WorldWideScience

Sample records for lung morphometry collagen

  1. Lung morphometry, collagen and elastin content: changes after hyperoxic exposure in preterm rabbits

    Directory of Open Access Journals (Sweden)

    Renata Suman Mascaretti

    2009-11-01

    Full Text Available INTRODUCTION: Elastic and collagen fiber deposition increases throughout normal lung development, and this fiber network significantly changes when development of the lung is disturbed. In preterm rats and lambs, prolonged hyperoxic exposure is associated with impaired alveolization and causes significant changes in the deposition and structure of elastic fibers. OBJECTIVES: To evaluate the effects of hyperoxic exposure on elastic and collagen fiber deposition in the lung interstitial matrix and in alveolarization in preterm rabbits. METHODS: After c-section, 28-day preterm New-Zealand-White rabbits were randomized into 2 study groups, according to the oxygen exposure, namely: Room air (oxygen = 21% or Oxygen (oxygen > 95%. The animals were killed on day 11 and their lungs were analyzed for the alveolar size (Lm, the internal surface area (ISA, the alveoli number, and the density and distribution of collagen and elastic fibers. RESULTS: An increase in the Lm and a decrease in the alveoli number were observed among rabbits that were exposed to hyperoxia with no differences regarding the ISA. No difference in the density of elastic fibers was observed after oxygen exposure, however there were fewer collagen fibers and an evident disorganization of fiber deposition. DISCUSSION: This model reproduces anatomo-pathological injuries representing the arrest of normal alveolar development and lung architecture disorganization by just a prolonged exposition to oxygen. CONCLUSIONS: In the preterm rabbit, prolonged oxygen exposure impaired alveolization and also lowered the proportion of collagen fibers, with an evident fiber network disorganization.

  2. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice

    DEFF Research Database (Denmark)

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua

    2016-01-01

    , intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent...... within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180....... Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP...

  3. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice*

    Science.gov (United States)

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L.; Jerome, Jacob A.; Madsen, Daniel H.; Christofidou-Solomidou, Melpo; Speicher, David W.; Bachovchin, William W.; Feghali-Bostwick, Carol; Puré, Ellen

    2016-01-01

    Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2–4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent with in vitro studies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung. PMID:26663085

  4. Collagen crosslink location: a molecular marker for fibrosis in lungs of rats with experimental silicosis

    International Nuclear Information System (INIS)

    Gerriets, J.E.; Reiser, K.M.; Last, J.A.

    1986-01-01

    Collagen content is increased in lungs of animals with experimental silicosis. They hypothesize that the collagen deposited in such fibrotic lungs differs structurally from normal lung collagen. Silicotic lung collagen shows an increase in lysine hydroxylation. In addition, the ratio of the difunctional crosslinks DHLNL (dihydroxylysinonorleucine) to HLNL (hydroxylysinonorleucine) is sharply elevated compared to that in control lungs. The peptide α1(I)CB7 x α2(I)CB1 crosslinked by HLNL was demonstrated in NaB 3 H 4 -reduced, CNBr-digested collagen from rat tail tendon by peptide purification, followed by periodate oxidation and amino acid analysis. Further structural analysis of this peptide was obtained by digestion of the crosslinked peptide with trypsin and purification of the tryptic peptide containing this crosslink followed by amino acid analysis. They then examined the analogous collagenous peptide in normal and silicotic lungs and analyzed the crosslink it contained. They observed that DHLNL was present at specific sites previously containing HLNL; that is, the collagen in fibrotic lungs is altered at specific sites by post-translational modification of a lysine residue by hydroxylation in a predictable way. They conclude that such unusual hydroxylation of a specific lysine residue in the α2 chain provides a molecular marker for fibrotic lung collagen

  5. Collagen V-induced nasal tolerance downregulates pulmonary collagen mRNA gene and TGF-beta expression in experimental systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Parra Edwin R

    2010-01-01

    Full Text Available Abstract Background The purpose of this study was to evaluate collagen deposition, mRNA collagen synthesis and TGF-beta expression in the lung tissue in an experimental model of scleroderma after collagen V-induced nasal tolerance. Methods Female New Zealand rabbits (N = 12 were immunized with 1 mg/ml of collagen V in Freund's adjuvant (IM. After 150 days, six immunized animals were tolerated by nasal administration of collagen V (25 μg/day (IM-TOL daily for 60 days. The collagen content was determined by morphometry, and mRNA expressions of types I, III and V collagen were determined by Real-time PCR. The TGF-beta expression was evaluated by immunostaining and quantified by point counting methods. To statistic analysis ANOVA with Bonferroni test were employed for multiple comparison when appropriate and the level of significance was determined to be p Results IM-TOL, when compared to IM, showed significant reduction in total collagen content around the vessels (0.371 ± 0.118 vs. 0.874 ± 0.282, p p p = 0.026. The lung tissue of IM-TOL, when compared to IM, showed decreased immunostaining of types I, III and V collagen, reduced mRNA expression of types I (0.10 ± 0.07 vs. 1.0 ± 0.528, p = 0.002 and V (1.12 ± 0.42 vs. 4.74 ± 2.25, p = 0.009 collagen, in addition to decreased TGF-beta expression (p Conclusions Collagen V-induced nasal tolerance in the experimental model of SSc regulated the pulmonary remodeling process, inhibiting collagen deposition and collagen I and V mRNA synthesis. Additionally, it decreased TGF-beta expression, suggesting a promising therapeutic option for scleroderma treatment.

  6. Hydrogels for lung tissue engineering: Biomechanical properties of thin collagen-elastin constructs.

    Science.gov (United States)

    Dunphy, Siobhán E; Bratt, Jessica A J; Akram, Khondoker M; Forsyth, Nicholas R; El Haj, Alicia J

    2014-10-01

    In this study, collagen-elastin constructs were prepared with the aim of producing a material capable of mimicking the mechanical properties of a single alveolar wall. Collagen has been used in a wide range of tissue engineering applications; however, due to its low mechanical properties its use is limited to non load-bearing applications without further manipulation using methods such as cross-linking or mechanical compression. Here, it was hypothesised that the addition of soluble elastin to a collagen hydrogel could improve its mechanical properties. Hydrogels made from collagen only and collagen plus varying amounts elastin were prepared. Young׳s modulus of each membrane was measured using the combination of a non-destructive indentation and a theoretical model previously described. An increase in Young׳s modulus was observed with increasing concentration of elastin. The use of non-destructive indentation allowed for online monitoring of the elastic moduli of cell-seeded constructs over 8 days. The addition of lung fibroblasts into the membrane increased the stiffness of the hydrogels further and cell-seeded collagen hydrogels were found to have a stiffness equal to the theoretical value for a single alveolar wall (≈5kPa). Through provision of some of the native extracellular matrix components of the lung parenchyma these scaffolds may be able to provide an initial building block toward the regeneration of new functional lung tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    Science.gov (United States)

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia. Copyright © 2015 the American Physiological Society.

  8. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts.

    Science.gov (United States)

    Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun

    2017-01-01

    Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6-78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts.

  9. Pathomorphologic observation on treatment of radiation-induced lung damage in rats with

    International Nuclear Information System (INIS)

    Ye Jiangfeng; Qi Haowen; Zhao Feng; Fan Fengyun; Shi Mei; Zhao Yiling; Meng Yulin

    2004-01-01

    Objective: To inquire into the means of preventing lung damage induced by thoracic irradiation. Methods: SD rats were divided randomly into 3 groups: normal control, irradiated control (Group IC) and irradiated and fluvastatin (Flu)-treated group (Group F). The later two groups of rats were irradiated with X-rays at a dose of 20 Gy thoracically. Beginning from the seventh day before irradiation the rats in the Group F were treated with Flu at a dose of 20 mg per day by garaging until the end of the experiment. Animals from each group were sacrificed on days 5, 15, 30, 60 respectively after irradiation. Sections of lung were examined with light microscopy, electron microscopy and morphometry. Results: The rats in the Group IC suffered from typical radiation pneumonitis (P<0.01). Electron microscopy indicated type II pneumonocytes and capillary endothelial cells were injured in rats of Group IC on days 30, 60. There were increase of collagen and a great quantity of mast cells in irradiated control rats. In rats of the Group F there was slight reaction in the lung. Conclusion: Fluvastatin could reduce radiation pneumonitis and inhibit increase of collagen. The treatment and prevention of radiation-induced lung injury in rats with fluvastatin is effective

  10. ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis.

    Science.gov (United States)

    Peng, D H; Ungewiss, C; Tong, P; Byers, L A; Wang, J; Canales, J R; Villalobos, P A; Uraoka, N; Mino, B; Behrens, C; Wistuba, I I; Han, R I; Wanna, C A; Fahrenholtz, M; Grande-Allen, K J; Creighton, C J; Gibbons, D L

    2017-04-06

    Lung cancer is the leading cause of cancer-related deaths, primarily due to distant metastatic disease. Metastatic lung cancer cells can undergo an epithelial-to-mesenchymal transition (EMT) regulated by various transcription factors, including a double-negative feedback loop between the microRNA-200 (miR-200) family and ZEB1, but the precise mechanisms by which ZEB1-dependent EMT promotes malignancy remain largely undefined. Although the cell-intrinsic effects of EMT are important for tumor progression, the reciprocal dynamic crosstalk between mesenchymal cancer cells and the extracellular matrix (ECM) is equally critical in regulating invasion and metastasis. Investigating the collaborative effect of EMT and ECM in the metastatic process reveals increased collagen deposition in metastatic tumor tissues as a direct consequence of amplified collagen gene expression in ZEB1-activated mesenchymal lung cancer cells. In addition, collagen fibers in metastatic lung tumors exhibit greater linearity and organization as a result of collagen crosslinking by the lysyl oxidase (LOX) family of enzymes. Expression of the LOX and LOXL2 isoforms is directly regulated by miR-200 and ZEB1, respectively, and their upregulation in metastatic tumors and mesenchymal cell lines is coordinated to that of collagen. Functionally, LOXL2, as opposed to LOX, is the principal isoform that crosslinks and stabilizes insoluble collagen deposition in tumor tissues. In turn, focal adhesion formation and FAK/SRC signaling is activated in mesenchymal tumor cells by crosslinked collagen in the ECM. Our study is the first to validate direct regulation of LOX and LOXL2 by the miR-200/ZEB1 axis, defines a novel mechanism driving tumor metastasis, delineates collagen as a prognostic marker, and identifies LOXL2 as a potential therapeutic target against tumor progression.

  11. Morphology and Morphometry of the Lung in Corn Snakes (Pantherophis guttatus) Infected with Three Different Strains of Ferlavirus.

    Science.gov (United States)

    Starck, J M; Neul, A; Schmidt, V; Kolb, T; Franz-Guess, S; Balcecean, D; Pees, M

    2017-05-01

    Ophidian paramyxovirus (ferlavirus) is a global threat to reptilian sauropsids in herpetological collections, with occasional but fatal effects. This study characterizes the effects of three different genetic strains of ferlavirus on the dynamic changes of histology and morphometry of the lung of corn snakes (Pantherophis guttatus). Lungs from 42 corn snakes were either sham-infected or infected experimentally under standardized conditions. From 4 to 49 days after intratracheal inoculation, the lungs were examined qualitatively and quantitatively. Progressive microscopical changes were seen in the lung. Initially, increased numbers of heterophils were observed in the interstitium followed by proliferation and vacuolation of epithelial cells lining faveoli. Electron microscopy revealed loss of type-I pneumocytes, hyperplasia of type-II pneumocytes, and interstitial infiltrates of heterophils and mononuclear cells. With progression of disease the respiratory epithelium was initially overgrown by transformed type-II pneumocytes and later became multilayered. The results of the study suggest that the respiratory capacity of the lungs declines with disease development. The dynamics of disease development and histopathology differed in snakes infected with different ferlavirus genogroups. Animals infected with virus genogroup B developed histopathological changes and morphometric changes more rapidly and of greater intensity than snakes infected with viruses from genogroups A or C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Calcaneal Tendon Collagen Fiber Morphometry and Aging

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Daniel; Janáček, Jiří; Filová, Eva; Lopot, F.; Paesen, R.; Fanta, O.; Jarman, A.; Nečas, A.; Ameloot, M.; Jelen, K.

    2017-01-01

    Roč. 23, č. 5 (2017), s. 1040-1047 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GA16-14758S; GA MŠk(CZ) LO1309; GA MŠk(CZ) LM2015062 Institutional support: RVO:67985823 ; RVO:68378041 Keywords : collagen * aging * crimp * fiber orientation * tendon Subject RIV: EB - Genetics ; Molecular Biology; BO - Biophysics (UEM-P) OBOR OECD: Developmental biology; Biophysics (UEM-P) Impact factor: 1.891, year: 2016

  13. Histone Deacetylase Inhibition Downregulates Collagen 3A1 in Fibrotic Lung Fibroblasts

    Directory of Open Access Journals (Sweden)

    Victor J. Thannickal

    2013-09-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a deadly disease characterized by chronic inflammation and excessive collagen accumulation in the lung. Myofibroblasts are the primary collagen-producing cells in pulmonary fibrosis. Histone deacetylase inhibitor (HDACi can affect gene expression, and some, such as suberoylanilide hydroxamic acid (SAHA, are US FDA approved for cancer treatment. In this study, we investigated SAHA’s effects on the expression of collagen III alpha 1 (COL3A1 in primary human IPF fibroblasts and in a murine model of pulmonary fibrosis. We observed that increased COL3A1 expression in IPF fibroblasts can be substantially reduced by SAHA treatment at the level of transcription as detected by RT-PCR; collagen III protein level was also reduced, as detected by Western blots and immunofluorescence. The deacetylation inhibitor effect of SAHA was verified by observing higher acetylation levels of both histone H3 and H4 in treated IPF cells. Chromatin immunoprecipitation (ChIP experiments demonstrated that the reduced expression of COL3A1 by SAHA is with increased association of the repressive chromatin marker, H3K27Me3, and decreased association of the active chromatin marker, H3K9Ac. In our murine model of bleomycin-induced pulmonary fibrosis, the SAHA treated group demonstrated significantly less collagen III, as detected by immunohistochemistry. Our data indicate that the HDACi SAHA alters the chromatin associated with COL3A1, resulting in its decreased expression.

  14. High-resolution CT of the lung (HRCT) in collagen diseases: A prospective study of 73 patients. Hochaufloesende Computertomographie der Lunge (HRCT) bei Kollagenosen: eine prospektive Untersuchung an 73 Patienten

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Leisse, C. (Klinik fuer Radiologische Diagnostik, RWTH Aachen (Germany)); Bussmann, A.; Mayer, O. (Klinik fuer Radiologische Diagnostik, RWTH Aachen (Germany)); Genth, E.; Guenther, R.W. (Klinik fuer Radiologische Diagnostik, RWTH Aachen (Germany))

    1994-07-01

    To determine pulmonary features of collagenous vascular diseases as assessed by high resolution computed tomography (HRCT) we performed a prospective study of 73 consecutive patients, 44 with rheumatoid arthritis (ra), 11 with progressive systemic sclerosis (pss), 8 with systemic lupus erythematosus (sle), 5 with sjoegren's syndrome, 3 with dermato-/polymyositis and 2 with mixed connective-tissue disease. Pathological lung changes were demonstrated in 70% of patients with ra, 91% with pss, 63% with sle and 60% with the rest. HRCT features included: Intralobular thickening (48%) with a predominance in posterior lower and middle lung areas, pleural thickening (48%) with a predominance in upper lung areas, prominent interlobular septa (37%), subpleural lines (33%), parenchymal bands (33%) with a predominance in lower and anterior lung areas, honeycombing (33%), groundglass pattern (29%) with a predominance in upper and middle, micronodules (18%) with a predominance in upper lung areas and bronchiectasis (14%). HRCT is an important means for the assessment of lung changes associated with collagenous vascular diseases and a definite diagnosis is possible in most cases. (orig.)

  15. Hypoxia-Induced Collagen Synthesis of Human Lung Fibroblasts by Activating the Angiotensin System

    Directory of Open Access Journals (Sweden)

    Shan-Shan Liu

    2013-12-01

    Full Text Available The exact molecular mechanism that mediates hypoxia-induced pulmonary fibrosis needs to be further clarified. The aim of this study was to explore the effect and underlying mechanism of angiotensin II (Ang II on collagen synthesis in hypoxic human lung fibroblast (HLF cells. The HLF-1 cell line was used for in vitro studies. Angiotensinogen (AGT, angiotensin converting enzyme (ACE, angiotensin II type 1 receptor (AT1R and angiotensin II type 2 receptor (AT2R expression levels in human lung fibroblasts were analysed using real-time polymerase chain reaction (RT-PCR after hypoxic treatment. Additionally, the collagen type I (Col-I, AT1R and nuclear factor κappaB (NF-κB protein expression levels were detected using Western blot analysis, and NF-κB nuclear translocation was measured using immunofluorescence localization analysis. Ang II levels in HLF-1 cells were measured with an enzyme-linked immunosorbent assay (ELISA. We found that hypoxia increased Col-I mRNA and protein expression in HLF-1 cells, and this effect could be inhibited by an AT1R or AT2R inhibitor. The levels of NF-κB, RAS components and Ang II production in HLF-1 cells were significantly increased after the hypoxia exposure. Hypoxia or Ang II increased NF-κB-p50 protein expression in HLF-1 cells, and the special effect could be inhibited by telmisartan (TST, an AT1R inhibitor, and partially inhibited by PD123319, an AT2R inhibitor. Importantly, hypoxia-induced NF-κB nuclear translocation could be nearly completely inhibited by an AT1R or AT2R inhibitor. Furthermore pyrrolidine dithiocarbamate (PDTC, a NF-κB blocker, abolished the expression of hypoxia-induced AT1R and Col-I in HLF-1 cells. Our results indicate that Ang II-mediated NF-κB signalling via ATR is involved in hypoxia-induced collagen synthesis in human lung fibroblasts.

  16. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    Science.gov (United States)

    Karki, Surya B.; Thapa Gupta, Tripti; Yildirim-Ayan, Eda; Eisenmann, Kathryn M.; Ayan, Halim

    2017-08-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  17. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    International Nuclear Information System (INIS)

    Karki, Surya B; Gupta, Tripti Thapa; Yildirim-Ayan, Eda; Ayan, Halim; Eisenmann, Kathryn M

    2017-01-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  18. LOXL4 knockdown enhances tumor growth and lung metastasis through collagen-dependent extracellular matrix changes in triple-negative breast cancer.

    Science.gov (United States)

    Choi, Sul Ki; Kim, Hoe Suk; Jin, Tiefeng; Moon, Woo Kyung

    2017-02-14

    Lysyl oxidase (LOX) family genes catalyze collagen cross-link formation. To determine the effects of lysyl oxidase-like 4 (LOXL4) expression on breast tumor formation and metastasis, we evaluated primary tumor growth and lung metastasis in mice injected with LOXL4-knockdown MDA-MB-231 triple-negative human breast cancer cells. In addition, we analyzed overall survival in breast cancer patients based on LOXL4 expression using a public online database. In the mouse xenograft model, LOXL4 knockdown increased primary tumor growth and lung colonization as well as collagen I and IV, lysine hydroxylase 1 and 2, and prolyl 4-hydroxylase subunit alpha 1 and 2 levels. Second harmonic generation imaging revealed that LOXL4 knockdown resulted in the thickening of collagen bundles within tumors. In addition, weak LOXL4 expression was associated with poor overall survival in breast cancer patients from the BreastMark dataset, and this association was strongest in triple-negative breast cancer patients. These results demonstrate that weak LOXL4 expression leads to remodeling of the extracellular matrix through induction of collagen synthesis, deposition, and structural changes. These alterations in turn promote tumor growth and metastasis and are associated with poor clinical outcomes in triple-negative breast cancer.

  19. FK506-binding protein 10 (FKBP10) regulates lung fibroblast migration via collagen VI synthesis.

    Science.gov (United States)

    Knüppel, Larissa; Heinzelmann, Katharina; Lindner, Michael; Hatz, Rudolf; Behr, Jürgen; Eickelberg, Oliver; Staab-Weijnitz, Claudia A

    2018-04-19

    In idiopathic pulmonary fibrosis (IPF), fibroblasts gain a more migratory phenotype and excessively secrete extracellular matrix (ECM), ultimately leading to alveolar scarring and progressive dyspnea. Here, we analyzed the effects of deficiency of FK506-binding protein 10 (FKBP10), a potential IPF drug target, on primary human lung fibroblast (phLF) adhesion and migration. Using siRNA, FKBP10 expression was inhibited in phLF in absence or presence of 2ng/ml transforming growth factor-β1 (TGF-β1) and 0.1mM 2-phosphoascorbate. Effects on cell adhesion and migration were monitored by an immunofluorescence (IF)-based attachment assay, a conventional scratch assay, and single cell tracking by time-lapse microscopy. Effects on expression of key players in adhesion dynamics and migration were analyzed by qPCR and Western Blot. Colocalization was evaluated by IF microscopy and by proximity ligation assays. FKBP10 knockdown significantly attenuated adhesion and migration of phLF. Expression of collagen VI was decreased, while expression of key components of the focal adhesion complex was mostly upregulated. The effects on migration were 2-phosphoascorbate-dependent, suggesting collagen synthesis as the underlying mechanism. FKBP10 colocalized with collagen VI and coating culture dishes with collagen VI, and to a lesser extent with collagen I, abolished the effect of FKBP10 deficiency on migration. These findings show, to our knowledge for the first time, that FKBP10 interacts with collagen VI and that deficiency of FKBP10 reduces phLF migration mainly by downregulation of collagen VI synthesis. The results strengthen FKBP10 as an important intracellular regulator of ECM remodeling and support the concept of FKBP10 as drug target in IPF.

  20. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis

    Science.gov (United States)

    McKleroy, William; Lee, Ting-Hein

    2013-01-01

    Pulmonary fibrosis is a vexing clinical problem with no proven therapeutic options. In the normal lung there is continuous collagen synthesis and collagen degradation, and these two processes are precisely balanced to maintain normal tissue architecture. With lung injury there is an increase in the rate of both collagen production and collagen degradation. The increase in collagen degradation is critical in preventing the formation of permanent scar tissue each time the lung is exposed to injury. In pulmonary fibrosis, collagen degradation does not keep pace with collagen production, resulting in extracellular accumulation of fibrillar collagen. Collagen degradation occurs through both extracellular and intracellular pathways. The extracellular pathway involves cleavage of collagen fibrils by proteolytic enzyme including the metalloproteinases. The less-well-described intracellular pathway involves binding and uptake of collagen fragments by fibroblasts and macrophages for lysosomal degradation. The relationship between these two pathways and their relevance to the development of fibrosis is complex. Fibrosis in the lung, liver, and skin has been associated with an impaired degradative environment. Much of the current scientific effort in fibrosis is focused on understanding the pathways that regulate increased collagen production. However, recent reports suggest an important role for collagen turnover and degradation in regulating the severity of tissue fibrosis. The objective of this review is to evaluate the roles of the extracellular and intracellular collagen degradation pathways in the development of fibrosis and to examine whether pulmonary fibrosis can be viewed as a disease of impaired matrix degradation rather than a disease of increased matrix production. PMID:23564511

  1. Captopril reduces collagen and mast cell accumulation in irradiated rat lung

    International Nuclear Information System (INIS)

    Ward, W.F.; Molteni, A.; Ts'ao, C.H.; Hinz, J.M.

    1990-01-01

    The angiotensin converting enzyme inhibitor captopril ameliorates radiation-induced pulmonary endothelial dysfunction in rats. The present study determined whether captopril also reduces collagen (hydroxyproline) accumulation in the lungs of rats sacrificed 2 months after a range of single doses (0-30 Gy) of 60Co gamma rays to the right hemithorax. Captopril was administered in the feed at a regimen of 0, 25, or 50 mg/kg/day continuously after irradiation. Mast cell counts also were obtained from lungs of all animals exposed to 30 Gy. In rats receiving no captopril, there was a radiation dose-dependent increase in right lung hydroxyproline (HP) content and in HP concentration per g wet weight. Captopril produced a drug dose-dependent suppression in this radiation-induced HP accumulation. At a dose of 50 mg/kg/d, captopril reduced the slope of the radiation dose response curve for lung HP content by a factor of 1.7, and completely prevented the increase in HP concentration. At an isoeffect level of 550 micrograms HP per right superior lobe, this dose of captopril exhibited a DRF of 1.7 +/- 0.2. In rats exposed to 30 Gy, moreover, the number of mast cells per mm2 of alveolar cross-sectional surface area decreased from 105 +/- 8 to 100 +/- 7 and 59 +/- 5 in the groups given 0, 25 or 50 mg/kg/d of captopril, respectively, (vs none in sham-irradiated rats). These data are the first to demonstrate that the ACE inhibitor captopril might provide a novel intervention in the pathogenesis of radiation fibrosis

  2. Second harmonic generation microscopy differentiates collagen type I and type III in COPD

    Science.gov (United States)

    Suzuki, Masaru; Kayra, Damian; Elliott, W. Mark; Hogg, James C.; Abraham, Thomas

    2012-03-01

    The structural remodeling of extracellular matrix proteins in peripheral lung region is an important feature in chronic obstructive pulmonary disease (COPD). Multiphoton microscopy is capable of inducing specific second harmonic generation (SHG) signal from non-centrosymmetric structural proteins such as fibrillar collagens. In this study, SHG microscopy was used to examine structural remodeling of the fibrillar collagens in human lungs undergoing emphysematous destruction (n=2). The SHG signals originating from these diseased lung thin sections from base to apex (n=16) were captured simultaneously in both forward and backward directions. We found that the SHG images detected in the forward direction showed well-developed and well-structured thick collagen fibers while the SHG images detected in the backward direction showed striking different morphological features which included the diffused pattern of forward detected structures plus other forms of collagen structures. Comparison of these images with the wellestablished immunohistochemical staining indicated that the structures detected in the forward direction are primarily the thick collagen type I fibers and the structures identified in the backward direction are diffusive structures of forward detected collagen type I plus collagen type III. In conclusion, we here demonstrate the feasibility of SHG microscopy in differentiating fibrillar collagen subtypes and understanding their remodeling in diseased lung tissues.

  3. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model.

    Science.gov (United States)

    Koskimaki, Jacob E; Karagiannis, Emmanouil D; Tang, Benjamin C; Hammers, Hans; Watkins, D Neil; Pili, Roberto; Popel, Aleksander S

    2010-02-01

    Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the alpha-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the alpha5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer.

  4. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model

    International Nuclear Information System (INIS)

    Koskimaki, Jacob E; Karagiannis, Emmanouil D; Tang, Benjamin C; Hammers, Hans; Watkins, D Neil; Pili, Roberto; Popel, Aleksander S

    2010-01-01

    Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the α-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the α5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer

  5. Tumstatin, a Matrikine Derived from Collagen Type IVα3, is Elevated in Serum from Patients with Non-Small Cell Lung Cancer

    DEFF Research Database (Denmark)

    Nielsen, Signe Holm; Willumsen, Nicholas; Brix, Susanne

    2018-01-01

    of patients with idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), and non–small cell lung cancer (NSCLC) belonging to two cohorts. RESULTS: The developed TUM enzyme-linked immunosorbent assay (ELISA) was technically robust. In cohort 1, levels of TUM were significantly higher......OBJECTIVES: Fibrosis and cancer are characterized by extracellular matrix (ECM) remodeling. The basement membrane is mainly composed by collagen type IV and laminin. Tumstatin is a matrix metalloproteinase-9 (MMP-9) generated matrikine of collagen type IV α3 chain. We evaluated the potential...

  6. Biological alterations resulting from chronic lung irradiation. III. Effect of partial 60Co thoracic irradiation upon pulmonary collagen metabolism and fractionation in syrian hamsters

    International Nuclear Information System (INIS)

    Pickrell, J.A.; Harris, D.V.; Hahn, F.F.; Belasich, J.J.; Jones, R.K.

    1975-01-01

    Radiation-induced changes in pulmonary collagen metabolism were studied in Syrian hamsters given multiple thoracic doses of 60 Co radiation to achieve cumulative exposures of 6000, 4000, and 2000 R. At 13 to 14 wk after initial exposure, 6000- and 4000-R exposures had increased incorporation of injected [ 14 C]proline into pulmonary collagenous protein which suggested an increased collagen synthesis. By 21 to 22 wk after exposure, increased pulmonary soluble collagen was noted. Increased pulmonary scarring was indicated by a variable increase in native collagen at 13 to 36 wk. A collection of alveolar macrophages at 7 to 8 wk followed by inflammation at 13 to 14 wk and a beginning of pulmonary fibrosis at 13 to 19 wk were noted. At 21 to 22 wk after exposure a somewhat more marked pulmonary fibrosis and some epithelialization were observed. Hemosiderin deposits were also observed at 35 to 36 wk after exposure, but pathologic processes were lessened by this time. The early activation of collagen synthesis presumably caused the radiation-induced fibrosis. Later, when collagen tended to accumulate, the synthetic rate was normal. The activation of collagen synthesis caused by external thoracic irradiation resembles that caused by thoracic irradiation from the internal emitter, 144 Ce. Moreover, it demonstrates the usefulness of monitoring collagen biosynthesis by [ 14 C]proline incorporation into the lung. (U.S.)

  7. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells.

    Science.gov (United States)

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-09-05

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen's organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann-Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against breast

  8. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells

    International Nuclear Information System (INIS)

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-01-01

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen’s organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann–Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against

  9. Connective matrix organization in human pulmonary fibrosis. Collagen polymorphism analysis in fibrotic deposits by immunohistological methods.

    Science.gov (United States)

    Takiya, C; Peyrol, S; Cordier, J F; Grimaud, J A

    1983-01-01

    In the interstitium of the alveolar septa in the peripheral parts of the lung, four molecular types of collagen (I, III, IV and V) each with different morphological appearances, can be identified. The structural integrity of collagens accounts for the physiological efficiency of the lung. Fibrous thickening of alveolar septa is an invariable result of various diseases affecting the interstitium of the lung. The light and electron microscopic findings, and the immunological typing of collagens in six cases of fibrotic alveolar disease, are described. In the alveolar septa, two different compartments (the alveolo-capillary junction and the supportive axis) were affected by fibrosis: the alveolo-capillary junction was widened by the addition of interstitial collagens to basement membranes. In the axis, the increase of interstitial (types I and III) collagen gave rise to different patterns of connective matrix organization, graded as Loose or Dense depending on quantitative alterations of the type I/III ratio. The mode of organization of the fibrotic lung connective matrix, which depends on the quality of deposits in the matrix, may be correlated with the evolution of interstitial pulmonary fibrosis, in terms of its stability, remodelling ability and reversibility.

  10. Late changes in lungs of rats irradiated with 6.5 Gy of X-rays

    International Nuclear Information System (INIS)

    Mazanowska, A.M.; Jelenska, M.M.; Dancewicz, A.M.

    1978-01-01

    1, 3, 6 and 9 months after exposure of mature male rats to 650 rads of X-rays, the composition of isolated lung collagen has been estimated and the distribution of fatty acids in lipids of lung wash analyzed. The results obtained indicate that during the development of lung fibrosis proportion of type I to type III collagen in this organ increases. At the same period increases proportion of saturated fatty acids in lipids isolated from lung wash. Thus, radiation-induced fibrosis is accompanied not only by collagen accumulation but also by an essential change in the type of collagen produced. It seems that also the increased saturation of fatty acids in lung surfactant contributes to the impairment of function of fibrotic lung. (orig./AJ) [de

  11. Pneumothoraces in collagen VI-related dystrophy: a case series and recommendations for management

    Directory of Open Access Journals (Sweden)

    Kristin L. Fraser

    2017-06-01

    Full Text Available Collagen VI-related dystrophy (collagen VI-RD is a rare neuromuscular condition caused by mutations in the COL6A1, COL6A2 or COL6A3 genes. The phenotypic spectrum includes early-onset Ullrich congenital muscular dystrophy, adult-onset Bethlem myopathy and an intermediate phenotype. The disorder is characterised by distal hyperlaxity and progressive muscle weakness, joint contractures and respiratory insufficiency. Respiratory insufficiency is attributed to chest wall contractures, scoliosis, impaired diaphragmatic function and intercostal muscle weakness. To date, intrinsic parenchymal lung disease has not been implicated in the inevitable respiratory decline of these patients. This series focuses on pneumothorax, an important but previously under-recognised disease manifestation of collagen VI-RD. We describe two distinct clinical presentations within collagen VI-RD patients with pneumothorax. The first cohort consists of neonates and children with a single pneumothorax in the setting of large intrathoracic pressure changes. The second group is made up of adult patients with recurrent pneumothoraces, associated with chest computed tomography scan evidence of parenchymal lung disease. We describe treatment challenges in this unique population with respect to expectant observation, tube thoracostomy and open pleurodesis. Based on this experience, we offer recommendations for early identification of lung disease in collagen VI-RD and definitive intervention.

  12. Angiotensin converting enzyme inhibitors mitigate collagen synthesis induced by a single dose of radiation to the whole thorax

    International Nuclear Information System (INIS)

    Kma, L.; Gao, F.; Fish, B.L.; Moulder, J.E.; Jacobs, E.R.; Medhora, M.

    2012-01-01

    Our long-term goal is to use angiotensin converting enzyme (ACE) inhibitors to mitigate the increase in lung collagen synthesis that is induced by irradiation to the lung, which could result from accidental exposure or radiological terrorism. Rats (WAG/RijCmcr) were given a single dose of 13 Gy (dose rate of 1.43 Gy/min) of X-irradiation to the thorax. Three structurally-different ACE inhibitors, captopril, enalapril and fosinopril were provided in drinking water beginning 1 week after irradiation. Rats that survived acute pneumonitis (at 6-12 weeks) were evaluated monthly for synthesis of lung collagen. Other endpoints included breathing rate, wet to dry lung weight ratio, and analysis of lung structure. Treatment with captopril (145-207 mg/m 2 /day) or enalapril (19-28 mg/m 2 /day), but not fosinopril (19-28 mg/m 2 /day), decreased morbidity from acute pneumonitis. Lung collagen in the surviving irradiated rats was increased over that of controls by 7 months after irradiation. This increase in collagen synthesis was not observed in rats treated with any of the three ACE inhibitors. Analysis of the lung morphology at 7 months supports the efficacy of ACE inhibitors against radiation-induced fibrosis. The effectiveness of fosinopril against fibrosis, but not against acute pneumonitis, suggests that pulmonary fibrosis may not be a simple consequence of injury during acute pneumonitis. In summary, three structurally-different ACE inhibitors mitigate the increase in collagen synthesis 7 months following irradiation of the whole thorax and do so, even when therapy is started one week after irradiation. (author)

  13. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway

    Science.gov (United States)

    Liu, Jia; Yu, Wen; Liu, Yan; Chen, Selena; Huang, Yaqian; Li, Xiaohui; Liu, Cuiping; Zhang, Yanqiu; Li, Zhenzhen; Du, Jie; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    The aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, transforming growth factor-β1 (TGF- β1) expression and phosphorylation of Smad2/3 induced by stretch, but AAT1 knockdown mimicked the increase in collagen I and III expression, TGF- β1 expression and phosphorylation of Smad2/3 induced by stretch. Mechanistically, SB431542, a TGF-β1/Smad2/3 inhibitor, eliminated excessive collagen I and III accumulation induced by AAT1 knockdown, stretch or stretch plus AAT1 knockdown. In a rat model of high pulmonary blood flow-induced pulmonary vascular collagen accumulation, AAT1 expression and SO2 content in lung tissues of rat were reduced in shunt rats with high pulmonary blood flow. Supplement of SO2 derivatives inhibited activation of TGF- β1/Smad2/3 pathway and alleviated the excessive collagen accumulation in lung tissues of shunt rats. The results suggested that deficiency of endogenous SO2/AAT1 pathway mediated mechanical stretch-stimulated abnormal collagen accumulation via TGF-β1/Smad2/3 pathway. PMID:26880260

  14. [Clinic significance of nm23, collage IV and PCNA expression in non-small cell lung cancer].

    Science.gov (United States)

    Yu, Q; Ma, L; Jing, S; Xu, Y; Geng, D

    2001-12-20

    To study the significance of nm23, collagen IV and PCNA expressions in non-small cell lung cancer. Expressions of the nm23, collagen IV and PCNA in 84 cases of non-small cell lung cancer were examined with SP immunohistochemical technique. Of the 84 cases, there were squamous cell carcinoma 42, adenocarcinoma 42, stage I 27, stage II 24, stage III 24, and stage IV 9. Statistical analysis was performed with Chi-Square test. Expressions of the nm23, collagen IV and PCNA in 84 cases of non-small cell lung cancer were 60. 7% ( 51/ 84) , 75. 0% ( 63/ 84) and 53. 6% ( 45/ 84) respectively. There was negative correlation between the lymph node metastasis and the expressions of nm23 and collagen IV in squamous cell carcinoma, and the expressions of collagen IV and PCNA were associated with tumor differentiation. No correlation was found between TNM stage and expressions of nm23, collagen IV and PCNA. The results indicate that nm23, collagen IV and PCNA participate the modulation of metastasis of non-small cell lung cancer and that they may be used to evaluate the potential of metastasis.

  15. Degradation of type IV collagen by neoplastic human skin fibroblasts

    International Nuclear Information System (INIS)

    Sheela, S.; Barrett, J.C.

    1985-01-01

    An assay for the degradation of type IV (basement membrane) collagen was developed as a biochemical marker for neoplastic cells from chemically transformed human skin fibroblasts. Type IV collagen was isolated from basement membrane of Syrian hamster lung and type I collagen was isolated from rat tails; the collagens were radioactively labelled by reductive alkylation. The abilities of normal (KD) and chemically transformed (Hut-11A) human skin fibroblasts to degrade the collagens were studied. A cell-associated assay was performed by growing either normal or transformed cells in the presence of radioactively labelled type IV collagen and measuring the released soluble peptides in the medium. This assay also demonstrated that KD cells failed to synthesize an activity capable of degrading type IV collagen whereas Hut-11A cells degraded type IV collagen in a linear manner for up to 4 h. Human serum at very low concentrations, EDTA and L-cysteine inhibited the enzyme activity, whereas protease inhibitors like phenylmethyl sulfonyl fluoride, N-ethyl maleimide or soybean trypsin inhibitor did not inhibit the enzyme from Hut-11A cells. These results suggest that the ability to degrade specifically type IV collagen may be an important marker for neoplastic human fibroblasts and supports a role for this collagenase in tumor cell invasion

  16. Pronounced within-individual plasticity in sperm morphometry across social environments.

    Science.gov (United States)

    Immler, Simone; Pryke, Sarah R; Birkhead, Tim R; Griffith, Simon C

    2010-06-01

    Sperm morphometry (i.e., size and shape) and function are important determinants of male reproductive success and are thought to be under stabilizing selection. However, recent studies suggest that sperm morphometry can be a phenotypically plastic trait, which can be adjusted to varying conditions. We tested whether different behavioral strategies in aggression between aggressive red and nonaggressive black males of the color polymorphic Gouldian finch (Erythrura gouldiae) can influence sperm morphometry. We show pronounced within-individual phenotypic plasticity in sperm morphometry of male Gouldian finches in three different social environments. Both red and black males placed in intermediate to high competitive environments (high frequency of red males) increased the relative length of their sperm midpiece. By contrast, red males placed in low to intermediate competitive environments (higher frequency of black males) increased the length of the sperm flagellum. Significant changes in stress and sex steroid hormone levels (in response to the competitive environment) appear to influence sperm traits in red but not in black males, suggesting that changes in hormonal levels are not solely responsible for the observed changes in sperm morphometry. These findings imply that males can adjust sperm morphometry across social environments.

  17. Biosynthesis of collagen in the lung of the mouse after X-irradiation

    International Nuclear Information System (INIS)

    Walklin, C.M.; Law, M.P.

    1986-01-01

    Increases in the activities of both prolyl-4-hydroxylase (P-4-Hase) and protein disulphide isomerase (PDI) were observed as early as 1 month after 5-9 Gy. Maximal increases were observed at 6-7 months after 9 Gy and persisted up to 15 months after exposure. Increases after 5 and 7.5 Gy were more gradual but by 1 year after irradiation they had reached levels similar to those after 9 Gy. Collagen types were analysed at 2, 7.5 and 15 months. Results are shown for 7.5 and 15 months after 9 Gy. Although the total collagen content was increased, the ratio of collagen type I to III was normal. (UK)

  18. [Morphometry of pulmonary tissue: From manual to high throughput automation].

    Science.gov (United States)

    Sallon, C; Soulet, D; Tremblay, Y

    2017-12-01

    Weibel's research has shown that any alteration of the pulmonary structure has effects on function. This demonstration required a quantitative analysis of lung structures called morphometry. This is possible thanks to stereology, a set of methods based on principles of geometry and statistics. His work has helped to better understand the morphological harmony of the lung, which is essential for its proper functioning. An imbalance leads to pathophysiology such as chronic obstructive pulmonary disease in adults and bronchopulmonary dysplasia in neonates. It is by studying this imbalance that new therapeutic approaches can be developed. These advances are achievable only through morphometric analytical methods, which are increasingly precise and focused, in particular thanks to the high-throughput automation of these methods. This review makes a comparison between an automated method that we developed in the laboratory and semi-manual methods of morphometric analyzes. The automation of morphometric measurements is a fundamental asset in the study of pulmonary pathophysiology because it is an assurance of robustness, reproducibility and speed. This tool will thus contribute significantly to the acceleration of the race for the development of new drugs. Copyright © 2017 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  19. Modeling pulmonary fibrosis by abnormal expression of telomerase/apoptosis/collagen V in experimental usual interstitial pneumonia

    International Nuclear Information System (INIS)

    Parra, E.R.; Pincelli, M.S.; Teodoro, W.R.; Velosa, A.P.P.; Martins, V.; Rangel, M.P.; Barbas-Filho, J.V.; Capelozzi, V.L.

    2014-01-01

    Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis

  20. Modeling pulmonary fibrosis by abnormal expression of telomerase/apoptosis/collagen V in experimental usual interstitial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Parra, E.R.; Pincelli, M.S. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Teodoro, W.R.; Velosa, A.P.P. [Disciplina de Reumatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Martins, V.; Rangel, M.P.; Barbas-Filho, J.V.; Capelozzi, V.L. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-06-04

    Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis.

  1. Interstitial lung disease associated with collagen vascular disorders: disease quantification using a computer-aided diagnosis tool

    International Nuclear Information System (INIS)

    Marten, K.; Engelke, C.; Dicken, V.; Kneitz, C.; Hoehmann, M.; Kenn, W.; Hahn, D.

    2009-01-01

    The purpose of this study was to evaluate a computer-aided diagnosis (CAD) tool compared to human observers in quantification of interstitial lung disease (ILD) in patients with collagen-vascular disorders. A total of 52 patients with rheumatoid arthritis (n=24), scleroderma (n=14) and systemic lupus erythematosus (n=14) underwent thin-section CT. Two independent observers assessed the extent of ILD (EoILD), reticulation (EoRet) and ground-glass opacity (EoGGO). CAD assessed EoILD twice. Pulmonary function tests were obtained. Statistical evaluation used 95% limits of agreement and linear regression analysis. CAD correlated well with diffusing capacity (DL CO ) (R=-0.531, P CO (R=-0.705, P CO and moderately with FVC (DL CO : R=-0.663; FVC: R=-0.436; P≤0.005). The CAD system is a promising tool for ILD quantification, showing close correlation with human observers and physiologic impairment. (orig.)

  2. Lung fibrosis-associated soluble mediators and bronchoalveolar lavage from idiopathic pulmonary fibrosis patients promote the expression of fibrogenic factors in subepithelial lung myofibroblasts.

    Science.gov (United States)

    Bouros, Evangelos; Filidou, Eirini; Arvanitidis, Konstantinos; Mikroulis, Dimitrios; Steiropoulos, Paschalis; Bamias, George; Bouros, Demosthenes; Kolios, George

    2017-10-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by infiltration of inflammatory cells, excessive collagen production and accumulation of myofibroblasts. We explored the possible role of subepithelial lung myofibroblasts (SELMs) in the development of fibrosis in IPF. SELMs, isolated from surgical specimens of healthy lung tissue, were cultured with pro-inflammatory factors or bronchoalveolar lavage fluid (BALF) from patients with IPF or idiopathic non-specific interstitial pneumonia (iNSIP) and their fibrotic activity was assessed. Stimulation of SELMs with pro-inflammatory factors induced a significant increase of Tissue Factor (TF) and Tumor necrosis factor-Like cytokine 1 A (TL1A) expression and collagen production in culture supernatants. Stimulation with BALF from IPF patients with mild to moderate, but not severe disease, and from iNSIP patients induced a significant increase of TF expression. BALF from all IPF patients induced a significant increase of TL1A expression and collagen production, while BALF from iNSIP patients induced a significant increase of TL1A, but not of collagen production. Interestingly, TGF-β1 and BALF from all IPF, but not iNSIP patients, induced a significant increase in SELMs migration. In conclusion, BALF from IPF patients induces fibrotic activity in lung myofibroblasts, similar to mediators associated with lung fibrosis, indicating a key role of SELMs in IPF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. In vivo determination of arterial collagen synthesis in atherosclerotic rabbits

    International Nuclear Information System (INIS)

    Opsahl, W.P.; DeLuca, D.J.; Ehrhart, L.A.

    1986-01-01

    Collagen and non-collagen protein synthesis rates were determined in vivo in tissues from rabbits fed a control or atherogenic diet supplemented with 2% peanut oil and 0.25% cholesterol for 4 months. Rabbits received a bolus intravenous injection of L-[ 3 H]-proline (1.0 mCi/kg) and unlabeled L-proline (7 mmoles/kg) in 0.9% NaCl. Plasma proline specific activity decreased only 20% over 5 hr and was similar to the specific activity of free proline in tissues. Thoracic aortas from atherosclerotic rabbits exhibited raised plaques covering at least 75% of the surface. Thoracic intima plus a portion of the media (TIM) was separated from the remaining media plus adventitia (TMA). Dry delipidated weight, total collagen content, and collagen as a percent of dry weight were increased significantly in the TIM of atherosclerotic rabbits. Collagen synthesis rates and collagen synthesis as a percent of total protein synthesis were likewise increased both in the TIM and in the abdominal aortas. No differences from controls either in collagen content or collagen synthesis rates were observed in the TMA, lung or skin. These results demonstrate for the first time in vivo that formation of atherosclerotic plaques is associated with increased rates of collagen synthesis. Furthermore, as previously observed with incubations in vitro, collagen synthesis was elevated to a greater extent than noncollagen protein synthesis in atherosclerotic aortas from rabbits fed cholesterol plus peanut oil

  4. Fibrocytes in the Fibrotic Lung: Altered Phenotype Detected by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Charles eReese

    2014-06-01

    Full Text Available Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study’s relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45high fibrocytes (called Region I rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47high/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD, a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the

  5. Lysyl oxidases regulate fibrillar collagen remodelling in idiopathic pulmonary fibrosis

    NARCIS (Netherlands)

    Tjin, Gavin; White, Eric S; Faiz, Alen; Sicard, Delphine; Tschumperlin, Daniel J; Mahar, Annabelle; Kable, Eleanor P W; Burgess, Janette K

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with feweffective therapeutic options. Structural remodelling of the extracellular matrix [i.e. collagen cross-linkingmediated by the lysyl oxidase (LO) family of enzymes (LOX, LOXL1-4)] might contribute to disease

  6. Effect of collagen type IV, MMPs and TIMPs on remodeling of radiation pulmonary injury

    International Nuclear Information System (INIS)

    Diao Ruiying; Song Liangwen; Wang Shaoxia; Yin Jiye

    2007-01-01

    Objective: To explore the effect of collagen type IV, matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs(TIMPs) on early remodeling after radiation pulmonary injury. Methods: Right lungs of rats were irradiated by 60 Co γ-rays at a dose of 20 Gy to induce radiation pulmonary injury, and the lung specimens were taken at weeks 1, 2, 4 after irradiation. Quantitative analysis was performed on pulmonary collagen type IV, MMP-2, MMP-9, TIMP-2, TIMP-1 at the level of gene expression and protein synthesis using real-time PCR or immunohistochemistry. Results: Gene detection using real-time PCR: gene expression of collagen type IV increased at week 1 and decreased at week 2 after irradiation; MMP-2 reached peak at week 2 in which an opposed alteration trend was displayed; MMP-9 appeared a significant trend of elevation, then decrease and elevation again which was similar to those of collagen type IV; expression of TIMP-1 was lower, and there was no marked difference among all time points; TIMP-2 displayed a trend of slight elevation, then decrease and elevation again, which was opposed to MMP-2. Immunohistochemistry-image analysis: Pulmonary collagen type IV obviously increased at week 1, and began to decrease at week 2; MMP-2 decreased at week 2 and then increased; an opposed alteration trend to that of collagen type IV was displayed; alteration trend of MMP-9 was similar to that of collagen type IV but the extent was higher; gene expression of TIMP-1 slightly increased at 2 week and an opposed trend to of MMP-9 was displayed. Conclusions: Collagen type IV, MMP-2, MMP-9 and their tissue inhibitors were involved in ineffective remodeling in the early radiation pulmonary injury; MMP-2 and MMP-9 play an important role in degradation of collagen type IV; Disturbance of collagen type IV degradation might have relationship with the initiation of pulmonary fibrosis. (authors)

  7. lakemorpho: Calculating lake morphometry metrics in R.

    Science.gov (United States)

    Hollister, Jeffrey; Stachelek, Joseph

    2017-01-01

    Metrics describing the shape and size of lakes, known as lake morphometry metrics, are important for any limnological study. In cases where a lake has long been the subject of study these data are often already collected and are openly available. Many other lakes have these data collected, but access is challenging as it is often stored on individual computers (or worse, in filing cabinets) and is available only to the primary investigators. The vast majority of lakes fall into a third category in which the data are not available. This makes broad scale modelling of lake ecology a challenge as some of the key information about in-lake processes are unavailable. While this valuable in situ information may be difficult to obtain, several national datasets exist that may be used to model and estimate lake morphometry. In particular, digital elevation models and hydrography have been shown to be predictive of several lake morphometry metrics. The R package lakemorpho has been developed to utilize these data and estimate the following morphometry metrics: surface area, shoreline length, major axis length, minor axis length, major and minor axis length ratio, shoreline development, maximum depth, mean depth, volume, maximum lake length, mean lake width, maximum lake width, and fetch. In this software tool article we describe the motivation behind developing lakemorpho , discuss the implementation in R, and describe the use of lakemorpho with an example of a typical use case.

  8. Multivariate tensor-based brain anatomical surface morphometry via holomorphic one-forms.

    Science.gov (United States)

    Wang, Yalin; Chan, Tony F; Toga, Arthur W; Thompson, Paul M

    2009-01-01

    Here we introduce multivariate tensor-based surface morphometry using holomorphic one-forms to study brain anatomy. We computed new statistics from the Riemannian metric tensors that retain the full information in the deformation tensor fields. We introduce two different holomorphic one-forms that induce different surface conformal parameterizations. We applied this framework to 3D MRI data to analyze hippocampal surface morphometry in Alzheimer's Disease (AD; 26 subjects), lateral ventricular surface morphometry in HIV/AIDS (19 subjects) and cortical surface morphometry in Williams Syndrome (WS; 80 subjects). Experimental results demonstrated that our method powerfully detected brain surface abnormalities. Multivariate statistics on the local tensors outperformed other TBM methods including analysis of the Jacobian determinant, the largest eigenvalue, or the pair of eigenvalues, of the surface Jacobian matrix.

  9. Studies on the comparative effect of sodium fluoride on collagen ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... (p < 0.05) higher collagen in the kidneys followed by lungs and liver. 5, 10 and 20 mg/kg .... the type of enzyme that is affected (Adamek et al., 2005). Fluoride at ... content of a diet may influence the food fluoride absorp- tion.

  10. Comparison of vertebral morphometry in the lumbar vertebrae by T1-weighted sagittal MRI and radiograph

    International Nuclear Information System (INIS)

    Tomomitsu, Tatsushi; Murase, Kenya; Sone, Teruki; Fukunaga, Masao

    2005-01-01

    Purpose: In this study, we investigated the usefulness of T1-weighted sagittal MR images at the lumbar vertebrae in the vertebral morphometry, in comparison with lateral radiographs. Subjects and methods: The subjects were 42 men (mean age: 53.0 years) and 41 women (mean age: 57.9 years). Both MRI and radiography of the lumbar spine were performed within 1 month. The vertebral body heights and their ratios were measured by the semi-automatic measuring system. The frequency of a vertebral fracture and the absolute value of vertebral body height in both morphometry were compared. Results: Based on the criteria for prevalent vertebral fracture using vertebral height ratios, the vertebrae were classified into four groups. Group 1 was defined as the vertebrae without fracture (n = 347 vertebrae). Groups 2-4 were defined as the vertebrae with fracture; Group 2 by both MRI and X-ray morphometry (n = 17), Group 3 by MRI morphometry alone (n = 17), and Group 4 by X-ray morphometry alone (n = 4). The rate of prevalent vertebral fracture diagnosed by MRI morphometry (8.8%) was higher than that by X-ray morphometry (5.5%). In Group 1, the values of anterior and posterior vertebral height obtained by MRI morphometry were greater than those obtained by X-ray morphometry. On the other hand, the values of central vertebral height obtained by MRI morphometry were smaller than those obtained by X-ray morphometry. Conclusion: Severe biconcave deformity of vertebra can be detected by both MRI and X-ray morphometry, although mild biconcave deformity can be detected only by MRI morphometry

  11. Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices.

    Science.gov (United States)

    Lo, Justin H; Bassett, Erik K; Penson, Elliot J N; Hoganson, David M; Vacanti, Joseph P

    2015-08-01

    Chronic lower respiratory disease is highly prevalent in the United States, and there remains a need for alternatives to lung transplant for patients who progress to end-stage lung disease. Portable or implantable gas oxygenators based on microfluidic technologies can address this need, provided they operate both efficiently and biocompatibly. Incorporating biomimetic materials into such devices can help replicate native gas exchange function and additionally support cellular components. In this work, we have developed microfluidic devices that enable blood gas exchange across ultra-thin collagen membranes (as thin as 2 μm). Endothelial, stromal, and parenchymal cells readily adhere to these membranes, and long-term culture with cellular components results in remodeling, reflected by reduced membrane thickness. Functionally, acellular collagen-membrane lung devices can mediate effective gas exchange up to ∼288 mL/min/m(2) of oxygen and ∼685 mL/min/m(2) of carbon dioxide, approaching the gas exchange efficiency noted in the native lung. Testing several configurations of lung devices to explore various physical parameters of the device design, we concluded that thinner membranes and longer gas exchange distances result in improved hemoglobin saturation and increases in pO2. However, in the design space tested, these effects are relatively small compared to the improvement in overall oxygen and carbon dioxide transfer by increasing the blood flow rate. Finally, devices cultured with endothelial and parenchymal cells achieved similar gas exchange rates compared with acellular devices. Biomimetic blood oxygenator design opens the possibility of creating portable or implantable microfluidic devices that achieve efficient gas transfer while also maintaining physiologic conditions.

  12. Diclocor is superior to diclofenac sodium and quercetin in normalizing biochemical parameters in rats with collagen-induced osteoarthritis.

    Science.gov (United States)

    Zupanets, I A; Shebeko, S K; Popov, O S; Shalamay, A S

    2016-02-01

    The aim of the present study was to investigate anti-inflammatory activity of Diclocor in the setting of collagen-induced osteoarthritis in rats in comparison with its active monocomponents-diclofenac sodium and quercetin. The study was conducted on the model of collagen-induced osteoarthritis and included measurement of sialic acids, glycoproteins, C-reactive protein, prostaglandin E2, 6-keto-prostaglandin F1α, thromboxane B2, and leukotriene B4. Lastly, morphologic study with morphometry was also performed. Diclocor is superior to quercetin and diclofenac sodium by the degree of pharmacological effect on some of the studied parameters. The differences between the values were statistically significant. Diclocor is a promising corrector of inflammatory and destructive joint diseases. Owing to the presence of both diclofenac sodium and quercetin in its composition, Diclocor exhibits a complex mechanism of anti-inflammatory action affecting cyclooxygenase and lipoxygenase ways of arachidonic acid biotransformation.

  13. Use of wing morphometry for the discrimination of some Cerceris ...

    African Journals Online (AJOL)

    The outline analysis, in which geometric and traditional morphometry potentials are insufficient, was performed by using the Fourier transformation. As a result of the comprehensive wing morphometry study, it was found that both Cerceris species can be distinguished according to their wing structures and the metric ...

  14. Elevated expression of NEU1 sialidase in idiopathic pulmonary fibrosis provokes pulmonary collagen deposition, lymphocytosis, and fibrosis.

    Science.gov (United States)

    Luzina, Irina G; Lockatell, Virginia; Hyun, Sang W; Kopach, Pavel; Kang, Phillip H; Noor, Zahid; Liu, Anguo; Lillehoj, Erik P; Lee, Chunsik; Miranda-Ribera, Alba; Todd, Nevins W; Goldblum, Simeon E; Atamas, Sergei P

    2016-05-15

    Idiopathic pulmonary fibrosis (IPF) poses challenges to understanding its underlying cellular and molecular mechanisms and the development of better therapies. Previous studies suggest a pathophysiological role for neuraminidase 1 (NEU1), an enzyme that removes terminal sialic acid from glycoproteins. We observed increased NEU1 expression in epithelial and endothelial cells, as well as fibroblasts, in the lungs of patients with IPF compared with healthy control lungs. Recombinant adenovirus-mediated gene delivery of NEU1 to cultured primary human cells elicited profound changes in cellular phenotypes. Small airway epithelial cell migration was impaired in wounding assays, whereas, in pulmonary microvascular endothelial cells, NEU1 overexpression strongly impacted global gene expression, increased T cell adhesion to endothelial monolayers, and disrupted endothelial capillary-like tube formation. NEU1 overexpression in fibroblasts provoked increased levels of collagen types I and III, substantial changes in global gene expression, and accelerated degradation of matrix metalloproteinase-14. Intratracheal instillation of NEU1 encoding, but not control adenovirus, induced lymphocyte accumulation in bronchoalveolar lavage samples and lung tissues and elevations of pulmonary transforming growth factor-β and collagen. The lymphocytes were predominantly T cells, with CD8(+) cells exceeding CD4(+) cells by nearly twofold. These combined data indicate that elevated NEU1 expression alters functional activities of distinct lung cell types in vitro and recapitulates lymphocytic infiltration and collagen accumulation in vivo, consistent with mechanisms implicated in lung fibrosis.

  15. Intrathoracic manifestations of collagen vascular diseases on high-resolution chest computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C. Isabela S. [University of British Columbia, Vancouver (Canada). Vancouver General Hospital]. E-mail: isabela.silva@vch.ca; Mueller, Nestor L. [University of British Columbia, Vancouver (Canada). Vancouver General Hospital. Dept. of Radiology

    2008-05-15

    Intrathoracic manifestations of collagen vascular diseases are very common. The frequency of intrathoracic manifestations and the patterns of abnormality are variable depending on the type of collagen vascular disease and may simultaneously involve one or more of the following: lung parenchyma, airways, pulmonary vessels, pericardium, and pleura. The most common pulmonary manifestations are diffuse interstitial pneumonia and pulmonary hypertension which together represent the main causes of morbidity and mortality of these patients. Pulmonary, airway and pleural involvement may also be secondary to the disease therapy, or result from bacterial pneumonia or opportunistic infection. In the present review, the authors summarize the main intrathoracic manifestations of collagen vascular diseases and the differential diagnosis on high-resolution chest computed tomography. (author)

  16. Morphological and ultrastructural evaluation of the golden retriever muscular dystrophy trachea, lungs, and diaphragm muscle.

    Science.gov (United States)

    Lessa, Thais Borges; de Abreu, Dilayla Kelly; Rodrigues, Márcio Nogueira; Brólio, Marina Pandolphi; Miglino, Maria Angélica; Ambrósio, Carlos Eduardo

    2014-11-01

    Duchenne muscular dystrophy (DMD) is a genetic disease, characterized by atrophy and muscle weakness. The respiratory failure is a common cause of early death in patients with DMD. Golden retriever muscular dystrophy (GRMD) is a canine model which has been extensively used for many advances in therapeutics applications. As the patients with DMD, the GRMD frequently died from cardiac and respiratory failure. Observing the respiratory failure in DMD is one of the major causes of mortality we aimed to describe the morphological and ultrastructural data of trachea, lungs (conductive and respiratory portion of the system), and diaphragm muscle using histological and ultrastructural analysis. The diaphragm muscle showed discontinuous fibers architecture, with different diameter; a robust perimysium inflammatory infiltrate and some muscle cells displayed central nuclei. GRMD trachea and lungs presented collagen fibers and in addition, the GRMD lungs showed higher of levels collagen fibers that could limit the alveolar ducts and alveoli distension. Therefore, the most features observed were the collagen areas and fibrosis. We suggested in this study that the collagen remodeling in the trachea, lungs, and diaphragm muscle may increase fibrosis and affect the trachea, lungs, and diaphragm muscle function that can be a major cause of respiratory failure that occur in patients with DMD. © 2014 Wiley Periodicals, Inc.

  17. The role of nailfold capillaroscopy in interstitial lung diseases - can it differentiate idiopathic cases from collagen tissue disease associated interstitial lung diseases?

    Science.gov (United States)

    Çakmakçı Karadoğan, Dilek; Balkarlı, Ayşe; Önal, Özgür; Altınışık, Göksel; Çobankara, Veli

    2015-01-01

    Nailfold capillaroscopy (NFC) is a non-invasive diagnostic test that is mostly used for early diagnosis of collagen tissue diseases (CTDs). We aimed to evaluate whether NFC findings could be a clue for discriminating idiopathic interstitial lung diseases (ILD) from CTD associated ILDs (CTD-ILD). Additionally it was aimed to determine whether NFC could be helpful in discriminating usual interstitial pneumonia (UIP) pattern from non-specific interstitial pneumonia (NSIP) pattern. We grouped patients into three main groups: 15 CTD-ILD, 18 idiopathic ILD, and 17 patients in the control group. The CTD-ILD group was split into two subgroups: 8 patients with Sjögren's syndrome (SJS)-associated ILD and 7 with rheumatoid arthritis (RA)-associated ILD. The idiopathic-ILD group consisted of 10 idiopathic NSIP and 8 IPF patients. The control group consisted of 10 SJS and 7 RA patients without lung disease. None of the patients were on acute exacerbation at the time of examination, and none had Reynaud's phenomenon. Mean capillary density was significantly reduced only in the CTD-ILD group as compared to the control group (p= 0.006). In subgroup analysis, it was determined that RA-ILD, IPF, and SJS-ILD subgroups had more severe capillaroscopic abnormalities. Mean capillary density in patients with the UIP pattern was reduced compared to patients with the NSIP pattern and those in the control group; p values were 0.008 and nailfold capillaroscopic findings of patients with NSIP and UIP patterns. NFC findings can be helpful in discriminating UIP patterns from NSIP patterns. But to show its role in differentiating idiopathic disease, more studies with more patients are needed.

  18. Cellular morphometry of the bronchi of human and dog lungs

    International Nuclear Information System (INIS)

    Robbins, E.S.

    1991-09-01

    One hundred and forty-seven bronchial samples (generations 3--6) from 66 patients (62 usable; 36 female, 26 male; median age 61) have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. In addition, one hundred and fifty-six mongol dog bronchi (generations 2--6) dissected from different lobes of 26 dog lungs have also been similarly prepared. One hundred and twenty-seven human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 655 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurement of the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 328 micrographs of dog epithelium from 33 bronchial samples have been used to measure the distances of basal and mucous cell nuclei to the epithelial free surface and have been entered into COSAS. Using the COSAS planimetry program, we continue to expand our established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the same 5 epithelial cell types of dog bronchi. Our micrographs of human bronchial epithelium have allowed us to analyze the recent suggestion that the DNA of lymphocytes may be subject to significant damage from Rn progeny while within the lung. Since the last progress report three papers have been submitted for publication. 17 refs., 4 tabs

  19. Clinical significance of ventilation/perfusion scans in collagen disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kenzo; Kobayashi, Takeshi [Tokyo Metropolitan Hiro-o Hospital (Japan); Kamata, Noriko; Inokuma, Shigeko; Terada, Hitoshi; Yokoyama, Yoshiaki; Abe, Katsumi; Mochizuki, Takao

    2000-12-01

    The purpose of this study was to detect disturbances in pulmonary circulation in collagen disease patients by means of a non-invasive technique. Ventilation/perfusion scans with {sup 133}Xe gas and {sup 99m}Tc-macroaggregated albumin (MAA) were performed in 109 patients with various collagen diseases. Functional images of V, Vol, Q and V/Q ratio were obtained at total lung capacity. Wash-out time was calculated from the wash-out curve. Whole body scans were performed in 65 patients to evaluate intra-pulmonary shunts. Increased V/Q areas were observed in 74 patients (67.9%), suggesting some impairment of pulmonary perfusion. Decreased perfusion, probably due to vasculitis or intravascular microcoagulation, was observed often, even in patients without pulmonary fibrosis. Shunt ratios over 10% were observed in 8 of the 65 patients (12.3%), indicating formation of PA-PV shunts secondary to peripheral vascular impairment. Wash-out time was prolonged in 37 patients (33.9%), shortened in 18 (16.5%), and within the normal range in 54 (49.6%). The prolonged and normal wash-out times in the patients with pulmonary fibrosis may represent obstructive changes in the small airways superimposed on the fibrosis. Ventilation/perfusion scans are a very useful tool for evaluating collagen lung diseases, and they might contribute to treatment decisions for the patients. (author)

  20. Multiphoton microscopy based cryo-imaging of inflated frozen human lung sections at -60°C in healthy and COPD lungs

    Science.gov (United States)

    Abraham, Thomas; Kayra, Damian; Zhang, Angela; Suzuki, Masaru; McDonough, John; Elliott, W. M.; Cooper, Joel D.; Hogg, James C.

    2013-02-01

    Lung is a complex gas exchanger with interfacial area (where the gas exchange takes place) is about the size of a tennis court. Respiratory function is linked to the biomechanical stability of the gas exchange or alveolar regions which directly depends on the spatial distributions of the extracellular matrix fibers such fibrillar collagens and elastin fibers. It is very important to visualize and quantify these fibers at their native and inflated conditions to have correct morphometric information on differences between control and diseased states. This can be only achieved in the ex vivo states by imaging directly frozen lung specimens inflated to total lung capacity. Multiphoton microscopy, which uses ultra-short infrared laser pulses as the excitation source, produces multiphoton excitation fluorescence (MPEF) signals from endogenously fluorescent proteins (e.g. elastin) and induces specific second harmonic generation (SHG) signals from non-centrosymmetric proteins such as fibrillar collagens in fresh human lung tissues [J. Struct. Biol. (2010)171,189-196]. Here we report for the first time 3D image data obtained directly from thick frozen inflated lung specimens (~0.7- 1.0 millimeter thick) visualized at -60°C without prior fixation or staining in healthy and diseased states. Lung specimens donated for transplantation and released for research when no appropriate recipient was identified served as controls, and diseased lung specimens donated for research by patients receiving lung transplantation for very severe COPD (n=4) were prepared as previously described [N. Engl. J. Med. (2011) 201, 1567]. Lung slices evenly spaced between apex and base were examined using multiphoton microscopy while maintained at -60°C using a temperature controlled cold stage with a temperature resolution of 0.1°C. Infrared femto-second laser pulses tuned to 880nm, dry microscopic objectives, and non-de-scanned detectors/spectrophotometer located in the reflection geometry were

  1. Central region morphometry in a child brain; Age and gender ...

    African Journals Online (AJOL)

    Background: Data on central region morphometry of a child brain is important not only in terms of providing us with information about central region anatomy of the brain but also in terms of the help of this information for the plans to be applied in neurosurgery. Objective: In the present study, central region morphometry of a ...

  2. Combining voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes.

    Science.gov (United States)

    Lehmbeck, Jan T; Brassen, Stefanie; Weber-Fahr, Wolfgang; Braus, Dieter F

    2006-04-03

    The present study combined optimized voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes. We compared grey matter density maps (grey matter voxel-based morphometry) and white matter fractional anisotropy maps (diffusion tensor imaging-voxel-based morphometry) between two groups of 17 younger and 17 older women. Older women exhibited reduced white matter fractional anisotropy as well as decreased grey matter density most prominently in the frontal, limbic, parietal and temporal lobes. A discriminant analysis identified four frontal and limbic grey and white matter areas that separated the two groups most effectively. We conclude that grey matter voxel-based morphometry and diffusion tensor imaging voxel-based morphometry are well suited for the detection of age-related changes and their combination provides high accuracy when detecting the neural correlates of aging.

  3. Biological alterations resulting from chronic lung irradiation. II. Connective tissue alterations following inhalation of 144Ce fused clay aerosol in beagle dogs

    International Nuclear Information System (INIS)

    Pickrell, J.A.; Harris, D.V.; Pfleger, R.C.; Benjamin, S.A.; Belasich, J.J.; Jones, R.K.; McClellan, R.O.

    1975-01-01

    Beagle dogs were exposed by inhalation to an aerosol of 144 Ce clay to quantitate the relationship between pulmonary radiation dose and induced fibrosis. Collagen, elastin, glucosamine, and the ratios of elastin/collagen, hydroxyproline/hydroxylysine, and hydroxyproline/proline were determined to indicate changes in connective tissue constituents. Total lung collagen was partitioned into native collagen, soluble collagen, and ultrafilterable hydroxyproline peptides. Increased total lung collagen correlated best with increasing cumulative radiation dose and increasing time after inhalation exposure. The increase in total lung collagen was not seen until more than 4 mo after exposure and a cumulative dose of about 40,000 rad. Soluble collagen and low molecular weight hydroxyproline peptide quantities both increased at 2 mo after exposure and cumulative doses of 20,000 to 27,000 rad. A variable elastin response apparently was not related to either increasing time or increasing radiation dose after exposure. These results indicate that collagen accumulation is an important factor in pulmonary fibrosis. Although collagen synthesis and breakdown were both activated at a relatively early time after inhalation, a significant increase in native collagen (scarring) occurred only when the metabolic balance was altered by protracted time or irradiation after exposure. The interrelationships observed in this study provide insight into the mechanism of fibrosis induced by chronic pulmonary injury. (U.S.)

  4. A Cadaveric Study of the Morphometry of the Cervical Spinal Canal ...

    African Journals Online (AJOL)

    Morphometry of the cervical spinal canal is of clinical importance in traumatic, degenerative and inflammatory conditions. A small canal diameter has been associated with an increase of injury mainly in athletes who participate in contact or collision sports. Before abnormal spinal morphometry can be determined, it is first ...

  5. Histomorphologic change of radiation pneumonitis in rat lungs: captopril reduces rat lung injury induced by irradiation

    International Nuclear Information System (INIS)

    Kim, Jin Hee

    1999-01-01

    To assess the histomorphologic changes in the rat lung injury induced by radiation, to determine whether captopril reduces the rat lung injury and to evaluate change in TNF-α and TGF β and rat lung damage by radiation and captopril. Right lungs in male Sprague-Dawley rats were divided irradiation alone (10, 20, 30 Gy) or radiation (same dose with radiation alone group) with captopril (500 mg/L). Radiation alone group were sacrificed at twelve hours and eleven weeks after radiation and radiation with captopril group (captopril group) were sacrificed at eleven weeks after radiation with captopril. We examined the light microscope and electron microscopic features in the groups. In radiation alone group, there were patch parenchymal collapse and consolidation at twelve hours after radiation. The increase of radiation dose shows more prominent the severity and broader the affected areas. Eleven weeks after radiation, the severity and areas of fibrosis had increased in proportion to radiation dose given in the radiation alone group. There was notable decrease of lung fibrosis in captopril group than in radiation alone group. The number of mast cells rapidly increased with increase of radiation dose in radiation alone group and the degree of increase of mast cell number and severity of collagen accumulation more decreased in captopril group than in radiation alone group. In radiation alone group expression of TNF-α and TGF-β] increased according to increase of radiation dose at twelve hours after radiation in both group. At eleven weeks after radiation, expression of TGF- P increased according to increase of radiation dose in radiation group but somewhat decreased in captopril group. In the captopril group the collagen deposition increased but less dense than those of radiation alone group. The severity of perivascular thickening, capillary change, the number and degranulation of mast cells more decreased in the captopril group than in the radiation alone group. It

  6. Nonrespiratory lung function

    Energy Technology Data Exchange (ETDEWEB)

    Isawa, Toyoharu [Tohoku University Research Institute for Chest Disease and Cancer, Sendai (Japan)

    1994-07-01

    The function of the lungs is primarily the function as a gas exchanger: the venous blood returning to the lungs is arterialized with oxygen in the lungs and the arterialized blood is sent back again to the peripheral tissues of the whole body to be utilized for metabolic oxygenation. Besides the gas exchanging function which we call ''respiratory lung function'' the lungs have functions that have little to do with gas exchange itself. We categorically call the latter function of the lungs as ''nonrespiratory lung function''. The lungs consist of the conductive airways, the gas exchanging units like the alveoli, and the interstitial space that surrounds the former two compartments. The interstitial space contains the blood and lymphatic capillaries, collagen and elastic fibers and cement substances. The conductive airways and the gas exchanging units are directly exposed to the atmosphere that contains various toxic and nontoxic gases, fume and biological or nonbiological particles. Because the conductive airways are equipped with defense mechanisms like mucociliary clearance or coughs to get rid of these toxic gases, particles or locally produced biological debris, we are usually free from being succumbed to ill effects of inhaled materials. By use of nuclear medicine techniques, we can now evaluate mucociliary clearance function, and other nonrespiratory lung functions as well in vivo.

  7. Nonrespiratory lung function

    International Nuclear Information System (INIS)

    Isawa, Toyoharu

    1994-01-01

    The function of the lungs is primarily the function as a gas exchanger: the venous blood returning to the lungs is arterialized with oxygen in the lungs and the arterialized blood is sent back again to the peripheral tissues of the whole body to be utilized for metabolic oxygenation. Besides the gas exchanging function which we call ''respiratory lung function'' the lungs have functions that have little to do with gas exchange itself. We categorically call the latter function of the lungs as ''nonrespiratory lung function''. The lungs consist of the conductive airways, the gas exchanging units like the alveoli, and the interstitial space that surrounds the former two compartments. The interstitial space contains the blood and lymphatic capillaries, collagen and elastic fibers and cement substances. The conductive airways and the gas exchanging units are directly exposed to the atmosphere that contains various toxic and nontoxic gases, fume and biological or nonbiological particles. Because the conductive airways are equipped with defense mechanisms like mucociliary clearance or coughs to get rid of these toxic gases, particles or locally produced biological debris, we are usually free from being succumbed to ill effects of inhaled materials. By use of nuclear medicine techniques, we can now evaluate mucociliary clearance function, and other nonrespiratory lung functions as well in vivo

  8. Transforming growth factor alpha is a critical mediator of radiation lung injury.

    Science.gov (United States)

    Chung, Eun Joo; Hudak, Kathryn; Horton, Jason A; White, Ayla; Scroggins, Bradley T; Vaswani, Shiva; Citrin, Deborah

    2014-09-01

    Radiation fibrosis of the lung is a late toxicity of thoracic irradiation. Epidermal growth factor (EGF) signaling has previously been implicated in radiation lung injury. We hypothesized that TGF-α, an EGF receptor ligand, plays a key role in radiation-induced fibrosis in lung. Mice deficient in transforming growth factor (TGF-α(-/-)) and control C57Bl/6J (C57-WT) mice were exposed to thoracic irradiation in 5 daily fractions of 6 Gy. Cohorts of mice were followed for survival (n ≥ 5 per group) and tissue collection (n = 3 per strain and time point). Collagen accumulation in irradiated lungs was assessed by Masson's trichrome staining and analysis of hydroxyproline content. Cytokine levels in lung tissue were assessed with ELISA. The effects of TGF-α on pneumocyte and fibroblast proliferation and collagen production were analyzed in vitro. Lysyl oxidase (LOX) expression and activity were measured in vitro and in vivo. Irradiated C57-WT mice had a median survival of 24.4 weeks compared to 48.2 weeks for irradiated TGF-α(-/-) mice (P = 0.001). At 20 weeks after irradiation, hydroxyproline content was markedly increased in C57-WT mice exposed to radiation compared to TGF-α(-/-) mice exposed to radiation or unirradiated C57-WT mice (63.0, 30.5 and 37.6 μg/lung, respectively, P = 0.01). C57-WT mice exposed to radiation had dense foci of subpleural fibrosis at 20 weeks after exposure, whereas the lungs of irradiated TGF-α (-/-) mice were largely devoid of fibrotic foci. Lung tissue concentrations of IL-1β, IL-4, TNF-α, TGF-β and EGF at multiple time points after irradiation were similar in C57-WT and TGF-α(-/-) mice. TGF-α in lung tissue of C57-WT mice rose rapidly after irradiation and remained elevated through 20 weeks. TGF-α(-/-) mice had lower basal LOX expression than C57-WT mice. Both LOX expression and LOX activity were increased after irradiation in all mice but to a lesser degree in TGF-α(-/-) mice. Treatment of NIH-3T3 fibroblasts with TGF

  9. Cellular morphometry of the bronchi of human and dog lungs

    International Nuclear Information System (INIS)

    Robbins, E.S.

    1991-03-01

    One hundred and thirty-one bronchial samples from 62 patients have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. Complete patient records including occupational and smoking histories, as well as possible exposure to radon, are obtained. In addition, one hundred and sixty-two mongol dog bronchi dissected from different lobes of 23 dog lungs have also been similarly prepared. Ninety-four human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 532 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurement of the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 240 micrographs of dog epithelium from 31 bronchial samples have been entered into COSAS. We have, using the COSAS planimetry program, established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the epithelial cell types of dog bronchi. The data are being used to develop weighting factors for dosimetry and radon risk analysis. 26 refs., 7 figs., 4 tabs

  10. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators.

    Science.gov (United States)

    Kadler, Karl E; Hill, Adele; Canty-Laird, Elizabeth G

    2008-10-01

    Collagens are triple helical proteins that occur in the extracellular matrix (ECM) and at the cell-ECM interface. There are more than 30 collagens and collagen-related proteins but the most abundant are collagens I and II that exist as D-periodic (where D = 67 nm) fibrils. The fibrils are of broad biomedical importance and have central roles in embryogenesis, arthritis, tissue repair, fibrosis, tumor invasion, and cardiovascular disease. Collagens I and II spontaneously form fibrils in vitro, which shows that collagen fibrillogenesis is a selfassembly process. However, the situation in vivo is not that simple; collagen I-containing fibrils do not form in the absence of fibronectin, fibronectin-binding and collagen-binding integrins, and collagen V. Likewise, the thin collagen II-containing fibrils in cartilage do not form in the absence of collagen XI. Thus, in vivo, cellular mechanisms are in place to control what is otherwise a protein self-assembly process. This review puts forward a working hypothesis for how fibronectin and integrins (the organizers) determine the site of fibril assembly, and collagens V and XI (the nucleators) initiate collagen fibrillogenesis.

  11. Collagenous sprue

    DEFF Research Database (Denmark)

    Soendergaard, Christoffer; Riis, Lene Buhl; Nielsen, Ole Haagen

    2014-01-01

    Collagenous sprue is a rare clinicopathological condition of the small bowel. It is characterised by abnormal subepithelial collagen deposition and is typically associated with malabsorption, diarrhoea and weight loss. The clinical features of collagenous sprue often resemble those of coeliac...... disease and together with frequent histological findings like mucosal thinning and intraepithelial lymphocytosis the diagnosis may be hard to reach without awareness of this condition. While coeliac disease is treated using gluten restriction, collagenous sprue is, however, not improved...... by this intervention. In cases of diet-refractory 'coeliac disease' it is therefore essential to consider collagenous sprue to initiate treatment at an early stage to prevent the fibrotic progression. Here, we report a case of a 78-year-old man with collagenous sprue and present the clinical and histological...

  12. Multivariate Tensor-based Brain Anatomical Surface Morphometry via Holomorphic One-Forms

    OpenAIRE

    Wang, Yalin; Chan, Tony F.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Here we introduce multivariate tensor-based surface morphometry using holomorphic one-forms to study brain anatomy. We computed new statistics from the Riemannian metric tensors that retain the full information in the deformation tensor fields. We introduce two different holomorphic one-forms that induce different surface conformal parameterizations. We applied this framework to 3D MRI data to analyze hippocampal surface morphometry in Alzheimer’s Disease (AD; 26 subjects), lateral ventricula...

  13. Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells

    Directory of Open Access Journals (Sweden)

    Hisatomi Keiko

    2012-06-01

    Full Text Available Abstract Background Pirfenidone is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis (IPF. We previously showed that pirfenidone inhibits the over-expression of collagen type I and of heat shock protein (HSP 47, a collagen-specific molecular chaperone, in human lung fibroblasts stimulated with transforming growth factor (TGF-β1 in vitro. The increased numbers of HSP47-positive type II pneumocytes as well as fibroblasts were also diminished by pirfenidone in an animal model of pulmonary fibrosis induced by bleomycin. The present study evaluates the effects of pirfenidone on collagen type I and HSP47 expression in the human alveolar epithelial cell line, A549 cells in vitro. Methods The expression of collagen type I, HSP47 and E-cadherin mRNAs in A549 cells stimulated with TGF-β1 was evaluated by Northern blotting or real-time PCR. The expression of collagen type I, HSP47 and fibronectin proteins was assessed by immunocytochemical staining. Results TGF-β1 stimulated collagen type I and HSP47 mRNA and protein expression in A549 cells, and pirfenidone significantly inhibited this process. Pirfenidone also inhibited over-expression of the fibroblast phenotypic marker fibronectin in A549 cells induced by TGF-β1. Conclusion We concluded that the anti-fibrotic effects of pirfenidone might be mediated not only through the direct inhibition of collagen type I expression but also through the inhibition of HSP47 expression in alveolar epithelial cells, which results in reduced collagen synthesis in lung fibrosis. Furthermore, pirfenidone might partially inhibit the epithelial-mesenchymal transition.

  14. Lung lobar volume in patients with chronic interstitial pneumonia

    International Nuclear Information System (INIS)

    Harada, Hisao; Koba, Hiroyuki; Saitoh, Tsukasa; Abe, Shosaku.

    1997-01-01

    We measured lung lobar volume by using helical computed tomography (HCT) in 23 patients with idiopathic interstitial pneumonia (IIP), 7 patients with chronic interstitial pneumonia associated with collagen vascular disease (CVD-IP), and 5 healthy volunteers HCT scanning was done at the maximal inspiratory level and the resting end-expiratory level. To measure lung lobar volume, we traced the lobar margin on HCT images with a digitizer and calculated the lobar volume with a personal computer. The lower lobar volume and several factors influencing it in chronic interstitial pneumonia were studied. At the maximal inspiratory level, the lower lobar volume as a percent of the whole lung volume was 46.8±4.13% (mean ± SD) in the volunteers, 39.5±6.19% in the patients with IIP, and 27.7±7. 86% in the patients with CVD-IP. The lower lobar volumes in the patients were significantly lower than in the volunteers. Patients with IIP in whom autoantibody tests were positive had lower lobar volumes that were very low and were similar to those of patients with CVD-IP. These data suggest that collagen vascular disease may develop in patients with interstitial pneumonia. The patients with IIP who had emphysematous changes on the CT scans had smaller decreases in total lung capacity and lower ratios of forced expiratory volume in one second to forced vital capacity than did those who had no emphysematous changes, those two groups did not differ in the ratio of lower lobar volume to whole lung volume. This suggests that emphysematous change is not factor influencing lower lobar volume in patients with chronic interstitial pneumonia. We conclude that chronic interstitial pneumonia together with very low values for lower lobar volume may be a pulmonary manifestation of collagen vascular disease. (author)

  15. Hip morphometry of femoroacetabular impingement pattern in patients with ankylosing spondylitis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Yoon; Lee, Eu Gene; Choi, Jung Ah [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2015-06-15

    To analyze hip morphometry of femoroacetabular impingement (FAI) pattern in patients with ankylosing spondylitis (AS) and correlate them with sacroiliitis grades. 384 patients with AS were analyzed regarding demographics, radiologic signs of FAI for hip involvement, and sacroiliitis grades. FAI was classified into 3 types according to alpha angle, lateral center-edge angle and pistol grip deformity. Sacroiliitis was graded according to the New York criteria. Prevalence of FAI morphometry types was determined and evaluated for association with sacroiliitis grades. Statistical analysis regarding numerical variables, including age, sacroiliitis score using t-test, sacroiliitis score in three groups using Kruskal-Wallis test and Mann-Whitney U-test, corrected by Bonferroni methods for post hoc analysis was done. Among 384 patients, 141 (36.7%) had FAI morphometry. Male predominance was found in group with FAI pattern involvement (87.2%) (p = 0.000). Pincer type (20.6%) was the most common. Hip involvement group also showed greater sacroiliitis score (2.49 vs. 1.75, p = 0.000). Combined-type had greater sacroiliitis score compared with others (p = 0.002, 0.003). FAI morphometry was frequent in hips of AS patients (36.7%), especially pincer type, more frequent in male, and associated with significantly greater grade of sacroiliitis; combined type FAI pattern had greater sacroiliitis score.

  16. Hip morphometry of femoroacetabular impingement pattern in patients with ankylosing spondylitis

    International Nuclear Information System (INIS)

    Lee, Jong Yoon; Lee, Eu Gene; Choi, Jung Ah

    2015-01-01

    To analyze hip morphometry of femoroacetabular impingement (FAI) pattern in patients with ankylosing spondylitis (AS) and correlate them with sacroiliitis grades. 384 patients with AS were analyzed regarding demographics, radiologic signs of FAI for hip involvement, and sacroiliitis grades. FAI was classified into 3 types according to alpha angle, lateral center-edge angle and pistol grip deformity. Sacroiliitis was graded according to the New York criteria. Prevalence of FAI morphometry types was determined and evaluated for association with sacroiliitis grades. Statistical analysis regarding numerical variables, including age, sacroiliitis score using t-test, sacroiliitis score in three groups using Kruskal-Wallis test and Mann-Whitney U-test, corrected by Bonferroni methods for post hoc analysis was done. Among 384 patients, 141 (36.7%) had FAI morphometry. Male predominance was found in group with FAI pattern involvement (87.2%) (p = 0.000). Pincer type (20.6%) was the most common. Hip involvement group also showed greater sacroiliitis score (2.49 vs. 1.75, p = 0.000). Combined-type had greater sacroiliitis score compared with others (p = 0.002, 0.003). FAI morphometry was frequent in hips of AS patients (36.7%), especially pincer type, more frequent in male, and associated with significantly greater grade of sacroiliitis; combined type FAI pattern had greater sacroiliitis score

  17. Comparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicine.

    Science.gov (United States)

    Balestrini, Jenna L; Gard, Ashley L; Gerhold, Kristin A; Wilcox, Elise C; Liu, Angela; Schwan, Jonas; Le, Andrew V; Baevova, Pavlina; Dimitrievska, Sashka; Zhao, Liping; Sundaram, Sumati; Sun, Huanxing; Rittié, Laure; Dyal, Rachel; Broekelmann, Tom J; Mecham, Robert P; Schwartz, Martin A; Niklason, Laura E; White, Eric S

    2016-09-01

    Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Anti-proline-glycine-proline or antielastin autoantibodies are not evident in chronic inflammatory lung disease.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2010-01-01

    In patients with chronic inflammatory lung disease, pulmonary proteases can generate neoantigens from elastin and collagen with the potential to fuel autoreactive immune responses. Antielastin peptide antibodies have been implicated in the pathogenesis of tobacco-smoke-induced emphysema. Collagen-derived peptides may also play a role.

  19. Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy.

    Science.gov (United States)

    Ponganis, P J; St Leger, J; Scadeng, M

    2015-03-01

    The anatomy and volume of the penguin respiratory system contribute significantly to pulmonary baroprotection, the body O2 store, buoyancy and hence the overall diving physiology of penguins. Therefore, three-dimensional reconstructions from computerized tomographic (CT) scans of live penguins were utilized to measure lung volumes, air sac volumes, tracheobronchial volumes and total body volumes at different inflation pressures in three species with different dive capacities [Adélie (Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins]. Lung volumes scaled to body mass according to published avian allometrics. Air sac volumes at 30 cm H2O (2.94 kPa) inflation pressure, the assumed maximum volume possible prior to deep dives, were two to three times allometric air sac predictions and also two to three times previously determined end-of-dive total air volumes. Although it is unknown whether penguins inhale to such high volumes prior to dives, these values were supported by (a) body density/buoyancy calculations, (b) prior air volume measurements in free-diving ducks and (c) previous suggestions that penguins may exhale air prior to the final portions of deep dives. Based upon air capillary volumes, parabronchial volumes and tracheobronchial volumes estimated from the measured lung/airway volumes and the only available morphometry study of a penguin lung, the presumed maximum air sac volumes resulted in air sac volume to air capillary/parabronchial/tracheobronchial volume ratios that were not large enough to prevent barotrauma to the non-collapsing, rigid air capillaries during the deepest dives of all three species, and during many routine dives of king and emperor penguins. We conclude that volume reduction of airways and lung air spaces, via compression, constriction or blood engorgement, must occur to provide pulmonary baroprotection at depth. It is also possible that relative air capillary and parabronchial volumes are

  20. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Daniel Schmitter

    2015-01-01

    Full Text Available Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease.

  1. Pathogenic mechanism in lung fibrosis

    International Nuclear Information System (INIS)

    Witschi, H.; Haschek, W.M.; Meyer, K.R.; Ullrich, R.L.; Dalbey, W.E.

    1979-01-01

    The purpose of the study was to examine whether an interaction between two agents causing alveolar epithelial damage would produce lung fibrosis. In mouse lung, intraperitoneal injection of the antioxidant butylated hydroxytoluene causes diffuse alveolar type I cell necrosis, followed by proliferation of type II alveolar cells. In animals exposed to 70% O 2 or 100-200 rad x rays during the phase of type II cell proliferation following BHT, diffuse interstitial lung fibrosis developed within 2 weeks. Quantitative analysis of the lungs for hydroxyproline showed that the interaction between BHT and O 2 or x rays was synergistic. If exposure to O 2 or x rays was delayed until epithelial recovery was complete, no fibrosis was seen. Abnormally high levels of lung collagen persisted up to 6 months after one single treatment with BHT and 100 rad x rays. A commonly seen form of chronic lung damage may thus be caused by an acute interaction between a bloodborne agent which damages the alveolar cell and a toxic inhalant or x rays, provided a critically ordered sequence of exposure is observed

  2. Collagen gel droplet-embedded culture drug sensitivity test for adjuvant chemotherapy after complete resection of non-small-cell lung cancer.

    Science.gov (United States)

    Inoue, Masayoshi; Maeda, Hajime; Takeuchi, Yukiyasu; Fukuhara, Kenjiro; Shintani, Yasushi; Funakoshi, Yasunobu; Funaki, Soichiro; Nojiri, Takashi; Kusu, Takashi; Kusumoto, Hidenori; Kimura, Toru; Okumura, Meinoshin

    2018-04-01

    We conducted a prospective clinical study to individualize adjuvant chemotherapy after complete resection of non-small-cell lung cancer (NSCLC), based on the drug sensitivity test. Patients with resectable c-stage IB-IIIA NSCLC were registered between 2005 and 2010. We performed the collagen gel droplet-embedded culture drug sensitivity test (CD-DST) on a fresh surgical specimen to assess in vitro chemosensitivity and evaluated the prognostic outcome after adjuvant chemotherapy with carboplatin/paclitaxel based on the CD-DST. Among 92 registered patients, 87 were eligible for inclusion in the analysis. The success rate of CD-DST was 86% and chemosensitivity to carboplatin and/or paclitaxel was evident in 57 (76%) of the 75 patients. Adjuvant chemotherapy was completed in 22 (73%) of 30 patients. The 5-year overall survival rates were 71, 73, and 75% for all, CD-DST success, and chemosensitive patients, respectively. The 5-year disease-free survival and overall survival rates of the chemosensitive patients who completed adjuvant chemotherapy using carboplatin/paclitaxel were 68 and 82%, respectively. The 5-year disease-free survival and overall survival rates of the patients with stage II-IIIA chemosensitive NSCLC were 58 and 75%, respectively. Comparative analyses of the chemosensitive and non-chemosensitive/CD-DST failure groups showed no significant survival difference. CD-DST can be used to evaluate chemosensitivity after lung cancer surgery; however, its clinical efficacy for assessing individualized treatment remains uncertain.

  3. A New Method for Automated Identification and Morphometry of Myelinated Fibers Through Light Microscopy Image Analysis

    OpenAIRE

    Novas, Romulo Bourget; Fazan, Valeria Paula Sassoli; Felipe, Joaquim Cezar

    2015-01-01

    Nerve morphometry is known to produce relevant information for the evaluation of several phenomena, such as nerve repair, regeneration, implant, transplant, aging, and different human neuropathies. Manual morphometry is laborious, tedious, time consuming, and subject to many sources of error. Therefore, in this paper, we propose a new method for the automated morphometry of myelinated fibers in cross-section light microscopy images. Images from the recurrent laryngeal nerve of adult rats and ...

  4. Thymus morphometry of New Zealand White Rabbits treated with gentamicin

    Directory of Open Access Journals (Sweden)

    Matheus Henrique Magalhães Silva

    2010-09-01

    Full Text Available The aim of this study was to evaluate the morphometry of cortical and medullary thymic lobes individualized by determination of area (μm2, perimeter (μm, maximum and minimum diameter (μm and shape factor in New Zealand White rabbits. The spleens of ten rabbits treated with gentamicin and ten control rabbits (males and females were histologically processed. The gentamicin dosage and the time of administration of this aminoglicoside were according to therapeutic recommendation. This antibiotic did not cause any alteration in the morphometry of the spleen, and it seemed not to be an immunosuppressive drug.

  5. Thymus morphometry of New Zealand White Rabbits treated with gentamicin

    Directory of Open Access Journals (Sweden)

    Matheus Henrique Magalhães Silva

    2010-01-01

    Full Text Available The aim of this study was to evaluate the morphometry of cortical and medullary thymic lobes individualized by determination of area (µm2, perimeter (µm, maximum and minimum diameter (µm and shape factor in New Zealand White rabbits. The spleens of ten rabbits treated with gentamicin and ten control rabbits (males and females were histologically processed. The gentamicin dosage and the time of administration of this aminoglicoside were according to therapeutic recommendation. This antibiotic did not cause any alteration in the morphometry of the spleen, and it seemed not to be an immunosuppressive drug.

  6. Radiological-morphological synopsis of radiation-induced lung fibrosis

    International Nuclear Information System (INIS)

    Bublitz, G.

    1977-01-01

    As delayed radiation damage after treatment of bronchial carcinoma and mamma carcinoma, fibroses occur as a reaction of the tissues. They have become a clinical-functional syndrome because of their uniform clinicaL-radiological symptomatology and pathophysiology. Pulmonary fibrosis as delayed radiation damage has a special importance with its two different radiation effects on connective tissue: a) on existing structures, b) delayed alterations of the connective tissue. As seen from experiments on lungs of men and rats, radiation-induced alterations can be measured by testing the different solubilities of the collagen types. In addition to the pathologically disordered collagen production, 9 weeks after the irradiation the radiation fibrosis leads to an isolated increase of insoluble collagen corresponding to the formation of metabolism-resistant fibrils. (MG) [de

  7. Serum biomarkers reflecting specific tumor tissue remodeling processes are valuable diagnostic tools for lung cancer

    International Nuclear Information System (INIS)

    Willumsen, Nicholas; Bager, Cecilie L; Leeming, Diana J; Smith, Victoria; Christiansen, Claus; Karsdal, Morten A; Dornan, David; Bay-Jensen, Anne-Christine

    2014-01-01

    Extracellular matrix (ECM) proteins, such as collagen type I and elastin, and intermediate filament (IMF) proteins, such as vimentin are modified and dysregulated as part of the malignant changes leading to disruption of tissue homeostasis. Noninvasive biomarkers that reflect such changes may have a great potential for cancer. Levels of matrix metalloproteinase (MMP) generated fragments of type I collagen (C1M), of elastin (ELM), and of citrullinated vimentin (VICM) were measured in serum from patients with lung cancer (n = 40), gastrointestinal cancer (n = 25), prostate cancer (n = 14), malignant melanoma (n = 7), chronic obstructive pulmonary disease (COPD) (n = 13), and idiopathic pulmonary fibrosis (IPF) (n = 10), as well as in age-matched controls (n = 33). The area under the receiver operating characteristics (AUROC) was calculated and a diagnostic decision tree generated from specific cutoff values. C1M and VICM were significantly elevated in lung cancer patients as compared with healthy controls (AUROC = 0.98, P < 0.0001) and other cancers (AUROC = 0.83 P < 0.0001). A trend was detected when comparing lung cancer with COPD+IPF. No difference could be seen for ELM. Interestingly, C1M and VICM were able to identify patients with lung cancer with a positive predictive value of 0.9 and an odds ratio of 40 (95% CI = 8.7–186, P < 0.0001). Biomarkers specifically reflecting degradation of collagen type I and citrullinated vimentin are applicable for lung cancer patients. Our data indicate that biomarkers reflecting ECM and IMF protein dysregulation are highly applicable in the lung cancer setting. We speculate that these markers may aid in diagnosing and characterizing patients with lung cancer

  8. [Voxel-Based Morphometry in Autism Spectrum Disorder].

    Science.gov (United States)

    Yamasue, Hidenori

    2017-05-01

    Autism spectrum disorder shows deficits in social communication and interaction including nonverbal communicative behaviors (e.g., eye contact, gestures, voice prosody, and facial expressions) and restricted and repetitive behaviors as its core symptoms. These core symptoms are emerged as an atypical behavioral development in toddlers with the disorder. Atypical neural development is considered to be a neural underpinning of such behaviorally atypical development. A number of studies using voxel-based morphometry have already been conducted to compare regional brain volumes between individuals with autism spectrum disorder and those with typical development. Furthermore, more than ten papers employing meta-analyses of the comparisons using voxel based morphometry between individuals with autism spectrum disorder and those with typical development have already been published. The current review paper adds some brief discussions about potential factors contributing to the inconsistency observed in the previous findings such as difficulty in controlling the confounding effects of different developmental phases among study participants.

  9. Lung morphometry using hyperpolarized 129 Xe multi-b diffusion MRI with compressed sensing in healthy subjects and patients with COPD.

    Science.gov (United States)

    Zhang, Huiting; Xie, Junshuai; Xiao, Sa; Zhao, Xiuchao; Zhang, Ming; Shi, Lei; Wang, Ke; Wu, Guangyao; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2018-05-04

    To demonstrate the feasibility of compressed sensing (CS) to accelerate the acquisition of hyperpolarized (HP) 129 Xe multi-b diffusion MRI for quantitative assessments of lung microstructural morphometry. Six healthy subjects and six chronic obstructive pulmonary disease (COPD) subjects underwent HP 129 Xe multi-b diffusion MRI (b = 0, 10, 20, 30, and 40 s/cm 2 ). First, a fully sampled (FS) acquisition of HP 129 Xe multi-b diffusion MRI was conducted in one healthy subject. The acquired FS dataset was retrospectively undersampled in the phase encoding direction, and an optimal twofold undersampled pattern was then obtained by minimizing mean absolute error (MAE) between retrospective CS (rCS) and FS MR images. Next, the FS and CS acquisitions during separate breath holds were performed on five healthy subjects (including the above one). Additionally, the FS and CS synchronous acquisitions during a single breath hold were performed on the sixth healthy subject and one COPD subject. However, only CS acquisitions were conducted in the rest of the five COPD subjects. Finally, all the acquired FS, rCS and CS MR images were used to obtain morphometric parameters, including acinar duct radius (R), acinar lumen radius (r), alveolar sleeve depth (h), mean linear intercept (L m ), and surface-to-volume ratio (SVR). The Wilcoxon signed-rank test and the Bland-Altman plot were employed to assess the fidelity of the CS reconstruction. Moreover, the t-test was used to demonstrate the effectiveness of the multi-b diffusion MRI with CS in clinical applications. The retrospective results demonstrated that there was no statistically significant difference between rCS and FS measurements using the Wilcoxon signed-rank test (P > 0.05). Good agreement between measurements obtained with the CS and FS acquisitions during separate breath holds was demonstrated in Bland-Altman plots of slice differences. Specifically, the mean biases of the R, r, h, L m , and SVR between the CS and

  10. Nuclear morphometry and prognosis in favorable histology Wilms' tumor: A prospective reevaluation.

    Science.gov (United States)

    Breslow, N E; Partin, A W; Lee, B R; Guthrie, K A; Beckwith, J B; Green, D M

    1999-07-01

    This study was designed to evaluate the ability of a previously published nuclear morphometry discriminant function to predict disease-free survival in patients with Wilms' tumor. We identified 218 patients with stage I-IV Wilms' tumor of favorable histology who were entered onto the National Wilms' Tumor Study (NWTS) between January 1, 1990 and April 15, 1994. The nuclear morphometry score was calculated for each patient as follows: MV(f) = (0.02 x AGE) + (1.17 x SNRF) + (90.6 x LEFD) - 94, with AGE denoting age at diagnosis in months, SNRF the skewness of the nuclear roundness factor, and LEFD the lowest value of nuclear ellipticity as measured by the feret diameter method. Relative risks of relapse were estimated for the total score and for each of its components. Sensitivity and specificity were determined for the criterion of "MV(f) is greater than -0.35" as a predictor of relapse. By contrast with previously published results, neither the SNRF nor the LEFD made any contribution to the prediction of disease-free survival. Sensitivity and specificity of the criterion of "MV(f) is greater than -0.35" were 71% and 56%, respectively. Re-evaluation of a published nuclear morphometry score showed that it did not predict disease-free survival in patients with Wilms' tumor. The earlier study very likely overestimated the predictive power of nuclear morphometry by using the same data set both to develop the score and to evaluate its properties. Because of the huge number of combinations of nuclear morphometry measurements that may enter into the multivariate discriminant function, use of appropriate statistical methods is essential to estimate accurately the sensitivity and specificity.

  11. HRCT of the lung in collagen vascular diseases

    International Nuclear Information System (INIS)

    Diederich, S.; Roos, N.; Schmitz-Linneweber, B.; Gaubitz, M.; Peters, P.E.

    1996-01-01

    Collagen vascular diseases, representing systemic soft tissue disorders, may cause a broad spectrum of pathologic changes of the respiratory tract. The type and extent of manifestations can vary considerably among individuals and entities. This survey describes the chest radiographic and, in particular, high-resolution computed tomographic and, in particular, high-resolution computed tomographic (HRCT) findings of individual lesions of the respiratory tract. It includes fibrosing alveolitis (alveolitis, interstitial pneumonia, pulmonary fibrosis) and bronchial (bronchitis/bronchiolitis, bronchiectasis), pleural and vascular manifestations, as well as lymphadenopathy and abnormalities related to therapy. We present typical patterns of changes in progressive systemic sclerosis (PSS, scleroderma), systemic lupus erythematosus (SLE), mixed connective tissue disease (MCTD, Sharp syndrome), Sjoegren syndrome, overlap syndrome and rheumatoid arthritis (RA). Furthermore, we describe findings which are specific for individual entities such as esophageal involvement in PSS, acute pneumonitis and pulmonary hemorrhage in SLE, lymphoproliferative disease in Sjoegren syndrome and necrobiotic nodules in RA. (orig.) [de

  12. CT morphometry of adult thoracic intervertebral discs.

    Science.gov (United States)

    Fletcher, Justin G R; Stringer, Mark D; Briggs, Christopher A; Davies, Tilman M; Woodley, Stephanie J

    2015-10-01

    Despite being commonly affected by degenerative disorders, there are few data on normal thoracic intervertebral disc dimensions. A morphometric analysis of adult thoracic intervertebral discs was, therefore, undertaken. Archival computed tomography scans of 128 recently deceased individuals (70 males, 58 females, 20-79 years) with no known spinal pathology were analysed to determine thoracic disc morphometry and variations with disc level, sex and age. Reliability was assessed by intraclass correlation coefficients (ICCs). Anterior and posterior intervertebral disc heights and axial dimensions were significantly greater in men (anterior disc height 4.0±1.4 vs 3.6±1.3 mm; posterior disc height 3.6±0.90 vs 3.4±0.93 mm; p<0.01). Disc heights and axial dimensions at T4-5 were similar or smaller than at T2-3, but thereafter increased caudally (mean anterior disc height T4-5 and T10-11, 2.7±0.7 and 5.4±1.2 mm, respectively, in men; 2.6±0.8 and 5.1±1.3 mm, respectively, in women; p<0.05). Except at T2-3, anterior disc height decreased with advancing age and anteroposterior and transverse disc dimensions increased; posterior and middle disc heights and indices of disc shape showed no consistent statistically significant changes. Most parameters showed substantial to almost perfect agreement for intra- and inter-rater reliability. Thoracic disc morphometry varies significantly and consistently with disc level, sex and age. This study provides unique reference data on adult thoracic intervertebral disc morphometry, which may be useful when interpreting pathological changes and for future biomechanical and functional studies.

  13. Elastin Cables Define the Axial Connective Tissue System in the Murine Lung.

    Science.gov (United States)

    Wagner, Willi; Bennett, Robert D; Ackermann, Maximilian; Ysasi, Alexandra B; Belle, Janeil; Valenzuela, Cristian D; Pabst, Andreas; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2015-11-01

    The axial connective tissue system is a fiber continuum of the lung that maintains alveolar surface area during changes in lung volume. Although the molecular anatomy of the axial system remains undefined, the fiber continuum of the lung is central to contemporary models of lung micromechanics and alveolar regeneration. To provide a detailed molecular structure of the axial connective tissue system, we examined the extracellular matrix of murine lungs. The lungs were decellularized using a 24 hr detergent treatment protocol. Systematic evaluation of the decellularized lungs demonstrated no residual cellular debris; morphometry demonstrated a mean 39 ± 7% reduction in lung dimensions. Scanning electron microscopy (SEM) demonstrated an intact structural hierarchy within the decellularized lung. Light, fluorescence, and SEM of precision-cut lung slices demonstrated that alveolar duct structure was defined by a cable line element encased in basement membrane. The cable line element arose in the distal airways, passed through septal tips and inserted into neighboring blood vessels and visceral pleura. The ropelike appearance, collagenase resistance and anti-elastin immunostaining indicated that the cable was an elastin macromolecule. Our results indicate that the helical line element of the axial connective tissue system is composed of an elastin cable that not only defines the structure of the alveolar duct, but also integrates the axial connective tissue system into visceral pleura and peripheral blood vessels. © 2015 Wiley Periodicals, Inc.

  14. Lung Mass in Smokers.

    Science.gov (United States)

    Washko, George R; Kinney, Gregory L; Ross, James C; San José Estépar, Raúl; Han, MeiLan K; Dransfield, Mark T; Kim, Victor; Hatabu, Hiroto; Come, Carolyn E; Bowler, Russell P; Silverman, Edwin K; Crapo, James; Lynch, David A; Hokanson, John; Diaz, Alejandro A

    2017-04-01

    Emphysema is characterized by airspace dilation, inflammation, and irregular deposition of elastin and collagen in the interstitium. Computed tomographic studies have reported that lung mass (LM) may be increased in smokers, a finding attributed to inflammatory and parenchymal remodeling processes observed on histopathology. We sought to examine the epidemiologic and clinical associations of LM in smokers. Baseline epidemiologic, clinical, and computed tomography (CT) data (n = 8156) from smokers enrolled into the COPDGene Study were analyzed. LM was calculated from the CT scan. Changes in lung function at 5 years' follow-up were available from 1623 subjects. Regression analysis was performed to assess for associations of LM with forced expiratory volume in 1 second (FEV 1 ) and FEV 1 decline. Subjects with Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1 chronic obstructive pulmonary disease had greater LM than either smokers with normal lung function or those with GOLD 2-4 chronic obstructive pulmonary disease (P smokers: the presence of such nonlinearity must be accounted for in longitudinal computed tomographic studies. Baseline LM predicts the decline in lung function. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  15. High levels of biomarkers of collagen remodeling are associated with increased mortality in COPD – results from the ECLIPSE study

    DEFF Research Database (Denmark)

    Sand, Jannie M B; Leeming, Diana J; Byrjalsen, Inger

    2016-01-01

    with mortality in COPD and measured neo-epitopes originating from ECM proteins associated with lung tissue remodeling. METHODS: Biomarkers of ECM remodeling were assessed in a subpopulation (n = 1000) of the Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) cohort. Validated......BACKGROUND: There is a need to identify individuals with COPD at risk for disease progression and mortality. Lung tissue remodeling is associated with the release of extracellular matrix (ECM) fragments into the peripheral circulation. We hypothesized that ECM remodeling was associated...... immunoassays measuring serological neo-epitopes produced by proteolytic cleavage associated with degradation of collagen type I, III, IV, and VI, elastin, and biglycan, and formation of collagen type VI as well as fibrinogen and C-reactive protein were used. Multivariate models were used to assess...

  16. Platelets stimulate fibroblast-mediated contraction of collagen gels

    Directory of Open Access Journals (Sweden)

    Lundahl Joachim

    2003-10-01

    Full Text Available Abstract Background Platelets are thought to play a role in a variety of inflammatory conditions in the lung, some of which may lead to fibrosis. In the current study we tested the hypothesis that whole platelets and platelet lysate can mediate remodelling of extracellular matrix in vitro by affecting fibroblast-mediated contraction of a collagen gel. We also sought to determine to what extent platelet-derived growth factor (PDGF and transforming growth factor-β (TGF-β contribute to this effect. Methods Washed platelets, isolated from healthy blood donors, and platelet lysate (freezing and thawing, were cast together with human lung fibroblasts in three-dimensional collagen gels. The gels were then released and cultured for four days. PDGF and TGF-β1 concentrations were measured in culture supernatants by ELISA. Results Both platelets and platelet lysate augmented fibroblast-mediated gel contraction in a time and concentration dependent manner (19.9% ± 0.1 (mean ± SEM of initial area vs. 48.0% ± 0.4 at 48 hours; P 1 and PDGF-AA/AB were released in co-culture. PDGF-AA/AB had a maximum release at 24 hours whereas TGF-β1 release increased with longer culture periods. Neutralising antibodies to these mediators partially inhibited platelet-induced gel contraction. Conclusion We conclude that platelets may promote remodelling of extracellular matrix in vitro and that PDGF and TGF-β partially mediate this effect, also indicating a role for other mediators. The findings may be an important mechanism in regulating repair processes after injury.

  17. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    OpenAIRE

    Hui Liang; Xiaoran Li; Bin Wang; Bing Chen; Yannan Zhao; Jie Sun; Yan Zhuang; Jiajia Shi; He Shen; Zhijun Zhang; Jianwu Dai

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of ...

  18. Comparative Minicolumnar Morphometry of Three Distinguished Scientists

    Science.gov (United States)

    Casanova, Manuel F.; Switala, Andrew E.; Trippe, Juan; Fitzgerald, Michael

    2007-01-01

    It has been suggested that the cell minicolumn is the smallest module capable of information processing within the brain. In this case series, photomicrographs of six regions of interests (Brodmann areas 4, 9, 17, 21, 22, and 40) were analyzed by computerized image analysis for minicolumnar morphometry in the brains of three distinguished…

  19. Fluvial processes and channel morphometry of the upper Orashi ...

    African Journals Online (AJOL)

    Fluvial processes and channel morphometry of the upper Orashi basin in ... of channel equilibrium between morphology and hydrology, the Orashi channel is not well ... Drainage basins, watershed morphology, morphometric analysis, Nigeria ...

  20. Growth performance, immune status and organ morphometry in ...

    African Journals Online (AJOL)

    Growth performance, immune status and organ morphometry in broilers fed Bacillus subtilis -supplemented diet. ... In conclusion, B. subtilis-type probiotics contributed positively to better growth performance, improved immune system and modulated morphology of lymphoid organs and gut mucosa in broilers. Keywords: ...

  1. Patch-Based Morphometry: Application to Alzheimer’s Disease

    DEFF Research Database (Denmark)

    Coupe, Pierrick; Manjon, Jose; Fonov, Vladimir

    Background: While widely used to detect morphological differences between groups, Voxel-Based Morphometry (VBM) is based on the assumption of one-to-one anatomical mapping between subjects and Gaussian distributions of focal tissue densities during statistical testing. To make data fit this model...

  2. A small-molecule compound inhibits a collagen-specific molecular chaperone and could represent a potential remedy for fibrosis.

    Science.gov (United States)

    Ito, Shinya; Ogawa, Koji; Takeuchi, Koh; Takagi, Motoki; Yoshida, Masahito; Hirokawa, Takatsugu; Hirayama, Shoshiro; Shin-Ya, Kazuo; Shimada, Ichio; Doi, Takayuki; Goshima, Naoki; Natsume, Tohru; Nagata, Kazuhiro

    2017-12-08

    Fibrosis can disrupt tissue structure and integrity and impair organ function. Fibrosis is characterized by abnormal collagen accumulation in the extracellular matrix. Pharmacological inhibition of collagen secretion therefore represents a promising strategy for the management of fibrotic disorders, such as liver and lung fibrosis. Hsp47 is an endoplasmic reticulum (ER)-resident collagen-specific molecular chaperone essential for correct folding of procollagen in the ER. Genetic deletion of Hsp47 or inhibition of its interaction with procollagen interferes with procollagen triple helix production, which vastly reduces procollagen secretion from fibroblasts. Thus, Hsp47 could be a potential and promising target for the management of fibrosis. In this study, we screened small-molecule compounds that inhibit the interaction of Hsp47 with collagen from chemical libraries using surface plasmon resonance (BIAcore), and we found a molecule AK778 and its cleavage product Col003 competitively inhibited the interaction and caused the inhibition of collagen secretion by destabilizing the collagen triple helix. Structural information obtained with NMR analysis revealed that Col003 competitively binds to the collagen-binding site on Hsp47. We propose that these structural insights could provide a basis for designing more effective therapeutic drugs for managing fibrosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Proximal collagenous gastroenteritides:

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Riis, Lene Buhl; Danese, Silvio

    2014-01-01

    AIM: While collagenous colitis represents the most common form of the collagenous gastroenteritides, the collagenous entities affecting the proximal part of the gastrointestinal tract are much less recognized and possibly overlooked. The aim was to summarize the latest information through a syste...

  4. Endocytic collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe Ziir

    2012-01-01

    it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...... groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading...

  5. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen

    International Nuclear Information System (INIS)

    Collier, I.E.; Wilhelm, S.M.; Eisen, A.Z.

    1988-01-01

    H-ras transformed human bronchial epithelial cells (TBE-1) secrete a single major extracellular matrix metalloprotease which is not found in the normal parental cells. The enzyme is secreted in a latent form which can be activated to catalyze the cleavage of the basement membrane macromolecule type IV collagen. The substrates in their order of preference are: gelatin, type IV collagen, type V collagen, fibronectin, and type VII collagen; but the enzyme does not cleave the interstitial collagens or laminin. This protease is identical to gelatinase isolated from normal human skin explants, normal human skin fibroblasts, and SV40-transformed human lung fibroblasts. Based on this ability to initiate the degradation of type IV collagen in a pepsin-resistant portion of the molecule, it will be referred to as type IV collagenase. This enzyme is most likely the human analog of type IV collagenase detected in several rodent tumors. Type IV collagenase consists of three domains. Type IV collagenase represents the third member of a newly recognized gene family coding for secreted extracellular matrix metalloproteases, which includes interstitial fibroblast collagenase and stromelysin

  6. Immunochemical and autoantigenic properties of the globular domain of basement membrane collagen (type IV).

    Science.gov (United States)

    von der Mark, H; Oberbäumer, I; Timpl, R; Kemler, R; Wick, G

    1985-02-01

    Polyclonal rabbit antibodies raised against the globular domain NC1 of collagen IV from human placenta and a mouse tumor react with conformational antigenic determinants present on the NC1 hexamers and also with the three major subunits obtained after dissociation. The antibodies recognized unique structures within basement membranes and showed a broad tissue reactivity but only limited species cross-reactivity. Using these antibodies, it was possible to detect small amounts of collagen IV antigens from cell cultures and in serum. Monoclonal rat antibodies against mouse NC1 revealed a similar reaction potential. Autoantibodies could be produced in mice against mouse NC1 which react with kidney and lung basement membranes in a pathological manner, mimicking Goodpasture syndrome.

  7. Clearance of Free Silica in Rat Lungs by Spraying with Chinese Herbal Kombucha

    Directory of Open Access Journals (Sweden)

    Nai-fang Fu

    2013-01-01

    Full Text Available The effects of spraying with kombucha and Chinese herbal kombucha were compared with treatments with tetrandrine in a rat silicosis model. Silica dust (50 mg was injected into the lungs of rats, which were then treated with one of the experimental treatments for a month. The rats were then killed and the effects of the treatments were evaluated by examining the extent and severity of the histopathological lesions in the animals’ lungs, measuring their organ coefficients and lung collagen contents, determining the dry and wet weights of their lungs, and measuring the free silica content of the dried lungs. In addition, lavage was performed on whole lungs taken from selected rats, and the numbers and types of cells in the lavage fluid were counted. The most effective treatment in terms of the ability to reduce lung collagen content and minimize the formation of pulmonary histopathological lesions was tetrandrine treatment, followed by Chinese herbal kombucha and non-Chinese herbal kombucha. However, the lavage fluid cell counts indicated that tetrandrine treatment had severe adverse effects on macrophage viability. This effect was much less pronounced for the kombucha and Chinese herbal kombucha treatments. Moreover, the free silica levels in the lungs of animals treated with Chinese herbal kombucha were significantly lower than those for any other silica-exposed group. These preliminary results indicate that spraying with Chinese herbal kombucha preparations can effectively promote the discharge of silica dust from lung tissues. Chinese herbal kombucha inhalation may thus be a useful new treatment for silicosis and other pneumoconiosis diseases.

  8. Clearance of free silica in rat lungs by spraying with chinese herbal kombucha.

    Science.gov (United States)

    Fu, Nai-Fang; Luo, Chang-Hui; Wu, Jun-Cai; Zheng, Yan-Yan; Gan, Yong-Jin; Ling, Jian-An; Liang, Heng-Qiu; Liang, Dan-Yu; Xie, Jing; Chen, Xiao-Qin; Li, Xian-Jun; Pan, Rui-Hui; Chen, Zuo-Xing; Jiang, Sheng-Jun

    2013-01-01

    The effects of spraying with kombucha and Chinese herbal kombucha were compared with treatments with tetrandrine in a rat silicosis model. Silica dust (50 mg) was injected into the lungs of rats, which were then treated with one of the experimental treatments for a month. The rats were then killed and the effects of the treatments were evaluated by examining the extent and severity of the histopathological lesions in the animals' lungs, measuring their organ coefficients and lung collagen contents, determining the dry and wet weights of their lungs, and measuring the free silica content of the dried lungs. In addition, lavage was performed on whole lungs taken from selected rats, and the numbers and types of cells in the lavage fluid were counted. The most effective treatment in terms of the ability to reduce lung collagen content and minimize the formation of pulmonary histopathological lesions was tetrandrine treatment, followed by Chinese herbal kombucha and non-Chinese herbal kombucha. However, the lavage fluid cell counts indicated that tetrandrine treatment had severe adverse effects on macrophage viability. This effect was much less pronounced for the kombucha and Chinese herbal kombucha treatments. Moreover, the free silica levels in the lungs of animals treated with Chinese herbal kombucha were significantly lower than those for any other silica-exposed group. These preliminary results indicate that spraying with Chinese herbal kombucha preparations can effectively promote the discharge of silica dust from lung tissues. Chinese herbal kombucha inhalation may thus be a useful new treatment for silicosis and other pneumoconiosis diseases.

  9. Collagen Quantification in Tissue Specimens.

    Science.gov (United States)

    Coentro, João Quintas; Capella-Monsonís, Héctor; Graceffa, Valeria; Wu, Zhuning; Mullen, Anne Maria; Raghunath, Michael; Zeugolis, Dimitrios I

    2017-01-01

    Collagen is the major extracellular protein in mammals. Accurate quantification of collagen is essential in the biomaterials (e.g., reproducible collagen scaffold fabrication), drug discovery (e.g., assessment of collagen in pathophysiologies, such as fibrosis), and tissue engineering (e.g., quantification of cell-synthesized collagen) fields. Although measuring hydroxyproline content is the most widely used method to quantify collagen in biological specimens, the process is very laborious. To this end, the Sircol™ Collagen Assay is widely used due to its inherent simplicity and convenience. However, this method leads to overestimation of collagen content due to the interaction of Sirius red with basic amino acids of non-collagenous proteins. Herein, we describe the addition of an ultrafiltration purification step in the process to accurately determine collagen content in tissues.

  10. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase.

    Science.gov (United States)

    Baumann, Stephan; Hennet, Thierry

    2016-08-26

    Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1-2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Renal Medullary and Cortical Correlates in Fibrosis, Epithelial Mass, Microvascularity, and Microanatomy Using Whole Slide Image Analysis Morphometry.

    Directory of Open Access Journals (Sweden)

    Alton B Farris

    Full Text Available Renal tubulointerstitial injury often leads to interstitial fibrosis and tubular atrophy (IF/TA. IF/TA is typically assessed in the renal cortex and can be objectively quantitated with computerized image analysis (IA. However, the human medulla accounts for a substantial proportion of the nephron; therefore, medullary scarring will have important cortical consequences and may parallel overall chronic renal injury. Trichrome, periodic acid-Schiff (PAS, and collagen III immunohistochemistry (IHC were visually examined and quantitated on scanned whole slide images (WSIs (N = 67 cases. When tuned to measure fibrosis, IA of trichrome and Trichrome-PAS (T-P WSIs correlated for all anatomic compartments (among cortex, medulla, and entire tissue, r = 0.84 to 0.89, P all <0.0001; and collagen III deposition correlated between compartments (r = 0.69 to 0.89, P <0.0001 to 0.0002; however, trichrome and T-P measures did not correlate with collagen deposition, suggesting heterogeneous contributions to extracellular matrix deposition. Epithelial cell mass (EPCM correlated between cortex and medulla when measured with cytokeratin IHC and with the trichrome red portion (r = 0.85 and 0.66, respectively, all P < 0.0001. Visual assessment also correlated between compartments for fibrosis and EPCM. Correlations were found between increasing medullary inner stripe (IS width and fibrosis in all of the tissue and the medulla by trichrome morphometry (r = 0.56, P < 0.0001, and r = 0.48, P = 0.00008, respectively. Weak correlations were found between increasing IS width and decreasing visual assessment of all tissue EPCM. Microvessel density (MVD and microvessel area (MVA measured using a MVD algorithm applied to CD34 IHC correlated significantly between all compartments (r = 0.76 to 0.87 for MVD and 0.71 to 0.87 for MVA, P all < 0.0001. Overall, these findings demonstrate the interrelatedness of the cortex and medulla and the importance of considering the renal

  12. Interstitial lung disease associated with collagen vascular disorders: disease quantification using a computer-aided diagnosis tool

    Energy Technology Data Exchange (ETDEWEB)

    Marten, K.; Engelke, C. [University Hospital of Goettingen, Department of Radiology, Goettingen (Germany); Dicken, V. [MeVis Research GmbH, Bremen (Germany); Kneitz, C. [University Hospital of Wuerzburg, Dept. of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik, Wuerzburg (Germany); Hoehmann, M.; Kenn, W.; Hahn, D. [University Hospital of Wuerzburg, Department of Radiology, Wuerzburg (Germany)

    2009-02-15

    The purpose of this study was to evaluate a computer-aided diagnosis (CAD) tool compared to human observers in quantification of interstitial lung disease (ILD) in patients with collagen-vascular disorders. A total of 52 patients with rheumatoid arthritis (n=24), scleroderma (n=14) and systemic lupus erythematosus (n=14) underwent thin-section CT. Two independent observers assessed the extent of ILD (EoILD), reticulation (EoRet) and ground-glass opacity (EoGGO). CAD assessed EoILD twice. Pulmonary function tests were obtained. Statistical evaluation used 95% limits of agreement and linear regression analysis. CAD correlated well with diffusing capacity (DL{sub CO}) (R=-0.531, P<0.0001) and moderately with forced vital capacity (FVC) (R=-0.483, P=0.0008). There was close correlation between CAD and the readers (EoILD vs. CAD: R=0.716, P<0.0001; EoRet vs. CAD: R=0.69, P<0.0001). Subgroup analysis including patients with minimal EoGGO (<15%) strengthened the correlations between CAD and the readers, readers and PFT, and CAD and PFT. EoILD by readers correlated strongly with DL{sub CO} (R=-0.705, P<0.0001) and moderately with FVC (R=-0.559, P=0.0002). EoRet correlated closely with DL{sub CO} and moderately with FVC (DL{sub CO}: R=-0.663; FVC: R=-0.436; P{<=}0.005). The CAD system is a promising tool for ILD quantification, showing close correlation with human observers and physiologic impairment. (orig.)

  13. Early extracellular matrix changes are associated with later development of bronchiolitis obliterans syndrome after lung transplantation

    DEFF Research Database (Denmark)

    Müller, Catharina; Andersson-Sjöland, Annika; Schultz, Hans Henrik

    2017-01-01

    are largely unknown. The aim of this study was to identify potential early changes in the extracellular matrix (ECM) in different compartments of the transplanted lung prior to the development of BOS. Methods: Transbronchial biopsies from a cohort of 58 lung transplantation patients at the Copenhagen...... and immunohistochemistry. Results: A time-specific and compartment-specific pattern of ECM changes was detected. Alveolar total collagen (p=0.0190) and small airway biglycan (p=0.0199) increased between 3 and 12 months after transplantation in patients developing BOS, while collagen type IV (p=0.0124) increased...... in patients without BOS. Patients with early-onset BOS mirrored this increase. Patients developing grade 3 BOS showed distinct ECM changes already at 3 months. Patients with BOS with treated acute rejections displayed reduced alveolar total collagen (p=0.0501) and small airway biglycan (p=0.0485) at 3 months...

  14. Extracellular matrix proteins: a positive feedback loop in lung fibrosis?

    NARCIS (Netherlands)

    Blaauboer, M.E.; van Boeijen, F.R.; Emson, C.L.; Turner, S.M.; Zandieh-Doulabi, B.; Hanemaaijer, R.; Smit, T.H.; Stoop, R.; Everts, V.

    2014-01-01

    Lung fibrosis is characterized by excessive deposition of extracellular matrix. This not only affects tissue architecture and function, but it also influences fibroblast behavior and thus disease progression. Here we describe the expression of elastin, type V collagen and tenascin C during the

  15. Extracellular matrix proteins: A positive feedback loop in lung fibrosis?

    NARCIS (Netherlands)

    Blaauboer, M.E.; Boeijen, F.R.; Emson, C.L.; Turner, S.M.; Zandieh-Doulabi, B.; Hanemaaijer, R.; Smit, T.H.; Stoop, R.; Everts, V.

    2014-01-01

    Lung fibrosis is characterized by excessive deposition of extracellular matrix. This not only affects tissue architecture and function, but it also influences fibroblast behavior and thus disease progression. Here we describe the expression of elastin, type V collagen and tenascin C during the

  16. Lake Morphometry for NHD Lakes in California Region 18 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  17. Lake Morphometry for NHD Lakes in Tennessee Region 6 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  18. Lake Morphometry for NHD Lakes in Ohio Region 5 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  19. Morphometry for alpha particle hits of critical targets in the lungs. Final technical report

    International Nuclear Information System (INIS)

    Mercer, R.R.

    1998-01-01

    The objective of this study is to provide detailed data on the number, location and type of critical target cells in the airspaces and to use these data in order to make risk assessments of the health effects of radon and radon progeny in the lungs. This will be done by quantitative morphometric study of the distribution of the various cell types and mucous lining layers in the lungs. The results provide anatomically correct models for dosimetry in the rate and human airways which significantly improve the ability to do risk assessment for radon exposures by providing quantitative data for specific cell types and provide a basis for mechanism based comparison between data available in animal exposures and human epidemiology

  20. Genitalia morphometry and testicular characteristics of male white ...

    African Journals Online (AJOL)

    An experiment was designed to evaluate genitalia morphometry of the male white Japanese quails at three different age groups. Fifty-four male Japanese quails were allotted to 3 treatment groups (Pubertal, Mature and Adult) in a completely randomized design. Pubertal (7-10 weeks), mature (15-20 weeks) and the adults ...

  1. Sokoto Journal of Veterinary Sciences Testicular histo-morphometry ...

    African Journals Online (AJOL)

    ADEYEYE

    Olurode et al./Sokoto Journal of Veterinary Sciences, 16(1): 24 - 30. Testicular histo-morphometry and semen parameters of West. African Dwarf bucks ..... Table 2: Mean of Semen parameters of West African Dwarf goat. Parameters. Mean ± SD. Semen colour. Semen volume (ml). Creamy/milky white. 0.40 ± 0.07.

  2. Related Changes of Autonomic Ganglia and Respiratory Compartments of Lungs in Case of Chronic Alcohol Intoxication in Experiments with Rats

    Directory of Open Access Journals (Sweden)

    Volkov Aleksandr Vladimirovich

    2014-09-01

    Full Text Available The article deals with description of morphological alterations in lungs and their autonomic ganglia due to chronic alcohol intoxication caused by compulsory ethanol ingesting in Wistar rats. Progressive decrease of air content, superficial density of bronchial and alveolar epithelia, and the increase of quantitative density of bronchial and alveolar macrophages became quantitative morphological evidence of chronic lung injury. At the same time, in autonomic ganglia of lungs the volume fraction and quantitative density of neurons decreased dramatically and the characteristics of neurons in radial morphometry were altered. The quantitative density of glial cells and glia/neuron ratio were increased. The total loss of neurons in ganglia reached 7 % to the 60th day of experiment, the signs of compensatory reactions were revealed simultaneously. These peculiarities can particularly explain the mechanisms of chronic lung pathology in late stages of alcohol disease.

  3. Collagen-binding peptidoglycans inhibit MMP mediated collagen degradation and reduce dermal scarring.

    Directory of Open Access Journals (Sweden)

    Kate Stuart

    Full Text Available Scarring of the skin is a large unmet clinical problem that is of high patient concern and impact. Wound healing is complex and involves numerous pathways that are highly orchestrated, leaving the skin sealed, but with abnormal organization and composition of tissue components, namely collagen and proteoglycans, that are then remodeled over time. To improve healing and reduce or eliminate scarring, more rapid restoration of healthy tissue composition and organization offers a unique approach for development of new therapeutics. A synthetic collagen-binding peptidoglycan has been developed that inhibits matrix metalloproteinase-1 and 13 (MMP-1 and MMP-13 mediated collagen degradation. We investigated the synthetic peptidoglycan in a rat incisional model in which a single dose was delivered in a hyaluronic acid (HA vehicle at the time of surgery prior to wound closure. The peptidoglycan treatment resulted in a significant reduction in scar tissue at 21 days as measured by histology and visual analysis. Improved collagen architecture of the treated wounds was demonstrated by increased tensile strength and transmission electron microscopy (TEM analysis of collagen fibril diameters compared to untreated and HA controls. The peptidoglycan's mechanism of action includes masking existing collagen and inhibiting MMP-mediated collagen degradation while modulating collagen organization. The peptidoglycan can be synthesized at low cost with unique design control, and together with demonstrated preclinical efficacy in reducing scarring, warrants further investigation for dermal wound healing.

  4. [Collagen nephritis].

    Science.gov (United States)

    Lago, N R; Bulos, M J; Monserrat, A J

    1997-01-01

    Fibrillar collagen in the glomeruli is considered specific of the nail-patella syndrome. A new nephropathy with diffuse intraglomerular deposition of type III collagen without nail and skeletal abnormalities has been described. We report the case of a 26-year-old woman who presented persistent proteinuria, hematuria, deafness without nail and skeletal abnormalities. The renal biopsy showed focal and segmental glomerulosclerosis by light microscopy. The electron microscopy revealed the presence of massive fibrillar collagen within the mesangial matriz and the basement membrane. This is the first patient reported in our country. We emphasize the usefulness of electron microscopy in the study of glomerular diseases.

  5. Anatomic Variation in Morphometry of Human Coracoid Process among Asian Population

    Directory of Open Access Journals (Sweden)

    Manal Fathi

    2017-01-01

    Full Text Available Ethnic origin plays an important role in bone morphometry. Studies examining the influence of coracoid process have focused primarily on adults and have not included people from diverse Asian ethnic backgrounds. Our goal was to explore ethnic differences in morphometry of coracoid among Asian population. We performed morphometric measurements of coracoid process on cadaveric shoulders and shoulder CT scans from 118 specimens. The cadaveric sample included Indian (46%, Chinese (27%, and Myanmarese (27% subjects, while the CT scans sample included Chinese (67% and Malay (33% subjects. The morphometric measurements were performed using digital caliper and software developed at Golden Horses Health Sanctuary (GHHS. In the Indian cadaveric shoulders, the coracoid process is better developed than the other groups with the exception of the tip width of coracoid process. There are significant differences in almost all measurements (P<0.05 between the ethnic groups. On the other hand, the morphometry of coracoid process from CT scans data is bigger in Chinese than Malay subjects when stratified by sex (P<0.05. Moreover, in all morphometric measurements, the females had smaller measurements than males (P<0.05. Understanding such differences is important in anatomy, forensic and biological identity, and orthopaedic and shoulder surgeries.

  6. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix.

    Science.gov (United States)

    Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2016-02-17

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn't showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody-drug conjugates (ADC) or immunotoxins.

  7. Quantification of lung fibrosis and emphysema in mice using automated micro-computed tomography.

    Directory of Open Access Journals (Sweden)

    Ellen De Langhe

    Full Text Available BACKGROUND: In vivo high-resolution micro-computed tomography allows for longitudinal image-based measurements in animal models of lung disease. The combination of repetitive high resolution imaging with fully automated quantitative image analysis in mouse models of lung fibrosis lung benefits preclinical research. This study aimed to develop and validate such an automated micro-computed tomography analysis algorithm for quantification of aerated lung volume in mice; an indicator of pulmonary fibrosis and emphysema severity. METHODOLOGY: Mice received an intratracheal instillation of bleomycin (n = 8, elastase (0.25 U elastase n = 9, 0.5 U elastase n = 8 or saline control (n = 6 for fibrosis, n = 5 for emphysema. A subset of mice was scanned without intervention, to evaluate potential radiation-induced toxicity (n = 4. Some bleomycin-instilled mice were treated with imatinib for proof of concept (n = 8. Mice were scanned weekly, until four weeks after induction, when they underwent pulmonary function testing, lung histology and collagen quantification. Aerated lung volumes were calculated with our automated algorithm. PRINCIPAL FINDINGS: Our automated image-based aerated lung volume quantification method is reproducible with low intra-subject variability. Bleomycin-treated mice had significantly lower scan-derived aerated lung volumes, compared to controls. Aerated lung volume correlated with the histopathological fibrosis score and total lung collagen content. Inversely, a dose-dependent increase in lung volume was observed in elastase-treated mice. Serial scanning of individual mice is feasible and visualized dynamic disease progression. No radiation-induced toxicity was observed. Three-dimensional images provided critical topographical information. CONCLUSIONS: We report on a high resolution in vivo micro-computed tomography image analysis algorithm that runs fully automated and allows quantification of aerated lung volume in mice. This

  8. Tyrosine Mutation in AAV9 Capsid Improves Gene Transfer to the Mouse Lung.

    Science.gov (United States)

    Martini, Sabrina V; Silva, Adriana L; Ferreira, Debora; Rabelo, Rafael; Ornellas, Felipe M; Gomes, Karina; Rocco, Patricia R M; Petrs-Silva, Hilda; Morales, Marcelo M

    2016-01-01

    Adeno-associated virus (AAV) vectors are being increasingly used as the vector of choice for in vivo gene delivery and gene therapy for many pulmonary diseases. Recently, it was shown that phosphorylation of surface-exposed tyrosine residues from AAV capsid targets the viral particles for ubiquitination and proteasome-mediated degradation, and mutations of these tyrosine residues lead to highly efficient vector transduction in vitro and in vivo in different organs. In this study, we evaluated the pulmonary transgene expression efficacy of AAV9 vectors containing point mutations in surface-exposed capsid tyrosine residues. Eighteen C57BL/6 mice were randomly assigned into three groups: (1) a control group (CTRL) animals underwent intratracheal (i.t.) instillation of saline, (2) the wild-type AAV9 group (WT-AAV9, 1010 vg), and (3) the tyrosine-mutant Y731F AAV9 group (M-AAV9, 1010 vg), which received (i.t.) self-complementary AAV9 vectors containing the DNA sequence of enhanced green fluorescence protein (eGFP). Four weeks after instillation, lung mechanics, morphometry, tissue cellularity, gene expression, inflammatory cytokines, and growth factor expression were analyzed. No significant differences were observed in lung mechanics and morphometry among the experimental groups. However, the number of polymorphonuclear cells was higher in the WT-AAV9 group than in the CTRL and M-AAV9 groups, suggesting that the administration of tyrosine-mutant AAV9 vectors was better tolerated. Tyrosine-mutant AAV9 vectors significantly improved transgene delivery to the lung (30%) compared with their wild-type counterparts, without eliciting an inflammatory response. Our results provide the impetus for further studies to exploit the use of AAV9 vectors as a tool for pulmonary gene therapy. © 2016 The Author(s) Published by S. Karger AG, Basel.

  9. Subclinical pulmonary involvement in collagen vascular diseases

    International Nuclear Information System (INIS)

    Dansin, E.; Wallaert, B.; Jardin, M.R.; Remy, J.; Hatron, P.Y.; Tonnel, A.B.

    1990-01-01

    A recruitment of immune and inflammatory cells into alveolar spaces has been reported in patients with collagen vascular diseases (CVD) and a normal chest radiograph. These findings defined the concept of subclinical alveolitis (SCA). To determine whether SCA may be associated with CT signs of interstitial lung disease (ILD), the authors of this paper compared bronchoalveolar lavage (BAL) findings and high-resolution (HRCT) scans in 36 patients with CVD and normal chest radiographs (systemic sclerosis [SS, n = 21], rheumatoid arthritis [RA, n = 9], primary Sjogren's syndrome [PS, n = 6]). HRCT scans were obtained in supine and prone positions. Results of BAL revealed SCA in 17/36 patients (47%); lymphocyte SCA in 4/36 (24%); neutrophil SCA in 7/36 (41%); and mixed SCA in 6/36 (35%)

  10. Thanatophoric dysplasia. Correlation among bone X-ray morphometry, histopathology, and gene analysis

    International Nuclear Information System (INIS)

    Pazzaglia, Ugo E.; Donzelli, Carla M.; Izzi, Claudia; Baldi, Maurizia; Di Gaetano, Giuseppe; Bondioni, MariaPia

    2014-01-01

    Documentation through X-ray morphometry and histology of the steady phenotype expressed by FGFR3 gene mutation and interpolation of mechanical factors on spine and long bones dysmorphism. Long bones and spine of eight thanatophoric dysplasia and three age-matched controls without skeletal dysplasia were studied after pregnancy termination between the 18th and the 22nd week with X-ray morphometry, histology, and molecular analysis. Statistical analysis with comparison between TD cases and controls and intraobserver/interobserver variation were applied to X-ray morphometric data. Generalized shortening of long bones was observed in TD. A variable distribution of axial deformities was correlated with chondrocyte proliferation inhibition, defective seriate cell columns organization, and final formation of the primary metaphyseal trabeculae. The periosteal longitudinal growth was not equally inhibited, so that decoupling with the cartilage growth pattern produced the typical lateral spurs around the metaphyseal growth plates. In spine, platyspondyly was due to a reduced height of the vertebral body anterior ossification center, while its enlargement in the transversal plane was not restricted. The peculiar radiographic and histopathological features of TD bones support the hypothesis of interpolation of mechanical factors with FGFR3 gene mutations. The correlated observations of X-ray morphometry, histopathology, and gene analysis prompted the following diagnostic workup for TD: (1) prenatal sonography suspicion of skeletal dysplasia; (2) post-mortem X-ray morphometry for provisional diagnosis; (3) confirmation by genetic tests (hot-spot exons 7, 10, 15, and 19 analysis with 80-90 % sensibility); (4) in negative cases if histopathology confirms TD diagnosis, research of rare mutations through sequential analysis of FGFR3 gene. (orig.)

  11. Thanatophoric dysplasia. Correlation among bone X-ray morphometry, histopathology, and gene analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pazzaglia, Ugo E. [University of Brescia, Orthopaedic Clinic, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy); Donzelli, Carla M. [Spedali Civili di Brescia, Morbid Anatomy Department, Brescia (Italy); Izzi, Claudia [University of Brescia, Prenatal Diagnosis Unit, Department of Obstetrics and Gynaecology, Brescia (Italy); Baldi, Maurizia [Hospital Galliera, Human Genetic Laboratory, Genova (Italy); Di Gaetano, Giuseppe; Bondioni, MariaPia [University of Brescia, Paediatric Radiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy)

    2014-09-15

    Documentation through X-ray morphometry and histology of the steady phenotype expressed by FGFR3 gene mutation and interpolation of mechanical factors on spine and long bones dysmorphism. Long bones and spine of eight thanatophoric dysplasia and three age-matched controls without skeletal dysplasia were studied after pregnancy termination between the 18th and the 22nd week with X-ray morphometry, histology, and molecular analysis. Statistical analysis with comparison between TD cases and controls and intraobserver/interobserver variation were applied to X-ray morphometric data. Generalized shortening of long bones was observed in TD. A variable distribution of axial deformities was correlated with chondrocyte proliferation inhibition, defective seriate cell columns organization, and final formation of the primary metaphyseal trabeculae. The periosteal longitudinal growth was not equally inhibited, so that decoupling with the cartilage growth pattern produced the typical lateral spurs around the metaphyseal growth plates. In spine, platyspondyly was due to a reduced height of the vertebral body anterior ossification center, while its enlargement in the transversal plane was not restricted. The peculiar radiographic and histopathological features of TD bones support the hypothesis of interpolation of mechanical factors with FGFR3 gene mutations. The correlated observations of X-ray morphometry, histopathology, and gene analysis prompted the following diagnostic workup for TD: (1) prenatal sonography suspicion of skeletal dysplasia; (2) post-mortem X-ray morphometry for provisional diagnosis; (3) confirmation by genetic tests (hot-spot exons 7, 10, 15, and 19 analysis with 80-90 % sensibility); (4) in negative cases if histopathology confirms TD diagnosis, research of rare mutations through sequential analysis of FGFR3 gene. (orig.)

  12. Study of lung perfusion in colagenosis

    Energy Technology Data Exchange (ETDEWEB)

    Macedo de Carvalho, A C; Calegaro, J U.M. [Fundacao Hospitalar do Distrito Federal, Distrito Federal (Brazil). Unidade de Medicina Nuclear

    1982-07-01

    The lung involvement in the various types of colagenosis has been widely described in the literature. However, the study of lung perfusion utilizing radionuclides has been only mentioned in a few papers. With the intention of ascertaining the importance of the lung perfusion scanning in colagenosis, ten cases were studied, seven of which were females and three males, with the following pathologies: 4 rheumatoid arthritis, 4 systemic lupus eritematosous, 1 scleroderma and 1 scleroderma plus dermatomyositis. The ages of the patients varied from 20 to 73 years, and the duration of the disease from 1 month to 39 years. The lung scanning showed perfusion defects in 100% of the cases, not related with the type of colagenosis, duration of the disease, sex or age. On the other hand, the X rays study showed alterations in only 2 patients (20% of the cases). The ventilatory and respiratory functions were tested on 7 patients showing alteration (mixed pattern with predominance of the restrictive factor) in only one (14.3%), while the other patients were normal (85.7%). The importance of the lung perfusion scanning study in all patients with collagen vascular diseases is emphasized.

  13. Study of lung perfusion in colagenosis

    International Nuclear Information System (INIS)

    Macedo de Carvalho, A.C.; Calegaro, J.U.M.

    1982-01-01

    The lung involvement in the various types of colagenosis has been widely described in the literature. However, the study of lung perfusion utilizing radionuclides has been only mentioned in a few papers. With the intention of ascertaining the importance of the lung perfusion scanning in colagenosis, ten cases were studied, seven of which were females and three males, with the following pathologies: 4 rheumatoid arthritis, 4 systemic lupus eritematosous, 1 scleroderma and 1 scleroderma plus dermatomyositis. The ages of the patients varied from 20 to 73 years, and the duration of the disease from 1 month to 39 years. The lung scanning showed perfusion defects in 100% of the cases, not related with the type of colagenosis, duration of the disease, sex or age. On the other hand, the X rays study showed alterations in only 2 patients (20% of the cases). The ventilatory and respiratory functions were tested on 7 patients showing alteration (mixed pattern with predominance of the restrictive factor) in only one (14.3%), while the other patients were normal (85.7%). The importance of the lung perfusion scanning study in all patients with collagen vascular diseases is emphasized. (author) [es

  14. Pulmonary hyperpolarized (129) Xe morphometry for mapping xenon gas concentrations and alveolar oxygen partial pressure: Proof-of-concept demonstration in healthy and COPD subjects.

    Science.gov (United States)

    Ouriadov, A; Farag, A; Kirby, M; McCormack, D G; Parraga, G; Santyr, G E

    2015-12-01

    Diffusion-weighted (DW) hyperpolarized (129) Xe morphometry magnetic resonance imaging (MRI) can be used to map regional differences in lung tissue micro-structure. We aimed to generate absolute xenon concentration ([Xe]) and alveolar oxygen partial pressure (pA O2 ) maps by extracting the unrestricted diffusion coefficient (D0 ) of xenon as a morphometric parameter. In this proof-of-concept demonstration, morphometry was performed using multi b-value (0, 12, 20, 30 s/cm(2) ) DW hyperpolarized (129) Xe images obtained in four never-smokers and four COPD ex-smokers. Morphometric parameters and D0 maps were computed and the latter used to generate [Xe] and pA O2 maps. Xenon concentration phantoms estimating a range of values mimicking those observed in vivo were also investigated. Xenon D0 was significantly increased (P = 0.035) in COPD (0.14 ± 0.03 cm(2) /s) compared with never-smokers (0.12 ± 0.02 cm(2) /s). COPD ex-smokers also had significantly decreased [Xe] (COPD = 8 ± 7% versus never-smokers = 13 ± 8%, P = 0.012) and increased pA O2 (COPD = 18 ± 3% versus never-smokers = 15 ± 3%, P = 0.009) compared with never-smokers. Phantom measurements showed the expected dependence of D0 on [Xe] over the range of concentrations anticipated in vivo. DW hyperpolarized (129) Xe MRI morphometry can be used to simultaneously map [Xe] and pA O2 in addition to providing micro-structural biomarkers of emphysematous destruction in COPD. Phantom measurements of D0 ([Xe]) supported the hypotheses that differences in subjects may reflect differences in functional residual capacity. © 2014 Wiley Periodicals, Inc.

  15. Lake Morphometry for NHD Lakes in Upper Colorado Region 14 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  16. Lake Morphometry for NHD Lakes in North East Region 1 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  17. Lake Morphometry for NHD Lakes in Lower Colorado Region 15 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  18. Lake Morphometry for NHD Lakes in Upper Mississippi Region 7 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  19. Lake Morphometry for NHD Lakes in Great Lakes Region 4 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  20. Lake Morphometry for NHD Lakes in Rio Grande Region 13 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  1. Lake Morphometry for NHD Lakes in Pacific Northwest Region 17 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  2. Lake Morphometry for NHD Lakes in Lower Mississippi Region 8 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  3. Lake Morphometry for NHD Lakes in Texas-Gulf Region 12 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  4. Studying ventricular abnormalities in mild cognitive impairment with hyperbolic Ricci flow and tensor-based morphometry.

    Science.gov (United States)

    Shi, Jie; Stonnington, Cynthia M; Thompson, Paul M; Chen, Kewei; Gutman, Boris; Reschke, Cole; Baxter, Leslie C; Reiman, Eric M; Caselli, Richard J; Wang, Yalin

    2015-01-01

    Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer's disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Bone morphometry and mineral contents of the distal part of the fractured third metacarpal bone in thoroughbred racehorses

    International Nuclear Information System (INIS)

    Yoshihara, T.; Oikawa, M.; Wada, R.; Hasegawa, M.; Kaneko, M.

    1990-01-01

    Most of the bone fractures in racehorses occur in the fore limb, especially in the metacarpal joint during the racing and training. The longitudinal fracture of the third metacarpal bone (Mc III) often occurs in the osteosclerotic and/or necrotic lesions in the distal part of the bone. To elucidate the endogenous factors of its fracture, soft radiograms of 4 fractured and 4 non-fractured control cases have been investigated morphometrically by a image analyzer. In addition, to analyze the quality of these bones, 20 elements of mineral contents in the crashed bones have been measured using a fluorescent X-ray analyzer. As the results, the osteosclerotic change was observed in both groups in the plantar side of the distal part of Mc III, however, no significant differences were found in the bone morphometry. No significant differences in the 19 elements of bone mineral were found except Fe. From these findings, the mechanism of the occurrence of the longitudinal fracture in the Mc III remains to be elucidated. In future, further work needs to be done with regard to the mechanical intensity and collagen disposition of the distal part of the Mc III

  6. Structural connectivity via the tensor-based morphometry

    OpenAIRE

    Kim, S.; Chung, M.; Hanson, J.; Avants, B.; Gee, J.; Davidson, R.; Pollak, S.

    2011-01-01

    The tensor-based morphometry (TBM) has been widely used in characterizing tissue volume difference between populations at voxel level. We present a novel computational framework for investigating the white matter connectivity using TBM. Unlike other diffusion tensor imaging (DTI) based white matter connectivity studies, we do not use DTI but only T1-weighted magnetic resonance imaging (MRI). To construct brain network graphs, we have developed a new data-driven approach called the ε-neighbor ...

  7. Arteriosclerotic changes in the myocardium, lung, and kidney in dogs with chronic congestive heart failure and myxomatous mitral valve disease

    DEFF Research Database (Denmark)

    Falk, Bo Torkel; Jönsson, Lennart; Olsen, Lisbeth Høier

    2006-01-01

    Background: The occurrence of small vessel arteriosclerosis in the myocardium, kidney, and lung in dogs with naturally occurring myxomatous mitral valve disease has not been previously investigated systematically. Methods: Twenty-one dogs with naturally occurring congestive heart failure and 21 age......-matched, sex-matched, and weight-matched control dogs underwent extensive pathological and histopathological examination. Morphometry and scoring of tissue sections were used to measure arterial narrowing and fibrosis in the myocardium, kidney, and lung; and intimal thickness and plaque formation in the aorta...... and pulmonary artery. Results: Dogs with congestive heart failure had significantly more arterial narrowing in the left ventricle (Pdogs. However...

  8. Collagen turnover after tibial fractures

    DEFF Research Database (Denmark)

    Joerring, S; Krogsgaard, M; Wilbek, H

    1994-01-01

    Collagen turnover after tibial fractures was examined in 16 patients with fracture of the tibial diaphysis and in 8 patients with fracture in the tibial condyle area by measuring sequential changes in serological markers of turnover of types I and III collagen for up to 26 weeks after fracture....... The markers were the carboxy-terminal extension peptide of type I procollagen (PICP), the amino-terminal extension peptide of type III procollagen (PIIINP), and the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen (ICTP). The latter is a new serum marker of degradation of type I...... collagen. A group comparison showed characteristic sequential changes in the turnover of types I and III collagen in fractures of the tibial diaphysis and tibial condyles. The turnover of type III collagen reached a maximum after 2 weeks in both groups. The synthesis of type I collagen reached a maximum...

  9. Collagens--structure, function, and biosynthesis.

    Science.gov (United States)

    Gelse, K; Pöschl, E; Aigner, T

    2003-11-28

    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue.

  10. Enhanced stabilization of collagen by furfural.

    Science.gov (United States)

    Lakra, Rachita; Kiran, Manikantan Syamala; Usha, Ramamoorthy; Mohan, Ranganathan; Sundaresan, Raja; Korrapati, Purna Sai

    2014-04-01

    Furfural (2-furancarboxaldehyde), a product derived from plant pentosans, has been investigated for its interaction with collagen. Introduction of furfural during fibril formation enhanced the thermal and mechanical stability of collagen. Collagen films treated with furfural exhibited higher denaturation temperature (Td) (pFurfural and furfural treated collagen films did not have any cytotoxic effect. Rheological characterization showed an increase in shear stress and shear viscosity with increasing shear rate for treated collagen. Circular dichroism (CD) studies indicated that the furfural did not have any impact on triple helical structure of collagen. Scanning electron microscopy (SEM) of furfural treated collagen exhibited small sized porous structure in comparison with untreated collagen. Thus this study provides an alternate ecologically safe crosslinking agent for improving the stability of collagen for biomedical and industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Genetic Deletion and Pharmacological Inhibition of PI3Kγ Reduces Neutrophilic Airway Inflammation and Lung Damage in Mice with Cystic Fibrosis-Like Lung Disease

    Directory of Open Access Journals (Sweden)

    Maria Galluzzo

    2015-01-01

    Full Text Available Purpose. Neutrophil-dominated airway inflammation is a key feature of progressive lung damage in cystic fibrosis (CF. Thus, reducing airway inflammation is a major goal to prevent lung damage in CF. However, current anti-inflammatory drugs have shown several limits. PI3Kγ plays a pivotal role in leukocyte recruitment and activation; in the present study we determined the effects of genetic deletion and pharmacologic inhibition of PI3Kγ on airway inflammation and structural lung damage in a mouse model of CF lung disease. Methods. βENaC overexpressing mice (βENaC-Tg were backcrossed with PI3Kγ-deficient (PI3KγKO mice. Tissue damage was assessed by histology and morphometry and inflammatory cell number was evaluated in bronchoalveolar lavage fluid (BALF. Furthermore, we assessed the effect of a specific PI3Kγ inhibitor (AS-605240 on inflammatory cell number in BALF. Results. Genetic deletion of PI3Kγ decreased neutrophil numbers in BALF of PI3KγKO/βENaC-Tg mice, and this was associated with reduced emphysematous changes. Treatment with the PI3Kγ inhibitor AS-605240 decreased the number of neutrophils in BALF of βENaC-Tg mice, reproducing the effect observed with genetic deletion of the enzyme. Conclusions. These results demonstrate the biological efficacy of both genetic deletion and pharmacological inhibition of PI3Kγ in reducing chronic neutrophilic inflammation in CF-like lung disease in vivo.

  12. Central region morphometry in a child brain; Age and gender ...

    African Journals Online (AJOL)

    2013-10-10

    Oct 10, 2013 ... Background: Data on central region morphometry of a child brain is important not only in terms of ... brain volume reaches the peak at the age of 14.5 in men ..... child and adolescent brain and effects of genetic variation.

  13. Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury.

    Science.gov (United States)

    Pinheiro, Aruanã Joaquim Matheus Costa Rodrigues; Gonçalves, Jaciara Sá; Dourado, Ádylla Wilenna Alves; de Sousa, Eduardo Martins; Brito, Natilene Mesquita; Silva, Lanna Karinny; Batista, Marisa Cristina Aranha; de Sá, Joicy Cortez; Monteiro, Cinara Regina Aragão Vieira; Fernandes, Elizabeth Soares; Monteiro-Neto, Valério; Campbell, Lee Ann; Zago, Patrícia Maria Wiziack; Lima-Neto, Lidio Gonçalves

    2018-01-01

    The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100-300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF- α and IL-1 β expression in comparison with vehicle controls ( p < 0.05). Additionally, incubation with either EAFPg or kaempferol (100  μ g/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI.

  14. Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury

    Science.gov (United States)

    Pinheiro, Aruanã Joaquim Matheus Costa Rodrigues; Gonçalves, Jaciara Sá; Dourado, Ádylla Wilenna Alves; de Sousa, Eduardo Martins; Brito, Natilene Mesquita; Silva, Lanna Karinny; Batista, Marisa Cristina Aranha; de Sá, Joicy Cortez; Monteiro, Cinara Regina Aragão Vieira; Fernandes, Elizabeth Soares; Campbell, Lee Ann; Zago, Patrícia Maria Wiziack

    2018-01-01

    The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100–300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF-α and IL-1β expression in comparison with vehicle controls (p < 0.05). Additionally, incubation with either EAFPg or kaempferol (100 μg/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI. PMID:29675437

  15. High resolution imaging of collagen organisation and synthesis using a versatile collagen specific probe

    NARCIS (Netherlands)

    Boerboom, R.A.; Krahn - Nash, K.; Megens, R.T.A.; Zandvoort, van M.; Merkx, M.; Bouten, C.V.C.

    2007-01-01

    Collagen is the protein primarily responsible for the load-bearing properties of tissues and collagen architecture is one of the main determinants of the mechanical properties of tissues. Visualisation of changes in collagen three-dimensional structure is essential in order to improve our

  16. Genital tract morphometry and haematology of male rabbits fed ...

    African Journals Online (AJOL)

    Genital tract morphometry and haematology of male rabbits fed graded levels of cassava leaf meal. ... It was concluded that the inclusion of up to 27% of CLM in bucks' diets is not detrimental to good health and normal reproductive tract development. It is recommended that further studies on the feeding potentials of ...

  17. Estuarine morphometry governs optically active substances, Kd(PAR) and beam attenuation

    DEFF Research Database (Denmark)

    Lund-Hansen, L. C.; Nielsen, J. M.; Blüthgen, J.

    2013-01-01

    estuaries using OACs as input parameters. It is concluded that there are no large differences in OAC concentrations between the two estuaries. The spatial distributions of OACs and optical properties were significantly different and governed by the estuary morphometry, i.e. a power distribution......°N) at high discharges. The major difference was the spatial distribution of the optical properties against distance, best described by significant power functions in the ria, compared to significant linear functions in the coastal plain. It was hypothesized that estuarine morphometry could explain...... this spatial distribution. Partition and multiple regression analyses showed that Chl-a governed Kd(PAR) and beam attenuation coefficient in both estuaries. Significant, high correlations were obtained by multiple regression analyses in the estimation of Kd(PAR) and beam attenuation coefficients in the two...

  18. Collagen macromolecular drug delivery systems

    International Nuclear Information System (INIS)

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t 1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14 C-inulin release rates were evaluated subcutaneously in rats

  19. Unified voxel- and tensor-based morphometry (UVTBM) using registration confidence.

    Science.gov (United States)

    Khan, Ali R; Wang, Lei; Beg, Mirza Faisal

    2015-01-01

    Voxel-based morphometry (VBM) and tensor-based morphometry (TBM) both rely on spatial normalization to a template and yet have different requirements for the level of registration accuracy. VBM requires only global alignment of brain structures, with limited degrees of freedom in transformation, whereas TBM performs best when the registration is highly deformable and can achieve higher registration accuracy. In addition, the registration accuracy varies over the whole brain, with higher accuracy typically observed in subcortical areas and lower accuracy seen in cortical areas. Hence, even the determinant of Jacobian of registration maps is spatially varying in their accuracy, and combining these with VBM by direct multiplication introduces errors in VBM maps where the registration is inaccurate. We propose a unified approach to combining these 2 morphometry methods that is motivated by these differing requirements for registration and our interest in harnessing the advantages of both. Our novel method uses local estimates of registration confidence to determine how to weight the influence of VBM- and TBM-like approaches. Results are shown on healthy and mild Alzheimer's subjects (N = 150) investigating age and group differences, and potential of differential diagnosis is shown on a set of Alzheimer's disease (N = 34) and frontotemporal dementia (N = 30) patients compared against controls (N = 14). These show that the group differences detected by our proposed approach are more descriptive than those detected from VBM, Jacobian-modulated VBM, and TBM separately, hence leveraging the advantages of both approaches in a unified framework. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Goodpasture's autoimmune disease - A collagen IV disorder.

    Science.gov (United States)

    Pedchenko, Vadim; Richard Kitching, A; Hudson, Billy G

    2018-05-12

    Goodpasture's (GP) disease is an autoimmune disorder characterized by the deposition of pathogenic autoantibodies in basement membranes of kidney and lung eliciting rapidly progressive glomerulonephritis and pulmonary hemorrhage. The principal autoantigen is the α345 network of collagen IV, which expression is restricted to target tissues. Recent discoveries include a key role of chloride and bromide for network assembly, a novel posttranslational modification of the antigen, a sulfilimine bond that crosslinks the antigen, and the mechanistic role of HLA in genetic susceptibility and resistance to GP disease. These advances provide further insights into molecular mechanisms of initiation and progression of GP disease and serve as a basis for developing of novel diagnostic tools and therapies for treatment of Goodpasture's disease. Copyright © 2017. Published by Elsevier B.V.

  1. Tissue distribution and developmental expression of type XVI collagen in the mouse.

    Science.gov (United States)

    Lai, C H; Chu, M L

    1996-04-01

    The expression of a recently identified collagen, alpha 1 (XVI), in adult mouse tissue and developing mouse embryo was examined by immunohistochemistry and in situ hybridization. A polyclonal antiserum was raised against a recombinant fusion protein, which contained a segment of 161 amino acids in the N-terminal noncollagenous domain of the human alpha 1 (XVI) collagen. Immunoprecipitation of metabolically labelled human or mouse fibroblast cell lysates with this antibody revealed a major, bacterial collagenase sensitive polypeptide of approximately 210 kDa. The size agrees with the prediction from the full-length cDNA. Immunofluorescence examination of adult mouse tissues using the affinity purified antibody revealed a rather broad distribution of the protein. The heart, kidney, intestine, ovary, testis, eye, arterial walls and smooth muscles all exhibited significant levels of expression, while the skeletal muscle, lung and brain showed very restricted and low signals. During development, no significant expression of the mRNA or protein was observed in embryo of day 8 of gestation, but strong signals was detected in placental trophoblasts. Expression in embryos was detectable first after day 11 of gestation with weak positive signals appearing in the heart. In later stages of development, stronger RNA hybridizations were observed in a variety of tissues, particularly in atrial and ventricular walls of the developing heart, spinal root neural fibers and skin. These data demonstrate that type XVI collagen represents another collagenous component widely distributed in the extracellular matrix and may contribute to the structural integrity of various tissues.

  2. Faslodex inhibits estradiol-induced extracellular matrix dynamics and lung metastasis in a model of lymphangioleiomyomatosis.

    Science.gov (United States)

    Li, Chenggang; Zhou, Xiaobo; Sun, Yang; Zhang, Erik; Mancini, John D; Parkhitko, Andrey; Morrison, Tasha A; Silverman, Edwin K; Henske, Elizabeth P; Yu, Jane J

    2013-07-01

    Lymphangioleiomyomatosis (LAM) is a destructive lung disease primarily affecting women. Genetic studies indicate that LAM cells carry inactivating tuberous sclerosis complex (TSC)-2 mutations, and metastasize to the lung. We previously discovered that estradiol increases the metastasis of TSC2-deficient cells in mice carrying xenograft tumors. Here, we investigate the molecular basis underlying the estradiol-induced lung metastasis of TSC2-deficient cells, and test the efficacy of Faslodex (an estrogen receptor antagonist) in a preclinical model of LAM. We used a xenograft tumor model in which estradiol induces the lung metastasis of TSC2-deficient cells. We analyzed the impact of Faslodex on tumor size, the extracellular matrix organization, the expression of matrix metalloproteinase (MMP)-2, and lung metastasis. We also examined the effects of estradiol and Faslodex on MMP2 expression and activity in tuberin-deficient cells in vitro. Estradiol resulted in a marked reduction of Type IV collagen deposition in xenograft tumors, associated with 2-fold greater MMP2 concentrations compared with placebo-treated mice. Faslodex normalized the Type IV collagen changes in xenograft tumors, enhanced the survival of the mice, and completely blocked lung metastases. In vitro, estradiol enhanced MMP2 transcripts, protein accumulation, and activity. These estradiol-induced changes in MMP2 were blocked by Faslodex. In TSC2-deficient cells, estradiol increased MMP2 concentrations in vitro and in vivo, and induced extracellular matrix remodeling. Faslodex inhibits the estradiol-induced lung metastasis of TSC2-deficient cells. Targeting estrogen receptors with Faslodex may be of efficacy in the treatment of LAM.

  3. Faslodex Inhibits Estradiol-Induced Extracellular Matrix Dynamics and Lung Metastasis in a Model of Lymphangioleiomyomatosis

    Science.gov (United States)

    Li, Chenggang; Zhou, Xiaobo; Sun, Yang; Zhang, Erik; Mancini, John D.; Parkhitko, Andrey; Morrison, Tasha A.; Silverman, Edwin K.; Henske, Elizabeth P.

    2013-01-01

    Lymphangioleiomyomatosis (LAM) is a destructive lung disease primarily affecting women. Genetic studies indicate that LAM cells carry inactivating tuberous sclerosis complex (TSC)–2 mutations, and metastasize to the lung. We previously discovered that estradiol increases the metastasis of TSC2-deficient cells in mice carrying xenograft tumors. Here, we investigate the molecular basis underlying the estradiol-induced lung metastasis of TSC2-deficient cells, and test the efficacy of Faslodex (an estrogen receptor antagonist) in a preclinical model of LAM. We used a xenograft tumor model in which estradiol induces the lung metastasis of TSC2-deficient cells. We analyzed the impact of Faslodex on tumor size, the extracellular matrix organization, the expression of matrix metalloproteinase (MMP)–2, and lung metastasis. We also examined the effects of estradiol and Faslodex on MMP2 expression and activity in tuberin-deficient cells in vitro. Estradiol resulted in a marked reduction of Type IV collagen deposition in xenograft tumors, associated with 2-fold greater MMP2 concentrations compared with placebo-treated mice. Faslodex normalized the Type IV collagen changes in xenograft tumors, enhanced the survival of the mice, and completely blocked lung metastases. In vitro, estradiol enhanced MMP2 transcripts, protein accumulation, and activity. These estradiol-induced changes in MMP2 were blocked by Faslodex. In TSC2-deficient cells, estradiol increased MMP2 concentrations in vitro and in vivo, and induced extracellular matrix remodeling. Faslodex inhibits the estradiol-induced lung metastasis of TSC2-deficient cells. Targeting estrogen receptors with Faslodex may be of efficacy in the treatment of LAM. PMID:23526212

  4. Mitigation of radiation-induced lung fibrosis by angiotensin converting enzyme inhibitors

    International Nuclear Information System (INIS)

    Kma, Lakhan; Gao, Feng; Jacobs, Elizabeth R.; Medhora, Meetha; Fish, Brian L.; Moulder, John E.

    2014-01-01

    The aim of this study was to test the mitigating potential of angiotensin converting enzyme inhibitors (ACEi) against radiation-induced pulmonary fibrosis, which could result from accidental exposure or radiological terrorism. Rats (WAG/RijCmcr) were exposed to a single dose of 13 Gy of X-irradiation to the whole thorax, at the dose rate of 1.43 Gy/min. Three structurally-different ACEi's, captopril (145-207 mg/m 2 /day), enalapril (19-28 mg/m 2 /day) and fosinopril (19-28 mg/m 2 /day) were administered in drinking water beginning 1 week after whole thoracic irradiation. Rats that survived acute pneumonitis (6-12 weeks) were accessed monthly after irradiation for the effects on lung structure and function. Endpoints included breathing rate, wet:dry weight ratio, collagen content and histolopathological studies. Treatment with captopril or enalapril, but not fosinopril, beginning 1 week after 13 Gy X-irradiation improved survival of rats. Mortality of 30-35% was observed with administration of captopril or enalapril compared to 70% for 13 Gy alone. All three ACEi's attenuated radiation-induced lung fibrosis at 7 months after irradiation based on histological indices and measurement of lung collagen. After whole-thoracic irradiation, ACEi's mitigate radiation induced pulmonary fibrosis based on histological and biochemical endpoints. These treatments were effective even when administration was not started until one week after irradiation. Our findings support the therapeutic potential of ACEi's against chronic radiation induced lung injury. (author)

  5. Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals

    Science.gov (United States)

    Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.

    2010-02-01

    Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.

  6. Lung tissue mechanics as an emergent phenomenon.

    Science.gov (United States)

    Suki, Béla; Bates, Jason H T

    2011-04-01

    The mechanical properties of lung parenchymal tissue are both elastic and dissipative, as well as being highly nonlinear. These properties cannot be fully understood, however, in terms of the individual constituents of the tissue. Rather, the mechanical behavior of lung tissue emerges as a macroscopic phenomenon from the interactions of its microscopic components in a way that is neither intuitive nor easily understood. In this review, we first consider the quasi-static mechanical behavior of lung tissue and discuss computational models that show how smooth nonlinear stress-strain behavior can arise through a percolation-like process in which the sequential recruitment of collagen fibers with increasing strain causes them to progressively take over the load-bearing role from elastin. We also show how the concept of percolation can be used to link the pathologic progression of parenchymal disease at the micro scale to physiological symptoms at the macro scale. We then examine the dynamic mechanical behavior of lung tissue, which invokes the notion of tissue resistance. Although usually modeled phenomenologically in terms of collections of springs and dashpots, lung tissue viscoelasticity again can be seen to reflect various types of complex dynamic interactions at the molecular level. Finally, we discuss the inevitability of why lung tissue mechanics need to be complex.

  7. Routes towards Novel Collagen-Like Biomaterials

    Directory of Open Access Journals (Sweden)

    Adrian V. Golser

    2018-04-01

    Full Text Available Collagen plays a major role in providing mechanical support within the extracellular matrix and thus has long been used for various biomedical purposes. Exemplary, it is able to replace damaged tissues without causing adverse reactions in the receiving patient. Today’s collagen grafts mostly are made of decellularized and otherwise processed animal tissue and therefore carry the risk of unwanted side effects and limited mechanical strength, which makes them unsuitable for some applications e.g., within tissue engineering. In order to improve collagen-based biomaterials, recent advances have been made to process soluble collagen through nature-inspired silk-like spinning processes and to overcome the difficulties in providing adequate amounts of source material by manufacturing collagen-like proteins through biotechnological methods and peptide synthesis. Since these methods also open up possibilities to incorporate additional functional domains into the collagen, we discuss one of the best-performing collagen-like type of proteins, which already have additional functional domains in the natural blueprint, the marine mussel byssus collagens, providing inspiration for novel biomaterials based on collagen-silk hybrid proteins.

  8. PHAGOCYTOSIS AND REMODELING OF COLLAGEN MATRICES

    OpenAIRE

    Abraham, Leah C.; Dice, J Fred.; Lee, Kyongbum; Kaplan, David L.

    2007-01-01

    The biodegradation of collagen and the deposition of new collagen-based extracellular matrices are of central importance in tissue remodeling and function. Similarly, for collagen-based biomaterials used in tissue engineering, the degradation of collagen scaffolds with accompanying cellular infiltration and generation of new extracellular matrix is critical for integration of in vitro grown tissues in vivo. In earlier studies we observed significant impact of collagen structure on primary lun...

  9. Collagen XII myopathy with rectus femoris atrophy and collagen XII retention in fibroblasts

    DEFF Research Database (Denmark)

    Witting, Nanna; Krag, Thomas; Werlauff, Ulla

    2018-01-01

    INTRODUCTION: Mutation in the collagen XII gene (COL12A1) was recently reported to induce Bethlem myopathy. We describe a family affected by collagen XII-related myopathy in 3 generations. METHODS: Systematic interview, clinical examination, skin biopsies, and MRI of muscle were used. RESULTS...... affection and abnormal collagen XII retention in fibroblasts. MRI disclosed a selective wasting of the rectus femoris muscle. DISCUSSION: COL12A1 mutations should be considered in patients with a mild Bethlem phenotype who present with selective wasting of the rectus femoris, absence of the outside......-in phenomenon on MRI, and abnormal collagen XII retention in fibroblasts. Muscle Nerve, 2018....

  10. A 48 kDa collagen-binding phosphoprotein isolated from bovine aortic endothelial cells interacts with the collagenous domain, but not the globular domain, of collagen type IV.

    Science.gov (United States)

    Yannariello-Brown, J; Madri, J A

    1990-01-15

    We have identified collagen-binding proteins in detergent extracts of metabolically labelled bovine aortic endothelial cells (BAEC) by collagen type IV-Sepharose affinity chromatography. The major collagen type IV-binding protein identified by SDS/PAGE had a molecular mass of 48 kDa, which we term the 'collagen-binding 48 kDa protein' (CB48). The pI of CB48 was 8.0-8.3 in a two-dimensional gel system, running non-equilibrium pH gel electrophoresis in the first dimension and SDS/PAGE in the second dimension. Under these conditions CB48 separated into two major (a and b) and one minor isoform (c); a was the most basic of the three isoforms. Two-dimensional chymotryptic peptide maps derived from each individual isoform were virtually identical. The charge differences between the isoforms were due in part to differential H3(32)PO4 incorporation by the protein. CB48 bound to intact collagen type IV and the collagenous region of collagen type IV, but not to the globular NC1 domain. Cell-surface labelling and indirect immunofluorescence experiments localized the bulk of CB48 intracellularly in the endoplasmic reticulum Golgi region, with a minor population of molecules on the cell surface. A specific rabbit polyclonal anti-CB48 serum did not inhibit the attachment or spreading of BAEC to collagen type IV in an 'in vitro' adhesion assay, suggesting that the cell-surface population of CB48 is not involved in BAEC adhesion. We conclude that CB48 is a collagen-binding phosphoprotein that interacts with the collagenous domain of collagen type IV and may be involved in intracellular transport of collagen molecules.

  11. Lake Morphometry for NHD Lakes in Souris Red Rainy Region 9 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  12. Lake Morphometry for NHD Lakes in Arkansas White Red Region 11 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  13. Testicular Morphometry and Sperm Quality of Rabbit Bucks Fed ...

    African Journals Online (AJOL)

    Twenty rabbit bucks of mixed breeds, aged four to five weeks which weighed between 627.4g to 631.5g were used to evaluate the effect of Moringa oleifera leaf meal (MOLM) on testicular morphometry and sperm quality. Five bucks were randomly assigned to each of the four diets containing MOLM at 0%. 5%, 10% and ...

  14. Molecular crowding of collagen: a pathway to produce highly-organized collagenous structures.

    Science.gov (United States)

    Saeidi, Nima; Karmelek, Kathryn P; Paten, Jeffrey A; Zareian, Ramin; DiMasi, Elaine; Ruberti, Jeffrey W

    2012-10-01

    Collagen in vertebrate animals is often arranged in alternating lamellae or in bundles of aligned fibrils which are designed to withstand in vivo mechanical loads. The formation of these organized structures is thought to result from a complex, large-area integration of individual cell motion and locally-controlled synthesis of fibrillar arrays via cell-surface fibripositors (direct matrix printing). The difficulty of reproducing such a process in vitro has prevented tissue engineers from constructing clinically useful load-bearing connective tissue directly from collagen. However, we and others have taken the view that long-range organizational information is potentially encoded into the structure of the collagen molecule itself, allowing the control of fibril organization to extend far from cell (or bounding) surfaces. We here demonstrate a simple, fast, cell-free method capable of producing highly-organized, anistropic collagen fibrillar lamellae de novo which persist over relatively long-distances (tens to hundreds of microns). Our approach to nanoscale organizational control takes advantage of the intrinsic physiochemical properties of collagen molecules by inducing collagen association through molecular crowding and geometric confinement. To mimic biological tissues which comprise planar, aligned collagen lamellae (e.g. cornea, lamellar bone or annulus fibrosus), type I collagen was confined to a thin, planar geometry, concentrated through molecular crowding and polymerized. The resulting fibrillar lamellae show a striking resemblance to native load-bearing lamellae in that the fibrils are small, generally aligned in the plane of the confining space and change direction en masse throughout the thickness of the construct. The process of organizational control is consistent with embryonic development where the bounded planar cell sheets produced by fibroblasts suggest a similar confinement/concentration strategy. Such a simple approach to nanoscale

  15. Aggregates morphometry in a Latosol (Oxisol under different soil management systems

    Directory of Open Access Journals (Sweden)

    Carla Eloize Carducci

    2016-02-01

    Full Text Available Changes in soil physical properties are inherent in land use, mainly in superficial layers. Structural alterations can directly influence distribution, stability and especially morphometry of soil aggregates, which hence will affect pore system and the dynamic process of water and air in soil. Among the methods used to measure these changes, morphometry is a complementary tool to the classic methods. The aim of this study was to evaluate structural quality of a Latosol (Oxisol, under different management systems, using morphometric techniques. Treatments consisted of soil under no-tillage (NT; pasture (P, in which both had been cultivated for ten years, and an area under native vegetation (NV – Savannah like vegetation. Aggregates were sampled at depths of 0-0.10 and 0.10-0.20 m, retained on sieves with 9.52 – 4.76 mm, 4.76 – 1.0mm, 1.0 – 0.5mm diameter ranges. Aggregate morphometry was assessed by 2D images from scanner via QUANTPORO software. The analyzed variables were: area, perimeter, aspect, roughness, Ferret diameter and compactness. Moreover, disturbed samples were collected at the same depths to determine particle size, aggregate stability in water, water-dispersible clay, clay flocculation index and organic matter content. It was observed that different soil management systems have modified soil aggregate morphology as well as physical attributes; and management effects’ magnitude increased from NT to P.

  16. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression

    Directory of Open Access Journals (Sweden)

    Yujie Zhang

    2016-03-01

    Full Text Available Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60–70 days. However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6, is specifically involved in type I collagen regulation. In the 5′untranslated region (5’UTR of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5′SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP, 25 kD FK506 binding protein (FKBP25 and RNA helicase A (RHA, contribute to this process.

  17. The Selective Angiotensin II Type 2 Receptor Agonist, Compound 21, Attenuates the Progression of Lung Fibrosis and Pulmonary Hypertension in an Experimental Model of Bleomycin-Induced Lung Injury.

    Science.gov (United States)

    Rathinasabapathy, Anandharajan; Horowitz, Alana; Horton, Kelsey; Kumar, Ashok; Gladson, Santhi; Unger, Thomas; Martinez, Diana; Bedse, Gaurav; West, James; Raizada, Mohan K; Steckelings, Ulrike M; Sumners, Colin; Katovich, Michael J; Shenoy, Vinayak

    2018-01-01

    Idiopathic Pulmonary Fibrosis (IPF) is a chronic lung disease characterized by scar formation and respiratory insufficiency, which progressively leads to death. Pulmonary hypertension (PH) is a common complication of IPF that negatively impacts clinical outcomes, and has been classified as Group III PH. Despite scientific advances, the dismal prognosis of IPF and associated PH remains unchanged, necessitating the search for novel therapeutic strategies. Accumulating evidence suggests that stimulation of the angiotensin II type 2 (AT 2 ) receptor confers protection against a host of diseases. In this study, we investigated the therapeutic potential of Compound 21 (C21), a selective AT 2 receptor agonist in the bleomycin model of lung injury. A single intra-tracheal administration of bleomycin (2.5 mg/kg) to 8-week old male Sprague Dawley rats resulted in lung fibrosis and PH. Two experimental protocols were followed: C21 was administered (0.03 mg/kg/day, ip) either immediately (prevention protocol, BCP) or after 3 days (treatment protocol, BCT) of bleomycin-instillation. Echocardiography, hemodynamic, and Fulton's index assessments were performed after 2 weeks of bleomycin-instillation. Lung tissue was processed for gene expression, hydroxyproline content (a marker of collagen deposition), and histological analysis. C21 treatment prevented as well as attenuated the progression of lung fibrosis, and accompanying PH. The beneficial effects of C21 were associated with decreased infiltration of macrophages in the lungs, reduced lung inflammation and diminished pulmonary collagen accumulation. Further, C21 treatment also improved pulmonary pressure, reduced muscularization of the pulmonary vessels and normalized cardiac function in both the experimental protocols. However, there were no major differences in any of the outcomes measured from the two experimental protocols. Collectively, our findings indicate that stimulation of the AT 2 receptor by C21 attenuates

  18. The Selective Angiotensin II Type 2 Receptor Agonist, Compound 21, Attenuates the Progression of Lung Fibrosis and Pulmonary Hypertension in an Experimental Model of Bleomycin-Induced Lung Injury

    Directory of Open Access Journals (Sweden)

    Anandharajan Rathinasabapathy

    2018-03-01

    Full Text Available Idiopathic Pulmonary Fibrosis (IPF is a chronic lung disease characterized by scar formation and respiratory insufficiency, which progressively leads to death. Pulmonary hypertension (PH is a common complication of IPF that negatively impacts clinical outcomes, and has been classified as Group III PH. Despite scientific advances, the dismal prognosis of IPF and associated PH remains unchanged, necessitating the search for novel therapeutic strategies. Accumulating evidence suggests that stimulation of the angiotensin II type 2 (AT2 receptor confers protection against a host of diseases. In this study, we investigated the therapeutic potential of Compound 21 (C21, a selective AT2 receptor agonist in the bleomycin model of lung injury. A single intra-tracheal administration of bleomycin (2.5 mg/kg to 8-week old male Sprague Dawley rats resulted in lung fibrosis and PH. Two experimental protocols were followed: C21 was administered (0.03 mg/kg/day, ip either immediately (prevention protocol, BCP or after 3 days (treatment protocol, BCT of bleomycin-instillation. Echocardiography, hemodynamic, and Fulton's index assessments were performed after 2 weeks of bleomycin-instillation. Lung tissue was processed for gene expression, hydroxyproline content (a marker of collagen deposition, and histological analysis. C21 treatment prevented as well as attenuated the progression of lung fibrosis, and accompanying PH. The beneficial effects of C21 were associated with decreased infiltration of macrophages in the lungs, reduced lung inflammation and diminished pulmonary collagen accumulation. Further, C21 treatment also improved pulmonary pressure, reduced muscularization of the pulmonary vessels and normalized cardiac function in both the experimental protocols. However, there were no major differences in any of the outcomes measured from the two experimental protocols. Collectively, our findings indicate that stimulation of the AT2 receptor by C21 attenuates

  19. Rheology of Heterotypic Collagen Networks

    NARCIS (Netherlands)

    Piechocka, I.K.; van Oosten, A.S.G.; Breuls, R.G.M.; Koenderink, G.H.

    2011-01-01

    Collagen fibrils are the main structural element of connective tissues. In many tissues, these fibrils contain two fibrillar collagens (types I and V) in a ratio that changes during tissue development, regeneration, and various diseases. Here we investigate the influence of collagen composition on

  20. Computed tomography measurement of rib cage morphometry in emphysema.

    Directory of Open Access Journals (Sweden)

    Nicola Sverzellati

    Full Text Available BACKGROUND: Factors determining the shape of the human rib cage are not completely understood. We aimed to quantify the contribution of anthropometric and COPD-related changes to rib cage variability in adult cigarette smokers. METHODS: Rib cage diameters and areas (calculated from the inner surface of the rib cage in 816 smokers with or without COPD, were evaluated at three anatomical levels using computed tomography (CT. CTs were analyzed with software, which allows quantification of total emphysema (emphysema%. The relationship between rib cage measurements and anthropometric factors, lung function indices, and %emphysema were tested using linear regression models. RESULTS: A model that included gender, age, BMI, emphysema%, forced expiratory volume in one second (FEV1%, and forced vital capacity (FVC% fit best with the rib cage measurements (R(2 = 64% for the rib cage area variation at the lower anatomical level. Gender had the biggest impact on rib cage diameter and area (105.3 cm(2; 95% CI: 111.7 to 98.8 for male lower area. Emphysema% was responsible for an increase in size of upper and middle CT areas (up to 5.4 cm(2; 95% CI: 3.0 to 7.8 for an emphysema increase of 5%. Lower rib cage areas decreased as FVC% decreased (5.1 cm(2; 95% CI: 2.5 to 7.6 for 10 percentage points of FVC variation. CONCLUSIONS: This study demonstrates that simple CT measurements can predict rib cage morphometric variability and also highlight relationships between rib cage morphometry and emphysema.

  1. Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution

    Science.gov (United States)

    Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan

    2016-01-01

    Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root

  2. Distinct characteristics of mandibular bone collagen relative to long bone collagen: relevance to clinical dentistry.

    Science.gov (United States)

    Matsuura, Takashi; Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu

    2014-01-01

    Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  3. Distinct Characteristics of Mandibular Bone Collagen Relative to Long Bone Collagen: Relevance to Clinical Dentistry

    Directory of Open Access Journals (Sweden)

    Takashi Matsuura

    2014-01-01

    Full Text Available Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  4. Sirtuin 7 is decreased in pulmonary fibrosis and regulates the fibrotic phenotype of lung fibroblasts.

    Science.gov (United States)

    Wyman, Anne E; Noor, Zahid; Fishelevich, Rita; Lockatell, Virginia; Shah, Nirav G; Todd, Nevins W; Atamas, Sergei P

    2017-06-01

    Pulmonary fibrosis is a severe condition with no cure and limited therapeutic options. A better understanding of its pathophysiology is needed. Recent studies have suggested that pulmonary fibrosis may be driven by accelerated aging-related mechanisms. Sirtuins (SIRTs), particularly SIRT1, SIRT3, and SIRT6, are well-known mediators of aging; however, limited data exist on the contribution of sirtuins to lung fibrosis. We assessed the mRNA and protein levels of all seven known sirtuins in primary lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) and systemic sclerosis-associated interstitial lung disease (SSc-ILD) in comparison with lung fibroblasts from healthy controls. These unbiased tests revealed a tendency for all sirtuins to be expressed at lower levels in fibroblasts from patients compared with controls, but the greatest decrease was observed with SIRT7. Similarly, SIRT7 was decreased in lung tissues of bleomycin-challenged mice. Inhibition of SIRT7 with siRNA in cultured lung fibroblasts resulted in an increase in collagen and α-smooth muscle actin (α-SMA). Reciprocally, overexpression of SIRT7 resulted in lower basal and TGF-β-induced levels of COL1A1, COL1A2, COL3A1, and α-SMA mRNAs, as well as collagen and α-SMA proteins. Induced changes in SIRT7 had no effect on endogenous TGF-β mRNA levels or latent TGF-β activation, but overexpression of SIRT7 reduced the levels of Smad3 mRNA and protein. In conclusion, the decline in SIRT7 in lung fibroblasts has a profibrotic effect, which is mediated by changes in Smad3 levels.

  5. Skull morphometry and diferentation: a case in ovis

    OpenAIRE

    Parés Casanova, Pere-Miquel

    2015-01-01

    Techniques of traditional morphometry, based on the application of multivariate statistical methods on a set of linear variables, have been running since the appearance of personal computers. However, a variety of new techniques has emerged recently, grouped together in what has been called geometric morphometrics (GM) appropriate for the statistical study of variation and covariation of the form (shape + size). This is more useful and consistent for the study of the morphological variation t...

  6. Association of collagen architecture with glioblastoma patient survival.

    Science.gov (United States)

    Pointer, Kelli B; Clark, Paul A; Schroeder, Alexandra B; Salamat, M Shahriar; Eliceiri, Kevin W; Kuo, John S

    2017-06-01

    OBJECTIVE Glioblastoma (GBM) is the most malignant primary brain tumor. Collagen is present in low amounts in normal brain, but in GBMs, collagen gene expression is reportedly upregulated. However, to the authors' knowledge, direct visualization of collagen architecture has not been reported. The authors sought to perform the first direct visualization of GBM collagen architecture, identify clinically relevant collagen signatures, and link them to differential patient survival. METHODS Second-harmonic generation microscopy was used to detect collagen in a GBM patient tissue microarray. Focal and invasive GBM mouse xenografts were stained with Picrosirius red. Quantitation of collagen fibers was performed using custom software. Multivariate survival analysis was done to determine if collagen is a survival marker for patients. RESULTS In focal xenografts, collagen was observed at tumor brain boundaries. For invasive xenografts, collagen was intercalated with tumor cells. Quantitative analysis showed significant differences in collagen fibers for focal and invasive xenografts. The authors also found that GBM patients with more organized collagen had a longer median survival than those with less organized collagen. CONCLUSIONS Collagen architecture can be directly visualized and is different in focal versus invasive GBMs. The authors also demonstrate that collagen signature is associated with patient survival. These findings suggest that there are collagen differences in focal versus invasive GBMs and that collagen is a survival marker for GBM.

  7. Comparison of thermal properties of fish collagen and bovine collagen in the temperature range 298-670K.

    Science.gov (United States)

    Gauza-Włodarczyk, Marlena; Kubisz, Leszek; Mielcarek, Sławomir; Włodarczyk, Dariusz

    2017-11-01

    The increased interest in fish collagen is a consequence of the risk of exposure to Creutzfeld-Jacob disease (CJD) and the bovine spongiform encephalopathy (BSE), whose occurrence is associated with prions carried by bovine collagen. Collagen is the main biopolymer in living organisms and the main component of the skin and bones. Until the discovery of the BSE, bovine collagen had been widely used. The BSE epidemic increased the interest in new sources of collagen such as fish skin collagen (FSC) and its properties. Although the thermal properties of collagen originating from mammals have been well described, less attention has been paid to the thermal properties of FSC. Denaturation temperature is a particularly important parameter, depending on the collagen origin and hydration level. In the reported experiment, the free water and bound water release processes along with thermal denaturation process were studied by means of the differential scanning calorimetry (DSC). Measurements were carried out using a DSC 7 instrument (Elmer-Perkin), in the temperature range 298-670K. The study material was FSC derived by acidic hydration method. The bovine Achilles tendon (BAT) collagen type I was used as the control material. The thermograms recorded revealed both, exothermic and endothermic peaks. For both materials, the peaks in the temperature range of 330-360K were assigned to the release of free water and bound water. The denaturation temperatures of FSC and BAT collagen were determined as 420K and 493K, respectively. Thermal decomposition process was observed at about 500K for FSC and at about 510K for BAT collagen. These results show that FSC is less resistant to high temperature than BAT collagen. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A deformation-based morphometry study of patients with early-stage Parkinson's disease

    DEFF Research Database (Denmark)

    Borghammer, P; Østergaard, Karen; Cumming, P

    2010-01-01

    BACKGROUND AND PURPOSE: Previous volumetric magnetic resonance imaging (MRI) studies of Parkinson's disease (PD) utilized primarily voxel-based morphometry (VBM), and investigated mostly patients with moderate- to late-stage disease. We now use deformation-based morphometry (DBM), a method...... purported to be more sensitive than VBM, to test for atrophy in patients with early-stage PD. METHODS: T1-weighted MRI images from 24 early-stage PD patients and 26 age-matched normal control subjects were compared using DBM. Two separate studies were conducted, where two minimally-biased nonlinear...... intensity-average were created; one for all subjects and another for just the PD patients. The DBM technique creates an average population-based MRI-average in an iterative hierarchical fashion. The nonlinear transformations estimated to match each subject to the MRI-average were then analysed. RESULTS...

  9. Microfibril-associated Protein 4 Binds to Surfactant Protein A (SP-A) and Colocalizes with SP-A in the Extracellular Matrix of the Lung

    DEFF Research Database (Denmark)

    Schlosser, Anders; Thomsen, Theresa H.; Shipley, J. Michael

    2006-01-01

    for phagocytes. Here we describe the molecular interaction between the extracellular matrix protein microfibril-associated protein 4 (MFAP4) and SP-A. MFAP4 is a collagen-binding molecule containing a C-terminal fibrinogen-like domain and a N-terminal located integrin-binding motif. We produced recombinant MFAP4......-A composed of the neck region and carbohydrate recognition domain of SP-A indicating that the interaction between MFAP4 and SP-A is mediated via the collagen domain of SP-A. Monoclonal antibodies directed against MFAP4 and SP-A were used for immunohistochemical analysis, which demonstrates that the two...... molecules colocalize both on the elastic fibres in the interalveolar septum and in elastic lamina of pulmonary arteries of chronically inflamed lung tissue. We conclude, that MFAP4 interacts with SP-A via the collagen region in vitro, and that MFAP4 and SP-A colocates in different lung compartments...

  10. Cognitive and brain structural changes in a lung cancer population.

    Science.gov (United States)

    Simó, Marta; Root, James C; Vaquero, Lucía; Ripollés, Pablo; Jové, Josep; Ahles, Tim; Navarro, Arturo; Cardenal, Felipe; Bruna, Jordi; Rodríguez-Fornells, Antoni

    2015-01-01

    No study has examined structural brain changes specifically associated with chemotherapy in a lung cancer population. The aim of this cross-sectional study was to assess differences in brain structure between small-cell lung cancer patients (C+) following chemotherapy, non-small-cell lung cancer patients (C-) before chemotherapy and healthy controls (HC). Twenty-eight small-cell lung cancer patients underwent a neuropsychological assessment and a structural magnetic resonance imaging, including T1-weighted and diffusion tensor imaging to examine gray matter density and white matter (WM) integrity, respectively, 1 month following completion of platinum-based chemotherapy. This group was compared with 20 age and education-matched non-small-cell lung cancer patients before receiving chemotherapy and 20 HC. Both C+ and C- groups exhibited cognitive impairment compared with the HC group. The C+ group performed significantly worse than HC in verbal fluency and visuospatial subtests; C- performed significantly worse than both C+ and HC in verbal memory. Voxel-based morphometry analysis revealed lower gray matter density in the insula and parahippocampal gyrus bilaterally, and left anterior cingulate cortex in C+ compared with HC. Diffusion tensor imaging indices showed focal decreased WM integrity in left cingulum and bilateral inferior longitudinal fasciculus in the C+ group and more widespread decreased integrity in the C- group compared with the HC group. This study demonstrates that lung cancer patients exhibit cognitive impairment before and after chemotherapy. Before the treatment, C- showed verbal memory deficits as well as a widespread WM damage. Following treatment, the C+ group performed exhibited lower visuospatial and verbal fluency abilities, together with structural gray matter and WM differences in bilateral regions integrating the paralimbic system.

  11. On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils

    OpenAIRE

    1986-01-01

    The tissue distribution of type II and type IX collagen in 17-d-old chicken embryo was studied by immunofluorescence using polyclonal antibodies against type II collagen and a peptic fragment of type IX collagen (HMW), respectively. Both proteins were found only in cartilage where they were co-distributed. They occurred uniformly throughout the extracellular matrix, i.e., without distinction between pericellular, territorial, and interterritorial matrices. Tissues that undergo endochondral bo...

  12. ISOCT study of collagen crosslinking of collagen in cancer models (Conference Presentation)

    Science.gov (United States)

    Spicer, Graham; Young, Scott T.; Yi, Ji; Shea, Lonnie D.; Backman, Vadim

    2016-03-01

    The role of extracellular matrix modification and signaling in cancer progression is an increasingly recognized avenue for the progression of the disease. Previous study of field effect carcinogenesis with Inverse Spectroscopic Optical Coherence Tomography (ISOCT) has revealed pronounced changes in the nanoscale-sensitive mass fractal dimension D measured from field effect tissue when compared to healthy tissue. However, the origin of this difference in tissue ultrastructure in field effect carcinogenesis has remained poorly understood. Here, we present findings supporting the idea that enzymatic crosslinking of the extracellular matrix is an effect that presents at the earliest stages of carcinogenesis. We use a model of collagen gel with crosslinking induced by lysyl oxidase (LOXL4) to recapitulate the difference in D previously reported from healthy and cancerous tissue biopsies. Furthermore, STORM imaging of this collagen gel model verifies the morphologic effects of enzymatic crosslinking at length scales as small as 40 nm, close to the previously reported lower length scale sensitivity threshold of 35 nm for ISOCT. Analysis of the autocorrelation function from STORM images of collagen gels and subsequent fitting to the Whittle-Matérn correlation function shows a similar effect of LOXL4 on D from collagen measured with ISOCT and STORM. We extend this to mass spectrometric study of tissue to directly measure concentrations of collagen crosslink residues. The validation of ISOCT as a viable tool for non-invasive rapid quantification of collagen ultrastructure lends it to study other physiological phenomena involving ECM restructuring such as atherosclerotic plaque screening or cervical ripening during pregnancy.

  13. Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry.

    Science.gov (United States)

    Muñoz-Ruiz, Miguel Ángel; Hartikainen, Päivi; Koikkalainen, Juha; Wolz, Robin; Julkunen, Valtteri; Niskanen, Eini; Herukka, Sanna-Kaisa; Kivipelto, Miia; Vanninen, Ritva; Rueckert, Daniel; Liu, Yawu; Lötjönen, Jyrki; Soininen, Hilkka

    2012-01-01

    MRI is an important clinical tool for diagnosing dementia-like diseases such as Frontemporal Dementia (FTD). However there is a need to develop more accurate and standardized MRI analysis methods. To compare FTD with Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) with three automatic MRI analysis methods - Hippocampal Volumetry (HV), Tensor-based Morphometry (TBM) and Voxel-based Morphometry (VBM), in specific regions of interest in order to determine the highest classification accuracy. Thirty-seven patients with FTD, 46 patients with AD, 26 control subjects, 16 patients with progressive MCI (PMCI) and 48 patients with stable MCI (SMCI) were examined with HV, TBM for shape change, and VBM for gray matter density. We calculated the Correct Classification Rate (CCR), sensitivity (SS) and specificity (SP) between the study groups. We found unequivocal results differentiating controls from FTD with HV (hippocampus left side) (CCR = 0.83; SS = 0.84; SP = 0.80), with TBM (hippocampus and amygdala (CCR = 0.80/SS = 0.71/SP = 0.94), and with VBM (all the regions studied, especially in lateral ventricle frontal horn, central part and occipital horn) (CCR = 0.87/SS = 0.81/SP = 0.96). VBM achieved the highest accuracy in differentiating AD and FTD (CCR = 0.72/SS = 0.67/SP = 0.76), particularly in lateral ventricle (frontal horn, central part and occipital horn) (CCR = 0.73), whereas TBM in superior frontal gyrus also achieved a high accuracy (CCR = 0.71/SS = 0.68/SP = 0.73). TBM resulted in low accuracy (CCR = 0.62) in the differentiation of AD from FTD using all regions of interest, with similar results for HV (CCR = 0.55). Hippocampal atrophy is present not only in AD but also in FTD. Of the methods used, VBM achieved the highest accuracy in its ability to differentiate between FTD and AD.

  14. Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry.

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Muñoz-Ruiz

    Full Text Available BACKGROUND: MRI is an important clinical tool for diagnosing dementia-like diseases such as Frontemporal Dementia (FTD. However there is a need to develop more accurate and standardized MRI analysis methods. OBJECTIVE: To compare FTD with Alzheimer's Disease (AD and Mild Cognitive Impairment (MCI with three automatic MRI analysis methods - Hippocampal Volumetry (HV, Tensor-based Morphometry (TBM and Voxel-based Morphometry (VBM, in specific regions of interest in order to determine the highest classification accuracy. METHODS: Thirty-seven patients with FTD, 46 patients with AD, 26 control subjects, 16 patients with progressive MCI (PMCI and 48 patients with stable MCI (SMCI were examined with HV, TBM for shape change, and VBM for gray matter density. We calculated the Correct Classification Rate (CCR, sensitivity (SS and specificity (SP between the study groups. RESULTS: We found unequivocal results differentiating controls from FTD with HV (hippocampus left side (CCR = 0.83; SS = 0.84; SP = 0.80, with TBM (hippocampus and amygdala (CCR = 0.80/SS = 0.71/SP = 0.94, and with VBM (all the regions studied, especially in lateral ventricle frontal horn, central part and occipital horn (CCR = 0.87/SS = 0.81/SP = 0.96. VBM achieved the highest accuracy in differentiating AD and FTD (CCR = 0.72/SS = 0.67/SP = 0.76, particularly in lateral ventricle (frontal horn, central part and occipital horn (CCR = 0.73, whereas TBM in superior frontal gyrus also achieved a high accuracy (CCR = 0.71/SS = 0.68/SP = 0.73. TBM resulted in low accuracy (CCR = 0.62 in the differentiation of AD from FTD using all regions of interest, with similar results for HV (CCR = 0.55. CONCLUSION: Hippocampal atrophy is present not only in AD but also in FTD. Of the methods used, VBM achieved the highest accuracy in its ability to differentiate between FTD and AD.

  15. Properties of Chitosan-Laminated Collagen Film

    Directory of Open Access Journals (Sweden)

    Vera Lazić

    2012-01-01

    Full Text Available The objective of this study is to determine physical, mechanical and barrier properties of chitosan-laminated collagen film. Commercial collagen film, which is used for making collagen casings for dry fermented sausage production, was laminated with chitosan film layer in order to improve the collagen film barrier properties. Different volumes of oregano essential oil per 100 mL of filmogenic solution were added to chitosan film layer: 0, 0.2, 0.4, 0.6 and 0.8 mL to optimize water vapour barrier properties. Chitosan layer with 0.6 or 0.8 % of oregano essential oil lowered the water vapour transmission rate to (1.85±0.10·10–6 and (1.78±0.03·10–6 g/(m2·s·Pa respectively, compared to collagen film ((2.51±0.05·10–6 g/(m2·s·Pa. However, chitosan-laminated collagen film did not show improved mechanical properties compared to the collagen one. Tensile strength decreased from (54.0±3.8 MPa of the uncoated collagen film to (36.3±4.0 MPa when the film was laminated with 0.8 % oregano essential oil chitosan layer. Elongation at break values of laminated films did not differ from those of collagen film ((18.4±2.7 %. Oxygen barrier properties were considerably improved by lamination. Oxygen permeability of collagen film was (1806.8±628.0·10–14 cm3/(m·s·Pa and values of laminated films were below 35·10–14 cm3/(m·s·Pa. Regarding film appearance and colour, lamination with chitosan reduced lightness (L and yellowness (+b of collagen film, while film redness (+a increased. These changes were not visible to the naked eye.

  16. uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion

    DEFF Research Database (Denmark)

    Engelholm, Lars H; List, Karin; Netzel-Arnett, Sarah

    2003-01-01

    The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor-associated protein (u......, these cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions....

  17. Sterilization of Lung Matrices by Supercritical Carbon Dioxide.

    Science.gov (United States)

    Balestrini, Jenna L; Liu, Angela; Gard, Ashley L; Huie, Janet; Blatt, Kelly M S; Schwan, Jonas; Zhao, Liping; Broekelmann, Tom J; Mecham, Robert P; Wilcox, Elise C; Niklason, Laura E

    2016-03-01

    Lung engineering is a potential alternative to transplantation for patients with end-stage pulmonary failure. Two challenges critical to the successful development of an engineered lung developed from a decellularized scaffold include (i) the suppression of resident infectious bioburden in the lung matrix, and (ii) the ability to sterilize decellularized tissues while preserving the essential biological and mechanical features intact. To date, the majority of lungs are sterilized using high concentrations of peracetic acid (PAA) resulting in extracellular matrix (ECM) depletion. These mechanically altered tissues have little to no storage potential. In this study, we report a sterilizing technique using supercritical carbon dioxide (ScCO2) that can achieve a sterility assurance level 10(-6) in decellularized lung matrix. The effects of ScCO2 treatment on the histological, mechanical, and biochemical properties of the sterile decellularized lung were evaluated and compared with those of freshly decellularized lung matrix and with PAA-treated acellular lung. Exposure of the decellularized tissue to ScCO2 did not significantly alter tissue architecture, ECM content or organization (glycosaminoglycans, elastin, collagen, and laminin), observations of cell engraftment, or mechanical integrity of the tissue. Furthermore, these attributes of lung matrix did not change after 6 months in sterile buffer following sterilization with ScCO2, indicating that ScCO2 produces a matrix that is stable during storage. The current study's results indicate that ScCO2 can be used to sterilize acellular lung tissue while simultaneously preserving key biological components required for the function of the scaffold for regenerative medicine purposes.

  18. On the Stability of Lung Parenchymal Lesions with Applications to Early Pneumothorax Diagnosis

    Directory of Open Access Journals (Sweden)

    Archis R. Bhandarkar

    2013-01-01

    Full Text Available Spontaneous pneumothorax, a prevalent medical challenge in most trauma cases, is a form of sudden lung collapse closely associated with risk factors such as lung cancer and emphysema. Our work seeks to explore and quantify the currently unknown pathological factors underlying lesion rupture in pneumothorax through biomechanical modeling. We hypothesized that lesion instability is closely associated with elastodynamic strain of the pleural membrane from pulsatile air flow and collagen-elastin dynamics. Based on the principles of continuum mechanics and fluid-structure interaction, our proposed model coupled isotropic tissue deformation with pressure from pulsatile air motion and the pleural fluid. Next, we derived mathematical instability criteria for our ordinary differential equation system and then translated these mathematical instabilities to physically relevant structural instabilities via the incorporation of a finite energy limiter. The introduction of novel biomechanical descriptions for collagen-elastin dynamics allowed us to demonstrate that changes in the protein structure can lead to a transition from stable to unstable domains in the material parameter space for a general lesion. This result allowed us to create a novel streamlined algorithm for detecting material instabilities in transient lung CT scan data via analyzing deformations in a local tissue boundary.

  19. Computer-assisted sperm morphometry fluorescence-based analysis has potential to determine progeny sex.

    Science.gov (United States)

    Santolaria, Pilar; Pauciullo, Alfredo; Silvestre, Miguel A; Vicente-Fiel, Sandra; Villanova, Leyre; Pinton, Alain; Viruel, Juan; Sales, Ester; Yániz, Jesús L

    2016-01-01

    This study was designed to determine the ability of computer-assisted sperm morphometry analysis (CASA-Morph) with fluorescence to discriminate between spermatozoa carrying different sex chromosomes from the nuclear morphometrics generated and different statistical procedures in the bovine species. The study was divided into two experiments. The first was to study the morphometric differences between X- and Y-chromosome-bearing spermatozoa (SX and SY, respectively). Spermatozoa from eight bulls were processed to assess simultaneously the sex chromosome by FISH and sperm morphometry by fluorescence-based CASA-Morph. SX cells were larger than SY cells on average (P potential to find differences between X- and Y-chromosome-bearing spermatozoa in bovine species although more studies are needed to increase the precision of sex determination by this technique.

  20. Genistein Protects Against Biomarkers of Delayed Lung Sequelae in Mice Surviving High-Dose Total Body Irradiation

    Science.gov (United States)

    DAY, Regina M.; BARSHISHAT-KUPPER, Michal; MOG, Steven R.; MCCART, Elizabeth A.; PRASANNA, P. G. S.; DAVIS, Thomas A.; LANDAUER, Michael R.

    2008-01-01

    The effects of genistein on 30-day survival and delayed lung injury were examined in C57BL/6J female mice. A single subcutaneous injection of vehicle (PEG-400) or genistein (200 mg/kg) was administered 24 h before total body irradiation (7.75 Gy 60Co, 0.6 Gy/min). Experimental groups were: No treatment + Sham (NC), Vehicle + Sham (VC), Genistein + Sham (GC), Radiation only (NR), Vehicle + Radiation (VR), Genistein + Radiation (GR). Thirty-day survivals after 7.75 Gy were: NR 23%, VR 53%, and GR 92%, indicating significant protection from acute radiation injury by genistein. Genistein also mitigated radiation-induced weight loss on days 13–28 postirradiation. First generation lung fibroblasts were analyzed for micronuclei 24 h postirradiation. Fibroblasts from the lungs of GR-treated mice had significantly reduced micronuclei compared with NR mice. Collagen deposition was examined by histochemical staining. At 90 days postirradiation one half of the untreated and vehicle irradiated mice had focal distributions of small collagen-rich plaques in the lungs, whereas all of the genistein-treated animals had morphologically normal lungs. Radiation reduced the expression of COX-2, transforming growth factor-β receptor (TGFβR) I and II at 90 days after irradiation. Genistein prevented the reduction in TGFβRI. However, by 180 days postirradiation, these proteins normalized in all groups. These results demonstrate that genistein protects against acute radiation-induced mortality in female mice and that GR-treated mice have reduced lung damage compared to NR or VR. These data suggest that genistein is protective against a range of radiation injuries. PMID:18434686

  1. Genistein protects against biomarkers of delayed lung sequelae in mice surviving high-dose total body irradiation

    International Nuclear Information System (INIS)

    Day, R.M.; Barshishat-Kupper, M.; Mog, S.R.; Mccart, E.A.; Prasanna, P.G.S.; Landauer, M.R.; Davis, T.A.

    2008-01-01

    The effects of genistein on 30-day survival and delayed lung injury were examined in C57BL/6J female mice. A single subcutaneous injection of vehicle (PEG-400) or genistein (200 mg/kg) was administered 24 h before total body irradiation (7.75 Gy 60 Co, 0.6 Gy/min). Experimental groups were: No treatment+Sham (NC), Vehicle+Sham (VC), Genistein+Sham (GC), Radiation only (NR), Vehicle+Radiation (VR), Genistein+Radiation (GR). Thirty-day survivals after 7.75 Gy were: NR 23%, VR 53%, and GR 92%, indicating significant protection from acute radiation injury by genistein. Genistein also mitigated radiation-induced weight loss on days 13-28 postirradiation. First generation lung fibroblasts were analyzed for micronuclei 24 h postirradiation. Fibroblasts from the lungs of GR-treated mice had significantly reduced micronuclei compared with NR mice. Collagen deposition was examined by histochemical staining. At 90 days postirradiation one half of the untreated and vehicle irradiated mice had focal distributions of small collagen-rich plaques in the lungs, whereas all of the genistein-treated animals had morphologically normal lungs. Radiation reduced the expression of COX-2, transforming growth factor-β receptor (TGFβR) I and II at 90 days after irradiation. Genistein prevented the reduction in TGFβRI. However, by 180 days postirradiation, these proteins normalized in all groups. These results demonstrate that genistein protects against acute radiation-induced mortality in female mice and that GR-treated mice have reduced lung damage compared to NR or VR. These data suggest that genistein is protective against a range of radiation injuries. (author)

  2. Developmental regulation of chicken surfactant protein A and its localization in lung

    DEFF Research Database (Denmark)

    Zhang, Weidong; Cuperus, Tryntsje; van Dijk, Albert

    2016-01-01

    Surfactant Protein A (SP-A) is a collagenous C-type lectin (collectin) that plays an important role in the early stage of the host immune response. In chicken, SP-A (cSP-A) is expressed as a 26 kDa glycosylated protein in the lung. Using immunohistochemistry, cSP-A protein was detected mainly in ...

  3. Characterization of Genipin-Modified Dentin Collagen

    Directory of Open Access Journals (Sweden)

    Hiroko Nagaoka

    2014-01-01

    Full Text Available Application of biomodification techniques to dentin can improve its biochemical and biomechanical properties. Several collagen cross-linking agents have been reported to strengthen the mechanical properties of dentin. However, the characteristics of collagen that has undergone agent-induced biomodification are not well understood. The objective of this study was to analyze the effects of a natural cross-linking agent, genipin (GE, on dentin discoloration, collagen stability, and changes in amino acid composition and lysyl oxidase mediated natural collagen cross-links. Dentin collagen obtained from extracted bovine teeth was treated with three different concentrations of GE (0.01%, 0.1%, and 0.5% for several treatment times (0–24 h. Changes in biochemical properties of NaB3H4-reduced collagen were characterized by amino acid and cross-link analyses. The treatment of dentin collagen with GE resulted in a concentration- and time-dependent pigmentation and stability against bacterial collagenase. The lysyl oxidase-mediated trivalent mature cross-link, pyridinoline, showed no difference among all groups while the major divalent immature cross-link, dehydro-dihydroxylysinonorleucine/its ketoamine in collagen treated with 0.5% GE for 24 h, significantly decreased compared to control (P< 0.05. The newly formed GE-induced cross-links most likely involve lysine and hydroxylysine residues of collagen in a concentration-dependent manner. Some of these cross-links appear to be reducible and stabilized with NaB3H4.

  4. The degree of collagen crosslinks in medical collagen membranes determined by water absorption

    International Nuclear Information System (INIS)

    Braczko, M.; Tederko, A.; Grzybowski, J.

    1994-01-01

    Collagen membranes were crosslinked by using three agents: glutaraldehyde, hexametylenediisocyanate, and UV irradiation. The increasing concentrations of above chemical agents or longer time of UV exposition resulted in the higher cross-links degree and in the decrease of collagen membranes swelling (measured as water absorption), their elasticity and mechanical resistance. According to American standards, the degree of collagen biomaterial cross-links is determined by measuring of the digestion time by pepsin. However, that method is very time-consuming. In our study, we have that a simple, linear regression between logarithm of digestion time by pepsin exists and it was identical for all three cross-linking agents used. We have concluded that determination of water absorption can be an alternative, simple and fast method for examination of collagen membrane cross-links degree. (author). 16 refs, 7 figs, 1 tab

  5. Complete Histological Resolution of Collagenous Sprue

    Directory of Open Access Journals (Sweden)

    Hugh J Freeman

    2004-01-01

    Full Text Available A 65-year-old woman developed a watery diarrhea syndrome with collagenous colitis. Later, weight loss and hypoalbuminemia were documented. This prompted small bowel biopsies that showed pathological changes of collagenous sprue. An apparent treatment response to a gluten-free diet and prednisone resulted in reduced diarrhea, weight gain and normalization of serum albumin. Later repeated biopsies from multiple small and large bowel sites over a period of over three years, however, showed reversion to normal small intestinal mucosa but persistent collagenous colitis. These results indicate that collagenous inflammatory disease may be a far more extensive process in the gastrointestinal tract than is currently appreciated. Moreover, collagenous colitis may be a clinical signal that occult small intestinal disease is present. Finally, collagenous sprue may, in some instances, be a completely reversible small intestinal disorder.

  6. Whole-brain voxel-based morphometry of white matter in mild cognitive impairment

    International Nuclear Information System (INIS)

    Wang Zhiqun; Guo Xiaojuan; Qi Zhigang; Yao Li; Li Kuncheng

    2010-01-01

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in mild cognitive impairment (MCI). Materials and methods: We studied 14 patients with MCI and 14 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The data were collected on a 3T MR system and analyzed by SPM2 to generate white matter volume maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MCI prominently including the bilateral temporal gyrus, the right anterior cingulate, the bilateral superior and medial frontal gyrus and right parietal angular gyrus. White matter reduction was more prominent in anterior regions than that in posterior regions. Conclusion: Whole-brain white matter reduction in MCI patients detected with VBM has special distribution which is in line with the white matter pathology of MCI.

  7. Whole-brain voxel-based morphometry of white matter in mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhiqun [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China); Guo Xiaojuan [College of Information Science and Technology, Beijing Normal University, 100875, Beijing (China); National Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing (China); Qi Zhigang [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China); Yao Li [College of Information Science and Technology, Beijing Normal University, 100875, Beijing (China); National Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing (China); Li Kuncheng, E-mail: likuncheng@xwh.ccmu.edu.c [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China)

    2010-08-15

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in mild cognitive impairment (MCI). Materials and methods: We studied 14 patients with MCI and 14 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The data were collected on a 3T MR system and analyzed by SPM2 to generate white matter volume maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MCI prominently including the bilateral temporal gyrus, the right anterior cingulate, the bilateral superior and medial frontal gyrus and right parietal angular gyrus. White matter reduction was more prominent in anterior regions than that in posterior regions. Conclusion: Whole-brain white matter reduction in MCI patients detected with VBM has special distribution which is in line with the white matter pathology of MCI.

  8. Testicular morphometry and sperm reserves of local turkey toms fed ...

    African Journals Online (AJOL)

    The morphometry and sperm reserves of the testis, epididymis and vas deferens of three groups (n=5/ group) of sexually active adult local turkey toms fed isocaloric diet with varying levels (12 %, 16 %, 20 %) of protein were studied for sixteen weeks. The weights of the toms before treatment were between 3.5 – 4.5 kg, while ...

  9. Collagen metabolism and basement membrane formation in cultures of mouse mammary epithelial cells: Induction of assembly on fibrillar type I collagen substrata

    International Nuclear Information System (INIS)

    David, G.; van der Schueren, B.; van den Berghe, H.; Nusgens, B.; Van Cauwenberge, D.; Lapiere, C.

    1987-01-01

    Collagen metabolism was compared in cultures of mouse mammary epithelial cells maintained on plastic or fibrillar type I collagen gel substrata. The accumulation of dialysable and non-dialysable [ 3 H]hydroxyproline and the identification of the collagens produced suggest no difference between substrata in the allover rates of collagen synthesis and degradation. The proportion of the [ 3 H]collagen which accumulates in the monolayers of cultures on collagen, however, markedly exceeds that of cultures on plastic. Cultures on collagen deposit a sheet-like layer of extracellular matrix materials on the surface of the collagen fibers. Transformed cells on collagen produce and accumulate more [ 3 H]collage, yet are less effective in basement membrane formation than normal cells, indicting that the accumulation of collagen alone and the effect of interstitial collagen thereupon do not suffice. Thus, exogenous fibrillar collagen appears to enhance, but is not sufficient for proper assembly of collagenous basement membrane components near the basal epithelial cell surface

  10. Collagen crosslinks in chondromalacia of the patella.

    Science.gov (United States)

    Väätäinen, U; Kiviranta, I; Jaroma, H; Arokosi, J; Tammi, M; Kovanen, V

    1998-02-01

    The aim of the study was to determine collagen concentration and collagen crosslinks in cartilage samples from chondromalacia of the patella. To study the extracellular matrix alterations associated to chondromalacia, we determined the concentration of collagen (hydroxyproline) and its hydroxylysylpyridinoline and lysylpyridinoline crosslinks from chondromalacia foci of the patellae in 12 patients and 7 controls from apparently normal cadavers. The structure of the collagen network in 8 samples of grades II-IV chondromalacia was examined under polarized light microscopy. The full-thickness cartilage samples taken with a surgical knife from chondromalacia lesions did not show changes in collagen, hydroxylysylpyridinoline and lysylpyridinoline concentration as compared with the controls. Polarized light microscopy showed decreased birefringence in the superficial cartilage of chondromalacia lesions, indicating disorganization or disappearance of collagen fibers in this zone. It is concluded that the collagen network shows gradual disorganization with the severity of chondromalacia lesion of the patella without changes in the concentration or crosslinks of collagen.

  11. Anti-fibrotic effects of theophylline on lung fibroblasts

    International Nuclear Information System (INIS)

    Yano, Yukihiro; Yoshida, Mitsuhiro; Hoshino, Shigenori; Inoue, Koji; Kida, Hiroshi; Yanagita, Masahiko; Takimoto, Takayuki; Hirata, Haruhiko; Kijima, Takashi; Kumagai, Toru; Osaki, Tadashi; Tachibana, Isao; Kawase, Ichiro

    2006-01-01

    Theophylline has been used in the management of bronchial asthma and chronic obstructive pulmonary disease for over 50 years. It has not only a bronchodilating effect, but also an anti-inflammatory one conducive to the inhibition of airway remodeling, including subepithelial fibrosis. To date however, whether theophylline has a direct inhibitory effect on airway fibrosis has not been established. To clarify this question, we examined whether theophylline affected the function of lung fibroblasts. Theophylline suppressed TGF-β-induced type I collagen (COL1) mRNA expression in lung fibroblasts and also inhibited fibroblast proliferation stimulated by FBS and TGF-β-induced α-SMA protein. A cAMP analog also inhibited TGF-β-induced COL1 mRNA expression in lung fibroblasts. A PKA inhibitor reduced the inhibitory effect of theophylline on TGF-β-induced COL1 mRNA expression. These results indicate that theophylline exerts anti-fibrotic effects, at least partly, through the cAMP-PKA pathway

  12. Lung response to ultrafine Kevlar aramid synthetic fibrils following 2-year inhalation exposure in rats.

    Science.gov (United States)

    Lee, K P; Kelly, D P; O'Neal, F O; Stadler, J C; Kennedy, G L

    1988-07-01

    Four groups of 100 male and 100 female rats were exposed to ultrafine Kevlar fibrils at concentrations of 0, 2.5, 25, and 100 fibrils/cc for 6 hr/day, 5 days/week for 2 years. One group was exposed to 400 fibrils/cc for 1 year and allowed to recover for 1 year. At 2.5 fibrils/cc, the lungs had normal alveolar architecture with a few dust-laden macrophages (dust cell response) in the alveolar airspaces. At 25 fibrils/cc, the lungs showed a dust cell response, slight Type II pneumocyte hyperplasia, alveolar bronchiolarization, and a negligible amount of collagenized fibrosis in the alveolar duct region. At 100 fibrils/cc, the same pulmonary responses were seen as at 25 fibrils/cc. In addition, cystic keratinizing squamous cell carcinoma (CKSCC) was found in 4 female rats, but not in male rats. Female rats had more prominent foamy alveolar macrophages, cholesterol granulomas, and alveolar bronchiolarization. These pulmonary lesions were related to the development of CKSCC. The lung tumors were derived from metaplastic squamous cells in areas of alveolar bronchiolarization. At 400 fibrils/cc following 1 year of recovery, the lung dust content, average fiber length, and the pulmonary lesions were markedly reduced, but slight centriacinar emphysema and minimal collagenized fibrosis were found in the alveolar duct region. One male and 6 female rats developed CKSCC. The lung tumors were a unique type of experimentally induced tumors in the rats and have not been seen as spontaneous tumors in man or animals. Therefore, the relevance of this type of lung tumor to the human situation is minimal.

  13. Collagens - structure, function and biosynthesis.

    OpenAIRE

    Gelse, K; Poschl, E; Aigner, T

    2003-01-01

    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the dis...

  14. Study of bony trabecular characteristics using bone morphometry and micro-CT

    International Nuclear Information System (INIS)

    Song, Young Han; Lee, Wan; Lee, Chang Jin; Ji, Jung Hyun; Lee, Byung Do

    2007-01-01

    The research was done to investigate the effectiveness of 2D bony morphometry and microstructure of micro-computed tomography (micro-CT) on the osteoporotic bony change. We performed the bone morphometric analysis of proximal femur in ovariectomized rabbits with BMD and micro-CT examination. Twenty-one female (Newzeland, about 16 weeks old, 2.9-3.4 kg) rabbits were used. Three rabbits were sacrificed on the day when experiment began (Basline). The remaining 18 rabbits were divided into two groups. One group was ovariectomized bilaterally (OVX) and the other animals were subjected to sham operation (Sham). Bone specimens were obtained from the right and left femur of sacrificed rabbits. At intervals of 1,2,3,5,6 months respectively, BMD tests were performed on the proximal on the proximal femur by using PIXImus 2 (GE Lunar Co. USA), 2-dimensional bone morphometric analysis by custom computer program and 2D / 3D bone structure analysis by micro-CT (Skyscan1072, Antwerpen, Belgium). Statistical analysis was carried out for the correlation between bone morphometry, micro-CT and BMD. BV/TV, Tb.Th, Tb.N of micro-CT parameters showed higher values in sham group than OVX group. N.Nd/Ar.RI, N.NdNd, N.NdTm, N. TmTm, PmB/Ar.RI, 3-D BoxSlope of 2D morphometric parameters showed higher values in Sham group than OVX group. The micro-CT parameters of Tb.Sp. Tb.N were statistically significant correlated with BMD respectively. Several 2D morphometric parameters were statistically significant correlated with BMD respectively. Several parameters of 2D bony morphometry and micro-CT showed effective aspects on the osteoporotic bony change

  15. Biomimetic soluble collagen purified from bones.

    Science.gov (United States)

    Ferreira, Ana Marina; Gentile, Piergiorgio; Sartori, Susanna; Pagliano, Cristina; Cabrele, Chiara; Chiono, Valeria; Ciardelli, Gianluca

    2012-11-01

    Type I collagen has been extensively exploited as a biomaterial for biomedical applications and drug delivery; however, small molecular alterations occurring during the isolation procedure and its interaction with residual bone extracellular matrix molecules or proteins might affect the overall material biocompatibility and performance. The aim of the current work is to study the potential alterations in collagen properties and organization associated with the absence of proteoglycans, which mimic pathological conditions associated with age-related diseases. A new approach for evaluating the effect of proteoglycans on the properties of isolated type I collagen from the bone matrix is described. Additional treatment with guanidine hydrochloride was introduced to remove residual proteoglycans from the collagen matrix. The properties of the isolated collagen with/without guanidine hydrochloride treatment were investigated and compared with a commercial rabbit collagen as control. We demonstrate that the absence of proteoglycans in the isolated type I collagen affects its thermal properties, the extraction into its native structure, and its ability to hydrate and self-assemble into fibers. The fine control and tuning of all these features, linked to the absence of non-collagenous proteins as proteoglycans, offer the possibility of designing new strategies and biomaterials with advanced biomimetic properties aimed at regenerating bone tissue in the case of fragility and/or defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tissue turnover of collagen type I, III and elastin is elevated in the PCLS model of IPF and can be restored back to vehicle levels using a phosphodiesterase inhibitor

    DEFF Research Database (Denmark)

    Hansen, Niels Ulrik Brandt; Karsdal, Morten Asser; Brockbank, Sarah

    2016-01-01

    .T., two days apart. The rats were euthanized fourteen days after the last dose. PCLS were made and cultured for 48 h in: medium, medium + 100 μM IBMX (PDE inhibitor), or medium + 10 μM GM6001 (MMP inhibitor). Turnover of type I collagen (P1NP, C1M), type III collagen (iP3NP, C3M) and elastin degradation...... to the culture medium (P ≤ 0.05 - P ≤ 0.0001). Sirius Red and Orcein staining confirmed the presence of collagen and elastin deposition in the lungs of the animals receiving BLM. Conclusions: The protein fingerprint technology allows the assessment of ECM remodeling markers in the BLM PCLS model. By combining...

  17. STRUCTURAL CONNECTIVITY VIA THE TENSOR-BASED MORPHOMETRY.

    Science.gov (United States)

    Kim, Seung-Goo; Chung, Moo K; Hanson, Jamie L; Avants, Brian B; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2011-01-01

    The tensor-based morphometry (TBM) has been widely used in characterizing tissue volume difference between populations at voxel level. We present a novel computational framework for investigating the white matter connectivity using TBM. Unlike other diffusion tensor imaging (DTI) based white matter connectivity studies, we do not use DTI but only T1-weighted magnetic resonance imaging (MRI). To construct brain network graphs, we have developed a new data-driven approach called the ε -neighbor method that does not need any predetermined parcellation. The proposed pipeline is applied in detecting the topological alteration of the white matter connectivity in maltreated children.

  18. Physiological and biochemical aspects of the effect of ionizing radiations on the lung parenchyma

    International Nuclear Information System (INIS)

    Pasquier, Christian.

    1975-03-01

    Concerning the biochemical reactions of the lung parenchyma to irradiation the following points have been developed. Role of biochemically active substances (histamine, serotonin, kinins, catecholamines, prostaglandins) in the early reaction of the lung to irradiation, their common feature being their vascular impact point. Lung irradiation and lipids (fatty acids and lipid metabolism in general); irradiation, by raising the proportion of unsaturated at the expense of saturated fatty acids, may give rise to serious physiological respiratory disorders. Lung irradiation and blood fluidity (fibrinolytic activity, heparin, platelet factors). Pulmonary interstitium and irradiation (of the three interstitium components collagen plays a preferential part). Irradiation and immunological lung reaction (reasons behind the immunological theory, immunological assistance, immunological mechanism of pulmonary reactions towards pollutants). Enzymatic lung radiolesion indicators. Three kinds of physiological changes have been considered. Vascular physiology disturbances caused by the initial biochemical reactions; anomalies of physiological or functional trials, images of the lesion formed; disorders of the cell physiology of carcinogenesis [fr

  19. Alginate-Collagen Fibril Composite Hydrogel

    Directory of Open Access Journals (Sweden)

    Mahmoud Baniasadi

    2015-02-01

    Full Text Available We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  20. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Haaparanta, Anne-Marie; Järvinen, Elina; Cengiz, Ibrahim Fatih; Ellä, Ville; Kokkonen, Harri T; Kiviranta, Ilkka; Kellomäki, Minna

    2014-04-01

    In this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan. The potential of these types of scaffolds for cartilage tissue engineering applications were determined by the analysis of the microstructure, water uptake, mechanical strength, and the viability and attachment of adult bovine chondrocytes to the scaffolds. The manufacturing method used was found to be applicable for the manufacturing of hybrid scaffolds with highly porous 3D structures. All the hybrid scaffolds showed a highly porous structure with open pores throughout the scaffold. Collagen was found to bind water inside the structure in all collagen-containing scaffolds better than the chitosan-containing scaffolds, and the plain collagen scaffolds had the highest water absorption. The stiffness of the scaffold was improved by the hybrid structure compared to plain scaffolds. The cell viability and attachment was good in all scaffolds, however, the collagen hybrid scaffolds showed the best penetration of cells into the scaffold. Our results show that from the studied scaffolds the collagen/PLA hybrids are the most promising scaffolds from this group for cartilage tissue engineering.

  1. INFLUENCE OF TOBACCO, ALCOHOL AND DIABETES ON THE COLLAGEN OF CREMASTER MUSCLE IN PATIENTS WITH INGUINAL HERNIAS.

    Science.gov (United States)

    Módena, Sérgio Ferreira; Caldeira, Eduardo José; Peres, Marco Antonio O; Andreollo, Nelson Adami

    2016-01-01

    New findings point out that the mechanism of formation of the hernias can be related to the collagenous tissues, under activity of aggressive agents such as the tobacco, alcohol and diabetes. To analyze the collagen present in the cremaster muscle in patients with inguinal hernias, focusing the effect of tobacco, alcohol, and diabetes. Fifteen patients with inguinal hernia divided in three groups were studied: group I (n=5) was control; group II (n=5) were smokers and/or drinkers; and group III (n=5) had diabetes mellitus. All subjects were underwent to surgical repair of the inguinal hernias obeying the same pre, intra and postoperative conditions. During surgery, samples of the cremaster muscle were collected for analysis in polarized light microscopy, collagen morphometry and protein. The area occupied by the connective tissue was higher in groups II and III (ptabaco, o álcool e o diabete. Avaliar o colágeno presente no músculo cremaster em pacientes com hérnias inguinais enfocando o efeito do tabaco, álcool e diabete. Foram estudados 15 pacientes com hérnias inguinais divididos em: grupo I (n=5) controles; grupo II (n=5) indivíduos fumantes e/ou etilistas; e grupo III (n=5) indivíduos que apresentavam diabete melito. Todos foram submetidos à correção cirúrgica das hérnias inguinais obedecendo às mesmas condições pré, intra e pós-operatórias. Durante o procedimento cirúrgico, amostras do músculo cremaster foram coletadas para análises em microscopia de luz polarizada, morfometria do colágeno e de proteínas. A área ocupada por tecido conjuntivo foi maior nos grupos II e III (ptabaco, o álcool e o diabete ocasionam remodelação no músculo cremaster, levando à perda de suporte ou alteração estrutural nesta região, podendo intensificar as ocorrências e os danos relacionados às hérnias inguinais.

  2. Effect of radiation on rat skin collagen

    International Nuclear Information System (INIS)

    Nogami, Akira

    1980-01-01

    I. Albino male rats were exposed for 16 weeks to ultraviolet light (UVL) which has principle emission at 305 nm. There were no significant changes between control and UVL-exposed skins in the total hydroxyproline content. However, a little increase of citrate-soluble collagen, a little decrease of insoluble collagen and a decrease of aldehyde content in soluble collagen were observed with UVL exposure. Total acid glycosaminoglycan in skin increased 30% or more from control. These results show that the effect of UVL on rat skin in vivo was merely inflammation phenomenon and that the 'aging' process of skin was not caused in our experimental conditions. II. The effects of radiation on the solubility of rat skin collagen were examined under various conditions. 1) When intact rats were exposed to a single dose of radiation from 43 kVp X-ray source, the solubility in skin collagen did not change at 4,000 R dosage, while in irradiation of 40,000 R a decreased solubility in collagen was observed. When rats were given 400 R a week for 12 weeks, there was no changes in the solubility of collagen during experimental period. 2) In vitro exposure to skins, an irradiation of 40,000 R from 43 kVp X-ray source caused a decrease in the solubility of collagen. While an irradiation of 40,000 R of dosage from 200 kVp X-ray source resulted in the increase in soluble collagen and the decrease in insoluble collagen. 3) When intact rats were given a single dose of 40,000 R from 60 Co- gamma -ray, insoluble collagen decreased in both young and adult rats. Similar changes in collagen solubility were observed in vitro gamma -irradiation. (author)

  3. A 48 kDa collagen-binding phosphoprotein isolated from bovine aortic endothelial cells interacts with the collagenous domain, but not the globular domain, of collagen type IV.

    OpenAIRE

    Yannariello-Brown, J; Madri, J A

    1990-01-01

    We have identified collagen-binding proteins in detergent extracts of metabolically labelled bovine aortic endothelial cells (BAEC) by collagen type IV-Sepharose affinity chromatography. The major collagen type IV-binding protein identified by SDS/PAGE had a molecular mass of 48 kDa, which we term the 'collagen-binding 48 kDa protein' (CB48). The pI of CB48 was 8.0-8.3 in a two-dimensional gel system, running non-equilibrium pH gel electrophoresis in the first dimension and SDS/PAGE in the se...

  4. Characterization of serological neo-epitope biomarkers reflecting collagen remodeling in clinically stable chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Sand, Jannie M B; Martinez, Gerd; Midjord, Anne-Kirsten

    2016-01-01

    OBJECTIVES: Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation that leads to excessive remodeling of the lung extracellular matrix (ECM), resulting in release of protein fragments (neo-epitopes) to the blood. Serological markers assessing this have previously been...... of COPD, blood oxygen saturation, shuttle walk test distance, GOLD grades, or CAT scores. CONCLUSIONS: Serological biomarkers of collagen remodeling were elevated in subjects with COPD as compared with healthy individuals. Biomarker levels were significantly correlated with measures of dyspnea, indicating...... a relationship with degree of symptoms, while only C6M showed a weak but significant association with lung function. Biomarker levels were not related to GOLD grades, which was in line with previous studies indicating that ECM remodeling may be related to disease activity rather than severity....

  5. The radioprotective effects of methylprednisolone and Sho-Saikoto on mouse lung

    Energy Technology Data Exchange (ETDEWEB)

    Kure, Fumio [Kyoto Prefectural Univ. of Medicine (Japan)

    1992-01-01

    The radioprotective effects of methylprednisolone and Sho-Saikoto (a herbal medicine) on radiation damage to lung tissue were evaluated in four main groups of female Slc-ICR mice, one control group and three groups irradiated with single doses (6 Gy, 12 Gy, 18 Gy) of {sup 60}Co gamma rays. Subgroups were established with administration of methylprednisolone and Sho-Saikoto, alone and together. Direct quantitative measurements of collagen accumulation in lung (lung fibrosis) were made by analysis of digitally processed microscopic images of Azan-Mallory stained sections 24 weeks after irradiation. Administration of methylprednisolone supressed the expected development of fibrotic lung tissue in each of the irradiated groups. In a further study, peplomycin, a lung fibrosis enhancing agent, was administered to all four groups in addition to methylprednisolone and Sho-Saikoto, alone and together. Methylprednisolone was demonstrated to be effective only in 12 Gy group. Overall, Sho-Saikoto showed a lesser degree of effect in the prevention of the fibrosis than methylprednisolone, but the administration of both was demonstrated to be more effective than either alone. (author).

  6. Modern collagen wound dressings: function and purpose.

    Science.gov (United States)

    Fleck, Cynthia Ann; Simman, Richard

    2010-09-01

    Collagen, which is produced by fibroblasts, is the most abundant protein in the human body. A natural structural protein, collagen is involved in all 3 phases of the wound-healing cascade. It stimulates cellular migration and contributes to new tissue development. Because of their chemotactic properties on wound fibroblasts, collagen dressings encourage the deposition and organization of newly formed collagen, creating an environment that fosters healing. Collagen-based biomaterials stimulate and recruit specific cells, such as macrophages and fibroblasts, along the healing cascade to enhance and influence wound healing. These biomaterials can provide moisture or absorption, depending on the delivery system. Collagen dressings are easy to apply and remove and are conformable. Collagen dressings are usually formulated with bovine, avian, or porcine collagen. Oxidized regenerated cellulose, a plant-based material, has been combined with collagen to produce a dressing capable of binding to and protecting growth factors by binding and inactivating matrix metalloproteinases in the wound environment. The increased understanding of the biochemical processes involved in chronic wound healing allows the design of wound care products aimed at correcting imbalances in the wound microenvironment. Traditional advanced wound care products tend to address the wound's macroenvironment, including moist wound environment control, fluid management, and controlled transpiration of wound fluids. The newer class of biomaterials and wound-healing agents, such as collagen and growth factors, targets specific defects in the chronic wound environment. In vitro laboratory data point to the possibility that these agents benefit the wound healing process at a biochemical level. Considerable evidence has indicated that collagen-based dressings may be capable of stimulating healing by manipulating wound biochemistry.

  7. Type XII and XIV collagens mediate interactions between banded collagen fibers in vitro and may modulate extracellular matrix deformability.

    Science.gov (United States)

    Nishiyama, T; McDonough, A M; Bruns, R R; Burgeson, R E

    1994-11-11

    Type XII and XIV collagens are very large molecules containing three extended globular domains derived from the amino terminus of each alpha chain and an interrupted triple helix. Both collagens are genetically and immunologically unique and have distinct distributions in many tissues. These collagens localize near the surface of banded collagen fibrils. The function of the molecules is unknown. We have prepared a mixture of native type XII and XIV collagens that is free of contaminating proteins by electrophoretic criteria. In addition, we have purified the collagenase-resistant globular domains of type XII or XIV collagens (XII-NC-3 or XIV-NC-3). In this study, we have investigated the effect of intact type XII and XIV and XII-NC-3 or XIV-NC-3 on the interactions between fibroblasts and type I collagen fibrils. We find that both type XII and XIV collagens promote collagen gel contraction mediated by fibroblasts, even in the absence of serum. The activity is present in the NC-3 domains. The effect is dose-dependent and is inhibited by denaturation. The effect of type XII NC-3 is inhibited by the addition of anti-XII antiserum. To elucidate the mechanism underlying this phenomenon, we examined the effect of XII-NC-3 or XIV-NC-3 on deformability of collagen gels by centrifugal force. XII-NC-3 or XIV-NC-3 markedly promotes gel compression after centrifugation. The effect is also inhibited by denaturation, and the activity of type XII-NC3 is inhibited by the addition of anti-XII antiserum. The results indicate that the effect of XII-NC-3 or XIV-NC-3 on collagen gel contraction by fibroblasts is not due to activation of cellular events but rather results from the increase in mobility of hydrated collagen fibrils within the gel. These studies suggest that collagen types XII and XIV may modulate the biomechanical properties of tissues.

  8. Effects of different tidal volumes in pulmonary and extrapulmonary lung injury with or without intraabdominal hypertension.

    Science.gov (United States)

    Santos, Cíntia L; Moraes, Lillian; Santos, Raquel S; Oliveira, Mariana G; Silva, Johnatas D; Maron-Gutierrez, Tatiana; Ornellas, Débora S; Morales, Marcelo M; Capelozzi, Vera L; Jamel, Nelson; Pelosi, Paolo; Rocco, Patricia R M; Garcia, Cristiane S N B

    2012-03-01

    We hypothesized that: (1) intraabdominal hypertension increases pulmonary inflammatory and fibrogenic responses in acute lung injury (ALI); (2) in the presence of intraabdominal hypertension, higher tidal volume reduces lung damage in extrapulmonary ALI, but not in pulmonary ALI. Wistar rats were randomly allocated to receive Escherichia coli lipopolysaccharide intratracheally (pulmonary ALI) or intraperitoneally (extrapulmonary ALI). After 24 h, animals were randomized into subgroups without or with intraabdominal hypertension (15 mmHg) and ventilated with positive end expiratory pressure = 5 cmH(2)O and tidal volume of 6 or 10 ml/kg during 1 h. Lung and chest wall mechanics, arterial blood gases, lung and distal organ histology, and interleukin (IL)-1β, IL-6, caspase-3 and type III procollagen (PCIII) mRNA expressions in lung tissue were analyzed. With intraabdominal hypertension, (1) chest-wall static elastance increased, and PCIII, IL-1β, IL-6, and caspase-3 expressions were more pronounced than in animals with normal intraabdominal pressure in both ALI groups; (2) in extrapulmonary ALI, higher tidal volume was associated with decreased atelectasis, and lower IL-6 and caspase-3 expressions; (3) in pulmonary ALI, higher tidal volume led to higher IL-6 expression; and (4) in pulmonary ALI, liver, kidney, and villi cell apoptosis was increased, but not affected by tidal volume. Intraabdominal hypertension increased inflammation and fibrogenesis in the lung independent of ALI etiology. In extrapulmonary ALI associated with intraabdominal hypertension, higher tidal volume improved lung morphometry with lower inflammation in lung tissue. Conversely, in pulmonary ALI associated with intraabdominal hypertension, higher tidal volume increased IL-6 expression.

  9. The Mineral–Collagen Interface in Bone

    Science.gov (United States)

    2015-01-01

    The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581

  10. Age Increases Monocyte Adhesion on Collagen

    Science.gov (United States)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  11. The non-phagocytic route of collagen uptake

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Ingvarsen, Signe; Jürgensen, Henrik J

    2011-01-01

    The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments......, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional...... mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include β1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down...

  12. A shift in the collagen V antigenic epitope leads to T helper phenotype switch and immune response to self-antigen leading to chronic lung allograft rejection.

    Science.gov (United States)

    Tiriveedhi, V; Angaswamy, N; Brand, D; Weber, J; Gelman, A G; Hachem, R; Trulock, E P; Meyers, B; Patterson, G; Mohanakumar, T

    2012-01-01

    Immune responses to human leucocyte antigen (HLA) and self-antigen collagen V (Col-V) have been proposed in the pathogenesis of chronic rejection (bronchiolitis obliterans syndrome, BOS) following human lung transplantation (LTx). In this study, we defined the role for the shift in immunodominant epitopes of Col-V in inducing T helper phenotype switch leading to immunity to Col-V and BOS. Sera and lavage from BOS(+) LTx recipients with antibodies to Col-V were analysed. Two years prior to BOS, patients developed antibodies to both Col-V,α1(V) and α2(V) chains. However, at clinical diagnosis of BOS, antibodies became restricted to α1(V). Further, lung biopsy from BOS(+) patients bound to antibodies to α1(V), indicating that these epitopes are exposed. Fourteen Col-V peptides [pep1-14, pep1-4 specific to α1(V), pep5-8 to α1,2(V) and pep9-14 to α2(V)] which bind to HLA-DR4 and -DR7, demonstrated that prior to BOS, pep 6, 7, 9, 11 and 14 were immunodominant and induced interleukin (IL)-10. However, at BOS, the response switched to pep1, 4 and 5 and induced interferon (IFN)-γ and IL-17 responses, but not IL-10. The T helper (Th) phenotype switch is accompanied by decreased frequency of regulatory T cells (T(regs) ) in the lavage. LTx recipients with antibodies to α1(V) also demonstrated increased matrix metalloproteinase (MMP) activation with decreased MMP inhibitor, tissue inhibitor of metalloproteinase (TIMP), suggesting that MMP activation may play a role in the exposure of new Col-V antigenic epitopes. We conclude that a shift in immunodominance of self-antigenic determinants of Col-V results in induction of IFN-γ and IL-17 with loss of tolerance leading to autoimmunity to Col-V, which leads to chronic lung allograft rejection. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  13. Prostaglandin D2 Attenuates Bleomycin-Induced Lung Inflammation and Pulmonary Fibrosis.

    Science.gov (United States)

    Kida, Taiki; Ayabe, Shinya; Omori, Keisuke; Nakamura, Tatsuro; Maehara, Toko; Aritake, Kosuke; Urade, Yoshihiro; Murata, Takahisa

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal lung disease with limited therapeutic options. Although it is well known that lipid mediator prostaglandins are involved in the development of pulmonary fibrosis, the role of prostaglandin D2 (PGD2) remains unknown. Here, we investigated whether genetic disruption of hematopoietic PGD synthase (H-PGDS) affects the bleomycin-induced lung inflammation and pulmonary fibrosis in mouse. Compared with H-PGDS naïve (WT) mice, H-PGDS-deficient mice (H-PGDS-/-) represented increased collagen deposition in lungs 14 days after the bleomycin injection. The enhanced fibrotic response was accompanied by an increased mRNA expression of inflammatory mediators, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and cyclooxygenase-2 on day 3. H-PGDS deficiency also increased vascular permeability on day 3 and infiltration of neutrophils and macrophages in lungs on day 3 and 7. Immunostaining showed that the neutrophils and macrophages expressed H-PGDS, and its mRNA expression was increased on day 3and 7 in WT lungs. These observations suggest that H-PGDS-derived PGD2 plays a protective role in bleomycin-induced lung inflammation and pulmonary fibrosis.

  14. Collagen metabolism in obesity

    DEFF Research Database (Denmark)

    Rasmussen, M H; Jensen, L T; Andersen, T

    1995-01-01

    OBJECTIVE: To investigate the impact of obesity, fat distribution and weight loss on collagen turnover using serum concentrations of the carboxyterminal propeptide of type I procollagen (S-PICP) and the aminoterminal propeptide of type III pro-collagen (S-PIIINP) as markers for collagen turnover...... (r = 0.37; P = 0.004), height (r = 0.27; P = 0.04), waist circumference (r = 0.35; P = 0.007), as well as with WHR (r = 0.33; P = 0.01) and was inversely correlated to age (r = -0.40; P = 0.002). Compared with randomly selected controls from a large pool of healthy volunteers, the obese patients had...... restriction (P obesity and associated with body fat distribution, suggesting...

  15. Structural MRI in Frontotemporal Dementia: Comparisons between Hippocampal Volumetry, Tensor-Based Morphometry and Voxel-Based Morphometry

    Science.gov (United States)

    Muñoz-Ruiz, Miguel Ángel; Hartikainen, Päivi; Koikkalainen, Juha; Wolz, Robin; Julkunen, Valtteri; Niskanen, Eini; Herukka, Sanna-Kaisa; Kivipelto, Miia; Vanninen, Ritva; Rueckert, Daniel; Liu, Yawu; Lötjönen, Jyrki; Soininen, Hilkka

    2012-01-01

    Background MRI is an important clinical tool for diagnosing dementia-like diseases such as Frontemporal Dementia (FTD). However there is a need to develop more accurate and standardized MRI analysis methods. Objective To compare FTD with Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) with three automatic MRI analysis methods - Hippocampal Volumetry (HV), Tensor-based Morphometry (TBM) and Voxel-based Morphometry (VBM), in specific regions of interest in order to determine the highest classification accuracy. Methods Thirty-seven patients with FTD, 46 patients with AD, 26 control subjects, 16 patients with progressive MCI (PMCI) and 48 patients with stable MCI (SMCI) were examined with HV, TBM for shape change, and VBM for gray matter density. We calculated the Correct Classification Rate (CCR), sensitivity (SS) and specificity (SP) between the study groups. Results We found unequivocal results differentiating controls from FTD with HV (hippocampus left side) (CCR = 0.83; SS = 0.84; SP = 0.80), with TBM (hippocampus and amygdala (CCR = 0.80/SS = 0.71/SP = 0.94), and with VBM (all the regions studied, especially in lateral ventricle frontal horn, central part and occipital horn) (CCR = 0.87/SS = 0.81/SP = 0.96). VBM achieved the highest accuracy in differentiating AD and FTD (CCR = 0.72/SS = 0.67/SP = 0.76), particularly in lateral ventricle (frontal horn, central part and occipital horn) (CCR = 0.73), whereas TBM in superior frontal gyrus also achieved a high accuracy (CCR = 0.71/SS = 0.68/SP = 0.73). TBM resulted in low accuracy (CCR = 0.62) in the differentiation of AD from FTD using all regions of interest, with similar results for HV (CCR = 0.55). Conclusion Hippocampal atrophy is present not only in AD but also in FTD. Of the methods used, VBM achieved the highest accuracy in its ability to differentiate between FTD and AD. PMID:23285078

  16. Anatomic Variation in Morphometry of Human Coracoid Process among Asian Population.

    Science.gov (United States)

    Fathi, Manal; Cheah, Pike-See; Ahmad, Umar; Nasir, M Nizlan; San, Aye Aye; Abdul Rahim, Ezamin; Hussin, Paisal; Mahmud, Rozi; Othman, Fauziah

    2017-01-01

    Ethnic origin plays an important role in bone morphometry. Studies examining the influence of coracoid process have focused primarily on adults and have not included people from diverse Asian ethnic backgrounds. Our goal was to explore ethnic differences in morphometry of coracoid among Asian population. We performed morphometric measurements of coracoid process on cadaveric shoulders and shoulder CT scans from 118 specimens. The cadaveric sample included Indian (46%), Chinese (27%), and Myanmarese (27%) subjects, while the CT scans sample included Chinese (67%) and Malay (33%) subjects. The morphometric measurements were performed using digital caliper and software developed at Golden Horses Health Sanctuary (GHHS). In the Indian cadaveric shoulders, the coracoid process is better developed than the other groups with the exception of the tip width of coracoid process. There are significant differences in almost all measurements ( P Chinese than Malay subjects when stratified by sex ( P < 0.05). Moreover, in all morphometric measurements, the females had smaller measurements than males ( P < 0.05). Understanding such differences is important in anatomy, forensic and biological identity, and orthopaedic and shoulder surgeries.

  17. Collagen as potential cell scaffolds for tissue engineering.

    Science.gov (United States)

    Annuar, N; Spier, R E

    2004-05-01

    Selections of collagen available commercially were tested for their biocompatibility as scaffold to promote cell growth in vitro via simple collagen fast test and cultivation of mammalian cells on the selected type of collagen. It was found that collagen type C9791 promotes the highest degree of aggregation as well as cells growth. This preliminary study also indicated potential use of collagen as scaffold in engineered tissue.

  18. A novel functional role of collagen glycosylation

    DEFF Research Database (Denmark)

    Jürgensen, Henrik J; Madsen, Daniel H; Ingvarsen, Signe

    2011-01-01

    Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains......, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose...... receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens...

  19. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2

    Energy Technology Data Exchange (ETDEWEB)

    Kalayarasan, Srinivasan, E-mail: kalaivasanbio@gmail.com; Sriram, Narayanan; Soumyakrishnan, Syamala; Sudhandiran, Ganapasam, E-mail: sudhandiran@yahoo.com

    2013-09-01

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells.

  20. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2

    International Nuclear Information System (INIS)

    Kalayarasan, Srinivasan; Sriram, Narayanan; Soumyakrishnan, Syamala; Sudhandiran, Ganapasam

    2013-01-01

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells

  1. Longitudinal MRI studies of brain morphometry

    DEFF Research Database (Denmark)

    Skimminge, Arnold Jesper Møller

    High resolution MR images acquired at multiple time points of the brain allow quantification of localized changes induced by external factors such as maturation, ageing or disease progression/recovery. High-dimensional warping of such MR images incorporates changes induced by external factors...... into the accompanying deformation field. Deformation fields from high dimensional warping founds tensor based morphometry (TBM), and provides unique opportunities to study human brain morphology and plasticity. In this thesis, specially adapted image processing streams utilizing several image registration techniques...... to characterize differences between brains, demonstrate the versatility and specificity of the employed voxel-wise morphometric methods. More specifically TBM is used to study neurodegenerative changes following severe traumatic brain injuries. Such injuries progress for months, perhaps even years postinjury...

  2. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents.

    Science.gov (United States)

    Navas-Sánchez, Francisco J; Carmona, Susana; Alemán-Gómez, Yasser; Sánchez-González, Javier; Guzmán-de-Villoria, Juan; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2016-05-01

    Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. [The genetics of collagen diseases].

    Science.gov (United States)

    Kaplan, J; Maroteaux, P; Frezal, J

    1986-01-01

    Heritable disorders of collagen include Ehler-Danlos syndromes (11 types are actually known), Larsen syndrome and osteogenesis imperfecta. Their clinical, genetic and biochemical features are reviewed. Marfan syndrome is closely related to heritable disorders of collagen.

  4. Identification of nurseries areas of juvenile Prochilodus lineatus (Valenciennes, 1836) (Characiformes: Prochilodontidae) by scale and otolith morphometry and microchemistry

    OpenAIRE

    Avigliano, Esteban; Fortunato, Roberta Callicó; Biolé, Fernanda; Domanico, Alejandro; Simone, Silvia De; Neiff, Juan J.; Volpedo, Alejandra V.

    2016-01-01

    ABSTRACT The streaked prochilod Prochilodus lineatus (Valenciennes) is a commercially freshwater species from South America, distributed in the Plata basin. In the present work the morphometry (circularity, rectangularity, form factor, OL/OW and ellipticity indices) and chemistry (Sr:Ca, Ba:Ca, Zn:Ca) of lapilli otolith, and geometric morphometry of scales of streaked prochilod juveniles, in two sites in the Plata basin (Uruguay River and Estrella Wetland), were compared to determine if they ...

  5. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis.

    Science.gov (United States)

    Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan

    2015-07-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.

  6. Marine-derived collagen biomaterials from echinoderm connective tissues

    KAUST Repository

    Ferrario, Cinzia; Leggio, Livio; Leone, Roberta; Di Benedetto, Cristiano; Guidetti, Luca; Coccè , Valentina; Ascagni, Miriam; Bonasoro, Francesco; La Porta, Caterina A.M.; Candia Carnevali, M. Daniela; Sugni, Michela

    2016-01-01

    The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.

  7. Marine-derived collagen biomaterials from echinoderm connective tissues

    KAUST Repository

    Ferrario, Cinzia

    2016-03-31

    The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.

  8. Multivariate tensor-based morphometry on surfaces: application to mapping ventricular abnormalities in HIV/AIDS.

    Science.gov (United States)

    Wang, Yalin; Zhang, Jie; Gutman, Boris; Chan, Tony F; Becker, James T; Aizenstein, Howard J; Lopez, Oscar L; Tamburo, Robert J; Toga, Arthur W; Thompson, Paul M

    2010-02-01

    Here we developed a new method, called multivariate tensor-based surface morphometry (TBM), and applied it to study lateral ventricular surface differences associated with HIV/AIDS. Using concepts from differential geometry and the theory of differential forms, we created mathematical structures known as holomorphic one-forms, to obtain an efficient and accurate conformal parameterization of the lateral ventricular surfaces in the brain. The new meshing approach also provides a natural way to register anatomical surfaces across subjects, and improves on prior methods as it handles surfaces that branch and join at complex 3D junctions. To analyze anatomical differences, we computed new statistics from the Riemannian surface metrics-these retain multivariate information on local surface geometry. We applied this framework to analyze lateral ventricular surface morphometry in 3D MRI data from 11 subjects with HIV/AIDS and 8 healthy controls. Our method detected a 3D profile of surface abnormalities even in this small sample. Multivariate statistics on the local tensors gave better effect sizes for detecting group differences, relative to other TBM-based methods including analysis of the Jacobian determinant, the largest and smallest eigenvalues of the surface metric, and the pair of eigenvalues of the Jacobian matrix. The resulting analysis pipeline may improve the power of surface-based morphometry studies of the brain. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  9. HRCT of the lung in collagen vascular diseases; HRCT der Lunge bei Kollagenosen

    Energy Technology Data Exchange (ETDEWEB)

    Diederich, S. [Inst. fuer Klinische Radiologie, Westfaelische Wilhelms-Univ., Muenster (Germany); Roos, N. [Inst. fuer Klinische Radiologie, Westfaelische Wilhelms-Univ., Muenster (Germany); Schmitz-Linneweber, B. [Medizinische Klinik B, Westfaelische Wilhelms-Univ., Muenster (Germany); Gaubitz, M. [Medizinische Klinik B, Westfaelische Wilhelms-Univ., Muenster (Germany); Peters, P.E. [Inst. fuer Klinische Radiologie, Westfaelische Wilhelms-Univ., Muenster (Germany)

    1996-07-01

    Collagen vascular diseases, representing systemic soft tissue disorders, may cause a broad spectrum of pathologic changes of the respiratory tract. The type and extent of manifestations can vary considerably among individuals and entities. This survey describes the chest radiographic and, in particular, high-resolution computed tomographic and, in particular, high-resolution computed tomographic (HRCT) findings of individual lesions of the respiratory tract. It includes fibrosing alveolitis (alveolitis, interstitial pneumonia, pulmonary fibrosis) and bronchial (bronchitis/bronchiolitis, bronchiectasis), pleural and vascular manifestations, as well as lymphadenopathy and abnormalities related to therapy. We present typical patterns of changes in progressive systemic sclerosis (PSS, scleroderma), systemic lupus erythematosus (SLE), mixed connective tissue disease (MCTD, Sharp syndrome), Sjoegren syndrome, overlap syndrome and rheumatoid arthritis (RA). Furthermore, we describe findings which are specific for individual entities such as esophageal involvement in PSS, acute pneumonitis and pulmonary hemorrhage in SLE, lymphoproliferative disease in Sjoegren syndrome and necrobiotic nodules in RA. (orig.) [Deutsch] Die Kollagenosen koennen als systemische Bindegewebserkrankungen auch zu einem breiten Spektrum pathologischer Veraenderungen am Respirationstrakt fuehren, wobei sich Art und Ausmass der Manifestationen innerhalb einzelner Entitaeten und zwischen verschiedenen Krankheitsbildern erheblich unterscheiden koennen. In der vorliegenden Uebersicht werden die entsprechenden Befunde von Thoraxuebersichtsaufnahme und insbesondere hochaufloesender Computertomographie (HRCT) beschrieben. Beruecksichtigt werden dabei die fibrosierende Alveolitis (Alveolitis, interstitielle Pneumonie, Lungenfibrose), bronchiale (Bronchitis/Bronchiolitis, Bronchiektasen), pleurale und vaskulaere Manifestationen sowie Lymphadenopathie und therapie-induzierte Befunde. Typische Befundmuster

  10. Protease-activatable collagen targeting based on protein cyclization

    NARCIS (Netherlands)

    Breurken, M.; Lempens, E.H.M.; Merkx, M.

    2010-01-01

    Threading collagen through a protein needle: The collagen-binding protein CNA35 operates by wrapping itself around the collagen triple helix. By connecting the N and C termini through an MMP recognition sequence, a dual-specific MMP-sensitive collagen-targeting ligand is obtained that can be used

  11. Study of collagen metabolism after β radiation injury

    International Nuclear Information System (INIS)

    Zhou Yinghui; Xulan; Wu Shiliang; Zhang Xueguang; Chen Liesong

    2000-01-01

    Objective: To investigate the change of collagen metabolism and it's regulation after β radiation. Method: The animal model of β radiation injury was established by the β radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 was tested. The contents of TGF-β 1 , IL-6 were also detected. Results: After exposure to β radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-β 1 , IL-6 increased. Conclusion: The changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-β 1 and IL-6 may be essential in the regulation of the collagen metabolism

  12. Collagen Conduit Versus Microsurgical Neurorrhaphy

    DEFF Research Database (Denmark)

    Boeckstyns, Michel; Sørensen, Allan Ibsen; Viñeta, Joaquin Fores

    2013-01-01

    To compare repair of acute lacerations of mixed sensory-motor nerves in humans using a collagen tube versus conventional repair.......To compare repair of acute lacerations of mixed sensory-motor nerves in humans using a collagen tube versus conventional repair....

  13. Blocking Surgically Induced Lysyl Oxidase Activity Reduces the Risk of Lung Metastases

    Directory of Open Access Journals (Sweden)

    Chen Rachman-Tzemah

    2017-04-01

    Full Text Available Surgery remains the most successful curative treatment for cancer. However, some patients with early-stage disease who undergo surgery eventually succumb to distant metastasis. Here, we show that in response to surgery, the lungs become more vulnerable to metastasis due to extracellular matrix remodeling. Mice that undergo surgery or that are preconditioned with plasma from donor mice that underwent surgery succumb to lung metastases earlier than controls. Increased lysyl oxidase (LOX activity and expression, fibrillary collagen crosslinking, and focal adhesion signaling contribute to this effect, with the hypoxic surgical site serving as the source of LOX. Furthermore, the lungs of recipient mice injected with plasma from post-surgical colorectal cancer patients are more prone to metastatic seeding than mice injected with baseline plasma. Downregulation of LOX activity or levels reduces lung metastasis after surgery and increases survival, highlighting the potential of LOX inhibition in reducing the risk of metastasis following surgery.

  14. Low power infrared laser modifies the morphology of lung affected with acute injury induced by sepsis

    Science.gov (United States)

    Sergio, L. P. S.; Trajano, L. A. S. N.; Thomé, A. M. C.; Mencalha, A. L.; Paoli, F.; Fonseca, A. S.

    2018-06-01

    Acute lung injury (ALI) is a potentially fatal disease characterized by uncontrolled hyperinflammatory responses in the lungs as a consequence of sepsis. ALI is divided into two sequential and time-dependent phases, exudative and fibroproliferative phases, with increased permeability of the alveolar barrier, causing edema and inflammation. However, there are no specific treatments for ALI. Low-power lasers have been successfully used in the resolution of acute inflammatory processes. The aim of this study was to evaluate the effects of low-power infrared laser exposure on alveolus and interalveolar septa of Wistar rats affected by ALI-induced by sepsis. Laser fluences, power, and the emission mode were those used in clinical protocols for the treatment of acute inflammation. Adult male Wistar rats were randomized into six groups: control, 10 J cm‑2, 20 J cm‑2, ALI, ALI  +  10 J cm‑2, and ALI  +  20 J cm‑2. ALI was induced by intraperitoneal Escherichia coli lipopolysaccharide (LPS). Lungs were removed and processed for hematoxylin–eosin staining. Morphological alterations induced by LPS in lung tissue were quantified by morphometry with a 32-point cyclic arcs test system in Stepanizer. Data showed that exposure to low-power infrared laser in both fluences reduced the thickening of interalveolar septa in lungs affected by ALI, increasing the alveolar space; however, inflammatory infiltrate was still observed. Our research showed that exposure to low-power infrared laser improves the lung parenchyma in Wistar rats affected by ALI, which could be an alternative approach for treatment of inflammatory lung injuries.

  15. Collagen targeting using multivalent protein-functionalized dendrimers

    NARCIS (Netherlands)

    Breurken, M.; Lempens, E.H.M.; Temming, R.P.; Helms, B.A.; Meijer, E.W.; Merkx, M.

    2011-01-01

    Collagen is an attractive marker for tissue remodeling in a variety of common disease processes. Here we report the preparation of protein dendrimers as multivalent collagen targeting ligands by native chemical ligation of the collagen binding protein CNA35 to cysteine-functionalized dendritic

  16. Building blocks of Collagen based biomaterial devices

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Building blocks of Collagen based biomaterial devices. Collagen as a protein. Collagen in tissues and organs. Stabilizing and cross linking agents. Immunogenicity. Hosts (drugs). Controlled release mechanisms of hosts. Biodegradability, workability into devices ...

  17. Polarized Raman anisotropic response of collagen in tendon: towards 3D orientation mapping of collagen in tissues.

    Directory of Open Access Journals (Sweden)

    Leonardo Galvis

    Full Text Available In this study, polarized Raman spectroscopy (PRS was used to characterize the anisotropic response of the amide I band of collagen as a basis for evaluating three-dimensional collagen fibril orientation in tissues. Firstly, the response was investigated theoretically by applying classical Raman theory to collagen-like peptide crystal structures. The theoretical methodology was then tested experimentally, by measuring amide I intensity anisotropy in rat tail as a function of the orientation of the incident laser polarization. For the theoretical study, several collagen-like triple-helical peptide crystal structures obtained from the Protein Data Bank were rotated "in plane" and "out of plane" to evaluate the role of molecular orientation on the intensity of the amide I band. Collagen-like peptides exhibit a sinusoidal anisotropic response when rotated "in plane" with respect to the polarized incident laser. Maximal intensity was obtained when the polarization of the incident light is perpendicular to the molecule and minimal when parallel. In the case of "out of plane" rotation of the molecular structure a decreased anisotropic response was observed, becoming completely isotropic when the structure was perpendicular to the plane of observation. The theoretical Raman response of collagen was compared to that of alpha helical protein fragments. In contrast to collagen, alpha helices have a maximal signal when incident light is parallel to the molecule and minimal when perpendicular. For out-of-plane molecular orientations alpha-helix structures display a decreased average intensity. Results obtained from experiments on rat tail tendon are in excellent agreement with the theoretical predictions, thus demonstrating the high potential of PRS for experimental evaluation of the three-dimensional orientation of collagen fibers in biological tissues.

  18. Changes in guinea-pig dermal collagen during development

    International Nuclear Information System (INIS)

    Shuttleworth, C.A.; Forrest, L.

    1975-01-01

    Guinea-pig dermis was digested with pepsin and the solubilized collagen molecules separated by differential salt precipitation at pH 7.5. Differences in subunit composition and amino acid analysis were noted between type I and type III collagen. Incorporation of radioactive proline into the developing foetus enabled isolation of labelled type I and type III collagens. Comparison of the specific activity of the isolated collagen molecules showed that type III collagen had a high specific activity in the early stages of foetal development, which decreased dramatically during foetal development. The specific activity of pepsin-solubilized type I collagen remained fairly constant during foetal development. (orig.) [de

  19. Mice lacking cystathionine beta synthase have lung fibrosis and air space enlargement.

    Science.gov (United States)

    Hamelet, Julien; Maurin, Nicole; Fulchiron, Romain; Delabar, Jean-Maurice; Janel, Nathalie

    2007-10-01

    Cystathionine beta synthase (CBS) is a crucial regulator of plasma concentrations of homocysteine. Severe hyperhomocysteinemia due to CBS deficiency confers diverse clinical manifestations, notably pulmonary thrombotic disease. However, the association between hyperhomocysteinemia and chronic obstructive pulmonary disease is not well understood. To investigate the role of hyperhomocysteinemia in lung injury and pulmonary fibrosis, we analyzed the lung of CBS-deficient mice, a murine model of severe hyperhomocysteinemia. The degree of lung injury was assessed by histologic examination. Analysis of profibrogenic factors was performed by real-time quantitative reverse transcription-polymerase chain reaction. CBS-deficient mice develop fibrosis and air space enlargement in the lung, concomitant with an enhanced expression of heme oxygenase-1, pro(alpha)1 collagen type I, transforming growth factor-beta1 and alpha-smooth muscle actin. However, lung fibrosis was found in the absence of increased inflammatory cell infiltrates as determined by histology, without changes in gene expression of proinflammatory cytokines TNFalpha and interleukin 6. The increased expression of alpha-smooth muscle actin and transforming growth factor-beta1 emphasizes the role of myofibroblasts differentiation in case of lung fibrosis due to CBS deficiency in mice.

  20. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Aihong [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China); Li Kuncheng [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China)], E-mail: Likuncheng@vip.sina.com; Li Lin; Shan Baoci [Institute of High Energy Physics, Chinese Academy of Sciences (China); Wang Yuping; Xue Sufang [Department of Neurology, Xuanwu Hospital, Capital University of Medical Sciences (China)

    2008-01-15

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE.

  1. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Yu Aihong; Li Kuncheng; Li Lin; Shan Baoci; Wang Yuping; Xue Sufang

    2008-01-01

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE

  2. Interleukin-1β attenuates myofibroblast formation and extracellular matrix production in dermal and lung fibroblasts exposed to transforming growth factor-β1.

    Directory of Open Access Journals (Sweden)

    Masum M Mia

    Full Text Available One of the most potent pro-fibrotic cytokines is transforming growth factor (TGFβ. TGFβ is involved in the activation of fibroblasts into myofibroblasts, resulting in the hallmark of fibrosis: the pathological accumulation of collagen. Interleukin-1β (IL1β can influence the severity of fibrosis, however much less is known about the direct effects on fibroblasts. Using lung and dermal fibroblasts, we have investigated the effects of IL1β, TGFβ1, and IL1β in combination with TGFβ1 on myofibroblast formation, collagen synthesis and collagen modification (including prolyl hydroxylase, lysyl hydroxylase and lysyl oxidase, and matrix metalloproteinases (MMPs. We found that IL1β alone has no obvious pro-fibrotic effect on fibroblasts. However, IL1β is able to inhibit the TGFβ1-induced myofibroblast formation as well as collagen synthesis. Glioma-associated oncogene homolog 1 (GLI1, the Hedgehog transcription factor that is involved in the transformation of fibroblasts into myofibroblasts is upregulated by TGFβ1. The addition of IL1β reduced the expression of GLI1 and thereby also indirectly inhibits myofibroblast formation. Other potentially anti-fibrotic effects of IL1β that were observed are the increased levels of MMP1, -2, -9 and -14 produced by fibroblasts exposed to TGFβ1/IL1β in comparison with fibroblasts exposed to TGFβ1 alone. In addition, IL1β decreased the TGFβ1-induced upregulation of lysyl oxidase, an enzyme involved in collagen cross-linking. Furthermore, we found that lung and dermal fibroblasts do not always behave identically towards IL1β. Suppression of COL1A1 by IL1β in the presence of TGFβ1 is more pronounced in lung fibroblasts compared to dermal fibroblasts, whereas a higher upregulation of MMP1 is seen in dermal fibroblasts. The role of IL1β in fibrosis should be reconsidered, and the differences in phenotypical properties of fibroblasts derived from different organs should be taken into account in future

  3. Immune responses to implanted human collagen graft in rats

    International Nuclear Information System (INIS)

    Quteish, D.; Dolby, A.E.

    1991-01-01

    Immunity to collagen implants may be mediated by cellular and humoral immune responses. To examine the possibility of such immunological reactivity and crossreactivity to collagen, 39 Sprague-Dawley rats (female, 10 weeks old, approximately 250 g wt) were implanted subcutaneously at thigh sites with crosslinked, freeze-dried human placental type I collagen grafts (4x4x2 mm) which had been irradiated (520 Gray) or left untreated. Blood was obtained by intracardiac sampling prior to implantation or from normal rats, and at various times afterwards when the animals were sacrificed. The sera from these animals were examined for circulating antibodies to human, bovine and rat tail (type I) collagens by enzyme-linked immunosorbent assay (ELISA). Also, the lymphoblastogenic responses of spleen lymphocytes from the irradiated collagen-implanted animals were assessed in culture by measuring thymidine uptake with autologous and normal rat sera in the presence of human bovine type I collagens. Implantation of the irradiated and non-irradiated collagen graft in rats led to a significant increase in the level of circulating antibodies to human collagen. Also antibody to bovine and rat tail collagens was detectable in the animals implanted with irradiated collagen grafts but at a lower level than the human collagen. There was a raised lymphoblastogenic response to both human and bovine collagens. The antibody level and lymphoblastogenesis to the tested collagens gradually decreased towards the end of the post-implantation period. (author)

  4. Lake Morphometry for NHD Lakes in the Upper Portion of the Missouri Region 10 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  5. Lake Morphometry for NHD Lakes in the Lower Portion of the Missouri Region 10 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  6. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    Directory of Open Access Journals (Sweden)

    Rong Yao

    Full Text Available Pulmonary fibrosis is one of the most common complications of paraquat (PQ poisoning, which demands for more effective therapies. Accumulating evidence suggests adiponectin (APN may be a promising therapy against fibrotic diseases. In the current study, we determine whether the exogenous globular APN isoform protects against pulmonary fibrosis in PQ-treated mice and human lung fibroblasts, and dissect the responsible underlying mechanisms. BALB/C mice were divided into control group, PQ group, PQ + low-dose APN group, and PQ + high-dose APN group. Mice were sacrificed 3, 7, 14, and 21 days after PQ treatment. We compared pulmonary histopathological changes among different groups on the basis of fibrosis scores, TGF-β1, CTGF and α-SMA pulmonary content via Western blot and real-time quantitative fluorescence-PCR (RT-PCR. Blood levels of MMP-9 and TIMP-1 were determined by ELISA. Human lung fibroblasts WI-38 were divided into control group, PQ group, APN group, and APN receptor (AdipoR 1 small-interfering RNA (siRNA group. Fibroblasts were collected 24, 48, and 72 hours after PQ exposure for assay. Cell viability and apoptosis were determined via Kit-8 (CCK-8 and fluorescein Annexin V-FITC/PI double labeling. The protein and mRNA expression level of collagen type III, AdipoR1, and AdipoR2 were measured by Western blot and RT-PCR. APN treatment significantly decreased the lung fibrosis scores, protein and mRNA expression of pulmonary TGF-β1, CTGF and α-SMA content, and blood MMP-9 and TIMP-1 in a dose-dependent manner (p<0.05. Pretreatment with APN significantly attenuated the reduced cell viability and up-regulated collagen type III expression induced by PQ in lung fibroblasts, (p<0.05. APN pretreatment up-regulated AdipoR1, but not AdipoR2, expression in WI-38 fibroblasts. AdipoR1 siRNA abrogated APN-mediated protective effects in PQ-exposed fibroblasts. Taken together, our data suggests APN protects against PQ-induced pulmonary fibrosis in a

  7. Uniform spatial distribution of collagen fibril radii within tendon implies local activation of pC-collagen at individual fibrils

    Science.gov (United States)

    Rutenberg, Andrew D.; Brown, Aidan I.; Kreplak, Laurent

    2016-08-01

    Collagen fibril cross-sectional radii show no systematic variation between the interior and the periphery of fibril bundles, indicating an effectively constant rate of collagen incorporation into fibrils throughout the bundle. Such spatially homogeneous incorporation constrains the extracellular diffusion of collagen precursors from sources at the bundle boundary to sinks at the growing fibrils. With a coarse-grained diffusion equation we determine stringent bounds, using parameters extracted from published experimental measurements of tendon development. From the lack of new fibril formation after birth, we further require that the concentration of diffusing precursors stays below the critical concentration for fibril nucleation. We find that the combination of the diffusive bound, which requires larger concentrations to ensure homogeneous fibril radii, and lack of nucleation, which requires lower concentrations, is only marginally consistent with fully processed collagen using conservative bounds. More realistic bounds may leave no consistent concentrations. Therefore, we propose that unprocessed pC-collagen diffuses from the bundle periphery followed by local C-proteinase activity and subsequent collagen incorporation at each fibril. We suggest that C-proteinase is localized within bundles, at fibril surfaces, during radial fibrillar growth. The much greater critical concentration of pC-collagen, as compared to fully processed collagen, then provides broad consistency between homogeneous fibril radii and the lack of fibril nucleation during fibril growth.

  8. [Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation].

    Science.gov (United States)

    Zheng, Zefeng; Shen, Weiliang; Le, Huihui; Dai, Xuesong; Ouyang, Hongwei; Chen, Weishan

    2016-03-01

    To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.

  9. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    International Nuclear Information System (INIS)

    Stamov, Dimitar R; Stock, Erik; Franz, Clemens M; Jähnke, Torsten; Haschke, Heiko

    2015-01-01

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I

  10. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, Dimitar R, E-mail: stamov@jpk.com [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)

    2015-02-15

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  11. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...... produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated...... disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional...

  12. Adherence, proliferation and collagen turnover by human fibroblasts seeded into different types of collagen sponges

    NARCIS (Netherlands)

    Middelkoop, E.; de Vries, H. J.; Ruuls, L.; Everts, V.; Wildevuur, C. H.; Westerhof, W.

    1995-01-01

    We describe an in vitro model that we have used to evaluate dermal substitutes and to obtain data on cell proliferation, the rate of degradation of the dermal equivalent, contractibility and de novo synthesis of collagen. We tested three classes of collagenous materials: (1) reconstituted

  13. ADHERENCE, PROLIFERATION AND COLLAGEN TURNOVER BY HUMAN FIBROBLASTS SEEDED INTO DIFFERENT TYPES OF COLLAGEN SPONGES

    NARCIS (Netherlands)

    MIDDELKOOP, E; DEVRIES, HJC; RUULS, L; EVERTS, [No Value; WILDEVUUR, CHR; WESTERHOF, W

    We describe an in vitro model that we have used to evaluate dermal substitutes and to obtain data on cell proliferation, the rate of degradation of the dermal equivalent, contractibility and de novo synthesis of collagen. We tested three classes of collagenous materials: (1) reconstituted

  14. Symposium Entitled: Particle Lung Interactions: ’Overload’ Related Phenomena. A Journal of Aerosol Medicine - Deposition, Clearance, and Effects in the Lung. Volume 3, Supplement 1

    Science.gov (United States)

    1991-04-01

    J.B., MCGANDY R.B. and KENNEDY A.R. (1978). Interactions Between Polonium - 210 Alpha-Radiation, Benzo(a)pyrene, and 0.9% NaCl Solution Instillations in...J.A. 1985 Changes in the collagen pathway in fibrosis. Fundam. Appl. Toxicol. 5: 210 -218. LAST, J.A., GERRIETS. J.E., ARMSTRONG, L.G.. GELZLEICHTER...Development (OECD) standard measurements such as body weight, food consumption, biochemical and Key words: Lung, retention, alveolar clearance, insoluble

  15. Discoidin Domain Receptor 1 Mediates Myosin-Dependent Collagen Contraction

    Directory of Open Access Journals (Sweden)

    Nuno M. Coelho

    2017-02-01

    Full Text Available Discoidin domain receptor 1 (DDR1 is a tyrosine kinase collagen adhesion receptor that mediates cell migration through association with non-muscle myosin IIA (NMIIA. Because DDR1 is implicated in cancer fibrosis, we hypothesized that DDR1 interacts with NMIIA to enable collagen compaction by traction forces. Mechanical splinting of rat dermal wounds increased DDR1 expression and collagen alignment. In periodontal ligament of DDR1 knockout mice, collagen mechanical reorganization was reduced >30%. Similarly, cultured cells with DDR1 knockdown or expressing kinase-deficient DDR1d showed 50% reduction of aligned collagen. Tractional remodeling of collagen was dependent on DDR1 clustering, activation, and interaction of the DDR1 C-terminal kinase domain with NMIIA filaments. Collagen remodeling by traction forces, DDR1 tyrosine phosphorylation, and myosin light chain phosphorylation were increased on stiff versus soft substrates. Thus, DDR1 clustering, activation, and interaction with NMIIA filaments enhance the collagen tractional remodeling that is important for collagen compaction in fibrosis.

  16. A New Kind of Biomaterials-Bullfrog Skin Collagen

    Institute of Scientific and Technical Information of China (English)

    He LI; Bai Ling LIU; Hua Lin CHEN; Li Zhen GAO

    2003-01-01

    Pepsin-soluble collagen was prepared from bullfrog skin and partially characterized. This study revealed interesting differences, such as molecular weight, amino acid composition, denaturation temperature (Td), in the frog skin collagen when compared to the known vertebrate collagens. This study gives hints that bullfrog skin can be a potential, safe alternative source of collagen from cattle for use in various fields.

  17. The decorin sequence SYIRIADTNIT binds collagen type I

    DEFF Research Database (Denmark)

    Kalamajski, Sebastian; Aspberg, Anders; Oldberg, Ake

    2007-01-01

    Decorin belongs to the small leucine-rich repeat proteoglycan family, interacts with fibrillar collagens, and regulates the assembly, structure, and biomechanical properties of connective tissues. The decorin-collagen type I-binding region is located in leucine-rich repeats 5-6. Site......-directed mutagenesis of this 54-residue-long collagen-binding sequence identifies Arg-207 and Asp-210 in leucine-rich repeat 6 as crucial for the binding to collagen. The synthetic peptide SYIRIADTNIT, which includes Arg-207 and Asp-210, inhibits the binding of full-length recombinant decorin to collagen in vitro....... These collagen-binding amino acids are exposed on the exterior of the beta-sheet-loop structure of the leucine-rich repeat. This resembles the location of interacting residues in other leucine-rich repeat proteins....

  18. Aging effects on cerebral asymmetry: a voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Takao, Hidemasa; Abe, Osamu; Yamasue, Hidenori; Aoki, Shigeki; Kasai, Kiyoto; Sasaki, Hiroki; Ohtomo, Kuni

    2010-01-01

    The hemispheres of the human brain are functionally and structurally asymmetric. The purpose of this study was to evaluate the effects of aging on gray and white matter asymmetry. Two hundred twenty-six right-handed normal volunteers aged 21-71 years were included in this study. The effects of aging on gray matter volume asymmetry and white matter fractional anisotropy asymmetry were evaluated with use of voxel-based morphometry and voxel-based analysis of fractional anisotropy maps derived from diffusion tensor imaging (DTI), respectively. The voxel-based morphometry showed no significant correlation between age and gray matter volume asymmetry. The voxel-based analysis of DTI also showed no significant correlation between age and white matter fractional anisotropy asymmetry. Our results showed no significant effects of aging on either gray matter volume asymmetry or white matter fractional anisotropy asymmetry.

  19. Exposure to neonatal cigarette smoke causes durable lung changes but does not potentiate cigarette smoke–induced chronic obstructive pulmonary disease in adult mice

    Science.gov (United States)

    McGrath-Morrow, Sharon; Malhotra, Deepti; Lauer, Thomas; Collaco, J. Michael; Mitzner, Wayne; Neptune, Enid; Wise, Robert; Biswal, Shyam

    2016-01-01

    The impact of early childhood cigarette smoke (CS) exposure on CS-induced chronic obstructive pulmonary disease (COPD) is unknown. This study was performed to evaluate the individual and combined effects of neonatal and adult CS exposure on lung structure, function, and gene expression in adult mice. To model a childhood CS exposure, neonatal C57/B6 mice were exposed to 14 days of CS (Neo CS). At 10 weeks of age, Neo CS and control mice were exposed to 4 months of CS. Pulmonary function tests, bronchoalveolar lavage, and lung morphometry were measured and gene expression profiling was performed on lung tissue. Mean chord lengths and lung volumes were increased in neonatal and/or adult CS-exposed mice. Differences in immune, cornified envelope protein, muscle, and erythrocyte genes were found in CS-exposed lung. Neonatal CS exposure caused durable structural and functional changes in the adult lung but did not potentiate CS-induced COPD changes. Cornified envelope protein gene expression was decreased in all CS-exposed mice, whereas myosin and erythrocyte gene expression was increased in mice exposed to both neonatal and adult CS, suggesting an adaptive response. Additional studies may be warranted to determine the utility of these genes as biomarkers of respiratory outcomes. PMID:21649527

  20. Development and proof-of-concept of three-dimensional lung histology volumes

    Science.gov (United States)

    Mathew, Lindsay; Alabousi, Mostafa; Wheatley, Andrew; Aladl, Usaf; Slipetz, Deborah; Hogg, James C.; Fenster, Aaron; Parraga, Grace

    2012-03-01

    Most medical imaging is inherently three-dimensional (3D) but for validation of pathological findings, histopathology is commonly used and typically histopathology images are acquired as twodimensional slices with quantitative analysis performed in a single dimension. Histopathology is invasive, labour-intensive, and the analysis cannot be performed in real time, yet it remains the gold standard for the pathological diagnosis and validation of clinical or radiological diagnoses of disease. A major goal worldwide is to improve medical imaging resolution, sensitivity and specificity to better guide therapy and biopsy and to one day delay or replace biopsy. A key limitation however is the lack of tools to directly compare 3D macroscopic imaging acquired in patients with histopathology findings, typically provided in a single dimension (1D) or in two dimensions (2D). To directly address this, we developed methods for 2D histology slice visualization/registration to generate 3D volumes and quantified tissue components in the 3D volume for direct comparison to volumetric micro-CT and clinical CT. We used the elastase-instilled mouse emphysema lung model to evaluate our methods with murine lungs sectioned (5 μm thickness/10 μm gap) and digitized with 2μm in-plane resolution. 3D volumes were generated for wildtype and elastase mouse lung sections after semi-automated registration of all tissue slices. The 1D mean linear intercept (Lm) for wildtype (WT) (47.1 μm +/- 9.8 μm) and elastase mouse lung (64.5 μm +/- 14.0 μm) was significantly different (p<.001). We also generated 3D measurements based on tissue and airspace morphometry from the 3D volumes and all of these were significantly different (p<.0001) when comparing elastase and WT mouse lung. The ratio of the airspace-to-lung volume for the entire lung volume was also significantly and strongly correlated with Lm.

  1. Measurement of skeletal muscle collagen breakdown by microdialysis

    DEFF Research Database (Denmark)

    Miller, B F; Ellis, D; Robinson, M M

    2011-01-01

    Exercise increases the synthesis of collagen in the extracellular matrix of skeletal muscle. Breakdown of skeletal muscle collagen has not yet been determined because of technical limitations. The purpose of the present study was to use local sampling to determine skeletal muscle collagen breakdown...... collagen breakdown 17–21 h post-exercise, and our measurement of OHP using GC–MS was in agreement with traditional assays....

  2. A New Method for Automated Identification and Morphometry of Myelinated Fibers Through Light Microscopy Image Analysis.

    Science.gov (United States)

    Novas, Romulo Bourget; Fazan, Valeria Paula Sassoli; Felipe, Joaquim Cezar

    2016-02-01

    Nerve morphometry is known to produce relevant information for the evaluation of several phenomena, such as nerve repair, regeneration, implant, transplant, aging, and different human neuropathies. Manual morphometry is laborious, tedious, time consuming, and subject to many sources of error. Therefore, in this paper, we propose a new method for the automated morphometry of myelinated fibers in cross-section light microscopy images. Images from the recurrent laryngeal nerve of adult rats and the vestibulocochlear nerve of adult guinea pigs were used herein. The proposed pipeline for fiber segmentation is based on the techniques of competitive clustering and concavity analysis. The evaluation of the proposed method for segmentation of images was done by comparing the automatic segmentation with the manual segmentation. To further evaluate the proposed method considering morphometric features extracted from the segmented images, the distributions of these features were tested for statistical significant difference. The method achieved a high overall sensitivity and very low false-positive rates per image. We detect no statistical difference between the distribution of the features extracted from the manual and the pipeline segmentations. The method presented a good overall performance, showing widespread potential in experimental and clinical settings allowing large-scale image analysis and, thus, leading to more reliable results.

  3. A morphometry map and a new method for honey bee morphometric analysis by using the ArcGIS

    Directory of Open Access Journals (Sweden)

    Hossam F. Abou-Shaara

    2013-12-01

    Full Text Available The morphometric analysis of honey bees has a substantial importance for honey bee subspecies characterization and discrimination while the ArcGIS is a geographical program for data analysis. In the present research, the combination between the morphometric data and the spatial analysis options of the ArcGIS was done and subsequently tested in creating a morphometry map for honey bees from some regions in Egypt as well as for the discrimination between two honey bee subspecies. Therefore, I present a model for creating the morphometry maps and a new method for the morphometric analysis by the transformation of the morphometric data to raster data layers. The obtained results showed that the created morphometry map classified the regions successfully according to the morphological character means. The morphometric analysis was successfully performed by using trend analysis and raster difference range. The analysis of the morphometric data as raster layers showed high sensitivity for the differences between subspecies and regions. The presented model and the method are effective and can be applied for the discrimination between subspecies, regions and colonies as well as can be used with other insects.

  4. Radiation-Induced Differentiation in Human Lung Fibroblast

    International Nuclear Information System (INIS)

    Park, Sa-Rah; Ahn, Ji-Yeon; Han, Young-Soo; Shim, Jie-Young; Yun, Yeon-Sook; Song, Jie-Young

    2007-01-01

    One of the most common tumors in many countries is lung cancer and patients with lung cancer may take radiotherapy. Although radiotherapy may have its own advantages, it can also induce serious problems such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of α-SMA and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-β), tumor necrosis factor (TNF), interleukin (IL)-1, IL-6, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) are related to fibrosis. Among them TGF-β with Smad signaling is known to be the main stream and other signaling molecules such as MAPK, ERK and JNK (3) also participates in the process. In addition to those above factors, it is thought that more diverse and complicate mechanisms may involve in the radiationinduced fibrosis. Therefore, to investigate the underlying mechanisms in radiation induced fibrosis, first of all, we confirmed whether radiation induces trans differentiation in human normal lung fibroblasts. Here, we suggest that not only TGF-β but also radiation can induce trans differentiation in human lung fibroblast WI-38 and IMR-90

  5. Morphometry of latent palmprints as a function of time.

    Science.gov (United States)

    Barros, Rodrigo M; Faria, Bruna E F; Kuckelhaus, Selma A S

    2013-12-01

    In many crimes, the elapsed time between production and collecting fingermark traces is crucial. and a method able to detect the aging of latent prints would represent an improvement in forensic procedures. Considering that as the latent print gets older, substantial changes in the relative proportion of individual components secreted by skin glands could affect the morphology of ridges, morphometry could be a potential tool to assess the aging of latent fingermarks. Then, considering the very limited research in the field, the present work aims to evaluate the morphometry of latent palmprint ridges, as a function of time, in order to identify an aging pattern. The latent marks were deposited by 20 donors on glass microscope slides considering pressure and contact angle, and then were maintained under controlled environmental conditions. The morphometric study was conducted on marks developed with magnetic powder in 7 different time intervals after deposition (0, 5, 10, 15, 20, 25 or 30 days); 60 ridges were evaluated for each developed mark. The results showed that: 1) the method for the replacement and mixing of skin secretions on the palm was appropriate to ensure reproducibility of latent prints, and 2) considering the studied group, there was a time-dependent reduction in the width of ridges and on the percentage of visible ridges over 30 days. Results suggest the possibility of using the morphometric method to determine an aging profile of latent palmprints on glass surface, aiming for forensic purposes. © 2013.

  6. Fluorescently labaled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture

    NARCIS (Netherlands)

    Krahn, K.B.N.; Bouten, C.V.C.; Tuijl, van S.; Zandvoort, van M.; Merkx, M.

    2006-01-01

    Visualization of the formation and orientation of collagen fibers in tissue engineering experiments is crucial for understanding the factors that determine the mechanical properties of tissues. In this study, collagen-specific fluorescent probes were developed using a new approach that takes

  7. Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis

    International Nuclear Information System (INIS)

    Ma, Jane; Bishoff, Bridget; Mercer, R.R.; Barger, Mark; Schwegler-Berry, Diane; Castranova, Vincent

    2017-01-01

    The emission of cerium oxide nanoparticles (CeO 2 ) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO 2 induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO 2 -induced fibrosis. Male Sprague-Dawley rats were exposed to CeO 2 (0.15 to 7 mg/kg) by a single intratracheal instillation and sacrificed at various times post-exposure. The results show that at 28 days after CeO 2 (3.5 mg/kg) exposure, lung fibrosis was evidenced by increased soluble collagen in bronchoalveolar lavage fluid, elevated hydroxyproline content in lung tissues, and enhanced sirius red staining for collagen in the lung tissue. Lung fibroblasts and alveolar type II (ATII) cells isolated from CeO 2 -exposed rats at 28 days post-exposure demonstrated decreasing proliferation rate when compare to the controls. CeO 2 exposure was cytotoxic and altered cell function as demonstrated by fibroblast apoptosis and aggregation, and ATII cell hypertrophy and hyperplasia with increased surfactant. The presence of stress fibers, expressed as α-smooth muscle actin (SMA), in CeO 2 -exposed fibroblasts and ATII cells was significantly increased compared to the control. Immunohistofluorescence analysis demonstrated co-localization of TGF-β or α-SMA with prosurfactant protein C (SPC)-stained ATII cells. These results demonstrate that CeO 2 exposure affects fibroblast function and induces EMT in ATII cells that play a role in lung fibrosis. These findings suggest potential adverse health effects in response to CeO 2 nanoparticle exposure. - Highlights: • CeO 2 exposure induced lung fibrosis. • CeO 2 were detected in lung tissue, alveolar type II (ATII) cells and fibroblasts. • CeO 2 caused ATII cell hypertrophy and hyperplasia and altered fibroblast function

  8. Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jane [Health Effects Laboratory Division, NIOSH, Morgantown, WV (United States); Bishoff, Bridget [Mylan Pharmaceuticals, Morganntown, WV (United States); Mercer, R.R.; Barger, Mark; Schwegler-Berry, Diane [Health Effects Laboratory Division, NIOSH, Morgantown, WV (United States); Castranova, Vincent, E-mail: vcastran@hsc.wvu.edu [School of Pharmacy, West Virginia University, Morgantown, WV (United States)

    2017-05-15

    The emission of cerium oxide nanoparticles (CeO{sub 2}) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO{sub 2} induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO{sub 2}-induced fibrosis. Male Sprague-Dawley rats were exposed to CeO{sub 2} (0.15 to 7 mg/kg) by a single intratracheal instillation and sacrificed at various times post-exposure. The results show that at 28 days after CeO{sub 2} (3.5 mg/kg) exposure, lung fibrosis was evidenced by increased soluble collagen in bronchoalveolar lavage fluid, elevated hydroxyproline content in lung tissues, and enhanced sirius red staining for collagen in the lung tissue. Lung fibroblasts and alveolar type II (ATII) cells isolated from CeO{sub 2}-exposed rats at 28 days post-exposure demonstrated decreasing proliferation rate when compare to the controls. CeO{sub 2} exposure was cytotoxic and altered cell function as demonstrated by fibroblast apoptosis and aggregation, and ATII cell hypertrophy and hyperplasia with increased surfactant. The presence of stress fibers, expressed as α-smooth muscle actin (SMA), in CeO{sub 2}-exposed fibroblasts and ATII cells was significantly increased compared to the control. Immunohistofluorescence analysis demonstrated co-localization of TGF-β or α-SMA with prosurfactant protein C (SPC)-stained ATII cells. These results demonstrate that CeO{sub 2} exposure affects fibroblast function and induces EMT in ATII cells that play a role in lung fibrosis. These findings suggest potential adverse health effects in response to CeO{sub 2} nanoparticle exposure. - Highlights: • CeO{sub 2} exposure induced lung fibrosis. • CeO{sub 2} were detected in lung tissue, alveolar type II (ATII) cells and fibroblasts. • CeO{sub 2} caused ATII

  9. The collagen receptor uPARAP/Endo180

    DEFF Research Database (Denmark)

    Engelholm, Lars H; Ingvarsen, Signe; Jürgensen, Henrik J

    2009-01-01

    The uPAR-associated protein (uPARAP/Endo180), a type-1 membrane protein belonging to the mannose receptor family, is an endocytic receptor for collagen. Through this endocytic function, the protein takes part in a previously unrecognized mechanism of collagen turnover. uPARAP/Endo180 can bind...... and internalize both intact and partially degraded collagens. In some turnover pathways, the function of the receptor probably involves an interplay with certain matrix-degrading proteases whereas, in other physiological processes, redundant mechanisms involving both endocytic and pericellular collagenolysis seem...... in collagen breakdown seems to be involved in invasive tumor growth Udgivelsesdato: 2009...

  10. The minor collagens in articular cartilage

    DEFF Research Database (Denmark)

    Luo, Yunyun; Sinkeviciute, Dovile; He, Yi

    2017-01-01

    Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components......, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also...... fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including...

  11. The synthesis and coupling of photoreactive collagen-based peptides to restore integrin reactivity to an inert substrate, chemically-crosslinked collagen

    Science.gov (United States)

    Malcor, Jean-Daniel; Bax, Daniel; Hamaia, Samir W.; Davidenko, Natalia; Best, Serena M.; Cameron, Ruth E.; Farndale, Richard W.; Bihan, Dominique

    2016-01-01

    Collagen is frequently advocated as a scaffold for use in regenerative medicine. Increasing the mechanical stability of a collagen scaffold is widely achieved by cross-linking using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). However, this treatment consumes the carboxylate-containing amino acid sidechains that are crucial for recognition by the cell-surface integrins, abolishing cell adhesion. Here, we restore cell reactivity to a cross-linked type I collagen film by covalently linking synthetic triple-helical peptides (THPs), mimicking the structure of collagen. These THPs are ligands containing an active cell-recognition motif, GFOGER, a high-affinity binding site for the collagen-binding integrins. We end-stapled peptide strands containing GFOGER by coupling a short diglutamate-containing peptide to their N-terminus, improving the thermal stability of the resulting THP. A photoreactive Diazirine group was grafted onto the end-stapled THP to allow covalent linkage to the collagen film upon UV activation. Such GFOGER-derivatized collagen films showed restored affinity for the ligand-binding I domain of integrin α2β1, and increased integrin-dependent cell attachment and spreading of HT1080 and Rugli cell lines, expressing integrins α2β1 and α1β1, respectively. The method we describe has wide application, beyond collagen films or scaffolds, since the photoreactive diazirine will react with many organic carbon skeletons. PMID:26854392

  12. Genetic influence of apolipoprotein E4 genotype on hippocampal morphometry: An N = 725 surface-based Alzheimer's disease neuroimaging initiative study.

    Science.gov (United States)

    Shi, Jie; Leporé, Natasha; Gutman, Boris A; Thompson, Paul M; Baxter, Leslie C; Caselli, Richard J; Wang, Yalin

    2014-08-01

    The apolipoprotein E (APOE) e4 allele is the most prevalent genetic risk factor for Alzheimer's disease (AD). Hippocampal volumes are generally smaller in AD patients carrying the e4 allele compared to e4 noncarriers. Here we examined the effect of APOE e4 on hippocampal morphometry in a large imaging database-the Alzheimer's Disease Neuroimaging Initiative (ADNI). We automatically segmented and constructed hippocampal surfaces from the baseline MR images of 725 subjects with known APOE genotype information including 167 with AD, 354 with mild cognitive impairment (MCI), and 204 normal controls. High-order correspondences between hippocampal surfaces were enforced across subjects with a novel inverse consistent surface fluid registration method. Multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance were computed for surface deformation analysis. Using Hotelling's T(2) test, we found significant morphological deformation in APOE e4 carriers relative to noncarriers in the entire cohort as well as in the nondemented (pooled MCI and control) subjects, affecting the left hippocampus more than the right, and this effect was more pronounced in e4 homozygotes than heterozygotes. Our findings are consistent with previous studies that showed e4 carriers exhibit accelerated hippocampal atrophy; we extend these findings to a novel measure of hippocampal morphometry. Hippocampal morphometry has significant potential as an imaging biomarker of early stage AD. Copyright © 2014 Wiley Periodicals, Inc.

  13. Mechanisms of lamellar collagen formation in connective tissues.

    Science.gov (United States)

    Ghazanfari, Samaneh; Khademhosseini, Ali; Smit, Theodoor H

    2016-08-01

    The objective of tissue engineering is to regenerate functional tissues. Engineering functional tissues requires an understanding of the mechanisms that guide the formation and evolution of structure in the extracellular matrix (ECM). In particular, the three-dimensional (3D) collagen fiber arrangement is important as it is the key structural determinant that provides mechanical integrity and biological function. In this review, we survey the current knowledge on collagen organization mechanisms that can be applied to create well-structured functional lamellar tissues and in particular intervertebral disc and cornea. Thus far, the mechanisms behind the formation of cross-aligned collagen fibers in the lamellar structures is not fully understood. We start with cell-induced collagen alignment and strain-stabilization behavior mechanisms which can explain a single anisotropically aligned collagen fiber layer. These mechanisms may explain why there is anisotropy in a single layer in the first place. However, they cannot explain why a consecutive collagen layer is laid down with an alternating alignment. Therefore, we explored another mechanism, called liquid crystal phasing. While dense concentrations of collagen show such behavior, there is little evidence that the conditions for liquid crystal phasing are actually met in vivo. Instead, lysyl aldehyde-derived collagen cross-links have been found essential for correct lamellar matrix deposition. Furthermore, we suggest that supra-cellular (tissue-level) shear stress may be instrumental in the alignment of collagen fibers. Understanding the potential mechanisms behind the lamellar collagen structure in connective tissues will lead to further improvement of the regeneration strategies of functional complex lamellar tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Cosmetic Potential of Marine Fish Skin Collagen

    Directory of Open Access Journals (Sweden)

    Ana L. Alves

    2017-10-01

    Full Text Available Many cosmetic formulations have collagen as a major component because of its significant benefits as a natural humectant and moisturizer. This industry is constantly looking for innovative, sustainable, and truly efficacious products, so marine collagen based formulations are arising as promising alternatives. A solid description and characterization of this protein is fundamental to guarantee the highest quality of each batch. In the present study, we present an extensive characterization of marine-derived collagen extracted from salmon and codfish skins, targeting its inclusion as component in cosmetic formulations. Chemical and physical characterizations were performed using several techniques such as sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE, Fourier Transformation Infrared (FTIR spectroscopy rheology, circular dichroism, X-ray diffraction, humidity uptake, and a biological assessment of the extracts regarding their irritant potential. The results showed an isolation of type I collagen with high purity but with some structural and chemical differences between sources. Collagen demonstrated a good capacity to retain water, thus being suitable for dermal applications as a moisturizer. A topical exposure of collagen in a human reconstructed dermis, as well as the analysis of molecular markers for irritation and inflammation, exhibited no irritant potential. Thus, the isolation of collagen from fish skins for inclusion in dermocosmetic applications may constitute a sustainable and low-cost platform for the biotechnological valorization of fish by-products.

  15. Collagen-Gold Nanoparticle Conjugates for Versatile Biosensing

    Directory of Open Access Journals (Sweden)

    Sarah Unser

    2017-02-01

    Full Text Available Integration of noble metal nanoparticles with proteins offers promising potential to create a wide variety of biosensors that possess both improved selectivity and versatility. The multitude of functionalities that proteins offer coupled with the unique optical properties of noble metal nanoparticles can allow for the realization of simple, colorimetric sensors for a significantly larger range of targets. Herein, we integrate the structural protein collagen with 10 nm gold nanoparticles to develop a protein-nanoparticle conjugate which possess the functionality of the protein with the desired colorimetric properties of the nanoparticles. Applying the many interactions that collagen undergoes in the extracellular matrix, we are able to selectively detect both glucose and heparin with the same collagen-nanoparticle conjugate. Glucose is directly detected through the cross-linking of the collagen fibrils, which brings the attached nanoparticles into closer proximity, leading to a red-shift in the LSPR frequency. Conversely, heparin is detected through a competition assay in which heparin-gold nanoparticles are added to solution and compete with heparin in the solution for the binding sites on the collagen fibrils. The collagen-nanoparticle conjugates are shown to detect both glucose and heparin in the physiological range. Lastly, glucose is selectively detected in 50% mouse serum with the collagen-nanoparticle devices possessing a linear range of 3–25 mM, which is also within the physiologically relevant range.

  16. Genetic Variation in the Scavenger Receptor MARCO and Its Association with Chronic Obstructive Pulmonary Disease and Lung Infection in 10,604 Individuals

    DEFF Research Database (Denmark)

    Thomsen, Mette; Nordestgaard, Børge G; Kobzik, Lester

    2013-01-01

    Background: MARCO (macrophage receptor with collagenous structure) is a dominant receptor for unopsonized particles and bacteria in the lungs. Reduced function of this receptor due to genetic variation may be associated with susceptibility to chronic obstructive pulmonary disease (COPD) and lung...... infection. Objectives: To identify novel genetic variants in MARCO that are associated with reduced lung function, or increased risk of COPD or lung infection. Methods: We first screened 760 individuals with extreme lung phenotypes in a large general population study to identify novel variants in the MARCO...... the entire cohort for these variants, we found low minor allele frequencies ranging from 0.005 to 5%. None of the individual MARCO genotypes were associated with reduced lung function, or risk of COPD or lung infection. H101Q heterozygotes had an increased odds ratio for sepsis of 2.2 (95% CI: 1...

  17. Collagen synthesis in human musculoskeletal tissues and skin

    DEFF Research Database (Denmark)

    Babraj, J A; Cuthbertson, D J R; Smith, K

    2005-01-01

    We have developed a direct method for the measurement of human musculoskeletal collagen synthesis on the basis of the incorporation of stable isotope-labeled proline or leucine into protein and have used it to measure the rate of synthesis of collagen in tendon, ligament, muscle, and skin....... In postabsorptive, healthy young men (28 +/- 6 yr) synthetic rates for tendon, ligament, muscle, and skin collagen were 0.046 +/- 0.005, 0.040 +/- 0.006, 0.016 +/- 0.002, and 0.037 +/- 0.003%/h, respectively (means +/- SD). In postabsorptive, healthy elderly men (70 +/- 6 yr) the rate of skeletal muscle collagen...... synthesis is greater than in the young (0.023 +/- 0.002%/h, P collagen are similar to those of mixed skeletal muscle protein in the postabsorptive state, whereas the rate for muscle collagen synthesis is much lower in both young and elderly men...

  18. Comparative proteomic analysis of normal and collagen IX null mouse cartilage reveals altered extracellular matrix composition and novel components of the collagen IX interactome.

    Science.gov (United States)

    Brachvogel, Bent; Zaucke, Frank; Dave, Keyur; Norris, Emma L; Stermann, Jacek; Dayakli, Münire; Koch, Manuel; Gorman, Jeffrey J; Bateman, John F; Wilson, Richard

    2013-05-10

    Collagen IX is an integral cartilage extracellular matrix component important in skeletal development and joint function. Proteomic analysis and validation studies revealed novel alterations in collagen IX null cartilage. Matrilin-4, collagen XII, thrombospondin-4, fibronectin, βig-h3, and epiphycan are components of the in vivo collagen IX interactome. We applied a proteomics approach to advance our understanding of collagen IX ablation in cartilage. The cartilage extracellular matrix is essential for endochondral bone development and joint function. In addition to the major aggrecan/collagen II framework, the interacting complex of collagen IX, matrilin-3, and cartilage oligomeric matrix protein (COMP) is essential for cartilage matrix stability, as mutations in Col9a1, Col9a2, Col9a3, Comp, and Matn3 genes cause multiple epiphyseal dysplasia, in which patients develop early onset osteoarthritis. In mice, collagen IX ablation results in severely disturbed growth plate organization, hypocellular regions, and abnormal chondrocyte shape. This abnormal differentiation is likely to involve altered cell-matrix interactions but the mechanism is not known. To investigate the molecular basis of the collagen IX null phenotype we analyzed global differences in protein abundance between wild-type and knock-out femoral head cartilage by capillary HPLC tandem mass spectrometry. We identified 297 proteins in 3-day cartilage and 397 proteins in 21-day cartilage. Components that were differentially abundant between wild-type and collagen IX-deficient cartilage included 15 extracellular matrix proteins. Collagen IX ablation was associated with dramatically reduced COMP and matrilin-3, consistent with known interactions. Matrilin-1, matrilin-4, epiphycan, and thrombospondin-4 levels were reduced in collagen IX null cartilage, providing the first in vivo evidence for these proteins belonging to the collagen IX interactome. Thrombospondin-4 expression was reduced at the mRNA level

  19. Feature-based morphometry: discovering group-related anatomical patterns.

    Science.gov (United States)

    Toews, Matthew; Wells, William; Collins, D Louis; Arbel, Tal

    2010-02-01

    This paper presents feature-based morphometry (FBM), a new fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). Copyright (c) 2009 Elsevier Inc. All rights reserved.

  20. Automatic morphometry of synaptic boutons of cultured cells using granulometric analysis of digital images

    NARCIS (Netherlands)

    Prodanov, D.P.; Heeroma, Joost; Marani, Enrico

    2006-01-01

    Numbers, linear density, and surface area of synaptic boutons can be important parameters in studies on synaptic plasticity in cultured neurons. We present a method for automatic identification and morphometry of boutons based on filtering of digital images using granulometric analysis. Cultures of

  1. Postnatal development of collagen structure in ovine articular cartilage

    Directory of Open Access Journals (Sweden)

    Kranenbarg Sander

    2010-06-01

    Full Text Available Abstract Background Articular cartilage (AC is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly parallel to the articular surface near the articular surface. Recent studies into collagen fibre orientation in stillborn and juvenile animals showed that this structure is absent at birth. Since the collagen structure is an important factor for AC mechanics, the absence of the adult Benninghoff structure has implications for perinatal AC mechanobiology. The current objective is to quantify the dynamics of collagen network development in a model animal from birth to maturity. We further aim to show the presence or absence of zonal differentiation at birth, and to assess differences in collagen network development between different anatomical sites of a single joint surface. We use quantitative polarised light microscopy to investigate properties of the collagen network and we use the sheep (Ovis aries as our model animal. Results Predominant collagen orientation is parallel to the articular surface throughout the tissue depth for perinatal cartilage. This remodels to the Benninghoff structure before the sheep reach sexual maturity. Remodelling of predominant collagen orientation starts at a depth just below the future transitional zone. Tissue retardance shows a minimum near the articular surface at all ages, which indicates the presence of zonal differentiation at all ages. The absolute position of this minimum does change between birth and maturity. Between different anatomical sites, we find differences in the dynamics of collagen remodelling, but no differences in adult collagen structure. Conclusions The collagen network in articular cartilage remodels between birth and sexual maturity from a network with predominant orientation parallel to the

  2. Effect of cocaine on structural changes in brain: MRI volumetry using tensor-based morphometry.

    Science.gov (United States)

    Narayana, Ponnada A; Datta, Sushmita; Tao, Guozhi; Steinberg, Joel L; Moeller, F Gerard

    2010-10-01

    Magnetic resonance imaging (MRI) was performed in cocaine-dependent subjects to determine the structural changes in brain compared to non-drug using controls. Cocaine-dependent subjects and controls were carefully screened to rule out brain pathology of undetermined origin. Magnetic resonance images were analyzed using tensor-based morphometry (TBM) and voxel-based morphometry (VBM) without and with modulation to adjust for volume changes during normalization. For TBM analysis, unbiased atlases were generated using two different inverse consistent and diffeomorphic nonlinear registration techniques. Two different control groups were used for generating unbiased atlases. Independent of the nonlinear registration technique and normal cohorts used for creating the unbiased atlases, our analysis failed to detect any statistically significant effect of cocaine on brain volumes. These results show that cocaine-dependent subjects do not show differences in regional brain volumes compared to non-drug using controls. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort.

    Science.gov (United States)

    Wade, Benjamin S C; Valcour, Victor G; Wendelken-Riegelhaupt, Lauren; Esmaeili-Firidouni, Pardis; Joshi, Shantanu H; Gutman, Boris A; Thompson, Paul M

    2015-01-01

    Over 50% of HIV + individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV + participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD) and radial distances (RD) defined on each region's surfaces. We also investigated effects of nadir CD4 + T-cell counts, viral load, time since diagnosis (TSD) and cognition on subcortical morphology. Lastly, we explored whether HIV + participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF) model. The model was validated with 2-fold cross-validation. Volumes of HIV + participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV + people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV + participants vs. controls, our RF model attained an area under the curve of 72%.

  4. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort

    Directory of Open Access Journals (Sweden)

    Benjamin S.C. Wade

    2015-01-01

    Full Text Available Over 50% of HIV+ individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV+ participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD and radial distances (RD defined on each region's surfaces. We also investigated effects of nadir CD4+ T-cell counts, viral load, time since diagnosis (TSD and cognition on subcortical morphology. Lastly, we explored whether HIV+ participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF model. The model was validated with 2-fold cross-validation. Volumes of HIV+ participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV+ people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV+ participants vs. controls, our RF model attained an area under the curve of 72%.

  5. Chitosan: collagen sponges. In vitro mineralization

    International Nuclear Information System (INIS)

    Martins, Virginia da C.A.; Silva, Gustavo M.; Plepis, Ana Maria G.

    2011-01-01

    The regeneration of bone tissue is a problem that affects many people and scaffolds for bone tissue growth has been widely studied. The aim of this study was the in vitro mineralization of chitosan, chitosan:native collagen and chitosan:anionic collagen sponges. The sponges were obtained by lyophilization and mineralization was made by soaking the sponges in alternating solutions containing Ca 2+ and PO 4 3- . The mineralization was confirmed by infrared spectroscopy, energy dispersive X-ray and X-ray diffraction observing the formation of phosphate salts, possibly a carbonated hydroxyapatite since Ca/P=1.80. The degree of mineralization was obtained by thermogravimetry calculating the amount of residue at 750 deg C. The chitosan:anionic collagen sponge showed the highest degree of mineralization probably due to the fact that anionic collagen provides additional sites for interaction with the inorganic phase. (author)

  6. Morphometry of A1 segment of the anterior cerebral artery and its clinical importance.

    Science.gov (United States)

    Krishnamurthy, A; Nayak, S R; Bagoji, I B; D'Costa, S; Pai, M M; Jiji, P J; Kumar, C G; Rai, R

    2010-01-01

    Anterior cerebral artery, one of the terminal branches of the internal carotid artery is an important vessel taking part in the formation of circle of Willis. It supplies a large part of the medial surface of the cerebral hemisphere containing the areas of motor and somatosensory cortices of the lower limb. Aim of this study was the morphometry of A1 segment of the anterior cerebral artery. 93 formalin fixed brain specimen of either sex and of Indian origin were studied. The mean length, mean external diameter and the anomalies present in A1 segment of the vessel were studied in detail and photographed. The mean length of A1 segment of the vessel was 14.49+/-0.28 mm and 14.22+/-0.22 mm on right and left side respectively. The mean external diameter of the vessel on right and left side was 2.12+/-0.07 mm and 2.32+/-0.06 mm respectively. Narrowing, aneurysm formation, buttonhole formation and median anterior cerebral artery were the anomalies seen with an occurrence of 15.05%, 5.37%, 3.22% and 12.9%, respectively. The above anomalies did not have any sex or side predilection. Knowledge of morphometry of the vessel will be of use to neurosurgeons while performing the shunt operation, in assessing the feasibility of such operations and in the choice of patients. From this study we infer that the morphometry of anterior cerebral artery varies in different population and that the neurosurgeons operating should have a thorough knowledge of the possible variations.

  7. Mineralized Collagen: Rationale, Current Status, and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Zhi-Ye Qiu

    2015-07-01

    Full Text Available This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.

  8. Mechanical response of collagen molecule under hydrostatic compression

    International Nuclear Information System (INIS)

    Saini, Karanvir; Kumar, Navin

    2015-01-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  9. Mechanical response of collagen molecule under hydrostatic compression.

    Science.gov (United States)

    Saini, Karanvir; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials. Copyright © 2015 Elsevier B.V. All rights

  10. Mechanical response of collagen molecule under hydrostatic compression

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Karanvir, E-mail: karans@iitrpr.ac.in; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  11. Ultrastructural changes in lung tissue after acute lead intoxication in the rat.

    Science.gov (United States)

    Kaczynska, Katarzyna; Walski, Michał; Szereda-Przestaszewska, Małgorzata

    2011-01-01

    Pulmonary toxicity of lead was studied in rats after an intraperitoneal administration of lead acetate at a dose of 25 mg/kg. Three consecutive days of treatment increased lead content in the whole blood to 2.1 µg/dl and in lung homogenate it attained 9.62 µg/g w.w. versus control values of 0.17 µg/dl and 0.78 µg/g w.w., respectively. At the ultrastructural level, the effects of lead toxicity were observed in lung capillaries, interstitium, epithelial cells and alveolar lining layer. Accumulation of aggregated platelets, leucocytic elements and monocytes was found within capillaries. Interstitium comprised a substantial number of collagen, elastin filaments and lipofibroblasts. Lamellar bodies of type II pneumocytes contained phospolipid lamellae, which stratified into an irregular arrangement. Pulmonary alveoli were filled with macrophages. The extracellular lining layer of lung alveoli was partially destroyed. This study provided evidence that acute lead intoxication affects the whole lung parenchyma and by impairing production of the surfactant might disturb the regular respiratory function.

  12. Collagen based Biomaterials from CLRI: An Inspiration from the ...

    Indian Academy of Sciences (India)

    Collagen-based Smart Biomaterials · Smart materials: As smart people see them · Some Biomaterials based on Collagen in Human Health care · Questions of Value to this presentation ... Collagen based biomaterials · COLLAGEN IN VISION CARE · Slide 57 · Bandage lens: A smart device · Work at CLRI: In summary.

  13. Electrophoretic mobility patterns of collagen following laser welding

    Science.gov (United States)

    Bass, Lawrence S.; Moazami, Nader; Pocsidio, Joanne O.; Oz, Mehmet C.; LoGerfo, Paul; Treat, Michael R.

    1991-06-01

    Clinical application of laser vascular anastomosis in inhibited by a lack of understanding of its mechanism. Whether tissue fusion results from covalent or non-covalent bonding of collagen and other structural proteins is unknown. We compared electrophoretic mobility of collagen in laser treated and untreated specimens of rat tail tendon (>90% type I collagen) and rabbit aorta. Welding was performed, using tissue shrinkage as the clinical endpoint, using the 808 nm diode laser (power density 14 watts/cm2) and topical indocyanine green dye (max absorption 805 nm). Collagen was extracted with 8 M urea (denaturing), 0.5 M acetic acid (non-denaturing) and acetic acid/pepsin (cleaves non- helical protein). Mobility patterns on gel electrophoresis (SDS-PAGE) after urea or acetic acid extraction were identical in the lasered and control tendon and vessel (confirmed by optical densitometry), revealing no evidence of formation of novel covalent bonds. Alpha and beta band intensity was diminished in pepsin incubated lasered specimens compared with controls (optical density ratio 0.00 +/- 9 tendon, 0.65 +/- 0.12 aorta), indicating the presence of denatured collagen. With the laser parameters used, collagen is denatured without formation of covalent bonds, suggesting that non-covalent interaction between denatured collagen molecules may be responsible for the weld. Based on this mechanism, welding parameters can be chosen which produce collagen denaturation without cell death.

  14. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials

    Energy Technology Data Exchange (ETDEWEB)

    Yunoki, Shunji [Life Science Group, Tokyo Metropolitan Industrial Technology Research Institute, 2-11-1 Fukasawa, Setagaya-ku, Tokyo 158-0081 (Japan); Sugiura, Hiroaki; Kondo, Eiji; Yasuda, Kazunori [Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido 060-8638 Japan (Japan); Ikoma, Toshiyuki; Tanaka, Junzo, E-mail: yunoki.shunji@iri-tokyo.jp [Department of Metallurgy and Ceramics Science, 2-12-1-S7-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2011-02-15

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm{sup -3} and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 {+-} 0.48 and 0.651 {+-} 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  15. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials

    International Nuclear Information System (INIS)

    Yunoki, Shunji; Sugiura, Hiroaki; Kondo, Eiji; Yasuda, Kazunori; Ikoma, Toshiyuki; Tanaka, Junzo

    2011-01-01

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm -3 and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 ± 0.48 and 0.651 ± 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  16. Lung mechanics and histology during sevoflurane anesthesia in a model of chronic allergic asthma.

    Science.gov (United States)

    Burburan, Shirley Moreira; Xisto, Debora Gonçalves; Ferreira, Halina Cidrini; Riva, Douglas Dos Reis; Carvalho, Giovanna Marcella Cavalcante; Zin, Walter Araujo; Rocco, Patricia Rieken Macêdo

    2007-03-01

    There are no studies examining the effects of sevoflurane on a chronically inflamed and remodeled airway, such as that found in asthma. In the present study, we sought to define the respiratory effects of sevoflurane in a model of chronic allergic asthma. For this purpose, pulmonary mechanics were studied and lung morphometry analyzed to determine whether the physiological modifications reflected underlying morphological changes. Thirty-six BALB/c mice (20-25 g) were randomly divided into four groups. In OVA groups, mice were sensitized with ovalbumin and exposed to repeated ovalbumin challenges. In SAL groups, mice received saline using the same protocol. Twenty-four hours after the last challenge, the animals were anesthetized with pentobarbital sodium (PENTO, 20 mg/kg i.p.) or sevoflurane (SEVO, 1 MAC). Lung static elastance (Est), resistive ([DELTA]P1) and viscoelastic/inhomogeneous ([DELTA]P2) pressure decreases were analyzed by an end-inflation occlusion method. Lungs were fixed and stained for histological analysis. Animals in the OVASEVO group showed lower [DELTA]P1 (38%), [DELTA]P2 (24%), and Est (22%) than animals in the OVAPENTO group. Histology demonstrated greater airway dilation (16%) and a lower degree of alveolar collapse (25%) in the OVASEVO compared with OVAPENTO group. [DELTA]P1 was lower (35%) and airway diameters larger (12%) in the SALSEVO compared with SALPENTO group. Sevoflurane anesthesia acted both at airway level and lung periphery reducing ([DELTA]P1 and [DELTA]P2 pressures, and Est in chronic allergic asthma.

  17. Intermittent Hypoxia Increases the Severity of Bleomycin-Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Thomas Gille

    2018-01-01

    Full Text Available Background. Severe obstructive sleep apnea (OSA with chronic intermittent hypoxia (IH is common in idiopathic pulmonary fibrosis (IPF. Here, we evaluated the impact of IH on bleomycin- (BLM- induced pulmonary fibrosis in mice. Methods. C57BL/6J mice received intratracheal BLM or saline and were exposed to IH (40 cycles/hour; FiO2 nadir: 6%; 8 hours/day or intermittent air (IA. In the four experimental groups, we evaluated (i survival; (ii alveolar inflammation, pulmonary edema, lung oxidative stress, and antioxidant enzymes; (iii lung cell apoptosis; and (iv pulmonary fibrosis. Results. Survival at day 21 was lower in the BLM-IH group (p<0.05. Pulmonary fibrosis was more severe at day 21 in BLM-IH mice, as assessed by lung collagen content (p=0.02 and histology. At day 4, BLM-IH mice developed a more severe neutrophilic alveolitis, (p<0.001. Lung oxidative stress was observed, and superoxide dismutase and glutathione peroxidase expression was decreased in BLM-IH mice (p<0.05 versus BLM-IA group. At day 8, pulmonary edema was observed and lung cell apoptosis was increased in the BLM-IH group. Conclusion. These results show that exposure to chronic IH increases mortality, lung inflammation, and lung fibrosis in BLM-treated mice. This study raises the question of the worsening impact of severe OSA in IPF patients.

  18. Collagen Type I as a Ligand for Receptor-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Iris Boraschi-Diaz

    2017-05-01

    Full Text Available Collagens form the fibrous component of the extracellular matrix in all multi-cellular animals. Collagen type I is the most abundant collagen present in skin, tendons, vasculature, as well as the organic portion of the calcified tissue of bone and teeth. This review focuses on numerous receptors for which collagen acts as a ligand, including integrins, discoidin domain receptors DDR1 and 2, OSCAR, GPVI, G6b-B, and LAIR-1 of the leukocyte receptor complex (LRC and mannose family receptor uPARAP/Endo180. We explore the process of collagen production and self-assembly, as well as its degradation by collagenases and gelatinases in order to predict potential temporal and spatial sites of action of different collagen receptors. While the interactions of the mature collagen matrix with integrins and DDR are well-appreciated, potential signals from immature matrix as well as collagen degradation products are possible but not yet described. The role of multiple collagen receptors in physiological processes and their contribution to pathophysiology of diseases affecting collagen homeostasis require further studies.

  19. Measurement of the quadratic hyperpolarizability of the collagen triple helix and application to second harmonic imaging of natural and biomimetic collagenous tissues

    Science.gov (United States)

    Deniset-Besseau, A.; Strupler, M.; Duboisset, J.; De Sa Peixoto, P.; Benichou, E.; Fligny, C.; Tharaux, P.-L.; Mosser, G.; Brevet, P.-F.; Schanne-Klein, M.-C.

    2009-09-01

    Collagen is a major protein of the extracellular matrix that is characterized by triple helical domains. It plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) so that SHG microscopy proved to be a sensitive tool to probe the three-dimensional architecture of fibrillar collagen and to assess the progression of fibrotic pathologies. We obtained sensitive and reproducible measurements of the fibrosis extent, but we needed quantitative data at the molecular level to further process SHG images. We therefore performed Hyper- Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its aminoacid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro- Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagenous biomimetic matrices.

  20. Relative orientation of collagen molecules within a fibril: a homology model for homo sapiens type I collagen.

    Science.gov (United States)

    Collier, Thomas A; Nash, Anthony; Birch, Helen L; de Leeuw, Nora H

    2018-02-15

    Type I collagen is an essential extracellular protein that plays an important structural role in tissues that require high tensile strength. However, owing to the molecule's size, to date no experimental structural data are available for the Homo sapiens species. Therefore, there is a real need to develop a reliable homology model and a method to study the packing of the collagen molecules within the fibril. Through the use of the homology model and implementation of a novel simulation technique, we have ascertained the orientations of the collagen molecules within a fibril, which is currently below the resolution limit of experimental techniques. The longitudinal orientation of collagen molecules within a fibril has a significant effect on the mechanical and biological properties of the fibril, owing to the different amino acid side chains available at the interface between the molecules.

  1. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    International Nuclear Information System (INIS)

    Li, Xiaoou; Liu, Lian; Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan; Wen, Fuqiang

    2014-01-01

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis

  2. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoou [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Liu, Lian [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Wen, Fuqiang, E-mail: wenfuqiang.scu@gmail.com [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China)

    2014-11-28

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis.

  3. Lung matrix and vascular remodeling in mechanically ventilated elastin haploinsufficient newborn mice

    Science.gov (United States)

    Hilgendorff, Anne; Parai, Kakoli; Ertsey, Robert; Navarro, Edwin; Jain, Noopur; Carandang, Francis; Peterson, Joanna; Mokres, Lucia; Milla, Carlos; Preuss, Stefanie; Alcazar, Miguel Alejandre; Khan, Suleman; Masumi, Juliet; Ferreira-Tojais, Nancy; Mujahid, Sana; Starcher, Barry; Rabinovitch, Marlene

    2014-01-01

    Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln+/−) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice. We studied 5-day-old wild-type (Eln+/+) and Eln+/− littermates at baseline and after MV with air for 8–24 h. Lungs of unventilated Eln+/− mice contained ∼50% less elastin and ∼100% more collagen-1 and lysyl oxidase compared with Eln+/+ pups. Eln+/− lungs contained fewer capillaries than Eln+/+ lungs, without discernible differences in alveolar structure. In response to MV, lung tropoelastin and elastase activity increased in Eln+/+ neonates, whereas tropoelastin decreased and elastase activity was unchanged in Eln+/− mice. Fibrillin-1 protein increased in lungs of both groups during MV, more in Eln+/− than in Eln+/+ pups. In both groups, MV caused capillary loss, with larger and fewer alveoli compared with unventilated controls. Respiratory system elastance, which was less in unventilated Eln+/− compared with Eln+/+ mice, was similar in both groups after MV. These results suggest that elastin haploinsufficiency adversely impacts pulmonary angiogenesis and that MV dysregulates elastic fiber integrity, with further loss of lung capillaries, lung growth arrest, and impaired respiratory function in both Eln+/+ and Eln+/− mice. Paucity of lung capillaries in Eln+/− newborns might help explain subsequent development of pulmonary hypertension previously reported in adult Eln+/− mice. PMID:25539853

  4. Lack of collagen XVIII/endostatin exacerbates immune-mediated glomerulonephritis.

    Science.gov (United States)

    Hamano, Yuki; Okude, Takashi; Shirai, Ryota; Sato, Ikumi; Kimura, Ryota; Ogawa, Makoto; Ueda, Yoshihiko; Yokosuka, Osamu; Kalluri, Raghu; Ueda, Shiro

    2010-09-01

    Collagen XVIII is a component of the highly specialized extracellular matrix associated with basement membranes of epithelia and endothelia. In the normal kidney, collagen XVIII is distributed throughout glomerular and tubular basement membranes, mesangial matrix, and Bowman's capsule. Proteolytic cleavage within its C-terminal domain releases the fragment endostatin, which has antiangiogenic properties. Because damage to the glomerular basement membrane (GBM) accompanies immune-mediated renal injury, we investigated the role of collagen XVIII/endostatin in this disorder. We induced anti-GBM glomerulonephritis in collagen XVIII alpha1-null and wild-type mice and compared the resulting matrix accumulation, inflammation, and capillary rarefaction. Anti-GBM disease upregulated collagen XVIII/endostatin expression within the GBM and Bowman's capsule of wild-type mice. Collagen XVIII/endostatin-deficient mice developed more severe glomerular and tubulointerstitial injury than wild-type mice. Collagen XVIII/endostatin deficiency altered matrix remodeling, enhanced the inflammatory response, and promoted capillary rarefaction and vascular endothelial cell damage, but did not affect endothelial proliferation. Supplementing collagen XVIII-deficient mice with exogenous endostatin did not affect the progression of anti-GBM disease. Taken together, these results suggest that collagen XVIII/endostatin preserves the integrity of the extracellular matrix and capillaries in the kidney, protecting against progressive glomerulonephritis.

  5. Study of nuclear morphometry on cytology specimens of benign and malignant breast lesions: A study of 122 cases.

    Science.gov (United States)

    Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj

    2017-01-01

    Breast cancer has emerged as a leading site of cancer among women in India. Fine needle aspiration cytology (FNAC) has been routinely applied in assessment of breast lesions. Cytological evaluation in breast lesions is subjective with a "gray zone" of 6.9-20%. Quantitative evaluation of nuclear size, shape, texture, and density parameters by morphometry can be of diagnostic help in breast tumor. To apply nuclear morphometry on cytological breast aspirates and assess its role in differentiating between benign and malignant breast lesions with derivation of suitable cut-off values between the two groups. The present study was a descriptive cross-sectional hospital-based study of nuclear morphometric parameters of benign and malignant cases. The study included 50 benign breast disease (BBD), 8 atypical ductal hyperplasia (ADH), and 64 carcinoma cases. Image analysis was performed on Papanicolaou-stained FNAC slides by Nikon Imaging Software (NIS)-Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Nuclear morphometry could differentiate between benign and malignant aspirates with a gradually increasing nuclear size parameters from BBD to ADH to carcinoma. Cut-off values of 31.93 μm 2 , 6.325 μm, 5.865 μm, 7.855 μm, and 21.55 μm for mean nuclear area, equivalent diameter, minimum feret, maximum ferret, and perimeter, respectively, were derived between benign and malignant cases, which could correctly classify 7 out of 8 ADH cases. Nuclear morphometry is a highly objective tool that could be used to supplement FNAC in differentiating benign from malignant lesions, with an important role in cases with diagnostic dilemma.

  6. Changes in type I collagen following laser welding.

    Science.gov (United States)

    Bass, L S; Moazami, N; Pocsidio, J; Oz, M C; LoGerfo, P; Treat, M R

    1992-01-01

    Selection of ideal laser parameters for tissue welding is inhibited by poor understanding of the mechanism. We investigated structural changes in collagen molecules extracted from rat tail tendon (> 90% type I collagen) after tissue welding using an 808 nm diode laser and indocyanine green dye applied to the weld site. Mobility patterns on SDS-PAGE were identical in the lasered and untreated tendon extracts with urea or acetic acid. Pepsin incubation after acetic acid extraction revealed a reduction of collagen alpha and beta bands in lasered compared with untreated specimens. Circular dichroism studies of rat tail tendon showed absence of helical structure in collagen from lasered tendon. No evidence for covalent bonding was present in laser-treated tissues. Collagen molecules are denatured by the laser wavelength and parameters used in this study. No significant amount of helical structure is regenerated on cooling. We conclude that non-covalent interactions between denatured collagen molecules may be responsible for the creation of tissue welding.

  7. ELECTRICAL AND THERMODYNAMIC PROPERTIES OF A COLLAGEN SOLUTION

    Directory of Open Access Journals (Sweden)

    Jaromír Štancl

    2017-06-01

    Full Text Available This paper focuses on measurements of the electrical properties, the specific heat capacity and the thermal conductivity of a collagen solution (7.19% mass fraction of native bovine collagen in water. The results of our experiments show that specific electrical conductivity of collagen solution is strongly dependent on temperature. The transition region of collagen to gelatin has been observed from the measured temperature dependence of specific electrical conductivity, and has been confirmed by specific heat capacity measurements by a differential scanning calorimetry.

  8. Collagen Fibrils: Nature's Highly Tunable Nonlinear Springs.

    Science.gov (United States)

    Andriotis, Orestis G; Desissaire, Sylvia; Thurner, Philipp J

    2018-03-21

    Tissue hydration is well known to influence tissue mechanics and can be tuned via osmotic pressure. Collagen fibrils are nature's nanoscale building blocks to achieve biomechanical function in a broad range of biological tissues and across many species. Intrafibrillar covalent cross-links have long been thought to play a pivotal role in collagen fibril elasticity, but predominantly at large, far from physiological, strains. Performing nanotensile experiments of collagen fibrils at varying hydration levels by adjusting osmotic pressure in situ during atomic force microscopy experiments, we show the power the intrafibrillar noncovalent interactions have for defining collagen fibril tensile elasticity at low fibril strains. Nanomechanical tensile tests reveal that osmotic pressure increases collagen fibril stiffness up to 24-fold in transverse (nanoindentation) and up to 6-fold in the longitudinal direction (tension), compared to physiological saline in a reversible fashion. We attribute the stiffening to the density and strength of weak intermolecular forces tuned by hydration and hence collagen packing density. This reversible mechanism may be employed by cells to alter their mechanical microenvironment in a reversible manner. The mechanism could also be translated to tissue engineering approaches for customizing scaffold mechanics in spatially resolved fashion, and it may help explain local mechanical changes during development of diseases and inflammation.

  9. Voxel-based gray and white matter morphometry correlates of hallucinations in schizophrenia: The superior temporal gyrus does not stand alone.

    Science.gov (United States)

    van Tol, Marie-José; van der Meer, Lisette; Bruggeman, Richard; Modinos, Gemma; Knegtering, Henderikus; Aleman, André

    2014-01-01

    Auditory verbal hallucinations (AVH) in schizophrenia (SZ) have been proposed to result from abnormal local, interregional and interhemispheric integration of brain signals in regions involved in language production and perception. This abnormal functional integration may find its base in morphological abnormalities. Structurally, AVHs have been frequently linked to abnormal morphology of the superior temporal gyrus (STG), but only a few studies investigated the relation of hallucination presence with both whole-brain gray matter (GM) and white matter (WM) morphometry. Using a unified voxel-based morphometry-DARTEL approach, we investigated correlates of AVH presence in 51 schizophrenia patients (20 non-hallucinating [SZ -], 31 hallucinating [SZ +]), and included 51 age and sex matched healthy participants. Effects are reported at p frontal and right parahippocampal gyrus, and higher WM volume of the left postcentral and superior parietal lobule than controls. Finally, volume of the putamen was lower in SZ + compared to SZ -. No effects on corpus callosum morphometry were observed. Delusion severity, general positive and negative symptomatology illness duration, and medication status could not explain the results. Results suggest that STG GM abnormalities underlie the general susceptibility to experience psychotic symptoms and that additional abnormalities in a network of medial temporal, ventrolateral, putaminal, and parietal regions related to verbal memory and speech production may specifically increase the likelihood of experiencing AVH. Future studies should clarify the meaning of morphometry abnormalities for functional interregional communication.

  10. Brain Morphometry on Congenital Hand Deformities based on Teichmüller Space Theory.

    Science.gov (United States)

    Peng, Hao; Wang, Xu; Duan, Ye; Frey, Scott H; Gu, Xianfeng

    2015-01-01

    Congenital Hand Deformities (CHD) are usually occurred between fourth and eighth week after the embryo is formed. Failure of the transformation from arm bud cells to upper limb can lead to an abnormal appearing/functioning upper extremity which is presented at birth. Some causes are linked to genetics while others are affected by the environment, and the rest have remained unknown. CHD patients develop prehension through the use of their hands, which affect the brain as time passes. In recent years, CHD have gain increasing attention and researches have been conducted on CHD, both surgically and psychologically. However, the impacts of CHD on brain structure are not well-understood so far. Here, we propose a novel approach to apply Teichmüller space theory and conformal welding method to study brain morphometry in CHD patients. Conformal welding signature reflects the geometric relations among different functional areas on the cortex surface, which is intrinsic to the Riemannian metric, invariant under conformal deformation, and encodes complete information of the functional area boundaries. The computational algorithm is based on discrete surface Ricci flow, which has theoretic guarantees for the existence and uniqueness of the solutions. In practice, discrete Ricci flow is equivalent to a convex optimization problem, therefore has high numerically stability. In this paper, we compute the signatures of contours on general 3D surfaces with surface Ricci flow method, which encodes both global and local surface contour information. Then we evaluated the signatures of pre-central and post-central gyrus on healthy control and CHD subjects for analyzing brain cortical morphometry. Preliminary experimental results from 3D MRI data of CHD/control data demonstrate the effectiveness of our method. The statistical comparison between left and right brain gives us a better understanding on brain morphometry of subjects with Congenital Hand Deformities, in particular, missing

  11. Collagen like peptide bioconjugates for targeted drug delivery applications

    Science.gov (United States)

    Luo, Tianzhi

    Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLP), also known as collagen-mimetic peptides (CMP), are short synthetic peptides which mimic the triple helical conformation of native collagens. In the past few decades, collagen like peptides and their conjugated hybrids have become a new class of biomaterials that possesses unique structures and properties. In addition to traditional applications of using CLPs to decipher the role of different amino acid residues and tripeptide motifs in stabilizing the collagen triple helix and mimicking collagen fibril formation, with the introduction of specific interactions including electrostatic interactions, pi-pi stacking interaction and metal-ligand coordination, a variety of artificial collagen-like peptides with well-defined sequences have been designed to create higher order assemblies with specific biological functions. The CLPs have also been widely used as bioactive domains or physical cross-linkers to fabricate hydrogels, which have shown potential to improve cell adhesion, proliferation and ECM macromolecule production. Despite this widespread use, the utilization of CLPs as domains in stimuli responsive bioconjugates represents a relatively new area for the development of functional polymeric materials. In this work, a new class of thermoresponsive diblock conjugates, containing collagen-like peptides and a thermoresponsive polymer, namely poly(diethylene glycol methyl ether methacrylate) (PDEGMEMA), is introduced. The CLP domain maintains its triple helix conformation after conjugation with the polymer. The engineered LCST of these conjugates has enabled temperature-induced assembly under aqueous conditions, at physiologically relevant temperatures, into well-defined vesicles with diameters of approximately 50-200 nm. The formation of nanostructures was driven by

  12. Bronchial morphometry in smokers: comparison with healthy subjects by using 3D CT

    International Nuclear Information System (INIS)

    Montaudon, Michel; Berger, Patrick; Marthan, Roger; Lederlin, Mathieu; Tunon-de-Lara, Jose Manuel; Laurent, Francois

    2009-01-01

    The assessment of airway dimensions in patients with airway disease by using computed tomography (CT) has been limited by the obliquity of bronchi, the ability to identify the bronchial generation, and the limited number of bronchial measurements. The aims of the present study were (i) to analyze cross-sectional bronchial dimensions after automatic orthogonal reconstruction of all visible bronchi on CT images, and (ii) to compare bronchial morphometry between smokers and nonsmokers. CT and pulmonary function tests were performed in 18 males separated into two groups: 9 nonsmokers and 9 smokers. Bronchial wall area (WA) and lumen area (LA) were assessed using dedicated 3D software able to provide accurate cross-sectional measurements of all visible bronchi on CT. WA/LA and WA/(WA+LA) ratios were computed and all parameters were compared between both groups. Smokers demonstrated greater WA, smaller LA, and consequently greater LA/WA and LA/(WA+LA) ratios than nonsmokers. These differences occurred downward starting at the fourth bronchial generation. 3D quantitative CT method is able to demonstrate significant changes in bronchial morphometry related to tobacco consumption. (orig.)

  13. Extraction and Characterization of Collagen from Sea Cucumber Flesh

    Directory of Open Access Journals (Sweden)

    Alhana

    2015-11-01

    Full Text Available Sea cucumber (Stichopus variegatus is one of the Echinodermata phylum that grows along Indonesian coastal. Sea cucumber is potential source of collagen. The purposes of this research were to determine the optimal concentration of NaOH and CH3COOH solution in collagen production and analyze the physicochemical characteristics of collagen from S. variegatus. Yield of the collagen was 1.5% (based on wet weight basis, produced by pretreatment with NaOH 0,30%, hydrolysis with CH3COOH 0.10% and extracted using distilled water. Protein, moisture, and ash content of the collagen was 67.68%, 13.64%, and 4.15%, respectively. Collagen was extracted using distilled water at 45°C during 2h and still had triple helix structure ; pH 7.37 ; melting temperature 163.67°C and whiteness 69.25%. The major amino acid content of collagen were glycine, alanine, proline and glutamic acid.

  14. Incorporation of chitosan microspheres into collagen-chitosan scaffolds for the controlled release of nerve growth factor.

    Directory of Open Access Journals (Sweden)

    Wen Zeng

    Full Text Available Artifical nerve scaffold can be used as a promising alternative to autologous nerve grafts to enhance the repair of peripheral nerve defects. However, current nerve scaffolds lack efficient microstructure and neurotrophic support.Microsphere-Scaffold composite was developed by incorporating chitosan microspheres loaded with nerve growth factor (NGF-CMSs into collagen-chitosan scaffolds (CCH with longitudinally oriented microchannels (NGF-CMSs/CCH. The morphological characterizations, in vitro release kinetics study, neurite outgrowth assay, and bioactivity assay were evaluated. After that, a 15-mm-long sciatic nerve gap in rats was bridged by the NGF-CMSs/CCH, CCH physically absorbed NGF (NGF/CCH, CCH or nerve autograft. 16 weeks after implantation, electrophysiology, fluoro-gold retrograde tracing, and nerve morphometry were performed.The NGF-CMSs were evenly distributed throughout the longitudinally oriented microchannels of the scaffold. The NGF-CMSs/CCH was capable of sustained release of bioactive NGF within 28 days as compared with others in vitro. In vivo animal study demonstrated that the outcomes of NGF-CMSs/CCH were better than those of NGF/CCH or CCH.Our findings suggest that incorporation of NGF-CMSs into the CCH may be a promising tool in the repair of peripheral nerve defects.

  15. Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage.

    Science.gov (United States)

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P; Morales-Nebreda, Luisa; Cheng, Yuan; Hogan, Erin; Yeldandi, Anjana; Chi, Monica; Piseaux, Raul; Ridge, Karen; Michael Hart, C; Chandel, Navdeep; Scott Budinger, G R; Kamp, David W

    2016-12-01

    Alveolar epithelial cell (AEC) injury and mitochondrial dysfunction are important in the development of lung fibrosis. Our group has shown that in the asbestos exposed lung, the generation of mitochondrial reactive oxygen species (ROS) in AEC mediate mitochondrial DNA (mtDNA) damage and apoptosis which are necessary for lung fibrosis. These data suggest that mitochondrial-targeted antioxidants should ameliorate asbestos-induced lung. To determine whether transgenic mice that express mitochondrial-targeted catalase (MCAT) have reduced lung fibrosis following exposure to asbestos or bleomycin and, if so, whether this occurs in association with reduced AEC mtDNA damage and apoptosis. Crocidolite asbestos (100µg/50µL), TiO 2 (negative control), bleomycin (0.025 units/50µL), or PBS was instilled intratracheally in 8-10 week-old wild-type (WT - C57Bl/6J) or MCAT mice. The lungs were harvested at 21d. Lung fibrosis was quantified by collagen levels (Sircol) and lung fibrosis scores. AEC apoptosis was assessed by cleaved caspase-3 (CC-3)/Surfactant protein C (SFTPC) immunohistochemistry (IHC) and semi-quantitative analysis. AEC (primary AT2 cells from WT and MCAT mice and MLE-12 cells) mtDNA damage was assessed by a quantitative PCR-based assay, apoptosis was assessed by DNA fragmentation, and ROS production was assessed by a Mito-Sox assay. Compared to WT, crocidolite-exposed MCAT mice exhibit reduced pulmonary fibrosis as measured by lung collagen levels and lung fibrosis score. The protective effects in MCAT mice were accompanied by reduced AEC mtDNA damage and apoptosis. Similar findings were noted following bleomycin exposure. Euk-134, a mitochondrial SOD/catalase mimetic, attenuated MLE-12 cell DNA damage and apoptosis. Finally, compared to WT, asbestos-induced MCAT AT2 cell ROS production was reduced. Our finding that MCAT mice have reduced pulmonary fibrosis, AEC mtDNA damage and apoptosis following exposure to asbestos or bleomycin suggests an important role

  16. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation.

    Science.gov (United States)

    Rabotyagova, Olena S; Cebe, Peggy; Kaplan, David L

    2008-12-01

    Collagen type I is the most abundant extracellular matrix protein in the human body, providing the basis for tissue structure and directing cellular functions. Collagen has complex structural hierarchy, organized at different length scales, including the characteristic triple helical feature. In the present study, the relationship between collagen structure (native vs. denatured) and sensitivity to UV radiation was assessed, with a focus on changes in primary structure, changes in conformation, microstructure and material properties. A brief review of free radical reactions involved in collagen degradation is also provided as a mechanistic basis for the changes observed in the study. Structural and functional changes in the collagens were related to the initial conformation (native vs. denatured) and the energy of irradiation. These changes were tracked using SDS-PAGE to assess molecular weight, Fourier transform infrared (FTIR) spectroscopy to study changes in the secondary structure, and atomic force microscopy (AFM) to characterize changes in mechanical properties. The results correlate differences in sensitivity to irradiation with initial collagen structural state: collagen in native conformation vs. heat-treated (denatured) collagen. Changes in collagen were found at all levels of the hierarchical structural organization. In general, the native collagen triple helix is most sensitive to UV-254nm radiation. The triple helix delays single chain degradation. The loss of the triple helix in collagen is accompanied by hydrogen abstraction through free radical mechanisms. The results received suggest that the effects of electromagnetic radiation on biologically relevant extracellular matrices (collagen in the present study) are important to assess in the context of the state of collagen structure. The results have implications in tissue remodeling, wound repair and disease progression.

  17. Binding of collagens to an enterotoxigenic strain of Escherichia coli

    International Nuclear Information System (INIS)

    Visai, L.; Speziale, P.; Bozzini, S.

    1990-01-01

    An enterotoxigenic strain of Escherichia coli, B34289c, has been shown to bind the N-terminal region of fibronectin with high affinity. We now report that this strain also binds collagen. The binding of 125I-labeled type II collagen to bacteria was time dependent and reversible. Bacteria expressed a limited number of collagen receptors (2.2 x 10(4) per cell) and bound collagen with a Kd of 20 nM. All collagen types tested (I to V) as well as all tested cyanogen bromide-generated peptides [alpha 1(I)CB2, alpha 1(I)CB3, alpha 1(I)CB7, alpha 1(I)CB8, and alpha 2(I)CB4] were recognized by bacterial receptors, as demonstrated by the ability of these proteins to inhibit the binding of 125I-labeled collagen to bacteria. Of several unlabeled proteins tested in competition experiments, fibronectin and its N-terminal region strongly inhibited binding of the radiolabeled collagen to E. coli cells. Conversely, collagen competed with an 125I-labeled 28-kilodalton fibronectin fragment for bacterial binding. Collagen bound to bacteria could be displaced by excess amounts of either unlabeled fibronectin or its N-terminal fragment. Similarly, collagen could displace 125I-labeled N-terminal peptide of fibronectin bound to the bacterial cell surface. Bacteria grown at 41 degrees C or in the presence of glucose did not express collagen or fibronectin receptors. These results indicate the presence of specific binding sites for collagen on the surface of E. coli cells and furthermore that the collagen and fibronectin binding sites are located in close proximity, possibly on the same structure

  18. Combined brain voxel-based morphometry and diffusion tensor imaging study in idiopathic restless legs syndrome patients.

    Science.gov (United States)

    Rizzo, G; Manners, D; Vetrugno, R; Tonon, C; Malucelli, E; Plazzi, G; Marconi, S; Pizza, F; Testa, C; Provini, F; Montagna, P; Lodi, R

    2012-07-01

      The aim of this study was to evaluate the presence of abnormalities in the brain of patients with restless legs syndrome (RLS) using voxel-based morphometry and diffusion tensor imaging (DTI).   Twenty patients and twenty controls were studied. Voxel-based morphometry analysis was performed using statistical parametric mapping (SPM8) and FSL-VBM software tools. For voxel-wise analysis of DTI, tract-based spatial statistics (TBSS) and SPM8 were used.   Applying an appropriate threshold of probability, no significant results were found either in comparison or in correlation analyses.   Our data argue against clear structural or microstructural abnormalities in the brain of patients with idiopathic RLS, suggesting a prevalent role of functional or metabolic impairment. © 2011 The Author(s) European Journal of Neurology © 2011 EFNS.

  19. Collagen Homeostasis and Metabolism

    DEFF Research Database (Denmark)

    Magnusson, S Peter; Heinemeier, Katja M; Kjaer, Michael

    2016-01-01

    The musculoskeletal system and its collagen rich tissue is important for ensuring architecture of skeletal muscle, energy storage in tendon and ligaments, joint surface protection, and for ensuring the transfer of muscular forces into resulting limb movement. Structure of tendon is stable...... inactivity or immobilization of the human body will conversely result in a dramatic loss in tendon stiffness and collagen synthesis. This illustrates the importance of regular mechanical load in order to preserve the stabilizing role of the connective tissue for the overall function of the musculoskeletal...

  20. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma.

    Science.gov (United States)

    de Castro, Ligia Lins; Xisto, Debora Gonçalves; Kitoko, Jamil Zola; Cruz, Fernanda Ferreira; Olsen, Priscilla Christina; Redondo, Patricia Albuquerque Garcia; Ferreira, Tatiana Paula Teixeira; Weiss, Daniel Jay; Martins, Marco Aurélio; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo

    2017-06-24

    Asthma is a chronic inflammatory disease that can be difficult to treat due to its complex pathophysiology. Most current drugs focus on controlling the inflammatory process, but are unable to revert the changes of tissue remodeling. Human mesenchymal stromal cells (MSCs) are effective at reducing inflammation and tissue remodeling; nevertheless, no study has evaluated the therapeutic effects of extracellular vesicles (EVs) obtained from human adipose tissue-derived MSCs (AD-MSC) on established airway remodeling in experimental allergic asthma. C57BL/6 female mice were sensitized and challenged with ovalbumin (OVA). Control (CTRL) animals received saline solution using the same protocol. One day after the last challenge, each group received saline, 10 5 human AD-MSCs, or EVs (released by 10 5  AD-MSCs). Seven days after treatment, animals were anesthetized for lung function assessment and subsequently euthanized. Bronchoalveolar lavage fluid (BALF), lungs, thymus, and mediastinal lymph nodes were harvested for analysis of inflammation. Collagen fiber content of airways and lung parenchyma were also evaluated. In OVA animals, AD-MSCs and EVs acted differently on static lung elastance and on BALF regulatory T cells, CD3 + CD4 + T cells, and pro-inflammatory mediators (interleukin [IL]-4, IL-5, IL-13, and eotaxin), but similarly reduced eosinophils in lung tissue, collagen fiber content in airways and lung parenchyma, levels of transforming growth factor-β in lung tissue, and CD3 + CD4 + T cell counts in the thymus. No significant changes were observed in total cell count or percentage of CD3 + CD4 + T cells in the mediastinal lymph nodes. In this immunocompetent mouse model of allergic asthma, human AD-MSCs and EVs effectively reduced eosinophil counts in lung tissue and BALF and modulated airway remodeling, but their effects on T cells differed in lung and thymus. EVs may hold promise for asthma; however, further studies are required to elucidate the different

  1. HRCT patterns of the most important interstitial lung diseases; HRCT-Muster der wichtigsten interstitiellen Lungenerkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer-Prokop, C. [Meander Medisch Centrum, Abt. Radiologie, Amersfoort (Netherlands); Radboud Universitaet, Abt. Radiologie und Nuklearmedizin, Nijmegen (Netherlands)

    2014-12-15

    Interstitial lung diseases are a mixed group of diffuse parenchymal lung diseases which can have an acute or chronic course. Idiopathic diseases and diseases with an underlying cause (e.g. collagen vascular diseases) share the same patterns. Thin section computed tomography (CT) plays a central role in the diagnostic work-up. The article describes the most important interstitial lung diseases following a four pattern approach with a predominant nodular or reticular pattern or a pattern with increased or decreased lung density. (orig.) [German] Interstitielle Lungenerkrankungen stellen eine gemischte Gruppe diffuser Lungenparenchymerkrankungen dar, die einen akuten oder chronischen Verlauf haben koennen. Idiopathische Erkrankungen und Erkrankungen mit definierter Ursache (z. B. kollagenvaskulaere Erkrankungen) weisen ein gemeinsames Muster auf. Die Duennschichtcomputertomographie spielt eine zentrale Rolle in der diagnostischen Abklaerung. In dem vorliegenden Beitrag werden die wichtigsten interstitiellen Lungenerkrankungen beschrieben. Dabei gibt es 4 Grundmuster: ueberwiegend nodulaere Verdichtungen, vorwiegend retikulaere Verdichtungen, erhoehte oder erniedrigte Lungenparenchymdichte. (orig.)

  2. Cervical Collagen Concentration within Fifteen Months after Delivery

    DEFF Research Database (Denmark)

    Sundtoft, Iben; Uldbjerg, Niels; Sommer, Steffe

    2011-01-01

    OBJECTIVE: Cervical collagen concentration decreases during pregnancy. The increased risk of preterm birth following a short interpregnancy interval may be explained by an incomplete remodeling of the cervix. The objective of this study was to describe the changes in cervical collagen concentration...... over 15 months following delivery. METHODS: The collagen concentrations were determined in cervical biopsies obtained from 15 women at 3, 6, 9, 12, and 15 months after delivery. RESULTS: The mean cervical collagen concentrations were 50, 59, 63, 65, and 65 % of dry weight (SD 4.2 – 6.5). This increase...... was statistically significant until month 9, but not between months 9 and 12. CONCLUSIONS: Low collagen concentrations in the uterine cervix may contribute to the association between a short interpregnancy interval and preterm birth....

  3. Collagen-like proteins in pathogenic E. coli strains.

    Directory of Open Access Journals (Sweden)

    Neelanjana Ghosh

    Full Text Available The genome sequences of enterohaemorrhagic E. coli O157:H7 strains show multiple open-reading frames with collagen-like sequences that are absent from the common laboratory strain K-12. These putative collagens are included in prophages embedded in O157:H7 genomes. These prophages carry numerous genes related to strain virulence and have been shown to be inducible and capable of disseminating virulence factors by horizontal gene transfer. We have cloned two collagen-like proteins from E. coli O157:H7 into a laboratory strain and analysed the structure and conformation of the recombinant proteins and several of their constituting domains by a variety of spectroscopic, biophysical, and electron microscopy techniques. We show that these molecules exhibit many of the characteristics of vertebrate collagens, including trimer formation and the presence of a collagen triple helical domain. They also contain a C-terminal trimerization domain, and a trimeric α-helical coiled-coil domain with an unusual amino acid sequence almost completely lacking leucine, valine or isoleucine residues. Intriguingly, these molecules show high thermal stability, with the collagen domain being more stable than those of vertebrate fibrillar collagens, which are much longer and post-translationally modified. Under the electron microscope, collagen-like proteins from E. coli O157:H7 show a dumbbell shape, with two globular domains joined by a hinged stalk. This morphology is consistent with their likely role as trimeric phage side-tail proteins that participate in the attachment of phage particles to E. coli target cells, either directly or through assembly with other phage tail proteins. Thus, collagen-like proteins in enterohaemorrhagic E. coli genomes may have a direct role in the dissemination of virulence-related genes through infection of harmless strains by induced bacteriophages.

  4. Absence of FKBP10 in recessive type XI osteogenesis imperfecta leads to diminished collagen cross-linking and reduced collagen deposition in extracellular matrix.

    Science.gov (United States)

    Barnes, Aileen M; Cabral, Wayne A; Weis, MaryAnn; Makareeva, Elena; Mertz, Edward L; Leikin, Sergey; Eyre, David; Trujillo, Carlos; Marini, Joan C

    2012-11-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in genes whose products interact with type I collagen for modification and/or folding. We identified a Palestinian pedigree with moderate and lethal forms of recessive OI caused by mutations in FKBP10 or PPIB, which encode endoplasmic reticulum resident chaperone/isomerases FKBP65 and CyPB, respectively. In one pedigree branch, both parents carry a deletion in PPIB (c.563_566delACAG), causing lethal type IX OI in their two children. In another branch, a child with moderate type XI OI has a homozygous FKBP10 mutation (c.1271_1272delCCinsA). Proband FKBP10 transcripts are 4% of control and FKBP65 protein is absent from proband cells. Proband collagen electrophoresis reveals slight band broadening, compatible with ≈10% over-modification. Normal chain incorporation, helix folding, and collagen T(m) support a minimal general collagen chaperone role for FKBP65. However, there is a dramatic decrease in collagen deposited in culture despite normal collagen secretion. Mass spectrometry reveals absence of hydroxylation of the collagen telopeptide lysine involved in cross-linking, suggesting that FKBP65 is required for lysyl hydroxylase activity or access to type I collagen telopeptide lysines, perhaps through its function as a peptidylprolyl isomerase. Proband collagen to organics ratio in matrix is approximately 30% of normal in Raman spectra. Immunofluorescence shows sparse, disorganized collagen fibrils in proband matrix. Published 2012 Wiley Periodicals, Inc.*This article is a US Government work and, as such, is in the public domain of the United States of America.

  5. Lake Morphometry for NHD Lakes in the Western Portion of the South Atlantic-Gulf Region 3 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  6. Lake Morphometry for NHD Lakes in the Northern Portion of the South Atlantic-Gulf Region 3 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  7. Lake Morphometry for NHD Lakes in the Southern Portion of the South Atlantic-Gulf Region 3 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  8. Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation

    Science.gov (United States)

    Damodarasamy, Mamatha; Vernon, Robert B.; Chan, Christina K.; Plymate, Stephen R.; Wight, Thomas N.

    2015-01-01

    The extracellular matrix (ECM) of the prostate, which is comprised primarily of collagen, becomes increasingly disorganized with age, a property that may influence the development of hyperplasia and cancer. Collageous ECM extracted from the tails of aged mice exhibits many characteristics of collagen in aged tissues, including the prostate. When polymerized into a 3-dimensional (3D) gel, these collagen extracts can serve as models for the study of specific cell-ECM interactions. In the present study, we examined the behaviors of human prostatic epithelial cell lines representing normal prostate epithelial cells (PEC), benign prostatic hyperplasia (BPH-1), and adenocarcinoma (LNCaP) cultured in contact with 3D gels made from collagen extracts of young and aged mice. We found that proliferation of PEC, BPH-1, and LNCaP cells were all increased by culture on aged collagen gels relative to young collagen gels. In examining age-associated differences in the composition of the collagen extracts, we found that aged and young collagen had a similar amount of several collagen-associated ECM components, but aged collagen had a much greater content of the glycosaminoglycan hyaluronan (HA) than young collagen. The addition of HA (of similar size and concentration to that found in aged collagen extracts) to cells placed in young collagen elicited significantly increased proliferation in BPH-1 cells, but not in PEC or LNCaP cells, relative to controls not exposed to HA. Of note, histochemical analyses of human prostatic tissues showed significantly higher expression of HA in BPH and prostate cancer stroma relative to stroma of normal prostate. Collectively, these results suggest that changes in ECM involving increased levels of HA contribute to the growth of prostatic epithelium with aging. PMID:25124870

  9. Morphometric changes of whole brain in patients with alcohol addiction: a voxel-based morphometry study

    International Nuclear Information System (INIS)

    Li Jinfeng; Chen Zhiye; Ma Lin

    2011-01-01

    Objective: To evaluate morphometric changes of brain in patients with alcohol addiction by voxel-based morphometry. Methods: Fifteen patients with alcohol addiction and 15 health controls were recruited and underwent fluid attenuated inversion recovery (FLAIR) and 3D fast spoiled gradient echo (FSPGR) T 1 -weighted sequences on a 3.0 T MRI system. 3D FSPGR T 1 structure images were normalized, segmented and smoothed, and then underwent voxel-based morphometry. An ANCOVA was applied with age, body mass index (BMI), and education years as covariates because of exact sex match. A statistical threshold of P 0.05). Conclusions: Regional gray and white matter atrophy can be the initial changes in patients with alcohol addiction and the frontal region is a relative specific damaged brain region. VBM has a potential value for the detection of subtle brain atrophy in patients with alcohol addiction. (authors)

  10. Fibrous mini-collagens in hydra nematocysts.

    Science.gov (United States)

    Holstein, T W; Benoit, M; Herder, G V; David, C N; Wanner, G; Gaub, H E

    1994-07-15

    Nematocysts (cnidocysts) are exocytotic organelles found in all cnidarians. Here, atomic force microscopy and field emission scanning electron microscopy reveal the structure of the nematocyst capsule wall. The outer wall consists of globular proteins of unknown function. The inner wall consists of bundles of collagen-like fibrils having a spacing of 50 to 100 nanometers and cross-striations at intervals of 32 nanometers. The fibrils consist of polymers of "mini-collagens," which are abundant in the nematocysts of Hydra. The distinct pattern of mini-collagen fibers in the inner wall can provide the tensile strength necessary to withstand the high osmotic pressure (15 megapascals) in the capsules.

  11. Effects of genistein following fractionated lung irradiation in mice

    International Nuclear Information System (INIS)

    Para, Andrea E.; Bezjak, Andrea; Yeung, Ivan W.T.; Van Dyk, Jake; Hill, Richard P.

    2009-01-01

    Background and purpose: This study investigated protection of lung injury by genistein following fractionated doses of radiation and its effect on tumor response. Material and methods: C3H/HeJ mice were irradiated (100 kVp X-rays) with 9 fractions of 3.1 Gy over 30 days (approximately equivalent to 10 Gy single dose) and were maintained on a genistein diet (∼10 mg/kg). Damage was assessed over 28 weeks in lung cells by a cytokinesis block micronucleus (MN) assay and by changes in breathing rate and histology. Tumor protection was assessed using a colony assay to determine cell survival following in situ irradiation of small lung nodules (KHT fibrosarcoma). Results: Genistein caused about a 50% reduction in the MN damage observed during the fractionated radiation treatment and this damage continued to decrease at later times to background levels by 16 weeks. In mice not receiving Genistein MN levels remained well above background out to 28 weeks after irradiation. Genistein reduced macrophage accumulation by 22% and reduced collagen deposition by 28%. There was minimal protection against increases in breathing rate or severe morbidity during pneumonitis. No tumor protection by genistein treatment was observed. Conclusions: Genistein at the dose levels used in this study partially reduced the extent of fibrosis developing in mouse lung caused by irradiation but gave minimal protection against pneumonitis. There was no evidence that genistein caused protection of small tumors growing in the lung.

  12. Fish collagen is an important panallergen in the Japanese population.

    Science.gov (United States)

    Kobayashi, Y; Akiyama, H; Huge, J; Kubota, H; Chikazawa, S; Satoh, T; Miyake, T; Uhara, H; Okuyama, R; Nakagawara, R; Aihara, M; Hamada-Sato, N

    2016-05-01

    Collagen was identified as a fish allergen in early 2000s. Although its allergenic potential has been suggested to be low, risks associated with collagen as a fish allergen have not been evaluated to a greater extent. In this study, we aimed to clarify the importance of collagen as a fish allergen. Our results showed that 50% of Japanese patients with fish allergy had immunoglobulin E (IgE) against mackerel collagen, whereas 44% had IgE against mackerel parvalbumin. IgE inhibition assay revealed high cross-reactivity of mackerel collagen to 22 fish species (inhibition rates: 87-98%). Furthermore, a recently developed allergy test demonstrated that collagen triggered IgE cross-linking on mast cells. These data indicate that fish collagen is an important and very common panallergen in fish consumed in Japan. The high rate of individuals' collagen allergy may be attributable to the traditional Japanese custom of raw fish consumption. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Stabilization and anomalous hydration of collagen fibril under heating.

    Directory of Open Access Journals (Sweden)

    Sasun G Gevorkian

    Full Text Available BACKGROUND: Type I collagen is the most common protein among higher vertebrates. It forms the basis of fibrous connective tissues (tendon, chord, skin, bones and ensures mechanical stability and strength of these tissues. It is known, however, that separate triple-helical collagen macromolecules are unstable at physiological temperatures. We want to understand the mechanism of collagen stability at the intermolecular level. To this end, we study the collagen fibril, an intermediate level in the collagen hierarchy between triple-helical macromolecule and tendon. METHODOLOGY/PRINCIPAL FINDING: When heating a native fibril sample, its Young's modulus decreases in temperature range 20-58°C due to partial denaturation of triple-helices, but it is approximately constant at 58-75°C, because of stabilization by inter-molecular interactions. The stabilization temperature range 58-75°C has two further important features: here the fibril absorbs water under heating and the internal friction displays a peak. We relate these experimental findings to restructuring of collagen triple-helices in fibril. A theoretical description of the experimental results is provided via a generalization of the standard Zimm-Bragg model for the helix-coil transition. It takes into account intermolecular interactions of collagen triple-helices in fibril and describes water adsorption via the Langmuir mechanism. CONCLUSION/SIGNIFICANCE: We uncovered an inter-molecular mechanism that stabilizes the fibril made of unstable collagen macromolecules. This mechanism can be relevant for explaining stability of collagen.

  14. Collagen-Induced Arthritis: A model for Murine Autoimmune Arthritis.

    Science.gov (United States)

    Pietrosimone, K M; Jin, M; Poston, B; Liu, P

    2015-10-20

    Collagen-induced arthritis (CIA) is a common autoimmune animal model used to study rheumatoid arthritis (RA). The development of CIA involves infiltration of macrophages and neutrophils into the joint, as well as T and B cell responses to type II collagen. In murine CIA, genetically susceptible mice (DBA/1J) are immunized with a type II bovine collagen emulsion in complete Freund's adjuvant (CFA), and receive a boost of type II bovine collagen in incomplete Freund's adjuvant (IFA) 21 days after the first injection. These mice typically develop disease 26 to 35 days after the initial injection. C57BL/6J mice are resistant to arthritis induced by type II bovine collagen, but can develop arthritis when immunized with type II chicken collagen in CFA, and receive a boost of type II chicken collagen in IFA 21 days after the first injection. The concentration of heat-killed Mycobacterium tuberculosis H37RA (MT) in CFA also differs for each strain. DBA/1J mice develop arthritis with 1 mg/ml MT, while C57BL/6J mice require and 3-4 mg/ml MT in order to develop arthritis. CIA develops slowly in C57BL/6J mice and cases of arthritis are mild when compared to DBA/1J mice. This protocol describes immunization of DBA/1J mice with type II bovine collagen and the immunization of C57BL/6J mice with type II chicken collagen.

  15. Fabrication of homobifunctional crosslinker stabilized collagen for biomedical application

    International Nuclear Information System (INIS)

    Lakra, Rachita; Kiran, Manikantan Syamala; Sai, Korrapati Purna

    2015-01-01

    Collagen biopolymer has found widespread application in the field of tissue engineering owing to its excellent tissue compatibility and negligible immunogenicity. Mechanical strength and enzymatic degradation of the collagen necessitates the physical and chemical strength enhancement. One such attempt deals with the understanding of crosslinking behaviour of EGS (ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester)) with collagen to improve the physico-chemical properties. The incorporation of a crosslinker during fibril formation enhanced the thermal and mechanical stability of collagen. EGS crosslinked collagen films exhibited higher denaturation temperature (T d ) and the residue left after thermogravimetric analysis was about 16  ±  5.2%. Mechanical properties determined by uniaxial tensile tests showed a threefold increase in tensile strength and Young’s modulus at higher concentration (100 μM). Water uptake capacity reduced up to a moderate extent upon crosslinking which is essential for the transport of nutrients to the cells. Cell viability was found to be 100% upon treatment with 100 μM EGS whereas only 30% viability could be observed with glutaraldehyde. Rheological studies of crosslinked collagen showed an increase in shear stress and shear viscosity at 37 °C. Crosslinking with EGS resulted in the formation of a uniform fibrillar network. Trinitrobenzene sulfonate (TNBS) assay confirmed that EGS crosslinked collagen by forming a covalent interaction with ε-amino acids of collagen. The homobifunctional crosslinker used in this study enhanced the effectiveness of collagen as a biomaterial for biomedical application. (paper)

  16. Enhancing Diffusion MRI Measures By Integrating Grey and White Matter Morphometry With Hyperbolic Wasserstein Distance

    Science.gov (United States)

    Zhang, Wen; Shi, Jie; Yu, Jun; Zhan, Liang; Thompson, Paul M.; Wang, Yalin

    2017-01-01

    In order to improve the preclinical diagnose of Alzheimer's disease (AD), there is a great deal of interest in analyzing the AD related brain structural changes with magnetic resonance image (MRI) analyses. As the major features, variation of the structural connectivity and the cortical surface morphometry provide different views of structural changes to determine whether AD is present on presymptomatic patients. However, the large scale tensor-valued information and relatively low imaging resolution in diffusion MRI (dMRI) have created huge challenges for analysis. In this paper, we propose a novel framework that improves dMRI analysis power by fusing cortical surface morphometry features from structural MRI (sMRI). We first compute the hyperbolic harmonic maps between cortical surfaces with the landmark constraints thus to precisely evaluate surface tensor-based morphometry. Meanwhile, the graph-based analysis of structural connectivity derived from dMRI is conducted. Next, we fuse these two features via the optimal mass transportation (OMT) and eventually the Wasserstein distance (WD) based single image index is computed as a potential clinical multimodality imaging score. We apply our framework to brain images of 20 AD patients and 20 matched healthy controls, randomly chosen from the Alzheimer's Disease Neuroimaging Initiative (AD-NI2) dataset. Our preliminary experimental results of group classification outperformed those of some other single dMRI-based features, such as regional hippocampal volume, mean scores of fractional anisotropy (FA) and mean axial (MD). The novel image fusion pipeline and simple imaging score of structural changes may benefit the preclinical AD and AD prevention research. PMID:28936280

  17. Fracture mechanics of collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, Rene B; Mulder, Hindrik; Kovanen, Vuokko

    2013-01-01

    Tendons are important load-bearing structures, which are frequently injured in both sports and work. Type I collagen fibrils are the primary components of tendons and carry most of the mechanical loads experienced by the tissue, however, knowledge of how load is transmitted between and within...... fibrils is limited. The presence of covalent enzymatic cross-links between collagen molecules is an important factor that has been shown to influence mechanical behavior of the tendons. To improve our understanding of how molecular bonds translate into tendon mechanics, we used an atomic force microscopy...... technique to measure the mechanical behavior of individual collagen fibrils loaded to failure. Fibrils from human patellar tendons, rat-tail tendons (RTTs), NaBH₄ reduced RTTs, and tail tendons of Zucker diabetic fat rats were tested. We found a characteristic three-phase stress-strain behavior in the human...

  18. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  19. Preparation, Cell Compatibility and Degradability of Collagen-Modified Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Miaomiao Cui

    2015-01-01

    Full Text Available Poly(lactic acid (PLA was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA was prepared by the reaction between the reactive acylchlorided group and amino/hydroxyl groups on collagen. Subsequently, the structure of collagen-PLA was confirmed by Fourier transform infrared spectroscopy, fluorescein isothiocyanate-labeled fluorescence spectroscopy, X-ray photoelectron spectroscopy, and DSC analyses. Finally, some properties of collagen-PLA, such as hydrophilicity, cell compatibility and degradability were characterized. Results showed that collagen had been grafted onto the PLA with 5% graft ratio. Water contact angle and water absorption behavior tests indicated that the hydrophilicity of collagen-PLA was significantly higher than that of PLA. The cell compatibility of collagen-PLA with mouse embryonic fibroblasts (3T3 was also significantly better than PLA in terms of cell morphology and cell proliferation, and the degradability of PLA was also improved after introducing collagen. Results suggested that collagen-PLA was a promising candidate for biomedical applications.

  20. ACAT1 deletion in murine macrophages associated with cytotoxicity and decreased expression of collagen type 3A1

    International Nuclear Information System (INIS)

    Rodriguez, Annabelle; Ashen, M. Dominique; Chen, Edward S.

    2005-01-01

    In contrast to some published studies of murine macrophages, we previously showed that ACAT inhibitors appeared to be anti-atherogenic in primary human macrophages in that they decreased foam cell formation without inducing cytotoxicity. Herein, we examined foam cell formation and cytotoxicity in murine ACAT1 knockout (KO) macrophages in an attempt to resolve the discrepancies. Elicited peritoneal macrophages from normal C57BL6 and ACAT1 KO mice were incubated with DMEM containing acetylated LDL (acLDL, 100 μg protein/ml) for 48 h. Cells became cholesterol enriched and there were no differences in the total cholesterol mass. Esterified cholesterol mass was lower in ACAT1 KO foam cells compared to normal macrophages (p 14 C]adenine from macrophages, was approximately 2-fold greater in ACAT1 KO macrophages as compared to normal macrophages (p < 0.0001), and this was independent of cholesterol enrichment. cDNA microarray analysis showed that ACAT1 KO macrophages expressed substantially less collagen type 3A1 (26-fold), which was confirmed by RT-PCR. Total collagen content was also significantly reduced (57%) in lung homogenates isolated from ACAT1 KO mice (p < 0.02). Thus, ACAT1 KO macrophages show biochemical changes consistent with increased cytotoxicity and also a novel association with decreased expression of collagen type 3A1

  1. The response to estrogen deprivation on cartilage collagen degradation markers; CTX-II is unique compared to other markers of collagen turnover

    DEFF Research Database (Denmark)

    Bay-Jensen, Anne-Christine; Tabassi, Nadine; Sondergaard, Lene

    2009-01-01

    ABSTRACT: INTRODUCTION: The urinary level of type II collagen degradation marker CTX-II is increased in postmenopausal women and in ovariectomized rats, suggesting that estrogen deprivation induces cartilage breakdown. Here we investigate whether this response to estrogen holds true for other type...... II collagen turnover markers known to be affected in osteoarthritis, and whether it relates to its presence in specific areas of cartilage tissue. METHODS: The type II collagen degradation markers CTX-II and Helix-II were measured in body fluids of pre- and postmenopausal women and of ovariectomized...... rats receiving estrogen or not. Levels of PIIANP, a marker of type II collagen synthesis, were also measured in rats. Rat knee cartilage was analyzed for immunoreactivity of CTX-II and PIIANP and for type II collagen expression. RESULTS: As expected, urinary levels of CTX-II are significantly increased...

  2. Alpha-methyl-homocysteine thiolactone protects lung of BALB/c mice irradiated with 6 Gy

    International Nuclear Information System (INIS)

    Lubec, G.; Tichatschek, E.; Foltinova, J.; Leplawy, T.; Mallinger, R.; Getoff, N.

    1996-01-01

    The radiation protective activity of intaperitoneally administered alpha-methyl-homocysteine thiolactone (α-MHCTL); 100 mg/kg body weight) in female BALB/c mice and such treated with cysteine treated (100 mg/kg body weight), using unirradiated and placebo treated irradiated mice were tested as controls. 6Gy whole body irradiated was applied and after a period of three weeks the animals were sacrificed and lungs were taken for morphometry and the determination of o-tyrosine. Septal areas were highest in the irradiated, placebo treated mice (68.67 + 9.82% septal area to total area) and lowest in the α-MHCTL treated irradiated mice (55.67 + 11.29%), significant at the p < 0.05 level. Morphometric data were accompanied by highest levels of o-tyrosine, a reliable parameter for OH-attack, in the irradiated, placebo treated group with 1.87 + 0.40 μM/g lung tissue and 0.32 + 0.13 μM/g lung tissue in the αMHCTL treated group; the statistical difference was significant. Significant radiation protection in the mammalian system at the morphological and biochemical level were found. The potent effect could be explained by the influence of alpha-alkylation in homocysteine thiolactone (HCTL) which renders amino acids unmetabolizeable, nontoxic, increases lipophilicity and therefore improving permeability through membranes. The present report confirms morphological data on the radiation protective activity of this interesting thiol compound. (Author)

  3. High bias gas flows increase lung injury in the ventilated preterm lamb.

    Directory of Open Access Journals (Sweden)

    Katinka P Bach

    Full Text Available BACKGROUND: Mechanical ventilation of preterm babies increases survival but can also cause ventilator-induced lung injury (VILI, leading to the development of bronchopulmonary dysplasia (BPD. It is not known whether shear stress injury from gases flowing into the preterm lung during ventilation contributes to VILI. METHODS: Preterm lambs of 131 days' gestation (term = 147 d were ventilated for 2 hours with a bias gas flow of 8 L/min (n = 13, 18 L/min (n = 12 or 28 L/min (n = 14. Physiological parameters were measured continuously and lung injury was assessed by measuring mRNA expression of early injury response genes and by histological analysis. Control lung tissue was collected from unventilated age-matched fetuses. Data were analysed by ANOVA with a Tukey post-hoc test when appropriate. RESULTS: High bias gas flows resulted in higher ventilator pressures, shorter inflation times and decreased ventilator efficiency. The rate of rise of inspiratory gas flow was greatest, and pulmonary mRNA levels of the injury markers, EGR1 and CTGF, were highest in lambs ventilated with bias gas flows of 18 L/min. High bias gas flows resulted in increased cellular proliferation and abnormal deposition of elastin, collagen and myofibroblasts in the lung. CONCLUSIONS: High ventilator bias gas flows resulted in increased lung injury, with up-regulation of acute early response genes and increased histological lung injury. Bias gas flows may, therefore, contribute to VILI and BPD.

  4. Study of collagen metabolism and regulation after β radiation injury

    International Nuclear Information System (INIS)

    Zhou Yinghui; Xu Lan; Wu Shiliang; Qiu Hao; Jiang Zhi; Tu Youbin; Zhang Xueguang

    2001-01-01

    The animal model of β radiation injury was established by the β radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 were tested. The contents of TGF-β 1 , IL-6 were also detected. The results showed that after exposure to β radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-β 1 , IL-6 increased. The results suggest that changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-β 1 , IL-6 may be essential in the regulation of the collagen metabolism

  5. Collagen derived serum markers in carcinoma of the prostate

    DEFF Research Database (Denmark)

    Rudnicki, M; Jensen, L T; Iversen, P

    1995-01-01

    Three new collagen markers deriving from the collagenous matrix, e.g. carboxyterminal propeptide of type I procollagen (PICP), carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP), and aminoterminal propeptide of type III procollagen (PIIINP) were used for the diagnose...

  6. ROS Mediates Radiation-Induced Differentiation in Human Lung Fibroblast

    International Nuclear Information System (INIS)

    Park, Sa Rah; Ahn, Ji Yeon; Kim, Mi Hyeung; Lim, Min Jin; Yun, Yeon Sook; Song, Jie Young

    2009-01-01

    One of the most common tumors worldwide is lung cancer and the number of patients with lung cancer received radiotherapy is increasing rapidly. Although radiotherapy may have lots of advantages, it can also induce serious adverse effects such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of smooth muscle actin-alpha (a-SMA) and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-b), tumor necrosis factor (TNF), IL-6, platelet-derived growth factor (PDGF) and reactive oxygen species are related to fibrosis. It is also reported that reactive oxygen species (ROS) can be induced by radiation and can act as a second messenger in various signaling pathways. Therefore we focused on the role of ROS in radiation induced fibrosis. Here, we suggest that irradiation generate ROS mainly through NOX4, result in differentiation of lung fibroblast into myofibroblast

  7. Immunosuppression by fractionated total lymphoid irradiation in collagen arthritis

    International Nuclear Information System (INIS)

    McCune, W.J.; Buckley, J.A.; Belli, J.A.; Trentham, D.E.

    1982-01-01

    Treatments with fractionated total lymphoid irradiation (TLI) and cyclophosphamide were evaluated for rats injected with type II collagen. Preadministration of TLI and repeated injections of cyclophosphamide suppressed the severity of arthritis and lowered antibody titers to collagen significantly. TLI initiated at the onset of collagen arthritis decreased humoral and cellular responses to collagen but did not affect the severity of arthritis. These data demonstrate that both TLi and cyclophosphamide are immunosuppressive in an experimentally inducible autoimmune disease

  8. Comparison between the radiological manifestations of thoracic involvement in collagen vascular diseases and idiopathic pulmonary fibrosis

    International Nuclear Information System (INIS)

    Kirova, G.; Rashkov, R.; Georgiev, O.

    2002-01-01

    The purpose of the study is to compare the presentation and distribution of lung abnormalities seen in Collagen Vascular Diseases (CVD) with those specifics for Idiopathic Pulmonary Fibrosis (IPF). The HRCT scans of 92 patients fulfilling the ARA criteria's for the diagnosis of four different CVD were reviewed and compared with those of 18 patients with IPF. The presentations of three main patterns of lung disease were assessed into the both groups. In order to find out the trend distribution in each disease, the grade and severity of presentation for the main abnormalities were assessed, using a scoring system.The incidence of reticular lung abnormalities for the group of IPF is 100 % versus 57.3 % for the CVD (p<0.0009). At the same time CVD, except for PSS, had a low incidence of reticular diseases (37 %). The incidence of alveolar abnormalities in CVD (57.3 %) were similar as these in IPF (66.6 %) (p=NS). The severity of the disease was greatest in IPF and PSS without significant difference between them. Nevertheless of uniform character of the abnormalities in the rest of CVD, they were presented with lesser degree and severity. The main abnormalities, seen in pulmonary parenchyma in patients with IPF and CVD were similar but with different grade, severity and distribution. (authors)

  9. Structural covariance in the hallucinating brain: a voxel-based morphometry study

    Science.gov (United States)

    Modinos, Gemma; Vercammen, Ans; Mechelli, Andrea; Knegtering, Henderikus; McGuire, Philip K.; Aleman, André

    2009-01-01

    Background Neuroimaging studies have indicated that a number of cortical regions express altered patterns of structural covariance in schizophrenia. The relation between these alterations and specific psychotic symptoms is yet to be investigated. We used voxel-based morphometry to examine regional grey matter volumes and structural covariance associated with severity of auditory verbal hallucinations. Methods We applied optimized voxel-based morphometry to volumetric magnetic resonance imaging data from 26 patients with medication-resistant auditory verbal hallucinations (AVHs); statistical inferences were made at p < 0.05 after correction for multiple comparisons. Results Grey matter volume in the left inferior frontal gyrus was positively correlated with severity of AVHs. Hallucination severity influenced the pattern of structural covariance between this region and the left superior/middle temporal gyri, the right inferior frontal gyrus and hippocampus, and the insula bilaterally. Limitations The results are based on self-reported severity of auditory hallucinations. Complementing with a clinician-based instrument could have made the findings more compelling. Future studies would benefit from including a measure to control for other symptoms that may covary with AVHs and for the effects of antipsychotic medication. Conclusion The results revealed that overall severity of AVHs modulated cortical intercorrelations between frontotemporal regions involved in language production and verbal monitoring, supporting the critical role of this network in the pathophysiology of hallucinations. PMID:19949723

  10. Stability and cellular responses to fluorapatite-collagen composites.

    Science.gov (United States)

    Yoon, Byung-Ho; Kim, Hae-Won; Lee, Su-Hee; Bae, Chang-Jun; Koh, Young-Hag; Kong, Young-Min; Kim, Hyoun-Ee

    2005-06-01

    Fluorapatite (FA)-collagen composites were synthesized via a biomimetic coprecipitation method in order to improve the structural stability and cellular responses. Different amounts of ammonium fluoride (NH4F), acting as a fluorine source for FA, were added to the precipitation of the composites. The precipitated composites were freeze-dried and isostatically pressed in a dense body. The added fluorine was incorporated nearly fully into the apatite structure (fluoridation), and a near stoichiometric FA-collagen composite was obtained with complete fluoridation. The freeze-dried composites had a typical biomimetic network, consisting of collagen fibers and precipitates of nano-sized apatite crystals. The human osteoblast-like cells on the FA-collagen composites exhibited significantly higher proliferation and differentiation (according to alkaline phosphatase activity) than those on the hydroxyapatite-collagen composite. These enhanced osteoblastic cell responses were attributed to the fluorine release and the reduced dissolution rate.

  11. Controlled self assembly of collagen nanoparticle

    Science.gov (United States)

    Papi, Massimiliano; Palmieri, Valentina; Maulucci, Giuseppe; Arcovito, Giuseppe; Greco, Emanuela; Quintiliani, Gianluca; Fraziano, Maurizio; De Spirito, Marco

    2011-11-01

    In recent years carrier-mediated drug delivery has emerged as a powerful methodology for the treatment of various pathologies. The therapeutic index of traditional and novel drugs is enhanced via the increase of specificity due to targeting of drugs to a particular tissue, cell or intracellular compartment, the control over release kinetics, the protection of the active agent, or a combination of the above. Collagen is an important biomaterial in medical applications and ideal as protein-based drug delivery platform due to its special characteristics, such as biocompatibility, low toxicity, biodegradability, and weak antigenicity. While some many attempts have been made, further work is needed to produce fully biocompatible collagen hydrogels of desired size and able to release drugs on a specific target. In this article we propose a novel method to obtain spherical particles made of polymerized collagen surrounded by DMPC liposomes. The liposomes allow to control both the particles dimension and the gelling environment during the collagen polymerization. Furthermore, an optical based method to visualize and quantify each step of the proposed protocol is detailed and discussed.

  12. Collagenous gastritis: a morphologic and immunohistochemical study of 40 patients.

    Science.gov (United States)

    Arnason, Thomas; Brown, Ian S; Goldsmith, Jeffrey D; Anderson, William; O'Brien, Blake H; Wilson, Claire; Winter, Harland; Lauwers, Gregory Y

    2015-04-01

    Collagenous gastritis is a rare condition defined histologically by a superficial subepithelial collagen layer. This study further characterizes the morphologic spectrum of collagenous gastritis by evaluating a multi-institutional series of 40 patients (26 female and 14 male). The median age at onset was 16 years (range 3-89 years), including 24 patients (60%) under age 18. Twelve patients (30%) had associated celiac disease, collagenous sprue, or collagenous colitis. Hematoxylin and eosin slides were reviewed in biopsies from all patients and tenascin, gastrin, eotaxin, and IgG4/IgG immunohistochemical stains were applied to a subset. The distribution of subepithelial collagen favored the body/fundus in pediatric patients and the antrum in adults. There were increased surface intraepithelial lymphocytes (>25 lymphocytes/100 epithelial cells) in five patients. Three of these patients had associated celiac and/or collagenous sprue/colitis, while the remaining two had increased duodenal lymphocytosis without specific etiology. An eosinophil-rich pattern (>30 eosinophils/high power field) was seen in 21/40 (52%) patients. Seven patients' biopsies demonstrated atrophy of the gastric corpus mucosa. Tenascin immunohistochemistry highlighted the subepithelial collagen in all 21 specimens evaluated and was a more sensitive method of collagen detection in biopsies from two patients with subtle subepithelial collagen. No increased eotaxin expression was identified in 16 specimens evaluated. One of the twenty-three biopsies tested had increased IgG4-positive cells (100/high power field) with an IgG4/IgG ratio of 55%. In summary, collagenous gastritis presents three distinct histologic patterns including a lymphocytic gastritis-like pattern, an eosinophil-rich pattern, and an atrophic pattern. Eotaxin and IgG4 were not elevated enough to implicate these pathways in the pathogenesis. Tenascin immunohistochemistry can be used as a sensitive method of collagen detection.

  13. Development of a novel collagen-GAG nanofibrous scaffold via electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Shaoping [Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore); Teo, Wee Eong [Division of Bioengineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore); Zhu Xiao [Singapore Eye Research Institute, Singapore National Eye Center, 11 Third Hospital Avenue, Singapore 168751 (Singapore); Beuerman, Roger [Singapore Eye Research Institute, Singapore National Eye Center, 11 Third Hospital Avenue, Singapore 168751 (Singapore); Ramakrishna, Seeram [Division of Bioengineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore); Yung, Lin Yue Lanry [Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore)]. E-mail: cheyly@nus.edu.sg

    2007-03-15

    Collagen and glycosaminoglycan (GAG) are native constituents of human tissues and are widely utilized to fabricate scaffolds serving as an analog of native extracellular matrix (ECM).The development of blended collagen and GAG scaffolds may potentially be used in many soft tissue engineering applications since the scaffolds mimic the structure and biological function of native ECM. In this study, we were able to obtain a novel nanofibrous collagen-GAG scaffold by electrospinning with collagen and chondroitin sulfate (CS), a widely used GAG. The electrospun collagen-GAG scaffold exhibited a uniform fiber structure in nano-scale diameter. By crosslinking with glutaraldehyde vapor, the collagen-GAG scaffolds could resist from collagenase degradation and enhance the biostability of the scaffolds. This led to the increased proliferation of rabbit conjunctiva fibroblast on the scaffolds. Incorporation of CS into collagen nanofibers without crosslinking did not increase the biostability but still promoted cell growth. In conclusion, the electrospun collagen-GAG scaffolds, with high surface-to-volume ratio, may potentially provide a better environment for tissue formation/biosynthesis compared with the traditional scaffolds.

  14. Development of a novel collagen-GAG nanofibrous scaffold via electrospinning

    International Nuclear Information System (INIS)

    Zhong Shaoping; Teo, Wee Eong; Zhu Xiao; Beuerman, Roger; Ramakrishna, Seeram; Yung, Lin Yue Lanry

    2007-01-01

    Collagen and glycosaminoglycan (GAG) are native constituents of human tissues and are widely utilized to fabricate scaffolds serving as an analog of native extracellular matrix (ECM).The development of blended collagen and GAG scaffolds may potentially be used in many soft tissue engineering applications since the scaffolds mimic the structure and biological function of native ECM. In this study, we were able to obtain a novel nanofibrous collagen-GAG scaffold by electrospinning with collagen and chondroitin sulfate (CS), a widely used GAG. The electrospun collagen-GAG scaffold exhibited a uniform fiber structure in nano-scale diameter. By crosslinking with glutaraldehyde vapor, the collagen-GAG scaffolds could resist from collagenase degradation and enhance the biostability of the scaffolds. This led to the increased proliferation of rabbit conjunctiva fibroblast on the scaffolds. Incorporation of CS into collagen nanofibers without crosslinking did not increase the biostability but still promoted cell growth. In conclusion, the electrospun collagen-GAG scaffolds, with high surface-to-volume ratio, may potentially provide a better environment for tissue formation/biosynthesis compared with the traditional scaffolds

  15. Asporin competes with decorin for collagen binding, binds calcium and promotes osteoblast collagen mineralization

    DEFF Research Database (Denmark)

    Kalamajski, Sebastian; Aspberg, Anders; Lindblom, Karin

    2009-01-01

    , but not by biglycan. We demonstrate that the polyaspartate domain binds calcium and regulates hydroxyapatite formation in vitro. In the presence of asporin, the number of collagen nodules, and mRNA of osteoblastic markers Osterix and Runx2, were increased. Moreover, decorin or the collagen-binding asporin fragment...... biomineralization activity. We also show that asporin can be expressed in Escherichia coli (Rosetta-gami) with correctly positioned cysteine bridges, and a similar system can possibly be used for the expression of other SLRPs (small LRR proteoglycans/proteins)....

  16. A microscopic evaluation of collagen-bilirubin interactions: in vitro surface phenomenon.

    Science.gov (United States)

    Usharani, N; Jayakumar, G C; Rao, J R; Chandrasekaran, B; Nair, B U

    2014-02-01

    This study is carried out to understand the morphology variations of collagen I matrices influenced by bilirubin. The characteristics of bilirubin interaction with collagen ascertained using various techniques like XRD, CLSM, fluorescence, SEM and AFM. These techniques are used to understand the distribution, expression and colocalization patterns of collagen-bilirubin complexes. The present investigation mimic the in vivo mechanisms created during the disorder condition like jaundice. Fluorescence technique elucidates the crucial role played by bilirubin deposition and interaction during collagen organization. Influence of bilirubin during collagen fibrillogenesis and banding patterns are clearly visualize using SEM. As a result, collagen-bilirubin complex provides different reconstructed patterns because of the influence of bilirubin concentration. Selectivity, specificity and spatial organization of collagen-bilirubin are determined through AFM imaging. Consequently, it is observed that the morphology and quantity of the bilirubin binding to collagen varied by the concentrations and the adsorption rate in protein solutions. Microscopic studies of collagen-bilirubin interaction confirms that bilirubin influence the fibrillogenesis and alter the rate of collagen organization depending on the bilirubin concentration. This knowledge helps to develop a novel drug to inhibit the interface point of interaction between collagen and bilirubin. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  17. Mycobacterial laminin-binding histone-like protein mediates collagen-dependent cytoadherence

    Directory of Open Access Journals (Sweden)

    André Alves Dias

    2012-12-01

    Full Text Available When grown in the presence of exogenous collagen I, Mycobacterium bovis BCG was shown to form clumps. Scanning electron microscopy examination of these clumps revealed the presence of collagen fibres cross-linking the bacilli. Since collagen is a major constituent of the eukaryotic extracellular matrices, we assayed BCG cytoadherence in the presence of exogenous collagen I. Collagen increased the interaction of the bacilli with A549 type II pneumocytes or U937 macrophages, suggesting that BCG is able to recruit collagen to facilitate its attachment to host cells. Using an affinity chromatography approach, we have isolated a BCG collagen-binding protein corresponding to the previously described mycobacterial laminin-binding histone-like protein (LBP/Hlp, a highly conserved protein associated with the mycobacterial cell wall. Moreover, Mycobacterium leprae LBP/Hlp, a well-characterized adhesin, was also able to bind collagen I. Finally, using recombinant fragments of M. leprae LBP/Hlp, we mapped the collagen-binding activity within the C-terminal domain of the adhesin. Since this protein was already shown to be involved in the recognition of laminin and heparan sulphate-containing proteoglycans, the present observations reinforce the adhesive activities of LBP/Hlp, which can be therefore considered as a multifaceted mycobacterial adhesin, playing an important role in both leprosy and tuberculosis pathogenesis.

  18. Collagen-Induced Arthritis: A model for Murine Autoimmune Arthritis

    OpenAIRE

    Pietrosimone, K. M.; Jin, M.; Poston, B.; Liu, P.

    2015-01-01

    Collagen-induced arthritis (CIA) is a common autoimmune animal model used to study rheumatoid arthritis (RA). The development of CIA involves infiltration of macrophages and neutrophils into the joint, as well as T and B cell responses to type II collagen. In murine CIA, genetically susceptible mice (DBA/1J) are immunized with a type II bovine collagen emulsion in complete Freund’s adjuvant (CFA), and receive a boost of type II bovine collagen in incomplete Freund’s adjuvant (IFA) 21 days aft...

  19. Scaling of Myocardial Mass to Flow and Morphometry of Coronary Arteries

    OpenAIRE

    Choy, Jenny Susana; Kassab, Ghassan S.

    2008-01-01

    There is no doubt that scaling relations exist between myocardial mass and morphometry of coronary vasculature. The purpose of this study is to quantify several morphological (diameter, length, and volume) and functional (flow) parameters of the coronary arterial tree in relation to myocardial mass. Eight normal porcine hearts of 117-244 g (mean of 177.5±32.7) were used in this study. Various coronary sub-trees of the Left Anterior Descending (LAD), Right Coronary (RCA) and Left Circumflex (L...

  20. Study of collagen metabolism and regulation after {beta} radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Yinghui, Zhou; Lan, Xu; Shiliang, Wu; Hao, Qiu; Zhi, Jiang; Youbin, Tu; Xueguang, Zhang [Suzhou Medical College (China)

    2001-04-01

    The animal model of {beta} radiation injury was established by the {beta} radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 were tested. The contents of TGF-{beta}{sub 1}, IL-6 were also detected. The results showed that after exposure to {beta} radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-{beta}{sub 1}, IL-6 increased. The results suggest that changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-{beta}{sub 1}, IL-6 may be essential in the regulation of the collagen metabolism.

  1. Type V Collagen is Persistently Altered after Inguinal Hernia Repair

    DEFF Research Database (Denmark)

    Lorentzen, L; Henriksen, N A; Juhl, P

    2018-01-01

    BACKGROUND AND AIMS: Hernia formation is associated with alterations of collagen metabolism. Collagen synthesis and degradation cause a systemic release of products, which are measurable in serum. Recently, we reported changes in type V and IV collagen metabolisms in patients with inguinal...... elective cholecystectomy served as controls (n = 10). Whole venous blood was collected 35-55 months after operation. Biomarkers for type V collagen synthesis (Pro-C5) and degradation (C5M) and those for type IV collagen synthesis (P4NP) and degradation (C4M2) were measured by a solid-phase competitive...... assay. RESULTS: The turnover of type V collagen (Pro-C5/C5M) was slightly higher postoperatively when compared to preoperatively in the inguinal hernia group (P = 0.034). In addition, the results revealed a postoperatively lower type V collagen turnover level in the inguinal hernia group compared...

  2. DNaseI Protects against Paraquat-Induced Acute Lung Injury and Pulmonary Fibrosis Mediated by Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Guo Li

    2015-01-01

    Full Text Available Background. Paraquat (PQ poisoning is a lethal toxicological challenge that served as a disease model of acute lung injury and pulmonary fibrosis, but the mechanism is undetermined and no effective treatment has been discovered. Methods and Findings. We demonstrated that PQ injures mitochondria and leads to mtDNA release. The mtDNA mediated PBMC recruitment and stimulated the alveolar epithelial cell production of TGF-β1 in vitro. The levels of mtDNA in circulation and bronchial alveolar lavage fluid (BALF were elevated in a mouse of PQ-induced lung injury. DNaseI could protect PQ-induced lung injury and significantly improved survival. Acute lung injury markers, such as TNFα, IL-1β, and IL-6, and marker of fibrosis, collagen I, were downregulated in parallel with the elimination of mtDNA by DNaseI. These data indicate a possible mechanism for PQ-induced, mtDNA-mediated lung injury, which may be shared by other causes of lung injury, as suggested by the same protective effect of DNaseI in bleomycin-induced lung injury model. Interestingly, increased mtDNA in the BALF of patients with amyopathic dermatomyositis-interstitial lung disease can be appreciated. Conclusions. DNaseI targeting mtDNA may be a promising approach for the treatment of PQ-induced acute lung injury and pulmonary fibrosis that merits fast tracking through clinical trials.

  3. A urokinase receptor-associated protein with specific collagen binding properties

    DEFF Research Database (Denmark)

    Behrendt, N; Jensen, O N; Engelholm, L H

    2000-01-01

    membrane-bound lectin with hitherto unknown function. The human cDNA was cloned and sequenced. The protein, designated uPARAP, is a member of the macrophage mannose receptor protein family and contains a putative collagen-binding (fibronectin type II) domain in addition to 8 C-type carbohydrate recognition...... domains. It proved capable of binding strongly to a single type of collagen, collagen V. This collagen binding reaction at the exact site of plasminogen activation on the cell may lead to adhesive functions as well as a contribution to cellular degradation of collagen matrices....

  4. Collagen metabolism in obesity: the effect of weight loss

    DEFF Research Database (Denmark)

    Rasmussen, M H; Jensen, L T; Andersen, T

    1995-01-01

    OBJECTIVE: To investigate the impact of obesity, fat distribution and weight loss on collagen turnover using serum concentrations of the carboxyterminal propeptide of type I procollagen (S-PICP) and the aminoterminal propeptide of type III pro-collagen (S-PIIINP) as markers for collagen turnover...... an increased turnover of type III collagen related to obesity in general and to abdominal obesity in particular. S-PIIINP levels decreases during weight loss in obese subjects, whereas S-PICP levels seems un-related to obesity and weight loss....

  5. Connective tissue diseases, multimorbidity and the ageing lung.

    Science.gov (United States)

    Spagnolo, Paolo; Cordier, Jean-François; Cottin, Vincent

    2016-05-01

    Connective tissue diseases encompass a wide range of heterogeneous disorders characterised by immune-mediated chronic inflammation often leading to tissue damage, collagen deposition and possible loss of function of the target organ. Lung involvement is a common complication of connective tissue diseases. Depending on the underlying disease, various thoracic compartments can be involved but interstitial lung disease is a major contributor to morbidity and mortality. Interstitial lung disease, pulmonary hypertension or both are found most commonly in systemic sclerosis. In the elderly, the prevalence of connective tissue diseases continues to rise due to both longer life expectancy and more effective and better-tolerated treatments. In the geriatric population, connective tissue diseases are almost invariably accompanied by age-related comorbidities, and disease- and treatment-related complications, which contribute to the significant morbidity and mortality associated with these conditions, and complicate treatment decision-making. Connective tissue diseases in the elderly represent a growing concern for healthcare providers and an increasing burden of global health resources worldwide. A better understanding of the mechanisms involved in the regulation of the immune functions in the elderly and evidence-based guidelines specifically designed for this patient population are instrumental to improving the management of connective tissue diseases in elderly patients. Copyright ©ERS 2016.

  6. Scavenger receptor AI/II truncation, lung function and COPD: a large population-based study

    DEFF Research Database (Denmark)

    Thomsen, M; Nordestgaard, B G; Tybjærg-Hansen, Anne

    2011-01-01

    The scavenger receptor A-I/II (SRA-I/II) on alveolar macrophages is involved in recognition and clearance of modified lipids and inhaled particulates. A rare variant of the SRA-I/II gene, Arg293X, truncates the distal collagen-like domain, which is essential for ligand recognition. We tested...... whether the Arg293X variant is associated with reduced lung function and risk of chronic obstructive pulmonary disease (COPD) in the general population....

  7. Biosynthesis of collagen by fibroblasts kept in culture

    International Nuclear Information System (INIS)

    Machado-Santelli, G.M.

    1978-01-01

    The sinthesis of collagen is studied in fibroblasts of different origins with the purpose of obtaining an appropriate system for the study of its biosynthesis and processing. The percentage of collagen synthesis vary according to the fibroblast origin. Experiences are performed with fibroblasts kept in culture from: chicken - and guinea pig embryos, carragheenin - induced granulomas in adult guinea pig and from human skin. The collagen pattern synthesized after acetic acid - or saline extractions in the presence of inhibitors is also determined. This pattern is then assayed by poliacrilamide - 5% - SDS gel electrophoresis accompanied by fluorography. The importance of the cell culture system in the elucidation of collagen biosynthesis is pointed out. (M.A.) [pt

  8. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    Science.gov (United States)

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  9. Diffuse Decreased Gray Matter in Patients with Idiopathic Craniocervical Dystonia: a Voxel-Based Morphometry Study

    Directory of Open Access Journals (Sweden)

    Camila Callegari Piccinin

    2015-01-01

    Full Text Available Background: Recent studies have addressed the role of structures other than the basal ganglia in the pathophysiology of craniocervical dystonia. Neuroimaging studies have attempted to identify structural abnormalities in craniocervical dystonia but a clear pattern of alteration has not been established. We performed whole brain evaluation using voxel-based morphometry to identify patterns of gray matter changes in craniocervical dystonia.Methods: We compared 27 patients with craniocervical dystonia matched in age and gender to 54 healthy controls. Voxel-based morphometry was used to compare gray matter volumes. We created a two-sample t-test corrected for subjects’ age and we tested with a level of significance of p<0.001 and false discovery rate correction (p<0.05. Results: Voxel-based morphometry demonstrated significant reductions of gray matter using p<0.001 in the cerebellar vermis IV/V, bilaterally in the superior frontal gyrus, precuneus, anterior cingulate and paracingulate, insular cortex, lingual gyrus and calcarine fissure; in the left hemisphere in the supplemementary motor area (SMA, inferior frontal gyrus, inferior parietal gyrus, temporal pole, supramarginal gyrus, rolandic operculum , hippocampus, middle occipital gyrus, cerebellar lobules IV/V, superior and middle temporal gyri; in the right hemisphere, the middle cingulate and precentral gyrus. Our study did not report any significant result using the false discovery rate correction. We also detected correlations between gray matter volume and age, disease duration, duration of botulinum toxin treatment and the Marsden-Fahn dystonia scale scores.Conclusions: We detected large clusters of gray matter changes chiefly in structures primarily involved in sensorimotor integration, motor planning, visuospatial function and emotional processing.

  10. Multimodal imaging of lung cancer and its microenvironment (Conference Presentation)

    Science.gov (United States)

    Hariri, Lida P.; Niederst, Matthew J.; Mulvey, Hillary; Adams, David C.; Hu, Haichuan; Chico Calero, Isabel; Szabari, Margit V.; Vakoc, Benjamin J.; Hasan, Tayyaba; Bouma, Brett E.; Engelman, Jeffrey A.; Suter, Melissa J.

    2016-03-01

    Despite significant advances in targeted therapies for lung cancer, nearly all patients develop drug resistance within 6-12 months and prognosis remains poor. Developing drug resistance is a progressive process that involves tumor cells and their microenvironment. We hypothesize that microenvironment factors alter tumor growth and response to targeted therapy. We conducted in vitro studies in human EGFR-mutant lung carcinoma cells, and demonstrated that factors secreted from lung fibroblasts results in increased tumor cell survival during targeted therapy with EGFR inhibitor, gefitinib. We also demonstrated that increased environment stiffness results in increased tumor survival during gefitinib therapy. In order to test our hypothesis in vivo, we developed a multimodal optical imaging protocol for preclinical intravital imaging in mouse models to assess tumor and its microenvironment over time. We have successfully conducted multimodal imaging of dorsal skinfold chamber (DSC) window mice implanted with GFP-labeled human EGFR mutant lung carcinoma cells and visualized changes in tumor development and microenvironment facets over time. Multimodal imaging included structural OCT to assess tumor viability and necrosis, polarization-sensitive OCT to measure tissue birefringence for collagen/fibroblast detection, and Doppler OCT to assess tumor vasculature. Confocal imaging was also performed for high-resolution visualization of EGFR-mutant lung cancer cells labeled with GFP, and was coregistered with OCT. Our results demonstrated that stromal support and vascular growth are essential to tumor progression. Multimodal imaging is a useful tool to assess tumor and its microenvironment over time.

  11. Experimental investigation and numerical simulation of 3He gas diffusion in simple geometries: implications for analytical models of 3He MR lung morphometry.

    Science.gov (United States)

    Parra-Robles, J; Ajraoui, S; Deppe, M H; Parnell, S R; Wild, J M

    2010-06-01

    Models of lung acinar geometry have been proposed to analytically describe the diffusion of (3)He in the lung (as measured with pulsed gradient spin echo (PGSE) methods) as a possible means of characterizing lung microstructure from measurement of the (3)He ADC. In this work, major limitations in these analytical models are highlighted in simple diffusion weighted experiments with (3)He in cylindrical models of known geometry. The findings are substantiated with numerical simulations based on the same geometry using finite difference representation of the Bloch-Torrey equation. The validity of the existing "cylinder model" is discussed in terms of the physical diffusion regimes experienced and the basic reliance of the cylinder model and other ADC-based approaches on a Gaussian diffusion behaviour is highlighted. The results presented here demonstrate that physical assumptions of the cylinder model are not valid for large diffusion gradient strengths (above approximately 15 mT/m), which are commonly used for (3)He ADC measurements in human lungs. (c) 2010 Elsevier Inc. All rights reserved.

  12. Variation in the Helical Structure of Native Collagen

    Science.gov (United States)

    2014-02-24

    notochord were obtained in previous studies [4,10,20–22]. The scaled amplitudes of the central, meridional section of each data set were used to...including helical, structure) from rat tail tendon (collagen type I) and lamprey notochord (collagen type II) show several common features (Figure 5). Of...also a possible consequence of the type II collagen notochord samples being stretched, perhaps to a greater extant then the type I tendon samples to aid

  13. Collagen type IV at the fetal-maternal interface

    OpenAIRE

    Oefner, C M; Sharkey, A; Gardner, L; Critchley, H; Oyen, M; Moffett, A

    2015-01-01

    Introduction Extracellular matrix proteins play a crucial role in influencing the invasion of trophoblast cells. However the role of collagens and collagen type IV (col-IV) in particular at the implantation site is not clear. Methods Immunohistochemistry was used to determine the distribution of collagen types I, III, IV and VI in endometrium and decidua during the menstrual cycle and the first trimester of pregnancy. Expression of col-IV alpha chains during the reproductive cycle ...

  14. Collagen reorganization at the tumor-stromal interface facilitates local invasion

    Directory of Open Access Journals (Sweden)

    Inman David R

    2006-12-01

    Full Text Available Abstract Background Stromal-epithelial interactions are of particular significance in breast tissue as misregulation of these interactions can promote tumorigenesis and invasion. Moreover, collagen-dense breast tissue increases the risk of breast carcinoma, although the relationship between collagen density and tumorigenesis is not well understood. As little is known about epithelial-stromal interactions in vivo, it is necessary to visualize the stroma surrounding normal epithelium and mammary tumors in intact tissues to better understand how matrix organization, density, and composition affect tumor formation and progression. Methods Epithelial-stromal interactions in normal mammary glands, mammary tumors, and tumor explants in three-dimensional culture were studied with histology, electron microscopy, and nonlinear optical imaging methodologies. Imaging of the tumor-stromal interface in live tumor tissue ex vivo was performed with multiphoton laser-scanning microscopy (MPLSM to generate multiphoton excitation (MPE of endogenous fluorophores and second harmonic generation (SHG to image stromal collagen. Results We used both laser-scanning multiphoton and second harmonic generation microscopy to determine the organization of specific collagen structures around ducts and tumors in intact, unfixed and unsectioned mammary glands. Local alterations in collagen density were clearly seen, allowing us to obtain three-dimensional information regarding the organization of the mammary stroma, such as radiating collagen fibers that could not have been obtained using classical histological techniques. Moreover, we observed and defined three tumor-associated collagen signatures (TACS that provide novel markers to locate and characterize tumors. In particular, local cell invasion was found predominantly to be oriented along certain aligned collagen fibers, suggesting that radial alignment of collagen fibers relative to tumors facilitates invasion. Consistent

  15. Characterization of electron beam irradiated collagen-polyvinylpyrrolidone (PVP) and collagen-dextran (DEX) blends

    International Nuclear Information System (INIS)

    Dumitrascu, M.; Sima, E.; Minea, R.; Vancea, C.; Meltze, V.; Albu, M.G.

    2011-01-01

    Complete text of publication follows. The aim of the present study was to investigate the influence of electron beam irradiation on some blends of collagen-polyvinylpyrrolidone (PVP) and collagen-dextran (DEX). The blends were prepared by mixing different quantities of collagen, PVP and DEX in distilled water. After irradiation the obtained hydrogels were processed by controlled drying and freeze-drying. Both types of materials were characterized by FT-IR, FT-Raman, TG, DSC, water uptake and SEM. The intensity of the characteristic bands, in the range 2800-3600 cm -1 from FT-IR spectra, varied considerably as function of absorbed radiation dose. Raman spectra revealed the absence of the characteristic peak at 2700 cm -1 for irradiated blends at 30 kGy. Kinetic parameters were calculated from the TG, DTG and DSC data by means of isoconversion methods at different heating rates. Thereby a relation between absorbed radiation dose and activation energy was established. Water uptake studies were carried out in PBS solution (phosphate buffer saline) at 37 deg C and pH = 7.4 and the results revealed a decrease of the water uptake with increasing of absorbed radiation dose.

  16. Collagenous sprue: a clinicopathologic study of 12 cases.

    LENUS (Irish Health Repository)

    Maguire, Aoife A

    2012-02-01

    Collagenous sprue is a rare form of small bowel enteropathy characterized by chronic diarrhea and progressive malabsorption with little data available on its natural history. The pathologic lesion consists of subepithelial collagen deposition associated with variable alterations in villous architecture. The small bowel biopsies of 12 cases were reviewed. Clinical details, celiac serology, and T-cell receptor gene rearrangement study results, when available, were collated. There were 8 females and 4 males (age ranged from 41 to 84 y) who presented with chronic diarrhea and weight loss. Small intestinal biopsies showed subepithelial collagen deposition with varying degrees of villous atrophy and varying numbers of intraepithelial lymphocytes. Four patients had previous biopsies showing enteropathic changes without collagen deposition. Seven cases were associated with collagenous colitis and 1 also had features of lymphocytic colitis. Three patients also had collagen deposition in gastric biopsies. One case was associated with lymphocytic gastritis. Celiac disease (CD, gluten-sensitive enteropathy) was documented in 4 patients. Five patients made a clinical improvement with combinations of a gluten-free diet and immunosuppressive therapy. Two patients died of complications of malnutrition and 1 of another illness. Clonal T-cell populations were identified in 5 of 6 cases tested. Four of these patients improved clinically after treatment but 1 has died. Collagenous sprue evolved on a background of CD in 4 cases. There was no history of CD in others and these cases may be the result of a biologic insult other than gluten sensitivity. None has developed clinical evidence of lymphoma to date.

  17. Variation in the helical structure of native collagen.

    Directory of Open Access Journals (Sweden)

    Joseph P R O Orgel

    Full Text Available The structure of collagen has been a matter of curiosity, investigation, and debate for the better part of a century. There has been a particularly productive period recently, during which much progress has been made in better describing all aspects of collagen structure. However, there remain some questions regarding its helical symmetry and its persistence within the triple-helix. Previous considerations of this symmetry have sometimes confused the picture by not fully recognizing that collagen structure is a highly complex and large hierarchical entity, and this affects and is effected by the super-coiled molecules that make it. Nevertheless, the symmetry question is not trite, but of some significance as it relates to extracellular matrix organization and cellular integration. The correlation between helical structure in the context of the molecular packing arrangement determines which parts of the amino acid sequence of the collagen fibril are buried or accessible to the extracellular matrix or the cell. In this study, we concentrate primarily on the triple-helical structure of fibrillar collagens I and II, the two most predominant types. By comparing X-ray diffraction data collected from type I and type II containing tissues, we point to evidence for a range of triple-helical symmetries being extant in the molecules native environment. The possible significance of helical instability, local helix dissociation and molecular packing of the triple-helices is discussed in the context of collagen's supramolecular organization, all of which must affect the symmetry of the collagen triple-helix.

  18. Chitosan Cross-linked Reconstituted Amniotic Collagen Membrane ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Chitosan Cross-linked Reconstituted Amniotic Collagen Membrane – An Excellent Cell Substratum. The KERATINOCYTE proliferation and Differentiation into multiple layers is due to the presence of type - IV collagen in the amnion. Cultured FIBROBLASTS had good ...

  19. Recombinant gelatin and collagen from methylotrophic yeasts

    NARCIS (Netherlands)

    Bruin, de E.C.

    2002-01-01

    Based on its structural role and compatibility within the human body, collagen is a commonly used biomaterial in medical applications, such as cosmetic surgery, wound treatment and tissue engineering. Gelatin is in essence denatured and partly degraded collagen and is,

  20. Radiation-induced changes in breathing frequency and lung histology of C57BL/6J mice are time- and dose-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Eldh, T.; Heinzelmann, F.; Velalakan, A. [Univ. Hospital of Tuebingen (Germany). Dept. of Radiation Oncology; Budach, W. [Duesseldorf Univ. (Germany). Dept. of Radiation Oncology; Belka, C. [Univ. Hospital of Tuebingen (Germany). Dept. of Radiation Oncology; Muenchen Univ. (Germany). Dept. of Radiation Oncology; Jendrossek, V. [Univ. Hospital of Tuebingen (Germany). Dept. of Radiation Oncology; Duisburg-Essen Univ., Essen (DE). Inst. of Cell Biology (Cancer Research)

    2012-03-15

    Pneumonitis and fibrosis constitute serious adverse effects of radiotherapy in the thoracic region. In this study, time-course and dose-dependence of clinically relevant parameters of radiation-induced lung injury in C57BL/6J mice were analyzed. A well-characterized disease model is necessary for the analysis of the cellular and molecular mechanisms using genetically modified mice. C57BL/6J mice received single dose right hemithorax irradiation with 12.5 or 22.5 Gy. Body weight and breathing frequency were recorded as parameters for health impairment. Lung tissue was collected over 24 weeks for histological analysis. Hemithorax irradiation with 12.5 or 22.5 Gy induced biphasic breathing impairment with the first increase between days 7 and 70. Although breathing impairment was more pronounced in the 22.5 Gy group, it was accompanied in both dose groups by pneumonitis-associated histological changes. A second rise in breathing frequency ratios became visible starting on day 70 with a steady increase until day 210. Again, breathing was more strongly affected in the 22.5 Gy group. However, breathing impairment coincided only in the 22.5 Gy group with a significant increase in collagen deposition in the lung tissue by day 210. Tissue inflammation and fibrosis were observed in the irradiated and the shielded lungs, pointing toward involvement of systemic effects. Hemithorax irradiation induces time-dependent pneumonitis and fibrosis in C57BL/6J mice. While hemithorax irradiation with 12.5 Gy is sufficient to induce lung inflammation, it is below the threshold for collagen deposition and fibrosis development by day 210.

  1. Physicochemical properties of marine collagen-alginate biomaterial

    Science.gov (United States)

    Soon, K. S.; Hii, S. L.; Wong, C. L.; Leong, L. K.; Woo, K. K.

    2017-12-01

    Collagen base biomaterials are widely applied in the field of tissue engineering. However, these fibrous proteins in animal connective tissues are insufficient to fulfill the mechanical properties for such applications. Therefore, alginate as a natural polysaccharide was incorporated. In this study, Smooth wolf herring skins was collected from the local fish ball processing industry for collagen extraction using acid solubilisation method. On the other hand, alginate from brown seaweed (Sargassum polycystum) was extracted with calcium carbonate at 50 °C. The composite films of different collagen and alginate ratio were prepared by lyophilisation with pure collagen film as control. The effects of alginate on swelling behaviour, porosity, collagenase degradation and tensile strength of the composite films were investigated. Swelling behaviour increased with alginate content, 50 % alginate film achieved 1254.75 % swelling after 24 h. All composite films achieved more than 80 % porosity except the film with 80 % collagen (65.41 %). Porosity was highest in 100 % alginate (94.30 %). Highest tensile strength (1585.87 kPa) and young modulus (27.05 MPa) was found in 50 % alginate film. In addition, resistance to collagenase degradation was improved with alginate content, lowest degradation rate was determined in 80 % alginate film. Results indicated alginate is efficient in improving some mechanical properties of the composite film.

  2. Electrochemical deposition of mineralized BSA/collagen coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Junjun [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Lin, Jun; Li, Juan; Wang, Huiming [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003 (China); Cheng, Kui [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170–0.173 mg/cm{sup 2}, enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). - Highlights: • BSA is incorporated into mineralized collagen coating by electrochemical deposition. • The loading amount of BSA in coatings can be adjusted in the range of 0-173 ng. • The BSA/collagen coating shows good cytocompatibility with free-albumin culture. • The incorporation process is put forward for some other molecules deposition.

  3. Volcano morphometry and volume scaling on Venus

    Science.gov (United States)

    Garvin, J. B.; Williams, R. S., Jr.

    1994-01-01

    A broad variety of volcanic edifices have been observed on Venus. They ranged in size from the limits of resolution of the Magellan SAR (i.e., hundreds of meters) to landforms over 500 km in basal diameter. One of the key questions pertaining to volcanism on Venus concerns the volume eruption rate or VER, which is linked to crustal productivity over time. While less than 3 percent of the surface area of Venus is manifested as discrete edifices larger than 50 km in diameter, a substantial component of the total crustal volume of the planet over the past 0.5 Ga is related to isolated volcanoes, which are certainly more easily studied than the relatively diffusely defined plains volcanic flow units. Thus, we have focused our efforts on constraining the volume productivity of major volcanic edifices larger than 100 km in basal diameter. Our approach takes advantage of the topographic data returned by Magellan, as well as our database of morphometric statistics for the 20 best known lava shields of Iceland, plus Mauna Loa of Hawaii. As part of this investigation, we have quantified the detailed morphometry of nearly 50 intermediate to large scale edifices, with particular attention to their shape systematics. We found that a set of venusian edifices which include Maat, Sapas, Tepev, Sif, Gula, a feature at 46 deg S, 215 deg E, as well as the shield-like structure at 10 deg N, 275 deg E are broadly representative of the approx. 400 volcanic landforms larger than 50 km. The cross-sectional shapes of these 7 representative edifices range from flattened cones (i.e., Sif) similar to classic terrestrial lava shields such as Mauna Loa and Skjaldbreidur, to rather dome-like structures which include Maat and Sapas. The majority of these larger volcanoes surveyed as part of our study displayed cross-sectional topographies with paraboloidal shaped, in sharp contrast with the cone-like appearance of most simple terrestrial lava shields. In order to more fully explore the

  4. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case-control study of relationship between collagen, glycosaminoglycan and cartilage swelling.

    Science.gov (United States)

    Hosseininia, Shahrzad; Lindberg, Lisbeth R; Dahlberg, Leif E

    2013-01-09

    It remains to be shown whether OA shares molecular similarities between different joints in humans. This study provides evidence for similarities in cartilage molecular damage in osteoarthritic (OA) joints. Articular cartilage from osteoarthritic hip joints were analysed and compared to non-OA controls regarding collagen, glycosaminoglycan and water content. Femoral heads from 16 osteoarthritic (OA) and 20 reference patients were obtained from hip replacement surgery due to OA and femoral neck fracture, respectively. Cartilage histological changes were assessed by Mankin grading and denatured collagen type II immunostaining and cartilage was extracted by α-chymotrypsin. Hydroxyproline and Alcian blue binding assays were used to measure collagen and glycosaminoglycan (GAG) content, respectively. Mankin and immunohistology scores were significantly higher in hip OA samples than in reference samples. Cartilage water content was 6% higher in OA samples than in references. 2.5 times more collagen was extracted from OA than from reference samples. There was a positive association between water content and percentage of extractable collagen pool (ECP) in both groups. The amounts of collagen per wet and dry weights did not differ statistically between OA and reference cartilage. % Extractable collagen was not related to collagen per dry weight in either group. However when collagen was expressed by wet weight there was a negative correlation between % extractable and collagen in OA cartilage. The amount of GAG per wet weight was similar in both groups but the amount of GAG per dry weight was higher in OA samples compared to reference samples, which suggests a capacity for GAG biosynthesis in hip OA cartilage. Neither of the studied parameters was related to age in either group. Increased collagen extractability and water content in human hip cartilage is associated with OA pathology and can be observed at early stages of the degenerative hip OA process. Our results

  5. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications.

    Science.gov (United States)

    Gupta, Sweta K; Dinda, Amit K; Potdar, Pravin D; Mishra, Narayan C

    2013-10-01

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H&E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Immune response gene control of collagen reactivity in man: collagen unresponsiveness in HLA-DR4 negative nonresponders is due to the presence of T-dependent suppressive influences

    International Nuclear Information System (INIS)

    Solinger, A.M.; Stobo, J.D.

    1982-01-01

    To determine whether the failure to detect collagen reactivity in nonresponders represents an absence of collagen-reactive T cells or a preponderance of suppressive influences, the peripheral blood mononuclear cells from HLA-DR4 - individuals were subjected to three procedures capable of separating suppressive influences from LIF-secreting cells; irradiation (1000 rad), discontinuous gradient fractionation, and cytolysis with the monoclonal antibody OKT 8. Each procedure resulted in the specific appearance of reactivity to collagen, which was identical to that seen in HLA-DR4 + individuals with regard to its cellular requirements and antigenic specificity. Addition of unresponsive (i.e., nonirradiated or low-density T cells) to responsive (i.e., irradiated or high-density T cells) autologous populations resulted in specific suppression of collagen reactivity. Radiation-sensitive suppressive influences could not be detected in HLA-DR4 + collagen responders.These studies indicate that the expression of T-dependent reactivity to collagen in man reflects the net influence of collage-reactive vs collagen-suppressive T cells. Moreover, it is the influence of HLA-D-linked genes on the development of suppressive influences rather than on the development of collagen-reactive, LIF-secreting T cells that serves to distinguish HLA-DR4 + collagen responders from HLA-DR4 - collagen nonresponders

  7. [Effect of dust aerosol exposure on lung function and lung histopathology in rats].

    Science.gov (United States)

    Lei, Fengfeng; Wang, Xuebin; Liu, Hua; Chen, Qizhang; Ma, Hui; Dong, Zhibao; Sang, Yingzhu

    2015-08-25

    To investigate the effect of dust aerosol exposure on lung function and lung histopathology in rats. According to random number table method, 120 Wistar male rats were divided into untreated control group, treated control group and experimental group, with 40 rats in each group. Experimental group were exposed to the wind tunnel simulation of sandstorm for 5 hours in every day; the untreated control group were put in the standard living environment next to the wind tunnel; the treated control group were exposed to the same wind tunnel simulation of sandstorm for 5 hours in every day, and the speed of wind was the same as the experimental group, but excluding dust. At different time points, the lung function and electron microscopy were performed in all rats. The level of Dynamic Compliance (Cdyn) ((0.227 ± 0.023), (0.198 ± 0.022) ml/cmH₂O, 1 cmH₂O=0.098 kPa) and forced vital capacity (FVC) ((6.24 ± 0.29), (5.59 ± 0.19) ml) were lower in the experimental group at 90 and 120 days, as compared to the untreated control group (Cdyn: (0.266 ± 0.014), (0.265 ± 0.018) ml/cmH2O; FVC: (7.15 ± 0.23), (7.17 ± 0.20) ml) and treated control group (Cdyn: (0.269 ± 0.015), (0.264 ± 0.019) ml/cmH2O; FVC: (7.14 ± 0.19), (7.15 ± 0.21) ml) (all Plung tissues had no obvious abnormalities at 30, 60, 90 and 120 days in untreated control group and treated control group. But in the experimental group, at 30 days, the endothelial cells of alveolar type I cells were swelled and the number of alveolar type II cells were increased; at 60 days, alveolar type II cells hyperplastic, basement membrane thinned and destructed; at 90 days, the number of alveolar type II cells decreased, Lamellar body evacuation; at 120 days, a lot of collagen fiber was formed in the alveolar septa. The strong sandstorm environmental exposure to a certain period of time can cause the decline of lung function and the damage of lung histopathology in rats. Exposure time was positively correlated with the

  8. Glaucoma anterior chamber morphometry based on optical Scheimpflug images.

    Science.gov (United States)

    Alonso, Ruiz Simonato; Ambrósio Junior, Renato; Paranhos Junior, Augusto; Sakata, Lisandro Massanori; Ventura, Marcelo Palis

    2010-01-01

    To compare the performance of gonioscopy and noncontact morphometry with anterior chamber tomography (High Resolution Pentacam - HR) using optical Scheimpflug images in the evaluation of the anterior chamber angle (ACA). Transversal study. 112 eyes from 74 subjects evaluated at the Glaucoma Department, Fluminense Federal University, underwent gonioscopy and Pentacam HR. Using gonioscopy, the ACA was graded using the Shaffer Classification (SC) by a single experienced examiner masked to the Pentacam HR findings. Narrow angle was determined in eyes in which the posterior trabecular meshwork could not be seen in two or more quadrants on non-indentation gonioscopy (SC Grade 2 or less). Pentacam HR images of the nasal and temporal quadrants were evaluated by custom software to automatically obtain anterior chamber measurements, such as: anterior chamber angle (ACA), anterior chamber volume (ACV) and anterior chamber depth (ACD). Based on gonioscopy results, 74 (60.07%) eyes of patients classified as open-angle (SC 3 and 4) and 38 (33.93%) eyes of patients classified as narrow-angle (SC 1 and 2). Noncontact morphometry with Scheimpflug images revealed a mean ACA of 39.20 ± 5.31 degrees for open-angle and 21.18 ± 7.98 degrees for narrow-angle. The open-angle group showed significant greater ACV and ACD values when compared to narrow-angle group (ACV of 193 ± 36 mm³ vs. 90 ± 25 mm³, respectively, p<0.001; and ACD of 3,09 ± 0,42 mm vs. 1,55 ± 0,64 mm, respectively, p<0.0001.). In screening eyes with open-angle and narrow-angle with the Pentacam ACA of 20º (SC Grade 2) using the ROC curves, the analysis showed 52.6% of sensitivity and 100% of specificity. The Pentacam showed ability in detecting eyes at risk for angle closure analyzing ACV and ACD.

  9. Structure of collagen-glycosaminoglycan matrix and the influence to its integrity and stability.

    Science.gov (United States)

    Bi, Yuying; Patra, Prabir; Faezipour, Miad

    2014-01-01

    Glycosaminoglycan (GAG) is a chain-like disaccharide that is linked to polypeptide core to connect two collagen fibrils/fibers and provide the intermolecular force in Collagen-GAG matrix (C-G matrix). Thus, the distribution of GAG in C-G matrix contributes to the integrity and mechanical properties of the matrix and related tissue. This paper analyzes the transverse isotropic distribution of GAG in C-G matrix. The angle of GAGs related to collagen fibrils is used as parameters to qualify the GAGs isotropic characteristic in both 3D and 2D rendering. Statistical results included that over one third of GAGs were perpendicular directed to collagen fibril with symmetrical distribution for both 3D matrix and 2D plane cross through collagen fibrils. The three factors tested in this paper: collagen radius, collagen distribution, and GAGs density, were not statistically significant for the strength of Collagen-GAG matrix in 3D rendering. However in 2D rendering, a significant factor found was the radius of collagen in matrix for the GAGs directed to orthogonal plane of Collagen-GAG matrix. Between two cross-section selected from Collagen-GAG matrix model, the plane cross through collagen fibrils was symmetrically distributed but the total percentage of perpendicular directed GAG was deducted by decreasing collagen radius. There were some symmetry features of GAGs angle distribution in selected 2D plane that passed through space between collagen fibrils, but most models showed multiple peaks in GAGs angle distribution. With less GAGs directed to perpendicular of collagen fibril, strength in collagen cross-section weakened. Collagen distribution was also a factor that influences GAGs angle distribution in 2D rendering. True hexagonal collagen packaging is reported in this paper to have less strength at collagen cross-section compared to quasi-hexagonal collagen arrangement. In this work focus is on GAGs matrix within the collagen and its relevance to anisotropy.

  10. Epicutaneous Immunization with Type II Collagen Inhibits both Onset and Progression of Chronic Collagen-Induced Arthritis

    OpenAIRE

    Strid, Jessica; Tan, Lee Aun; Strobel, Stephan; Londei, Marco; Callard, Robin

    2007-01-01

    Epicutaneous immunization is a potential non-invasive technique for antigen-specific immune-modulation. Topical application of protein antigens to barrier-disrupted skin induces potent antigen-specific immunity with a strong Th2-bias. In this study, we investigate whether the autoimmune inflammatory response of chronic collagen-induced arthritis (CCIA) in DBA/1-TCR-beta Tg mice can be modified by epicutaneous immunization. We show that epicutaneous immunization with type II collagen (CII) inh...

  11. Dense tissue-like collagen matrices formed in cell-free conditions.

    Science.gov (United States)

    Mosser, Gervaise; Anglo, Anny; Helary, Christophe; Bouligand, Yves; Giraud-Guille, Marie-Madeleine

    2006-01-01

    A new protocol was developed to produce dense organized collagen matrices hierarchically ordered on a large scale. It consists of a two stage process: (1) the organization of a collagen solution and (2) the stabilization of the organizations by a sol-gel transition that leads to the formation of collagen fibrils. This new protocol relies on the continuous injection of an acid-soluble collagen solution into glass microchambers. It leads to extended concentration gradients of collagen, ranging from 5 to 1000 mg/ml. The self-organization of collagen solutions into a wide array of spatial organizations was investigated. The final matrices obtained by this procedure varied in concentration, structure and density. Changes in the liquid state of the samples were followed by polarized light microscopy, and the final stabilized gel states obtained after fibrillogenesis were analyzed by both light and electron microscopy. Typical organizations extended homogeneously by up to three centimetres in one direction and several hundreds of micrometers in other directions. Fibrillogenesis of collagen solutions of high and low concentrations led to fibrils spatially arranged as has been described in bone and derm, respectively. Moreover, a relationship was revealed between the collagen concentration and the aggregation of and rotational angles between lateral fibrils. These results constitute a strong base from which to further develop highly enriched collagen matrices that could lead to substitutes that mimic connective tissues. The matrices thus obtained may also be good candidates for the study of the three-dimensional migration of cells.

  12. Changes in collagen synthesis and degradation during skeletal muscle growth

    International Nuclear Information System (INIS)

    Laurent, G.J.; McAnulty, R.J.; Gibson, J.

    1985-01-01

    The changes in collagen metabolism during skeletal muscle growth were investigated by measuring rates of synthesis and degradation during stretch-induced hypertrophy of the anterior latissimus dorsi muscle of the adult chicken (Gallus domesticus). Synthesis rates were obtained from the uptake of tritiated proline injected intravenously with a flooding dose of unlabeled proline. Degradation of newly synthesized and ''mature'' collagen was estimated from the amount of hydroxyproline in the free pool as small molecular weight moieties. In normal muscle, the synthesis rate was 1.1 +/- 0.3%/day, with 49 +/- 7% of the newly produced collagen degraded rapidly after synthesis. During hypertrophy there was an increase of about fivefold in the rate of synthesis (P less than 0.01), a 60% decrease in the rate of degradation of newly synthesized collagen (P less than 0.02), and an increase of about fourfold in the amount of degradation of mature collagen (P less than 0.01). These results suggest an important role for degradative as well as synthetic processes in the regulation of collagen mass. They indicate that enhanced degradation of mature collagen is required for muscle growth and suggest a physiological role for the pathway whereby in normal muscle, a large proportion of newly produced collagen is rapidly degraded

  13. Stimulation of type I collagen activity in healing of pulp perforation

    OpenAIRE

    Kunarti, Sri

    2008-01-01

    Background: TGF-β1 is a connective tissue stimulant, potential regulator for tissue repair, and promoter in wound healing. The healing of pulp perforation is decided by quantity and quality of new collagen deposition. TGF-β1 upregulates collagen transcription. However, after several weeks production of type I collagen synthesis is stopped and enzymatic degradation of collagen matrix will occur. Purpose: Observe synthesis type I collagen during the process of pulp perforation healing in 7, 14,...

  14. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, S M [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, J X [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Luo, T S [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, H L [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Zhao, J J [Department of Skin, Affiliated Xiehe Hospital, Fujian Medical University, Fuzhou 350001 (China)

    2007-07-15

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue.

  15. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    International Nuclear Information System (INIS)

    Zhuo, S M; Chen, J X; Luo, T S; Chen, H L; Zhao, J J

    2007-01-01

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue

  16. Collagenous gastritis in the pediatric age

    Directory of Open Access Journals (Sweden)

    Antonio Rosell-Camps

    2015-05-01

    Full Text Available Collagenous gastritis (CG is an uncommon condition known in the pediatric age. It is characterized by the presence of subepithelial collagen bands (> 10 μm associated with lymphoplasmacytic infiltration of the stomach's lamina propria. Symptoms manifested by patients with CG may be common with many other disorders. It typically manifests with epigastralgia, vomiting, and iron deficiency during pre-adolescence. This condition's pathophysiology remains unclear. In contrast to adults, where association with collagenous colitis and other autoimmune conditions is more common, pediatric involvement is usually confined to the stomach. Drugs of choice include proton pump inhibitors and corticoids. A case is reported of a 12-year-old girl with abdominal pain and ferritin deficiency who was diagnosed with CG based on gastric biopsy and experienced a favorable outcome.

  17. Thrombolytic therapy of acute myocardial infarction alters collagen metabolism

    DEFF Research Database (Denmark)

    Høst, N B; Hansen, S S; Jensen, L T

    1994-01-01

    The objective of the study was to monitor collagen metabolism after thrombolytic therapy. Sequential measurements of serum aminoterminal type-III procollagen propeptide (S-PIIINP) and carboxyterminal type-I procollagen propeptide (S-PICP) were made in 62 patients suspected of acute myocardial.......05). A less pronounced S-PIIINP increase was noted with tissue-plasminogen activator than with streptokinase. Thrombolytic therapy induces collagen breakdown regardless of whether acute myocardial infarction is confirmed or not. With confirmed acute myocardial infarction collagen metabolism is altered...... for at least 6 months. Furthermore, fibrin-specific and nonspecific thrombolytic agents appear to affect collagen metabolism differently....

  18. Increased cartilage type II collagen degradation in patients with osteogenesis imperfecta used as a human model of bone type I collagen alterations.

    Science.gov (United States)

    Rousseau, Jean-Charles; Chevrel, Guillaume; Schott, Anne-Marie; Garnero, Patrick

    2010-04-01

    We investigated whether cartilage degradation is altered in adult patients with mild osteogenesis imperfecta (OI) used as a human model of bone type I collagen-related osteoarthritis (OA). Sixty-four adult patients with OI (39% women, mean age+/-SD: 37+/-12 years) and 64 healthy age-matched controls (54% women, 39+/-7 years) were included. We also compared data in 87 patients with knee OA (73% women, 63+/-8 years, mean disease duration: 6 years) and 291 age-matched controls (80% women, 62+/-10 years). Urinary C-terminal cross-linked telopeptide of type II collagen (CTX-II), a marker of cartilage degradation, urinary helical peptide of type I collagen (Helix-I), a marker of bone resorption, and the urinary ratio between non-isomerised/isomerised (alpha/beta CTX-I) type I collagen C-telopeptide, a marker of type I collagen maturation, were measured. Patients with OI had CTX-II levels similar to those of subjects with knee OA (p=0.89; mean+/-SEM; 460+/-57 ng/mmol Cr for OI group and 547+/-32 ng/mmol Cr for OA group) and significantly higher than both young (144+/-7.8 ng/mmol Cr, p<0.0001) and old controls (247+/-7 ng/mmol Cr, p<0.0001). In patients with OI, increased Helix-I (p<0.0001) and alpha/beta CTX-I (p=0.0067) were independently associated with increased CTX-II and together explained 26% of its variance (p< 0.0001). In patients with knee OA, increased levels of alpha/beta CTX-I ratio were also associated with higher CTX-II levels. Adult patients with OI or knee OA are characterized by increased cartilage type II collagen degradation, which is associated with increased type I collagen degradation for OI and lower type I collagen maturation for both OI and OA. These data suggest that both quantitative and qualitative alterations of bone type I collagen metabolism are involved in increased cartilage degradation in patients with OI or knee OA. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Morphology and morphometry of two banderitas species (Orchidaceae: masdevallia) in Colombia

    International Nuclear Information System (INIS)

    Cuervo Martinez, Monica Adriana; Bonilla Gomez, Maria Argenis; Bustos Singer, Rodrigo

    2012-01-01

    Masdevallia coccinea and the Masdevallia ignea (Banderitas) are ornamental orchids which are very prized by amateur farmers and collectors. In Colombia, the harvest pressure on these species has been enormous and few natural populations survive in the departments of Boyaca (Arcabuco of Berlin Paramo, Duitama) and Santander (between Malaga and Bucaramanga), in which these populations are reduced and of difficult access. For this reason these species are in the II appendix of cites. However, little is known on their reproductive biology, floral biology and pollination and the literature about this is incomplete. Under this framework, the goal of the project was to study the morphology and morphometry of m. coccinea and m. ignea (pleurothallidinae) under semicultivation conditions in the Villa Rosa Farm located in the municipality of Guasca, Cundinamarca (Colombia). The floral morphology was analyzed by digital photography, morphometry and scanning electron microscope. The main results were differences in color and length of dorsal and lateral sepals between m. coccinea (x = 53.0 mm Sigma = 7.4 mm and x = 44.4 mm and Sigma = 8.3 mm) and m. ignea (x = 34 mm Sigma = 7.7 mm and x = 31.5 mm and Sigma = 6.1 mm). These parts were longest in m. coccinea in contrast to m. ignea. However the lip was longest in m. ignea (x = 7.1 mm y Sigma = 0.6 mm). On the other hand both species had lip articulated to the column but without rewards as nectar and osmophores.

  20. FTIR spectro-imaging of collagen scaffold formation during glioma tumor development.

    Science.gov (United States)

    Noreen, Razia; Chien, Chia-Chi; Chen, Hsiang-Hsin; Bobroff, Vladimir; Moenner, Michel; Javerzat, Sophie; Hwu, Yeukuang; Petibois, Cyril

    2013-11-01

    Evidence has recently emerged that solid and diffuse tumors produce a specific extracellular matrix (ECM) for division and diffusion, also developing a specific interface with microvasculature. This ECM is mainly composed of collagens and their scaffolding appears to drive tumor growth. Although collagens are not easily analyzable by UV-fluorescence means, FTIR imaging has appeared as a valuable tool to characterize collagen contents in tissues, specially the brain, where ECM is normally devoid of collagen proteins. Here, we used FTIR imaging to characterize collagen content changes in growing glioma tumors. We could determine that C6-derived solid tumors presented high content of triple helix after 8-11 days of growth (typical of collagen fibrils formation; 8/8 tumor samples; 91 % of total variance), and further turned to larger α-helix (days 12-15; 9/10 of tumors; 94 % of variance) and β-turns (day 18-21; 7/8 tumors; 97 % of variance) contents, which suggest the incorporation of non-fibrillar collagen types in ECM, a sign of more and more organized collagen scaffold along tumor progression. The growth of tumors was also associated to the level of collagen produced (P < 0.05). This study thus confirms that collagen scaffolding is a major event accompanying the angiogenic shift and faster tumor growth in solid glioma phenotypes.

  1. RELATIONS BETWEEN INVITRO CYTOTOXICITY AND CROSS-LINKED DERMAL SHEEP COLLAGENS

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; DAMINK, LO; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    Collagen-based biomaterials have found various applications in the biomedical field. However, collagen-based biomaterials may induce cytotoxic effects. This study evaluated possible cytotoxic effects of (crosslinked) dermal sheep collagen (DSC) using a 7-d-methylcellulose cell culture with human

  2. New experimental results in atlas-based brain morphometry

    Science.gov (United States)

    Gee, James C.; Fabella, Brian A.; Fernandes, Siddharth E.; Turetsky, Bruce I.; Gur, Ruben C.; Gur, Raquel E.

    1999-05-01

    In a previous meeting, we described a computational approach to MRI morphometry, in which a spatial warp mapping a reference or atlas image into anatomic alignment with the subject is first inferred. Shape differences with respect to the atlas are then studied by calculating the pointwise Jacobian determinant for the warp, which provides a measure of the change in differential volume about a point in the reference as it transforms to its corresponding position in the subject. In this paper, the method is used to analyze sex differences in the shape and size of the corpus callosum in an ongoing study of a large population of normal controls. The preliminary results of the current analysis support findings in the literature that have observed the splenium to be larger in females than in males.

  3. Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation.

    Directory of Open Access Journals (Sweden)

    Christopher B Massa

    2017-08-01

    Full Text Available Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs, however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group. An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical

  4. Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation.

    Science.gov (United States)

    Massa, Christopher B; Groves, Angela M; Jaggernauth, Smita U; Laskin, Debra L; Gow, Andrew J

    2017-08-01

    Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd) develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs), however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group). An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical alteration at

  5. Isolation and Characterization of Collagen from Chicken Feet

    OpenAIRE

    P. Hashim; M. S. Mohd Ridzwan; J. Bakar

    2014-01-01

    Collagen was isolated from chicken feet by using papain and pepsin enzymes in acetic acid solution at 4°C for 24h with a yield of 18.16% and 22.94% by dry weight, respectively. Chemical composition and characteristics of chicken feet collagen such as amino acid composition, SDS-PAGE patterns, FTIR spectra and thermal properties were evaluated. The chicken feet collagen is rich in the amino acids glycine, glutamic acid, proline and hydroxyproline. Electrophoresis pattern demonstrated two disti...

  6. Generalized Tensor-Based Morphometry of HIV/AIDS Using Multivariate Statistics on Deformation Tensors

    OpenAIRE

    Lepore, Natasha; Brun, Caroline; Chou, Yi-Yu; Chiang, Ming-Chang; Dutton, Rebecca A.; Hayashi, Kiralee M.; Luders, Eileen; Lopez, Oscar L.; Aizenstein, Howard J.; Toga, Arthur W.; Becker, James T.; Thompson, Paul M.

    2008-01-01

    This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor...

  7. Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates.

    Science.gov (United States)

    Aouacheria, Abdel; Geourjon, Christophe; Aghajari, Nushin; Navratil, Vincent; Deléage, Gilbert; Lethias, Claire; Exposito, Jean-Yves

    2006-12-01

    Collagens are thought to represent one of the most important molecular innovations in the metazoan line. Basement membrane type IV collagen is present in all Eumetazoa and was found in Homoscleromorpha, a sponge group with a well-organized epithelium, which may represent the first stage of tissue differentiation during animal evolution. In contrast, spongin seems to be a demosponge-specific collagenous protein, which can totally substitute an inorganic skeleton, such as in the well-known bath sponge. In the freshwater sponge Ephydatia mülleri, we previously characterized a family of short-chain collagens that are likely to be main components of spongins. Using a combination of sequence- and structure-based methods, we present evidence of remote homology between the carboxyl-terminal noncollagenous NC1 domain of spongin short-chain collagens and type IV collagen. Unexpectedly, spongin short-chain collagen-related proteins were retrieved in nonsponge animals, suggesting that a family related to spongin constitutes an evolutionary sister to the type IV collagen family. Formation of the ancestral NC1 domain and divergence of the spongin short-chain collagen-related and type IV collagen families may have occurred before the parazoan-eumetazoan split, the earliest divergence among extant animal phyla. Molecular phylogenetics based on NC1 domain sequences suggest distinct evolutionary histories for spongin short-chain collagen-related and type IV collagen families that include spongin short-chain collagen-related gene loss in the ancestors of Ecdyzosoa and of vertebrates. The fact that a majority of invertebrates encodes spongin short-chain collagen-related proteins raises the important question to the possible function of its members. Considering the importance of collagens for animal structure and substratum attachment, both families may have played crucial roles in animal diversification.

  8. Precision of tibial cartilage morphometry with a coronal water-excitation MR sequence

    Energy Technology Data Exchange (ETDEWEB)

    Hyhlik-Duerr, A. [Musculoskeletal Research Group, Institute of Anatomy, Ludwig-Maximilians-Universitaet, Muenchen (Germany); Klinik fuer Orthopaedie und Sportorthopaedie der Technischen Universitaet, Muenchen (Germany); Faber, S.; Reiser, M. [Klinik fuer Orthopaedie und Sportorthopaedie der Technischen Universitaet, Muenchen (Germany); Burgkart, R. [Institut fuer Medizinische Informatik und Systemforschung (MEDIS), GSF-Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg, Oberschleissheim (Germany); Stammberger, T.; Englmeier, K.H. [Institut fuer Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Klinikum Grosshadern, Marchioninistrasse 15, D-81377 Munich (Germany); Maag, K.P. [Institut fuer Radiologische Diagnostik, Klinikum der Ludwig-Maximilians-Universitaet, Muenchen (Germany); Eckstein, F. [Musculoskeletal Research Group, Institute of Anatomy, Ludwig-Maximilians-Universitaet, Muenchen (Germany)

    2000-02-01

    The aim of this study was to analyze the precision of tibial cartilage morphometry, by using a fast, coronal water-excitation sequence with high spatial resolution, to compare the reproducibility of 3D thickness vs volume estimates, and to test the technique in patients with severe osteoarthritis. The tibiae of 8 healthy volunteers and 3 patients selected for total knee arthroplasty were imaged repeatedly with a water-excitation sequence (image time 6 h 19 min, resolution 1.2 x 0.31 x 0.31 mm{sup 3}), with the knee being repositioned between each replicate acquisition. After 3D reconstruction, the cartilage volume, the mean, and the maximal tibial cartilage thickness were determined by 3D Euclidean distance transformation. In the volunteers, the precision of the volume measurements was 2.3 % (CV%) in the medial and 2.6 % in the lateral tibia. The reproducibility of the mean cartilage thickness was similar (2.6 and 2.5 %, respectively), and that of the maximal thickness lower (6.5 and 4.4 %). The patients showed a considerable reduction in volume and thickness, the precision being comparable with that in the volunteers. We find that, using a new imaging protocol and computational algorithm, it is possible to determine tibial cartilage morphometry with high precision in healthy individuals as well as in patients with osteoarthritis. (orig.)

  9. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case–control study of relationship between collagen, glycosaminoglycan and cartilage swelling

    Directory of Open Access Journals (Sweden)

    Hosseininia Shahrzad

    2013-01-01

    Full Text Available Abstract Background It remains to be shown whether OA shares molecular similarities between different joints in humans. This study provides evidence for similarities in cartilage molecular damage in osteoarthritic (OA joints. Methods Articular cartilage from osteoarthritic hip joints were analysed and compared to non-OA controls regarding collagen, glycosaminoglycan and water content. Femoral heads from 16 osteoarthritic (OA and 20 reference patients were obtained from hip replacement surgery due to OA and femoral neck fracture, respectively. Cartilage histological changes were assessed by Mankin grading and denatured collagen type II immunostaining and cartilage was extracted by α-chymotrypsin. Hydroxyproline and Alcian blue binding assays were used to measure collagen and glycosaminoglycan (GAG content, respectively. Results Mankin and immunohistology scores were significantly higher in hip OA samples than in reference samples. Cartilage water content was 6% higher in OA samples than in references. 2.5 times more collagen was extracted from OA than from reference samples. There was a positive association between water content and percentage of extractable collagen pool (ECP in both groups. The amounts of collagen per wet and dry weights did not differ statistically between OA and reference cartilage. % Extractable collagen was not related to collagen per dry weight in either group. However when collagen was expressed by wet weight there was a negative correlation between % extractable and collagen in OA cartilage. The amount of GAG per wet weight was similar in both groups but the amount of GAG per dry weight was higher in OA samples compared to reference samples, which suggests a capacity for GAG biosynthesis in hip OA cartilage. Neither of the studied parameters was related to age in either group. Conclusions Increased collagen extractability and water content in human hip cartilage is associated with OA pathology and can be observed at

  10. Collagen-binding proteins of Streptococcus mutans and related streptococci.

    Science.gov (United States)

    Avilés-Reyes, A; Miller, J H; Lemos, J A; Abranches, J

    2017-04-01

    The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms used by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Embroidered polymer-collagen hybrid scaffold variants for ligament tissue engineering.

    Science.gov (United States)

    Hoyer, M; Drechsel, N; Meyer, M; Meier, C; Hinüber, C; Breier, A; Hahner, J; Heinrich, G; Rentsch, C; Garbe, L-A; Ertel, W; Schulze-Tanzil, G; Lohan, A

    2014-10-01

    Embroidery techniques and patterns used for scaffold production allow the adaption of biomechanical scaffold properties. The integration of collagen into embroidered polylactide-co-caprolactone [P(LA-CL)] and polydioxanone (PDS) scaffolds could stimulate neo-tissue formation by anterior cruciate ligament (ACL) cells. Therefore, the aim of this study was to test embroidered P(LA-CL) and PDS scaffolds as hybrid scaffolds in combination with collagen hydrogel, sponge or foam for ligament tissue engineering. ACL cells were cultured on embroidered P(LA-CL) and PDS scaffolds without or with collagen supplementation. Cell adherence, vitality, morphology and ECM synthesis were analyzed. Irrespective of thread size, ACL cells seeded on P(LA-CL) scaffolds without collagen adhered and spread over the threads, whereas the cells formed clusters on PDS and larger areas remained cell-free. Using the collagen hydrogel, the scaffold colonization was limited by the gel instability. The collagen sponge layers integrated into the scaffolds were hardly penetrated by the cells. Collagen foams increased scaffold colonization in P(LA-CL) but did not facilitate direct cell-thread contacts in the PDS scaffolds. The results suggest embroidered P(LA-CL) scaffolds as a more promising basis for tissue engineering an ACL substitute than PDS due to superior cell attachment. Supplementation with a collagen foam presents a promising functionalization strategy. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Second-harmonic generation imaging of collagen in ancient bone.

    Science.gov (United States)

    Thomas, B; McIntosh, D; Fildes, T; Smith, L; Hargrave, F; Islam, M; Thompson, T; Layfield, R; Scott, D; Shaw, B; Burrell, C L; Gonzalez, S; Taylor, S

    2017-12-01

    Second-harmonic generation imaging (SHG) captures triple helical collagen molecules near tissue surfaces. Biomedical research routinely utilizes various imaging software packages to quantify SHG signals for collagen content and distribution estimates in modern tissue samples including bone. For the first time using SHG, samples of modern, medieval, and ice age bones were imaged to test the applicability of SHG to ancient bone from a variety of ages, settings, and taxa. Four independent techniques including Raman spectroscopy, FTIR spectroscopy, radiocarbon dating protocols, and mass spectrometry-based protein sequencing, confirm the presence of protein, consistent with the hypothesis that SHG imaging detects ancient bone collagen. These results suggest that future studies have the potential to use SHG imaging to provide new insights into the composition of ancient bone, to characterize ancient bone disorders, to investigate collagen preservation within and between various taxa, and to monitor collagen decay regimes in different depositional environments.

  13. Early alterations in extracellular matrix and transforming growth factor β gene expression in mouse lung indicative of late radiation fibrosis

    International Nuclear Information System (INIS)

    Finkelstein, J.N.; Johnston, C.J.; Baggs, R.; Rubin, P.

    1994-01-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The expression of late radiation injury can be found immediately after irradiation by measuring messenger RNA (mRNA) abundance. To determine if extracellular matrix mRNA and transforming growth factor beta abundance was affected acutely after irradiation, the authors measured mRNA levels of collagen I (CI), collagen III (CIII), collagen IV (CIV), fibronectin (FN), and transforming growth factor β (TGFβ 1,2ampersand3 ) in mouse lungs on day 1 and day 14 after graded doses of radiation. C57BL/6 female mice were irradiated with a single dose to the thorax of 5 or 12.5 Gy. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabelled cDNA probes for CI, CIII, CIV, FN, TGFβ 1,2ampersand3 and a control probe encoding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Autoradiographic data were quantified by video densitometry and results normalized to GAPDH. Changes in the expression of CI, CIII, CIV, FN and TGFβ 1,2ampersand3 were observed as early as 1 day after exposure. Through 14 days, changes in mRNA up to 5-fold were seen for any one dose. Dose related changes as high as 10-fold were also evident. The CI:CIII ratio increased gradually for the 5 Gy dose at 14 days postirradiation while the CI:CII ratio for the 12.5 Gy dose decreased by approximately 4-fold as compared to the control. These studies suggest that alterations in expression of extracellular matrix and TGFβ mRNA occur very early after radiation injury even at low doses and may play a role in the development of chronic fibrosis. 37 refs., 6 figs

  14. Tendon collagen synthesis declines with immobilization in elderly humans

    DEFF Research Database (Denmark)

    Dideriksen, Kasper; Boesen, Anders P; Reitelseder, Søren

    2017-01-01

    -80 yr) were randomly assigned to NSAIDs (ibuprofen 1,200 mg/day; Ibu) or placebo (Plc). One lower limb was immobilized in a cast for 2 wk and retrained for 6 wk. Tendon collagen protein synthesis, mechanical properties, size, expression of genes related to collagen turnover and remodeling, and signal...... intensity (from magnetic resonance imaging) were investigated. Tendon collagen synthesis decreased (P ... immobilization in both groups, whereas scleraxis mRNA decreased with inactivity in the Plc group only (P collagen protein synthesis decreased after 2 wk of immobilization, whereas tendon stiffness and modulus were only marginally reduced, and NSAIDs had no influence upon this...

  15. Reinforcement of a porous collagen scaffold with surface-activated PLA fibers.

    Science.gov (United States)

    Liu, Xi; Huang, Changbin; Feng, Yujie; Liang, Jie; Fan, Yujiang; Gu, Zhongwei; Zhang, Xingdong

    2010-01-01

    A hybrid porous collagen scaffold mechanically reinforced with surface-activated poly(lactic acid) (PLA) fiber was prepared. PLA fibers, 20 mum in diameter and 1 mm in length, were aminolyzed with hexanediamine to introduce free amino groups on the surfaces. After the amino groups were transferred to aldehyde groups by treatment with glutaraldehyde, different amounts (1.5, 3, 5 and 8 mg) of surface-activated PLA fibers were homogeneously mixed with 2 ml type-I collagen solution (pH 2.8, 0.6 wt%). This mixture solution was then freeze-dried and cross-linked to obtain collagen sponges with surface-activated PLA fiber. Scanning electron microscopy observation indicated that the collagen sponges had a highly interconnected porous structure with an average pore size of 170 mum, irrespective of PLA fiber incorporation. The dispersion of surface-activated PLA fibers was homogeneous in collagen sponge, in contrast to unactivated PLA fibers. The compression modulus test results showed that, compared with unactivated PLA fibers, the surface-activated PLA fibers enhanced the resistance of collagen sponge to compression more significantly. Cytotoxicity assay by MTT test showed no cytotoxicity of these collagen sponges. L929 mouse fibroblast cell-culture studies in vitro revealed that the number of L929 cells attached to the collagen sponge with surface-activated PLA fibers, both 6 h and 24 h after seeding, was higher than that in pure collagen sponge and sponge with unactivated PLA fibers. In addition, a better distribution of cells infiltrated in collagen sponge with surface-activated PLA fibers was observed by histological staining. These results indicated that the collagen sponge reinforced with surface-activated PLA fibers is a promising biocompatible scaffold for tissue engineering.

  16. Scleroderma fibroblasts: Some aspects of in vitro assessment of collagen synthesis

    International Nuclear Information System (INIS)

    Krieg, T.; Max-Planck-Institut fuer Biochemie, Muenchen; Luderschmidt, C.; Braun-Falco, O.; Weber, L.; Mueller, P.K.

    1981-01-01

    Fibroblasts were cultured from skin biopsies of patients with systemic sclerosis in different stages of the disease. In vitro synthesis of collagen was checked after a pulse with tritiated proline. The ratio between type I and type III collagen was normal in all patients. Six of seven cultures derived from patients in the active state showed an increased synthesis of collagen relative to other proteins. Addition of serum (normal and diseased) to the culture medium did not stimulate synthesis of collagen in any culture with normal collagen synthesis. (orig.) [de

  17. Scleroderma fibroblasts: some aspects of in vitro assessment of collagen synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, T.; Luderschmidt, C.; Braun-Falco, O.; Weber, L.; Mueller, P.K.

    1981-01-01

    Fibroblasts were cultured from skin biopsies of patients with systemic sclerosis in different stages of the disease. In vitro synthesis of collagen was checked after a pulse with tritiated proline. The ratio between type I and type III collagen was normal in all patients. Six of seven cultures derived from patients in the active state showed an increased synthesis of collagen relative to other proteins. Addition of serum (normal and diseased) to the culture medium did not stimulate synthesis of collagen in any culture with normal collagen synthesis.

  18. Atlas warping for brain morphometry

    Science.gov (United States)

    Machado, Alexei M. C.; Gee, James C.

    1998-06-01

    In this work, we describe an automated approach to morphometry based on spatial normalizations of the data, and demonstrate its application to the analysis of gender differences in the human corpus callosum. The purpose is to describe a population by a reduced and representative set of variables, from which a prior model can be constructed. Our approach is rooted in the assumption that individual anatomies can be considered as quantitative variations on a common underlying qualitative plane. We can therefore imagine that a given individual's anatomy is a warped version of some referential anatomy, also known as an atlas. The spatial warps which transform a labeled atlas into anatomic alignment with a population yield immediate knowledge about organ size and shape in the group. Furthermore, variation within the set of spatial warps is directly related to the anatomic variation among the subjects. Specifically, the shape statistics--mean and variance of the mappings--for the population can be calculated in a special basis, and an eigendecomposition of the variance performed to identify the most significant modes of shape variation. The results obtained with the corpus callosum study confirm the existence of substantial anatomical differences between males and females, as reported in previous experimental work.

  19. Generalized tensor-based morphometry of HIV/AIDS using multivariate statistics on deformation tensors.

    Science.gov (United States)

    Lepore, N; Brun, C; Chou, Y Y; Chiang, M C; Dutton, R A; Hayashi, K M; Luders, E; Lopez, O L; Aizenstein, H J; Toga, A W; Becker, J T; Thompson, P M

    2008-01-01

    This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor) of these deformations, as is common, we retain the full deformation tensors and apply a manifold version of Hotelling's $T(2) test to them, in a Log-Euclidean domain. In 2-D and 3-D magnetic resonance imaging (MRI) data from 26 HIV/AIDS patients and 14 matched healthy subjects, we compared multivariate tensor analysis versus univariate tests of simpler tensor-derived indices: the Jacobian determinant, the trace, geodesic anisotropy, and eigenvalues of the deformation tensor, and the angle of rotation of its eigenvectors. We detected consistent, but more extensive patterns of structural abnormalities, with multivariate tests on the full tensor manifold. Their improved power was established by analyzing cumulative p-value plots using false discovery rate (FDR) methods, appropriately controlling for false positives. This increased detection sensitivity may empower drug trials and large-scale studies of disease that use tensor-based morphometry.

  20. Characterizing the collagen stabilizing effect of crosslinked chitosan nanoparticles against collagenase degradation.

    Science.gov (United States)

    Kishen, Anil; Shrestha, Suja; Shrestha, Annie; Cheng, Calvin; Goh, Cynthia

    2016-08-01

    Antibacterial and chelating properties of chitosan has been widely studied for various dental applications. To characterize the interaction between chitosan-nanoparticles (CSnp) and collagen, and understand their stabilizing effect against collagenase degradation for dentin matrix stabilization. Phase-1: a single Type I collagen-fibril model was used to study the interaction with CSnp along with carbodiimides crosslinking treatment. Degradation of the crosslinked fibrils was studied with bacterial collagenase enzyme and monitored using Fourier Transform Infrared (FTIR) spectroscopy, turbidity measurement (400nm), ninhydrin assay and Atomic Force Microscopy (AFM). Interaction of CSnp with collagenase and Type I collagen, were evaluated using SDS-PAGE, and proteolytic cleavage potential of a synthetic peptide. Phase-2: degradation of dentin collagen crosslinked with/without CSnp was evaluated using FTIR, ninhydrin assay and Scanning Electron Microscopy (SEM). Glutaraldehyde crosslinking was used as a positive control. Both native collagen-fibrils and dentin collagen after crosslinking showed higher resistance to collagenase degradation, as observed in turbidity measurements and FTIR spectra. AFM images showed the interaction of CSnp with single collagen-fibril and crosslinked collagen resisted collagenase degradation up to 54h. The collagen and collagenase both formed complexes with CSnp resulting in thickening of bands and reduction in collagen degradation. CSnp treated collagenase showed significantly reduced cleavage of the fluorescent peptides. Dentin collagen was coated with CSnp following crosslinking with significant increase in resistance to collagenase degradation. Crosslinked CSnp on collagen stabilized and enhanced the resistance of dentin matrix against bacterial collagenase degradation due to non-specific interaction with both collagen and collagenase. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Resliced image space construction for coronary artery collagen fibers.

    Science.gov (United States)

    Luo, Tong; Chen, Huan; Kassab, Ghassan S

    2017-01-01

    Collagen fibers play an important role in the biomechanics of the blood vessel wall. The objective of this study was to determine the 3D microstructure of collagen fibers in the media and adventitia of coronary arteries. We present a novel optimal angle consistence algorithm to reform image slices in the visualization and analysis of 3D collagen images. 3D geometry was reconstructed from resliced image space where the 3D skeleton was extracted as the primary feature for accurate reconstruction of geometrical parameters. Collagen fibers (range 80-200) were reconstructed from the porcine coronary artery wall for the measurement of various morphological parameters. Collagen waviness and diameters were 1.37 ± 0.19 and 2.61 ± 0.89 μm, respectively. The biaxial distributions of orientation had two different peaks at 110.7 ± 25.2° and 18.4 ± 19.3°. Results for width, waviness, and orientation were found to be in good agreement with manual measurements. In addition to accurately measuring 2D features more efficiently than the manual approach, the present method produced 3D features that could not be measured in the 2D manual approach. These additional parameters included the tilt angle (5.10 ± 2.95°) and cross-sectional area (CSA; 5.98 ± 3.79 μm2) of collagen fibers. These 3D collagen reconstructions provide accurate and reliable microstructure for biomechanical modeling of vessel wall mechanics.

  2. A biomimetic strategy to form calcium phosphate crystals on type I collagen substrate

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhang [Department of Restorative Dentistry, Faculty of Dentistry, National University of Singapore, 5 Lower Kent Ridge Road 119074, Singapore (Singapore); Neoh, Koon Gee [Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 119260, Singapore (Singapore); Kishen, Anil, E-mail: anil.kishen@utoronto.ca [Discipline of Endodontics, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON (Canada)

    2010-07-20

    Objective: The aim of this study is to induce mineralization of collagen by introducing phosphate groups onto type I collagen from eggshell membrane (ESM) by treating with sodium trimetaphosphate (STMP). This strategy is based on the hypothesis that phosphate groups introduced on collagen can mimic the nucleating role of phosphorylated non-collagenous proteins bound to collagen for inducing mineralization in natural hard tissue. Method: The collagen membrane was phosphorylated by treating it with a solution of STMP and saturated calcium hydroxide. The phosphorylated collagen was subsequently exposed to a mineralization solution and the pattern of mineralization on the surface of phosphorylated collagen substrate was analyzed. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), field emission electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and microhardness test were used to characterize the collagen substrate and the pattern of minerals formed on the collagen surface. Results: The FTIR and EDX results indicated that the phosphate groups were incorporated onto the collagen surface by treatment with STMP. During the mineralization process, the plate-like mineral, octacalcium phosphate (OCP), which was initially formed on the surface of ESM, was later transformed into needle-like hydroxyapatite (HAP) as indicated by the SEM, FESEM, EDX and XRD findings. The microhardness test displayed significant increase in the Knoop hardness number of the mineralized collagen. Conclusions: Phosphate groups can be introduced onto type I collagen surface by treating it with STMP and such phosphorylated collagen can induce the mineralization of type I collagen.

  3. Protease inhibitors enhance extracellular collagen fibril deposition in human mesenchymal stem cells.

    Science.gov (United States)

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2015-10-15

    Collagen is a widely used naturally occurring biomaterial for scaffolding, whereas mesenchymal stem cells (MSCs) represent a promising cell source in tissue engineering and regenerative medicine. It is generally known that cells are able to remodel their environment by simultaneous degradation of the scaffolds and deposition of newly synthesized extracellular matrix. Nevertheless, the interactions between MSCs and collagen biomaterials are poorly known, and the strategies enhancing the extracellular matrix deposition are yet to be defined. In this study, we aim to investigate the fate of collagen when it is in contact with MSCs and hypothesize that protease inhibition will enhance their extracellular deposition of collagen fibrils. Specifically, human MSCs (hMSCs) were exposed to fluorescence-labeled collagen with and without intracellular or extracellular protease inhibitors (or both) before tracing the collagen at both intracellular and extracellular spaces. Collagen were internalized by hMSCs and degraded intracellularly in lysosomes. In the presence of protease inhibitors, both intracellular collagen fibril growth and extracellular deposition of collagen fibrils were enhanced. Moreover, protease inhibitors work synergistically with ascorbic acid, a well-known matrix deposition-enhancing reagent, in further enhancing collagen fibril deposition at the extracellular space. These findings provide a better understanding of the interactions between hMSCs and collagen biomaterials and suggest a method to manipulate matrix remodeling and deposition of hMSCs, contributing to better scaffolding for tissue engineering and regenerative medicine.

  4. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix.

    Science.gov (United States)

    Rodriguez-Pascual, Fernando; Slatter, David Anthony

    2016-11-23

    Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens.

  5. Collagen matrix as a tool in studying fibroblastic cell behavior.

    Science.gov (United States)

    Kanta, Jiří

    2015-01-01

    Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes.

  6. Assembly of collagen into microribbons: effects of pH and electrolytes.

    Science.gov (United States)

    Jiang, Fengzhi; Hörber, Heinrich; Howard, Jonathon; Müller, Daniel J

    2004-12-01

    Collagen represents the major structural protein of the extracellular matrix. Elucidating the mechanism of its assembly is important for understanding many cell biological and medical processes as well as for tissue engineering and biotechnological approaches. In this work, conditions for the self-assembly of collagen type I molecules on a supporting surface were characterized. By applying hydrodynamic flow, collagen assembled into ultrathin ( approximately 3 nm) highly anisotropic ribbon-like structures coating the entire support. We call these novel collagen structures microribbons. High-resolution atomic force microscopy topographs show that subunits of these microribbons are built by fibrillar structures. The smallest units of these fibrillar structures have cross-sections of approximately 3 x 5nm, consistent with current models of collagen microfibril formation. By varying the pH and electrolyte of the buffer solution during the self-assembly process, the microfibril density and contacts formed within this network could be controlled. Under certain electrolyte compositions the microribbons and microfibers display the characteristic D-periodicity of approximately 65 nm observed for much thicker collagen fibrils. In addition to providing insight into the mechanism of collagen assembly, the ultraflat collagen matrices may also offer novel ways to bio-functionalize surfaces.

  7. Second-harmonic generation imaging of collagen in ancient bone

    Directory of Open Access Journals (Sweden)

    B. Thomas

    2017-12-01

    Full Text Available Second-harmonic generation imaging (SHG captures triple helical collagen molecules near tissue surfaces. Biomedical research routinely utilizes various imaging software packages to quantify SHG signals for collagen content and distribution estimates in modern tissue samples including bone. For the first time using SHG, samples of modern, medieval, and ice age bones were imaged to test the applicability of SHG to ancient bone from a variety of ages, settings, and taxa. Four independent techniques including Raman spectroscopy, FTIR spectroscopy, radiocarbon dating protocols, and mass spectrometry-based protein sequencing, confirm the presence of protein, consistent with the hypothesis that SHG imaging detects ancient bone collagen. These results suggest that future studies have the potential to use SHG imaging to provide new insights into the composition of ancient bone, to characterize ancient bone disorders, to investigate collagen preservation within and between various taxa, and to monitor collagen decay regimes in different depositional environments.

  8. Enhancing amine terminals in an amine-deprived collagen matrix.

    LENUS (Irish Health Repository)

    Tiong, William H C

    2008-10-21

    Collagen, though widely used as a core biomaterial in many clinical applications, is often limited by its rapid degradability which prevents full exploitation of its potential in vivo. Polyamidoamine (PAMAM) dendrimer, a highly branched macromolecule, possesses versatile multiterminal amine surface groups that enable them to be tethered to collagen molecules and enhance their potential. In this study, we hypothesized that incorporation of PAMAM dendrimer in a collagen matrix through cross-linking will result in a durable, cross-linked collagen biomaterial with free -NH 2 groups available for further multi-biomolecular tethering. The aim of this study was to assess the physicochemical properties of a G1 PAMAM cross-linked collagen matrix and its cellular sustainability in vitro. Different amounts of G1 PAMAM dendrimer (5 or 10 mg) were integrated into bovine-derived collagen matrices through a cross-linking process, mediated by 5 or 25 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in 5 mM N-hydroxysuccinimide (NHS) and 50 mM 2-morpholinoethane sulfonic acid buffer at pH 5.5. The physicochemical properties of resultant matrices were investigated with scanning electron microscopy (SEM), collagenase degradation assay, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectra, and ninhydrin assay. Cellular sustainability of the matrices was assessed with Alamar Blue assay and SEM. There was no significant difference in cellular behavior between the treated and nontreated groups. However, the benefit of incorporating PAMAM in the cross-linking reaction was limited when higher concentrations of either agent were used. These results confirm the hypothesis that PAMAM dendrimer can be incorporated in the collagen cross-linking process in order to modulate the properties of the resulting cross-linked collagen biomaterial with free -NH 2 groups available for multi-biomolecular tethering.

  9. Peroxidasin-mediated crosslinking of collagen IV is independent of NADPH oxidases

    Directory of Open Access Journals (Sweden)

    Gábor Sirokmány

    2018-06-01

    Full Text Available Collagen IV is a major component of the basement membrane in epithelial tissues. The NC1 domains of collagen IV protomers are covalently linked together through sulfilimine bonds, the formation of which is catalyzed by peroxidasin. Although hydrogen peroxide is essential for this reaction, the exact source of the oxidant remains elusive. Members of the NOX/DUOX NADPH oxidase family are specifically devoted to the production of superoxide and hydrogen peroxide. Our aim in this study was to find out if NADPH oxidases contribute in vivo to the formation of collagen IV sulfilimine crosslinks. We used multiple genetically modified in vivo model systems to provide a detailed assessment of this question. Our data indicate that in various peroxidasin-expressing tissues sulfilimine crosslinks between the NC1 domains of collagen IV can be readily detected in the absence of functioning NADPH oxidases. We also analyzed how subatmospheric oxygen levels influence the collagen IV network in collagen-producing cultured cells with rapid matrix turnover. We showed that collagen IV crosslinks remain intact even under strongly hypoxic conditions. Our hypothesis is that during collagen IV network formation PXDN cooperates with a NOX/DUOX-independent H2O2 source that is functional also at very low ambient oxygen levels. Keywords: Peroxidasin, NADPH oxidase, Hydrogen peroxide, Collagen IV, Sulfilimine

  10. Regulation of collagen biosynthesis in cultured bovine aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Stepp, M.A.

    1986-01-01

    Aortic smooth muscles cells have been implicated in the etiology of lesions which occur in atherosclerosis and hypertension. Both diseases involve proliferation of smooth muscle cells and accumulation of excessive amounts of extracellular matrix proteins, including collagen type I and type III produced by the smooth muscle cells. To better understand the sites of regulation of collagen biosynthesis and to correlate these with the growth rate of the cells, cultured bovine aortic smooth muscle cells were studied as a function of the number of days (3 to 14) in second passage. Cells grew rapidly up to day 6 when confluence was reached. The total incorporation of [ 3 H]-proline into proteins was highest at day 3 and decreased to a constant level after the cultures reached confluence. In contrast, collagen protein production was lowest before confluence and continued to increase over the entire time course of the experiments. cDNA clones for the α1 and α2 chains of type I and the α1 chain of type III collagen were used to quantitate the steady state level of collagen mRNAs. RNA was tested in a cell-free translation system. Changes in the translational activity of collagen mRNAs parallelled the observed increases in collagen protein production. Thus, at later time points, collagen mRNAs are more active in directing synthesis of preprocollagens, even though less collagen mRNA is present. The conclusion is that the site of regulation of the expression of collagen genes is a function of the growth rate of cultured smooth muscle cells

  11. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Gu; Jeong, Ye Ji; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Sujae [Hanyang Univ., Seoul (Korea, Republic of)

    2014-05-15

    MMPs are classified into five subgroups: collagenases (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), as well as metalloelastase (MMP-12), the membrane-type MMPs (MMP14, MMP15), and other MMPS (e. g., MMP-19, and MMP20). MMP-12 (matrix metalloproteinase12), also known as macrophage metalloelastase, was first identified as an elastolytic metalloproteinase secreted by inflammatory macrophages 30 years ago. MMP-12 degrades extracellular matrix (ECM) components to facilitate tissue remodeling. It can degrade elastin and other substrates, such as type IV collagen, fibronectin, laminin, gelatin, vitronectin, entactin, heparin, and chondroitin sulfates. In the lung, MMP-12 is identified in alveolar macrophages of cigarette smokers as an elastolytic MMP. Inactivation of the MMP-12 gene in knockout mice demonstrates a critical role of MMP-12 in smoking-induced chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the effects of MMP-12 by radiation in lung, so we evaluate that MMP-12 expression pattern in normal lung tissue and cancer cell following radiation. Radiation induced lung injury most commonly occurs as a result of radiation therapy administered to treat cancer. The present study demonstrates that MMP-12 was highly increased in the lung damaged by radiation Thus, MMP-12 might be of potential relevance as a clinically diagnostic tool and sensitive biomarker for radiation induced lung injury and fibrosis.

  12. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis

    International Nuclear Information System (INIS)

    Jung, Myung Gu; Jeong, Ye Ji; Lee, Haejune; Lee, Sujae

    2014-01-01

    MMPs are classified into five subgroups: collagenases (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), as well as metalloelastase (MMP-12), the membrane-type MMPs (MMP14, MMP15), and other MMPS (e. g., MMP-19, and MMP20). MMP-12 (matrix metalloproteinase12), also known as macrophage metalloelastase, was first identified as an elastolytic metalloproteinase secreted by inflammatory macrophages 30 years ago. MMP-12 degrades extracellular matrix (ECM) components to facilitate tissue remodeling. It can degrade elastin and other substrates, such as type IV collagen, fibronectin, laminin, gelatin, vitronectin, entactin, heparin, and chondroitin sulfates. In the lung, MMP-12 is identified in alveolar macrophages of cigarette smokers as an elastolytic MMP. Inactivation of the MMP-12 gene in knockout mice demonstrates a critical role of MMP-12 in smoking-induced chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the effects of MMP-12 by radiation in lung, so we evaluate that MMP-12 expression pattern in normal lung tissue and cancer cell following radiation. Radiation induced lung injury most commonly occurs as a result of radiation therapy administered to treat cancer. The present study demonstrates that MMP-12 was highly increased in the lung damaged by radiation Thus, MMP-12 might be of potential relevance as a clinically diagnostic tool and sensitive biomarker for radiation induced lung injury and fibrosis

  13. 3D PATTERN OF BRAIN ABNORMALITIES IN WILLIAMS SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    OpenAIRE

    Chiang, Ming-Chang; Reiss, Allan L.; Lee, Agatha D.; Bellugi, Ursula; Galaburda, Albert M.; Korenberg, Julie R.; Mills, Debra L.; Toga, Arthur W.; Thompson, Paul M.

    2007-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of ~20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the complex pattern of gray/white matter reductions in WS, based on fluid registration of structural brain images.

  14. Thermal helix-coil transition in UV irradiated collagen from rat tail tendon.

    Science.gov (United States)

    Sionkowska, A; Kamińska, A

    1999-05-01

    The thermal helix-coil transition in UV irradiated collagen solution, collagen film and pieces of rat tail tendon (RTT) were compared. Their thermal stability's were determined by differential scanning calorimeter (DSC) and by viscometric measurements. The denaturation temperatures of collagen solution, film and pieces of RTT were different. The helix-coil transition occur near 40 degrees C in collagen solution, near 112 degrees C in collagen film, and near 101 degrees C in pieces of RTT. After UV irradiation the thermal helix-coil transition of collagen samples were changed. These changes depend on the degree of hydratation.

  15. Collagen films with stabilized liquid crystalline phases and concerns on osteoblast behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minjian; Ding, Shan; Min, Xiang; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Li, Lihua; Li, Hong; Zhou, Changren, E-mail: tcrz9@jnu.edu.cn

    2016-01-01

    To duplicate collagen's in vivo liquid crystalline (LC) phase and investigate the relationship between the morphology of LC collagen and osteoblast behavior, a self-assembly method was introduced for preparing collagen films with a stabilized LC phase. The LC texture and topological structure of the films before and after stabilization were observed with polarizing optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The relationship between the collagen films and osteoblast behavior was studied with the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide method, proliferation index detection, alkaline phosphatase measurements, osteocalcin assay, inverted microscopy, SEM observation, AFM observation, and cytoskeleton fluorescence staining. The results showed that the LC collagen film had continuously twisting orientations in the cholesteric phase with a typical series of arced patterns. The collagen fibers assembled in a well-organized orientation in the LC film. Compared to the non-LC film, the LC collagen film can promote cell proliferation, and increase ALP and osteocalcin expression, revealing a contact guide effect on osteoblasts. - Highlights: • Collagen film with liquid crystalline (LC) phase was observed by POM, SEM and AFM. • The effect of LC collagen film on osteoblasts behaviors was studied in detail. • LC collagen film promoted osteoblast proliferation and osteogenesis activity.

  16. Studies on collagen-tannic acid-collagenase ternary system: Inhibition of collagenase against collagenolytic degradation of extracellular matrix component of collagen.

    Science.gov (United States)

    Krishnamoorthy, Ganesan; Sehgal, Praveen Kumar; Mandal, Asit Baran; Sadulla, Sayeed

    2012-06-01

    We report the detailed studies on the inhibitory effect of tannic acid (TA) on Clostridium histolyticum collagenase (ChC) activity against degradation of extracellular matrix component of collagen. The TA treated collagen exhibited 64% resistance against collagenolytic hydrolysis by ChC, whereas direct interaction of TA with ChC exhibited 99% inhibition against degradation of collagen and the inhibition was found to be concentration dependant. The kinetic inhibition of ChC has been deduced from the extent of hydrolysis of N-[3-(2-furyl) acryloyl]-Leu-Gly-Pro-Ala (FALGPA). This data provides a selective competitive mode of inhibition on ChC activity seems to be influenced strongly by the nature and structure of TA. TA showed inhibitor activity against the ChC by molecular docking method. This result demonstrated that TA containing digalloyl radical possess the ability to inhibit the ChC. The inhibition of ChC in gaining new insight into the mechanism of stabilization of collagen by TA is discussed.

  17. Influence of experimental pulmonary emphysema on the toxicological effects from inhaled nitrogen dioxide and diesel exhaust

    International Nuclear Information System (INIS)

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Henderson, R.F.; Pickrell, J.A.; Wolff, R.K.

    1989-01-01

    This project examined the influence of preexisting, experimentally induced pulmonary emphysema on the adverse health effects in rats of chronic inhalation exposure to either nitrogen dioxide or automotive diesel-engine exhaust. Previous reports indicated that humans with chronic lung disease were among those most severely affected by episodic exposures to high concentrations of airborne toxicants. There were no previous reports comparing the effects of chronic inhalation exposure to components of automotive emissions in emphysematous and normal animals. The hypothesis tested in this project was that rats with preexisting pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of the toxicant exposures. Young adult rats were housed continuously in inhalation exposure chambers and exposed seven hours per day, five days per week, for 24 months to nitrogen dioxide at 9.5 parts per million (ppm)2, or to diesel exhaust at 3.5 mg soot/m3, or to clean air as control animals. These concentrations were selected to produce mild, but distinct, effects in rats with normal lungs. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of the proteolytic enzyme elastase six weeks before the toxicant exposures began. Health effects were evaluated after 12, 18, and 24 months of exposure. The measurements included respiratory function, clearance of inhaled radiolabeled particles, pulmonary immune responses to instilled antigen, biochemistry and cytology of airway fluid, total lung collagen, histopathology, lung morphometry, and lung burdens of diesel soot. The significance of influences of emphysema and toxicant exposure, and interactions between influences of the two treatments, were evaluated by analysis of variance

  18. Postnatal development of depth-dependent collagen density in ovine articular cartilage

    Directory of Open Access Journals (Sweden)

    Kranenbarg Sander

    2010-10-01

    Full Text Available Abstract Background Articular cartilage (AC is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for the functions of adult AC. Collagen is the most abundant solid component and it affects the mechanical behaviour of AC. The current objective is to quantify the postnatal development of depth-dependent collagen density in sheep (Ovis aries AC between birth and maturity. We use Fourier transform infra-red micro-spectroscopy to investigate collagen density in 48 sheep divided over ten sample points between birth (stillborn and maturity (72 weeks. In each animal, we investigate six anatomical sites (caudal, distal and rostral locations at the medial and lateral side of the joint in the distal metacarpus of a fore leg and a hind leg. Results Collagen density increases from birth to maturity up to our last sample point (72 weeks. Collagen density increases at the articular surface from 0.23 g/ml ± 0.06 g/ml (mean ± s.d., n = 48 at 0 weeks to 0.51 g/ml ± 0.10 g/ml (n = 46 at 72 weeks. Maximum collagen density in the deeper cartilage increases from 0.39 g/ml ± 0.08 g/ml (n = 48 at 0 weeks to 0.91 g/ml ± 0.13 g/ml (n = 46 at 72 weeks. Most collagen density profiles at 0 weeks (85% show a valley, indicating a minimum, in collagen density near the articular surface. At 72 weeks, only 17% of the collagen density profiles show a valley in collagen density near the articular surface. The fraction of profiles with this valley stabilises at 36 weeks. Conclusions Collagen density in articular cartilage increases in postnatal life with depth-dependent variation, and does not stabilize up to 72 weeks, the last sample point in our study. We find strong evidence for a valley in collagen densities near the articular surface that is present in the youngest

  19. Effects of isopropanol on collagen fibrils in new parchment

    Directory of Open Access Journals (Sweden)

    Gonzalez Lee G

    2012-03-01

    Full Text Available Abstract Background Isopropanol is widely used by conservators to relax the creases and folds of parchment artefacts. At present, little is known of the possible side effects of the chemical on parchments main structural component- collagen. This study uses X-ray Diffraction to investigate the effects of a range of isopropanol concentrations on the dimensions of the nanostructure of the collagen component of new parchment. Results It is found in this study that the packing features of the collagen molecules within the collagen fibril are altered by exposure to isopropanol. The results suggest that this chemical treatment can induce a loss of structural water from the collagen within parchment and thus a rearrangement of intermolecular bonding. This study also finds that the effects of isopropanol treatment are permanent to parchment artefacts and cannot be reversed with rehydration using deionised water. Conclusions This study has shown that isopropanol induces permanent changes to the packing features of collagen within parchment artefacts and has provided scientific evidence that its use to remove creases and folds on parchment artefacts will cause structural change that may contribute to long-term deterioration of parchment artefacts. This work provides valuable information that informs conservation practitioners regarding the use of isopropanol on parchment artefacts.

  20. Higher iron bioavailability of a human-like collagen iron complex.

    Science.gov (United States)

    Zhu, Chenhui; Yang, Fan; Fan, Daidi; Wang, Ya; Yu, Yuanyuan

    2017-07-01

    Iron deficiency remains a public health problem around the world due to low iron intake and/or bioavailability. FeSO 4 , ferrous succinate, and ferrous glycinate chelate are rich in iron but have poor bioavailability. To solve the problem of iron deficiency, following previous research studies, a thiolated human-like collagen-ironcomplex supplement with a high iron content was prepared in an anaerobic workstation. In addition, cell viability tests were evaluated after conducting an MTT assay, and a quantitative analysis of the thiolated human-like collagen-iron digesta samples was performed using the SDS-PAGE method coupled with gel filtration chromatography. The iron bioavailability was assessed using Caco-2 cell monolayers and iron-deficiency anemia mice models. The results showed that (1) one mole of thiolated human-like collagen-iron possessed approximately 35.34 moles of iron; (2) thiolated human-like collagen-iron did not exhibit cytotoxity and (3) thiolated human-like collagen- iron digesta samples had higher bioavailability than other iron supplements, including FeSO 4 , ferrous succinate, ferrous glycine chelate and thiolated human-like collagen-Fe iron. Finally, the iron bioavailability was significantly enhanced by vitamin C. These results indicated that thiolated human-like collagen-iron is a promising iron supplement for use in the future.

  1. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice

    Directory of Open Access Journals (Sweden)

    Rafael Almeida-Reis

    2017-01-01

    Full Text Available Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods.  C57BL/6 mice received intratracheal elastase (ELA group or saline (SAL group. One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group. Controls received saline and BbCI (SALBC group. After 28 days, we evaluated respiratory mechanics, exhaled nitric oxide, and bronchoalveolar lavage fluid. In lung tissue we measured airspace enlargement, quantified neutrophils, TNFα-, MMP-9-, MMP-12-, TIMP-1-, iNOS-, and eNOS-positive cells, 8-iso-PGF2α, collagen, and elastic fibers in alveolar septa and airways. MUC-5-positive cells were quantified only in airways. Results. BbCI reduced elastase-induced changes in pulmonary mechanics, airspace enlargement and elastase-induced increases in total cells, and neutrophils in BALF. BbCI reduced macrophages and neutrophils positive cells in alveolar septa and neutrophils and TNFα-positive cells in airways. BbCI attenuated elastic and collagen fibers, MMP-9- and MMP-12-positive cells, and isoprostane and iNOS-positive cells in alveolar septa and airways. BbCI reduced MUC5ac-positive cells in airways. Conclusions. BbCI improved lung mechanics and reduced lung inflammation and airspace enlargement and increased oxidative stress levels induced by elastase. BbCI may have therapeutic potential in chronic obstructive pulmonary disease.

  2. Surface characterization of collagen/elastin based biomaterials for tissue regeneration

    International Nuclear Information System (INIS)

    Skopinska-Wisniewska, J.; Sionkowska, A.; Kaminska, A.; Kaznica, A.; Jachimiak, R.; Drewa, T.

    2009-01-01

    Collagen and elastin are the main proteins of extracellular matrix. Collagen plays a crucial role in tensile strength of tissues, whereas elastin provides resilience to many organs. Both biopolymers are readily available and biocompatible. These properties point out that collagen and elastin are good components of materials for many potential medical applications. The surface properties of biomaterials play an important role in biomedicine as the majority of biological reactions occur on the surface of implanted materials. One of the methods of surface modification is UV-irradiation. The exposition of the biomaterial on ultraviolet light can alterate surface properties of the materials, their chemical stability, swelling properties and mechanical properties as well. The aim of our work was to study the surface properties and biocompatibility of new collagen/elastin based biomaterials and consideration of the influence of ultraviolet light on these properties. The surface properties of collagen/elastin based biomaterials modified by UV-irradiation were studied using the technique of atomic force microscopy (AFM) and contact angle measurements. On the basis of the results the surface free energy and its polar component was calculated using Owens-Wendt method. To assess the biological performance of films based on collagen, elastin and their blends, the response of 3T3 cell was investigated. It was found that the surface of collagen/elastin film is enriched in less polar component - collagen. Exposition on UV light increases polarity of collagen/elastin based films, due to photooxidation process. The AFM images have shown that topography and roughness of the materials had been also affected by UV-irradiation. The changes in surface properties influence on interaction between the material's surface and cells. The investigation of 3T3 cells grown on films based on collagen, elastin and their blends, leads to the conclusion that higher content of elastin in biomaterial

  3. Surface characterization of collagen/elastin based biomaterials for tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Skopinska-Wisniewska, J., E-mail: joanna@chem.uni.torun.pl [Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun (Poland); Sionkowska, A.; Kaminska, A. [Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun (Poland); Kaznica, A.; Jachimiak, R.; Drewa, T. [Collegium Medicum, Nicolaus Copernicus University, Karlowicz 24, 85-092 Bydgoszcz (Poland)

    2009-07-15

    Collagen and elastin are the main proteins of extracellular matrix. Collagen plays a crucial role in tensile strength of tissues, whereas elastin provides resilience to many organs. Both biopolymers are readily available and biocompatible. These properties point out that collagen and elastin are good components of materials for many potential medical applications. The surface properties of biomaterials play an important role in biomedicine as the majority of biological reactions occur on the surface of implanted materials. One of the methods of surface modification is UV-irradiation. The exposition of the biomaterial on ultraviolet light can alterate surface properties of the materials, their chemical stability, swelling properties and mechanical properties as well. The aim of our work was to study the surface properties and biocompatibility of new collagen/elastin based biomaterials and consideration of the influence of ultraviolet light on these properties. The surface properties of collagen/elastin based biomaterials modified by UV-irradiation were studied using the technique of atomic force microscopy (AFM) and contact angle measurements. On the basis of the results the surface free energy and its polar component was calculated using Owens-Wendt method. To assess the biological performance of films based on collagen, elastin and their blends, the response of 3T3 cell was investigated. It was found that the surface of collagen/elastin film is enriched in less polar component - collagen. Exposition on UV light increases polarity of collagen/elastin based films, due to photooxidation process. The AFM images have shown that topography and roughness of the materials had been also affected by UV-irradiation. The changes in surface properties influence on interaction between the material's surface and cells. The investigation of 3T3 cells grown on films based on collagen, elastin and their blends, leads to the conclusion that higher content of elastin in

  4. Structure–mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model

    Science.gov (United States)

    Andriotis, O. G.; Chang, S. W.; Vanleene, M.; Howarth, P. H.; Davies, D. E.; Shefelbine, S. J.; Buehler, M. J.; Thurner, P. J.

    2015-01-01

    The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry. PMID:26468064

  5. Preparation and structure characterization of soluble bone collagen ...

    African Journals Online (AJOL)

    In this study, G-25 gel chromatography, X-diffraction, scanning electron microscopy (SEM), UV and Fourier transform infrared spectroscopy (FTIR) were used to analyze soluble collagen peptides chelating calcium. Collagen peptide hydrolysis can be divided into four components using G-25 gel chromatography.

  6. Osmotic pressure induced tensile forces in tendon collagen.

    Science.gov (United States)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J; Fratzl, Peter

    2015-01-22

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  7. Collagen derived serum markers in carcinoma of the prostate

    DEFF Research Database (Denmark)

    Rudnicki, M; Jensen, L T; Iversen, P

    1995-01-01

    Three new collagen markers deriving from the collagenous matrix, e.g. carboxyterminal propeptide of type I procollagen (PICP), carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP), and aminoterminal propeptide of type III procollagen (PIIINP) were used for the diagnose......, ICTP, and PICP did not differ between these two groups. In patients with metastatic prostatic cancer all five markers were increased compared to the level measured in patients with localized cancer (p

  8. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride

    International Nuclear Information System (INIS)

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-01-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen. - Highlights: • Acylated collagen retained the unique triple helix conformation. • Acylated collagen had stronger thermostability than native collagen. • Amide I was the most sensitive band to the temperature for acylated collagen. • Amide II was the most sensitive band to the temperature for native collagen. • Auto-peak at 1680 cm −1 for acylated collagen disappeared at higher temperature

  9. Collagen synthesis in CBA mouse heart after total thoracic irradiation

    International Nuclear Information System (INIS)

    Murray, J.C.; Parkins, C.S.; Institute of Cancer Research, Sutton

    1988-01-01

    CBA mice were irradiated to the whole thorax with single doses of 240 kVp X-rays in the dose range 8-16 Gy. Collagen and total protein synthesis rates in the heart were measured at 2-monthly intervals using a radio-isotope incorporation techniques. Doses of 10 Gy or greater caused a slight increase in collagen synthesis, followed by significantly reduced collagen synthesis by 16 weeks or longer after treatment. The depression in synthesis appeared correspondingly earlier with increasing dose. Total protein synthesis in heart followed similar patterns although changes were not statistically significant, indicating that the changes reflected alterations to collagen synthesis specifally, and not protein synthesis in geneal. Total hydroxyproline measurements showed no significant changes in heart collagen at any time as a result of X-irradiation. 18 refs.; 7 figs

  10. Study of morphometry to debit drainage basin (DAS) arau Padang city

    Science.gov (United States)

    Utama, Lusi; Amrizal, Berd, Isril; Zuherna

    2017-11-01

    High intensity rain that happened in Padang city cause the happening of floods at DAS Arau. Floods that happened in Padang besides caused high rain intensity, require to be by research about morphometry that is cause parameter the happening of floods. Morphometry drainage basin physical network (DAS) quantitatively related to DAS geomorphology that is related to form of DAS, river network, closeness of stream, ramp, usage of farm, high and gradient steepness of river. Form DAS will influence rain concentration to outlet. Make an index to closeness of stream depict closeness of river stream at one particular DAS. Speed of river stream influenced by storey, level steepness of river. Steepness storey, level is comparison of difference height of river downstream and upstream. Ever greater of steepness of river stream, excelsior speed of river stream that way on the contrary. High to lower speed of river stream influence occurrence of floods, more than anything else if when influenced by debit big. Usage of farm in glove its link to process of infiltration where if geology type which is impermeable, be difficult the happening of infiltration, this matter will enlarge value of run off. Research by descriptive qualitative that is about characteristic of DAS. Method the used is method survey with data collecting, in the form of rainfall data of year 2005 until year 2015 and Image of DEM IFSAR with resolution 5 meter, analyzed use Software ARGIS. Result of research got by DAS reside in at condition of floods gristle.

  11. Double thermal transitions of type I collagen in acidic solution.

    Science.gov (United States)

    Liu, Yan; Liu, Lingrong; Chen, Mingmao; Zhang, Qiqing

    2013-01-01

    Contributed equally to this work. To further understand the origin of the double thermal transitions of collagen in acidic solution induced by heating, the denaturation of acidic soluble collagen was investigated by micro-differential scanning calorimeter (micro-DSC), circular dichroism (CD), dynamic laser light scattering (DLLS), transmission electron microscopy (TEM), and two-dimensional (2D) synchronous fluorescence spectrum. Micro-DSC experiments revealed that the collagen exhibited double thermal transitions, which were located within 31-37 °C (minor thermal transition, T(s) ∼ 33 °C) and 37-55 °C (major thermal transition, T(m) ∼ 40 °C), respectively. The CD spectra suggested that the thermal denaturation of collagen resulted in transition from polyproline II type structure to unordered structure. The DLLS results showed that there were mainly two kinds of collagen fibrillar aggregates with different sizes in acidic solution and the larger fibrillar aggregates (T(p2) = 40 °C) had better heat resistance than the smaller one (T(p1) = 33 °C). TEM revealed that the depolymerization of collagen fibrils occurred and the periodic cross-striations of collagen gradually disappeared with increasing temperature. The 2D fluorescence correlation spectra were also applied to investigate the thermal responses of tyrosine and phenylalanine residues at the molecular level. Finally, we could draw the conclusion that (1) the minor thermal transition was mainly due to the defibrillation of the smaller collagen fibrillar aggregates and the unfolding of a little part of triple helices; (2) the major thermal transition primarily arose from the defibrillation of the larger collagen fibrillar aggregates and the complete denaturation of the majority part of triple helices.

  12. Facial morphometry of Ecuadorian patients with growth hormone receptor deficiency/Laron syndrome.

    Science.gov (United States)

    Schaefer, G B; Rosenbloom, A L; Guevara-Aguirre, J; Campbell, E A; Ullrich, F; Patil, K; Frias, J L

    1994-01-01

    Facial morphometry using computerised image analysis was performed on patients with growth hormone receptor deficiency (Laron syndrome) from an inbred population of southern Ecuador. Morphometrics were compared for 49 patients, 70 unaffected relatives, and 14 unrelated persons. Patients with growth hormone receptor deficiency showed significant decreases in measures of vertical facial growth as compared to unaffected relatives and unrelated persons with short stature from other causes. This report validates and quantifies the clinical impression of foreshortened facies in growth hormone receptor deficiency. Images PMID:7815422

  13. The Collagen Binding Proteins of Streptococcus mutans and Related Streptococci

    Science.gov (United States)

    Avilés-Reyes, Alejandro; Miller, James H.; Lemos, José A.; Abranches, Jacqueline

    2016-01-01

    Summary The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms utilized by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host. PMID:26991416

  14. Pulmonary collagen metabolism in irradiated hamsters and those treated with corticosteroids

    International Nuclear Information System (INIS)

    Pickrell, J.A.; Straus, F.C.; Halliwell, W.H.; Jones, R.K.

    1976-01-01

    Syrian hamsters were exposed to 90 Y in fused aluminosilicate particles to produce pulmonary fibrosis. Irradiated hamsters and contols were treated with Depomedrol, arresting the developing fibrosis. All hamsters receiving steroid showed a reduced incorporation of 14 C-proline into noncollagen protein during the 3-19 wk period after exposure. Collagen synthesis relative to noncollagen protein synthesis was decreased five-fold in these animals at early times after exposure and during high steroid dosage, but had returned to control levels after considerable time at lower steroid dosage. Collagen synthesis in irradiated animals not receiving steroids was elevated during the same time period and collagen synthesis in irradiated hamsters treated with steroid was intermediate between that in radiation animals and in control or steroid animals. Collagen breakdown was elevated to the same level as in irradiated animals, and collagen content was normal and well below that of irradiated animals. These and previous data indicate that steroid treatment delays development of pulmonary fibrosis in animals irradiated with fibrogenic doses of 90 Y in fused aluminosilicate particles. Experiments incubating BAPN or Depomedrol with L-929 or WI-38 fibroblasts in vitro were performed to note any effect of these agents upon fibroblast proliferation, cellular collagen processing or collagen synthesis. Steroids frequently reduced fibroblast proliferation and altered cellular collagen processings to reflect an increased proportion of collagen breakdown products. These changes reflect the importance of fibroblast proliferation in developing pulmonary fibrosis

  15. Inelastic behaviour of collagen networks in cell–matrix interactions and mechanosensation

    Science.gov (United States)

    Mohammadi, Hamid; Arora, Pamma D.; Simmons, Craig A.; Janmey, Paul A.; McCulloch, Christopher A.

    2015-01-01

    The mechanical properties of extracellular matrix proteins strongly influence cell-induced tension in the matrix, which in turn influences cell function. Despite progress on the impact of elastic behaviour of matrix proteins on cell–matrix interactions, little is known about the influence of inelastic behaviour, especially at the large and slow deformations that characterize cell-induced matrix remodelling. We found that collagen matrices exhibit deformation rate-dependent behaviour, which leads to a transition from pronounced elastic behaviour at fast deformations to substantially inelastic behaviour at slow deformations (1 μm min−1, similar to cell-mediated deformation). With slow deformations, the inelastic behaviour of floating gels was sensitive to collagen concentration, whereas attached gels exhibited similar inelastic behaviour independent of collagen concentration. The presence of an underlying rigid support had a similar effect on cell–matrix interactions: cell-induced deformation and remodelling were similar on 1 or 3 mg ml−1 attached collagen gels while deformations were two- to fourfold smaller in floating gels of high compared with low collagen concentration. In cross-linked collagen matrices, which did not exhibit inelastic behaviour, cells did not respond to the presence of the underlying rigid foundation. These data indicate that at the slow rates of collagen compaction generated by fibroblasts, the inelastic responses of collagen gels, which are influenced by collagen concentration and the presence of an underlying rigid foundation, are important determinants of cell–matrix interactions and mechanosensation. PMID:25392399

  16. Chondrogenic differentiation of mesenchymal stem cells in a leakproof collagen sponge

    International Nuclear Information System (INIS)

    Chen Guoping; Akahane, Daisuke; Kawazoe, Naoki; Yamamoto, Katsuyuki; Tateishi, Tetsuya

    2008-01-01

    A three-dimensional culture of mesenchymal stem cells (MSCs) in a porous scaffold has been developed as a promising strategy for cartilage tissue engineering. The chondrogenic differentiation of MSCs derived from human bone marrow was studied by culturing the cells in a novel scaffold constructed of leakproof collagen sponge. All the surfaces of the collagen sponge except the top were wrapped with a membrane that has pores smaller than the cells to protect against cell leakage during cell seeding. The cells adhered to the collagen, distributed evenly, and proliferated to fill the spaces in the sponge. Cell seeding efficiency was greater than 95%. The MSCs cultured in the collagen sponge in the presence of TGF-β3 and BMP6 expressed a high level of genes encoding type II and type X collagen, sox9, and aggrecan. Histological examination by HE staining indicated that the differentiated cells showed a round morphology. The extracellular matrices were positively stained by safranin O and toluidine blue. Immunostaining with anti-type II collagen and anti-cartilage proteoglycan showed that type II collagen and cartilage proteoglycan were detected around the cells. These results suggest the chondrogenic differentiation of MSCs when cultured in the collagen sponge in the presence of TGF-β3 and BMP6

  17. Collagenous mucosal inflammatory diseases of the gastrointestinal tract.

    Science.gov (United States)

    Freeman, Hugh J

    2005-07-01

    Collagenous mucosal inflammatory diseases involve the columnar-lined gastric and intestinal mucosa and have become recognized increasingly as a significant cause of symptomatic morbidity, particularly in middle-aged and elderly women, especially with watery diarrhea. Still, mechanisms involved in the pathogenesis of this diarrhea remain poorly understood and require further elucidation. The prognosis and long-term outcome of these disorders has been documented only to a limited extent. Recent clinical and pathologic studies have indicated that collagenous mucosal inflammatory disease is a more extensive pathologic process that concomitantly may involve several sites in the gastric and intestinal mucosa. The dominant pathologic lesion is a distinct subepithelial hyaline-like deposit that has histochemical and ultrastructural features of collagen overlying a microscopically defined inflammatory process. An intimate relationship with other autoimmune connective tissue disorders is evident, particularly celiac disease. This is intriguing because these collagenous disorders have not been shown to be gluten dependent. Collagenous mucosal inflammatory disorders may represent a relatively unique but generalized inflammatory response to a multitude of causes, including celiac disease, along with a diverse group of pharmacologic agents. Some recent reports have documented treatment success but histopathologic reversal has been more difficult to substantiate owing to the focal, sometimes extensive nature, of this pathologic process.

  18. Differences in cytocompatibility between collagen, gelatin and keratin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanfang; Zhang, Weiwei; Yuan, Jiang, E-mail: jyuan@njnu.edu.cn; Shen, Jian, E-mail: jshen@njnu.edu.cn

    2016-02-01

    Keratins are cysteine-rich intermediate filament proteins found in the cytoskeleton of the epithelial cells and in the matrix of hair, feathers, wool, nails and horns. The natural abundance of cell adhesion sequences, RGD (Arg-Gly-Asp) and LDV (Leu-Asp-Val), makes them suitable for tissue engineering applications. The purpose of our study is to evaluate their cytocompatibility as compared to well-known collagen and gelatin proteins. Herein, collagen, gelatin and keratin were blended with poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and electrospun to afford nanofibrous mats, respectively. These PHBV/protein composite mats were characterized by field emission scanning electron microscopy (FE-SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and dynamic mechanical analysis (DMA). The cytocompatibility was evaluated with cell adhesion, cell viability and cell proliferation. The data from MTT and BrDU revealed that collagen had significantly superior cytocompatibility as compared to gelatin and keratin. Gelatin showed a better cytocompatibility than keratin without statistical significance difference. Finally, we gave the reasons to account for the above conclusions. - Highlights: • Collagen, gelatin and keratin were coelectrospun with PHBV to afford nanofibrous mats. • Cytocompatibility was evaluated with cell adhesion, cell viability and cell proliferation. • Collagen had significantly superior cytocompatibility as compared to gelatin and keratin.

  19. Biological effect of hydrolyzed collagen on bone metabolism.

    Science.gov (United States)

    Daneault, Audrey; Prawitt, Janne; Fabien Soulé, Véronique; Coxam, Véronique; Wittrant, Yohann

    2017-06-13

    Osteoporosis is a chronic and asymptomatic disease characterized by low bone mass and skeletal microarchitectural deterioration, increased risk of fracture, and associated comorbidities most prevalent in the elderly. Due to an increasingly aging population, osteoporosis has become a major health issue requiring innovative disease management. Proteins are important for bone by providing building blocks and by exerting specific regulatory function. This is why adequate protein intake plays a considerable role in both bone development and bone maintenance. More specifically, since an increase in the overall metabolism of collagen can lead to severe dysfunctions and a more fragile bone matrix and because orally administered collagen can be digested in the gut, cross the intestinal barrier, enter the circulation, and become available for metabolic processes in the target tissues, one may speculate that a collagen-enriched diet provides benefits for the skeleton. Collagen-derived products such as gelatin or hydrolyzed collagen (HC) are well acknowledged for their safety from a nutritional point of view; however, what is their impact on bone biology? In this manuscript, we critically review the evidence from literature for an effect of HC on bone tissues in order to determine whether HC may represent a relevant alternative in the design of future nutritional approaches to manage osteoporosis prevention.

  20. GH receptor blocker administration and muscle-tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Doessing, Simon; Goto, Kazushige

    2011-01-01

    The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans.......The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans....

  1. Tumor-Associated Macrophages Derived from Circulating Inflammatory Monocytes Degrade Collagen through Cellular Uptake

    DEFF Research Database (Denmark)

    Madsen, Daniel Hargbøl; Jürgensen, Henrik Jessen; Siersbæk, Majken Storm

    2017-01-01

    -associated macrophage (TAM)-like cells that degrade collagen in a mannose receptor-dependent manner. Accordingly, mannose-receptor-deficient mice display increased intratumoral collagen. Whole-transcriptome profiling uncovers a distinct extracellular matrix-catabolic signature of these collagen-degrading TAMs. Lineage......-ablation studies reveal that collagen-degrading TAMs originate from circulating CCR2+ monocytes. This study identifies a function of TAMs in altering the tumor microenvironment through endocytic collagen turnover and establishes macrophages as centrally engaged in tumor-associated collagen degradation. Madsen et...

  2. Extent of Spine Deformity Predicts Lung Growth and Function in Rabbit Model of Early Onset Scoliosis.

    Directory of Open Access Journals (Sweden)

    J Casey Olson

    Full Text Available Early onset deformity of the spine and chest wall (initiated <8 years of age is associated with increased morbidity at adulthood relative to adolescent onset deformity of comparable severity. Presumably, inhibition of thoracic growth during late stage alveolarization leads to an irreversible loss of pulmonary growth and thoracic function; however the natural history of this disease from onset to adulthood has not been well characterized. In this study we establish a rabbit model of early onset scoliosis to establish the extent that thoracic deformity affects structural and functional respiratory development. Using a surgical right unilateral rib-tethering procedure, rib fusion with early onset scoliosis was induced in 10 young New Zealand white rabbits (3 weeks old. Progression of spine deformity, functional residual capacity, total lung capacity, and lung mass was tracked through longitudinal breath-hold computed tomography imaging up to skeletal maturity (28 weeks old. Additionally at maturity forced vital capacity and regional specific volume were calculated as functional measurements and histo-morphometry performed with the radial alveolar count as a measure of acinar complexity. Data from tethered rib rabbits were compared to age matched healthy control rabbits (N = 8. Results show unilateral rib-tethering created a progressive spinal deformity ranging from 30° to 120° curvature, the severity of which was strongly associated with pulmonary growth and functional outcomes. At maturity rabbits with deformity greater than the median (55° had decreased body weight (89%, right (59% and left (86% lung mass, right (74% and left (69% radial alveolar count, right lung volume at total lung capacity (60%, and forced vital capacity (75%. Early treatment of spinal deformity in children may prevent pulmonary complications in adulthood and these results provide a basis for the prediction of pulmonary development from thoracic structure. This model may

  3. Polymerized-Type I Collagen Induces Upregulation of Foxp3-Expressing CD4 Regulatory T Cells and Downregulation of IL-17-Producing CD4+ T Cells (Th17 Cells in Collagen-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Janette Furuzawa-Carballeda

    2012-01-01

    Full Text Available Previous studies showed that polymerized-type I collagen (polymerized collagen exhibits potent immunoregulatory properties. This work evaluated the effect of intramuscular administration of polymerized collagen in early and established collagen-induced arthritis (CIA in mice and analyzed changes in Th subsets following therapy. Incidence of CIA was of 100% in mice challenged with type II collagen. Clinimorphometric analysis showed a downregulation of inflammation after administration of all treatments (P<0.05. Histological analysis showed that the CIA-mice group had extensive bone erosion, pannus and severe focal inflammatory infiltrates. In contrast, there was a remarkable reduction in the severity of arthritis in mice under polymerized collagen, methotrexate or methotrexate/polymerized collagen treatment. Polymerized Collagen but not methotrexate induced tissue joint regeneration. Polymerized Collagen and methotrexate/polymerized collagen but not methotrexate alone induces downregulation of CD4+/IL17A+ T cells and upregulation of Tregs and CD4+/IFN-γ+ T cells. Thus, Polymerized Collagen could be an effective therapeutic agent in early and established rheumatoid arthritis by exerting downregulation of autoimmune inflammation.

  4. Diffusion of MMPs on the surface of collagen fibrils: the mobile cell surface-collagen substratum interface.

    Directory of Open Access Journals (Sweden)

    Ivan E Collier

    Full Text Available Remodeling of the extracellular matrix catalyzed by MMPs is central to morphogenetic phenomena during development and wound healing as well as in numerous pathologic conditions such as fibrosis and cancer. We have previously demonstrated that secreted MMP-2 is tethered to the cell surface and activated by MT1-MMP/TIMP-2-dependent mechanism. The resulting cell-surface collagenolytic complex (MT1-MMP(2/TIMP-2/MMP-2 can initiate (MT1-MMP and complete (MMP-2 degradation of an underlying collagen fibril. The following question remained: What is the mechanism of substrate recognition involving the two structures of relatively restricted mobility, the cell surface enzymatic complex and a collagen fibril embedded in the ECM? Here we demonstrate that all the components of the complex are capable of processive movement on a surface of the collagen fibril. The mechanism of MT1-MMP movement is a biased diffusion with the bias component dependent on the proteolysis of its substrate, not adenosine triphosphate (ATP hydrolysis. It is similar to that of the MMP-1 Brownian ratchet we described earlier. In addition, both MMP-2 and MMP-9 as well as their respective complexes with TIMP-1 and -2 are capable of Brownian diffusion on the surface of native collagen fibrils without noticeable dissociation while the dimerization of MMP-9 renders the enzyme immobile. Most instructive is the finding that the inactivation of the enzymatic activity of MT1-MMP has a detectable negative effect on the cell force developed in miniaturized 3D tissue constructs. We propose that the collagenolytic complex (MT1-MMP(2/TIMP-2/MMP-2 represents a Mobile Cell Surface-Collagen Substratum Interface. The biological implications of MT1-MMP acting as a molecular ratchet tethered to the cell surface in complex with MMP-2 suggest a new mechanism for the role of spatially regulated peri-cellular proteolysis in cell-matrix interactions.

  5. Edaravone suppresses degradation of type II collagen.

    Science.gov (United States)

    Huang, Chen; Liao, Guangjun; Han, Jian; Zhang, Guofeng; Zou, Benguo

    2016-05-13

    Osteoarthritis (OA) is a degenerative joint disease affecting millions of people. The degradation and loss of type II collagen induced by proinflammatory cytokines secreted by chondrocytes, such as factor-α (TNF-α) is an important pathological mechanism to the progression of OA. Edaravone is a potent free radical scavenger, which has been clinically used to treat the neuronal damage following acute ischemic stroke. However, whether Edaravone has a protective effect in articular cartilage hasn't been reported before. In this study, we investigated the chondrocyte protective effects of Edaravone on TNF-α induced degradation of type Ⅱ collagen. And our results indicated that TNF-α treatment resulted in degradation of type Ⅱ collagen, which can be ameliorated by treatment with Edaravone in a dose dependent manner. Notably, it was found that the inhibitory effects of Edaravone on TNF-α-induced reduction of type Ⅱ collagen were mediated by MMP-3 and MMP-13. Mechanistically, we found that Edaravone alleviated TNF-α induced activation of STAT1 and expression of IRF-1. These findings suggest a potential protective effect of Edaravone in OA. Copyright © 2016. Published by Elsevier Inc.

  6. Brain involvement in patients with inflammatory bowel disease: a voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Zikou, Anastasia K; Kosmidou, Maria; Astrakas, Loukas G; Tzarouchi, Loukia C; Tsianos, Epameinondas; Argyropoulou, Maria I

    2014-10-01

    To investigate structural brain changes in inflammatory bowel disease (IBD). Brain magnetic resonance imaging (MRI) was performed on 18 IBD patients (aged 45.16 ± 14.71 years) and 20 aged-matched control subjects. The imaging protocol consisted of a sagittal-FLAIR, a T1-weighted high-resolution three-dimensional spoiled gradient-echo sequence, and a multisession spin-echo echo-planar diffusion-weighted sequence. Differences between patients and controls in brain volume and diffusion indices were evaluated using the voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) methods, respectively. The presence of white-matter hyperintensities (WMHIs) was evaluated on FLAIR images. VBM revealed decreased grey matter (GM) volume in patients in the fusiform and the inferior temporal gyrus bilaterally, the right precentral gyrus, the right supplementary motor area, the right middle frontal gyrus and the left superior parietal gyrus (p tensor imaging detects microstructural brain abnormalities in IBD. • Voxel based morphometry reveals brain atrophy in IBD.

  7. Cytological Study of Breast Carcinoma Before and After Oncotherapy with Special Reference to Morphometry and Proliferative Activity.

    Science.gov (United States)

    Koley, Sananda; Chakrabarti, Srabani; Pathak, Swapan; Manna, Asim Kumar; Basu, Siddhartha

    2015-12-01

    Our study was done to assess the cytological changes due to oncotherapy in breast carcinoma especially on morphometry and proliferative activity. Cytological aspirates were collected from a total of 32 cases of invasive ductal carcinoma both before and after oncotherapy. Morphometry was done on the stained cytological smears to assess the different morphological parameters of cell dimension by using the ocular morphometer and the software AutoCAD 2007. Staining was done with Ki-67 and proliferating cell nuclear antigen (PCNA) as proliferative markers. Different morphological parameters were compared before and after oncotherapy by unpaired Student's t test. Statistically significant differences were found in morphometric parameters, e.g., mean nuclear diameter, mean nuclear area, mean cell diameter, and mean cell area, and in the expression of proliferative markers (Ki-67 and PCNA). Statistical analysis was done by obtaining p values. There are statistically significant differences between morphological parameter of breast carcinoma cells before and after oncotherapy.

  8. Heat Shock Protein 47: A Novel Biomarker of Phenotypically Altered Collagen-Producing Cells

    International Nuclear Information System (INIS)

    Taguchi, Takashi; Nazneen, Arifa; Al-Shihri, Abdulmonem A.; Turkistani, Khadijah A.; Razzaque, Mohammed S.

    2011-01-01

    Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells

  9. Periurethral injection of collagen in the treatment of urinary stress incontinence: ultrasonographic appearance

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, C.; Krysl, J.; Arenson, A.M.; Herschorn, S. [Toronto Univ., ON (Canada). Faculty of Medicine

    1995-06-01

    Transvesical and transvaginal ultrasonography (US) was performed 26 times in 23 patients, 3 to 36 months after periurethral injection of collagen to treat symptomatic urinary stress incontinence. The appearance, location and volume of the collagen were recorded. In all the patients the injected collagen had the appearance of a well-circumscribed mass of variable size, located at the bladder base. Transvesical US demonstrated the collagen in only 17 of the patients, and allowed only limited visualization of the collagen in five of these 17 patients. However, transvaginal US demonstrated the collagen in all of them. The collagen collections showed various levels of echogenicity with both techniques. However, in patients with more than one deposit of collagen, the collections had similar echogenicity. The study indicated that US provides a rapid, noninvasive method of assessing collagen after periurethral injection, and that transvaginal US was the best method of visualizing such collections. 10 refs., 5 figs.

  10. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    Science.gov (United States)

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  11. Biological Differences between Hanwoo longissimus dorsi and semimembranosus Muscles in Collagen Synthesis of Fibroblasts.

    Science.gov (United States)

    Subramaniyan, Sivakumar Allur; Hwang, Inho

    2017-01-01

    Variations in physical toughness between muscles and animals are a function of growth rate and extend of collagen type I and III. The current study was designed to investigate the ability of growth rate, collagen concentration, collagen synthesizing and degrading genes on two different fibroblast cells derived from Hanwoo m. longissimus dorsi (LD) and semimembranosus (SM) muscles. Fibroblast cell survival time was determined for understanding about the characteristics of proliferation rate between the two fibroblasts. We examined the collagen concentration and protein expression of collagen type I and III between the two fibroblasts. The mRNA expression of collagen synthesis and collagen degrading genes to elucidate the molecular mechanisms on toughness and tenderness through collagen production between the two fibroblast cells. From our results the growth rate, collagen content and protein expression of collagen type I and III were significantly higher in SM than LD muscle fibroblast. The mRNA expressions of collagen synthesized genes were increased whereas the collagen degrading genes were decreased in SM than LD muscle. Results from confocal microscopical investigation showed increased fluorescence of collagen type I and III appearing stronger in SM than LD muscle fibroblast. These results implied that the locomotion muscle had higher fibroblast growth rate, leads to produce more collagen, and cause tougher than positional muscle. This in vitro study mirrored that background toughness of various muscles in live animal is likely associated with fibroblast growth pattern, collagen synthesis and its gene expression.

  12. COLLAGENOUS SPHERULES OF THE BREAST: A DIAGNOSTIC ENIGMA

    Directory of Open Access Journals (Sweden)

    Amrit Kaur

    2016-05-01

    Full Text Available INTRODUCTION Collagenous spherule (CS is an enigmatic finding in a breast lesion involving the lobular acini and ductules and is defined with the presence of eosinophilic intraluminal collagen rich spherules measuring 20-100 microns in diameter, surrounded by flattened myoepithelial cells. 1 It is an uncommon incidental finding in less than 1-2% of biopsies associated with various benign and malignant diseases occurring in isolation or multifocally. 2 A major growing concern surrounding collagenous spherules is that it might be misinterpreted as atypical ductal hyperplasia (ADH, cribriform ductal carcinoma in situ (DCIS, cribriform carcinoma or adenoid cystic carcinoma of breast. We present a case of mobile cystic mass of the breast reported as fibrocystic disease of the breast with focal areas showing adenosis and hyperplastic changes with multiple ducts displayed a peculiar change with the presence of extracellular concentric hyaline material present within the intraluminal space, diagnostic of collagenous spherules.

  13. Low‑dose halofuginone inhibits the synthesis of type I collagen without influencing type II collagen in the extracellular matrix of chondrocytes.

    Science.gov (United States)

    Li, Zeng; Fei, Hao; Wang, Zhen; Zhu, Tianyi

    2017-09-01

    Full‑thickness and large area defects of articular cartilage are unable to completely repair themselves and require surgical intervention, including microfracture, autologous or allogeneic osteochondral grafts, and autologous chondrocyte implantation. A large proportion of regenerative cartilage exists as fibrocartilage, which is unable to withstand impacts in the same way as native hyaline cartilage, owing to excess synthesis of type I collagen in the matrix. The present study demonstrated that low‑dose halofuginone (HF), a plant alkaloid isolated from Dichroa febrifuga, may inhibit the synthesis of type I collagen without influencing type II collagen in the extracellular matrix of chondrocytes. In addition, HF was revealed to inhibit the phosphorylation of mothers against decapentaplegic homolog (Smad)2/3 and promoted Smad7 expression, as well as decrease the synthesis of type I collagen synthesis. Results from the present study indicated that HF treatment suppressed the synthesis of type I collagen by inhibiting the transforming growth factor‑β signaling pathway in chondrocytes. These results may provide an alternative solution to the problems associated with fibrocartilage, and convert fibrocartilage into hyaline cartilage at the mid‑early stages of cartilage regeneration. HF may additionally be used to improve monolayer expansion or 3D cultures of seed cells for the tissue engineering of cartilage.

  14. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sweta K. [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India); Dinda, Amit K. [Department of Pathology, All India Institute of Medical Sciences, New Delhi (India); Potdar, Pravin D. [Department of Molecular Medicine, Jaslok Hospital and Research Centre, Mumbai (India); Mishra, Narayan C., E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India)

    2013-10-15

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H and E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. - Highlights: • We successfully fabricated decellularized scaffold from cadaver goat-lung tissue. • Decellularized goat-lung scaffolds were found to be highly porous. • Skin derived MSC shows high cell viability and proliferation over the scaffold. • Phenotype of MSCs was well maintained over the scaffold. • The scaffold shows potential for applications in skin tissue engineering.

  15. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications

    International Nuclear Information System (INIS)

    Gupta, Sweta K.; Dinda, Amit K.; Potdar, Pravin D.; Mishra, Narayan C.

    2013-01-01

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H and E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. - Highlights: • We successfully fabricated decellularized scaffold from cadaver goat-lung tissue. • Decellularized goat-lung scaffolds were found to be highly porous. • Skin derived MSC shows high cell viability and proliferation over the scaffold. • Phenotype of MSCs was well maintained over the scaffold. • The scaffold shows potential for applications in skin tissue engineering

  16. Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm

    NARCIS (Netherlands)

    Wilson, W.; Driessen, N.J.B.; Donkelaar, van C.C.; Ito, K.

    2006-01-01

    Tissue engineering is a promising method to treat damaged cartilage. So far it has not been possible to create tissue-engineered cartilage with an appropriate structural organization. It is envisaged that cartilage tissue engineering will significantly benefit from knowledge of how the collagen

  17. Collagenous colitis: histopathology and clinical course.

    Science.gov (United States)

    Goff, J S; Barnett, J L; Pelke, T; Appelman, H D

    1997-01-01

    Collagenous colitis is a chronic diarrheal disease characterized by a normal or near-normal mucosa endoscopically and microscopic inflammation in the lamina propria, surface epithelial injury and a thick subepithelial collagen layer. The symptoms of collagenous colitis vary in duration and intensity, and long periods of remission have been described, but long-term follow-up data are limited. Our goal was to determine the natural clinical history of collagenous colitis and to determine whether there was a relationship between histopathologic changes and course of disease. Cases were identified at the University of Michigan Hospitals using surgical pathology records before 1992. All charts, including medical records from other hospitals, were reviewed, and a telephone interview was conducted with each locatable patient (pt). Biopsy specimens were reviewed by two pathologists for degree of collagen layer thickness, epithelial damage, and inflammation. There were 31 patients (26 F, 5 M) with a mean age of 66 yr (range 33-83) and a mean duration of symptoms of 5.4 yr at the time of diagnosis. Of the 31 patients, 18 (56%) had some form of arthritis, and 22 (71%) were using NSAIDS regularly at the time of diagnosis. Follow-up interviews were conducted at least 2 yr after diagnosis (mean 3.5 yr, range 2-5 yr) with 27 of 31 patients (3 could not be located, 1 died). Two definable groups of patients were identified: (1) those with either spontaneous or treatment-related symptom resolution (63%), and (2) those with ongoing or intermittent symptoms requiring at least intermittent therapy (37%). There was no significant difference between the two groups with regard to sex, age, associated diseases, and use of medications. Patients with symptom resolution (mean duration 3.1 yr) had been treated with antidiarrheals (6), sulfasalazine (3), discontinuation of NSAIDS (3), reversal of jejunoilial bypass (1), or nothing (4). Those with ongoing symptoms experienced a wide range of

  18. Corneal collagen crosslinking for keratoconus. A review

    Directory of Open Access Journals (Sweden)

    M. M. Bikbov

    2014-10-01

    Full Text Available Photochemical crosslinking is widely applied in ophthalmology. Its biochemical effect is due to the release of singlet oxygen that promotes anaerobic photochemical reaction. Keratoconus is one of the most common corneal ectasia affecting 1 in 250 to 250 000 persons. Currently, the rate of iatrogenic ectasia following eximer laser refractive surgery increases due to biomechanical weakening of the cornea. Morphologically and biochemically, ectasia is characterized by corneal layers thinning, contact between the stroma and epithelium resulting from Bowman’s membrane rupture, chromatin fragmentation in keratocyte nuclei, phagocytosis, abnormal staining and arrangement of collagen fibers, enzyme system disorders, and keratocyte apoptosis. In corneal ectasia, altered enzymatic processes result in the synthesis of abnormal collagen. Collagen packing is determined by the activity of various extracellular matrix enzymes which bind amines and aldehydes of collagen fiber amino acids. In the late stage, morphological changes of Descemet’s membrane (i.e., rupture and detachment develop. Abnormal hexagonal-shaped keratocytes and their apoptosis are the signs of endothelial dystrophy. The lack of analogs in domestic ophthalmology encouraged the scientists of Ufa Eye Research Institute to develop a device for corneal collagen crosslinking. The parameters of ultraviolet (i.e., wavelength, exposure time, power to achieve the desired effect were identified. The specifics of some photosensitizers in the course of the procedure were studied. UFalink, a device for UV irradiation of cornea, and photosensitizer Dextralink were developed and adopted. Due to the high risk of endothelial damage, this treatment is contraindicated in severe keratoconus (CCT less than 400 microns. Major effects of corneal collagen crosslinking are the following: Young’s modulus (modulus of elasticity increase by 328.9 % (on average, temperature tolerance increase by 5

  19. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review)

    DEFF Research Database (Denmark)

    Carlsen Melander, Eva Maria; Jürgensen, Henrik J; Madsen, Daniel H

    2015-01-01

    The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen...... as well as interstitial collagen to lysosomal degradation. This capacity, shared only with the mannose receptor from the same protein family, endows uPARAP/Endo180 with a critical role in development and homeostasis, as well as in pathological disruptions of the extracellular matrix structure. Important...

  20. An optimized voxel-based morphometry MRI study of the brain in patients with first episode schizophrenia

    International Nuclear Information System (INIS)

    Lv Su; Huang Xiaoqi; Tang Hehan; Gong Qiyong; Ouyang Luo; Deng Wei; Jiang Lijun; Li Tao

    2007-01-01

    Objective: To evaluate the structural differences between patients with first episode schizophrenia and normal controls using optimized voxel-based morphometry (VBM) study. Methods: High resolution T 1 weighted images were obtained using 3.0 T MR from 13 first-episode, untreated schizophrenia and 13 age, sex, handedness matched normal controls. Images were preprocessed by employing the optimized VBM and two sample t-test was used to detect differences between patients and normal controls with respect to both density and volume of gray matter in the brain. Results Patients with schizophrenia had significant lower gray matter density and gray matter volume generally distributed among bilateral hemispheres, especially in bilateral frontal and temporal lobes. However, no significant increase of gray matter density and gray matter volume was observed in these patients. Conclusions: Optimized voxel-based morphometry study is an automatic and effective method to study psychological diseases such as schizophrenia. Compared with normal controls, patients with schizophrenia had significantly lower gray matter density and gray matter volume across the bilateral hemispheres. (authors)