B-site elements can be partially substituted, making perovskites extremely flexible in catalyst design. One successful example is the commercialization of noble metal-incorporated perovskites (e.g., LaFe0.57Co0.38Pd0.05O3 for automotive emission control used by Daihatsu Motor Co. Ltd. [3]. Thus, growing interest in, and application of perovskites in the fields of material sciences, heterogeneous catalysis, and energy storage have prompted this Special Issue on perovskite catalysts. [...

  4. Perovskite as a matrix for incorporation of long-lived radionuclides

    International Nuclear Information System (INIS)

    Chernyavskaya, N.E.; Ochkin, A.V.; Chizhevskaya, S.V.; Stefanovskij, S.V.

    1998-01-01

    SYNROC is titanate ceramics consisting mainly of zirconolite, perovskite, and hollandite, developed to immobilize high level waste. Perovskite is able to incorporate strontium, yttrium, and trivalent lanthanides and actinides. The main goal of the present work is leaching study of various radionuclides from perovskite. Samples of perovskite-rich ceramics were produced by cold pressing of oxide mixture followed by firing in resistive furnace at 1350 degC for 3 hours. For leaching tests, ceramic pellets were crushed and surface areas were measured using argon thermal desorption technique. Leach rate was measured by boiling in a Soxhlet apparatus for 5 hours. Leach rates in 0.1 M HNO 3 and NaCl solutions were measured by boiling with stirrer and reverse cooler. Leach rate was controlled with radioactive indicator technique. Density of the perovskite-rich ceramic samples prepared was about 75% of theoretical. From XRD examination, the target phase (perovskite) yield was found to be about 95 vol.%. Minor rutile (≤ 5 vol.%) was also present. Leach rate of 90 Sr from Sr-doped perovskites with specified composition Ca 1-x Sr x TiO 3 did not depend on x until certain x value. Leach rate of 90 Sr from control zirconolite sample was by one order of magnitude higher than from perovskite. Leach rates of 147 Pm, 238 Pu, and 241 Am from perovskite ceramics with nominal perovskite composition had the same order of magnitude (about 10 -4 g/(m 2 day)). Substitution of 5 at.% Ce for Ca and 5 at.% Al for Ti lowered leach rate of 238 Pu by a factor of 6. Leach rates of 90 Sr in 0.1 M HNO 3 and NaCl solutions were three and one orders of magnitude higher than in distilled water

  5. Rational Strategies for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Seo, Jangwon; Noh, Jun Hong; Seok, Sang Il

    2016-03-15

    A long-standing dream in the large scale application of solar energy conversion is the fabrication of solar cells with high-efficiency and long-term stability at low cost. The realization of such practical goals depends on the architecture, process and key materials because solar cells are typically constructed from multilayer heterostructures of light harvesters, with electron and hole transporting layers as a major component. Recently, inorganic-organic hybrid lead halide perovskites have attracted significant attention as light absorbers for the fabrication of low-cost and high-efficiency solar cells via a solution process. This mainly stems from long-range ambipolar charge transport properties, low exciton binding energies, and suitable band gap tuning by managing the chemical composition. In our pioneering work, a new photovoltaic platform for efficient perovskite solar cells (PSCs) was proposed, which yielded a high power conversion efficiency (PCE) of 12%. The platform consisted of a pillared architecture of a three-dimensional nanocomposite of perovskites fully infiltrating mesoporous TiO2, resulting in the formation of continuous phases and perovskite domains overlaid with a polymeric hole conductor. Since then, the PCE of our PSCs has been rapidly increased from 3% to over 20% certified efficiency. The unprecedented increase in the PCE can be attributed to the effective integration of the advantageous attributes of the refined bicontinuous architecture, deposition process, and composition of perovskite materials. Specifically, the bicontinuous architectures used in the high efficiency comprise a layer of perovskite sandwiched between mesoporous metal-oxide layer, which is a very thinner than that of used in conventional dye-sensitized solar cells, and hole-conducting contact materials with a metal back contact. The mesoporous scaffold can affect the hysteresis under different scan direction in measurements of PSCs. The hysteresis also greatly depends on

  6. Phase transformation of Ca-perovskite in MORB at D" region

    Science.gov (United States)

    Nishitani, N.; Ohtani, E.; Sakai, T.; Kamada, S.; Miyahara, M.; Hirao, N.

    2012-12-01

    Seismological studies indicate the presence of seismic anomalies in the Earth's deep interior. To investigate the anomaly, the physical property of the major minerals in lower mantle such as MgSiO3-perovskite, MgSiO3 post-perovskite and MgO periclase were studied well. Other candidate, CaSiO3 perovskite (Ca-perovskite) exists in peridotitic mantle and basaltic oceanic crust (mid-ocean ridge basalt; MORB). Previous studies indicate the abundance of Ca-perovskite is up to ~9 vol.% in the pyrolite mantle and ~24 vol.% in the MORB oceanic crust. However, the pressure range of previous works are still not enough to understand the D" region. In this study, natural MORB was compressed in double sided laser heated DAC. Au was used as a pressure maker and a laser absorber. NaCl was used as the thermal insulator and pressure medium. The phase relation of Ca-perovskite in MORB was investigated from 36 to 156 GPa and 300 to 2600 K by the in situ X-ray diffraction measurements at SPring-8 (BL10XU). The transition of Ca-perovskite from a tetragonal structure to a cubic structure occurred at about 1800 K up to about 100 GPa and below 1500 K at pressures above 100 GPa. This suggests that the tetragonal-cubic transition of Ca-perovskite could occur in MORB, associating with Al2O3 contents. The present results suggest that the seismic anomaly at D" layer could be caused by the transition in Ca-perovskite.

  7. Reconditioning perovskite films in vapor environments through repeated cation doping

    Science.gov (United States)

    Boonthum, Chirapa; Pinsuwan, Kusuma; Ponchai, Jitprabhat; Srikhirin, Toemsak; Kanjanaboos, Pongsakorn

    2018-06-01

    Perovskites have attracted considerable attention for application as high-efficiency photovoltaic devices owing to their low-cost and low-temperature fabrication. A good surface and high crystallinity are necessary for high-performance devices. We examine the negative effects of chemical ambiences on the perovskite crystal formation and morphology. The repeated cation doping (RCD) technique was developed to remedy these issues by gradually dropping methylammonium ions on top of about-to-form perovskite surfaces to cause recrystallization. RCD promotes pinhole-free, compact, and polygonal-like surfaces under various vapor conditions. Furthermore, it enhances the electronic properties and crystallization. The benefits of RCD extend beyond perovskites under vapor ambiences, as it can improve regular and wasted perovskites.

  8. High-Performance Single-Crystalline Perovskite Thin-Film Photodetector

    KAUST Repository

    Yang, Zhenqian

    2018-01-10

    The best performing modern optoelectronic devices rely on single-crystalline thin-film (SC-TF) semiconductors grown epitaxially. The emerging halide perovskites, which can be synthesized via low-cost solution-based methods, have achieved substantial success in various optoelectronic devices including solar cells, lasers, light-emitting diodes, and photodetectors. However, to date, the performance of these perovskite devices based on polycrystalline thin-film active layers lags behind the epitaxially grown semiconductor devices. Here, a photodetector based on SC-TF perovskite active layer is reported with a record performance of a 50 million gain, 70 GHz gain-bandwidth product, and a 100-photon level detection limit at 180 Hz modulation bandwidth, which as far as we know are the highest values among all the reported perovskite photodetectors. The superior performance of the device originates from replacing polycrystalline thin film by a thickness-optimized SC-TF with much higher mobility and longer recombination time. The results indicate that high-performance perovskite devices based on SC-TF may become competitive in modern optoelectronics.

  9. High annealing temperature induced rapid grain coarsening for efficient perovskite solar cells.

    Science.gov (United States)

    Cao, Xiaobing; Zhi, Lili; Jia, Yi; Li, Yahui; Cui, Xian; Zhao, Ke; Ci, Lijie; Ding, Kongxian; Wei, Jinquan

    2018-08-15

    Thermal annealing plays multiple roles in fabricating high quality perovskite films. Generally, it might result in large perovskite grains by elevating annealing temperature, but might also lead to decomposition of perovskite. Here, we study the effects of annealing temperature on the coarsening of perovskite grains in a temperature range from 100 to 250 °C, and find that the coarsening rate of the perovskite grain increase significantly with the annealing temperature. Compared with the perovskite films annealed at 100 °C, high quality perovskite films with large columnar grains are obtained by annealing perovskite precursor films at 250 °C for only 10 s. As a result, the power conversion efficiency of best solar cell increased from 12.35% to 16.35% due to its low recombination rate and high efficient charge transportation in solar cells. Copyright © 2018. Published by Elsevier Inc.

  10. W-doped TiO2 photoanode for high performance perovskite solar cell

    International Nuclear Information System (INIS)

    Liu, Jinwang; Zhang, Jing; Yue, Guoqiang; Lu, Xingwei; Hu, Ziyang; Zhu, Yuejin

    2016-01-01

    Titanium dioxide (TiO 2 ) with dispersed W-doping shows its capability for efficient electron collection from perovskite to TiO 2 in perovskite solar cell. The conduction band (CB) of TiO 2 moves downward (positive shift) with increasing the tungsten (W) content, which enlarges the energy gap between the CB of TiO 2 and the perovskite. Thus, the efficiency of electron injection from perovskite to TiO 2 is increased. Due to the increased electron injection, W-doped TiO 2 (≤0.2% W content) enhances the short-circuit photocurrent (J sc ) of perovskite solar cell and improves the performance of perovskite solar cell. Perovskite solar cell with 0.1% W-doped photoanode obtains the highest power conversion efficiency (η = 10.6%), which shows enhancement by 13% in J sc and by 17% in η, as compared with the undoped TiO 2 perovskite solar cell.

  11. Polarized emission from CsPbX3 perovskite quantum dots

    Science.gov (United States)

    Wang, Dan; Wu, Dan; Dong, Di; Chen, Wei; Hao, Junjie; Qin, Jing; Xu, Bing; Wang, Kai; Sun, Xiaowei

    2016-06-01

    Compared to organic/inorganic hybrid perovskites, full inorganic perovskite quantum dots (QDs) exhibit higher stability. In this study, full inorganic CsPbX3 (X = Br, I and mixed halide systems Br/I) perovskite QDs have been synthesized and interestingly, these QDs showed highly polarized photoluminescence which is systematically studied for the first time. Furthermore, the polarization of CsPbI3 was as high as 0.36 in hexane and 0.40 as a film. The CsPbX3 perovskite QDs with high polarization properties indicate that they possess great potential for application in new generation displays with wide colour gamut and low power consumption.Compared to organic/inorganic hybrid perovskites, full inorganic perovskite quantum dots (QDs) exhibit higher stability. In this study, full inorganic CsPbX3 (X = Br, I and mixed halide systems Br/I) perovskite QDs have been synthesized and interestingly, these QDs showed highly polarized photoluminescence which is systematically studied for the first time. Furthermore, the polarization of CsPbI3 was as high as 0.36 in hexane and 0.40 as a film. The CsPbX3 perovskite QDs with high polarization properties indicate that they possess great potential for application in new generation displays with wide colour gamut and low power consumption. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01915c

  12. Tracking the formation of methylammonium lead triiodide perovskite

    International Nuclear Information System (INIS)

    Liu, Lijia; McLeod, John A.; Wang, Rongbin; Shen, Pengfei; Duhm, Steffen

    2015-01-01

    The formation mechanism of perovskite methylammonium lead triiodide (CH 3 NH 3 PbI 3 ) was studied with in situ X-ray photoelectron spectroscopy (XPS) on successive depositions of thermally evaporated methylammonium iodide (CH 3 NH 3 I) on a lead iodide (PbI 2 ) film. This deposition method mimics the “two-step” synthesis method commonly used in device fabrication. We find that several competing processes occur during the formation of perovskite CH 3 NH 3 PbI 3 . Our most important finding is that during vapour deposition of CH 3 NH 3 I onto PbI 2 , at least two carbon species are present in the resulting material, while only one nitrogen species is present. This suggests that CH 3 NH 3 I can dissociate during the transition to a perovskite phase, and some of the resulting molecules can be incorporated into the perovskite. The effect of partial CH 3 NH 3 substitution with CH 3 was evaluated, and electronic structure calculations show that CH 3 defects would impact the photovoltaic performance in perovskite solar cells. The possibility that not all A sites in the APbI 3 perovskite are occupied by CH 3 NH 3 is therefore an important consideration when evaluating the performance of organometallic trihalide solar cells synthesized using typical approaches

  13. Improving the photovoltaic performance of perovskite solar cells with acetate

    Science.gov (United States)

    Zhao, Qian; Li, G. R.; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X. P.

    2016-01-01

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells. PMID:27934924

  14. Improving the photovoltaic performance of perovskite solar cells with acetate.

    Science.gov (United States)

    Zhao, Qian; Li, G R; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X P

    2016-12-09

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells.

  15. Toward Increasing Micropore Volume between Hybrid Layered Perovskites with Silsesquioxane Interlayers.

    Science.gov (United States)

    Kataoka, Sho; Kamimura, Yoshihiro; Endo, Akira

    2018-04-10

    Hybrid organic-inorganic layered perovskites are typically nonporous solids. However, the incorporation of silsesquioxanes with a cubic cage structure as interlayer materials creates micropores between the perovskite layers. In this study, we increase in the micropore volume in layered perovskites by replacing a portion of the silsesquioxane interlayers with organic amines. In the proposed method, approximately 20% of the silsesquioxane interlayers can be replaced without changing the layer distance owing to the size of the silsesquioxane. When small amines (e.g., ethylamine) are used in this manner, the micropore volume of the obtained hybrid layered perovskites increases by as much as 44%; when large amines (e.g., phenethylamine) are used, their micropore volume decreases by as much as 43%. Through the variation of amine fraction, the micropore volume can be adjusted in the range. Finally, the magnetic moment measurements reveal that the layered perovskites with mixed interlayers exhibit ferromagnetic ordering at temperature below 20 K, thus indicating that the obtained perovskites maintain their functions as layered perovskites.

  16. Research progress on organic-inorganic halide perovskite materials and solar cells

    Science.gov (United States)

    Ono, Luis K.; Qi, Yabing

    2018-03-01

    Owing to the intensive research efforts across the world since 2009, perovskite solar cell power conversion efficiencies (PCEs) are now comparable or even better than several other photovoltaic (PV) technologies. In this topical review article, we review recent progress in the field of organic-inorganic halide perovskite materials and solar cells. We associate these achievements with the fundamental knowledge gained in the perovskite research. The major recent advances in the fundamental perovskite material and solar cell research are highlighted, including the current efforts in visualizing the dynamical processes (in operando) taking place within a perovskite solar cell under operating conditions. We also discuss the existing technological challenges. Based on a survey of recently published works, we point out that to move the perovskite PV technology forward towards the next step of commercialization, what perovskite PV technology need the most in the coming next few years is not only further PCE enhancements, but also up-scaling, stability, and lead-toxicity.

  17. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation

    Science.gov (United States)

    Li, Junze; Wang, Jun; Zhang, Yingjun; Wang, Haizhen; Lin, Gaoming; Xiong, Xuan; Zhou, Weihang; Luo, Hongmei; Li, Dehui

    2018-04-01

    The two-dimensional (2D) Ruddlesden-Popper type perovskites have attracted intensive interest for their great environmental stability and various potential optoelectronic applications. Fundamental understanding of the photophysical and electronic properties of the 2D perovskites with pure single phase is essential for improving the performance of the optoelectronic devices and designing devices with new architectures. Investigating the optical and electronic properties of these materials with pure single phase is required to obtain pure single phase 2D perovskites. Here, we report on an alternative approach to fabricate (C4H9NH3)2(CH3NH3) n-1Pb n I3n+1 microplates with pure single n-number perovskite phase for n  >  2 by mechanical exfoliation. Micro-photoluminescence and absorption spectroscopy studies reveal that the as-synthesized 2D perovskite plates for n  >  2 are comprised by dominant n-number phase and small inclusions of hybrid perovskite phases with different n values, which is supported by excitation power dependent photoluminescence. By mechanical exfoliation method, 2D perovskite microplates with the thickness of around 20 nm are obtained, which surprisingly have single n-number perovskite phase for n  =  2-5. In addition, we have demonstrated that the exfoliated 2D perovskite microplates can be integrated with other 2D layered materials such as boron nitride, and are able to be transferred to prefabricated electrodes for photodetections. Our studies not only provide a strategy to prepare 2D perovskites with a single n-number perovskite phase allowing us to extract the basic optical and electronic parameters of pure phase perovskites, but also demonstrate the possibility to integrate the 2D perovskites with other 2D layered materials to extend the device’s functionalities.

  18. Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells

    Science.gov (United States)

    Ruankham, Pipat; Wongratanaphisan, Duangmanee; Gardchareon, Atcharawon; Phadungdhitidhada, Surachet; Choopun, Supab; Sagawa, Takashi

    2017-07-01

    Full coverage of perovskite layer onto ZnO nanorod substrates with less pinholes is crucial for achieving high-efficiency perovskite solar cells. In this work, a two-step sequential deposition method is modified to achieve an appropriate property of perovskite (MAPbI3) film. Surface treatment of perovskite layer and its precursor have been systematically performed and their morphologies have been investigated. By pre-wetting of lead iodide (PbI2) and letting it dry before reacting with methylammonium iodide (MAI) provide better coverage of perovskite film onto ZnO nanorod substrate than one without any treatment. An additional MAI deposition followed with toluene drop-casting technique on the perovskite film is also found to increase the coverage and enhance the transformation of PbI2 to MAPbI3. These lead to longer charge carrier lifetime, resulting in an enhanced power conversion efficiency (PCE) from 1.21% to 3.05%. The modified method could been applied to a complex ZnO nanorods/TiO2 nanoparticles substrate. The enhancement in PCE to 3.41% is observed. These imply that our introduced method provides a simple way to obtain the full coverage and better transformation to MAPbI3 phase for enhancement in performances of perovskite solar cells.

  19. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    Science.gov (United States)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  20. Understanding perovskite formation through the intramolecular exchange method in ambient conditions

    Science.gov (United States)

    Szostak, Rodrigo; Castro, Jhon A. P.; Marques, Adriano S.; Nogueira, Ana F.

    2017-04-01

    Among the methods to prepare hybrid organic-inorganic perovskite films, the intramolecular exchange method was the first one that made possible to prepare perovskite solar cells with efficiencies higher than 20%. However, perovskite formation by this method is not completely understood, especially in ambient conditions. In this work, perovskite films were prepared by the intramolecular exchange method in ambient conditions. The spin coating speed and the frequency of the MAI solution dripping onto PbI2(DMSO) were varied during the deposition steps. With the combination of these two parameters, a rigid control of the solvent drying was possible. Thus, depending on the chosen conditions, the intermediate MAPb3I8·2DMSO was formed with residual PbI2. Otherwise, direct formation of perovskite film was attained. A mechanism for the direct formation of bulk perovskite was proposed. We also investigated how the posterior thermal annealing affects the crystallinity and defects in perovskite films. With prolonged thermal annealing, the excess of MAI can be avoided, increasing the efficiency and decreasing the hysteresis of the solar cells. The best perovskite solar cell achieved a stabilized power output of 12.9%. The findings of this work pave the way for realizing the fabrication of efficient perovskite solar cells in ambient atmosphere, a very desirable condition for cost-efficient large scale manufacturing of this technology.

  1. Selective dissolution of halide perovskites as a step towards recycling solar cells

    Science.gov (United States)

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-05-01

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.

  2. Selective dissolution of halide perovskites as a step towards recycling solar cells.

    Science.gov (United States)

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-05-23

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb(2+) cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.

  3. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  4. Performance of planar heterojunction perovskite solar cells under light concentration

    Directory of Open Access Journals (Sweden)

    Aaesha Alnuaimi

    2016-11-01

    Full Text Available In this work, we present 2D simulation of planar heterojunction perovskite solar cells under high concentration using physics-based TCAD. The performance of planar perovskite heterojunction solar cells is examined up to 1000 suns. We analyze the effect of HTM mobility and band structure, surface recombination velocities at interfaces and the effect of series resistance under concentrated light. The simulation results revealed that the low mobility of HTM material limits the improvement in power conversation efficiency of perovskite solar cells under concentration. In addition, large band offset at perovskite/HTM interface contributes to the high series resistance. Moreover, losses due to high surface recombination at interfaces and the high series resistance deteriorate significantly the performance of perovskite solar cells under concentration.

  5. Antiferroelectric Nature of CH3NH3PbI3-xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells

    Science.gov (United States)

    Sewvandi, Galhenage A.; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi

    2016-07-01

    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3-xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3-xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation.

  6. Quantum confinement effect and exciton binding energy of layered perovskite nanoplatelets

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2018-02-01

    Full Text Available We report the preparation of monolayer (n = 1, few-layer (n = 2–5 and 3D (n = ∞ organic lead bromide perovskite nanoplatelets (NPLs by tuning the molar ratio of methylammonium bromide (MABr and hexadecammonium bromide (HABr. The absorption spectrum of the monolayer (HA2PbBr4 perovskite NPLs shows about 138 nm blue shift from that of 3D MAPbBr3 perovskites, which is attributed to strong quantum confinement effect. We further investigate the two-photon photoluminescence (PL of the NPLs and measure the exciton binding energy of monolayer perovskite NPLs using linear absorption and two-photon PL excitation spectroscopy. The exciton binding energy of monolayer perovskite NPLs is about 218 meV, which is far larger than tens of meV in 3D lead halide perovskites.

  7. Calculated optical absorption of different perovskite phases

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2015-01-01

    We present calculations of the optical properties of a set of around 80 oxides, oxynitrides, and organometal halide cubic and layered perovskites (Ruddlesden-Popper and Dion-Jacobson phases) with a bandgap in the visible part of the solar spectrum. The calculations show that for different classes...... of perovskites the solar light absorption efficiency varies greatly depending not only on bandgap size and character (direct/indirect) but also on the dipole matrix elements. The oxides exhibit generally a fairly weak absorption efficiency due to indirect bandgaps while the most efficient absorbers are found...... in the classes of oxynitride and organometal halide perovskites with strong direct transitions....

  8. Theoretical calculations on layered perovskites: implications for photocatalysis

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    2014-12-01

    Full Text Available The application of first-principles calculations to the study of layered perovskites is reviewed here, with an emphasis on properties relevant to the use of these materials in photocatalysis. First, the accuracies of the theoretical methods in common use for the study of layered perovskites are compared. The main body of the article then reviews studies of the bulk atomic and electronic structures of pure and doped perovskites; first-principles thermodynamics studies; studies of surfaces and studies of adsorption on surfaces.

  9. Enthalpies of mixing in binary liquid alloys of lutetium with 3d metals

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Michael; Berezutski, Vadim [National Academy of Sciences, Kyiv (Ukraine). I. Frantsevich Institute for Problems of Materials Science; Usenko, Natalia; Kotova, Natalia [Taras Shevchenko National Univ., Kyiv (Ukraine). Dept. of Chemistry

    2017-01-15

    The enthalpies of mixing in binary liquid alloys of lutetium with chromium, cobalt, nickel and copper were determined at 1 773 - 1 947 K by isoperibolic calorimetry. The enthalpies of mixing in the Lu-Cr melts (measured up to 40 at.% Cr) demonstrate endothermic effects (ΔH = 6.88 ± 0.66 kJ . mol{sup -1} at x{sub Lu} = 0.60), whereas significant exothermic enthalpies of mixing have been established within a wide composition region for the Co-Lu, Ni-Lu and Cu-Lu liquid alloys. Minimum values of the integral enthalpy of mixing are as follows: ΔH{sub min} = -23.57 ± 1.41 kJ . mol{sup -1} at x{sub Lu} = 0.38 for the Co-Lu system; ΔH{sub min} = -48.65 ± 2.83 kJ . mol{sup -1} at x{sub Lu} = 0.40 for the Ni-Lu system; ΔH{sub min} = -24.63 ± 1.52 kJ . mol{sup -1} at x{sub Lu} = 0.37 for the Cu-Lu system.

  10. Understanding and Tailoring Grain Growth of Lead-Halide Perovskite for Solar Cell Application.

    Science.gov (United States)

    Ma, Yongchao; Liu, Yanliang; Shin, Insoo; Hwang, In-Wook; Jung, Yun Kyung; Jeong, Jung Hyun; Park, Sung Heum; Kim, Kwang Ho

    2017-10-04

    The fundamental mechanism of grain growth evolution in the fabrication process from the precursor phase to the perovskite phase is not fully understood despite its importance in achieving high-quality grains in organic-inorganic hybrid perovskites, which are strongly affected by processing parameters. In this work, we investigate the fundamental conversion mechanism from the precursor phase of perovskite to the complete perovskite phase and how the intermediate phase promotes growth of the perovskite grains during the fabrication process. By monitoring the morphological evolution of the perovskite during the film fabrication process, we observed a clear rod-shaped intermediate phase in the highly crystalline perovskite and investigated the role of the nanorod intermediate phase on the growth of the grains of the perovskite film. Furthermore, on the basis of these findings, we developed a simple and effective method to tailor grain properties including the crystallinity, size, and number of grain boundaries, and then utilized the film with the tailored grains to develop perovskite solar cells.

  11. A Direct Bandgap Copper-Antimony Halide Perovskite.

    Science.gov (United States)

    Vargas, Brenda; Ramos, Estrella; Pérez-Gutiérrez, Enrique; Alonso, Juan Carlos; Solis-Ibarra, Diego

    2017-07-12

    Since the establishment of perovskite solar cells (PSCs), there has been an intense search for alternative materials to replace lead and improve their stability toward moisture and light. As single-metal perovskite structures have yielded unsatisfactory performances, an alternative is the use of double perovskites that incorporate a combination of metals. To this day, only a handful of these compounds have been synthesized, but most of them have indirect bandgaps and/or do not have bandgaps energies well-suited for photovoltaic applications. Here we report the synthesis and characterization of a unique mixed metal ⟨111⟩-oriented layered perovskite, Cs 4 CuSb 2 Cl 12 (1), that incorporates Cu 2+ and Sb 3+ into layers that are three octahedra thick (n = 3). In addition to being made of abundant and nontoxic elements, we show that this material behaves as a semiconductor with a direct bandgap of 1.0 eV and its conductivity is 1 order of magnitude greater than that of MAPbI 3 (MA = methylammonium). Furthermore, 1 has high photo- and thermal-stability and is tolerant to humidity. We conclude that 1 is a promising material for photovoltaic applications and represents a new type of layered perovskite structure that incorporates metals in 2+ and 3+ oxidation states, thus significantly widening the possible combinations of metals to replace lead in PSCs.

  12. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes

    Science.gov (United States)

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.

    2015-05-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3- antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  13. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes.

    KAUST Repository

    Xu, Jixian

    2015-05-08

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3(-) antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  14. Development of Scintillators in Nuclear Medicine

    OpenAIRE

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce “lutetium aluminum garnet activated by cerium” CRY018 “CRY019” lanthanum br...

  15. Tracking the formation of methylammonium lead triiodide perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijia, E-mail: ljliu@suda.edu.cn, E-mail: jmcleod@suda.edu.cn; McLeod, John A., E-mail: ljliu@suda.edu.cn, E-mail: jmcleod@suda.edu.cn; Wang, Rongbin; Shen, Pengfei; Duhm, Steffen [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123 (China)

    2015-08-10

    The formation mechanism of perovskite methylammonium lead triiodide (CH{sub 3}NH{sub 3}PbI{sub 3}) was studied with in situ X-ray photoelectron spectroscopy (XPS) on successive depositions of thermally evaporated methylammonium iodide (CH{sub 3}NH{sub 3}I) on a lead iodide (PbI{sub 2}) film. This deposition method mimics the “two-step” synthesis method commonly used in device fabrication. We find that several competing processes occur during the formation of perovskite CH{sub 3}NH{sub 3}PbI{sub 3}. Our most important finding is that during vapour deposition of CH{sub 3}NH{sub 3}I onto PbI{sub 2}, at least two carbon species are present in the resulting material, while only one nitrogen species is present. This suggests that CH{sub 3}NH{sub 3}I can dissociate during the transition to a perovskite phase, and some of the resulting molecules can be incorporated into the perovskite. The effect of partial CH{sub 3}NH{sub 3} substitution with CH{sub 3} was evaluated, and electronic structure calculations show that CH{sub 3} defects would impact the photovoltaic performance in perovskite solar cells. The possibility that not all A sites in the APbI{sub 3} perovskite are occupied by CH{sub 3}NH{sub 3} is therefore an important consideration when evaluating the performance of organometallic trihalide solar cells synthesized using typical approaches.

  16. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Alison [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-20

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100°C for 90 minutes followed by 120°C for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulk photoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  17. Exciton Dynamics of 2D Hybrid Perovskite Nanocrystal

    Science.gov (United States)

    Guo, Rui; Zhu, Zhuan; Boulesbaa, Abdelaziz; Venkatesan, Swaminathan; Xiao, Kai; Bao, Jiming; Yao, Yan; Li, Wenzhi

    Organic-inorganic hybrid perovskites have emerged as promising materials for applications in photovoltaic and optoelectronic devices. Among the perovskites, two dimensional (2D) perovskites are of great interests due to their remarkable optical and electrical properties as well as the flexibility of material selection for the organic and inorganic moieties. In this study, we demonstrate the solution-phase growth of large square-shaped single-crystalline 2D hybrid perovskites of (C6H5C2H4 NH3) 2 PbBr4 with a few unit cells thickness. Compared to the bulk crystal, a band gap shift and new photoluminescence (PL) peak are observed from the hybrid perovskite sheets. Color of the 2D crystals can be tuned by adjusting the sheet thickness. Pump-probe spectroscopy is used to investigate the exciton dynamics and exhibits a biexponential decay with an amplitude-weighted lifetime of 16.7 ps. Such high-quality (C6H5C2H4 NH3) 2 PbBr4 sheets are expected to have high PL quantum efficiency which can be adopted for light-emitting devices. National Science Foundation (Grant No. CMMI-1334417 and DMR-1506640).

  18. Junction Propagation in Organometal Halide Perovskite-Polymer Composite Thin Films.

    Science.gov (United States)

    Shan, Xin; Li, Junqiang; Chen, Mingming; Geske, Thomas; Bade, Sri Ganesh R; Yu, Zhibin

    2017-06-01

    With the emergence of organometal halide perovskite semiconductors, it has been discovered that a p-i-n junction can be formed in situ due to the migration of ionic species in the perovskite when a bias is applied. In this work, we investigated the junction formation dynamics in methylammonium lead tribromide (MAPbBr 3 )/polymer composite thin films. It was concluded that the p- and n- doped regions propagated into the intrinsic region with an increasing bias, leading to a reduced intrinsic perovskite layer thickness and the formation of an effective light-emitting junction regardless of perovskite layer thicknesses (300 nm to 30 μm). The junction propagation also played a major role in deteriorating the LED operation lifetime. Stable perovskite LEDs can be achieved by restricting the junction propagation after its formation.

  19. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    Science.gov (United States)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  20. Conducting tin halides with a layered organic-based perovskite structure

    Science.gov (United States)

    Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M.

    1994-06-01

    THE discovery1 of high-temperature superconductivity in layered copper oxide perovskites has generated considerable fundamental and technological interest in this class of materials. Only a few other examples of conducting layered perovskites are known; these are also oxides such as (La1-xSrx)n+1 MnnO3n+1 (ref. 2), Lan+1NinO3n+1 (ref. 3) and Ban+1PbnO3n+1 (ref. 4), all of which exhibit a trend from semiconducting to metallic behaviour with increasing number of perovskite layers (n). We report here the synthesis of a family of organic-based layered halide perovskites, (C4H9NH3)2(CH3NH3)n-1Snnl3n+1 which show a similar transition from semiconducting to metallic behaviour with increasing n. The incorporation of an organic modulation layer between the conducting tin iodide sheets potentially provides greater flexibility for tuning the electrical properties of the perovskite sheets, and we suggest that such an approach will prove valuable for exploring the range of transport properties possible with layered perovskites.

  1. Crystallization of perovskite film using ambient moisture and water as co-solvent for efficient planar perovskite solar cell (Conference Presentation)

    Science.gov (United States)

    Dubey, Ashish; Reza, Khan M.; Gaml, Eman; Adhikari, Nirmal; Qiao, Qiquan

    2016-09-01

    Smooth, compact and defect free morphology of perovskite is highly desired for enhanced device performance. Several routes such as thermal annealing, use of solvent mixtures, growth under controlled humidity has been adopted to obtain crystalline, smooth and defect free perovskite film. Herein we showed direct use of water (H2O) as co-solvent in precursor solution and have optimized the water content required to obtain smooth and dense film. Varying concentration of water was used in precursor solution of CH3NH3I and PbI2 mixed in γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO). Perovskite films were crystallized using toluene assisted solvent engineering method using GBL:DMSO:H2O as solvent mixture. The amount of water was varied from 1% to 25%, which resulted in change in film morphology and perovskite crystallinity. It was concluded that an appropriate amount of water is required to assist the crystallization process to obtain smooth pin-hole free morphology. The change in morphology led to improved fill factor in the device, with highest efficiency 14%, which was significantly higher than devices made from perovskite film without adding water. We also showed that addition of up to 25% by volume of water does not significantly change the device performance.

  2. Light-Responsive Ion-Redistribution-Induced Resistive Switching in Hybrid Perovskite Schottky Junctions

    KAUST Repository

    Guan, Xinwei

    2017-11-23

    Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite-based resistive switching (RS) memories, but there remain open questions regarding device stability and switching mechanism. Here, an RS memory based on a high-quality capacitor structure made of an MAPbBr3 (CH3NH3PbBr3) perovskite layer sandwiched between Au and indium tin oxide (ITO) electrodes is reported. Such perovskite devices exhibit reliable RS with an ON/OFF ratio greater than 103, endurance over 103 cycles, and a retention time of 104 s. The analysis suggests that the RS operation hinges on the migration of charged ions, most likely MA vacancies, which reversibly modifies the perovskite bulk transport and the Schottky barrier at the MAPbBr3/ITO interface. Such perovskite memory devices can also be fabricated on flexible polyethylene terephthalate substrates with high bendability and reliability. Furthermore, it is found that reference devices made of another hybrid perovskite MAPbI3 consistently exhibit filament-type switching behavior. This work elucidates the important role of processing-dependent defects in the charge transport of hybrid perovskites and provides insights on the ion-redistribution-based RS in perovskite memory devices.

  3. Bandgap calculations and trends of organometal halide perovskites

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2014-01-01

    Energy production from the Sun requires a stable efficient light absorber. Promising candidates in this respect are organometal perovskites (ABX3), which have been intensely investigated during the last years. Here, we have performed electronic structure calculations of 240 perovskites composed...

  4. Studies of Fe-Co based perovskite cathodes with different A-site cations

    DEFF Research Database (Denmark)

    Kammer Hansen, K.

    2006-01-01

    Iron-cobalt based perovskite cathodes with different A-site cations ((Ln(0.6)Sr(0.4))(0.99)Fe0.8Co0.2O3-delta, where Ln is La, Pr, Sm or Gd) have been synthesised, characterised by a powder XRD, dilatometry, 4-point DC conductivity measurements, and electrochemical impedance spectroscopy (EIS......) on cone shaped electrodes. In addition to this scanning electron microscopy (SEM) was used to characterise the bars. XRD revealed that only the La-containing perovskite was hexagonal. The Pr and Sm perovskites were orthorhombic. The gadolinium-based perovskite was a two phase system consisting...... of an orthorhombic and a cubic perovskite phase. The thermal expansion coefficient (TEC) increased systematically with a decrease in the size of the A-site cation until the gadoliniurn-containing perovskite where the TEC decreases abruptly. The total electric conductivity was the highest for the La-based perovskite...

  5. Application of carbon nanotubes in perovskite solar cells: A review

    Science.gov (United States)

    Oo, Thet Tin; Debnath, Sujan

    2017-11-01

    Solar power, as alternative renewable energy source, has gained momentum in global energy generation in recent time. Solar photovoltaics (PV) systems now fulfill a significant portion of electricity demand and the capacity of solar PV capacity is growing every year. PV cells efficiency has improved significantly following decades of research, evolving into third generations of PV cells. These third generation PV cells are set out to provide low-cost and efficient PV systems, further improving the commercial competitiveness of solar energy generation. Among these latest generations of PV cells, perovskite solar cells have gained attraction due to the simple manufacturing process and the immense growth in PV efficiency in a short period of research and development. Despite these advantages, perovskite solar cells are known for the weak stability and decomposition in exposure to humidity and high temperature, hindering the possibility of commercialization. This paper will discuss the role of carbon nanotubes (CNTs) in improving the efficiency and stability of perovskite solar cells, in various components such as perovskite layer and hole transport layer, as well as the application of CNTs in unique aspects. These includes the use of CNTs fiber in making the perovskite solar cells flexible, as well as simplification of perovskite PV production by using CNT flash evaporation printing process. Despite these advances, challenges remain in incorporation CNTs into perovskite such as lower conversion efficiency compared to rare earth metals and improvements need to be made. Thus, the paper will be also highlighting the CNTs materials suggested for further research and improvement of perovskite solar cells.

  6. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  7. Water-Induced Dimensionality Reduction in Metal-Halide Perovskites

    KAUST Repository

    Turedi, Bekir; Lee, Kwangjae; Dursun, Ibrahim; Alamer, Badriah Jaber; Wu, Zhennan; Alarousu, Erkki; Mohammed, Omar F.; Cho, Namchul; Bakr, Osman

    2018-01-01

    . Here we employ water to directly transform films of the three-dimensional (3D) perovskite CsPbBr3 to stable two-dimensional (2D) perovskite-related CsPb2Br5. A sequential dissolution-recrystallization process governs this water induced transformation

  8. Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires

    Science.gov (United States)

    Wang, Ziyu; Liu, Jingying; Xu, Zai-Quan; Xue, Yunzhou; Jiang, Liangcong; Song, Jingchao; Huang, Fuzhi; Wang, Yusheng; Zhong, Yu Lin; Zhang, Yupeng; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-03-01

    Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.

  9. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  10. Study of the viability of the production of lutetium - 177 in the nuclear reactor IEA-R1 at IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Silva, Giovana Pasqualini da

    2008-01-01

    The - emitter 177 Lu is a promising therapeutic radioisotope for the curative treatment of cancer using labelled proteins. It has a half - life of 6.71 day and maximum and average (3 energies of 421 and 133 keV, respectively, resulting in a short range of irradiation of tissue. The decay is accompanied by the emission of low energy -radiation of 208.3 keV (11%) and 113 keV (6.4%), suitable for simultaneous imaging. Lu can be produced by two different routes, namely, by irradiation of natural Lu 2 O 3 target ( 176 Lu, 2.6%) or enriched (in 176 Lu) Lu 2 O 3 target, and also by irradiation of Yb target (Yb 2 O 3 ) followed by radiochemical separation of Lu from Yb isotopes. The objective of this work is the development of a method of the production of 177 Lu through of the (n, gamma) nuclear reaction, by the direct and indirect method of production. Targets of lutetium oxide and ytterbium oxide were irradiated for evaluation of the activity produced and the chemical separation of lutetium and ytterbium was studied using different ion exchange resins. For the direct method, the best results were obtained using the target Lu 2 O 3 enriched in 39.6%. The best results for the indirect method were achieved with the process of separation using 0.25M - HlBA as eluent. The results showed that it is possible to produce 177 Lu of low specific activity for labeling molecules used for bone pain relief and in radiosynoviortesy. (author)

  11. Advancement on Lead-Free Organic-Inorganic Halide Perovskite Solar Cells: A Review.

    Science.gov (United States)

    Sani, Faruk; Shafie, Suhaidi; Lim, Hong Ngee; Musa, Abubakar Ohinoyi

    2018-06-14

    Remarkable attention has been committed to the recently discovered cost effective and solution processable lead-free organic-inorganic halide perovskite solar cells. Recent studies have reported that, within five years, the reported efficiency has reached 9.0%, which makes them an extremely promising and fast developing candidate to compete with conventional lead-based perovskite solar cells. The major challenge associated with the conventional perovskite solar cells is the toxic nature of lead (Pb) used in the active layer of perovskite material. If lead continues to be used in fabricating solar cells, negative health impacts will result in the environment due to the toxicity of lead. Alternatively, lead free perovskite solar cells could give a safe way by substituting low-cost, abundant and non toxic material. This review focuses on formability of lead-free organic-inorganic halide perovskite, alternative metal cations candidates to replace lead (Pb), and possible substitutions of organic cations, as well as halide anions in the lead-free organic-inorganic halide perovskite architecture. Furthermore, the review gives highlights on the impact of organic cations, metal cations and inorganic anions on stability and the overall performance of lead free perovskite solar cells.

  12. Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells

    International Nuclear Information System (INIS)

    Chen, Peng; Jin, Zhixin; Wang, Yinglin; Wang, Meiqi; Chen, Shixin; Zhang, Yang; Wang, Lingling; Zhang, Xintong; Liu, Yichun

    2017-01-01

    Highlights: • The fabrication of perovskite solar cells utilizing TiO_2 NR arrays. • Investigation of the interspace effect of TiO_2 NR on perovskite layer. • Understanding of the balance between perovskite capping layer and pore filling. - Abstract: Morphology of electron transport layers (ETLs) has an important influence on the device architecture and electronic processes of mesostructured solar cells. In this work, we thoroughly investigated the effect of the interspace of TiO_2 nanorod (NR) arrays on the photovoltaic performance of the perovskite solar cells (PSCs). Along with the interspace in TiO_2-NR arrays increasing, the thickness as well as the crystal size of perovskite capping layer are reduced accordingly, and the filling of perovskite in the channel becomes incomplete. Electrochemical impedance spectroscopy measurements reveal that this variation of perovskite absorber layer, induced by interspace of TiO_2 NR arrays, causes the change of charge recombination process at the TiO_2/perovskite interface, suggesting that a balance between capping layer and the perovskite filling is critical to obtain high charge collection efficiency of PSCs. A power conversion efficiency of 10.3% could be achieved through careful optimization of interspace in TiO_2-NR arrays. Our research will shed light on the morphology control of ETLs with 1D structure for heterojunction solar cells fabricated by solution-deposited method.

  13. Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties.

    Science.gov (United States)

    Pan, Gencai; Bai, Xue; Yang, Dongwen; Chen, Xu; Jing, Pengtao; Qu, Songnan; Zhang, Lijun; Zhou, Donglei; Zhu, Jinyang; Xu, Wen; Dong, Biao; Song, Hongwei

    2017-12-13

    Cesium lead halide (CsPbX 3 ) perovskite nanocrystals (NCs) have demonstrated extremely excellent optical properties and great application potentials in various optoelectronic devices. However, because of the anion exchange, it is difficult to achieve white-light and multicolor emission for practical applications. Herein, we present the successful doping of various lanthanide ions (Ce 3+ , Sm 3+ , Eu 3+ , Tb 3+ , Dy 3+ , Er 3+ , and Yb 3+ ) into the lattices of CsPbCl 3 perovskite NCs through a modified hot-injection method. For the lanthanide ions doped perovskite NCs, high photoluminescence quantum yield (QY) and stable and widely tunable multicolor emissions spanning from visible to near-infrared (NIR) regions are successfully obtained. This work indicates that the doped perovskite NCs will inherit most of the unique optical properties of lanthanide ions and deliver them to the perovskite NC host, thus endowing the family of perovskite materials with excellent optical, electric, or magnetic properties.

  14. Influence of coating steps of perovskite on low-temperature amorphous compact TiO x upon the morphology, crystallinity, and photovoltaic property correlation in planar perovskite solar cells

    Science.gov (United States)

    Shahiduzzaman, Md.; Furumoto, Yoshikazu; Yamamoto, Kohei; Yonezawa, Kyosuke; Azuma, Yosuke; Kitamura, Michinori; Matsuzaki, Hiroyuki; Karakawa, Makoto; Kuwabara, Takayuki; Takahashi, Kohshin; Taima, Tetsuya

    2018-03-01

    The fabrication of high-efficiency solution-processable perovskite solar cells has been achieved using mesostructured films and compact titanium dioxide (TiO2) layers in a process that involves high temperatures and cost. Here, we present an efficient approach for fabricating chemical-bath-deposited, low-temperature, and low-cost amorphous compact TiO x -based planar heterojunction perovskite solar cells by one-step and two-step coatings of the perovskite layer. We also investigate the effect of the number of perovskite coating steps on the compact TiO x layer. The grazing incidence wide-angle X-ray scattering technique is used to clarify the relationship between morphology, crystallinity, and photovoltaic properties of the resulting devices. Analysis of the films revealed that one-step spin-coating of perovskite exhibited an enhancement of film quality and crystallization that correlates to photovoltaic performance 1.5 times higher than that of a two-step-coated device. Our findings show that the resulting morphology, crystallinity, and device performances are strongly dependent on the number of coating steps of the perovskite thin layer on the compact TiO x layer. This result is useful knowledge for the low-cost production of planar perovskite solar cells.

  15. Organohalide Perovskites for Solar Energy Conversion.

    Science.gov (United States)

    Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul

    2016-03-15

    Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency

  16. Packaging material and aluminum. Hoso zairyo to aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Itaya, T [Mitsubishi Aluminum Co. Ltd., Tokyo (Japan)

    1992-02-01

    The present paper introduces aluminum foil packaging materials among the relation between packing materials and aluminum. The characteristics of aluminum foil in the packaging area are in its barrier performance, non-toxicity, tastelessness and odorlessness. Its excellent functions and processibility suit best as functional materials for food, medicine and industrial material packaging. While an aluminum foil may be used as a single packing material as in foils used in homes, many of it as a packaging material are used in combination with adhesives, papers or plastic films, or coated or printed. It is used as composite materials laminated or coated with other materials according to their use for the purpose of complementing the aluminum foil as the base material. Representative method to laminate aluminum foils include the wet lamination, dry lamination, thermally dissolved lamination and extruded lamination. The most important quality requirement in lamination is the adhesion strength, which requires a close attention in selecting the kinds of adhesive, laminating conditions, and aging conditions. 8 figs., 6 tabs.

  17. The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications

    Science.gov (United States)

    Wu, Ming-Chung; Chen, Wei-Cheng; Chan, Shun-Hsiang; Su, Wei-Fang

    2018-01-01

    Perovskite solar cell is a novel photovoltaic technology with the superior progress in efficiency and the simple solution processes. Develop lead-free or lead-reduced perovskite materials is a significant concern for high-performance perovskite solar cell. Among the alkaline earth metals, the Sr2+ and Ba2+ are suitable for Pb2+ replacement in perovskite film due to fitting Goldschmidt's tolerance factor. In this study, we adopted Ba-doped and Sr-doped perovskite structured materials with different doping levels, including 1.0, 5.0, and 10.0 mol%, to prepare perovskite solar cells. Both Ba-doped and Sr-doped perovskite structured materials have a related tendency in absorption behavior and surface morphology. At 10.0 mol% doping level, the power conversion efficiency (PCE) of Sr-doped perovskite solar cells is only ∼0.5%, but the PCE of Ba-doped perovskite solar cells can be achieved to ∼9.7%. Ba-doped perovskite solar cells showed the acceptable photovoltaic characteristics than Sr-doped perovskite solar cells. Ba dopant can partially replace the amount of lead in the perovskite solar cells, and it could be a potential candidate in the field of lead-free or lead-reduced perovskite energy materials.

  18. Computational study on oxynitride perovskites for CO_2 photoreduction

    International Nuclear Information System (INIS)

    Hafez, Ahmed M.; Zedan, Abdallah F.; AlQaradawi, Siham Y.; Salem, Noha M.; Allam, Nageh K.

    2016-01-01

    Highlights: • Oxynitride perovskites are investigated for photoelectrochemical CO_2 reduction. • They have small electron and hole effective masses, rendering higher mobility. • The effect of cation size on the band gap is investigated and discussed. • W-doping allowed the selection of specific CO_2 reduction products. - Abstract: The photocatalytic conversion of CO_2 into chemical fuels is an attractive route for recycling this greenhouse gas. However, the large scale application of such approach is limited by the low selectivity and activity of the currently used photocatalysts. Using first principles calculations, we report on the selection of optimum oxynitride perovskites as photocatalysts for photoelectrochemical CO_2 reduction. The results revealed six perovskites that perfectly straddle the carbon dioxide redox potential; namely, BaTaO_2N, SrTaO_2N, CaTaO_2N, LaTiO_2N, BaNbO_2N, and SrNbO_2N. The electronic structure and the effective mass of the selected candidates are discussed in details, the partial and total density of states illustrated the orbital hybridization and the contribution of each element in the valence and conduction band minima. The effect of cation size in the ABO_2N perovskites on the band gap is investigated and discussed. The optical properties of the selected perovskites are calculated to account for their photoactivity. Moreover, the effect of W doping on improving the selectivity of perovskites toward specific hydrocarbon product (methane) is discussed in details. This study reveals the promising optical and structural properties of oxynitride perovskite candidates for CO_2 photoreduction.

  19. Material Exchange Property of Organo Lead Halide Perovskite with Hole-Transporting Materials

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2015-10-01

    Full Text Available Using X-ray diffraction (XRD, it was confirmed that the deposition of hole-transporting materials (HTM on a CH3NH3PbI3 perovskite layer changed the CH3NH3PbI3 perovskite crystal, which was due to the material exchanging phenomena between the CH3NH3PbI3 perovskite and HTM layers. The solvent for HTM also changed the perovskite crystal. In order to suppress the crystal change, doping by chloride ion, bromide ion and 5-aminovaleric acid was attempted. However, the doping was unable to stabilize the perovskite crystal against HTM deposition. It can be concluded that the CH3NH3PbI3 perovskite crystal is too soft and flexible to stabilize against HTM deposition.

  20. Simulation design of P–I–N-type all-perovskite solar cells with high efficiency

    International Nuclear Information System (INIS)

    Du Hui-Jing; Wang Wei-Chao; Gu Yi-Fan

    2017-01-01

    According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J sc of 32.47 mA/cm 2 . The small series resistance of the all-perovskite solar cell also benefits the high J sc . The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem. (paper)

  1. Method for single crystal growth of photovoltaic perovskite material and devices

    Science.gov (United States)

    Huang, Jinsong; Dong, Qingfeng

    2017-11-07

    Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.

  2. Determining the energetics of vicinal perovskite oxide surfaces

    NARCIS (Netherlands)

    Wessels, W.A.; Bollmann, Tjeerd Rogier Johannes; Koster, Gertjan; Zandvliet, Henricus J.W.; Rijnders, Augustinus J.H.M.

    2017-01-01

    The energetics of vicinal SrTiO3(001) and DyScO3(110), prototypical perovskite vicinal surfaces, has been studied using topographic atomic force microscopy imaging. The kink formation and strain relaxation energies are extracted from a statistical analysis of the step meandering. Both perovskite

  3. Multifunctional MgO Layer in Perovskite Solar Cells.

    Science.gov (United States)

    Guo, Xudong; Dong, Haopeng; Li, Wenzhe; Li, Nan; Wang, Liduo

    2015-06-08

    A multifunctional magnesium oxide (MgO) layer was successfully introduced into perovskite solar cells (PSCs) to enhance their performance. MgO was coated onto the surface of mesoporous TiO(2) by the decomposition of magnesium acetate and, therefore, could block contact between the perovskite and TiO(2). X-ray photoelectron spectroscopy and infrared spectroscopy showed that the amount of H(2)O/hydroxyl absorbed on the TiO(2) decreased after MgO modification. The UV/Vis absorption spectra of the perovskite with MgO modification revealed an enhanced photoelectric performance compared with that of unmodified perovskite after UV illumination. In addition to the photocurrent, the photovoltage and fill factor also showed an enhancement after modification, which resulted in an increase in the overall efficiency of the cell from 9.6 to 13.9 %. Electrochemical impedance spectroscopy (EIS) confirmed that MgO acts as an insulating layer to reduce charge recombination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Field-emission from quantum-dot-in-perovskite solids.

    Science.gov (United States)

    García de Arquer, F Pelayo; Gong, Xiwen; Sabatini, Randy P; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-03-24

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 10 12 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission.

  5. Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission

    KAUST Repository

    Yang, Zhenyu

    2017-03-13

    Quantum-dot-in-perovskite solids are excellent candidates for infrared light-emitting applications. The first generation of dot-in-perovskite light-emitting diodes (LEDs) has shown bright infrared electroluminescence with tunable emission wavelength; however, their performance has been limited by degradation of the active layer at practical operating voltages. This arises from the instability of the three-dimensional (3D) organolead halide perovskite matrix. Herein we report the first dot-in-perovskite solids that employ two-dimensional (2D) perovskites as the matrix. 2D perovskite passivation is achieved via an in situ alkylammonium/alkylamine substitution carried out during the quantum dot (QD) ligand exchange process. This single-step film preparation process enables deposition of the QD/perovskite active layers with thicknesses of 40 nm, over seven times thinner than the first-generation dot-in-perovskite thin films that relied on a multistep synthesis. The dot-in-perovskite film roughness improved from 31 nm for the first-generation films to 3 nm for films as a result of this new approach. The best devices exhibit external quantum efficiency peaks exceeding 2% and radiances of ∼1 W sr–1 m–2, with an improved breakdown voltage up to 7.5 V. Compared to first-generation dot-in-perovskites, this new process reduces materials consumptions 10-fold and represents a promising step toward manufacturable devices.

  6. Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission

    KAUST Repository

    Yang, Zhenyu; Voznyy, Oleksandr; Walters, Grant; Fan, James Z.; Liu, Min; Kinge, Sachin; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Quantum-dot-in-perovskite solids are excellent candidates for infrared light-emitting applications. The first generation of dot-in-perovskite light-emitting diodes (LEDs) has shown bright infrared electroluminescence with tunable emission wavelength; however, their performance has been limited by degradation of the active layer at practical operating voltages. This arises from the instability of the three-dimensional (3D) organolead halide perovskite matrix. Herein we report the first dot-in-perovskite solids that employ two-dimensional (2D) perovskites as the matrix. 2D perovskite passivation is achieved via an in situ alkylammonium/alkylamine substitution carried out during the quantum dot (QD) ligand exchange process. This single-step film preparation process enables deposition of the QD/perovskite active layers with thicknesses of 40 nm, over seven times thinner than the first-generation dot-in-perovskite thin films that relied on a multistep synthesis. The dot-in-perovskite film roughness improved from 31 nm for the first-generation films to 3 nm for films as a result of this new approach. The best devices exhibit external quantum efficiency peaks exceeding 2% and radiances of ∼1 W sr–1 m–2, with an improved breakdown voltage up to 7.5 V. Compared to first-generation dot-in-perovskites, this new process reduces materials consumptions 10-fold and represents a promising step toward manufacturable devices.

  7. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites

    KAUST Repository

    El-Mellouhi, Fedwa

    2016-09-08

    In the past few years, the efficiency of solar cells based on hybrid organic–inorganic perovskites has exceeded the level needed for commercialization. However, existing perovskites solar cells (PSCs) suffer from several intrinsic instabilities, which prevent them from reaching industrial maturity, and stabilizing PSCs has become a critically important problem. Here we propose to stabilize PSCs chemically by strengthening the interactions between the organic cation and inorganic anion of the perovskite framework. In particular, we show that replacing the methylammonium cation with alternative protonated cations allows an increase in the stability of the perovskite by forming strong hydrogen bonds with the halide anions. This interaction also provides opportunities for tuning the electronic states near the bandgap. These mechanisms should have a universal character in different hybrid organic–inorganic framework materials that are widely used.

  8. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites

    KAUST Repository

    El-Mellouhi, Fedwa; Marzouk, Asma; Bentria, El Tayeb; Rashkeev, Sergey N.; Kais, Sabre; Alharbi, Fahhad H.

    2016-01-01

    In the past few years, the efficiency of solar cells based on hybrid organic–inorganic perovskites has exceeded the level needed for commercialization. However, existing perovskites solar cells (PSCs) suffer from several intrinsic instabilities, which prevent them from reaching industrial maturity, and stabilizing PSCs has become a critically important problem. Here we propose to stabilize PSCs chemically by strengthening the interactions between the organic cation and inorganic anion of the perovskite framework. In particular, we show that replacing the methylammonium cation with alternative protonated cations allows an increase in the stability of the perovskite by forming strong hydrogen bonds with the halide anions. This interaction also provides opportunities for tuning the electronic states near the bandgap. These mechanisms should have a universal character in different hybrid organic–inorganic framework materials that are widely used.

  9. Perovskite Solar Cells—Towards Commercialization

    International Nuclear Information System (INIS)

    Ono, Luis K.; Park, Nam-Gyu; Zhu, Kai; Huang, Wei; Qi, Yabing

    2017-01-01

    The Symposium ES1, Perovskite Solar Cells - Towards Commercialization, held at the 2017 Materials Research Society (MRS) Spring Meeting in Phoenix, Arizona (April 17-21, 2017) received ~200 abstracts. The 23 invited talks and 72 contributed oral presentations as well as 3 poster presentation sessions were organized into 13 principal themes according to the contents of the received abstracts. This Energy Focus article provides a concise summary of the opinions from the scientists and engineers who participated in this symposium regarding the recent progresses, challenges, and future directions for perovskite solar cells as well as other optoelectronic devices.

  10. Phase transition in metastable perovskite Pb(AlNb)0,5O3

    International Nuclear Information System (INIS)

    Zhabko, T.E.; Olekhnovich, N.M.; Shilin, A.D.

    1987-01-01

    Dielectric properties of metastable perovskite Pb(AlNb) 0.5 O 3 and X-ray temperature investigations of both perovskite and pyrochlore modifications of the given compound are studied. Samples with the perovskite structure are prepared from the pyrochlorephase at 4-5 GPa pressure and 1170-1270 K. Ferroelectric phase transition is shown to occur in the metastable perovskite phase Pb(AlNb) 0.5 O 3 at 170 K

  11. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  12. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Bartolucci, Stephen F.; Paras, Joseph; Rafiee, Mohammad A.; Rafiee, Javad; Lee, Sabrina; Kapoor, Deepak; Koratkar, Nikhil

    2011-01-01

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  13. Efficient Planar Structured Perovskite Solar Cells with Enhanced Open-Circuit Voltage and Suppressed Charge Recombination Based on a Slow Grown Perovskite Layer from Lead Acetate Precursor.

    Science.gov (United States)

    Li, Cong; Guo, Qiang; Wang, Zhibin; Bai, Yiming; Liu, Lin; Wang, Fuzhi; Zhou, Erjun; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2017-12-06

    For planar structured organic-inorganic hybrid perovskite solar cells (PerSCs) with the poly(3,4-ethylenedioxythiophene:polystyrene sulfonate) (PEDOT:PSS) hole transport layer, the open-circuit voltage (V oc ) of the device is limited to be about 1.0 V, resulting in inferior performance in comparison with TiO 2 -based planar counterparts. Therefore, increasing V oc of the PEDOT:PSS-based planar device is an important way to enhance the efficiency of the PerSCs. Herein, we demonstrate a novel approach for perovskite film formation and the film is formed by slow growth from lead acetate precursor via a one-step spin-coating process without the thermal annealing (TA) process. Because the perovskite layer grows slowly and naturally, high-quality perovskite film can be achieved with larger crystalline particles, less defects, and smoother surface morphology. Ultraviolet absorption, X-ray diffraction, scanning electron microscopy, steady-state fluorescence spectroscopy (photoluminescence), and time-resolved fluorescence spectroscopy are used to clarify the crystallinity, morphology, and internal defects of perovskite thin films. The power conversion efficiency of p-i-n PerSCs based on slow-grown film (16.33%) shows greatly enhanced performance compared to that of the control device based on traditional thermally annealed perovskite film (14.33%). Furthermore, the V oc of the slow-growing device reaches 1.12 V, which is 0.1 V higher than that of the TA device. These findings indicate that slow growth of the perovskite layer from lead acetate precursor is a promising approach to achieve high-quality perovskite film for high-performance PerSCs.

  14. A New Generation of Luminescent Materials Based on Low-Dimensional Perovskites

    KAUST Repository

    Pan, Jun

    2017-06-02

    Low-dimensional perovskites with high luminescence properties are promising materials for optoelectronic applications. In this article, properties of two emerging types of low-dimensional perovskites are discussed, including perovskite quantum dots CsPbX3 (X = Cl, Br or I) and zero-dimensional perovskite Cs4PbBr6. Moreover, their application for light down conversion in LCD backlighting systems and in visible light communication are also presented. With their superior optical properties, we believe that further development of these materials will potentially open more prospective applications, especially for optoelectronics devices.

  15. Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Peng; Jin, Zhixin; Wang, Yinglin, E-mail: wangyl100@nenu.edu.cn; Wang, Meiqi; Chen, Shixin; Zhang, Yang; Wang, Lingling; Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn; Liu, Yichun, E-mail: ycliu@nenu.edu.cn

    2017-04-30

    Highlights: • The fabrication of perovskite solar cells utilizing TiO{sub 2} NR arrays. • Investigation of the interspace effect of TiO{sub 2} NR on perovskite layer. • Understanding of the balance between perovskite capping layer and pore filling. - Abstract: Morphology of electron transport layers (ETLs) has an important influence on the device architecture and electronic processes of mesostructured solar cells. In this work, we thoroughly investigated the effect of the interspace of TiO{sub 2} nanorod (NR) arrays on the photovoltaic performance of the perovskite solar cells (PSCs). Along with the interspace in TiO{sub 2}-NR arrays increasing, the thickness as well as the crystal size of perovskite capping layer are reduced accordingly, and the filling of perovskite in the channel becomes incomplete. Electrochemical impedance spectroscopy measurements reveal that this variation of perovskite absorber layer, induced by interspace of TiO{sub 2} NR arrays, causes the change of charge recombination process at the TiO{sub 2}/perovskite interface, suggesting that a balance between capping layer and the perovskite filling is critical to obtain high charge collection efficiency of PSCs. A power conversion efficiency of 10.3% could be achieved through careful optimization of interspace in TiO{sub 2}-NR arrays. Our research will shed light on the morphology control of ETLs with 1D structure for heterojunction solar cells fabricated by solution-deposited method.

  16. Stable Graphene-Two-Dimensional Multiphase Perovskite Heterostructure Phototransistors with High Gain.

    Science.gov (United States)

    Shao, Yuchuan; Liu, Ye; Chen, Xiaolong; Chen, Chen; Sarpkaya, Ibrahim; Chen, Zhaolai; Fang, Yanjun; Kong, Jaemin; Watanabe, Kenji; Taniguchi, Takashi; Taylor, André; Huang, Jinsong; Xia, Fengnian

    2017-12-13

    Recently, two-dimensional (2D) organic-inorganic perovskites emerged as an alternative material for their three-dimensional (3D) counterparts in photovoltaic applications with improved moisture resistance. Here, we report a stable, high-gain phototransistor consisting of a monolayer graphene on hexagonal boron nitride (hBN) covered by a 2D multiphase perovskite heterostructure, which was realized using a newly developed two-step ligand exchange method. In this phototransistor, the multiple phases with varying bandgap in 2D perovskite thin films are aligned for the efficient electron-hole pair separation, leading to a high responsivity of ∼10 5 A W -1 at 532 nm. Moreover, the designed phase alignment method aggregates more hydrophobic butylammonium cations close to the upper surface of the 2D perovskite thin film, preventing the permeation of moisture and enhancing the device stability dramatically. In addition, faster photoresponse and smaller 1/f noise observed in the 2D perovskite phototransistors indicate a smaller density of deep hole traps in the 2D perovskite thin film compared with their 3D counterparts. These desirable properties not only improve the performance of the phototransistor, but also provide a new direction for the future enhancement of the efficiency of 2D perovskite photovoltaics.

  17. Large polarons in lead halide perovskites

    OpenAIRE

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3 ? framewor...

  18. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation

    Science.gov (United States)

    Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania; Stavrakas, Camille; Philippe, Bertrand; Richter, Johannes M.; Alsari, Mejd; Booker, Edward P.; Hutter, Eline M.; Pearson, Andrew J.; Lilliu, Samuele; Savenije, Tom J.; Rensmo, Håkan; Divitini, Giorgio; Ducati, Caterina; Friend, Richard H.; Stranks, Samuel D.

    2018-03-01

    Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can

  19. Thermodynamic stability and kinetics of perovskite dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Nesbitt, H W; Bancroft, G M; Fyfe, W S; Karkhanis, S N; Nishijima, A [Western Ontario Univ., London (Canada); Shin, S [National Chemical Lab. for Industry, Tsukuba (Japan)

    1981-01-29

    Perovskite, a SYNROC host mineral for nuclear wastes, is thermodynamically unstable in natural waters and in association with common minerals. Leach experiments demonstrate that CaTiO/sub 3/ (perovskite), SrTiO/sub 3/ and BaTiO/sub 3/ are as reactive as some silicate glasses below 100/sup 0/C, but leach much more slowly than glasses above 100/sup 0/C.

  20. Perovskites keep on giving

    Science.gov (United States)

    2018-05-01

    Whether you like exploring the mysteries of light-matter interactions, playing with a versatile chemical platform, or developing the most efficient devices, metal halide perovskites could be the materials for you.

  1. Laser deposition of resonant silicon nanoparticles on perovskite for photoluminescence enhancement

    Science.gov (United States)

    Tiguntseva, E. Y.; Zalogina, A. S.; Milichko, V. A.; Zuev, D. A.; Omelyanovich, M. M.; Ishteev, A.; Cerdan Pasaran, A.; Haroldson, R.; Makarov, S. V.; Zakhidov, A. A.

    2017-11-01

    Hybrid lead halide perovskite based optoelectronics is a promising area of modern technologies yielding excellent characteristics of light emitting diodes and lasers as well as high efficiencies of photovoltaic devices. However, the efficiency of perovskite based devices hold a potential of further improvement. Here we demonstrate high photoluminescence efficiency of perovskites thin films via deposition of resonant silicon nanoparticles on their surface. The deposited nanoparticles have a number of advances over their plasmonic counterparts, which were applied in previous studies. We show experimentally the increase of photoluminescence of perovskite film with the silicon nanoparticles by 150 % as compared to the film without the nanoparticles. The results are supported by numerical calculations. Our results pave the way to high throughput implementation of low loss resonant nanoparticles in order to create highly effective perovskite based optoelectronic devices.

  2. Optical Fibre NO2 Sensor Based on Lutetium Bisphthalocyanine in a Mesoporous Silica Matrix

    Directory of Open Access Journals (Sweden)

    Marc Debliquy

    2018-03-01

    Full Text Available In this article, we describe a NO2 sensor consisting of a coating based on lutetium bisphthalocyanine (LuPc2 in mesoporous silica. The sensor exploits the absorption spectrum change of this material which strongly and reversibly decreases in contact with NO2. NO2 is measured by following the amplitude change in the reflected spectrum of the coating deposited on the tip of a silica fibre. As diffusion of NO2 in LuPc2 is slow, the response time could be slow. To reduce it, the active molecules are dispersed in a mesoporous silica matrix deposited by a sol-gel process (Evaporation Induced Self Assembly avoiding the formation of large crystals. Doing so, the response is fairly fast. As the recovery is slow at room temperature, the recovery time is reduced by exposure to UV light at 365 nm. This UV light is directly introduced in the fibre yielding a practical sensor sensitive to NO2 in the ppm range suitable for pollution monitoring.

  3. Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics.

    Science.gov (United States)

    Rajagopal, Adharsh; Stoddard, Ryan J; Jo, Sae Byeok; Hillhouse, Hugh W; Jen, Alex K-Y

    2018-05-09

    Development of large bandgap (1.80-1.85 eV E g ) perovskite is crucial for perovskite-perovskite tandem solar cells. However, the performance of 1.80-1.85 eV E g perovskite solar cells (PVKSCs) are significantly lagging their counterparts in the 1.60-1.75 eV E g range. This is because the photovoltage ( V oc ) does not proportionally increase with E g due to lower optoelectronic quality of conventional (MA,FA,Cs)Pb(I,Br) 3 and results in a photovoltage plateau ( V oc limited to 80% of the theoretical limit for ∼1.8 eV E g ). Here, we incorporate phenylethylammonium (PEA) in a mixed-halide perovskite composition to solve the inherent material-level challenges in 1.80-1.85 eV E g perovskites. The amount of PEA incorporation governs the topography and optoelectronic properties of resultant films. Detailed structural and spectroscopic characterization reveal the characteristic trends in crystalline size, orientation, and charge carrier recombination dynamics and rationalize the origin of improved material quality with higher luminescence. With careful interface optimization, the improved material characteristics were translated to devices and V oc values of 1.30-1.35 V were achieved, which correspond to 85-87% of the theoretical limit. Using an optimal amount of PEA incorporation to balance the increase in V oc and the decrease in charge collection, a highest power conversion efficiency of 12.2% was realized. Our results clearly overcome the photovoltage plateau in the 1.80-1.85 eV E g range and represent the highest V oc achieved for mixed-halide PVKSCs. This study provides widely translatable insights, an important breakthrough, and a promising platform for next-generation perovskite tandems.

  4. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21.

    Science.gov (United States)

    Jiang, Qi; Chu, Zema; Wang, Pengyang; Yang, Xiaolei; Liu, Heng; Wang, Ye; Yin, Zhigang; Wu, Jinliang; Zhang, Xingwang; You, Jingbi

    2017-12-01

    Low temperature solution processed planar-structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI 2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI 2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI 2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm 2 ) and 20.1% in large size (1 cm 2 ) with moderate residual PbI 2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar-structure perovskite solar cells, showing the planar-structure perovskite solar cells are very promising. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Magnetoresistance and magnetic properties of the double perovskites

    International Nuclear Information System (INIS)

    Philipp, J.B.; Majewski, P.; Resinger, D.; Gepraegs, S; Opel, M.; Reb, A.; Alff, L.; Gross, R.

    2004-01-01

    The magnetic double perovskite materials of composition A 2 BB'O 6 with A an alkaline earth ion and B and B' a magnetic and non-magnetic transition metal or lanthanide ions, respectively, have attracted considerable attention due to their interesting magnetic properties ranging from antiferromagnetism to geometrically frustrated spin systems and ferromagnetism. With respect to application in spin electronics, the ferromagnetic double perovskites with BB' = CrW, CrRe, FeMo or FeRe and A = Ca, Ba, Sr are highly interesting due to their in most cases high Curie temperatures well above room temperature and their half-magnetic behaviour. Here, we summarize the structural, magnetotransport, magnetic and optical properties of the ferromagnetic double perovskites and discuss the underlying physics. In particular, we discuss the impact of the steric effects resulting in a distorted perovskite structure, doping effects obtained by a partial replacing of the divalent alkaline earth ions on the A site by a trivalent lanthanide as well as B/B' cationic disorder on the Curie temperature T C , the saturation magnetization and the magnetotransport properties. Our results support the presence of a kinetic energy driven mechanism in the ferromagnetic double perovskites, where ferromagnetism is stabilised by a hybridization of states of the non-magnetic B'- site positioned in between the high spin B-sites. (author)

  6. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  7. Observation of Enhanced Hole Extraction in Br Concentration Gradient Perovskite Materials.

    Science.gov (United States)

    Kim, Min-Cheol; Kim, Byeong Jo; Son, Dae-Yong; Park, Nam-Gyu; Jung, Hyun Suk; Choi, Mansoo

    2016-09-14

    Enhancing hole extraction inside the perovskite layer is the key factor for boosting photovoltaic performance. Realization of halide concentration gradient perovskite materials has been expected to exhibit rapid hole extraction due to the precise bandgap tuning. Moreover, a formation of Br-rich region on the tri-iodide perovskite layer is expected to enhance moisture stability without a loss of current density. However, conventional synthetic techniques of perovskite materials such as the solution process have not achieved the realization of halide concentration gradient perovskite materials. In this report, we demonstrate the fabrication of Br concentration gradient mixed halide perovskite materials using a novel and facile halide conversion method based on vaporized hydrobromic acid. Accelerated hole extraction and enhanced lifetime due to Br gradient was verified by observing photoluminescence properties. Through the combination of secondary ion mass spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopy analysis, the diffusion behavior of Br ions in perovskite materials was investigated. The Br-gradient was found to be eventually converted into a homogeneous mixed halide layer after undergoing an intermixing process. Br-substituted perovskite solar cells exhibited a power conversion efficiency of 18.94% due to an increase in open circuit voltage from 1.08 to 1.11 V and an advance in fill-factor from 0.71 to 0.74. Long-term stability was also dramatically enhanced after the conversion process, i.e., the power conversion efficiency of the post-treated device has remained over 97% of the initial value under high humid conditions (40-90%) without any encapsulation for 4 weeks.

  8. Perovskite type nanopowders and thin films obtained by chemical methods

    Directory of Open Access Journals (Sweden)

    Viktor Fruth

    2010-09-01

    Full Text Available The review presents the contribution of the authors, to the preparation of two types of perovskites, namely BiFeO3 and LaCoO3, by innovative methods. The studied perovskites were obtained as powders, films and sintered bodies. Their complex structural and morphological characterization is also presented. The obtained results have underlined the important influence of the method of preparation on the properties of the synthesized perovskites.

  9. Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation.

    Science.gov (United States)

    Hwang, Insung; Jeong, Inyoung; Lee, Jinwoo; Ko, Min Jae; Yong, Kijung

    2015-08-12

    In this study, a novel and facile passivation process for a perovskite solar cell is reported. Poor stability in ambient atmosphere, which is the most critical demerit of a perovskite solar cell, is overcome by a simple passivation process using a hydrophobic polymer layer. Teflon, the hydrophobic polymer, is deposited on the top of a perovskite solar cell by a spin-coating method. With the hydrophobic passivation, the perovskite solar cell shows negligible degradation after a 30 day storage in ambient atmosphere. Suppressed degradation of the perovskite film is proved in various ways: X-ray diffraction, light absorption spectrum, and quartz crystal microbalance. This simple but effective passivation process suggests new kind of approach to enhance stability of perovskite solar cells to moisture.

  10. Solvent-Assisted Gel Printing for Micropatterning Thin Organic-Inorganic Hybrid Perovskite Films.

    Science.gov (United States)

    Jeong, Beomjin; Hwang, Ihn; Cho, Sung Hwan; Kim, Eui Hyuk; Cha, Soonyoung; Lee, Jinseong; Kang, Han Sol; Cho, Suk Man; Choi, Hyunyong; Park, Cheolmin

    2016-09-27

    While tremendous efforts have been made for developing thin perovskite films suitable for a variety of potential photoelectric applications such as solar cells, field-effect transistors, and photodetectors, only a few works focus on the micropatterning of a perovskite film which is one of the most critical issues for large area and uniform microarrays of perovskite-based devices. Here we demonstrate a simple but robust method of micropatterning a thin perovskite film with controlled crystalline structure which guarantees to preserve its intrinsic photoelectric properties. A variety of micropatterns of a perovskite film are fabricated by either microimprinting or transfer-printing a thin spin-coated precursor film in soft-gel state with a topographically prepatterned elastomeric poly(dimethylsiloxane) (PDMS) mold, followed by thermal treatment for complete conversion of the precursor film to a perovskite one. The key materials development of our solvent-assisted gel printing is to prepare a thin precursor film with a high-boiling temperature solvent, dimethyl sulfoxide. The residual solvent in the precursor gel film makes the film moldable upon microprinting with a patterned PDMS mold, leading to various perovskite micropatterns in resolution of a few micrometers over a large area. Our nondestructive micropatterning process does not harm the intrinsic photoelectric properties of a perovskite film, which allows for realizing arrays of parallel-type photodetectors containing micropatterns of a perovskite film with reliable photoconduction performance. The facile transfer of a micropatterned soft-gel precursor film on other substrates including mechanically flexible plastics can further broaden its applications to flexible photoelectric systems.

  11. Entropy in halide perovskites

    Science.gov (United States)

    Katan, Claudine; Mohite, Aditya D.; Even, Jacky

    2018-05-01

    Claudine Katan, Aditya D. Mohite and Jacky Even discuss the possible impact of various entropy contributions (stochastic structural fluctuations, anharmonicity and lattice softness) on the optoelectronic properties of halide perovskite materials and devices.

  12. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells

    Science.gov (United States)

    He, Ming; Li, Bo; Cui, Xun; Jiang, Beibei; He, Yanjie; Chen, Yihuang; O'Neil, Daniel; Szymanski, Paul; Ei-Sayed, Mostafa A.; Huang, Jinsong; Lin, Zhiqun

    2017-07-01

    Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics.

  13. Perovskite solar cells for roll-to-roll fabrication

    Directory of Open Access Journals (Sweden)

    Uddin Ashraf

    2017-01-01

    Full Text Available Perovskite solar cell (PSCs is considered as the game changer in emerging photovoltaics technology. The highest certified efficiency is 22% with high temperature processed (∼500 °C TiO2 based electron transport layer (ETL. High temperature process is a rudimentary hindrance towards roll-to-roll processing of PSCs on flexible substrates. Low temperature solution process (<150 °C ZnO based ETL is one of the most promising candidate for large scale roll-to-roll fabrication of cells as it has nearly identical electron affinity (4.2 eV of TiO2. The mixed organic perovskite (MA0.6FA0.4PbI3 devices with Al doped ZnO (AZO ETL demonstrate average cell efficiency over 16%, which is the highest ever reported efficiency for this device configuration. The energy level alignment and related interfacial charge transport dynamics at the interface of ZnO and perovskite films and the adjacent charge transport layers are investigated. Significantly improved device stability, hysteresis free device photocurrent have been observed in MA0.6FA0.4PbI3 cells. A systematic electrochemical impedance spectroscopy, frequency dependent capacitance spectra, surface morphology and topography characterization have been conducted to understand the role of interfacial electronic properties between perovskite and neighbouring layers in perovskite device. A standardized degradation study, interfacial electronic property and capacitive spectra analysis of aged device, have been measured to understand the enhanced device stability in mixed MA0.6FA0.4PbI3 cells. Slow perovskite material decomposition rate and augmented device lifetime with AZO based devices have been found to be correlated with the more hydrophobic and acidic nature of AZO surface compared to pristine ZnO film.

  14. Thermodynamic origin of instability in hybrid halide perovskites

    Science.gov (United States)

    Tenuta, E.; Zheng, C.; Rubel, O.

    2016-11-01

    Degradation of hybrid halide perovskites under the influence of environmental factors impairs future prospects of using these materials as absorbers in solar cells. First principle calculations can be used as a guideline in search of new materials, provided we can rely on their predictive capabilities. We show that the instability of perovskites can be captured using ab initio total energy calculations for reactants and products augmented with additional thermodynamic data to account for finite temperature effects. Calculations suggest that the instability of CH3NH3PbI3 in moist environment is linked to the aqueous solubility of the CH3NH3I salt, thus making other perovskite materials with soluble decomposition products prone to degradation. Properties of NH3OHPbI3, NH3NH2PbI3, PH4PbI3, SbH4PbI3, CsPbBr3, and a new hypothetical SF3PbI3 perovskite are studied in the search for alternative solar cell absorber materials with enhanced chemical stability.

  15. Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture.

    Science.gov (United States)

    Xu, Xiaobao; Chen, Qi; Hong, Ziruo; Zhou, Huanping; Liu, Zonghao; Chang, Wei-Hsuan; Sun, Pengyu; Chen, Huajun; De Marco, Nicholas; Wang, Mingkui; Yang, Yang

    2015-10-14

    In this communication, we report an efficient and flexible perovskite solar cell based on formamidinium lead trihalide (FAPbI3) with simplified configuration. The device achieved a champion efficiency of 12.70%, utilizing direct contact between metallic indium tin oxide (ITO) electrode and perovskite absorber. The underlying working mechanism is proposed subsequently, via a systematic investigation focusing on the heterojunction within this device. A significant charge storage has been observed in the perovskite, which is believed to generate photovoltage and serves as the driving force for charge transferring from the absorber to ITO electrode as well. More importantly, this simplified device structure on flexible substrates suggests its compatibility for scale-up fabrication, which paves the way for commercialization of perovskite photovoltaic technology.

  16. A New Lead Iodide Perovskite based on Large Organic Cation for Solar Cell Application.

    Science.gov (United States)

    Ma, Chunqing; Shen, Dong; Lo, Ming Fai; Lee, Chun-Sing

    2018-06-06

    Methylammonium (CH3NH3+) and formamidinium ((NH2)2CH+) based lead iodide perovskites are currently the two commonly used organic-inorganic lead iodide perovskites for solar cell application. Till now, there is still no alternative organic cations, which can produce perovskites with bandgaps spanning the visible spectrum (i.e. solar cell application. Here, a new perovskite using large propane-1,3-diammonium cation (n-Pr(NH3)22+) with a chemical structure of (n-Pr(NH3)2)0.5PbI3 is demonstrated. X-ray diffraction (XRD) result shows that the new perovskite exhibits a three-dimensional (3D), tetragonal phase. The bandgap of the new perovskite is ~ 1.6 eV, which is desirable for photovoltaic application. A (n-Pr(NH3)2)0.5PbI3 perovskite solar cell (PSC) yields a power conversion efficiency (PCE) of 5.1%. More importantly, this new perovskite is composed of larger hydrophobic cation that provides a better moisture resistance compared to CH3NH3PbI3 perovskite. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Solvent extraction of anionic chelate complexes of lanthanum(III), europium(III), lutetium(III), scandium(III), and indium(III) with 2-thenoyltrifluoroacetone as ion-pairs with tetrabutylammonium ions

    International Nuclear Information System (INIS)

    Noro, Junji; Sekine, Tatsuya.

    1992-01-01

    The solvent extraction of lanthanum(III), europium(III), lutetium(III), scandium(III), and indium(III) in 0.1 mol dm -3 sodium nitrate solutions with 2-thenoyltrifluoroacetone (Htta) in the absence and presence of tetrabutylammonium ions (tba + ) into carbon tetrachloride was measured. The extraction of lanthanum(III), europium(III), and lutetium(III) was greatly enhanced by the addition of tba + ; this could be explained in terms of the extraction of a ternary complex, M(tta) 4 - tba + . However, the extractions of scandium(III) and indium(III) were nearly the same when tba + was added. The data were treated on the basis of the formation equilibrium of the ternary complex from the neutral chelate, M(tta) 3 , with the extracted ion-pairs of the reagents, tta - tba + , in the organic phase. It was concluded that the degree of association of M(tta) 3 with the ion-pair, tta - tba + , is greater in the order La(tta) 3 ≅ Eu(tta) 3 > Lu(tta) 3 , or that the stability of the ternary complex in the organic phase is higher in the order La(tta) 4 - tba + ≅ Eu(tta) 4 - tba + > Lu(tta) 4 - tba + . This is similar to those of adduct metal chelates of Htta with tributylphosphate (TBP) in synergistic extraction systems. (author)

  18. Annealing Effect on (FAPbI31−x(MAPbBr3x Perovskite Films in Inverted-Type Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Lung-Chien Chen

    2016-09-01

    Full Text Available This study determines the effects of annealing treatment on the structure and the optical and electronic behaviors of the mixed (FAPbI31−x(MAPbBr3x perovskite system. The experimental results reveal that (FAPbI31−x(MAPbBr3x (x ~ 0.2 is an effective light-absorbing material for use in inverted planar perovskite solar cells owing to its large absorbance and tunable band gap. Therefore, good band-matching between the (FAPbI31−x(MAPbBr3x and C60 in photovoltaic devices can be controlled by annealing at various temperatures. Accordingly, an inverted mixed perovskite solar cell with a record efficiency of 12.0% under AM1.5G irradiation is realized.

  19. Sn2+—Stabilization in MASnI3 perovskites by superhalide incorporation

    Science.gov (United States)

    Xiang, Junxiang; Wang, Kan; Xiang, Bin; Cui, Xudong

    2018-03-01

    Sn-based hybrid halide perovskites are a potential solution to replace Pb and thereby reduce Pb toxicity in MAPbI3 perovskite-based solar cells. However, the instability of Sn2+ in air atmosphere causes a poor reproducibility of MASnI3, hindering steps towards this goal. In this paper, we propose a new type of organic metal-superhalide perovskite of MASnI2BH4 and MASnI2AlH4. Through first-principles calculations, our results reveal that the incorporation of BH4 and AlH4 superhalides can realize an impressive enhancement of oxidation resistance of Sn2+ in MASnI3 perovskites because of the large electron transfer between Sn2+ and [BH4]-/[AlH4]-. Meanwhile, the high carrier mobility is preserved in these superhalide perovskites and only a slight decrease is observed in the optical absorption strength. Our studies provide a new path to attain highly stable performance and reproducibility of Sn-based perovskite solar cells.

  20. Textured perovskite cells

    NARCIS (Netherlands)

    Deelen, J. van; Tezsevin, Y.; Barink, M.

    2017-01-01

    Most research of texturization of solar cells has been devoted to Si based cells. For perovskites, it was assumed that texturization would not have much of an impact because of the relatively low refractive indexes lead to relatively low reflection as compared to the Si based cells. However, our

  1. Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes

    DEFF Research Database (Denmark)

    Schmidt, Thomas Mikael; Larsen-Olsen, Thue Trofod; Carlé, Jon Eggert

    2015-01-01

    A scaling effort on perovskite solar cells is presented where the device manufacture is progressed onto fl exible substrates using scalable techniques such as slot-die roll coating under ambient conditions. The printing of the back electrode using both carbon and silver is essential to the scaling...... effort. Both normal and inverted device geometries are explored and it is found that the formation of the correct morphology for the perovskite layer depends heavily on the surface upon which it is coated and this has signifi cant implications for manufacture. The time it takes to form the desired layer...... morphology falls in the range of 5–45 min depending on the perovskite precursor, where the former timescale is compatible with mass production and the latter is best suited for laboratory work. A signifi cant loss in solar cell performance of around 50% is found when progressing to using a fully scalable...

  2. Spontaneous emission enhancement of colloidal perovskite nanocrystals

    Science.gov (United States)

    Yang, Zhili; Waks, Edo

    Halide perovskite semiconductors have emerged as prominent photovoltaic materials since their high conversion efficiency and promising light emitting materials in optoelectronics. In particular, easy-to-fabricated colloidal perovskite nanocrystals based on CsPbX3 quantum dots has been intensively investigated recently. Their luminescent wavelength could be tuned precisely by their chemical composition and size of growth. This opens new applications including light-emitting diodes, optical amplifiers and lasing since their promising performance as emitters. However, this potentially high-efficient emitter and gain material has not been fully investigated and realized in integrated photonic structures. Here we demonstrate Purcell enhancement effect of CsPbBr3 perovskite nanocrystals by coupling to an optimized photonic crystal nanobeam cavity as a first crucial step towards realization of integrated on-chip coherent light source with low energy consumption. We show clearly highly-enhanced photoluminescent spectrum and an averaged Purcell enhancement factor of 2.9 is achieved when they are coupled to nanobeam photonic crystal cavities compared to the ones on unpatterned surface in our lifetime measurement. Our success in enhancement of emission from CsPbX3 perovskite nanocrystals paves the way towards the realization of efficient light sources for integrated optoelectronic devices with low energy consumption.

  3. Effect of Non-Stoichiometric Solution Chemistry on Improving the Performance of Wide-Bandgap Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Mengjin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Donghoe [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Li, Zhen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Reid, Obadiah G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yue [University of Toledo; Song, Zhaoning [University of Toledo; Zhao, Dewei [University of Toledo; Wang, Changlei [University of Toledo; Li, Liwei [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Meng, Yuan [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Guo, Ted [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Yan, Yanfa [University of Toledo

    2017-10-18

    A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ~1.75-eV FA0.83Cs0.17Pb(I0.6Br0.4)3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I. Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.

  4. Enhancement of photoresponse property of perovskite solar cell by aluminium chloride (AlCl3)

    Science.gov (United States)

    Ghosh, S. S.; Sil, A.

    2018-05-01

    The fabrication of a three layer solar cell device is a new area of research. The formation of perovskite phase is evident from x-ray diffraction and its particle size is observed by microstructural analysis. A thin layer of gold coating over the device increases the surface conductivity. Direct contact between a SnCl2 or AlCl3 based perovskite with the gold coating increases the durability of the film but decreases the hole transport properties due to absence of an organic hole transport material. The absorbance spectroscopy analysis gives characteristic peaks showing the evidence of ITO, TiO2 (rutile) and Sn2+ complexes present in the Sn-perovskite film or Al3+ complexes present within the Al-perovskite cell. The desired absorbance near 550 nm due to Al3+ complexes causes a much higher flow of current on illumination and thus is also evidenced by the presence of comparatively high intensity PL spectra in the Al-perovskite system which occurred due to free exciton formation near band edge excitation. The fill factor of the devices is estimated as ∼0.83 and ∼0.65 for Sn-perovskite and Al-perovskite devices respectively. The PCE values of Sn-perovskite and Al-perovskite devices are calculated 0.39% and 0.96% respectively, which establish Al-perovskite film as a useful component for future solar cell device manufacturing.

  5. LSFM perovskites as cathodes for the electrochemical reduction of NO

    DEFF Research Database (Denmark)

    Kammer Hansen, K.; Skou, E.M.

    2005-01-01

    Six La0.6Sr0.4Fe1-xMnO3-delta (x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0) perovskite compounds have been synthesised by the citric-acid route. The perovskites have been characterised by powder XRD and are shown to belong to the hexagonal crystal system. The perovskites are also evaluated by TG...... degrees C on a ceria based electrolyte. Only La0.6Sr0.4Fe0.8Mn0.2O3-delta (LSFM020) and La0.6Sr0.4FeO3-delta (LSFM000) show significant activity for the reduction of NO. This can probably be related to the high redox capacity of these compounds. The activity of the perovskites for the reduction of oxygen...... increases systematically with increasing iron content. The selectivity of the perovskites towards the reduction of NO with regard to the reduction of O-2 is highest at the lowest temperatures. (c) 2004 Published by Elsevier B.V....

  6. Photodynamic therapy with motexafin lutetium for rectal cancer: a preclinical model in the dog.

    Science.gov (United States)

    Ross, H M; Smelstoys, J A; Davis, G J; Kapatkin, A S; Del Piero, F; Reineke, E; Wang, H; Zhu, T C; Busch, T M; Yodh, A G; Hahn, S M

    2006-10-01

    Local recurrence of rectal cancer remains a significant clinical problem despite multi-modality therapy. Photodynamic Therapy (PDT) is a cancer treatment which generates tumor kill through the production of singlet oxygen in cells containing a photosensitizing drug when exposed to laser light of a specific wavelength. PDT is a promising modality for prevention of local recurrence of rectal cancer for several reasons: tumor cells may selectively retain photosensitizer at higher levels than normal tissues, the pelvis after mesorectal excision is a fixed space amenable to intra-operative illumination, and PDT can generate toxicity in tissues up to 1 cm thick. This study evaluated the safety, tissue penetration of 730 nm light, normal tissue toxicity and surgical outcome in a dog model of rectal resection after motexafin lutetium-mediated photodynamic therapy. Ten mixed breed dogs were used. Eight dogs underwent proctectomy and low rectal end to end stapled anastomosis. Six dogs received the photosensitizing agent motexafin lutetium (MLu, Pharmacyclics, Inc., Sunnyvale, CA) of 2 mg/kg preoperatively and underwent subsequent pelvic illumination of the transected distal rectum of 730 nm light with light doses ranging from 0.5 J/cm(2) to 10 J/cm(2) three hours after drug delivery. Two dogs received light, but no drug, and underwent proctectomy and low-rectal stapled anastomosis. Two dogs underwent midline laparotomy and pelvic illumination. Light penetration in tissues was determined for small bowel, rectum, pelvic sidewall, and skin. Clinical outcomes were recorded. Animals were sacrificed at 14 days and histological evaluation was performed. All dogs recovered uneventfully. No dog suffered an anastomotic leak. Severe tissue toxicity was not seen. Histological findings at necropsy revealed mild enteritis in all dogs. The excitation light penetration depths were 0.46 +/- 0.18, 0.46 +/- 0.15, and 0.69 +/- 0.39 cm, respectively, for rectum, small bowel, and peritoneum in

  7. Two-Dimensional CH₃NH₃PbI₃ Perovskite: Synthesis and Optoelectronic Application.

    Science.gov (United States)

    Liu, Jingying; Xue, Yunzhou; Wang, Ziyu; Xu, Zai-Quan; Zheng, Changxi; Weber, Bent; Song, Jingchao; Wang, Yusheng; Lu, Yuerui; Zhang, Yupeng; Bao, Qiaoliang

    2016-03-22

    Hybrid organic-inorganic perovskite materials have received substantial research attention due to their impressively high performance in photovoltaic devices. As one of the oldest functional materials, it is intriguing to explore the optoelectronic properties in perovskite after reducing it into a few atomic layers in which two-dimensional (2D) confinement may get involved. In this work, we report a combined solution process and vapor-phase conversion method to synthesize 2D hybrid organic-inorganic perovskite (i.e., CH3NH3PbI3) nanocrystals as thin as a single unit cell (∼1.3 nm). High-quality 2D perovskite crystals have triangle and hexagonal shapes, exhibiting tunable photoluminescence while the thickness or composition is changed. Due to the high quantum efficiency and excellent photoelectric properties in 2D perovskites, a high-performance photodetector was demonstrated, in which the current can be enhanced significantly by shining 405 and 532 nm lasers, showing photoresponsivities of 22 and 12 AW(-1) with a voltage bias of 1 V, respectively. The excellent optoelectronic properties make 2D perovskites building blocks to construct 2D heterostructures for wider optoelectronic applications.

  8. Structural and Quantitative Investigation of Perovskite Pore Filling in Mesoporous Metal Oxides

    Directory of Open Access Journals (Sweden)

    Shany Gamliel

    2016-11-01

    Full Text Available In recent years, hybrid organic–inorganic perovskite light absorbers have attracted much attention in the field of solar cells due to their optoelectronic characteristics that enable high power conversion efficiencies. Perovskite-based solar cells’ efficiency has increased dramatically from 3.8% to more than 20% in just a few years, making them a promising low-cost alternative for photovoltaic applications. The deposition of perovskite into a mesoporous metal oxide is an influential factor affecting solar cell performance. Full coverage and pore filling into the porous metal oxide are important issues in the fabrication of highly-efficient mesoporous perovskite solar cells. In this work, we carry out a structural and quantitative investigation of CH3NH3PbI3 pore filling deposited via sequential two-step deposition into two different mesoporous metal oxides—TiO2 and Al2O3. We avoid using a hole conductor in the perovskite solar cells studied in this work to eliminate undesirable end results. Filling oxide pores with perovskite was characterized by Energy Dispersive X-ray Spectroscopy (EDS in Transmission Electron Microscopy (TEM on cross-sectional focused ion beam (FIB lamellae. Complete pore filling of CH3NH3PbI3 perovskite into the metal oxide pores was observed down to X-depth, showing the presence of Pb and I inside the pores. The observations reported in this work are particularly important for mesoporous Al2O3 perovskite solar cells, as pore filling is essential for the operation of this solar cell structure. This work presents structural and quantitative proof of complete pore filling into mesoporous perovskite-based solar cells, substantiating their high power conversion efficiency.

  9. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.; Hoogland, Sjoerd; Adachi, Michael M.; Kanjanaboos, Pongsakorn; Wong, Chris T. O.; McDowell, Jeffrey J.; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J.; Sargent, Edward H.

    2014-01-01

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  10. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  11. Preparation and characterization of the non-stoichiometric La–Mn perovskites

    International Nuclear Information System (INIS)

    Gao, Zhiming; Wang, Huishu; Ma, Hongwei; Li, Zhanping

    2015-01-01

    Six La–Mn oxide samples with La/Mn atomic ratio x = 1.03–0.56 (denoted as sample LaxMn) were prepared by the citrate method with calcination at 700 °C for 5 h, and characterized by X-ray diffraction (XRD), N 2 adsorption–desorption, temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). It is confirmed that the four samples with La/Mn atomic ratio at 1.03–0.72 are all single phase perovskites by XRD patterns. Lattice parameters of the perovskites are varying with the La/Mn atomic ratio. As the La/Mn atomic ratio further lowers to 0.63 and 0.56, Mn 3 O 4 phase is formed besides the main phase of perovskite. Lattice vacancy at the A-sites of the perovskites is present for all the six samples, and there are an appreciable number of Mn 4+ ions in the perovskite crystal according to the refinement results of the Rietveld method. XPS analyses indicate that Mn ions are enriched on the surfaces of all the samples. In addition, catalytic activity for methane oxidation is in an order of sample La 0.89 Mn > La 1.03 Mn > La 0.81 Mn > La 0.72 Mn > La 0.63 Mn > La 0.56 Mn. - Highlights: • The samples with La/Mn atomic ratio at 1.03–0.72 are single phase perovskites. • Cationic lattice vacancies are present in the perovskite crystal of the samples. • Surface of the samples is enriched by Mn ions. • The sample La 0.89 Mn is most catalytically active for methane oxidation

  12. Jahn-Teller distortions, cation ordering and octahedral tilting in perovskites

    International Nuclear Information System (INIS)

    Lufaso, M.W.; Woodward, P.M.

    2004-01-01

    In transition metal oxides, preferential occupation of specific d orbitals on the transition metal ion can lead to the development of a long-range ordered pattern of occupied orbitals. This phenomenon, referred to as orbital ordering, is usually observed indirectly from the cooperative Jahn-Teller distortions (CJTDs) that result as a consequence of the orbital ordering. This paper examines the interplay between orbital ordering, octahedral tilting and cation ordering in perovskites. Both ternary AMX 3 perovskites containing an active Jahn-Teller (J-T) ion on the octahedral site and quaternary A 2 MM'X 6 perovskites containing a J-T ion on one-half of the octahedral sites have been examined. In AMX 3 perovskites, the tendency is for the occupied 3d 3x 2 -r 2 and 3d 3z 2 -r 2 orbitals to order in the ac plane, as exemplified by the crystal structures of LaMnO 3 and KCuF 3 . This arrangement maintains a favorable coordination environment for the anion sites. In AMX 3 perovskites, octahedral tilting tends to enhance the magnitude of the J-T distortions. In A 2 MM'X 6 perovskites, the tendency is for the occupied 3d 3z 2 -r 2 orbitals to align parallel to the c axis. This pattern maintains a favorable coordination environment about the symmetric M'-cation site. The orbital ordering found in rock-salt ordered A 2 MM'X 6 perovskites is compatible with octahedral rotations about the c axis (Glazer tilt system a 0 a 0 c - ) but appears to be incompatible with GdFeO 3 -type octahedral tilting (tilt system - b + a - ). (orig.)

  13. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells.

    Science.gov (United States)

    Chiang, Chien-Hung; Wu, Chun-Guey

    2016-09-22

    The power conversion efficiency (PCE) of the perovskite solar cell is high enough to be commercially viable. The next important issue is the stability of the device. This article discusses the effect of the perovskite grain-size on the long-term stability of inverted perovskite solar cells. Perovskite films composed of various sizes of grains were prepared by controlling the solvent annealing time. The grain-size related stability of the inverted cells was investigated both in ambient atmosphere at relative humidity of approximately 30-40 % and in a nitrogen filled glove box (H 2 Operovskite film having the grain size larger than 1 μm (D-10) decreases less than 10 % with storage in a glove box and less than 15 % when it was stored under an ambient atmosphere for 30 days. However, the cell using the perovskite film composed of small (∼100 nm) perovskite grains (D-0) exhibits complete loss of PCE after storage under the ambient atmosphere for only 15 days and a PCE loss of up to 70 % with storage in the glove box for 30 days. These results suggest that, even under H 2 O-free conditions, the chemical- and thermal-induced production of pin holes at the grain boundaries of the perovskite film could be the reason for long-term instability of inverted perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Single Vs Mixed Organic Cation for Low Temperature Processed Perovskite Solar Cells

    International Nuclear Information System (INIS)

    Mahmud, Md Arafat; Elumalai, Naveen Kumar; Upama, Mushfika Baishakhi; Wang, Dian; Wright, Matthew; Chan, Kah Howe; Xu, Cheng; Haque, Faiazul; Uddin, Ashraf

    2016-01-01

    Highlights: • Low temperature processed ZnO based single & mixed organic cation perovskite device. • 37% higher PCE in mixed cation perovskite solar cells (PSCs) than single cation ones. • Mixed cation PSCs exhibit significantly reduced photocurrent hysteresis. • Mixed cation PSCs demonstrate three fold higher device stability than single cation PSCs. • Electronic properties are analyzed using Electrochemical Impedance Spectroscopy. - Abstract: The present work reports a comparative study between single and mixed organic cation based MAPbI 3 and MA 0.6 FA 0.4 PbI 3 perovskite devices fabricated in conjunction with low temperature processed (<150 °C) ZnO electron transport layers. MA 0.6 FA 0.4 PbI 3 perovskite devices demonstrate 37% higher power conversion efficiency compared to MAPbI 3 perovskite devices developed on the ZnO ETL. In addition, MA 0.6 FA 0.4 PbI 3 devices exhibit very low photocurrent hysteresis and they are three-fold more stable than conventional MAPbI 3 PSCs (perovskite solar cells). An in-depth analysis on the charge transport properties in both fresh and aged devices has been carried out using electrochemical impedance spectroscopy analysis to comprehend the enhanced device stability of the mixed perovskite devices developed on the ZnO ETL. The study also investigates into the interfacial charge transfer characteristics associated with the ZnO/mixed organic cation perovskite interface and concomitant influence on the inherent electronic properties.

  15. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Alison J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100 degree Celsius for 90 minutes followed by 120 degree Celsius for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulkphotoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  16. Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation.

    Science.gov (United States)

    Zhu, Xuejie; Yang, Dong; Yang, Ruixia; Yang, Bin; Yang, Zhou; Ren, Xiaodong; Zhang, Jian; Niu, Jinzhi; Feng, Jiangshan; Liu, Shengzhong Frank

    2017-08-31

    Chemical composition and film quality are two key figures of merit for large-area high-efficiency perovskite solar cells. To date, all studies on mixed perovskites have used solution-processing, which results in imperfect surface coverage and pin-holes generated during solvent evaporation, execrably influencing the stability and efficiency of perovskite solar cells. Herein, we report our development using a vacuum co-evaporation deposition method to fabricate pin-hole-free cesium (Cs)-substituted perovskite films with complete surface coverage. Apart from the simplified procedure, the present method also promises tunable band gap, reduced trap-state density and longer carrier lifetime, leading to solar cell efficiency as high as 20.13%, which is among the highest reported for planar perovskite solar cells. The splendid performance is attributed to superior merits of the Cs-substituted perovskite film including tunable band gap, reduced trap-state density and longer carrier lifetime. Moreover, the Cs-substituted perovskite device without encapsulation exhibits significantly higher stability in ambient air compared with the single-component counterpart. When the Cs-substituted perovskite solar cells are stored in dark for one year, the PCE remains at 19.25%, degrading only 4.37% of the initial efficiency. The excellent stability originates from reduced lattice constant and relaxed strain in perovskite lattice by incorporating Cs cations into the crystal lattice, as demonstrated by the positive peak shifts and reduced peak width in X-ray diffraction analysis.

  17. Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells

    International Nuclear Information System (INIS)

    Song, Xin; Sun, Po; Chen, Zhi-Kuan; Wang, Weiwei; Ma, Wanli

    2015-01-01

    We reported a planar heterojunction perovskite solar cell fabricated from MAPbI 3−x Cl x perovskite precursor solution containing 1-chloronaphthalene (CN) additive. The MAPbI 3−x Cl x perovskite films have been characterized by UV-vis, SEM, XRD, and steady-state photoluminescence (PL). UV-vis absorption spectra measurement shows that the absorbance of the film with CN additive is significantly higher than the pristine film and the absorption peak is red shift by 30 nm, indicating the perovskite film with additive possessing better crystal structures. In-situ XRD study of the perovskite films with additive demonstrated intense diffraction peaks from MAPbI 3−x Cl x perovskite crystal planes of (110), (220), and (330). SEM images of the films with additive indicated the films were more smooth and homogenous with fewer pin-holes and voids and better surface coverage than the pristine films. These results implied that the additive CN is beneficial to regulate the crystallization transformation kinetics of perovskite to form high quality crystal films. The steady-state PL measurement suggested that the films with additive contained less charge traps and defects. The planar heterojunction perovskite solar cells fabricated from perovskite precursor solution containing CN additive demonstrated 30% enhancement in performance compared to the devices with pristine films. The improvement in device efficiency is mainly attributed to the good crystal structures, more homogenous film morphology, and also fewer trap centers and defects in the films with the additive

  18. Ferroelectric ultrathin perovskite films

    Science.gov (United States)

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  19. In- and Ga-based inorganic double perovskites with direct bandgaps for photovoltaic applications.

    Science.gov (United States)

    Dai, Jun; Ma, Liang; Ju, Minggang; Huang, Jinsong; Zeng, Xiao Cheng

    2017-08-16

    Double perovskites in the form of A 2 B'B''X 6 (A = Cs, B' = Ag, B'' = Bi) have been reported as potential alternatives to lead-containing organometal trihalide perovskites. However, all double perovskites synthesized to date exhibit indirect bandgaps >1.95 eV, which are undesirable for photovoltaic and optoelectronic applications. Herein, we report a comprehensive computer-aided screening of In- and Ga-based double perovskites for potential photovoltaic applications. To this end, several preconditions are implemented for the screening of optimal candidates, which include structural stability, electronic bandgaps, and optical absorption. Importantly, four In- and Ga-based double perovskites are identified to possess direct bandgaps within the desirable range of 0.9-1.6 eV for photovoltaic applications. Dominant optical absorption of the four double perovskites is found to be in the UV range. The structural and thermal stability of the four double perovskites are examined using both the empirical Goldschmidt ratio and convex-hull calculations. Only Cs 2 AgInBr 6 is predicted to be thermodynamically stable.

  20. Ionic behavior of organic-inorganic metal halide perovskite based metal-oxide-semiconductor capacitors.

    Science.gov (United States)

    Wang, Yucheng; Zhang, Yuming; Pang, Tiqiang; Xu, Jie; Hu, Ziyang; Zhu, Yuejin; Tang, Xiaoyan; Luan, Suzhen; Jia, Renxu

    2017-05-24

    Organic-inorganic metal halide perovskites are promising semiconductors for optoelectronic applications. Despite the achievements in device performance, the electrical properties of perovskites have stagnated. Ion migration is speculated to be the main contributing factor for the many unusual electrical phenomena in perovskite-based devices. Here, to understand the intrinsic electrical behavior of perovskites, we constructed metal-oxide-semiconductor (MOS) capacitors based on perovskite films and performed capacitance-voltage (C-V) and current-voltage (I-V) measurements of the capacitors. The results provide direct evidence for the mixed ionic-electronic transport behavior within perovskite films. In the dark, there is electrical hysteresis in both the C-V and I-V curves because the mobile negative ions take part in charge transport despite frequency modulation. However, under illumination, the large amount of photoexcited free carriers screens the influence of the mobile ions with a low concentration, which is responsible for the normal C-V properties. Validation of ion migration for the gate-control ability of MOS capacitors is also helpful for the investigation of perovskite MOS transistors and other gate-control photovoltaic devices.

  1. The influence of additives in the stoichiometry of hybrid lead halide perovskites

    Science.gov (United States)

    Burgués-Ceballos, Ignasi; Savva, Achilleas; Georgiou, Efthymios; Kapnisis, Konstantinos; Papagiorgis, Paris; Mousikou, Androniki; Itskos, Grigorios; Othonos, Andreas; Choulis, Stelios A.

    2017-11-01

    We investigate the employment of carefully selected solvent additives in the processing of a commercial perovskite precursor ink and analyze their impact on the performance of organometal trihalide perovskite (CH3NH3PbI3-xClx) photovoltaic devices. We provide evidence that the use of benzaldehyde can be used as an effective method to preserve the stoichiometry of the perovskite precursors in solution. Benzaldehyde based additive engineering shows to improve perovskite solid state film morphology and device performance of CH3NH3PbI3-xClx based solar cells.

  2. Progress, challenges and perspectives in flexible perovskite solar cells

    NARCIS (Netherlands)

    Di Giacomo, F.; Fakharuddin, A.; Jose, R.; Brown, T.M.

    2016-01-01

    Perovskite solar cells have attracted enormous interest since their discovery only a few years ago because they are able to combine the benefits of high efficiency and remarkable ease of processing over large areas. Whereas most of research has been carried out on glass, perovskite deposition and

  3. Metal Halide Perovskite Single Crystals: From Growth Process to Application

    Directory of Open Access Journals (Sweden)

    Shuigen Li

    2018-05-01

    Full Text Available As a strong competitor in the field of optoelectronic applications, organic-inorganic metal hybrid perovskites have been paid much attention because of their superior characteristics, which include broad absorption from visible to near-infrared region, tunable optical and electronic properties, high charge mobility, long exciton diffusion length and carrier recombination lifetime, etc. It is noted that perovskite single crystals show remarkably low trap-state densities and long carrier diffusion lengths, which are even comparable with the best photovoltaic-quality silicon, and thus are expected to provide better optoelectronic performance. This paper reviews the recent development of crystal growth in single-, mixed-organic-cation and fully inorganic halide perovskite single crystals, in particular the solution approach. Furthermore, the application of metal hybrid perovskite single crystals and future perspectives are also highlighted.

  4. High Photoluminescence Quantum Yields in Organic Semiconductor-Perovskite Composite Thin Films.

    Science.gov (United States)

    Longo, Giulia; La-Placa, Maria-Grazia; Sessolo, Michele; Bolink, Henk J

    2017-10-09

    One of the obstacles towards efficient radiative recombination in hybrid perovskites is a low exciton binding energy, typically in the orders of tens of meV. It has been shown that the use of electron-donor additives can lead to a substantial reduction of the non-radiative recombination in perovskite films. Herein, the approach using small molecules with semiconducting properties, which are candidates to be implemented in future optoelectronic devices, is presented. In particular, highly luminescent perovskite-organic semiconductor composite thin films have been developed, which can be processed from solution in a simple coating step. By tuning the relative concentration of methylammonium lead bromide (MAPbBr 3 ) and 9,9spirobifluoren-2-yl-diphenyl-phosphine oxide (SPPO1), it is possible to achieve photoluminescent quantum yields (PLQYs) as high as 85 %. This is attributed to the dual functions of SPPO1 that limit the grain growth while passivating the perovskite surface. The electroluminescence of these materials was investigated by fabricating multilayer LEDs, where charge injection and transport was found to be severely hindered for the perovskite/SPPO1 material. This was alleviated by partially substituting SPPO1 with a hole-transporting material, 1,3-bis(N-carbazolyl)benzene (mCP), leading to bright electroluminescence. The potential of combining perovskite and organic semiconductors to prepare materials with improved properties opens new avenues for the preparation of simple lightemitting devices using perovskites as the emitter. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing.

    Science.gov (United States)

    Zhang, Jingyi; Gao, Xianfeng; Deng, Yelin; Li, Bingbing; Yuan, Chris

    2015-11-01

    Perovskite solar cells have attracted enormous attention in recent years due to their low cost and superior technical performance. However, the use of toxic metals, such as lead, in the perovskite dye and toxic chemicals in perovskite solar cell manufacturing causes grave concerns for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell technology from its design to manufacturing, a comprehensive environmental impact assessment has been conducted on titanium dioxide nanotube based perovskite solar cells by using an attributional life cycle assessment approach, from cradle to gate, with manufacturing data from our laboratory-scale experiments and upstream data collected from professional databases and the literature. The results indicate that the perovskite dye is the primary source of environmental impact, associated with 64.77% total embodied energy and 31.38% embodied materials consumption, contributing to more than 50% of the life cycle impact in almost all impact categories, although lead used in the perovskite dye only contributes to about 1.14% of the human toxicity potential. A comparison of perovskite solar cells with commercial silicon and cadmium-tellurium solar cells reveals that perovskite solar cells could be a promising alternative technology for future large-scale industrial applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Polaron self-localization in white-light emitting hybrid perovskites

    KAUST Repository

    Cortecchia, Daniele

    2017-02-03

    Two-dimensional (2D) perovskites with the general formula APbX are attracting increasing interest as solution processable, white-light emissive materials. Recent studies have shown that their broadband emission is related to the formation of intra-gap colour centres. Here, we provide an in-depth description of the charge localization sites underlying the generation of such radiative centres and their corresponding decay dynamics, highlighting the formation of small polarons trapped within their lattice distortion field. Using a combination of spectroscopic techniques and first-principles calculations to study the white-light emitting 2D perovskites (EDBE)PbCl and (EDBE)PbBr, we infer the formation of Pb , Pb, and X (where X = Cl or Br) species confined within the inorganic perovskite framework. Due to strong Coulombic interactions, these species retain their original excitonic character and form self-trapped polaron-excitons acting as radiative colour centres. These findings are expected to be relevant for a broad class of white-light emitting perovskites with large polaron relaxation energy.

  7. Double Charged Surface Layers in Lead Halide Perovskite Crystals

    KAUST Repository

    Sarmah, Smritakshi P.

    2017-02-01

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface’s optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  8. Aluminum recovery as a product with high added value using aluminum hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2013-01-01

    Highlights: • Granular and compact aluminum dross were physically and chemically characterized. • A relationship between density, porosity and metal content from dross was established. • Chemical reactions involving aluminum in landfill and negative consequences are shown. • A processing method for aluminum recovering from aluminum dross was developed. • Aluminum was recovered as an value product with high grade purity such as alumina. -- Abstract: The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al 3+ soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%)

  9. Surface Restructuring of Hybrid Perovskite Crystals

    KAUST Repository

    Banavoth, Murali

    2016-11-07

    Hybrid perovskite crystals have emerged as an important class of semiconductors because of their remarkable performance in optoelectronics devices. The interface structure and chemistry of these crystals are key determinants of the device\\'s performance. Unfortunately, little is known about the intrinsic properties of the surfaces of perovskite materials because extrinsic effects, such as complex microstructures, processing conditions, and hydration under ambient conditions, are thought to cause resistive losses and high leakage current in solar cells. We reveal the intrinsic structural and optoelectronic properties of both pristinely cleaved and aged surfaces of single crystals. We identify surface restructuring on the aged surfaces (visualized on the atomic-scale by scanning tunneling microscopy) that lead to compositional and optical bandgap changes as well as degradation of carrier dynamics, photocurrent, and solar cell device performance. The insights reported herein clarify the key variables involved in the performance of perovskite-based solar cells and fabrication of high-quality surface single crystals, thus paving the way toward their future exploitation in highly efficient solar cells.

  10. Atomically thin two-dimensional organic-inorganic hybrid perovskites

    Science.gov (United States)

    Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong

    2015-09-01

    Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.

  11. Intrinsic white-light emission from layered hybrid perovskites.

    Science.gov (United States)

    Dohner, Emma R; Jaffe, Adam; Bradshaw, Liam R; Karunadasa, Hemamala I

    2014-09-24

    We report on the second family of layered perovskite white-light emitters with improved photoluminescence quantum efficiencies (PLQEs). Upon near-ultraviolet excitation, two new Pb-Cl and Pb-Br perovskites emit broadband "cold" and "warm" white light, respectively, with high color rendition. Emission from large, single crystals indicates an origin from the bulk material and not surface defect sites. The Pb-Br perovskite has a PLQE of 9%, which is undiminished after 3 months of continuous irradiation. Our mechanistic studies indicate that the emission has contributions from strong electron-phonon coupling in a deformable lattice and from a distribution of intrinsic trap states. These hybrids provide a tunable platform for combining the facile processability of organic materials with the structural definition of crystalline, inorganic solids.

  12. Inkjet printable-photoactive all inorganic perovskite films with long effective photocarrier lifetimes

    Science.gov (United States)

    Ilie, C. C.; Guzman, F.; Swanson, B. L.; Evans, I. R.; Costa, P. S.; Teeter, J. D.; Shekhirev, M.; Benker, N.; Sikich, S.; Enders, A.; Dowben, P. A.; Sinitskii, A.; Yost, A. J.

    2018-05-01

    Photoactive perovskite quantum dot films, deposited via an inkjet printer, have been characterized by x-ray diffraction and x-ray photoelectron spectroscopy. The crystal structure and bonding environment are consistent with CsPbBr3 perovskite quantum dots. The current–voltage (I–V) and capacitance–voltage (C–V) transport measurements indicate that the photo-carrier drift lifetime can exceed 1 ms for some printed perovskite films. This far exceeds the dark drift carrier lifetime, which is below 50 ns. The printed films show a photocarrier density 109 greater than the dark carrier density, making these printed films ideal candidates for application in photodetectors. The successful printing of photoactive-perovskite quantum dot films of CsPbBr3, indicates that the rapid prototyping of various perovskite inks and multilayers is realizable.

  13. Research Update: Strategies for improving the stability of perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Severin N. Habisreutinger

    2016-09-01

    Full Text Available The power-conversion efficiency of perovskite solar cells has soared up to 22.1% earlier this year. Within merely five years, the perovskite solar cell can now compete on efficiency with inorganic thin-film technologies, making it the most promising of the new, emerging photovoltaic solar cell technologies. The next grand challenge is now the aspect of stability. The hydrophilicity and volatility of the organic methylammonium makes the work-horse material methylammonium lead iodide vulnerable to degradation through humidity and heat. Additionally, ultraviolet radiation and oxygen constitute stressors which can deteriorate the device performance. There are two fundamental strategies to increasing the device stability: developing protective layers around the vulnerable perovskite absorber and developing a more resilient perovskite absorber. The most important reports in literature are summarized and analyzed here, letting us conclude that any long-term stability, on par with that of inorganic thin-film technologies, is only possible with a more resilient perovskite incorporated in a highly protective device design.

  14. Structural Properties of Ferroelectric Perovskites

    National Research Council Canada - National Science Library

    Vanderbilt, David

    1998-01-01

    Under this research grant, we carried out realistic first-principles computer calculations of the ground-state and finite-temperature structural and dielectric properties of cubic perovskite materials...

  15. NREL Research Pushes Perovskites Closer to Market | News | NREL

    Science.gov (United States)

    even get close-to the above-20% efficiencies dominated by silicon solar panels. NREL researcher Kai Zhu ; Perovskites have a couple of major benefits over silicon solar panels. The silicon technology requires a high as excellent semiconductors. This means perovskite panels are more flexible than rigid silicon panels

  16. New W-and Mo-containing perovskites sythesized at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sevast' yanova, L G; Burdina, K P; Zubova, E V; Venevtsev, Yu N [Moskovskij Gosudarstvennyj Univ. (USSR); Nauchno-Issledovatel' skij Fiziko-Khimicheskij Inst., Moscow (USSR))

    1979-11-01

    The possibility of synthesizing complex oxide W and Mo-containing compounds having a perovskite structure is shown. The optimum synthesis conditions have been defined. Critical pressure Psub(cr) has been found to equal 70 kbar, above which the perovskite structure can still exist at room temperature. The ''pressure-temperature'' diagram was used to define the stability region of perovskite of Pb(HgMo)sub(1/2)Osub(3)composition, bound by pressure p=35 to 50 kbar and a temperature of 700 deg C.

  17. Preface for Special Topic: Perovskite solar cells—A research update

    Directory of Open Access Journals (Sweden)

    Lukas Schmidt-Mende

    2016-09-01

    Full Text Available Over the last few years, tremendous progress has been made in the research field of perovskite solar cells. Not only are record power conversion efficiencies now exceeding 20%, but our understanding about the different mechanisms leading to this extraordinary performance has improved phenomenally. The aim of this special issue is to review the current state-of-the-art understanding of perovskite solar cells. Most of the presented articles are research updates giving a succinct overview over different aspects concerning perovskite solar cells.

  18. Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets.

    Science.gov (United States)

    Tong, Yu; Ehrat, Florian; Vanderlinden, Willem; Cardenas-Daw, Carlos; Stolarczyk, Jacek K; Polavarapu, Lakshminarayana; Urban, Alexander S

    2016-12-27

    Perovskite nanocrystals (NCs) are an important extension to the fascinating field of hybrid halide perovskites. Showing significantly enhanced photoluminescence (PL) efficiency and emission wavelengths tunable through halide content and size, they hold great promise for light-emitting applications. Despite the rapid advancement in this field, the physical nature and size-dependent excitonic properties have not been well investigated due to the challenges associated with their preparation. Herein we report the spontaneous formation of highly luminescent, quasi-2D organic-inorganic hybrid perovskite nanoplatelets (NPls) upon dilution of a dispersion of bulk-like NCs. The fragmentation of the large NCs is attributed to osmotic swelling induced by the added solvent. An excess of organic ligands in the solvent quickly passivates the newly formed surfaces, stabilizing the NPls in the process. The thickness of the NPls can be controlled both by the dilution level and by the ligand concentration. Such colloidal NPls and their thin films were found to be extremely stable under continuous UV light irradiation. Full tunability of the NPl emission wavelength is achieved by varying the halide ion used (bromide, iodide). Additionally, time-resolved PL measurements reveal an increasing radiative decay rate with decreasing thickness of the NPls, likely due to an increasing exciton binding energy. Similarly, measurements on iodide-containing NPls show a transformation from biexponential to monoexponential PL decay with decreasing thickness, likely due to an increasing fraction of excitonic recombination. This interesting phenomenon of change in fluorescence upon dilution is a result of the intricate nature of the perovskite material itself and is uncommon in inorganic materials. Our findings enable the synthesis of halide perovskite NCs with high quantum efficiency and good stability as well as a tuning of both their optical and morphological properties.

  19. PbBr3 Perovskite Crystals

    KAUST Repository

    Wei, Tzu-Chiao

    2018-01-31

    Researchers have recently revealed that hybrid lead halide perovskites exhibit ferroelectricity, which is often associated with other physical characteristics, such as a large nonlinear optical response. In this work, the nonlinear optical properties of single crystal inorganic–organic hybrid perovskite CH3NH3PbBr3 are studied. By exciting the material with a 1044 nm laser, strong two-photon absorption-induced photoluminescence in the green spectral region is observed. Using the transmission open-aperture Z-scan technique, the values of the two-photon absorption coefficient are observed to be 8.5 cm GW−1, which is much higher than that of standard two-photon absorbing materials that are industrially used in nonlinear optical applications, such as lithium niobate (LiNbO3), LiTaO3, KTiOPO4, and KH2PO4. Such a strong two-photon absorption effect in CH3NH3PbBr3 can be used to modulate the spectral and spatial profiles of laser pulses, as well as to reduce noise, and can be used to strongly control the intensity of incident light. In this study, the superior optical limiting, pulse reshaping, and stabilization properties of CH3NH3PbBr3 are demonstrated, opening new applications for perovskites in nonlinear optics.

  20. Comparison of different advanced oxidation processes (AOPs) in the presence of perovskites

    International Nuclear Information System (INIS)

    Rivas, F.J.; Carbajo, M.; Beltran, F.; Gimeno, O.; Frades, J.

    2008-01-01

    The efficacy of the oxidation systems: O 3 , UV radiation, O 3 /UV radiation, O 3 /perovskite, UV radiation/perovskite, O 3 /UV radiation/perovskite, H 2 O 2 /UV radiation, H 2 O 2 /UV radiation/perovskite, has been investigated by using pyruvic acid as probe compound. Under the operating conditions used, the combination of UV radiation and hydrogen peroxide (with or without perovskites) leads to the fastest pyruvic acid removal while the best results in terms of mineralization degree are obtained when combining O 3 /UV radiation/perovskite. The effect of the variables: inlet ozone (15-75 mg L -1 ) and initial pyruvic acid (10 -3 to 10 -2 M) concentrations, catalyst load (0.01-1.5 g L -1 ) and pH (2-9) was investigated for the photocatalytic ozonation. The most influencing parameter was the ozone concentration fed to the photoreactor. A zero order was observed for pyruvic acid concentration and close to zero for catalyst load. Some deactivation is observed after reusing the catalyst, likely due to leaching of the active phase

  1. Materials Processing Routes to Trap-Free Halide Perovskites

    KAUST Repository

    Buin, Andrei

    2014-11-12

    © 2014 American Chemical Society. Photovoltaic devices based on lead iodide perovskite films have seen rapid advancements, recently achieving an impressive 17.9% certified solar power conversion efficiency. Reports have consistently emphasized that the specific choice of growth conditions and chemical precursors is central to achieving superior performance from these materials; yet the roles and mechanisms underlying the selection of materials processing route is poorly understood. Here we show that films grown under iodine-rich conditions are prone to a high density of deep electronic traps (recombination centers), while the use of a chloride precursor avoids the formation of key defects (Pb atom substituted by I) responsible for short diffusion lengths and poor photovoltaic performance. Furthermore, the lowest-energy surfaces of perovskite crystals are found to be entirely trap-free, preserving both electron and hole delocalization to a remarkable degree, helping to account for explaining the success of polycrystalline perovskite films. We construct perovskite films from I-poor conditions using a lead acetate precursor, and our measurement of a long (600 ± 40 nm) diffusion length confirms this new picture of the importance of growth conditions.

  2. Photoconducting hybrid perovskite containing carbazole moiety as the organic layer: Fabrication and characterization

    International Nuclear Information System (INIS)

    Deng Meng; Wu Gang; Cheng Siyuan; Wang Mang; Borghs, Gustaaf; Chen Hongzheng

    2008-01-01

    PbCl 2 -based thin films of perovskite structure with hole-transporting carbazole derivatives as the organic layer were successfully prepared by spin-coating from dimethylformamide solution containing stoichiometric amounts of organic and inorganic moieties. The crystal structure and optical property of the hybrid perovskite were characterized by Fourier transform infrared (FT-IR) spectrum, X-ray diffraction (XRD), UV-vis absorption and photoluminescence (PL). FT-IR spectra confirmed the formation of organic-inorganic hybrid perovskite structure. UV-vis spectra of hybrid perovskite thin films exhibited a wide absorption band in ultraviolet region as well as a sharp peak at 330 nm characteristic of PbCl 2 -based layered perovskite. X-ray diffraction profiles indicated that the layered structure was oriented parallel to the silica glass slide plane. Meanwhile, double-layer photoreceptors of the hybrid perovskite were also fabricated, which showed the enhancement of photoconductivity by carbazole chromophore

  3. Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%

    Science.gov (United States)

    Wu, Tongyue; Wu, Jihuai; Tu, Yongguang; He, Xin; Lan, Zhang; Huang, Miaoliang; Lin, Jianming

    2017-10-01

    The perovskite layer is the most crucial factor for the high performance perovskite solar cells. Based on solvent engineering, we develop a ternary-mixed-solvent method for the growth of high-quality [Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3] cation-anion-mixed perovskite films by introducing N-methyl-2-pyrrolidone (NMP) into the precursor mixed solution. By controlling rapid nucleation and retarding crystal growth via intermediate phase PbI2-NMP (Lewis acid-base adduct), a dense, large grain, pinhole-free and long charge carrier lifetime perovskite film is obtained. By optimizing the precursor solvent composition, the perovskite solar cell achieves an impressive power conversion efficiency of 19.61% under one-sun illumination. The research presented here provides a facile, low-cost and highly efficient way for the preparation of perovskite solar cells.

  4. All-inorganic inverse perovskite solar cells using zinc oxide nanocolloids on spin coated perovskite layer

    Science.gov (United States)

    Shibayama, Naoyuki; Kanda, Hiroyuki; Yusa, Shin-ichi; Fukumoto, Shota; Baranwal, Ajay K.; Segawa, Hiroshi; Miyasaka, Tsutomu; Ito, Seigo

    2017-07-01

    We confirmed the influence of ZnO nanoparticle size and residual water on performance of all inorganic perovskite solar cells. By decreasing the size of the ZnO nanoparticles, the short-circuit current density ( Jsc) and open circuit photovoltage ( Voc) values are increased and the conversion efficiency is improved. Although the Voc value is not affected by the influence of residual water in the solution for preparing the ZnO layer, the Jsc value drops greatly. As a result, it was found that it is important to use the oxide nanoparticles with a small particle diameter and to reduce the water content in the oxide forming material in order to manufacture a highly efficient all inorganic perovskite solar cells.

  5. Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells.

    Science.gov (United States)

    Huang, Fuzhi; Pascoe, Alexander R; Wu, Wu-Qiang; Ku, Zhiliang; Peng, Yong; Zhong, Jie; Caruso, Rachel A; Cheng, Yi-Bing

    2017-05-01

    The efficiencies of the hybrid organic-inorganic perovskite solar cells have been rapidly approaching the benchmarks held by the leading thin-film photovoltaic technologies. Arguably, one of the most important factors leading to this rapid advancement is the ability to manipulate the microstructure of the perovskite layer and the adjacent functional layers within the device. Here, an analysis of the nucleation and growth models relevant to the formation of perovskite films is provided, along with the effect of the perovskite microstructure (grain sizes and voids) on device performance. In addition, the effect of a compact or mesoporous electron-transport-layer (ETL) microstructure on the perovskite film formation and the optical/photoelectric properties at the ETL/perovskite interface are overviewed. Insight into the formation of the functional layers within a perovskite solar cell is provided, and potential avenues for further development of the perovskite microstructure are identified. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Perovskite structures in the formation of nano-rods in REBa2Cu3O7-δ films self-organization to perovskite structures

    International Nuclear Information System (INIS)

    Mukaida, Masashi; Kai, Hideki; Shingai, Yuki

    2009-01-01

    Cubic perovskite structure has been found to play an important role for the nano-rod formation in REBa 2 Cu 3 O 7-δ films. BaWO 4 , with a sheelite structure, and BaNb 2 O 6 , with a tungsten bronze structure, were doped into REBa 2 Cu 3 O 7-δ targets. Laser-deposited, these materials form nano-rods in REBa 2 Cu 3 O 7-δ films accompanied by Ln elements, resulting in the composition of a pseudo-cubic perovskite structure. This was confirmed by selected area electron diffraction patterns (SADP) and composition mapping using energy-dispersive X-ray spectroscopy scanning transmission electron microscope (EDS-STEM) analysis. BaWO 4 with a sheelite structure, and BaNb 2 O 6 with a tungsten bronze structure, doped into targets no longer retain their structures, but can form pseudo-cubic perovskite structures in laser-deposited REBa 2 Cu 3 O 7-δ films. The perovskite crystal structure is thought to be important for nano-rod formation in the laser deposited REBa 2 Cu 3 O 7-δ film. (author)

  7. Thermodynamic stability and kinetic dissolution of perovskite in natural waters

    International Nuclear Information System (INIS)

    Nesbitt, H.W.; Bancroft, G.M.; Fyfe, W.S.; Karkhanis, S.; Melling, P.; Nishijima, A.

    1981-01-01

    Ringwood and coworkers have recently proposed using titanates and zirconates as hosts for nuclear waste in the Synroc B process. Three minerals are used as hosts: perovskite (CaTiO 3 ), Ba-hollandite (BaAl 2 Ti 6 O 16 ), and zirconolite (CaZrTi 2 O 7 ). The Synroc philosophy relies heavily on geological and geochemical observations in selecting stable host minerals. Although it has been recognized that the Synroc minerals are not thermodynamically compatible with siliceous rocks, the minerals are considered to be thermodynamically stable in the presence of water, and it has been reported that these minerals are kinetically stable under high-temperature (up to 900 0 C) hydrothermal conditions. Detailed thermodynamic calculations and leach tests have been performed which demonstrate: first, that perovskite is thermodynamically unstable in all known natural waters; and second, that pervoskite leaches at a significant rate even at 100 0 C. Hydrothermal leach tests have been made on natural and synthetic perovskite and perovskite analogues between 100 0 C and 300 0 C. Weight losses and solution concentrations were monitored. The results reported previously in the literature also show that perovskite is kinetically unstable in the presence of common silicates. Our results show that perovskite may be no more stable than siliceous glasses, such as rhyolite, which have been studied previously. Geologic evidence from common alkaline rocks also indicates that hollandite and zirconolite probably will not survive in common rock matrices

  8. Anti-Solvent Crystallization Strategies for Highly Efficient Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Maria Konstantakou

    2017-09-01

    Full Text Available Solution-processed organic-inorganic halide perovskites are currently established as the hottest area of interest in the world of photovoltaics, ensuring low manufacturing cost and high conversion efficiencies. Even though various fabrication/deposition approaches and device architectures have been tested, researchers quickly realized that the key for the excellent solar cell operation was the quality of the crystallization of the perovskite film, employed to assure efficient photogeneration of carriers, charge separation and transport of the separated carriers at the contacts. One of the most typical methods in chemistry to crystallize a material is anti-solvent precipitation. Indeed, this classical precipitation method worked really well for the growth of single crystals of perovskite. Fortunately, the method was also effective for the preparation of perovskite films by adopting an anti-solvent dripping technique during spin-coating the perovskite precursor solution on the substrate. With this, polycrystalline perovskite films with pure and stable crystal phases accompanied with excellent surface coverage were prepared, leading to highly reproducible efficiencies close to 22%. In this review, we discuss recent results on highly efficient solar cells, obtained by the anti-solvent dripping method, always in the presence of Lewis base adducts of lead(II iodide. We present all the anti-solvents that can be used and what is the impact of them on device efficiencies. Finally, we analyze the critical challenges that currently limit the efficacy/reproducibility of this crystallization method and propose prospects for future directions.

  9. Effect of Perovskite Film Preparation on Performance of Solar Cells

    Directory of Open Access Journals (Sweden)

    Yaxian Pei

    2016-01-01

    Full Text Available For the perovskite solar cells (PSCs, the performance of the PSCs has become the focus of the research by improving the crystallization and morphology of the perovskite absorption layer. In this thesis, based on the structure of mesoporous perovskite solar cells (MPSCs, we designed the experiments to improve the photovoltaic performance of the PSCs by improved processing technique, which mainly includes the following two aspects. Before spin-coating PbI2 solution, we control the substrate temperature to modify the crystal quality and morphology of perovskite films. On the other hand, before annealing, we keep PbI2 films for the different drying time at room temperature to optimize films morphology. In our trials, it was found that the substrate temperature is more important in determining the photovoltaic performance than drying time. These results indicate that the crystallization and morphology of perovskite films affect the absorption intensity and obviously influence the short circuit current density of MPSCs. Utilizing films prepared by mentioning two methods, MPSCs with maximum power conversion efficiency of over 4% were fabricated for the active area of 0.5 × 0.5 cm2.

  10. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Yu Qiao

    2018-01-01

    Full Text Available Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research.

  11. Selective self-assembly and light emission tuning of layered hybrid perovskites on patterned graphene.

    Science.gov (United States)

    Guerra, Valentino L P; Kovaříček, Petr; Valeš, Václav; Drogowska, Karolina; Verhagen, Tim; Vejpravova, Jana; Horák, Lukáš; Listorti, Andrea; Colella, Silvia; Kalbáč, Martin

    2018-02-15

    The emission of light in two-dimensional (2-D) layered hybrid organic lead halide perovskites, namely (R-NH 3 ) 2 PbX 4 , can be effectively tuned using specific building blocks for the perovskite formation. Herein this behaviour is combined with a non-covalent graphene functionalization allowing excellent selectivity and spatial resolution of the perovskite film growth, promoting the formation of hybrid 2-D perovskite : graphene heterostructures with uniform coverage of up to centimeter scale graphene sheets and arbitrary shapes down to 5 μm. Using cryo-Raman microspectroscopy, highly resolved spectra of the perovskite phases were obtained and the Raman mapping served as a convenient spatially resolved technique for monitoring the distribution of the perovskite and graphene constituents on the substrate. In addition, the stability of the perovskite phase with respect to the thermal variation was inspected in situ by X-ray diffraction. Finally, time-resolved photoluminescence characterization demonstrated that the optical properties of the perovskite films grown on graphene are not hampered. Our study thus opens the door to smart fabrication routes for (opto)-electronic devices based on 2-D perovskites in contact with graphene with complex architectures.

  12. Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells.

    Science.gov (United States)

    Li, Minghua; Yan, Xiaoqin; Kang, Zhuo; Huan, Yahuan; Li, Yong; Zhang, Ruxiao; Zhang, Yue

    2018-06-06

    The major restraint for the commercialization of the high-performance hybrid metal halide perovskite solar cells is the long-term stability, especially at the infirm interface between the perovskite film and organic charge-transfer layer. Recently, engineering the interface between the perovskite and spiro-OMeTAD becomes an effective strategy to simultaneously improve the efficiency and stability in the perovskite solar cells. In this work, we demonstrated that introducing an interfacial polystyrene layer between the perovskite film and spiro-OMeTAD layer can effectively improve the perovskite solar cells photovoltaic performance. The inserted polystyrene layer can passivate the interface traps and defects effectively and decrease the nonradiative recombination, leading to enhanced photoluminescence intensity and carrier lifetime, without compromising the carrier extraction and transfer. Under the optimized condition, the perovskite solar cells with the polystyrene layer achieve an enhanced average power efficiency of about 19.61% (20.46% of the best efficiency) from about 17.63% with negligible current density-voltage hysteresis. Moreover, the optimized perovskite solar cells with the hydrophobic polystyrene layer can maintain about 85% initial efficiency after 2 months storage in open air conditions without encapsulation.

  13. On the Synthesis and Optical Characterization of Zero-Dimensional-Networked Perovskites

    KAUST Repository

    Almutlaq, Jawaher

    2017-04-26

    The three-dimensional perovskites are known for their wide range of interesting properties including spectral tunability, charge carrier mobility, solution-based synthesis and many others. Such properties make them good candidates for photovoltaics and photodetectors. Low-dimensional perovskites, on the other hand, are good as light emitters due to the quantum confinement originating from their nanoparticle size. Another class of low-dimensional perovskites, also called low-dimensional-networked perovskites (L-DN), is recently reemerging. Those interesting materials combine the advantages of the nanocrystals and the stability of the bulk. For example, zero-dimensional-networked perovskite (0-DN), a special class of perovskites and the focus of this work, consists of building blocks of isolated lead-halide octahedra that could be synthesized into mm-size single crystal without losing their confinement. This thesis focuses on the synthesis and investigation of the optical properties of the 0-DN perovskites through experimental, theoretical and computational tools. The recent discovery of the retrograde solubility of the perovskites family (ABX3), the basis of the inverse temperature crystallization (ITC), inspired the reinvestigation of the low-dimensional-networked perovskites. The results of the optical characterization showed that the absorption and the corresponding PL spectra were successfully tuned to cover the visible spectrum from 410 nm for Cs4PbCl6, to 520 nm and 700 m for Cs4PbBr6 and Cs4PbI6, respectively. Interestingly, the exciton binding energies (Eb) of the 0-DNs were found to be in the order of few hundred meV(s), at least five times larger than their three-dimensional counterpart. Such high Eb is coupled with a few nanoseconds lifetime and ultimately yielded a high photoluminesce quantum yield (PLQY). In fact, the PLQY of Cs4PbBr6 powder showed a record of 45%, setting a new benchmark for solid-state luminescent perovskites. Computational methods

  14. The influence of additives in the stoichiometry of hybrid lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Ignasi Burgués-Ceballos

    2017-11-01

    Full Text Available We investigate the employment of carefully selected solvent additives in the processing of a commercial perovskite precursor ink and analyze their impact on the performance of organometal trihalide perovskite (CH3NH3PbI3−xClx photovoltaic devices. We provide evidence that the use of benzaldehyde can be used as an effective method to preserve the stoichiometry of the perovskite precursors in solution. Benzaldehyde based additive engineering shows to improve perovskite solid state film morphology and device performance of CH3NH3PbI3−xClx based solar cells.

  15. Perovskites as electrodes of solid cells in sensitive elements of oxygen ion

    International Nuclear Information System (INIS)

    Gandurska, J.; Sniezynska, I.; Marek, A.; Szwagierczak, D.; Kulawik, J.

    1997-01-01

    The perovskite family comprises many compounds used in electronic applications. In this work perovskite materials based on LaCrO 3 were investigated, destined for electrodes of solid electrolyte oxygen sensors. lanthanum chromite powders modified by calcium, strontium and aluminium were prepared by the coprecipitation-calcination technique. The powders were examined using thermal analysis, x-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Introductory studies of electromotive force of oxygen cells with yttria stabilized zirconia as solid electrolyte and perovskite-based electrodes proved that it is possible to replace expensive Pt electrodes by much cheaper perovskite ones. (author)

  16. Ordered meso- and macroporous perovskite oxide catalysts for emerging applications

    DEFF Research Database (Denmark)

    Arandiyan, Hamidreza; Wang, Yuan; Sun, Hongyu

    2018-01-01

    This feature article summarizes the recent progress in porous perovskite oxides as advanced catalysts for both energy conversion applications and various heterogeneous reactions. Recently, research has been focused on specifically designing porous perovskite materials so that large surface areas ...

  17. Growth and Characterization of PDMS-Stamped Halide Perovskite Single Microcrystals

    NARCIS (Netherlands)

    Khoram, P.; Brittman, S.; Dzik, W.I.; Reek, J.N.H.; Garneett, E.C.

    2016-01-01

    Recently, halide perovskites have attracted considerable attention for optoelectronic applications, but further progress in this field requires a thorough understanding of the fundamental properties of these materials. Studying perovskites in their single-crystalline form provides a model system for

  18. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    Science.gov (United States)

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  19. Printable organometallic perovskite enables large-area, low-dose X-ray imaging

    Science.gov (United States)

    Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu

    2017-10-01

    Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGyair-1 cm-2) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.

  20. Printable organometallic perovskite enables large-area, low-dose X-ray imaging.

    Science.gov (United States)

    Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu

    2017-10-04

    Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGy air -1 cm -2 ) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.

  1. Compositionally Graded Absorber for Efficient and Stable Near-Infrared-Transparent Perovskite Solar Cells.

    Science.gov (United States)

    Fu, Fan; Pisoni, Stefano; Weiss, Thomas P; Feurer, Thomas; Wäckerlin, Aneliia; Fuchs, Peter; Nishiwaki, Shiro; Zortea, Lukas; Tiwari, Ayodhya N; Buecheler, Stephan

    2018-03-01

    Compositional grading has been widely exploited in highly efficient Cu(In,Ga)Se 2 , CdTe, GaAs, quantum dot solar cells, and this strategy has the potential to improve the performance of emerging perovskite solar cells. However, realizing and maintaining compositionally graded perovskite absorber from solution processing is challenging. Moreover, the operational stability of graded perovskite solar cells under long-term heat/light soaking has not been demonstrated. In this study, a facile partial ion-exchange approach is reported to achieve compositionally graded perovskite absorber layers. Incorporating compositional grading improves charge collection and suppresses interface recombination, enabling to fabricate near-infrared-transparent perovskite solar cells with power conversion efficiency of 16.8% in substrate configuration, and demonstrate 22.7% tandem efficiency with 3.3% absolute gain when mechanically stacked on a Cu(In,Ga)Se 2 bottom cell. Non-encapsulated graded perovskite device retains over 93% of its initial efficiency after 1000 h operation at maximum power point at 60 °C under equivalent 1 sun illumination. The results open an avenue in exploring partial ion-exchange to design graded perovskite solar cells with improved efficiency and stability.

  2. Compositionally Graded Absorber for Efficient and Stable Near‐Infrared‐Transparent Perovskite Solar Cells

    Science.gov (United States)

    Pisoni, Stefano; Weiss, Thomas P.; Feurer, Thomas; Wäckerlin, Aneliia; Fuchs, Peter; Nishiwaki, Shiro; Zortea, Lukas; Tiwari, Ayodhya N.

    2018-01-01

    Abstract Compositional grading has been widely exploited in highly efficient Cu(In,Ga)Se2, CdTe, GaAs, quantum dot solar cells, and this strategy has the potential to improve the performance of emerging perovskite solar cells. However, realizing and maintaining compositionally graded perovskite absorber from solution processing is challenging. Moreover, the operational stability of graded perovskite solar cells under long‐term heat/light soaking has not been demonstrated. In this study, a facile partial ion‐exchange approach is reported to achieve compositionally graded perovskite absorber layers. Incorporating compositional grading improves charge collection and suppresses interface recombination, enabling to fabricate near‐infrared‐transparent perovskite solar cells with power conversion efficiency of 16.8% in substrate configuration, and demonstrate 22.7% tandem efficiency with 3.3% absolute gain when mechanically stacked on a Cu(In,Ga)Se2 bottom cell. Non‐encapsulated graded perovskite device retains over 93% of its initial efficiency after 1000 h operation at maximum power point at 60 °C under equivalent 1 sun illumination. The results open an avenue in exploring partial ion‐exchange to design graded perovskite solar cells with improved efficiency and stability. PMID:29593970

  3. Perovskite-sensitized solar cells-based Ga-TiO2 nanodiatom-like photoanode: the improvement of performance by perovskite crystallinity refinement

    Science.gov (United States)

    Umar, Akrajas Ali; Al-She'irey, Altaf Yahya Ahmed; Rahman, Mohd Yusri Abd; Salleh, Muhamad Mat; Oyama, Munetaka

    2018-05-01

    The structure and crystallinity of the photoactive materials in solar cell determines the exciton formation, carrier's recombination, life-time and transportation in the devices. Here, we report that enhanced charge transportation, internal quantum efficiency and the carrier life-time can be achieved by modifying the structure, morphology of the organic perovskite thin film, enabling the improvement of the solar cell performance. The thin film structure modification was achieved via a thermal annealing in vacuum. In typical procedure, the power conversion efficiency of the PSC device can be upgraded from 0.5 to 2.9%, which is approximately 6 times increment, when the surface structure disorders are limited in the organic perovskite thin film. By optimizing the organic perovskite loading on the Ga-TiO2 diatom-like nanostructures photoanode and combining with a fine control of organic perovskite thin film structure, power conversion efficiency as high as 6.58% can be generated from the device. Electrochemical impedance spectroscopy and current-voltage analysis in the dark indicated that this process has effectively augmented the carrier life-time and limited the carrier recombination, enhancing the overall performance of the solar cell device. The preparation process and mechanism of the device performance improvement will be discussed.

  4. Interplay of Cation Ordering and Ferroelectricity in Perovskite Tin Iodides: Designing a Polar Halide Perovskite for Photovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Gaoyang; Young, Joshua; Liu, Xian; Rondinelli, James M.

    2016-09-28

    Owing to its ideal semiconducting band gap and good carrier transport properties, the fully inorganic perovskite CsSnI3 has been proposed as a visible-light absorber for photovoltaic (PV) applications. However, compared to the organic inorganic lead halide perovskite CH3NH3PbI3, CsSnI3 solar cells display very low energy conversion efficiency. In this work, we propose a potential route to improve the PV properties of CsSnI3. Using first-principles calculations, we examine the crystal structures and electronic properties of CsSnI3, including its structural polymorphs. Next, we purposefully order Cs and Rb cations on the A site to create the double perovskite (CsRb)Sn2I6. We find that a stable ferroelectric polarization arises from the nontrivial coupling between polar displacements and octahedral rotations of the SnI6 network. These ferroelectric double perovskites are predicted to have energy band gaps and carrier effective masses similar to those of CsSnI3. More importantly, unlike nonpolar CsSnI3, the electric polarization present in ferroelectric (CsRb)Sn2I6 can effectively separate the photoexcited carriers, leading to novel ferroelectric PV materials with,potentially enhanced energy conversion efficiency.

  5. Carbon nanotube charge collectors for nanoimprinted hybrid perovskite photovoltaics (Conference Presentation)

    Science.gov (United States)

    Zakhidov, Anvar A.; Haroldson, Ross; Saranin, Danila; Martinez, Patricia; Ishteev, Artur

    2017-06-01

    The hybrid (organo-inorganic) lead-halide perovskites revolutionized the field of solar cell research due to the impressive power conversion efficiencies of up to 21% recently reported in perovskite based solar cells. This talk will present first the general concepts of excitonic photovoltaics, as compared to conventional Si-type solar cells, asking a question: is hybrid perovskite PV an excitonic solar cell or not? Do we need excitons dissociation at D-A interfaces or CNT charge collectors? Then I will show our recent experimental results on the fast spectroscopy of excitons, magnetic field effect on generation of correlated (e-h) pairs. Also will discuss our Hall effect results, that allows to evaluate intrinsic charge carrier transport and direct measurements of mobility in these materials performed for the first time in steady-state dc transport regime. From these measurements, we have obtained the electron-hole recombination coefficient, the carrier diffusion length and lifetime. Our main results include the intrinsic Hall carrier mobility reaching up to 60 cm2V-1s-1 in perovskite single crystals, carrier lifetimes of up to 3 ms (surprisingly too long!), and carrier diffusion lengths as long as 650 μm (huge if compared to organic and even best inorganic materials). Our results also demonstrate that photocarrier recombination in these disordered solution-processed perovskites is as weak as in the best (high-purity single crystals) of conventional direct-band inorganic semiconductors. Moreover, as we show in our experiment, carrier trapping in perovskites is also strongly suppressed, which accounts for such long carrier lifetimes and diffusion lengths, significantly longer than similar parameters in the best inorganic semiconductors, such e.g. as GaAs. All these remarkable transport properties of hybrid perovskites need to be understood from fundamental physics point of view. Looks like we need some new concepts to explain the mysterious properties of

  6. Magnetic field effects in hybrid perovskite devices

    Science.gov (United States)

    Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.

    2015-05-01

    Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.

  7. Adsorption of molecular additive onto lead halide perovskite surfaces: A computational study on Lewis base thiophene additive passivation

    Science.gov (United States)

    Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa

    2018-06-01

    Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.

  8. Application of dopant-free hole transport materials for perovskite solar cells

    International Nuclear Information System (INIS)

    Franckevincius, M.; Gulbinas, V.; Gratzel, M.; Zakeeruddin, S.; Pauerle, P.; Mishra, A.; Steck, C.

    2015-01-01

    In this work we present the synthesis, characterization and application of a series of additive and dopant free hole transport materials (HTM) for solid-state perovskite-based solar cells. Newly synthesized HTMs showed strong absorption in the visible spectral range and suitable HOMO-LUMO energy levels for the application for methylammonium lead(II) iodide (CH_3NH_3PbI_3) perovskite. Dopant-free perovskite solar cells have been fabricated using CH_3NH_3PbI_3 perovskite and the newly synthesized HTMs following sequential deposition method, which allows us to reach power conversion efficiencies as high as 11.4 %. The easy of synthesis, low cost and relatively high performance of newly synthesized HTMs has great prospects for commercial applications in the near-future. (authors)

  9. Perovskites synthesis to SOFC anodes

    International Nuclear Information System (INIS)

    Wendler, L.P.; Chinelatto, A.L.; Chinelatto, A.S.A.; Ramos, K.

    2012-01-01

    Perovskite structure materials containing lanthanum have been widely applied as solid oxide fuel cells (SOFCs) electrodes, due to its electrical properties. Was investigated the obtain of the perovskite structure LaCr 0,5 Ni 0,5 O 3 , by Pechini method, and its suitability as SOFC anode. The choice of this composition was based on the stability provided by chromium and the catalytic properties of nickel. After preparing the resins, the samples were calcined at 300 deg C, 600 deg C, 700 deg C and 850 deg C. The resulting powders were characterized by X-ray diffraction to determine the existing phases. Furthermore, were performed other analysis, like X-ray fluorescence, He pycnometry, specific surface area by BET isotherm and scanning electronic microscopy (author)

  10. Luminescence and energy transfer processes in (Lu,Tb).sub.3./sub.Al.sub.5./sub.O.sub.12./sub. single crystalline films doped with Ce.sup.3+./sup.

    Czech Academy of Sciences Publication Activity Database

    Bartosiewicz, Karol; Babin, Vladimir; Nikl, Martin; Mareš, Jiří A.; Zorenko, Yu.; Gorbenko, V.

    2016-01-01

    Roč. 173, May (2016), s. 141-148 ISSN 0022-2313 R&D Projects: GA ČR GA16-15569S; GA ČR GAP204/12/0805 EU Projects: European Commission(XE) 316906 - LUMINET Institutional support: RVO:68378271 Keywords : lutetium terbium aluminum garnets * Ce 3+ * energy transfer * luminescence * single crystalline films Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.686, year: 2016

  11. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-04-01

    With the soaring advancement of organolead halide perovskite solar cells rising from a power conversion efficiency of merely 3% to more than 22% shortly in five years, researchers’ interests on this big material family have been greatly spurred. So far, both in-depth studies on the fundamental properties of organolead halide perovskites and their extended applications such as photodetectors, light emitting diodes, and lasing have been intensively reported. The great successes have been ascribed to various superior properties of organolead halide hybrid perovskites such as long carrier lifetimes, high carrier mobility, and solution-processable high quality thin films, as will be discussed in Chapter 1. Notably, most of these studies have been limited to their polycrystalline thin films. Single crystals, as a counter form of polycrystals, have no grain boundaries and higher crystallinity, and thus less defects. These characteristics gift single crystals with superior optical, electrical, and mechanical properties, which will be discussed in Chapter 2. For example, organolead halide perovskite single crystals have been reported with much longer carrier lifetimes and higher carrier mobilities, which are especially intriguing for optoelectronic applications. Besides their superior optoelectronic properties, organolead halide perovskites have shown large composition versatility, especially their organic components, which can be controlled to effectively adjust their crystal structures and further fundamental properties. Single crystals are an ideal platform for such composition-structure-property study since a uniform structure with homogeneous compositions and without distraction from grain boundaries as well as excess defects can provide unambiguously information of material properties. As a major part of work of this dissertation, explorative work on the composition-structure-property study of organic-cation-alloyed organolead halide perovskites using their single

  12. The Effect of Al on the Compressibility of Silicate Perovskite

    Science.gov (United States)

    Walter, M. J.; Kubo, A.; Yoshino, T.; Koga, K. T.; Ohishi, Y.

    2003-12-01

    Experimental data on compressibility of aluminous silicate perovskite show widely disparate results. Several studies show that Al causes a dramatic increase in compressibility1-3, while another study indicates a mild decrease in compressibility4. Here we report new results for the effect of Al on the room-temperature compressibility of perovskite using in situ X-ray diffraction in the diamond anvil cell from 30 to 100 GPa. We studied compressibility of perovskite in the system MgSiO3-Al2O3 in compositions with 0 to 25 mol% Al. Perovskite was synthesized from starting glasses using laser-heating in the DAC, with KBr as a pressure medium. Diffraction patterns were obtained using monochromatic radiation and an imaging plate detector at beamline BL10XU, SPring8, Japan. Addition of Al into the perovskite structure causes systematic increases in orthorhombic distortion and unit cell volume at ambient conditions (V0). Compression of the perovskite unit cell is anisotropic, with the a axis about 25% and 3% more compressive than the b and c axes, respectively. The magnitude of orthorhombic distortion increases with pressure, but aluminous perovskite remains stable to at least 100 GPa. Our results show that Al causes only a mild increase in compressibility, with the bulk modulus (K0) decreasing at a rate of 0.7 GPa/0.01 XAl. This increase in compressibility is consistent with recent ab initio calculations if Al mixes into both the 6- and 8-coordinated sites by coupled substitution5, where 2 Al3+ = Mg2+ + Si4+. Our results together with those of [4] indicate that this substitution mechanism predominates throughout the lower mantle. Previous mineralogic models indicating the upper and lower mantle are compositionally similar in terms of major elements remain effectively unchanged because solution of 5 mol% Al into perovskite has a minor effect on density. 1. Zhang & Weidner (1999). Science 284, 782-784. 2. Kubo et al. (2000) Proc. Jap. Acad. 76B, 103-107. 3. Daniel et al

  13. Stable perovskite solar cells by surface modification with surfactant molecules

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, Matheus Serra de; Nogueira, Ana Flavia, E-mail: mholandabsb@outlook.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica

    2016-07-01

    Full text: Surface modification on organic-inorganic perovskite films using dodecylammonium chloride was done to improve the stability of the material over the air moisture, which is considered extremely harmful to these materials and complicates their application on solar cell technology. Perovskite CH{sub 3}NH{sub 3}PbI{sub 3} was prepared by single step method using a solution containing PbI{sub 2} and CH{sub 3}NH{sub 3}I on DMF:DMSO (2:1) on a concentration of 0.88 mol L{sup -1}. The film was deposited over a planar film of TiO{sub 2}, previously deposited over FTO glass, by using spin-casting method. 25 μL of the solution was spread over the substrate which was turned at 4000 RPM for 45 s. In the last 10 s, 800 μL of monochlorobenzene was dropped. The film was submitted to a thermal treatment so the conversion of the perovskite could be completed. After the thermal treatment, the modifier was spin coated over the perovskite film from 5 and 10 mg mL{sup -1} solutions of the dodecylammonium chloride in chloroform. The perovskite films were characterized by SEM, XRD and UV-Vis spectroscopy. SEM images have shown that the modifiers agglomerate and they cover the perovskite film, forming a protection layer. XRD and UV-Vis carried out after the film preparation, 7 and 15 days after the deposition. The first results show that the protection layer is able to avoid degradation of the perovskite film. Photovoltaic devices were prepared by depositing Spiro-OMeTAD as HTM layer and gold as electrode. It was observed that the increase on the thickness of the surfactant layer causes a decrease on the short-circuit current density (JSC), which is expected since is starts to act like an insulating layer. This effect is also the cause of the reduction of the fill factor (FF). More experiments need to be carried out to improve the solar cells devices, but the present data has shown the potential of the method developed, which uses easy access surfactants and a simple

  14. Stable perovskite solar cells by surface modification with surfactant molecules

    International Nuclear Information System (INIS)

    Holanda, Matheus Serra de; Nogueira, Ana Flavia

    2016-01-01

    Full text: Surface modification on organic-inorganic perovskite films using dodecylammonium chloride was done to improve the stability of the material over the air moisture, which is considered extremely harmful to these materials and complicates their application on solar cell technology. Perovskite CH 3 NH 3 PbI 3 was prepared by single step method using a solution containing PbI 2 and CH 3 NH 3 I on DMF:DMSO (2:1) on a concentration of 0.88 mol L -1 . The film was deposited over a planar film of TiO 2 , previously deposited over FTO glass, by using spin-casting method. 25 μL of the solution was spread over the substrate which was turned at 4000 RPM for 45 s. In the last 10 s, 800 μL of monochlorobenzene was dropped. The film was submitted to a thermal treatment so the conversion of the perovskite could be completed. After the thermal treatment, the modifier was spin coated over the perovskite film from 5 and 10 mg mL -1 solutions of the dodecylammonium chloride in chloroform. The perovskite films were characterized by SEM, XRD and UV-Vis spectroscopy. SEM images have shown that the modifiers agglomerate and they cover the perovskite film, forming a protection layer. XRD and UV-Vis carried out after the film preparation, 7 and 15 days after the deposition. The first results show that the protection layer is able to avoid degradation of the perovskite film. Photovoltaic devices were prepared by depositing Spiro-OMeTAD as HTM layer and gold as electrode. It was observed that the increase on the thickness of the surfactant layer causes a decrease on the short-circuit current density (JSC), which is expected since is starts to act like an insulating layer. This effect is also the cause of the reduction of the fill factor (FF). More experiments need to be carried out to improve the solar cells devices, but the present data has shown the potential of the method developed, which uses easy access surfactants and a simple preparation method to improve the stability of

  15. Tackling pseudosymmetry problems in electron backscatter diffraction (EBSD) analyses of perovskite structures

    Science.gov (United States)

    Mariani, Elisabetta; Kaercher, Pamela; Mecklenburgh, Julian; Wheeler, John

    2016-04-01

    Perovskite minerals form an important mineral group that has applications in Earth science and emerging alternative energy technologies, however crystallographic quantification of these minerals with electron backscatter diffraction (EBSD) is not accurate due to pseudosymmetry problems. The silicate perovskite Bridgmanite, (Mg,Fe)SiO3, is understood to be the dominant phase in the Earth's lower mantle. Gaining insight into its physical and rheological properties is therefore vital to understand the dynamics of the Earth's deep interior. Rock deformation experiments on analogue perovskite phases, for example (Ca,Sr)TiO3, combined with quantitative microstructural analyses of the recovered samples by EBSD, yield datasets that can reveal what deformation mechanisms may dominate the flow of perovskite in the lower mantle. Additionally, perovskite structures have important technological applications as new, suitable cathodes for the operation of more efficient and environmentally-friendly solid oxide fuel cells (SOFC). In recent years they have also been recognised as a potential substitute for silicon in the next generation of photovoltaic cells for the construction of economic and energy efficient solar panels. EBSD has the potential to be a valuable tool for the study of crystal orientations achieved in perovskite substrates as crystal alignment has a direct control on the properties of these materials. However, perovskite structures currently present us with challenges during the automated indexing of Kikuchi bands in electron backscatter diffraction patterns (EBSPs). Such challenges are represented by the pseudosymmetric character of perovskites, where atoms are subtly displaced (0.005 nm to 0.05 nm) from their higher symmetry positions. In orthorhombic Pbnm perovskites, for example, pseudosymmetry may be evaluated from the c/a unit cell parameter ratio, which is very close to 1. Two main types of distortions from the higher symmetry structure are recognised: a

  16. Temperature Dependent Charge Carrier Dynamics in Formamidinium Lead Iodide Perovskite

    NARCIS (Netherlands)

    Gelvez Rueda, M.C.; Renaud, N.; Grozema, F.C.

    2017-01-01

    The fundamental opto-electronic properties of organic-inorganic hybrid perovskites are strongly affected by their structural parameters. These parameters are particularly critical in formamidinium lead iodide (FAPbI3), in which its large structural disorder leads to a non-perovskite

  17. Excitations Partition into Two Distinct Populations in Bulk Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lili [Department of Chemistry, The James Franck Institute, The Institute for Biophysical Dynamics, The University of Chicago, Chicago IL 60637 USA; Brawand, Nicholas P. [The Institute for Molecular Engineering, The University of Chicago, Chicago IL 60637 USA; Vörös, Márton [Materials Science Division, Argonne National Laboratory, Lemont IL 60439 USA; Dahlberg, Peter D. [Department of Chemistry, The James Franck Institute, The Institute for Biophysical Dynamics, The University of Chicago, Chicago IL 60637 USA; Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Otto, John P. [Department of Chemistry, The James Franck Institute, The Institute for Biophysical Dynamics, The University of Chicago, Chicago IL 60637 USA; Williams, Nicholas E. [Department of Chemistry, The James Franck Institute, The Institute for Biophysical Dynamics, The University of Chicago, Chicago IL 60637 USA; Tiede, David M. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Galli, Giulia [The Institute for Molecular Engineering, The University of Chicago, Chicago IL 60637 USA; Materials Science Division, Argonne National Laboratory, Lemont IL 60439 USA; Engel, Gregory S. [Department of Chemistry, The James Franck Institute, The Institute for Biophysical Dynamics, The University of Chicago, Chicago IL 60637 USA

    2018-01-09

    Organolead halide perovskites convert optical excitations to charge carriers with remarkable efficiency in optoelectronic devices. Previous research predominantly documents dynamics in perovskite thin films; however, extensive disorder in this platform may obscure the observed carrier dynamics. Here, carrier dynamics in perovskite single-domain single crystals is examined by performing transient absorption spectroscopy in a transmissive geometry. Two distinct sets of carrier populations that coexist at the same radiation fluence, but display different decay dynamics, are observed: one dominated by second-order recombination and the other by third-order recombination. Based on ab initio simulations, this observation is found to be most consistent with the hypothesis that free carriers and localized carriers coexist due to polaron formation. The calculations suggest that polarons will form in both CH3NH3PbBr3 and CH3NH3PbI3 crystals, but that they are more pronounced in CH3NH3PbBr3. Single-crystal CH3NH3PbBr3 could represent the key to understanding the impact of polarons on the transport properties of perovskite optoelectronic devices.

  18. Hybrid perovskite resulting from the solid-state reaction between the organic cations and perovskite layers of alpha1-(Br-(CH(2))(2)-NH(3))(2)PbI(4).

    Science.gov (United States)

    Sourisseau, Sebastien; Louvain, Nicolas; Bi, Wenhua; Mercier, Nicolas; Rondeau, David; Buzaré, Jean-Yves; Legein, Christophe

    2007-07-23

    The alpha1-(Br-(CH(2))(2)-NH(3))(2)PbI(4) hybrid perovskite undergoes a solid-state transformation, that is, the reaction between the organic cations and the perovskite layers to give the new hybrid perovskite (Br-(CH(2))(2)-NH(3))(2-x)(I-(CH(2))(2)-NH(3))(x)PbBr(x)I(4-x), based on mixed halide inorganic layers. This transformation has been followed by a conventional powder X-ray diffraction system equipped with a super speed detector, and both solid-state (13)C NMR and ESI/MS measurements have been adopted in the estimation of the rate of halide substitution. The first reaction step leads to the special composition of x approximately 1 (A phase), while the complete substitution is not achieved even at elevated temperature (x(max) approximately 1.85 (B phase)). This unprecedented solid-state reaction between organic and inorganic components of a hybrid perovskite can be considered as a completely new strategy to achieve interesting hybrid perovskites.

  19. p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.

    Science.gov (United States)

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-23

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  20. Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells

    Science.gov (United States)

    Chen, Peng; Jin, Zhixin; Wang, Yinglin; Wang, Meiqi; Chen, Shixin; Zhang, Yang; Wang, Lingling; Zhang, Xintong; Liu, Yichun

    2017-04-01

    Morphology of electron transport layers (ETLs) has an important influence on the device architecture and electronic processes of mesostructured solar cells. In this work, we thoroughly investigated the effect of the interspace of TiO2 nanorod (NR) arrays on the photovoltaic performance of the perovskite solar cells (PSCs). Along with the interspace in TiO2-NR arrays increasing, the thickness as well as the crystal size of perovskite capping layer are reduced accordingly, and the filling of perovskite in the channel becomes incomplete. Electrochemical impedance spectroscopy measurements reveal that this variation of perovskite absorber layer, induced by interspace of TiO2 NR arrays, causes the change of charge recombination process at the TiO2/perovskite interface, suggesting that a balance between capping layer and the perovskite filling is critical to obtain high charge collection efficiency of PSCs. A power conversion efficiency of 10.3% could be achieved through careful optimization of interspace in TiO2-NR arrays. Our research will shed light on the morphology control of ETLs with 1D structure for heterojunction solar cells fabricated by solution-deposited method.

  1. A Confined Fabrication of Perovskite Quantum Dots in Oriented MOF Thin Film.

    Science.gov (United States)

    Chen, Zheng; Gu, Zhi-Gang; Fu, Wen-Qiang; Wang, Fei; Zhang, Jian

    2016-10-26

    Organic-inorganic hybrid lead organohalide perovskites are inexpensive materials for high-efficiency photovoltaic solar cells, optical properties, and superior electrical conductivity. However, the fabrication of their quantum dots (QDs) with uniform ultrasmall particles is still a challenge. Here we use oriented microporous metal-organic framework (MOF) thin film prepared by liquid phase epitaxy approach as a template for CH 3 NH 3 PbI 2 X (X = Cl, Br, and I) perovskite QDs fabrication. By introducing the PbI 2 and CH 3 NH 3 X (MAX) precursors into MOF HKUST-1 (Cu 3 (BTC) 2 , BTC = 1,3,5-benzene tricarboxylate) thin film in a stepwise approach, the resulting perovskite MAPbI 2 X (X = Cl, Br, and I) QDs with uniform diameters of 1.5-2 nm match the pore size of HKUST-1. Furthermore, the photoluminescent properties and stability in the moist air of the perovskite QDs loaded HKUST-1 thin film were studied. This confined fabrication strategy demonstrates that the perovskite QDs loaded MOF thin film will be insensitive to air exposure and offers a novel means of confining the uniform size of the similar perovskite QDs according to the oriented porous MOF materials.

  2. Research progress on large-area perovskite thin films and solar modules

    Directory of Open Access Journals (Sweden)

    Zhichun Yang

    2017-12-01

    Full Text Available Organometal halide perovskites have exhibited a bright future as photovoltaic semiconductor in next generation solar cells due to their unique and promising physicochemical properties. Over the past few years, we have witnessed a tremendous progress of efficiency record evolution of perovskite solar cells (PSCs. Up to now, the highest efficiency record of PSCs has reached 22.1%; however, it was achieved at a very small device area of <0.1 cm2. With the device area increasing to mini-module scale, the efficiency record dropped dramatically. The inherent causes are mainly ascribed to inadequate quality control of large-area perovskite thin films and insufficient optimization of solar module design. In current stage of PSCs research and development, to overcome these two obstacles is in urgent need before this new technology could realize scale-up industrialization. Herein, we present an overview of recently developed strategies for preparing large-area perovskite thin films and perovskite solar modules (PSMs. At last, cost analysis and future application directions of PSMs have also been discussed.

  3. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  4. Synthesis and characterization of a-site doped LaTiO3 nano perovskites

    International Nuclear Information System (INIS)

    Bradha, M.; Ashok, Anuradha

    2013-01-01

    Nano-sized lanthanum titanate perovskites (La (1-x) A x TiO 3 ) (A= Ba, Sr, Ca) were prepared by sol-gel method and calcined at 800℃. The synthesised perovskites were characterized by Thermogravimetry/ Differential thermal analysis (TGA/DTA), X-ray diffraction (XRD) and High Resolution Transmission Electron Microscopy (HRTEM) etc. LaTiO 3 is a perovskite having prominent interest for a variety of applications such as dielectric, insulators, charge-transport properties etc. It is a defect perovskite, with transport properties varying from insulating to metallic based on oxygen stoichiometry. In a quest to observe the effect of the nano size on its properties, lanthanum titanate (LaTiO 3 ) nano perovskites with different dopants on the A-site were prepared by using sol-gel method. In the present work we discuss the synthesis and structural analysis of (La 0.8 A 0.2 TiO 3 ). Phase purity and structural analysis of the calcined samples were performed by powder X-ray diffraction (XRD, with CuKα radiation). In addition to this, morphology and crystal structure was examined by Transmission Electron Microscopy (TEM) using a JEOL JEM 2100 HRTEM. HRTEM studies indicate that the nano perovskites are of size around 20 nm. Ring pattern in SAED also confirms that the perovskite is polycrystalline/nanocrystalline. More detailed study on high resolution images and crystal structure shed light on the reason for the properties exhibited by this perovskites

  5. High-efficiency near-infrared enabled planar perovskite solar cells by embedding upconversion nanocrystals.

    Science.gov (United States)

    Meng, Fan-Li; Wu, Jiao-Jiao; Zhao, Er-Fei; Zheng, Yan-Zhen; Huang, Mei-Lan; Dai, Li-Ming; Tao, Xia; Chen, Jian-Feng

    2017-11-30

    Integration of the upconversion effect in perovskite solar cells (PSCs) is a facile approach towards extending the spectral absorption from the visible to the near infrared (NIR) range and reducing the non-absorption loss of solar photons. However, the big challenge for practical application of UCNCs in planar PSCs is the poor compatibility between UCNCs and the perovskite precursor. Herein, we have subtly overcome the tough compatibility issue using a ligand-exchange strategy. For the first time, β-NaYF 4 :Yb,Er UCNCs have been embedded in situ into a CH 3 NH 3 PbI 3 layer to fabricate NIR-enabled planar PSCs. The CH 3 NH 3 I-capped UCNCs generated from the ligand-exchange were mixed with the perovskite precursor and served as nucleation sites for the UCNC-mediated heteroepitaxial growth of perovskite; moreover, the in situ embedding of UCNCs into the perovskite layer was realized during a spin-coating process. The resulting UCNC-embedded perovskite layer attained a uniform pinhole-free morphology with enlarged crystal grains and enabled NIR absorption. It also contributed to the energy transfer from the UCNCs to the perovskite and electron transport to the collecting electrode surface. The device fabricated using the UCNC-embedded perovskite film achieved an average power-conversion efficiency of 18.60% (19.70% for the best) under AM 1.5G and 0.37% under 980 nm laser, corresponding to 54% and 740-fold increase as compared to that of its counterpart without UCNCs.

  6. Broadband enhancement of photoluminance from colloidal metal halide perovskite nanocrystals on plasmonic nanostructured surfaces.

    Science.gov (United States)

    Zhang, Si; Liang, Yuzhang; Jing, Qiang; Lu, Zhenda; Lu, Yanqing; Xu, Ting

    2017-11-07

    Metal halide perovskite nanocrystals (NCs) as a new kind of promising optoelectronic material have attracted wide attention due to their high photoluminescence (PL) quantum yield, narrow emission linewidth and wideband color tunability. Since the PL intensity always has a direct influence on the performance of optoelectronic devices, it is of vital importance to improve the perovskite NCs' fluorescence emission efficiency. Here, we synthesize three inorganic perovskite NCs and experimentally demonstrate a broadband fluorescence enhancement of perovskite NCs by exploiting plasmonic nanostructured surface consisting of nanogrooves array. The strong near-field optical localization associated with surface plasmon polariton-coupled emission effect generated by the nanogrooves array can significantly boost the absorption of perovskite NCs and tailor the fluorescence emissions. As a result, the PL intensities of perovskite NCs are broadband enhanced with a maximum factor higher than 8-fold achieved in experimental demonstration. Moreover, the high efficiency PL of perovskite NCs embedded in the polymer matrix layer on the top of plasmonic nanostructured surface can be maintained for more than three weeks. These results imply that plasmonic nanostructured surface is a good candidate to stably broadband enhance the PL intensity of perovskite NCs and further promote their potentials in the application of visible-light-emitting devices.

  7. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 30-09-2014 to 29-09-2015 4. TITLE AND SUBTITLE The Oxidation Products of Aluminum ...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT

  8. Aluminum Hydroxide

    Science.gov (United States)

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  9. Resistance switching memory in perovskite oxides

    International Nuclear Information System (INIS)

    Yan, Z.B.; Liu, J.-M.

    2015-01-01

    The resistance switching behavior has recently attracted great attentions for its application as resistive random access memories (RRAMs) due to a variety of advantages such as simple structure, high-density, high-speed and low-power. As a leading storage media, the transition metal perovskite oxide owns the strong correlation of electrons and the stable crystal structure, which brings out multifunctionality such as ferroelectric, multiferroic, superconductor, and colossal magnetoresistance/electroresistance effect, etc. The existence of rich electronic phases, metal–insulator transition and the nonstoichiometric oxygen in perovskite oxide provides good platforms to insight into the resistive switching mechanisms. In this review, we first introduce the general characteristics of the resistance switching effects, the operation methods and the storage media. Then, the experimental evidences of conductive filaments, the transport and switching mechanisms, and the memory performances and enhancing methods of perovskite oxide based filamentary RRAM cells have been summarized and discussed. Subsequently, the switching mechanisms and the performances of the uniform RRAM cells associating with the carrier trapping/detrapping and the ferroelectric polarization switching have been discussed. Finally, the advices and outlook for further investigating the resistance switching and enhancing the memory performances are given

  10. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.

    2017-03-02

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making organometallic halide perovskite monocrystalline film, and the like.

  11. Highly Efficient and Stable Sn-Rich Perovskite Solar Cells by Introducing Bromine.

    Science.gov (United States)

    Lee, Seojun; Kang, Dong-Won

    2017-07-12

    Compositional engineering of recently arising methylammonium (MA) lead (Pb) halide based perovskites is an essential approach for finding better perovskite compositions to resolve still remaining issues of toxic Pb, long-term instability, etc. In this work, we carried out crystallographic, morphological, optical, and photovoltaic characterization of compositional MASn 0.6 Pb 0.4 I 3-x Br x by gradually introducing bromine (Br) into parental Pb-Sn binary perovskite (MASn 0.6 Pb 0.4 I 3 ) to elucidate its function in Sn-rich (Sn:Pb = 6:4) perovskites. We found significant advances in crystallinity and dense coverage of the perovskite films by inserting the Br into Sn-rich perovskite lattice. Furthermore, light-intensity-dependent open circuit voltage (V oc ) measurement revealed much suppressed trap-assisted recombination for a proper Br-added (x = 0.4) device. These contributed to attaining the unprecedented power conversion efficiency of 12.1% and V oc of 0.78 V, which are, to the best of our knowledge, the highest performance in the Sn-rich (≥60%) perovskite solar cells reported so far. In addition, impressive enhancement of photocurrent-output stability and little hysteresis were found, which paves the way for the development of environmentally benign (Pb reduction), stable monolithic tandem cells using the developed low band gap (1.24-1.26 eV) MASn 0.6 Pb 0.4 I 3-x Br x with suggested composition (x = 0.2-0.4).

  12. Conformal Organohalide Perovskites Enable Lasing on Spherical Resonators

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-28

    © 2014 American Chemical Society. Conformal integration of semiconductor gain media is broadly important in on-chip optical communication technology. Here we deploy atomic layer deposition to create conformally deposited organohalide perovskites-an attractive semiconducting gain medium-with the goal of achieving coherent light emission on spherical optical cavities. We demonstrate the high quality of perovskite gain media fabricated with this method, achieving optical gain in the nanosecond pulse regime with a threshold for amplified spontaneous emission of 65 ± 8 μJ cm-2. Through variable stripe length measurements, we report a net modal gain of 125 ± 22 cm-1 and a gain bandwidth of 50 ± 14 meV. Leveraging the high quality of the gain medium, we conformally coat silica microspheres with perovskite to form whispering gallery mode optical cavities and achieve lasing.

  13. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Science.gov (United States)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3 NH3 PbBr3 ) and all-inorganic (CsPbBr3 ) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3 .

  14. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3NH3PbBr3) and all-inorganic (CsPbBr3) leadhalide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-tohead Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3.

  15. Decreasing the electronic confinement in layered perovskites through intercalation.

    Science.gov (United States)

    Smith, Matthew D; Pedesseau, Laurent; Kepenekian, Mikaël; Smith, Ian C; Katan, Claudine; Even, Jacky; Karunadasa, Hemamala I

    2017-03-01

    We show that post-synthetic small-molecule intercalation can significantly reduce the electronic confinement of 2D hybrid perovskites. Using a combined experimental and theoretical approach, we explain structural, optical, and electronic effects of intercalating highly polarizable molecules in layered perovskites designed to stabilize the intercalants. Polarizable molecules in the organic layers substantially alter the optical and electronic properties of the inorganic layers. By calculating the spatially resolved dielectric profiles of the organic and inorganic layers within the hybrid structure, we show that the intercalants afford organic layers that are more polarizable than the inorganic layers. This strategy reduces the confinement of excitons generated in the inorganic layers and affords the lowest exciton binding energy for an n = 1 perovskite of which we are aware. We also demonstrate a method for computationally evaluating the exciton's binding energy by solving the Bethe-Salpeter equation for the exciton, which includes an ab initio determination of the material's dielectric profile across organic and inorganic layers. This new semi-empirical method goes beyond the imprecise phenomenological approximation of abrupt dielectric-constant changes at the organic-inorganic interfaces. This work shows that incorporation of polarizable molecules in the organic layers, through intercalation or covalent attachment, is a viable strategy for tuning 2D perovskites towards mimicking the reduced electronic confinement and isotropic light absorption of 3D perovskites while maintaining the greater synthetic tunability of the layered architecture.

  16. Structural origins of broadband emission from layered Pb-Br hybrid perovskites.

    Science.gov (United States)

    Smith, Matthew D; Jaffe, Adam; Dohner, Emma R; Lindenberg, Aaron M; Karunadasa, Hemamala I

    2017-06-01

    Through structural and optical studies of a series of two-dimensional hybrid perovskites, we show that broadband emission upon near-ultraviolet excitation is common to (001) lead-bromide perovskites. Importantly, we find that the relative intensity of the broad emission correlates with increasing out-of-plane distortion of the Pb-(μ-Br)-Pb angle in the inorganic sheets. Temperature- and power-dependent photoluminescence data obtained on a representative (001) perovskite support an intrinsic origin to the broad emission from the bulk material, where photogenerated carriers cause excited-state lattice distortions mediated through electron-lattice coupling. In contrast, most inorganic phosphors contain extrinsic emissive dopants or emissive surface sites. The design rules established here could allow us to systematically optimize white-light emission from layered hybrid perovskites by fine-tuning the bulk crystal structure.

  17. Hysteresis data of planar perovskite solar cells fabricated with different solvents.

    Science.gov (United States)

    Seo, You-Hyun; Kim, Eun-Chong; Cho, Se-Phin; Kim, Seok-Soon; Na, Seok-In

    2018-02-01

    In this data article, we introduced the hysteresis of planar perovskite solar cells (PSCs) fabricated using dimethylformamide (DMF), gamma-butyrolactone (GBL), methyl-2-pyrrolidinone (NMP), dimethylsulfoxide (DMSO), DMF-DMSO, GBL-DMSO and NMP-DMSO as perovskite precursor solutions according to different scan directions, sweep times, and current stability. The hysteresis analyses of the planar PSCs prepared with a glass-ITO /NiO X /perovskite /PC 61 BM/BCP/Ag configuration were measured with Keithley 2400 source meter unit under 100 mW/cm 2 (AM 1.5 G). The data collected in this article compares the hysteresis of PSCs with different solvents and is directly related to our research article "High-Performance Planar Perovskite Solar Cells: Influence of Solvent upon Performance" (You-Hyun Seo et al., 2017 [1]).

  18. Hysteresis data of planar perovskite solar cells fabricated with different solvents

    Directory of Open Access Journals (Sweden)

    You-Hyun Seo

    2018-02-01

    Full Text Available In this data article, we introduced the hysteresis of planar perovskite solar cells (PSCs fabricated using dimethylformamide (DMF, gamma-butyrolactone (GBL, methyl-2-pyrrolidinone (NMP, dimethylsulfoxide (DMSO, DMF-DMSO, GBL-DMSO and NMP-DMSO as perovskite precursor solutions according to different scan directions, sweep times, and current stability. The hysteresis analyses of the planar PSCs prepared with a glass-ITO /NiOX/perovskite /PC61BM/BCP/Ag configuration were measured with Keithley 2400 source meter unit under 100 mW/cm2 (AM 1.5 G. The data collected in this article compares the hysteresis of PSCs with different solvents and is directly related to our research article “High-Performance Planar Perovskite Solar Cells: Influence of Solvent upon Performance” (You-Hyun Seo et al., 2017 [1].

  19. Non-hydrolytic metal oxide films for perovskite halide overcoating and stabilization

    Science.gov (United States)

    Martinson, Alex B.; Kim, In Soo

    2017-09-26

    A method of protecting a perovskite halide film from moisture and temperature includes positioning the perovskite halide film in a chamber. The chamber is maintained at a temperature of less than 200 degrees Celsius. An organo-metal compound is inserted into the chamber. A non-hydrolytic oxygen source is subsequently inserted into the chamber. The inserting of the organo-metal compound and subsequent inserting of the non-hydrolytic oxygen source into the chamber is repeated for a predetermined number of cycles. The non-hydrolytic oxygen source and the organo-metal compound interact in the chamber to deposit a non-hydrolytic metal oxide film on perovskite halide film. The non-hydrolytic metal oxide film protects the perovskite halide film from relative humidity of greater than 35% and a temperature of greater than 150 degrees Celsius, respectively.

  20. Effect of thermal-convection-induced defects on the performance of perovskite solar cells

    Science.gov (United States)

    Ye, Fei; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Tang, Wentao; Chen, Han; Yang, Xudong; Han, Liyuan

    2017-07-01

    Thermal-convection-induced defects can cause huge loss in the power conversion efficiency of solution-processed perovskite solar cells. We investigated two types of convection in perovskite solution during the formation of perovskite films. By balancing the convection via special configurations of surface tension and boiling point in mixed γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO), we removed microscopic defects such as rings, bumps, and crevices. The deposited perovskite films were smooth and dense, which enabled a high power conversion efficiency of 17.7% in a 1 cm2 cell area. We believe that the present strategy for controlling the convection can be helpful in improving the perovskite film quality for solvent-rich scalable solution processes of solar cells such as doctor blading, soft-cover deposition, printing, and slot-die coating.

  1. Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells

    Science.gov (United States)

    Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho

    2018-03-01

    Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p- i- n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.

  2. Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance

    Science.gov (United States)

    2017-01-01

    This Perspective outlines basic structural and optical properties of lead halide perovskite colloidal nanocrystals, highlighting differences and similarities between them and conventional II–VI and III–V semiconductor quantum dots. A detailed insight into two important issues inherent to lead halide perovskite nanocrystals then follows, namely, the advantages of defect tolerance and the necessity to improve their stability in environmental conditions. The defect tolerance of lead halide perovskites offers an impetus to search for similar attributes in other related heavy metal-free compounds. We discuss the origins of the significantly blue-shifted emission from CsPbBr3 nanocrystals and the synthetic strategies toward fabrication of stable perovskite nanocrystal materials with emission in the red and infrared parts of the optical spectrum, which are related to fabrication of mixed cation compounds guided by Goldschmidt tolerance factor considerations. We conclude with the view on perspectives of use of the colloidal perovskite nanocrystals for applications in backlighting of liquid-crystal TV displays. PMID:28920080

  3. The Role of Surface Tension in the Crystallization of Metal Halide Perovskites

    KAUST Repository

    Zhumekenov, Ayan A.

    2017-07-06

    The exciting intrinsic properties discovered in single crystals of metal halide perovskites still await their translation into optoelectronic devices. The poor understanding and control of the crystallization process of these materials are current bottlenecks retarding the shift towards single crystal-based optoelectronics. Here we theoretically and experimentally elucidate the role of surface tension in the rapid synthesis of perovskite single crystals by inverse temperature crystallization (ITC). Understanding the nucleation and growth mechanisms enabled us to exploit surface tension to direct the growth of monocrystalline films of perovskites (AMX3, where A = CH3NH3+ or MA; M = Pb2+, Sn2+; X = Br-, I-) on the solution surface. We achieve up to 1 cm2-sized monocrystalline films with thickness on the order of the charge carrier diffusion length (~5-10 µm). Our work paves the way to control the crystallization process of perovskites, including thin film deposition, which is essential to advance the performance benchmarks of perovskite optoelectronics.

  4. Research Update: Luminescence in lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Ajay Ram Srimath Kandada

    2016-09-01

    Full Text Available Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  5. Partial oxidation of 2-propanol on perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Sumathi, R.; Viswanathan, B.; Varadarajan, T.K. [Indian Inst. of Tech., Madras (India). Dept. of Chemistry

    1998-12-31

    Partial oxidation of 2-propanol was carried out on AB{sub 1-x}B`{sub x}O{sub 3} (A=Ba, B=Pb, Ce, Ti; B`=Bi, Sb and Cu) type perovskite oxides. Acetone was the major product observed on all the catalysts. All the catalysts underwent partial reduction during the reaction depending on the composition of the reactant, nature of the B site cation and the extent of substitution at B site. The catalytic activity has been correlated with the reducibility of the perovskite oxides determined from Temperature Programmed Reduction (TPR) studies. (orig.)

  6. Synthesis of active absorber layer by dip-coating method for perovskite solar cell

    Science.gov (United States)

    Singh, Rahul; Noor, I. M.; Singh, Pramod K.; Bhattacharya, B.; Arof, A. K.

    2018-04-01

    In this paper, we develop the hybrid perovskite-based n-i-p solar cell using a simple, fast and low-cost dip-coating method. Hot solution and the pre-annealed substrate are used for coating the perovskite thin film by this method this is further used for studying its structural and electrical properties. UV-vis spectroscopy is carried out for calculating the band gap of the hybrid perovskite layer which is ∼1.6 eV. X-ray spectroscopy confirms that the formation of hybrid perovskite layer. The profilometer is used to study the surface roughness and also for measuring the thickness of the perovskite layer with varying substrate temperature. The optimized sample was further used for cross-sectional SEM image to verify the thickness measured from the profiler. The electrical parameter of JV characteristic with varying temperature is tabulated in the table. Whereas, the perovskite sensitized solar cell exhibits highest short circuit current density, Jsc of 11 mA cm-2, open circuit voltage, Voc of 0.87 V, fill factor of 0.55 and efficiency, η of >5%.

  7. Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing

    KAUST Repository

    Saidaminov, Makhsud I.

    2017-03-03

    Low-dimensional-networked (low-DN) perovskite derivatives are bulk quantum materials in which charge carriers are localized within ordered metal halide sheets, rods, or clusters that are separated by cationic lattices. After two decades of hibernation, this class of semiconductors reemerged in the past two years, largely catalyzed by the interest in alternative, more stable absorbers to CH3NH3PbI3-type perovskites in photovoltaics. Whether low-DN perovskites will surpass other photovoltaic technologies remains to be seen, but their impressively high photo- and electroluminescence yields have already set new benchmarks in light emission applications. Here we offer our perspective on the most exciting advances in materials design of low-DN perovskites for energy- and optoelectronic-related applications. The next few years will usher in an explosive growth in this tribe of quantum materials, as only a few members have been synthesized, while the potential library of compositions and structures is believed to be much larger and is yet to be discovered.

  8. Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor.

    Science.gov (United States)

    Wu, Zhongwei; Bai, Sai; Xiang, Jian; Yuan, Zhongcheng; Yang, Yingguo; Cui, Wei; Gao, Xingyu; Liu, Zhuang; Jin, Yizheng; Sun, Baoquan

    2014-09-21

    Graphene oxide (GO) is employed as a hole conductor in inverted planar heterojunction perovskite solar cells, and the devices with CH₃NH₃PbI₃-xClx as absorber achieve an efficiency of over 12%. The perovskite film grown on GO exhibits enhanced crystallization, high surface coverage ratio as well as preferred in-plane orientation of the (110) plane. Efficient hole extraction from the perovskite to GO is demonstrated.

  9. 300% Enhancement of Carrier Mobility in Uniaxial-Oriented Perovskite Films Formed by Topotactic-Oriented Attachment.

    Science.gov (United States)

    Kim, Dong Hoe; Park, Jaehong; Li, Zhen; Yang, Mengjin; Park, Ji-Sang; Park, Ik Jae; Kim, Jin Young; Berry, Joseph J; Rumbles, Garry; Zhu, Kai

    2017-06-01

    Organic-inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large-grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single-crystal counterparts. Here, a facile topotactic-oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial-crystallographic texture, micrometer-grain morphology, high crystallinity, low trap density (≈4 × 10 14 cm -3 ), and unprecedented 9 GHz charge-carrier mobility (71 cm 2 V -1 s -1 ), is demonstrated. TOA-perovskite-based n-i-p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse-scan efficiency (19.7%). The TOA process is also applicable for growing other state-of-the-art perovskite alloys, including triple-cation and mixed-halide perovskites. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Is the Aluminum Hypothesis Dead?

    Science.gov (United States)

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  11. On the luminescence of perovskite type rare earth gallates

    International Nuclear Information System (INIS)

    Jianmei, Y.; Qingyuan, W.; Shuzhen, L.; Lianren, S.; Mingyu, C.

    1985-01-01

    It has been reported that perovskite type lanthanum gallates may be a good host material for laser and luminescence, but in the rare earth gallates studied, the numbers of perovskite type are less than that of the garnet type and there is less report on their spectroscopic properties in the literature. In this paper synthesis and spectroscopic properties of these compounds are studied

  12. Final Report: Scintillator Materials for Medical Applications, December 1, 1997 - November 30, 1999

    International Nuclear Information System (INIS)

    Lempicki, A.; Brecher, C.; Wojtowicz, A.J.; Szupryczynski, P.

    2000-01-01

    From the very beginning of our program we regarded the understanding of the scintillation mechanism as our primary mission. If in addition this understanding could lead to the discovery of a new material, so much the better. When we began this work some nine years ago, the theoretical basis for the scintillation phenomenon was in disarray. The initial and final steps were reasonably well characterized, but there was no consensus on the crucial intermediate, the transfer of energy from the lattice to the emitting center. In the over 40 publications that resulted from this program, we demonstrated that despite the highly insulating nature of the hosts and the great magnitude of the band gap, the primary means of transport is through mobile charge carriers and their sequential capture by the emitting center. Although radical at the time, this picture is now generally accepted throughout the field. Subsequently, we also recognized the critical role that trapping centers localized at lattice defects can play in the process, not merely as passive sources of loss but as active participants in the kinetics. In this sense shallow traps can wreak more havoc than deep ones, impeding the rate by which carriers can reach the emitting centers and seriously slowing the resulting decay. And we established low-temperature thermoluminescence as a comprehensive tool for quantizing these effects. As for new and better materials, our work also had an impact. We were among the first to recognize the potential of LuAlO 3 (lutetium aluminum perovskite, or LuAP) as a detector for PET applications. Although this material has not supplanted LuSiO 5 (lutetium oxysilicate, or LSO) in terms of light output or absence of afterglow, LuAP still exhibits by far the highest figure of merit (light output divided by decay time) of any scintillator material currently known. Our work has also bought into stark view the dismaying realization of just how improbable it is that a material will ever be found

  13. Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design.

    Science.gov (United States)

    Saparov, Bayrammurad; Mitzi, David B

    2016-04-13

    Although known since the late 19th century, organic-inorganic perovskites have recently received extraordinary research community attention because of their unique physical properties, which make them promising candidates for application in photovoltaic (PV) and related optoelectronic devices. This review will explore beyond the current focus on three-dimensional (3-D) lead(II) halide perovskites, to highlight the great chemical flexibility and outstanding potential of the broader class of 3-D and lower dimensional organic-based perovskite family for electronic, optical, and energy-based applications as well as fundamental research. The concept of a multifunctional organic-inorganic hybrid, in which the organic and inorganic structural components provide intentional, unique, and hopefully synergistic features to the compound, represents an important contemporary target.

  14. Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices.

    Science.gov (United States)

    Manjappa, Manukumara; Srivastava, Yogesh Kumar; Solanki, Ankur; Kumar, Abhishek; Sum, Tze Chien; Singh, Ranjan

    2017-08-01

    The recent meteoric rise in the field of photovoltaics with the discovery of highly efficient solar-cell devices is inspired by solution-processed organic-inorganic lead halide perovskites that exhibit unprecedented light-to-electricity conversion efficiencies. The stunning performance of perovskites is attributed to their strong photoresponsive properties that are thoroughly utilized in designing excellent perovskite solar cells, light-emitting diodes, infrared lasers, and ultrafast photodetectors. However, optoelectronic application of halide perovskites in realizing highly efficient subwavelength photonic devices has remained a challenge. Here, the remarkable photoconductivity of organic-inorganic lead halide perovskites is exploited to demonstrate a hybrid perovskite-metamaterial device that shows extremely low power photoswitching of the metamaterial resonances in the terahertz part of the electromagnetic spectrum. Furthermore, a signature of a coupled phonon-metamaterial resonance is observed at higher pump powers, where the Fano resonance amplitude is extremely weak. In addition, a low threshold, dynamic control of the highly confined electric field intensity is also observed in the system, which could tremendously benefit the new generation of subwavelength photonic devices as active sensors, low threshold optically controlled lasers, and active nonlinear devices with enhanced functionalities in the infrared, optical, and the terahertz parts of the electromagnetic spectrum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Studies on perovskite film ablation and scribing with ns-, ps- and fs-laser pulses

    Science.gov (United States)

    Bayer, Lukas; Ye, Xinyuan; Lorenz, Pierre; Zimmer, Klaus

    2017-10-01

    Hybrid organic-inorganic perovskites attract much attention due to their exceptional optoelectronic properties, in particular for photovoltaic (PV) applications. The accurate, high-speed and reliable patterning of the PV films is required for perovskite solar modules fabrication. Laser scribing provides these characteristics needed for industrial fabrication processes. In this work, the laser ablation and scribing of perovskite layers (CH3NH3PbI3: MAPbI3) with different laser sources (ns-, ps-, fs-laser pulses with wavelengths of 248 nm to 2.5 µm) were systematically investigated. The perovskite material was irradiated from both the film side and the substrate (rear side) side to study and compare the particular processes. The patterning results of the perovskite film can be classified into (1) regular laser ablation, (2) thin-film delamination lift-off process, and (3) lift-off with thermal modifications. A particular process, the localised lift-off of single grains from the perovskite film, has been observed and is discussed in relation to the thin-film lift-off process. Ablation and ablation-related mechanisms provide good conditions for laser scribing of the perovskite layer required for module interconnection via P2.

  16. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,376] Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood Forge Division; Currently Known As Contech Forgings, LLC..., applicable to workers of Kaiser Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division...

  17. The effect of zinc on the aluminum anode of the aluminum-air battery

    Science.gov (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  18. DFT +U Modeling of Hole Polarons in Organic Lead Halide Perovskites

    Science.gov (United States)

    Welch, Eric; Erhart, Paul; Scolfaro, Luisa; Zakhidov, Alex

    Due to the ever present drive towards improved efficiencies in solar cell technology, new and improved materials are emerging rapidly. Organic halide perovskites are a promising prospect, yet a fundamental understanding of the organic perovskite structure and electronic properties is missing. Particularly, explanations of certain physical phenomena, specifically a low recombination rate and high mobility of charge carriers still remain controversial. We theoretically investigate possible formation of hole polarons adopting methodology used for oxide perovskites. The perovskite studied here is the ABX3structure, with A being an organic cation, B lead and C a halogen; the combinations studied allow for A1,xA2 , 1 - xBX1,xX2 , 3 - xwhere the alloy convention is used to show mixtures of the organic cations and/or the halogens. Two organic cations, methylammonium and formamidinium, and three halogens, iodine, chlorine and bromine are studied. Electronic structures and polaron behavior is studied through first principle density functional theory (DFT) calculations using the Vienna Ab Initio Simulation Package (VASP). Local density approximation (LDA) pseudopotentials are used and a +U Hubbard correction of 8 eV is added; this method was shown to work with oxide perovskites. It is shown that a localized state is realized with the Hubbard correction in systems with an electron removed, residing in the band gap of each different structure. Thus, hole polarons are expected to be seen in these perovskites.

  19. Laser post-processing of halide perovskites for enhanced photoluminescence and absorbance

    Science.gov (United States)

    Tiguntseva, E. Y.; Saraeva, I. N.; Kudryashov, S. I.; Ushakova, E. V.; Komissarenko, F. E.; Ishteev, A. R.; Tsypkin, A. N.; Haroldson, R.; Milichko, V. A.; Zuev, D. A.; Makarov, S. V.; Zakhidov, A. A.

    2017-11-01

    Hybrid halide perovskites have emerged as one of the most promising type of materials for thin-film photovoltaic and light-emitting devices. Further boosting their performance is critically important for commercialization. Here we use femtosecond laser for post-processing of organo-metalic perovskite (MAPbI3) films. The high throughput laser approaches include both ablative silicon nanoparticles integration and laser-induced annealing. By using these techniques, we achieve strong enhancement of photoluminescence as well as useful light absorption. As a result, we observed experimentally 10-fold enhancement of absorbance in a perovskite layer with the silicon nanoparticles. Direct laser annealing allows for increasing of photoluminescence over 130%, and increase absorbance over 300% in near-IR range. We believe that the developed approaches pave the way to novel scalable and highly effective designs of perovskite based devices.

  20. The efficiency limit of CH3NH3PbI3 perovskite solar cells

    International Nuclear Information System (INIS)

    Sha, Wei E. I.; Ren, Xingang; Chen, Luzhou; Choy, Wallace C. H.

    2015-01-01

    With the consideration of photon recycling effect, the efficiency limit of methylammonium lead iodide (CH 3 NH 3 PbI 3 ) perovskite solar cells is predicted by a detailed balance model. To obtain convincing predictions, both AM 1.5 spectrum of Sun and experimentally measured complex refractive index of perovskite material are employed in the detailed balance model. The roles of light trapping and angular restriction in improving the maximal output power of thin-film perovskite solar cells are also clarified. The efficiency limit of perovskite cells (without the angular restriction) is about 31%, which approaches to Shockley-Queisser limit (33%) achievable by gallium arsenide (GaAs) cells. Moreover, the Shockley-Queisser limit could be reached with a 200 nm-thick perovskite solar cell, through integrating a wavelength-dependent angular-restriction design with a textured light-trapping structure. Additionally, the influence of the trap-assisted nonradiative recombination on the device efficiency is investigated. The work is fundamentally important to high-performance perovskite photovoltaics

  1. Modified titanate perovskites in photocatalytic water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Wlodarczak, M.; Ludwiczak, M.; Laniecki, M. [A. Mickiewicz Univ. (Poland)

    2010-07-01

    Received materials have structure of perovskite, what was shown by XRD diffraction patterns. Perovskite structure is present in all samples with strontium, barium and one sample with calcium. Moreover, received barium and strontium titanate are very similar to pattern materials. XRD results show, that temperature 500 C is too low to create perovskite structure in CaTiO{sub 3}. However, it is high enough in case of SrTiO{sub 3} and BaTiO{sub 3}. One regularity is obvious, surface area increases for samples calcined in lower temperature. There is a connection between surface area and dispersion of platinum. Both of them reach the greatest value to the calcium titanate. Catalytic activity was shown by all of received samples. Measurable values were received to samples calcined in 700 C. Calcium titanate had the best catalytic activity, both an amount of hydrogen and a ratio of hydrogen to platinum. There is one regularity to all samples, the ration of hydrogen to platinum increase when amount of platinum decrease. (orig.)

  2. Lutetium-177 DOTATATE Production with an Automated Radiopharmaceutical Synthesis System.

    Science.gov (United States)

    Aslani, Alireza; Snowdon, Graeme M; Bailey, Dale L; Schembri, Geoffrey P; Bailey, Elizabeth A; Pavlakis, Nick; Roach, Paul J

    2015-01-01

    Peptide Receptor Radionuclide Therapy (PRRT) with yttrium-90 ((90)Y) and lutetium-177 ((177)Lu)-labelled SST analogues are now therapy option for patients who have failed to respond to conventional medical therapy. In-house production with automated PRRT synthesis systems have clear advantages over manual methods resulting in increasing use in hospital-based radiopharmacies. We report on our one year experience with an automated radiopharmaceutical synthesis system. All syntheses were carried out using the Eckert & Ziegler Eurotope's Modular-Lab Pharm Tracer® automated synthesis system. All materials and methods used were followed as instructed by the manufacturer of the system (Eckert & Ziegler Eurotope, Berlin, Germany). Sterile, GMP-certified, no-carrier added (NCA) (177)Lu was used with GMP-certified peptide. An audit trail was also produced and saved by the system. The quality of the final product was assessed after each synthesis by ITLC-SG and HPLC methods. A total of 17 [(177)Lu]-DOTATATE syntheses were performed between August 2013 and December 2014. The amount of radioactive [(177)Lu]-DOTATATE produced by each synthesis varied between 10-40 GBq and was dependant on the number of patients being treated on a given day. Thirteen individuals received a total of 37 individual treatment administrations in this period. There were no issues and failures with the system or the synthesis cassettes. The average radiochemical purity as determined by ITLC was above 99% (99.8 ± 0.05%) and the average radiochemical purity as determined by HPLC technique was above 97% (97.3 ± 1.5%) for this period. The automated synthesis of [(177)Lu]-DOTATATE using Eckert & Ziegler Eurotope's Modular-Lab Pharm Tracer® system is a robust, convenient and high yield approach to the radiolabelling of DOTATATE peptide benefiting from the use of NCA (177)Lu and almost negligible radiation exposure of the operators.

  3. Uniform Luminous Perovskite Nanofibers with Color-Tunability and Improved Stability Prepared by One-Step Core/Shell Electrospinning.

    Science.gov (United States)

    Tsai, Ping-Chun; Chen, Jung-Yao; Ercan, Ender; Chueh, Chu-Chen; Tung, Shih-Huang; Chen, Wen-Chang

    2018-04-30

    A one-step core/shell electrospinning technique is exploited to fabricate uniform luminous perovskite-based nanofibers, wherein the perovskite and the polymer are respectively employed in the core and the outer shell. Such a coaxial electrospinning technique enables the in situ formation of perovskite nanocrystals, exempting the needs of presynthesis of perovskite quantum dots or post-treatments. It is demonstrated that not only the luminous electrospun nanofibers can possess color-tunability by simply tuning the perovskite composition, but also the grain size of the formed perovskite nanocrystals is largely affected by the perovskite precursor stoichiometry and the polymer solution concentration. Consequently, the optimized perovskite electrospun nanofiber yields a high photoluminescence quantum yield of 30.9%, significantly surpassing the value of its thin-film counterpart. Moreover, owing to the hydrophobic characteristic of shell polymer, the prepared perovskite nanofiber is endowed with a high resistance to air and water. Its photoluminescence intensity remains constant while stored under ambient environment with a relative humidity of 85% over a month and retains intensity higher than 50% of its initial intensity while immersed in water for 48 h. More intriguingly, a white light-emitting perovskite-based nanofiber is successfully fabricated by pairing the orange light-emitting compositional perovskite with a blue light-emitting conjugated polymer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Towards printed perovskite solar cells with cuprous oxide hole transporting layers

    DEFF Research Database (Denmark)

    Wang, Yan; Xia, Zhonggao; Liang, Jun

    2015-01-01

    Solution-processed p-type metal oxide materials have shown great promise in improving the stability of perovskite-based solar cells and offering the feasibility for a low cost printing fabrication process. Herein, we performed a device modeling study on planar perovskite solar cells with cuprous...... oxide (Cu2O) hole transporting layers (HTLs) by using a solar cell simulation program, wxAMPS. The performance of a Cu2O/perovskite solar cell was correlated to the material properties of the Cu2O HTL, such as thickness, carrier mobility, mid-gap defect, and doping...

  5. Broadly tunable metal halide perovskites for solid-state light-emission applications

    NARCIS (Netherlands)

    Adjokatse, Sampson; Fang, Hong-Hua; Loi, Maria Antonietta

    2017-01-01

    The past two years have witnessed heightened interest in metal-halide perovskites as promising optoelectronic materials for solid-state light emitting applications beyond photovoltaics. Metal-halide perovskites are low-cost solution-processable materials with excellent intrinsic properties such as

  6. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  7. Aluminum fin-stock alloys

    International Nuclear Information System (INIS)

    Gul, R.M.; Mutasher, F.

    2007-01-01

    Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)

  8. One-Step Printable Perovskite Films Fabricated under Ambient Conditions for Efficient and Reproducible Solar Cells.

    Science.gov (United States)

    Jung, Yen-Sook; Hwang, Kyeongil; Heo, Youn-Jung; Kim, Jueng-Eun; Lee, Donmin; Lee, Cheol-Ho; Joh, Han-Ik; Yeo, Jun-Seok; Kim, Dong-Yu

    2017-08-23

    Despite the potential of roll-to-roll processing for the fabrication of perovskite films, the realization of highly efficient and reproducible perovskite solar cells (PeSCs) through continuous coating techniques and low-temperature processing is still challenging. Here, we demonstrate that efficient and reliable CH 3 NH 3 PbI 3 (MAPbI 3 ) films fabricated by a printing process can be achieved through synergetic effects of binary processing additives, N-cyclohexyl-2-pyrrolidone (CHP) and dimethyl sulfoxide (DMSO). Notably, these perovskite films are deposited from premixed perovskite solutions for facile one-step processing under a room-temperature and ambient atmosphere. The CHP molecules result in the uniform and homogeneous perovskite films even in the one-step slot-die system, which originate from the high boiling point and low vapor pressure of CHP. Meanwhile, the DMSO molecules facilitate the growth of perovskite grains by forming intermediate states with the perovskite precursor molecules. Consequently, fully printed PeSC based on the binary additive system exhibits a high PCE of 12.56% with a high reproducibility.

  9. Interface Engineering and Morphology Study of Thin Film Organic-Inorganic Halide Perovskite Optoelectronic Devices

    Science.gov (United States)

    Meng, Lei

    Solar energy harvesting through photovoltaic conversion has gained great attention as a sustainable and environmentally friendly solution to meet the rapidly increasing global energy demand. Currently, the high cost of solar-cell technology limits its widespread use. This situation has generated considerable interest in developing alternative solar-cell technologies that reduce cost through the use of less expensive materials and processes. Perovskite solar cells provide a promising low-cost technology for harnessing this energy source. In Chapter two, a moisture-assist method is introduced and studied to facilitate grain growth of solution processed perovskite films. As an approach to achieve high-quality perovskite films, I anneal the precursor film in a humid environment (ambient air) to dramatically increase grain size, carrier mobility, and charge carrier lifetime, thus improving electrical and optical properties and enhancing photovoltaic performance. It is revealed that mild moisture has a positive effect on perovskite film formation, demonstrating perovskite solar cells with 17.1% power conversion efficiency. Later on, in Chapter four, an ultrathin flexible device delivering a PCE of 14.0% is introduced. The device is based on silver-mesh substrates exhibiting superior durability against mechanical bending. Due to their low energy of formation, organic lead iodide perovskites are also susceptible to degradation in moisture and air. The charge transport layer therefore plays a key role in protecting the perovskite photoactive layer from exposure to such environments, thus achieving highly stable perovskite-based photovoltaic cells. Although incorporating organic charge transport layers can provide high efficiencies and reduced hysteresis, concerns remain regarding device stability and the cost of fabrication. In this work, perovskite solar cells that have all solution-processed metal oxide charge transport layers were demonstrated. Stability has been

  10. High-Resolution Spin-on-Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array.

    Science.gov (United States)

    Lee, Woongchan; Lee, Jongha; Yun, Huiwon; Kim, Joonsoo; Park, Jinhong; Choi, Changsoon; Kim, Dong Chan; Seo, Hyunseon; Lee, Hakyong; Yu, Ji Woong; Lee, Won Bo; Kim, Dae-Hyeong

    2017-10-01

    Inorganic-organic hybrid perovskite thin films have attracted significant attention as an alternative to silicon in photon-absorbing devices mainly because of their superb optoelectronic properties. However, high-definition patterning of perovskite thin films, which is important for fabrication of the image sensor array, is hardly accomplished owing to their extreme instability in general photolithographic solvents. Here, a novel patterning process for perovskite thin films is described: the high-resolution spin-on-patterning (SoP) process. This fast and facile process is compatible with a variety of spin-coated perovskite materials and perovskite deposition techniques. The SoP process is successfully applied to develop a high-performance, ultrathin, and deformable perovskite-on-silicon multiplexed image sensor array, paving the road toward next-generation image sensor arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Light-trapping in perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Qing Guo Du

    2016-06-01

    Full Text Available We numerically demonstrate enhanced light harvesting efficiency in both CH3NH3PbI3 and CH(NH22PbI3-based perovskite solar cells using inverted vertical-cone photonic-crystal nanostructures. For CH3NH3PbI3 perovskite solar cells, the maximum achievable photocurrent density (MAPD reaches 25.1 mA/cm2, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm2 and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60 degree for both S- and P- polarizations. For the corresponding CH(NH22PbI3 based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm2, corresponding to 95.4% of the total available photocurrent. The projected power conversion efficiency of the CH(NH22PbI3 based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.

  12. Large polarons in lead halide perovskites

    Science.gov (United States)

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3− frameworks, irrespective of the cation type. The difference lies in the polaron formation time, which, in CH3NH3PbBr3 (0.3 ps), is less than half of that in CsPbBr3 (0.7 ps). First-principles calculations confirm large polaron formation, identify the Pb-Br-Pb deformation modes as responsible, and explain quantitatively the rate difference between CH3NH3PbBr3 and CsPbBr3. The findings reveal the general advantage of the soft [PbX3]− sublattice in charge carrier protection and suggest that there is likely no mechanistic limitations in using all-inorganic or mixed-cation lead halide perovskites to overcome instability problems and to tune the balance between charge carrier protection and mobility. PMID:28819647

  13. Large-Grain Tin-Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Fan, Zhiyong

    2018-03-01

    Fast research progress on lead halide perovskite solar cells has been achieved in the past a few years. However, the presence of lead (Pb) in perovskite composition as a toxic element still remains a major issue for large-scale deployment. In this work, a novel and facile technique is presented to fabricate tin (Sn)-rich perovskite film using metal precursors and an alloying technique. Herein, the perovskite films are formed as a result of the reaction between Sn/Pb binary alloy metal precursors and methylammonium iodide (MAI) vapor in a chemical vapor deposition process carried out at 185 °C. It is found that in this approach the Pb/Sn precursors are first converted to (Pb/Sn)I 2 and further reaction with MAI vapor leads to the formation of perovskite films. By using Pb-Sn eutectic alloy, perovskite films with large grain sizes up to 5 µm can be grown directly from liquid phase metal. Consequently, using an alloying technique and this unique growth mechanism, a less-toxic and efficient perovskite solar cell with a power conversion efficiency (PCE) of 14.04% is demonstrated, while pure Sn and Pb perovskite solar cells prepared in this manner yield PCEs of 4.62% and 14.21%, respectively. It is found that this alloying technique can open up a new direction to further explore different alloy systems (binary or ternary alloys) with even lower melting point. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A numerical model for charge transport and energy conversion of perovskite solar cells.

    Science.gov (United States)

    Zhou, Yecheng; Gray-Weale, Angus

    2016-02-14

    Based on the continuity equations and Poisson's equation, we developed a numerical model for perovskite solar cells. Due to different working mechanisms, the model for perovskite solar cells differs from that of silicon solar cells and Dye Sensitized Solar Cells. The output voltage and current are calculated differently, and in a manner suited in particular to perovskite organohalides. We report a test of our equations against experiment with good agreement. Using this numerical model, it was found that performances of solar cells increase with charge carrier's lifetimes, mobilities and diffusion lengths. The open circuit voltage (Voc) of a solar cell is dependent on light intensities, and charge carrier lifetimes. Diffusion length and light intensity determine the saturated current (Jsc). Additionally, three possible guidelines for the design and fabrication of perovskite solar cells are suggested by our calculations. Lastly, we argue that concentrator perovskite solar cells are promising.

  15. Grain engineering by ultrasonic substrate vibration post-treatment of wet perovskite films for annealing-free, high performance, and stable perovskite solar cells.

    Science.gov (United States)

    Xiong, Hao; Zabihi, Fatemeh; Wang, Hongzhi; Zhang, Qinghong; Eslamian, Morteza

    2018-05-10

    Perovskite solar cells (PSCs) have gained great interest, owing to a fast increase in their power conversion efficiency (PCE), within a few years. However, their wide application and scale-up are hampered due to multiple obstacles, such as chemical instability, which leads to a short lifetime, and their complicated reaction and crystallization, which requires thermal annealing. Here, we address these issues using the ultrasonic substrate vibration post treatment (SVPT) applied on the as-spun perovskite wet films, so as to achieve a uniform, microscale and stable mixed-halide and mixed-cation perovskite layer, (FAPbI3)0.85(MAPbBr3)0.15, without the need for a conventional thermal annealing step. This is achieved by the creation of fluid micromixing and in situ annealing within the solution, caused by the ultrasonic excitation of the wet film. The optoelectronic properties of the perovskite films subjected to the SVPT, including photoemission, carrier lifetime and band gap, are remarkably improved compared to the conventionally annealed films. When incorporated into a planar PSC, a maximum PCE of 18.55% was achieved, compared to 15.17% for the control device, with high reproducibility and no hysteresis, and the device retained 80% of its initial PCE, over a period of 20 days of storage under ambient conditions.

  16. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.

    Science.gov (United States)

    Zhang, Dandan; Eaton, Samuel W; Yu, Yi; Dou, Letian; Yang, Peidong

    2015-07-29

    Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites.

  17. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    Science.gov (United States)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  18. Nucleation and Crystal Growth of Organic-Inorganic Lead Halide Perovskites under Different Relative Humidity.

    Science.gov (United States)

    Gao, Hao; Bao, Chunxiong; Li, Faming; Yu, Tao; Yang, Jie; Zhu, Weidong; Zhou, Xiaoxin; Fu, Gao; Zou, Zhigang

    2015-05-06

    Organic-inorganic lead halide perovskite compounds are very promising materials for high-efficiency perovskite solar cells. But how to fabricate high-quality perovksite films under controlled humidity conditions is still an important issue due to their sensitivity to moisture. In this study, we investigated the influence of ambient humidity on crystallization and surface morphology of one-step spin-coated perovskite films, as well as the performance of solar cells based on these perovskite films. On the basis of experimental analyses and thin film growth theory, we conclude that the influence of ambient humidity on nucleation at spin-coating stage is quite different from that on crystal growth at annealing stage. At the spin-coating stage, high nucleation density induced by high supersaturation prefers to appear under anhydrous circumstances, resulting in layer growth and high coverage of perovskite films. But at the annealing stage, the modest supersaturation benefits formation of perovskite films with good crystallinity. The films spin-coated under low relative humidity (RH) followed by annealing under high RH show an increase of crystallinity and improved performance of devices. Therefore, a mechanism of fast nucleation followed by modest crystal growth (high supersaturation at spin-coating stage and modest supersaturation at annealing stage) is suggested in the formation of high-quality perovskite films.

  19. Crystalline orientation dependent photoresponse and heterogeneous behaviors of grain boundaries in perovskite solar cells

    Science.gov (United States)

    Jiang, Chuanpeng; Zhang, Pengpeng

    2018-02-01

    Using photoconductive atomic force microscopy and Kelvin probe force microscopy, we characterize the local electrical properties of grains and grain boundaries of organic-inorganic hybrid perovskite (CH3NH3PbI3) thin films on top of a poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS)/ITO substrate. Three discrete photoconductivity levels are identified among perovskite grains, likely corresponding to the crystal orientation of each grain. Local J-V curves recorded on these grains further suggest an anti-correlation behavior between the short circuit current (JSC) and open circuit voltage (VOC). This phenomenon can be attributed to diffusion-limited surface recombination at the non-selective perovskite-tip contact, where a higher carrier mobility established in the perovskite grain results in an enhanced surface recombination and thus a lower VOC. In addition, the photoresponse of perovskite films displays a pronounced heterogeneity across the grain boundaries, with the boundaries formed between grains of the same photoconductivity level displaying even enhanced photocurrent and open circuit voltage compared to those of the adjacent grain interiors. These observations highlight the significance of controlling the microstructure of perovskite thin films, which will be a necessary route for further improving the efficiency of perovskite solar cells.

  20. Magnetoresistance stories of double perovskites

    Indian Academy of Sciences (India)

    grain surfaces have also been proposed to act as tunnel barriers in Sr2FeMoO6. ... these double perovskites, a gradual decrease in the low-field MR and saturation ... simultaneously, and therefore serious material engineering was needed.

  1. Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells

    KAUST Repository

    Haque, Mohammed

    2017-07-10

    Over the past few years, hybrid halide perovskites have emerged as a highly promising class of materials for photovoltaic technology, and the power conversion efficiency of perovskite solar cells (PSCs) has accelerated at an unprecedented pace, reaching a record value of over 22%. In the context of PSC research, wide-bandgap semiconducting metal oxides have been extensively studied because of their exceptional performance for injection and extraction of photo-generated carriers. In this comprehensive review, we focus on the synthesis and applications of metal oxides as electron and hole transporters in efficient PSCs with both mesoporous and planar architectures. Metal oxides and their doped variants with proper energy band alignment with halide perovskites, in the form of nanostructured layers and compact thin films, can not only assist with charge transport but also improve the stability of PSCs under ambient conditions. Strategies for the implementation of metal oxides with tailored compositions and structures, and for the engineering of their interfaces with perovskites will be critical for the future development and commercialization of PSCs.

  2. Development of Scintillators in Nuclear Medicine

    International Nuclear Information System (INIS)

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce “lutetium aluminum garnet activated by cerium” CRY018 “CRY019” lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality

  3. Development of Scintillators in Nuclear Medicine.

    Science.gov (United States)

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce "lutetium aluminum garnet activated by cerium" CRY018 "CRY019" lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality.

  4. Light-Responsive Ion-Redistribution-Induced Resistive Switching in Hybrid Perovskite Schottky Junctions

    KAUST Repository

    Guan, Xinwei; Hu, Weijin; Haque, Mohammed; Wei, Nini; Liu, Zhixiong; Chen, Aitian; Wu, Tao

    2017-01-01

    Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite-based resistive switching (RS

  5. Two-Dimensional Lead Halide Perovskites Templated by a Conjugated Asymmetric Diammonium.

    Science.gov (United States)

    Hautzinger, Matthew P; Dai, Jun; Ji, Yujin; Fu, Yongping; Chen, Jie; Guzei, Ilia A; Wright, John C; Li, Youyong; Jin, Song

    2017-12-18

    We report novel two-dimensional lead halide perovskite structures templated by a unique conjugated aromatic dication, N,N-dimethylphenylene-p-diammonium (DPDA). The asymmetrically substituted primary and tertiary ammoniums in DPDA facilitate the formation of two-dimensional network (2DN) perovskite structures incorporating a conjugated dication between the PbX 4 2- (X = Br, I) layers. These 2DN structures of (DPDA)PbI 4 and (DPDA)PbBr 4 were characterized by single-crystal X-ray diffraction, showing uniquely low distortions in the Pb-X-Pb bond angle for 2D perovskites. The Pb-I-Pb bond angle is very close to ideal (180°) for a 2DN lead iodide perovskite, which can be attributed to the ability of the rigid diammonium DPDA to insert into the PbX 6 2- octahedral pockets. Optical characterization of (DPDA)PbI 4 shows an excitonic absorption peak at 2.29 eV (541 nm), which is red-shifted in comparison to similar 2DN lead iodide structures. Temperature-dependent photoluminescence of both compounds reveals both a self-trapped exciton and free exciton emission feature. The reduced exciton absorption energy and emission properties are attributed to the dication-induced structural order of the inorganic PbX 4 2- layers. DFT calculation results suggest mixing of the conjugated organic orbital component in the valence band of these 2DN perovskites. These results demonstrate a rational new strategy to incorporate conjugated organic dications into hybrid perovskites and will spur spectroscopic investigations of these compounds as well as optoelectronic applications.

  6. Perovskite phase thin films and method of making

    Science.gov (United States)

    Boyle, Timothy J.; Rodriguez, Mark A.

    2000-01-01

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  7. Silver copper fluoride: A novel perovskite cathode for lithium batteries

    Science.gov (United States)

    Tong, Wei; Amatucci, Glenn G.

    2017-09-01

    An electrochemically active nanostructured silver copper fluoride (SCF) perovskite, AgCuF3, was synthesized via a mechanochemical reaction between AgF and CuF2 precursors. Phase composition and electrochemical properties of the SCF perovskites produced under various synthetic parameters were studied. The optimum SCF perovskite sample exhibited an appreciable electrochemical performance through the use of conductive carbon matrix in a primary lithium half cell. A high specific capacity of 270 mAh g-1 was achieved at a cutoff voltage of 2 V with 190 mAh g-1 above 3 V, leading to a total volumetric energy density of 3666 Wh L-1 at >3 V and 4848 Wh L-1 at >2 V.

  8. Mechanism of biphasic charge recombination and accumulation in TiO2 mesoporous structured perovskite solar cells.

    Science.gov (United States)

    Wang, Hao-Yi; Wang, Yi; Yu, Man; Han, Jun; Guo, Zhi-Xin; Ai, Xi-Cheng; Zhang, Jian-Ping; Qin, Yujun

    2016-04-28

    Organic-inorganic halide perovskite solar cells are becoming the next big thing in the photovoltaic field owing to their rapidly developing photoelectric conversion performance. Herein, mesoporous structured perovskite devices with various perovskite grain sizes are fabricated by a sequential dropping method, and the charge recombination dynamics is investigated by transient optical-electric measurements. All devices exhibit an overall power conversion efficiency around 15%. More importantly, a biphasic trap-limited charge recombination process is proposed and interpreted by taking into account the specific charge accumulation mechanism in perovskite solar cells. At low Fermi levels, photo-generated electrons predominately populate in the perovskite phase, while at high Fermi levels, most electrons occupy traps in mesoporous TiO2. As a result, the dynamics of charge recombination is, respectively, dominated by the perovskite phase and mesoporous TiO2 in these two cases. The present work would give a new perspective on the charge recombination process in meso-structured perovskite solar cells.

  9. Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite.

    Science.gov (United States)

    Guo, Xin; McCleese, Christopher; Kolodziej, Charles; Samia, Anna C S; Zhao, Yixin; Burda, Clemens

    2016-03-07

    Perovskite films were prepared using single step solution deposition at different annealing temperatures and annealing times. The crystal structure, phases and grain size were investigated with XRD, XPS and SEM/EDX. The prepared films show a typical orientation of tetragonal perovskite phase and a gradual transition at room temperature from the yellow intermediate phase to the black perovskite phase. Films with high purity were obtained by sintering at 100 °C. In addition, the chemical composition and crystal structure of intermediate phase were investigated in detail. FTIR, UV-vis and NMR spectra revealed the occurance of DMF complexes. Interestingly, the intermediate phase could be transformed to the black perovskite phase upon X-ray irradiation. In addition, the recovery of the aged perovskite films from a yellow intermediate phase back to the black perovskite was shown to be viable via heating and X-ray irradiation.

  10. Low-Temperature Soft-Cover Deposition of Uniform Large-Scale Perovskite Films for High-Performance Solar Cells.

    Science.gov (United States)

    Ye, Fei; Tang, Wentao; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Chen, Han; Qiang, Yinghuai; Yang, Xudong; Han, Liyuan

    2017-09-01

    Large-scale high-quality perovskite thin films are crucial to produce high-performance perovskite solar cells. However, for perovskite films fabricated by solvent-rich processes, film uniformity can be prevented by convection during thermal evaporation of the solvent. Here, a scalable low-temperature soft-cover deposition (LT-SCD) method is presented, where the thermal convection-induced defects in perovskite films are eliminated through a strategy of surface tension relaxation. Compact, homogeneous, and convection-induced-defects-free perovskite films are obtained on an area of 12 cm 2 , which enables a power conversion efficiency (PCE) of 15.5% on a solar cell with an area of 5 cm 2 . This is the highest efficiency at this large cell area. A PCE of 15.3% is also obtained on a flexible perovskite solar cell deposited on the polyethylene terephthalate substrate owing to the advantage of presented low-temperature processing. Hence, the present LT-SCD technology provides a new non-spin-coating route to the deposition of large-area uniform perovskite films for both rigid and flexible perovskite devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Reconsidering figures of merit for performance and stability of perovskite photovoltaics

    DEFF Research Database (Denmark)

    Khenkin, M. V.; Anoop, K. M.; Visoly-Fisher, Iris

    2018-01-01

    The development of hybrid organic–inorganic halide perovskite solar cells (PSCs) that combine high performance and operational stability is vital for implementing this technology. Recently, reversible improvement and degradation of PSC efficiency have been reported under illumination–darkness cyc......The development of hybrid organic–inorganic halide perovskite solar cells (PSCs) that combine high performance and operational stability is vital for implementing this technology. Recently, reversible improvement and degradation of PSC efficiency have been reported under illumination......-term irreversible degradation and the reversible diurnal efficiency variation and does not depend on the type of process prevailing in a given perovskite cell....

  12. Viscosity, surface tension, density and contact angle of selected PbI2, PbCl2 and methylammonium lead halide perovskite solutions used in perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza Ahmadian-Yazdi

    2018-02-01

    Full Text Available Perovskite solar cells (PSCs are currently under vigorous research and development, owing to their compelling power conversion efficiencies. PSCs are solution-processed and, therefore, are fabricated using casting and printing methods, such as spin, spray and blade coating. The coating characteristics significantly depend on the physical and rheological properties of the solutions. Thus, due to the scarcity of such properties, in this work, we report the surface tension, viscosity, density, and contact angle of selected methylammonium lead halide perovskite solutions, in order to gain insight into the behavior of the perovskite solutions and the range of such physical properties. The contact angles were measured on PEDOT:PSS and compact TiO2 (c-TiO2 substrates, commonly used as the underneath layers of the perovskite film. In total, 12 solutions of CH3NH3PbI3 and CH3NH3PbI3-xClx dissolved in common solvents, as well as solutions of PbI2, PbCl2, and CH3NH3I were tested. Among the results, it is shown that the tested perovskite solutions are Newtonian, the apparent contact angles on the mesoporous TiO2 (m-TiO2 are close to zero, on the PEDOT:PSS are around 10°, and on the c-TiO2 are around 30°. Also, contact angle hysteresis is observed in the case of the c-TiO2 substrates. Representative impact dynamics and spreading of perovskite solution droplets are also studied, to demonstrate the importance of the solution properties and process parameters on the coating process.

  13. Viscosity, surface tension, density and contact angle of selected PbI2, PbCl2 and methylammonium lead halide perovskite solutions used in perovskite solar cells

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Rahimzadeh, Amin; Chouqi, Zineb; Miao, Yihe; Eslamian, Morteza

    2018-02-01

    Perovskite solar cells (PSCs) are currently under vigorous research and development, owing to their compelling power conversion efficiencies. PSCs are solution-processed and, therefore, are fabricated using casting and printing methods, such as spin, spray and blade coating. The coating characteristics significantly depend on the physical and rheological properties of the solutions. Thus, due to the scarcity of such properties, in this work, we report the surface tension, viscosity, density, and contact angle of selected methylammonium lead halide perovskite solutions, in order to gain insight into the behavior of the perovskite solutions and the range of such physical properties. The contact angles were measured on PEDOT:PSS and compact TiO2 (c-TiO2) substrates, commonly used as the underneath layers of the perovskite film. In total, 12 solutions of CH3NH3PbI3 and CH3NH3PbI3-xClx dissolved in common solvents, as well as solutions of PbI2, PbCl2, and CH3NH3I were tested. Among the results, it is shown that the tested perovskite solutions are Newtonian, the apparent contact angles on the mesoporous TiO2 (m-TiO2) are close to zero, on the PEDOT:PSS are around 10°, and on the c-TiO2 are around 30°. Also, contact angle hysteresis is observed in the case of the c-TiO2 substrates. Representative impact dynamics and spreading of perovskite solution droplets are also studied, to demonstrate the importance of the solution properties and process parameters on the coating process.

  14. Stable high efficiency two-dimensional perovskite solar cells via cesium doping

    KAUST Repository

    Zhang, Xu

    2017-08-15

    Two-dimensional (2D) organic-inorganic perovskites have recently emerged as one of the most important thin-film solar cell materials owing to their excellent environmental stability. The remaining major pitfall is their relatively poor photovoltaic performance in contrast to 3D perovskites. In this work we demonstrate cesium cation (Cs) doped 2D (BA)(MA)PbI perovskite solar cells giving a power conversion efficiency (PCE) as high as 13.7%, the highest among the reported 2D devices, with excellent humidity resistance. The enhanced efficiency from 12.3% (without Cs) to 13.7% (with 5% Cs) is attributed to perfectly controlled crystal orientation, an increased grain size of the 2D planes, superior surface quality, reduced trap-state density, enhanced charge-carrier mobility and charge-transfer kinetics. Surprisingly, it is found that the Cs doping yields superior stability for the 2D perovskite solar cells when subjected to a high humidity environment without encapsulation. The device doped using 5% Cs degrades only ca. 10% after 1400 hours of exposure in 30% relative humidity (RH), and exhibits significantly improved stability under heating and high moisture environments. Our results provide an important step toward air-stable and fully printable low dimensional perovskites as a next-generation renewable energy source.

  15. Raman spectra of MgSiO3 . 10% Al2O3-perovskite at various pressures and temperatures

    International Nuclear Information System (INIS)

    Liu Lingun; Irifune, T.

    1995-01-01

    Variations of Raman spectra of MgSiO 3 . 10% Al 2 O 3 -perovskite were investigated up to about 270 kbar at room temperature and in the range 108-425 K at atmospheric pressure. Like MgSiO 3 -perovskite, the Raman frequencies of MgSiO 3 . 10% Al 2 O 3 -perovskite increase nonlinearly with increasing pressure and decrease linearly with increasing temperature within the experimental uncertainties and the range investigated. A comparison of these data with those of MgSiO 3 -perovskite suggests that MgSiO 3 . 10% Al 2 O 3 -perovskite is slightly more compressible than MgSiO 3 -perovskite, and that the volume thermal expansion for MgSiO 3 . 10% Al 2 O 3 -perovskite is also slightly greater than that for MgSiO 3 -perovskite. (orig.)

  16. Full-color tuning in binary polymer:perovskite nanocrystals organic-inorganic hybrid blends

    Science.gov (United States)

    Perulli, A.; Balena, A.; Fernandez, M.; Nedelcu, G.; Cretí, A.; Kovalenko, M. V.; Lomascolo, M.; Anni, M.

    2018-04-01

    The excellent optical and electronic properties of metal halide perovskites recently proposed these materials as interesting active materials for optoelectronic applications. In particular, the high color purity of perovskite colloidal nanocrystals (NCs) had recently motivated their exploration as active materials for light emitting diodes with tunable emission across the visible range. In this work, we investigated the emission properties of binary blends of conjugated polymers and perovskite NCs. We demonstrate that the emission color of the blends is determined by the superposition of the component photoluminescence spectra, allowing color tuning by acting on the blend relative composition. The use of two different polymers, two different perovskite NCs, and different blend compositions is exploited to tune the blend color in the blue-green, yellow-red, and blue-red ranges, including white light generation.

  17. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No. 555...

  18. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  19. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules

    Science.gov (United States)

    Chen, Han; Ye, Fei; Tang, Wentao; He, Jinjin; Yin, Maoshu; Wang, Yanbo; Xie, Fengxian; Bi, Enbing; Yang, Xudong; Grätzel, Michael; Han, Liyuan

    2017-10-01

    Recent advances in the use of organic-inorganic hybrid perovskites for optoelectronics have been rapid, with reported power conversion efficiencies of up to 22 per cent for perovskite solar cells. Improvements in stability have also enabled testing over a timescale of thousands of hours. However, large-scale deployment of such cells will also require the ability to produce large-area, uniformly high-quality perovskite films. A key challenge is to overcome the substantial reduction in power conversion efficiency when a small device is scaled up: a reduction from over 20 per cent to about 10 per cent is found when a common aperture area of about 0.1 square centimetres is increased to more than 25 square centimetres. Here we report a new deposition route for methyl ammonium lead halide perovskite films that does not rely on use of a common solvent or vacuum: rather, it relies on the rapid conversion of amine complex precursors to perovskite films, followed by a pressure application step. The deposited perovskite films were free of pin-holes and highly uniform. Importantly, the new deposition approach can be performed in air at low temperatures, facilitating fabrication of large-area perovskite devices. We reached a certified power conversion efficiency of 12.1 per cent with an aperture area of 36.1 square centimetres for a mesoporous TiO2-based perovskite solar module architecture.

  20. High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets

    International Nuclear Information System (INIS)

    Li, Pengfei; Shivananju, B N; Li, Shaojuan; Bao, Qiaoliang; Zhang, Yupeng

    2017-01-01

    In this work, a high performance vertical-type photodetector based on two-dimensional (2D) CH 3 NH 3 PbI 3 perovskite nanosheets was fabricated. The low trap density of the perovskite nanosheets and their short carrier diffusion distance result in a significant performance enhancement of the perovskite-based photodetector. The photoresponsivity of this vertical-type photodetector is as high as 36 mA W −1 at visible wavelength, which is much better than traditional perovskite photodetectors (0.34 mA W −1 ). Compared with traditional planar-type perovskite-based photodetectors, this vertical-type photodetector also shows the advantages of low-voltage operation and large responsivity. These results may pave the way for exploiting high performance perovskite-based photodetectors with an ingenious device design. (paper)

  1. Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength

    KAUST Repository

    Alias, Mohd Sharizal

    2017-05-08

    We demonstrate the lasing of a perovskite vertical-cavity surface-emitting laser at green wavelengths, which operates under continuous-wave optical pumping at room-temperature by embedding hybrid perovskite between dielectric mirrors deposited at low-temperature.

  2. Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength

    KAUST Repository

    Alias, Mohd Sharizal; Liu, Zhixiong; Alatawi, Abdullah; Ng, Tien Khee; Wu, Tao; Ooi, Boon S.

    2017-01-01

    We demonstrate the lasing of a perovskite vertical-cavity surface-emitting laser at green wavelengths, which operates under continuous-wave optical pumping at room-temperature by embedding hybrid perovskite between dielectric mirrors deposited at low-temperature.

  3. White-Light Emission from Layered Halide Perovskites.

    Science.gov (United States)

    Smith, Matthew D; Karunadasa, Hemamala I

    2018-03-20

    With nearly 20% of global electricity consumed by lighting, more efficient illumination sources can enable massive energy savings. However, effectively creating the high-quality white light required for indoor illumination remains a challenge. To accurately represent color, the illumination source must provide photons with all the energies visible to our eye. Such a broad emission is difficult to achieve from a single material. In commercial white-light sources, one or more light-emitting diodes, coated by one or more phosphors, yield a combined emission that appears white. However, combining emitters leads to changes in the emission color over time due to the unequal degradation rates of the emitters and efficiency losses due to overlapping absorption and emission energies of the different components. A single material that emits broadband white light (a continuous emission spanning 400-700 nm) would obviate these problems. In 2014, we described broadband white-light emission upon near-UV excitation from three new layered perovskites. To date, nine white-light-emitting perovskites have been reported by us and others, making this a burgeoning field of study. This Account outlines our work on understanding how a bulk material, with no obvious emissive sites, can emit every color of the visible spectrum. Although the initial discoveries were fortuitous, our understanding of the emission mechanism and identification of structural parameters that correlate with the broad emission have now positioned us to design white-light emitters. Layered hybrid halide perovskites feature anionic layers of corner-sharing metal-halide octahedra partitioned by organic cations. The narrow, room-temperature photoluminescence of lead-halide perovskites has been studied for several decades, and attributed to the radiative recombination of free excitons (excited electron-hole pairs). We proposed that the broad white emission we observed primarily stems from exciton self-trapping. Here, the

  4. Phase Transition Control for High-Performance Blade-Coated Perovskite Solar Cells

    KAUST Repository

    Li, Jianbo

    2018-05-07

    Summary Here, we have identified that the key issue for rational transitioning from spin-coating to blade-coating processes of perovskite films arises from whether intermediate phases participate in the phase transition. In situ characterizations were carried out to provide a comprehensive picture of structural evolution and crystal growth mechanisms. These findings present opportunities for designing an effective process for blade-coating perovskite film: a large-grained dense perovskite film with high crystal quality and photophysical properties can be obtained only via direct crystallization for both spin-coating and blade-coating processes. As a result, the blade-coated MAPbI3 films deliver excellent charge-collection efficiency at both short circuit and open circuit, and photovoltaic properties with efficiencies of 18.74% (0.09 cm2) and 17.06% (1 cm2) in planar solar cells. The significant advances in understanding how the phase transition links spin-coating and blade-coating processes should provide a path toward high-performance printed perovskite devices.

  5. Synthesis and structural study of the transition metal doped rhodium perovskites

    International Nuclear Information System (INIS)

    Ting, J.; Kennedy, B.; Zhang, Z.

    2009-01-01

    Full text: One of the most common structures encountered in solid state chemistry is the perovskite structure. With a general formula of AB0 3, the A-type cations are 12-coordinate within a cubo-octahedral environment, while the B-type cations are 6-coordinate, forming an interconnecting three-dimensional octahedral network with neighbouring oxygen anions. While the ideal perovskite structure is cubic in Pm 3 m, many perovskites exhibit symmetry lowering tilting of the corner-sharing B0 6o ctahedral units as a result of A- and B-type cation size disparity. This is also evident in substituted perovskites, where two cations occupy the smaller octahedral site, AB 1- xB' x0 3' Electronic effects can also lower the symmetry. The two most commonly observed effects are the polarisation of the B-cation with a d 0 electronic configuration and Jahn-Teller distortion where the B-cation has a d 4 or d 9 electronic configuration, such as Mn 3+ or Cu 2+ respectively. Manganese containing perovskites have been shown in some compounds to exhibit long-range orbital ordering, giving rise to interesting properties. Heavier transition metals such as ruthenium and iridium have been previously incorporated into these perovskites as an avenue to regulate the properties of these materials. Two orthorhombic rhodium perovskite structures are presented, LaMn 0 . 5 Rh 0 . 5 O 3 and LaCu 05 Rh 0 . 5 O 3 ' A combination of synchrotron x-ray and neutron powder diffraction has been used to elucidate their structures, and have shown both B- and B'-type cations to be disordered across the same crystallographic site for both compounds. x-ray absorption spectroscopy measurements have been used to provide an insight into the valence states of the cations, which show a valency of +3.5 for rhodium due to an extensive charge delocalisation between copper and rhodium.

  6. Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells with Interface Passivation.

    Science.gov (United States)

    Zhang, Weihai; Xiong, Juan; Jiang, Li; Wang, Jianying; Mei, Tao; Wang, Xianbao; Gu, Haoshuang; Daoud, Walid A; Li, Jinhua

    2017-11-08

    As the electron transport layer (ETL) of perovskite solar cells, oxide semiconductor zinc oxide (ZnO) has been attracting great attention due to its relatively high mobility, optical transparency, low-temperature fabrication, and good environment stability. However, the nature of ZnO will react with the patron on methylamine, which would deteriorate the performance of cells. Although many methods, including high-temperature annealing, doping, and surface modification, have been studied to improve the efficiency and stability of perovskite solar cells with ZnO ETL, devices remain relatively low in efficiency and stability. Herein, we adopted a novel multistep annealing method to deposit a porous PbI 2 film and improved the quality and uniformity of perovskite films. The cells with ZnO ETL were fabricated at the temperature of perovskite film. Interestingly, the PCE of PCBM-passivated cells could reach nearly 19.1%. To our best knowledge, this is the highest PCE value of ZnO-based perovskite solar cells until now. More importantly, PCBM modification could effectively suppress the decomposition of MAPbI 3 and improve the thermal stability of cells. Therefore, the ZnO is a promising candidate of electron transport material for perovskite solar cells in future applications.

  7. Visual and sensitive fluorescent sensing for ultratrace mercury ions by perovskite quantum dots.

    Science.gov (United States)

    Lu, Li-Qiang; Tan, Tian; Tian, Xi-Ke; Li, Yong; Deng, Pan

    2017-09-15

    Mercury ions sensing is an important issue for human health and environmental safety. A novel fluorescence nanosensor was designed for rapid visual detection of ultratrace mercury ions (Hg 2+ ) by using CH 3 NH 3 PbBr 3 perovskite quantum dots (QDs) based on the surface ion-exchange mechanism. The synthesized CH 3 NH 3 PbBr 3 QDs can emitt intense green fluorescence with high quantum yield of 50.28%, and can be applied for Hg 2+ sensing with the detection limit of 0.124 nM (24.87 ppt) in the range of 0 nM-100 nM. Furthermore, the interfering metal ions have no any influence on the fluorescence intensity of QDs, showing the perovskite QDs possess the high selectivity and sensitivity for Hg 2+ detection. The sensing mechanism of perovskite QDs for Hg 2+ is has also been investigated by XPS, EDX studies, showing Pb 2+ on the surface of perovskite QDs has been partially replaced by Hg 2+ . Spot plate test shows that the perovskite QDs can also be used for visual detection of Hg 2+ . Our research indicated the perovskite QDs are promising candidates for the visual fluorescence detection of environmental micropollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Investigating Recombination and Charge Carrier Dynamics in a One-Dimensional Nanopillared Perovskite Absorber.

    Science.gov (United States)

    Kwon, Hyeok-Chan; Yang, Wooseok; Lee, Daehee; Ahn, Jihoon; Lee, Eunsong; Ma, Sunihl; Kim, Kyungmi; Yun, Seong-Cheol; Moon, Jooho

    2018-05-22

    Organometal halide perovskite materials have become an exciting research topic as manifested by intense development of thin film solar cells. Although high-performance solar-cell-based planar and mesoscopic configurations have been reported, one-dimensional (1-D) nanostructured perovskite solar cells are rarely investigated despite their expected promising optoelectrical properties, such as enhanced charge transport/extraction. Herein, we have analyzed the 1-D nanostructure effects of organometal halide perovskite (CH 3 NH 3 PbI 3- x Cl x ) on recombination and charge carrier dynamics by utilizing a nanoporous anodized alumina oxide scaffold to fabricate a vertically aligned 1-D nanopillared array with controllable diameters. It was observed that the 1-D perovskite exhibits faster charge transport/extraction characteristics, lower defect density, and lower bulk resistance than the planar counterpart. As the aspect ratio increases in the 1-D structures, in addition, the charge transport/extraction rate is enhanced and the resistance further decreases. However, when the aspect ratio reaches 6.67 (diameter ∼30 nm), the recombination rate is aggravated due to high interface-to-volume ratio-induced defect generation. To obtain the full benefits of 1-D perovskite nanostructuring, our study provides a design rule to choose the appropriate aspect ratio of 1-D perovskite structures for improved photovoltaic and other optoelectrical applications.

  9. Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells.

    Science.gov (United States)

    Nejand, Bahram Abdollahi; Ahmadi, Vahid; Gharibzadeh, Saba; Shahverdi, Hamid Reza

    2016-02-08

    Inorganic hole-transport materials are commercially desired to decrease the fabrication cost of perovskite solar cells. Here, Cu2O is introduced as a potential hole-transport material for stable, low-cost devices. Considering that Cu2O formation is highly sensitive to the underlying mixture of perovskite precursors and their solvents, we proposed and engineered a technique for reactive magnetron sputtering. The rotational angular deposition of Cu2O yields high surface coverage of the perovskite layer for high rate of charge extraction. Deposition of this Cu2O layer on the pinhole-free perovskite layer produces devices with power conversion efficiency values of up to 8.93%. The engineered Cu2O layers showed uniform, compact, and crack-free surfaces on the perovskite layer without affecting the perovskite structure, which is desired for deposition of the top metal contact and for surface shielding against moisture and mechanical damages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells

    Science.gov (United States)

    Cohen, Bat-El; Gamliel, Shany; Etgar, Lioz

    2014-08-01

    Perovskite is a promising light harvester for use in photovoltaic solar cells. In recent years, the power conversion efficiency of perovskite solar cells has been dramatically increased, making them a competitive source of renewable energy. An important parameter when designing high efficiency perovskite-based solar cells is the perovskite deposition, which must be performed to create complete coverage and optimal film thickness. This paper describes an in-depth study on two-step deposition, separating the perovskite deposition into two precursors. The effects of spin velocity, annealing temperature, dipping time, and methylammonium iodide concentration on the photovoltaic performance are studied. Observations include that current density is affected by changing the spin velocity, while the fill factor changes mainly due to the dipping time and methylammonium iodide concentration. Interestingly, the open circuit voltage is almost unaffected by these parameters. Hole conductor free perovskite solar cells are used in this work, in order to minimize other possible effects. This study provides better understanding and control over the perovskite deposition through highly efficient, low-cost perovskite-based solar cells.

  11. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells

    International Nuclear Information System (INIS)

    Cohen, Bat-El; Gamliel, Shany; Etgar, Lioz

    2014-01-01

    Perovskite is a promising light harvester for use in photovoltaic solar cells. In recent years, the power conversion efficiency of perovskite solar cells has been dramatically increased, making them a competitive source of renewable energy. An important parameter when designing high efficiency perovskite-based solar cells is the perovskite deposition, which must be performed to create complete coverage and optimal film thickness. This paper describes an in-depth study on two-step deposition, separating the perovskite deposition into two precursors. The effects of spin velocity, annealing temperature, dipping time, and methylammonium iodide concentration on the photovoltaic performance are studied. Observations include that current density is affected by changing the spin velocity, while the fill factor changes mainly due to the dipping time and methylammonium iodide concentration. Interestingly, the open circuit voltage is almost unaffected by these parameters. Hole conductor free perovskite solar cells are used in this work, in order to minimize other possible effects. This study provides better understanding and control over the perovskite deposition through highly efficient, low-cost perovskite-based solar cells

  12. Classification of perovskites with supervised self-organizing maps

    International Nuclear Information System (INIS)

    Kuzmanovski, Igor; Dimitrovska-Lazova, Sandra; Aleksovska, Slobotka

    2007-01-01

    In this work supervised self-organizing maps were used for structural classification of perovskites. For this purpose, structural data for total number of 286 perovskites, belonging to ABO 3 and/or A 2 BB'O 6 types, were collected from literature: 130 of these are cubic, 85 orthorhombic and 71 monoclinic. For classification purposes, the effective ionic radii of the cations, electronegativities of the cations in B-position, as well as, the oxidation states of these cations, were used as input variables. The parameters of the developed models, as well as, the most suitable variables for classification purposes were selected using genetic algorithms. Two-third of all the compounds were used in the training phase. During the optimization process the performances of the models were checked using cross-validation leave-1/10-out. The performances of obtained solutions were checked using the test set composed of the remaining one-third of the compounds. The obtained models for classification of these three classes of perovskite compounds show very good results. Namely, the classification of the compounds in the test set resulted in small number of discrepancies (4.2-6.4%) between the actual crystallographic class and the one predicted by the models. All these results are strong arguments for the validity of supervised self-organizing maps for performing such types of classification. Therefore, the proposed procedure could be successfully used for crystallographic classification of perovskites in one of these three classes

  13. Topological Crystalline Insulators and Dirac Octets in Anti-perovskites

    OpenAIRE

    Hsieh, Timothy H.; Liu, Junwei; Fu, Liang

    2014-01-01

    We predict a new class of topological crystalline insulators (TCI) in the anti-perovskite material family with the chemical formula A$_3$BX. Here the nontrivial topology arises from band inversion between two $J=3/2$ quartets, which is described by a generalized Dirac equation for a "Dirac octet". Our work suggests that anti-perovskites are a promising new venue for exploring the cooperative interplay between band topology, crystal symmetry and electron correlation.

  14. Perovskites in the comb roof base of hornets : Their possible function

    NARCIS (Netherlands)

    Ishay, JS; Joseph, Z; Galushko, D; Ermakov, N; Bergman, DJ; Barkay, Z; Stokroos, [No Value; Van der Want, J

    2005-01-01

    On the ceiling of the Oriental hornet comb cell, there are mineral granules of poly-crystalline material known to belong to the group of perovskites. In a comb cell intended to house a worker hornet, the roof base usually carries one or several such perovskite granules containing titanium (Ti),

  15. Lead-Free Hybrid Perovskite Absorbers for Viable Application: Can We Eat the Cake and Have It too?

    Science.gov (United States)

    Liang, Lusheng; Gao, Peng

    2018-02-01

    Many years since the booming of research on perovskite solar cells (PSCs), the hybrid perovskite materials developed for photovoltaic application form three main categories since 2009: (i) high-performance unstable lead-containing perovskites, (ii) low-performance lead-free perovskites, and (iii) moderate performance and stable lead-containing perovskites. The search for alternative materials to replace lead leads to the second group of perovskite materials. To date, a number of these compounds have been synthesized and applied in photovoltaic devices. Here, lead-free hybrid light absorbers used in PV devices are focused and their recent developments in related solar cell applications are reviewed comprehensively. In the first part, group 14 metals (Sn and Ge)-based perovskites are introduced with more emphasis on the optimization of Sn-based PSCs. Then concerns on halide hybrids of group 15 metals (Bi and Sb) are raised, which are mainly perovskite derivatives. At the same time, transition metal Cu-based perovskites are also referred. In the end, an outlook is given on the design strategy of lead-free halide hybrid absorbers for photovoltaic applications. It is believed that this timely review can represent our unique view of the field and shed some light on the direction of development of such promising materials.

  16. Electronically conductive perovskite-based oxide nanoparticles and films for optical sensing applications

    Science.gov (United States)

    Ohodnicki, Jr., Paul R; Schultz, Andrew M

    2015-04-28

    The disclosure relates to a method of detecting a change in a chemical composition by contacting a electronically conducting perovskite-based metal oxide material with a monitored stream, illuminating the electronically conducting perovskite-based metal oxide with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The electronically conducting perovskite-based metal oxide has a perovskite-based crystal structure and an electronic conductivity of at least 10.sup.-1 S/cm, where parameters are specified at the gas stream temperature. The electronically conducting perovskite-based metal oxide has an empirical formula A.sub.xB.sub.yO.sub.3-.delta., where A is at least a first element at the A-site, B is at least a second element at the B-site, and where 0.8perovskite-based oxides include but are not limited to La.sub.1-xSr.sub.xCoO.sub.3, La.sub.1-xSr.sub.xMnO.sub.3, LaCrO.sub.3, LaNiO.sub.3, La.sub.1-xSr.sub.xMn.sub.1-yCr.sub.yO.sub.3, SrFeO.sub.3, SrVO.sub.3, La-doped SrTiO.sub.3, Nb-doped SrTiO.sub.3, and SrTiO.sub.3-.delta..

  17. Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells.

    Science.gov (United States)

    Lee, Yong Hui; Luo, Jingshan; Son, Min-Kyu; Gao, Peng; Cho, Kyung Taek; Seo, Jiyoun; Zakeeruddin, Shaik M; Grätzel, Michael; Nazeeruddin, Mohammad Khaja

    2016-05-01

    The Al2 O3 passivation layer is beneficial for mesoporous TiO2 -based perovskite solar cells when it is deposited selectively on the compact TiO2 surface. Such a passivation layer suppressing surface recombination can be formed by thermal decomposition of the perovskite layer during post-annealing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Field-induced resistance switching at metal/perovskite manganese oxide interface

    International Nuclear Information System (INIS)

    Ohkubo, I.; Tsubouchi, K.; Harada, T.; Kumigashira, H.; Itaka, K.; Matsumoto, Y.; Ohnishi, T.; Lippmaa, M.; Koinuma, H.; Oshima, M.

    2008-01-01

    Planar type metal/insulator/metal structures composed of an epitaxial perovskite manganese oxide layer and various metal electrodes were prepared for electric-field-induced resistance switching. Only the electrode pairs including Al show good resistance switching and the switching ratio reaches its maximum of 1000. This resistance switching occurs around the interface between Al electrodes and epitaxial perovskite manganese oxide thin films

  19. Double-layered ZnO nanostructures for efficient perovskite solar cells

    KAUST Repository

    Mahmood, Khalid; S. Swain, Bhabani; Amassian, Aram

    2014-01-01

    To date, a single layer of TiO2 or ZnO has been the most successful implementations of any electron transport layer (ETL) in solution-processed perovskite solar cells. In a quest to improve the ETL, we explore a new nanostructured double-layer ZnO film for mesoscopic perovskite-based thin film photovoltaics. This approach yields a maximum power conversion efficiency of 10.35%, which we attribute to the morphology of oxide layer and to faster electron transport. The successful implementation of the low-temperature hydrothermally processed double-layer ZnO film as ETL in perovskite solar cells highlights the opportunities to further improve the efficiencies by focusing on the ETL in this rapidly developing field. This journal is

  20. Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.

    Science.gov (United States)

    Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh

    2016-10-14

    Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.

  1. Perovskite solid electrolytes: Structure, transport properties and fuel cell applications

    DEFF Research Database (Denmark)

    Bonanos, N.; Knight, K.S.; Ellis, B.

    1995-01-01

    Doped barium cerate perovskites, first investigated by Iwahara and co-workers, have ionic conductivities of the order of 20 mS/cm at 800 degrees C making them attractive as fuel cell electrolytes for this temperature region. They have been used to construct laboratory scale fuel cells, which...... vapour transfer in a cell in which the perovskite is exposed to wet hydrogen on both sides. The evolution of transport properties with temperature is discussed in relation to structure. Neutron diffraction studies of doped and undoped barium cerate are reported, revealing a series of phase transitions...... between ambient temperature and 1000 degrees C. The available literature on chemical stability of cerate perovskites to reduction and attack by carbon dioxide is reviewed in brief....

  2. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal

    2017-09-11

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity; this feat was achieved with a combination of optimal spectral alignment of the optical cavity modes with the perovskite optical gain, an adequate Q-factor of the microcavity, adequate thermal stability, and improved material quality with a smooth, passivated, and annealed thin active layer. Our results signify a way towards efficient CW perovskite emitter operation and electrical injection using low-cost fabrication methods for addressing monolithic optoelectronic integration and lasing in the green gap.

  3. Methods for producing single crystal mixed halide perovskites

    Science.gov (United States)

    Zhu, Kai; Zhao, Yixin

    2017-07-11

    An aspect of the present invention is a method that includes contacting a metal halide and a first alkylammonium halide in a solvent to form a solution and maintaining the solution at a first temperature, resulting in the formation of at least one alkylammonium halide perovskite crystal, where the metal halide includes a first halogen and a metal, the first alkylammonium halide includes the first halogen, the at least one alkylammonium halide perovskite crystal includes the metal and the first halogen, and the first temperature is above about 21.degree. C.

  4. Solution processed deposition of electron transport layers on perovskite crystal surface—A modeling based study

    Energy Technology Data Exchange (ETDEWEB)

    Mortuza, S.M.; Taufique, M.F.N.; Banerjee, Soumik, E-mail: soumik.banerjee@wsu.edu

    2017-02-01

    Highlights: • The model determined the surface coverage of solution-processed film on perovskite. • Calculated surface density map provides insight into morphology of the monolayer. • Carbonyl oxygen atom of PCBM strongly attaches to the (110) surface of perovskite. • Uniform distribution of clusters on perovskite surface at lower PCBM concentration. • Deposition rate of PCBM on the surface is very high at initial stage of film growth. - Abstract: The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  5. Solution processed deposition of electron transport layers on perovskite crystal surface—A modeling based study

    International Nuclear Information System (INIS)

    Mortuza, S.M.; Taufique, M.F.N.; Banerjee, Soumik

    2017-01-01

    Highlights: • The model determined the surface coverage of solution-processed film on perovskite. • Calculated surface density map provides insight into morphology of the monolayer. • Carbonyl oxygen atom of PCBM strongly attaches to the (110) surface of perovskite. • Uniform distribution of clusters on perovskite surface at lower PCBM concentration. • Deposition rate of PCBM on the surface is very high at initial stage of film growth. - Abstract: The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  6. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells

    KAUST Repository

    Eperon, Giles E.

    2013-09-09

    Organometal trihalide perovskite based solar cells have exhibited the highest efficiencies to-date when incorporated into mesostructured composites. However, thin solid films of a perovskite absorber should be capable of operating at the highest efficiency in a simple planar heterojunction configuration. Here, it is shown that film morphology is a critical issue in planar heterojunction CH3NH3PbI3-xCl x solar cells. The morphology is carefully controlled by varying processing conditions, and it is demonstrated that the highest photocurrents are attainable only with the highest perovskite surface coverages. With optimized solution based film formation, power conversion efficiencies of up to 11.4% are achieved, the first report of efficiencies above 10% in fully thin-film solution processed perovskite solar cells with no mesoporous layer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  8. Light-trapping in perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Du, Qing Guo, E-mail: duqi0001@e.ntu.edu.sg [Department of Physics, University of Toronto, 60 ST. George St., Toronto, Ontario, M5S 1A7 (Canada); Institute of High Performance Computing, A* STAR, Singapore, 138632 (Singapore); Shen, Guansheng [Department of Physics, University of Toronto, 60 ST. George St., Toronto, Ontario, M5S 1A7 (Canada); School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); John, Sajeev [Department of Physics, University of Toronto, 60 ST. George St., Toronto, Ontario, M5S 1A7 (Canada); Department of Physics, Soochow University, Suzhou (China)

    2016-06-15

    We numerically demonstrate enhanced light harvesting efficiency in both CH{sub 3}NH{sub 3}PbI{sub 3} and CH(NH{sub 2}){sub 2}PbI{sub 3}-based perovskite solar cells using inverted vertical-cone photonic-crystal nanostructures. For CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells, the maximum achievable photocurrent density (MAPD) reaches 25.1 mA/cm{sup 2}, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm{sup 2}) and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60 degree for both S- and P- polarizations. For the corresponding CH(NH{sub 2}){sub 2}PbI{sub 3} based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm{sup 2}, corresponding to 95.4% of the total available photocurrent. The projected power conversion efficiency of the CH(NH{sub 2}){sub 2}PbI{sub 3} based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.

  9. First-principles study of structural stability and elastic property of pre-perovskite PbTiO3

    International Nuclear Information System (INIS)

    Liu Yong; Ni Li-Hong; Ren Zhao-Hui; Xu Gang; Li Xiang; Song Chen-Lu; Han Gao-Rong

    2012-01-01

    The structural stability and the elastic properties of a novel structure of lead titanate, which is named pre- perovskite PbTiO 3 (PP-PTO) and is constructed with TiO 6 octahedral columns arranged in a one-dimensional manner, are investigated by using first-principles calculations. PP-PTO is energetically unstable compared with conventional perovskite phases, however it is mechanically stable. The equilibrium transition pressures for changing from pre- perovskite to cubic and tetragonal phases are −0.5 GPa and −1.4 GPa, respectively, with first-order characteristics. Further, the differences in elastic properties between pre-perovskite and conventional perovskite phases are discussed for the covalent bonding network, which shows a highly anisotropic character in PP-PTO. This study provides a crucial insight into the structural stabilities of PP-PTO and conventional perovskite. (condensed matter: structural, mechanical, and thermal properties)

  10. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    Science.gov (United States)

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  11. Production of aluminum metal by electrolysis of aluminum sulfide

    Science.gov (United States)

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  12. Large isosymmetric reorientation of oxygen octahedra rotation axes in epitaxially strained perovskites.

    Science.gov (United States)

    Rondinelli, James M; Coh, Sinisa

    2011-06-10

    Using first-principles density functional theory calculations, we discover an anomalously large biaxial strain-induced octahedral rotation axis reorientation in orthorhombic perovskites with tendency towards rhombohedral symmetry. The transition between crystallographically equivalent (isosymmetric) structures with different octahedral rotation magnitudes originates from strong strain-octahedral rotation coupling available to perovskites and the energetic hierarchy among competing octahedral tilt patterns. By elucidating these criteria, we suggest many functional perovskites would exhibit the transition in thin film form, thus offering a new landscape in which to tailor highly anisotropic electronic responses.

  13. Displaying of formation of atomic clusters in radioactive lutetium oxide films

    International Nuclear Information System (INIS)

    Kartashov, V.M.; Troitskata, A.G.

    2002-01-01

    We earlier reported the results of our investigations of electron spectra of radioactive lutetium oxide films on the magnetic β-spectrometer π√2 with momentum resolution 0.04-0.1 %. The researches were conducted many times during ≅15 years, and a lot of the data has resulted us in the conclusion about possible formation of toroidal structures in these films. It is impossible to consider a radioactive oxide layer, deposited on metallic foil support having the electric potential of its foil support on all its depth because of its high dielectric properties. There is the potential gradient (≅10 6 -10 7 V/c) on its depth because of constant outflow of electrons from its surface. Our experiments included in itself also giving a potential, accelerating for electrons, to the metallic foil support. In this case we received a capability to watch the segments of auto emission and low energy Auger electrons. The analysis of the threshold relations and behavior (in time) of the M 4 NN and M 5 NN Auger electron intensities have resulted us in the conclusion that the greatest contribution to structure formations of these oxide films is introduced by electrons of M 4 -, M 5 - and N-sub-shell of ytterbium atoms (being formed as the result of radioactive decay of the lutetium fraction with half-times from 140 to 1200 days). The auto emission electron spectrum testifies to composite scission of M4 and M5 stationary states of the atom. It is possible to offer as the explanation a quantum flat rotator. If the particle orbit un-compresses the solenoid with a magnetic flux Φ, power condition of a rotator E m =h 2 (m-Φ/Φ 0 ) 2 /(8πm e R 0 2 ), where m e - electron mass, R 0 - an electron orbit radius; m - a magnetic quantum number, a Φ 0 =h c/e - a quantum of magnetic flux. At a quantum flow Φ=nΦ 0 (n - integer) and the power spectrum does not differ from a spectrum without the solenoid. The behavior (in time) of the experimental auto emission electron spectrum responds

  14. Highly Efficient Reproducible Perovskite Solar Cells Prepared by Low-Temperature Processing

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2016-04-01

    Full Text Available In this work, we describe the role of the different layers in perovskite solar cells to achieve reproducible, ~16% efficient perovskite solar cells. We used a planar device architecture with PEDOT:PSS on the bottom, followed by the perovskite layer and an evaporated C60 layer before deposition of the top electrode. No high temperature annealing step is needed, which also allows processing on flexible plastic substrates. Only the optimization of all of these layers leads to highly efficient and reproducible results. In this work, we describe the effects of different processing conditions, especially the influence of the C60 top layer on the device performance.

  15. Modulating Excitonic Recombination Effects through One-Step Synthesis of Perovskite Nanoparticles for Light-Emitting Diodes.

    Science.gov (United States)

    Kulkarni, Sneha A; Muduli, Subas; Xing, Guichuan; Yantara, Natalia; Li, Mingjie; Chen, Shi; Sum, Tze Chien; Mathews, Nripan; White, Tim J; Mhaisalkar, Subodh G

    2017-10-09

    The primary advantages of halide perovskites for light-emitting diodes (LEDs) are solution processability, direct band gap, good charge-carrier diffusion lengths, low trap density, and reasonable carrier mobility. The luminescence in 3 D halide perovskite thin films originates from free electron-hole bimolecular recombination. However, the slow bimolecular recombination rate is a fundamental performance limitation. Perovskite nanoparticles could result in improved performance but processability and cumbersome synthetic procedures remain challenges. Herein, these constraints are overcome by tailoring the 3 D perovskite as a near monodisperse nanoparticle film prepared through a one-step in situ deposition method. Replacing methyl ammonium bromide (CH 3 NH 3 Br, MABr) partially by octyl ammonium bromide [CH 3 (CH 2 ) 7 NH 3 Br, OABr] in defined mole ratios in the perovskite precursor proved crucial for the nanoparticle formation. Films consisting of the in situ formed nanoparticles displayed signatures associated with excitonic recombination, rather than that of bimolecular recombination associated with 3 D perovskites. This transition was accompanied by enhanced photoluminescence quantum yield (PLQY≈20.5 % vs. 3.40 %). Perovskite LEDs fabricated from the nanoparticle films exhibit a one order of magnitude improvement in current efficiency and doubling in luminance efficiency. The material processing systematics derived from this study provides the means to control perovskite morphologies through the selection and mixing of appropriate additives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration

    Science.gov (United States)

    2016-01-01

    Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques. PMID:26804213

  17. Influence of iridium on the reactivity of LaFeO3 base perovskites

    DEFF Research Database (Denmark)

    Kindermann, L.; Das, D.; Bahadur, D.

    1998-01-01

    The influence of iridium on the reactivity of powder mixtures made of perovskites and 8 mol% yttria stabilized zirconia (8 YSZ) is reported. Iridium is added to the perovskites of the composition (La0.6M0.4)(z)Fe0.8TM0.2O3-delta (M = Sr, Ca; TM = Mn, Co; z = 0.90, 1.00) via the gaseous phase....... Iridium is present in the perovskite lattice as Ir4+ replacing iron as is evident from XRD and TEM/EDX results. Compatibility studies carried out at 1000 degrees C demonstrate that iridium has considerable influence on the reactivity. The results are discussed with respect to the stability...... of the perovskites, thermodynamic activities, Ir(IV)-O bonding, tolerance factor and oxygen migration....

  18. Shape-controlled synthesis of organolead halide perovskite nanocrystals and their tunable optical absorption

    International Nuclear Information System (INIS)

    Chen, Zhenhua; Tang, Yongbing; Huang, Xing; Lee, Chun-Sing; Li, Hui; Ho, Derek

    2014-01-01

    Hybrid organolead halide perovskites (CH 3 NH 3 PbI 3 ) with polymorphic structures have been successfully synthesized by controlling their solubility in solvents with different polarities. Crystal formation stages of the perovskites have been demonstrated for the first time. Shape changes of such perovskites are accompanied by transition in their crystal structures and variation of optical properties. Herein, a new trigonal phase for CH 3 NH 3 PbI 3 has been observed with a rod-like morphology. Photoemission study indicates a significant red shift in the perovskite nanoparticles, compared to that of the rod-like nanocrystals. This solvent-controlled formation of polymorphic phases provide an additional approach for controlling the optical properties of CH 3 NH 3 PbI 3 for various optoelectronic applications. (papers)

  19. Magnetic properties of rare earth oxides with perovskite structure

    International Nuclear Information System (INIS)

    Hinatsu, Yukio

    2008-01-01

    A perovskite composite oxide is represented by the general formula of ABO 3 . Cations at the B site characterize magnetic properties of the oxide. Many studies have been accumulated for transition metal elements at the B sites. In this report the studies of rare earth elements at the B sites are reviewed. In rare elements, tetravalent ions such as Ce 4+ , Pr 4+ and Tb 4+ can occupy the B sites with Ba and Sr ions at the A sites. Both the SrTbO 3 and BaTbO 3 have an orthorhombic structure and show the antiferromagnetic transition at about 33 K, which is originated from terbium ions coupled antiferromagnetically with the six neighboring terbium ions. A tetravalent praseodymium perovskite SrPrO 3 shows no existence of the magnetic ordering down to 2.0 K. This is in contrast to the result of isomorphous BaPrO 3 , which shows an antiferromagnetic transition at 11.5 K. A double perovskite structure is represented by the formula A 2 LnMO 6 (A=Ba, Sr, Ca; M=Ru, Ir). In a double perovskite compound Ba 2 PrRuO 6 , the Pr 3+ and Ru 5+ ions are arranged with regularity over the six-coordinate B sites. This compound transforms to an antiferromagnetic state below 117 K. Antiferromagnetic transition temperatures T N for isomorphous Sr and Ca show a clear tendency, T N (A=Ba)>T N (Sr)>T N (Ca), in the compounds with the same rare earth elements (Ln). The 6H-perovskite structure Ba 3 LnRu 2 O 9 consists of linkages between LnO 6 octahedra and Ru 2 O 9 dimers made from face-shared RuO 6 octahedra. The 6H-perovskite structure Ba 3 MRu 2 O 9 (M=Sc, Y, La, Nd-Gd, Dy-Lu) have the valence state of Ba 3 M 3+ Ru 2 4.5+ O 9 . The magnetic susceptibilities show a broad maximum at 135-370 K. This magnetic behavior is ascribed to the antiferromagnetic coupling between two Ru ions in a Ru 2 O 9 dimer and to the magnetic interaction between the Ru 2 O 9 dimers. (author)

  20. BONDING ALUMINUM METALS

    Science.gov (United States)

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  1. Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2016-08-01

    Full Text Available Inorganic-organic halide organometal perovskites have demonstrated very promising performance for opto-electronic applications, such as solar cells, light-emitting diodes, lasers, single-photon sources, etc. However, the little knowledge on the underlying photophysics, especially on a microscopic scale, hampers the further improvement of devices based on this material. In this communication, correlated conventional photoluminescence (PL characterization and wide-field PL imaging as a function of time are employed to investigate the spatially- and temporally-resolved PL in CH3NH3PbI3−xClx perovskite films. Along with a continuous increase of the PL intensity during light soaking, we also observe PL blinking or PL intermittency behavior in individual grains of these films. Combined with significant suppression of PL blinking in perovskite films coated with a phenyl-C61-butyric acid methyl ester (PCBM layer, it suggests that this PL intermittency is attributed to Auger recombination induced by photoionized defects/traps or mobile ions within grains. These defects/traps are detrimental for light conversion and can be effectively passivated by the PCBM layer. This finding paves the way to provide a guideline on the further improvement of perovskite opto-electronic devices.

  2. Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications

    Directory of Open Access Journals (Sweden)

    Simon A. Bretschneider

    2014-04-01

    Full Text Available The field of thin-film photovoltaics has been recently enriched by the introduction of lead halide perovskites as absorber materials, which allow low-cost synthesis of solar cells with efficiencies exceeding 16%. The exact impact of the perovskite crystal structure and composition on the optoelectronic properties of the material are not fully understood. Our progress report highlights the knowledge gained about lead halide perovskites with a focus on physical and optoelectronic properties. We discuss the crystal and band structure of perovskite materials currently implemented in solar cells and the impact of the crystal properties on ferroelectricity, ambipolarity, and the properties of excitons.

  3. The influence of morphology on charge transport/recombination dynamics in planar perovskite solar cells

    Science.gov (United States)

    Yu, Man; Wang, Yi; Wang, Hao-Yi; Han, Jun; Qin, Yujun; Zhang, Jian-Ping; Ai, Xi-Cheng

    2016-10-01

    The photovoltaic performance of planar perovskite solar cell is significantly influenced by the morphology of perovskite film. In this work, five kinds of devices with different perovskite film morphologies were prepared by varying the concentration of CH3NH3Cl in precursor solutions. We found that best morphology of perovskite film results in the excellent photovoltaic performance with an average efficiency of 15.52% and a champion efficiency of 16.38%. Transient photovoltage and photocurrent measurements are performed to elucidate the mechanism of photoelectric conversion processes, which shows that the charge recombination is effectively suppressed and the charge transport is obviously promoted by optimized morphology.

  4. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    Science.gov (United States)

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  5. Ambipolar solution-processed hybrid perovskite phototransistors

    KAUST Repository

    Li, Feng; Ma, Chun; Wang, Hong; Hu, Weijin; Yu, Weili; Sheikh, Arif D.; Wu, Tao

    2015-01-01

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors

  6. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.

    Science.gov (United States)

    Johnston, Michael B; Herz, Laura M

    2016-01-19

    Photovoltaic (PV) devices that harvest the energy provided by the sun have great potential as renewable energy sources, yet uptake has been hampered by the increased cost of solar electricity compared with fossil fuels. Hybrid metal halide perovskites have recently emerged as low-cost active materials in PV cells with power conversion efficiencies now exceeding 20%. Rapid progress has been achieved over only a few years through improvements in materials processing and device design. In addition, hybrid perovskites appear to be good light emitters under certain conditions, raising the prospect of applications in low-cost light-emitting diodes and lasers. Further optimization of such hybrid perovskite devices now needs to be supported by a better understanding of how light is converted into electrical currents and vice versa. This Account provides an overview of charge-carrier recombination and mobility mechanisms encountered in such materials. Optical-pump-terahertz-probe (OPTP) photoconductivity spectroscopy is an ideal tool here, because it allows the dynamics of mobile charge carriers inside the perovskite to be monitored following excitation with a short laser pulse whose photon energy falls into the range of the solar spectrum. We first review our insights gained from transient OPTP and photoluminescence spectroscopy on the mechanisms dominating charge-carrier recombination in these materials. We discuss that mono-molecular charge-recombination predominantly originates from trapping of charges, with trap depths being relatively shallow (tens of millielectronvolts) for hybrid lead iodide perovskites. Bimolecular recombination arises from direct band-to-band electron-hole recombination and is found to be in significant violation of the simple Langevin model. Auger recombination exhibits links with electronic band structure, in accordance with its requirement for energy and momentum conservation for all charges involved. We further discuss charge-carrier mobility

  7. Lead Halide Perovskite Photovoltaic as a Model p-i-n Diode.

    Science.gov (United States)

    Miyano, Kenjiro; Tripathi, Neeti; Yanagida, Masatoshi; Shirai, Yasuhiro

    2016-02-16

    The lead halide perovskite photovoltaic cells, especially the iodide compound CH3NH3PbI3 family, exhibited enormous progress in the energy conversion efficiency in the past few years. Although the first attempt to use the perovskite was as a sensitizer in a dye-sensitized solar cell, it has been recognized at the early stage of the development that the working of the perovskite photovoltaics is akin to that of the inorganic thin film solar cells. In fact, theoretically perovskite is always treated as an ordinary direct band gap semiconductor and hence the perovskite photovoltaics as a p-i-n diode. Despite this recognition, research effort along this line of thought is still in pieces and incomplete. Different measurements have been applied to different types of devices (different not only in the materials but also in the cell structures), making it difficult to have a coherent picture. To make the situation worse, the perovskite photovoltaics have been plagued by the irreproducible optoelectronic properties, most notably the sweep direction dependent current-voltage relationship, the hysteresis problem. Under such circumstances, it is naturally very difficult to analyze the data. Therefore, we set out to make hysteresis-free samples and apply time-tested models and numerical tools developed in the field of inorganic semiconductors. A series of electrical measurements have been performed on one type of CH3NH3PbI3 photovoltaic cells, in which a special attention was paid to ensure that their electronic reproducibility was better than the fitting error in the numerical analysis. The data can be quantitatively explained in terms of the established models of inorganic semiconductors: current/voltage relationship can be very well described by a two-diode model, while impedance spectroscopy revealed the presence of a thick intrinsic layer with the help of a numerical solver, SCAPS, developed for thin film solar cell analysis. These results point to that CH3NH3PbI3 is an

  8. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012 (China); Bai, Xue, E-mail: baix@jlu.edu.cn, E-mail: yuzhang@jlu.edu.cn; Sun, Chun; Zhang, Xiaoyu; Zhang, Yu, E-mail: baix@jlu.edu.cn, E-mail: yuzhang@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhang, Tieqiang [State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012 (China)

    2016-08-08

    High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow full width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.

  9. Inside Perovskites: Quantum Luminescence from Bulk Cs4PbBr6 Single Crystals

    KAUST Repository

    de Bastiani, Michele

    2017-08-01

    Zero-dimensional perovskite-related structures (0D-PRS) are a new frontier of perovskite-based materials. 0D-PRS, commonly synthesized in powder form, manifest distinctive optical properties such as strong photoluminescence (PL), narrow emission linewidth, and high exciton binding energy. These properties make 0D-PRS compelling for several types of optoelectronic applications, including phosphor screens and electroluminescent devices. However, it would not be possible to rationally design the chemistry and structure of these materials, without revealing the origins of their optical behaviour, which is contradictory to the well-studied APbX3 perovskites. In this work, we synthesize single crystals of Cs4PbBr6 0D-PRS, and investigated the origins of their unique optical and electronic properties. The crystals exhibit a PL quantum yield higher than 40%, the highest reported for perovskite-based single crystals. Time-resolved and temperature dependent PL studies, supported by DFT calculations, and structural analysis, elucidate an emissive behaviour reminiscent of a quantum confined structure rather than a typical bulk perovskite material.

  10. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots

    International Nuclear Information System (INIS)

    Wang, Peng; Bai, Xue; Sun, Chun; Zhang, Xiaoyu; Zhang, Yu; Zhang, Tieqiang

    2016-01-01

    High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow full width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.

  11. Predictions of new AB O3 perovskite compounds by combining machine learning and density functional theory

    Science.gov (United States)

    Balachandran, Prasanna V.; Emery, Antoine A.; Gubernatis, James E.; Lookman, Turab; Wolverton, Chris; Zunger, Alex

    2018-04-01

    We apply machine learning (ML) methods to a database of 390 experimentally reported A B O3 compounds to construct two statistical models that predict possible new perovskite materials and possible new cubic perovskites. The first ML model classified the 390 compounds into 254 perovskites and 136 that are not perovskites with a 90% average cross-validation (CV) accuracy; the second ML model further classified the perovskites into 22 known cubic perovskites and 232 known noncubic perovskites with a 94% average CV accuracy. We find that the most effective chemical descriptors affecting our classification include largely geometric constructs such as the A and B Shannon ionic radii, the tolerance and octahedral factors, the A -O and B -O bond length, and the A and B Villars' Mendeleev numbers. We then construct an additional list of 625 A B O3 compounds assembled from charge conserving combinations of A and B atoms absent from our list of known compounds. Then, using the two ML models constructed on the known compounds, we predict that 235 of the 625 exist in a perovskite structure with a confidence greater than 50% and among them that 20 exist in the cubic structure (albeit, the latter with only ˜50 % confidence). We find that the new perovskites are most likely to occur when the A and B atoms are a lanthanide or actinide, when the A atom is an alkali, alkali earth, or late transition metal atom, or when the B atom is a p -block atom. We also compare the ML findings with the density functional theory calculations and convex hull analyses in the Open Quantum Materials Database (OQMD), which predicts the T =0 K ground-state stability of all the A B O3 compounds. We find that OQMD predicts 186 of 254 of the perovskites in the experimental database to be thermodynamically stable within 100 meV/atom of the convex hull and predicts 87 of the 235 ML-predicted perovskite compounds to be thermodynamically stable within 100 meV/atom of the convex hull, including 6 of these to

  12. Oxygen storage capacity and structural properties of Ni-doped LaMnO3 perovskites

    International Nuclear Information System (INIS)

    Ran, Rui; Wu, Xiaodong; Weng, Duan; Fan, Jun

    2013-01-01

    Graphical abstract: Dynamic OSC of (a) fresh and (b) aged LaMn 1−x Ni x O 3 perovskites (0.1 Hz). Aged condition: 1050 °C, 5 h, 7% steam in air. The LaMn 1−x Ni x O 3 perovskites exhibit considerable dynamic OSC in comparison to CeO 2 –ZrO 2 (CZ), even after 1050 °C hydrothermal ageing for 5 h. Highlights: •Ni-doped LaMnO 3 perovskites exhibit very large dynamic OSC and high oxygen storage rate. •Mn 4+ is favourable to the releasable oxygen. •Doping of Ni ions increase the Mn 4+ content and the oxygen vacancies. •Doping of Ni ions reduce the BO 6 distortion in the LaMnO 3 perovskites. -- Abstract: A series of Ni doped LaMnO 3 perovskites were prepared by a sol–gel method as oxygen storage materials. Powder X-ray diffraction (XRD), X-ray adsorption fine structure (XAFS), oxygen storage capacity (OSC) and H 2 -temperature program reduction (TPR) measurements were performed to investigate the OSC of the perovskites as well as the effects of Ni on the structural properties. The results showed that the Ni-doped LaMnO 3 perovskite exhibited very large dynamic OSC and high oxygen release rate, which provided a possibility to serve as an oxygen storage material candidate in three-way catalysts. The available oxygen species below 500 °C primarily originated from the redox reaction between Mn 4+ and Mn 3+ , and the more Mn 4+ were favourable to the releasable oxygen. The doping of appropriate Ni ions promoted the OSC of the LaMnO 3 perovskites by increasing the Mn 4+ content and adjusting the structural defects. On the other hand, the doped Ni ions could make the BO 6 distortion disappearing in the LaMnO 3 perovskites to reduce the lattice oxygen activity

  13. Charge compensation and the incorporation of cerium in zirconolite and perovskite

    International Nuclear Information System (INIS)

    Begg, B.D.; Vance, E.R.; Lumpkin, G.R.

    1998-01-01

    Full text: Synroc is a mineral-analogue based titanate ceramic, consisting of a series of extremely stable, mutually compatible phases capable of incorporating HLW elements within their crystal structures. Waste elements are incorporated into the each of the Synroc phases via a substitutional solid solution mechanism. A given waste element is substituted directly for a host matrix element, of a similar ionic size, and where a charge imbalance exists between the waste and the host ions, suitable charge compensation is made to maintain overall charge neutrality. Charge compensation may take the form of an additional ion of appropriate charge substituting on either the same or a separate site, in such a manner so as to offset the original charge imbalance. In this way, waste ions are chemically bonded into the crystal structure of the durable host Synroc phase. The major rare earth/actinide-bearing Synroc phase is zirconolite. Previously we have reported on the incorporation of both cerium, which was used as a non-radioactive simulant for plutonium, and plutonium in zirconolite. We demonstrated how the valence of both ions can be varied by changing the firing atmosphere without significantly altering the composition of the zirconolite. This raised a number of significant questions about the nature of charge compensation at work in these zirconolites. In an effort to further investigate the charge compensation mechanisms at work in these cerium- and plutonium-doped zirconolites, it was decided to examine the incorporation of Ce in the simpler, but closely related, perovskite (CaTiO 3 ) system in addition to making further studies of Ce-doped zirconolites. Of course perovskite is also a component of Synroc which is also capable of incorporating significant amounts of rare earths and actinides. In an analogous way to the zirconolite series, the Ce was incorporated on the Ca site, with specific Ce valence states being targeted via the provision of appropriate amounts of

  14. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yangang; Zhang, Xiaohang; Gong, Yunhui; Shin, Jongmoon; Wachsman, Eric D.; Takeuchi, Ichiro, E-mail: takeuchi@umd.edu [Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20740 (United States); Yao, Yangyi; Hsu, Wei-Lun; Dagenais, Mario [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740 (United States)

    2016-01-15

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  15. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Yangang Liang

    2016-01-01

    Full Text Available We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH3NH3PbI3 thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  16. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  17. Pure Cs4PbBr6: Highly Luminescent Zero-Dimensional Perovskite Solids

    KAUST Repository

    Saidaminov, Makhsud I.; Almutlaq, Jawaher; Sarmah, Smritakshi P.; Dursun, Ibrahim; Zhumekenov, Ayan A.; Begum, Raihana; Pan, Jun; Cho, Nam Chul; Mohammed, Omar F.; Bakr, Osman

    2016-01-01

    more than 2 orders of magnitude lower PLQY. Such a PLQY of Cs4PbBr6 is significantly higher than that of other solid forms of lower-dimensional metal halide perovskite derivatives and perovskite nanocrystals. We attribute this dramatic increase in PL

  18. 21 CFR 73.1645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum. It...

  19. A Strategy for Architecture Design of Crystalline Perovskite Light-Emitting Diodes with High Performance.

    Science.gov (United States)

    Shi, Yifei; Wu, Wen; Dong, Hua; Li, Guangru; Xi, Kai; Divitini, Giorgio; Ran, Chenxin; Yuan, Fang; Zhang, Min; Jiao, Bo; Hou, Xun; Wu, Zhaoxin

    2018-06-01

    All present designs of perovskite light-emitting diodes (PeLEDs) stem from polymer light-emitting diodes (PLEDs) or perovskite solar cells. The optimal structure of PeLEDs can be predicted to differ from PLEDs due to the different fluorescence dynamics and crystallization between perovskite and polymer. Herein, a new design strategy and conception is introduced, "insulator-perovskite-insulator" (IPI) architecture tailored to PeLEDs. As examples of FAPbBr 3 and MAPbBr 3 , it is experimentally shown that the IPI structure effectively induces charge carriers into perovskite crystals, blocks leakage currents via pinholes in the perovskite film, and avoids exciton quenching simultaneously. Consequently, as for FAPbBr 3 , a 30-fold enhancement in the current efficiency of IPI-structured PeLEDs compared to a control device with poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) as hole-injection layer is achieved-from 0.64 to 20.3 cd A -1 -while the external quantum efficiency is increased from 0.174% to 5.53%. As the example of CsPbBr 3 , compared with the control device, both current efficiency and lifetime of IPI-structured PeLEDs are improved from 1.42 and 4 h to 9.86 cd A -1 and 96 h. This IPI architecture represents a novel strategy for the design of light-emitting didoes based on various perovskites with high efficiencies and stabilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Engineering Interfacial Charge Transfer in CsPbBr3 Perovskite Nanocrystals by Heterovalent Doping.

    Science.gov (United States)

    Begum, Raihana; Parida, Manas R; Abdelhady, Ahmed L; Murali, Banavoth; Alyami, Noktan M; Ahmed, Ghada H; Hedhili, Mohamed Nejib; Bakr, Osman M; Mohammed, Omar F

    2017-01-18

    Since compelling device efficiencies of perovskite solar cells have been achieved, investigative efforts have turned to understand other key challenges in these systems, such as engineering interfacial energy-level alignment and charge transfer (CT). However, these types of studies on perovskite thin-film devices are impeded by the morphological and compositional heterogeneity of the films and their ill-defined surfaces. Here, we use well-defined ligand-protected perovskite nanocrystals (NCs) as model systems to elucidate the role of heterovalent doping on charge-carrier dynamics and energy level alignment at the interface of perovskite NCs with molecular acceptors. More specifically, we develop an in situ doping approach for colloidal CsPbBr 3 perovskite NCs with heterovalent Bi 3+ ions by hot injection to precisely tune their band structure and excited-state dynamics. This synthetic method allowed us to map the impact of doping on CT from the NCs to different molecular acceptors. Using time-resolved spectroscopy with broadband capability, we clearly demonstrate that CT at the interface of NCs can be tuned and promoted by metal ion doping. We found that doping increases the energy difference between states of the molecular acceptor and the donor moieties, subsequently facilitating the interfacial CT process. This work highlights the key variable components not only for promoting interfacial CT in perovskites, but also for establishing a higher degree of precision and control over the surface and the interface of perovskite molecular acceptors.

  1. Engineering Interfacial Charge Transfer in CsPbBr3 Perovskite Nanocrystals by Heterovalent Doping

    KAUST Repository

    Begum, Raihana

    2016-12-17

    Since compelling device efficiencies of perovskite solar cells have been achieved, investigative efforts have turned to understand other key challenges in these systems, such as engineering interfacial energy-level alignment and charge transfer (CT). However, these types of studies on perovskite thin-film devices are impeded by the morphological and compositional heterogeneity of the films and their ill-defined surfaces. Here, we use well-defined ligand-protected perovskite nanocrystals (NCs) as model systems to elucidate the role of heterovalent doping on charge-carrier dynamics and energy level alignment at the interface of perovskite NCs with molecular acceptors. More specifically, we develop an in situ doping approach for colloidal CsPbBr3 perovskite NCs with heterovalent Bi3+ ions by hot injection to precisely tune their band structure and excited-state dynamics. This synthetic method allowed us to map the impact of doping on CT from the NCs to different molecular acceptors. Using time-resolved spectroscopy with broadband capability, we clearly demonstrate that CT at the interface of NCs can be tuned and promoted by metal ion doping. We found that doping increases the energy difference between states of the molecular acceptor and the donor moieties, subsequently facilitating the interfacial CT process. This work highlights the key variable components not only for promoting interfacial CT in perovskites, but also for establishing a higher degree of precision and control over the surface and the interface of perovskite molecular acceptors.

  2. Bandgap Engineering of Double Perovskites for One- and Two-photon Water Splitting

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2013-01-01

    Computational screening is becoming increasingly useful in the search for new materials. We are interested in the design of new semiconductors to be used for light harvesting in a photoelectrochemical cell. In the present paper, we study the double perovskite structures obtained by combining 46...... stable cubic perovskites which was found to have a finite bandgap in a previous screening-study. The four-metal double perovskite space is too large to be investigated completely. For this reason we propose a method for combining different metals to obtain a desired bandgap. We derive some bandgap design...... rules on how to combine two cubic perovskites to generate a new combination with a larger or smaller bandgap compared with the constituent structures. Those rules are based on the type of orbitals involved in the conduction bands and on the size of the two cubic bandgaps. We also see that a change...

  3. Crystallographic and Electronic Structure of the Sr3Sb2CoO9 Triple Perovskite

    International Nuclear Information System (INIS)

    González, W; Téllez, D A Landínez; Roa-Rojas, J; Cardona, R

    2014-01-01

    Compounds The perovskites are materials with physical and chemical characteristics that make them optimal for application in the technological and scientist. When the ideal formula of perovskite ABO 3 is modified by introducing a special structural arrangement can get to get triple perovskites, which correspond to the formula A 3 B 2 B'O 9 . In this work we report the synthesis process and the study of electronic structure and crystal Sr 3 Sb 2 CoO 9 new triple perovskite. From the experiments of X-ray Diffraction and the application of the Rietveld refinement method was revealed that the system crystallizes in a perovskite structure with a characteristic triple given by the space group Immm (#71) and lattice parameters a=9.791(9) Å, b=5.656(7) Å and c=16.957(8) Å. Ab initio calculations of density of states (DOS) and electronic structure were carried out for this perovskite-like system by using the Quantum EXPRESSO code. The exchange-correlation potential was treated using the Generalized Gradient Approximation (GGA). All calculations were carried-out using spin polarization.

  4. Krypton irradiation damage in Nd-doped zirconolite and perovskite

    International Nuclear Information System (INIS)

    Davoisne, C.; Stennett, M.C.; Hyatt, N.C.; Peng, N.; Jeynes, C.; Lee, W.E.

    2011-01-01

    Understanding the effect of radiation damage and noble gas accommodation in potential ceramic hosts for plutonium disposition is necessary to evaluate their long-term behaviour during geological disposal. Polycrystalline samples of Nd-doped zirconolite and Nd-doped perovskite were irradiated ex situ with 2 MeV Kr + at a dose of 5 x 10 15 ions cm -2 to simulate recoil of Pu nuclei during alpha decay. The feasibility of thin section preparation of both pristine and irradiated samples by Focused Ion Beam sectioning was demonstrated. After irradiation, the Nd-doped zirconolite revealed a well defined amorphous region separated from the pristine material by a thin (40-60 nm) damaged interface. The zirconolite lattice was lost in the damaged interface, but the fluorite sublattice was retained. The Nd-doped perovskite contained a defined irradiated layer composed of an amorphous region surrounded by damaged but still crystalline layers. The structural evolution of the damaged regions is consistent with a change from orthorhombic to cubic symmetry. In addition in Nd-doped perovskite, the amorphisation dose depended on crystallographic orientation and possibly sample configuration (thin section or bulk). Electron Energy Loss Spectroscopy revealed Ti remained in the 4+ oxidation state but there was a change in Ti coordination in both Nd-doped perovskite and Nd-doped zirconolite associated with the crystalline to amorphous transition.

  5. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  6. Critical Intermediate Structure That Directs the Crystalline Texture and Surface Morphology of Organo-Lead Trihalide Perovskite.

    Science.gov (United States)

    Chia, Hao-Chung; Sheu, Hwo-Shuenn; Hsiao, Yu-Yun; Li, Shao-Sian; Lan, Yi-Kang; Lin, Chung-Yao; Chang, Je-Wei; Kuo, Yen-Chien; Chen, Chia-Hao; Weng, Shih-Chang; Su, Chun-Jen; Su, An-Chung; Chen, Chun-Wei; Jeng, U-Ser

    2017-10-25

    We have identified an often observed yet unresolved intermediate structure in a popular processing with dimethylformamide solutions of lead chloride and methylammonium iodide for perovskite solar cells. With subsecond time-resolved grazing-incidence X-ray scattering and X-ray photoemission spectroscopy, supplemental with ab initio calculation, the resolved intermediate structure (CH 3 NH 3 ) 2 PbI 2 Cl 2 ·CH 3 NH 3 I features two-dimensional (2D) perovskite bilayers of zigzagged lead-halide octahedra and sandwiched CH 3 NH 3 I layers. Such intermediate structure reveals a hidden correlation between the intermediate phase and the composition of the processing solution. Most importantly, the 2D perovskite lattice of the intermediate phase is largely crystallographically aligned with the [110] planes of the three-dimensional perovskite cubic phase; consequently, with sublimation of Cl ions from the organo-lead octahedral terminal corners in prolonged annealing, the zigzagged octahedral layers of the intermediate phase can merge with the intercalated methylammonium iodide layers for templated growth of perovskite crystals. Regulated by annealing temperature and the activation energies of the intermediate and perovskite, deduced from analysis of temperature-dependent structural kinetics, the intermediate phase is found to selectively mature first and then melt along the layering direction for epitaxial conversion into perovskite crystals. The unveiled epitaxial conversion under growth kinetics controls might be general for solution-processed and intermediate-templated perovskite formation.

  7. Stability of perovskite solar cells on flexible substrates

    Science.gov (United States)

    Tam, Ho Won; Chen, Wei; Liu, Fangzhou; He, Yanling; Leung, Tik Lun; Wang, Yushu; Wong, Man Kwong; Djurišić, Aleksandra B.; Ng, Alan Man Ching; He, Zhubing; Chan, Wai Kin; Tang, Jinyao

    2018-02-01

    Perovskite solar cells are emerging photovoltaic technology with potential for low cost, high efficiency devices. Currently, flexible devices efficiencies over 15% have been achieved. Flexible devices are of significant interest for achieving very low production cost via roll-to-roll processing. However, the stability of perovskite devices remains a significant challenge. Unlike glass substrate which has negligible water vapor transmission rate (WVTR), polymeric flexible film substrates suffer from high moisture permeability. As PET and PEN flexible substrates exhibit higher water permeability then glass, transparent flexible backside encapsulation should be used to maximize light harvesting in perovskite layer while WVTR should be low enough. Wide band gap materials are transparent in the visible spectral range low temperature processable and can be a moisture barrier. For flexible substrates, approaches like atomic layer deposition (ALD) and low temperature solution processing could be used for metal oxide deposition. In this work, ALD SnO2, TiO2, Al2O3 and solution processed spin-on-glass was used as the barrier layer on the polymeric side of indium tin oxide (ITO) coated PEN substrates. The UV-Vis transmission spectra of the prepared substrates were investigated. Perovskite solar cells will be fabricated and stability of the devices were encapsulated with copolymer films on the top side and tested under standard ISOS-L-1 protocol and then compared to the commercial unmodified ITO/PET or ITO/PEN substrates. In addition, devices with copolymer films laminated on both sides successfully surviving more than 300 hours upon continuous AM1.5G illumination were demonstrated.

  8. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells.

    Science.gov (United States)

    Chen, Qi; Zhou, Huanping; Song, Tze-Bin; Luo, Song; Hong, Ziruo; Duan, Hsin-Sheng; Dou, Letian; Liu, Yongsheng; Yang, Yang

    2014-07-09

    To improve the performance of the polycrystalline thin film devices, it requires a delicate control of its grain structures. As one of the most promising candidates among current thin film photovoltaic techniques, the organic/inorganic hybrid perovskites generally inherit polycrystalline nature and exhibit compositional/structural dependence in regard to their optoelectronic properties. Here, we demonstrate a controllable passivation technique for perovskite films, which enables their compositional change, and allows substantial enhancement in corresponding device performance. By releasing the organic species during annealing, PbI2 phase is presented in perovskite grain boundaries and at the relevant interfaces. The consequent passivation effects and underlying mechanisms are investigated with complementary characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence decay (TRPL), scanning Kelvin probe microscopy (SKPM), and ultraviolet photoemission spectroscopy (UPS). This controllable self-induced passivation technique represents an important step to understand the polycrystalline nature of hybrid perovskite thin films and contributes to the development of perovskite solar cells judiciously.

  9. Crystal Structure Formation of CH3NH3PbI3-xClx Perovskite

    Directory of Open Access Journals (Sweden)

    Shiqiang Luo

    2016-02-01

    Full Text Available Inorganic-organic hydride perovskites bring the hope for fabricating low-cost and large-scale solar cells. At the beginning of the research, two open questions were raised: the hysteresis effect and the role of chloride. The presence of chloride significantly improves the crystallization and charge transfer property of the perovskite. However, though the long held debate over of the existence of chloride in the perovskite seems to have now come to a conclusion, no prior work has been carried out focusing on the role of chloride on the electronic performance and the crystallization of the perovskite. Furthermore, current reports on the crystal structure of the perovskite are rather confusing. This article analyzes the role of chloride in CH3NH3PbI3-xClx on the crystal orientation and provides a new explanation about the (110-oriented growth of CH3NH3PbI3 and CH3NH3PbI3-xClx.

  10. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.

    2018-04-05

    Hybrid-perovskite based high-performance optoelectronic devices and clues from their operation has led to the realization that light-induced structural dynamics play a vital role on their physical properties, device performance and stability. Here, we report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin-films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in-situ structural and device characterizations reveal that light-induced lattice expansion significantly benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5% to 20.5%. This is a direct consequence of the relaxation of local lattice strains during lattice expansion, which results in the reduction of the energetic barriers at the perovskite/contact interfaces in devices, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion stabilizes these high-efficiency photovoltaic devices under continuous operation of full-spectrum 1-Sun illumination for over 1500 hours. One Sentence Summary: Light-induced lattice expansion improves crystallinity, relaxes lattice strain, which enhances photovoltaic performance in hybrid perovskite device.

  11. Strong excitonic interactions in the oxygen K-edge of perovskite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Kota; Miyata, Tomohiro [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Olovsson, Weine [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2017-07-15

    Excitonic interactions of the oxygen K-edge electron energy-loss near-edge structure (ELNES) of perovskite oxides, CaTiO{sub 3}, SrTiO{sub 3}, and BaTiO{sub 3}, together with reference oxides, MgO, CaO, SrO, BaO, and TiO{sub 2}, were investigated using a first-principles Bethe–Salpeter equation calculation. Although the transition energy of oxygen K-edge is high, strong excitonic interactions were present in the oxygen K-edge ELNES of the perovskite oxides, whereas the excitonic interactions were negligible in the oxygen K-edge ELNES of the reference compounds. Detailed investigation of the electronic structure suggests that the strong excitonic interaction in the oxygen K-edge ELNES of the perovskite oxides is caused by the directionally confined, low-dimensional electronic structure at the Ti–O–Ti bonds. - Highlights: • Excitonic interaction in oxygen-K edge is investigated. • Strong excitonic interaction is found in the oxygen-K edge of perovskite oxides. • The strong excitonic interaction is ascribed to the low-dimensional and confined electronic structure.

  12. Chlorine-Incorporation-Induced Formation of the Layered Phase for Antimony-Based Lead-Free Perovskite Solar Cells.

    Science.gov (United States)

    Jiang, Fangyuan; Yang, Dongwen; Jiang, Youyu; Liu, Tiefeng; Zhao, Xingang; Ming, Yue; Luo, Bangwu; Qin, Fei; Fan, Jiacheng; Han, Hongwei; Zhang, Lijun; Zhou, Yinhua

    2018-01-24

    The environmental toxicity of Pb in organic-inorganic hybrid perovskite solar cells remains an issue, which has triggered intense research on seeking alternative Pb-free perovskites for solar applications. Halide perovskites based on group-VA cations of Bi 3+ and Sb 3+ with the same lone-pair ns 2 state as Pb 2+ are promising candidates. Herein, through a joint experimental and theoretical study, we demonstrate that Cl-incorporated methylammonium Sb halide perovskites (CH 3 NH 3 ) 3 Sb 2 Cl X I 9-X show promise as efficient solar absorbers for Pb-free perovskite solar cells. Inclusion of methylammonium chloride into the precursor solutions suppresses the formation of the undesired zero-dimensional dimer phase and leads to the successful synthesis of high-quality perovskite films composed of the two-dimensional layered phase favored for photovoltaics. Solar cells based on the as-obtained (CH 3 NH 3 ) 3 Sb 2 Cl X I 9-X films reach a record-high power conversion efficiency over 2%. This finding offers a new perspective for the development of nontoxic and low-cost Sb-based perovskite solar cells.

  13. Highly Efficient Perovskite Solar Cells Using Non-Toxic Industry Compatible Solvent System

    NARCIS (Netherlands)

    Wang, J.; Giacomo, F. Di; Brüls, J.; Gorter, H.; Katsouras, I.; Groen, P.; Janssen, R.A.J.; Andriessen, R.; Galagan, Y.

    2017-01-01

    Perovskite solar cells attract a lot attention as alternative energy sources for the future energy market. With the remarkable lab-scale achievements, the investigations into a high-throughput large-scale production of perovskite devices are now on the agenda. The first step towards mass

  14. Highly efficient Perovskite solar cells using non-toxic industry compatible solvent system

    NARCIS (Netherlands)

    Wang, J.; Di Giacomo, F.; Bruls, J.; Gorter, H.H.; Katsouras, I.; Groen, W.A.; Janssen, R.A.J.; Andriessen, R.; Galagan, Y.

    2017-01-01

    Perovskite solar cells attract a lot attention as alternative energy sources for the future energy market. With the remarkable lab-scale achievements, the investigations into a high-throughput large-scale production of perovskite devices are now on the agenda. The first step towards mass

  15. Polaron Self-localization in White-light Emitting Hybrid Perovskites

    OpenAIRE

    Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Lo, Shu-Zee Alencious; Gurzadyan, Gagik G.; Mhaisalkar, Subodh; Brédas, Jean-Luc; Soci, Cesare

    2016-01-01

    Two-dimensional (2D) perovskites with general formula $APbX_4$ are attracting increasing interest as solution processable, white-light emissive materials. Recent studies have shown that their broadband emission is related to the formation of intra-gap color centers; however, the nature and dynamics of the emissive species have remained elusive. Here we show that the broadband photoluminescence of the 2D perovskites $(EDBE)PbCl_4$ and $(EDBE)PbBr_4$ stems from the localization of small polaron...

  16. Magnetoresistance stories of double perovskites

    Indian Academy of Sciences (India)

    2015-05-28

    May 28, 2015 ... Tunnelling magnetoresistance (TMR) in polycrystalline double perovskites has been an important research topic for more than a decade now, where the nature of the insulating tunnel barrier is the core issue of debate. Other than the nonmagnetic grain boundaries as conventional tunnel barriers, intragrain ...

  17. Planar versus bulk heterojunction perovskite microstructures: Impact of morphology on photovoltaic properties and recombination dynamics

    Science.gov (United States)

    Singh, Ranbir; Shukla, Vivek Kumar

    2018-05-01

    In this work, we compare the planar and bulk heterojunction (BHJ) perovskite thin films for their morphologies, photovoltaic properties, and recombination dynamics. The BHJ perovskite thin films were prepared with the addition of fullerene derivative [6, 6]-Phenyl-C60 butyric acid methyl ester (PC60BM). The addition of PC60BM in perovskite provides a pinhole free film with high absorption coefficient and better charge transfer. The solar cells fabricated with BHJ perovskite exhibits power conversion efficiency (PCE) of 13.5%, with remarkably increased short-circuit current density (JSC) of 20.1 mAcm-2 and reduced recombination rate.

  18. Electrochemical reduction of nitrous oxide on La1-xSrxFeO3 perovskites

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The electrochemical reduction of nitrous oxide and oxygen has been studied on cone-shaped electrodes of La1-xSrxFeO3-delta perovskites in an all solid state cell, using cyclic voltammetry. It was shown that the activity of the La1-xSrxFeO3-delta perovskites for the electrochemical reduction...... of nitrous oxide mainly depends on the amount of Fe(III) and oxide ion vacancies. The activity of the La1-xSrxFeO3-delta perovskites towards the electrochemical reduction of nitrous oxide is much lower than the activity of the La1-xSrxFeO3-delta perovskites towards the electrochemical reduction of oxygen...

  19. Thermochemical and thermophysical properties of alkaline-earth perovskites

    International Nuclear Information System (INIS)

    Yamanaka, Shinsuke; Kurosaki, Ken; Maekawa, Takuji; Matsuda, Tetsushi; Kobayashi, Shin-ichi; Uno, Masayoshi

    2005-01-01

    In order to contribute to safety evaluation of high burnup oxide fuels, we studied the thermochemical and thermophysical properties of alkaline-earth perovskites known as oxide inclusions. Polycrystalline samples of alkaline-earth perovskites, BaUO 3 , BaZrO 3 , BaCeO 3 , BaMoO 3 , SrTiO 3 , SrZrO 3 , SrCeO 3 , SrMoO 3 , SrHfO 3 and SrRuO 3 , were prepared and the thermal expansion coefficient, melting temperature, elastic moduli, Debye temperature, microhardness, heat capacity, and thermal conductivity were measured. The relationship between some physical properties was studied

  20. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance.

    Science.gov (United States)

    Chen, Alexander Z; Shiu, Michelle; Ma, Jennifer H; Alpert, Matthew R; Zhang, Depei; Foley, Benjamin J; Smilgies, Detlef-M; Lee, Seung-Hun; Choi, Joshua J

    2018-04-06

    Thin films based on two-dimensional metal halide perovskites have achieved exceptional performance and stability in numerous optoelectronic device applications. Simple solution processing of the 2D perovskite provides opportunities for manufacturing devices at drastically lower cost compared to current commercial technologies. A key to high device performance is to align the 2D perovskite layers, during the solution processing, vertical to the electrodes to achieve efficient charge transport. However, it is yet to be understood how the counter-intuitive vertical orientations of 2D perovskite layers on substrates can be obtained. Here we report a formation mechanism of such vertically orientated 2D perovskite in which the nucleation and growth arise from the liquid-air interface. As a consequence, choice of substrates can be liberal from polymers to metal oxides depending on targeted application. We also demonstrate control over the degree of preferential orientation of the 2D perovskite layers and its drastic impact on device performance.