WorldWideScience

Sample records for lung disease induced

  1. Combined prednisolone and pirfenidone in bleomycin-induced lung disease

    Directory of Open Access Journals (Sweden)

    Preyas J Vaidya

    2016-01-01

    Full Text Available Bleomycin is a cytostatic drug commonly employed in the treatment of Hodgkin's disease, seminomas, and choriocarcinoma. Bleomycin may induce a chronic pulmonary inflammation that may progress to fibrosis. So far, only corticosteroids have been used in the treatment of bleomycin-induced lung disease with variable results. Pirfenidone is an antifibrotic drug that has been approved for the treatment of idiopathic pulmonary fibrosis. We report two cases of bleomycin-induced lung disease treated successfully with pirfenidone and oral corticosteroids.

  2. Leflunomide-Induced Interstitial Lung Disease: A Case Report

    Directory of Open Access Journals (Sweden)

    Aygül Güzel

    2015-04-01

    Full Text Available Leflunomide (LEF induced interstitial pneumonitis is a very rare condition but potentially fatal. We report a case of LEF induced interstitial pneumonitis. A 63-year-old woman followed-up for 37 years with the diagnosis of rheumatoid arthritis treated with LEF (20 mg/day since 5 months were admitted to our hospital with cough, dyspnea, fever, and dark sputum.Chest radiography represented bilateral alveolar consolidation. High-resolution computed tomography demonstrated diffuse ground-glass appearance and interlobular septal thickening. Since the patient’s clinics and radiologic findings improved dramatically after the cessation of LEF and recieving oral steriod therapy, she was diagnosed as drug-induced interstitial lung disease. In conclusion, when nonspecific clinical signs such as respiratory distress, cough and fever seen during the use of LEF, drug-induced interstitial lung disease should be kept in mind for the differantial diagnosis.

  3. Reversible Lansoprazole-Induced Interstitial Lung Disease Showing Improvement after Drug Cessation

    International Nuclear Information System (INIS)

    Hwang, Kyu Won; Woo, Ok Hee; Yong, Hwan Seok; Shin, Bong Kyung; Shim, Jae Jeong; Kang, Eun Young

    2008-01-01

    Lansoprazole is an acid proton-pump inhibitor that is similar to omeprazole. It is used to treat duodenal or gastric ulcers, H. pylori infection, gastroesophageal reflux disease (GERD) or Zollinger-Ellison syndrome. Common adverse effects of lansoprazole are diarrhea, abdominal pain, skin rash and/or itching. Information from U.S. National Library of Medicine warns that this drug can on rare occasion cause cough or cold-like symptoms. The pathophysiological mechanisms of lansoprazole-related pulmonary symptoms are not yet understood. In particular, there are no known reports regarding lansoprazole-induced interstitial lung diseases. We report here a case of interstitial lung disease (ILD) induced by oral administration of lansoprazole, which showed a pattern of nonspecific interstitial pneumonia (NSIP) as detected from a video-assisted thoracoscopic lung biopsy. We believe that this is the first report of a case of pathologically proven lansoprazole-induced ILD for which a surgical lung biopsy was performed. To the best of our knowledge, this is the first description of DI-ILD caused by lansoprazole. The diagnosis was made by considering the radiological, histopathological and clinical findings, including the close temporal relationship between lansoprazole exposure and symptom severity. Other possible causes were excluded due to a lack of a temporal relationship between the symptoms and work history or prednisolone therapy, and no other history of specific allergen exposure. When there is diffuse interstitial lung disease with an unknown etiology, it is important to remember that drugs can be the cause of pulmonary symptoms and it is crucial to take a careful patient history. If there is a recent history of taking lansoprazole in a patient with clinical and radiological findings of diffuse interstitial lung disease, we recommend stopping the medication to see if there is clinical and radiological improvement. That way, one can avoid using invasive procedures to

  4. Reversible Lansoprazole-Induced Interstitial Lung Disease Showing Improvement after Drug Cessation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyu Won; Woo, Ok Hee; Yong, Hwan Seok; Shin, Bong Kyung; Shim, Jae Jeong; Kang, Eun Young [College of Medicine, Korea University, Guro Hospital, Seoul (Korea, Republic of)

    2008-04-15

    Lansoprazole is an acid proton-pump inhibitor that is similar to omeprazole. It is used to treat duodenal or gastric ulcers, H. pylori infection, gastroesophageal reflux disease (GERD) or Zollinger-Ellison syndrome. Common adverse effects of lansoprazole are diarrhea, abdominal pain, skin rash and/or itching. Information from U.S. National Library of Medicine warns that this drug can on rare occasion cause cough or cold-like symptoms. The pathophysiological mechanisms of lansoprazole-related pulmonary symptoms are not yet understood. In particular, there are no known reports regarding lansoprazole-induced interstitial lung diseases. We report here a case of interstitial lung disease (ILD) induced by oral administration of lansoprazole, which showed a pattern of nonspecific interstitial pneumonia (NSIP) as detected from a video-assisted thoracoscopic lung biopsy. We believe that this is the first report of a case of pathologically proven lansoprazole-induced ILD for which a surgical lung biopsy was performed. To the best of our knowledge, this is the first description of DI-ILD caused by lansoprazole. The diagnosis was made by considering the radiological, histopathological and clinical findings, including the close temporal relationship between lansoprazole exposure and symptom severity. Other possible causes were excluded due to a lack of a temporal relationship between the symptoms and work history or prednisolone therapy, and no other history of specific allergen exposure. When there is diffuse interstitial lung disease with an unknown etiology, it is important to remember that drugs can be the cause of pulmonary symptoms and it is crucial to take a careful patient history. If there is a recent history of taking lansoprazole in a patient with clinical and radiological findings of diffuse interstitial lung disease, we recommend stopping the medication to see if there is clinical and radiological improvement. That way, one can avoid using invasive procedures to

  5. Drug-induced interstitial lung diseases. Often forgotten

    International Nuclear Information System (INIS)

    Poschenrieder, F.; Stroszczynski, C.; Hamer, O.W.

    2014-01-01

    Drug-induced interstitial lung diseases (DILD) are probably more common than diagnosed. Due to their potential reversibility, increased vigilance towards DILD is appropriate also from the radiologist's point of view, particularly as these diseases regularly exhibit radiological correlates in high-resolution computed tomography (HRCT) of the lungs. Based on personal experience typical relatively common manifestations of DILD are diffuse alveolar damage (DAD), eosinophilic pneumonia (EP), hypersensitivity pneumonitis (HP), organizing pneumonia (OP), non-specific interstitial pneumonia (NSIP) and usual interstitial pneumonia (UIP). These patterns are presented based on case studies, whereby emphasis is placed on the clinical context. This is to highlight the relevance of interdisciplinary communication and discussion in the diagnostic field of DILD as it is a diagnosis of exclusion or of probability in most cases. Helpful differential diagnostic indications for the presence of DILD, such as an accompanying eosinophilia or increased attenuation of pulmonary consolidations in amiodarone-induced pneumopathy are mentioned and the freely available online database http://www.pneumotox.com is presented. (orig.) [de

  6. Unusual progression and subsequent improvement in cystic lung disease in a child with radiation-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Michael S. [Monroe Carell Jr. Children' s Hospital at Vanderbilt, Department of Pediatrics, Nashville, TN (United States); Chadha, Ashley D. [Vanderbilt University School of Medicine, Division of Pulmonary Medicine, Department of Pediatrics, Nashville, TN (United States); Carroll, Clinton M.; Borinstein, Scott C. [Vanderbilt University School of Medicine, Division of Hematology and Oncology, Department of Pediatrics, Nashville, TN (United States); Young, Lisa R. [Vanderbilt University School of Medicine, Division of Pulmonary Medicine, Department of Pediatrics, Nashville, TN (United States); Vanderbilt University School of Medicine, Division of Allergy, Pulmonary and Critical Care, Department of Medicine, Nashville, TN (United States); Vanderbilt University School of Medicine, Division of Pulmonary Medicine, Nashville, TN (United States)

    2015-07-15

    Radiation-induced lung disease is a known complication of therapeutic lung irradiation, but the features have not been well described in children. We report the clinical, radiologic and histologic features of interstitial lung disease (ILD) in a 4-year-old child who had previously received lung irradiation as part of successful treatment for metastatic Wilms tumor. Her radiologic abnormalities and clinical symptoms developed in an indolent manner. Clinical improvement gradually occurred with corticosteroid therapy. However, the observed radiologic progression from interstitial and reticulonodular opacities to diffuse cystic lung disease, with subsequent improvement, is striking and has not been previously described in children. (orig.)

  7. Drug induced lung disease

    International Nuclear Information System (INIS)

    Schaefer-Prokop, Cornelia; Eisenhuber, Edith

    2010-01-01

    There is an ever increasing number of drugs that can cause lung disease. Imaging plays an important role in the diagnosis, since the clinical symptoms are mostly nonspecific. Various HRCT patterns can be correlated - though with overlaps - to lung changes caused by certain groups of drugs. Alternative diagnosis such as infection, edema or underlying lung disease has to be excluded by clinical-radiological means. Herefore is profound knowledge of the correlations of drug effects and imaging findings essential. History of drug exposure, suitable radiological findings and response to treatment (corticosteroids and stop of medication) mostly provide the base for the diagnosis. (orig.)

  8. Characteristic features of tacrolimus-induced lung disease in rheumatoid arthritis patients.

    Science.gov (United States)

    Sasaki, Takanori; Nakamura, Wataru; Inokuma, Shigeko; Matsubara, Erika

    2016-02-01

    This paper aims to study the background and clinical characteristics of tacrolimus (TAC)-induced lung disease. A case of a rheumatoid arthritis (RA) patient who developed TAC-induced interstitial lung disease (TAC-ILD) is reported. The Japanese Pharmaceuticals and Medical Devices Agency (PMDA) website was searched for cases of TAC-ILD and its prevalence among all cases of TAC-related adverse events. As for cases of TAC-ILD, its underlying disease, preexisting lung diseases, and fatal outcome were also searched. Literature review of TAC-ILD cases was added. A 65-year-old female RA patient with preexisting bronchiectasis developed near-fatal TAC-ILD. Amelioration of RA, ground-glass opacities in the upper, anterior, and central lung fields, and decrease in peripheral blood lymphocyte count were the major findings in this patient. A search of the PMDA website revealed the following: the prevalence of TAC-ILD was 3 % of all cases of TAC-related adverse events, 56 out of 85 RA cases (66 %), and one out of 15 other cases had a preexisting lung disease; the prevalences of fatal outcome in RA and other cases were 24 and 38 %, respectively. A few cases in the literature had preexisting ILD and developed diffuse alveolar damage. In our case, preexisting bronchiectasis, arthritis remission, newly developed ground-glass opacities (GGOs) in the upper, anterior, and central lung fields, and decrease in peripheral blood lymphocyte count were the major findings. From the search of the PMDA website, about one fourth of the cases with TAC-related lung injury had a fatal outcome, and among RA patients, two thirds had preexisting lung diseases.

  9. Lung Cancer Workshop XI: Tobacco-Induced Disease: Advances in Policy, Early Detection and Management.

    Science.gov (United States)

    Mulshine, James L; Avila, Rick; Yankelevitz, David; Baer, Thomas M; Estépar, Raul San Jose; Ambrose, Laurie Fenton; Aldigé, Carolyn R

    2015-05-01

    The Prevent Cancer Foundation Lung Cancer Workshop XI: Tobacco-Induced Disease: Advances in Policy, Early Detection and Management was held in New York, NY on May 16 and 17, 2014. The two goals of the Workshop were to define strategies to drive innovation in precompetitive quantitative research on the use of imaging to assess new therapies for management of early lung cancer and to discuss a process to implement a national program to provide high quality computed tomography imaging for lung cancer and other tobacco-induced disease. With the central importance of computed tomography imaging for both early detection and volumetric lung cancer assessment, strategic issues around the development of imaging and ensuring its quality are critical to ensure continued progress against this most lethal cancer.

  10. Drug-induced lung disease: High-resolution CT and histological findings

    International Nuclear Information System (INIS)

    Cleverley, Joanne R.; Screaton, Nicholas J.; Hiorns, Melanie P.; Flint, Julia D.A.; Mueller, Nestor L.

    2002-01-01

    AIM: To compare the parenchymal high-resolution computed tomography (HRCT) appearances with histological findings in patients with drug-induced lung disease and to determine the prognostic value of HRCT. MATERIALS AND METHODS: Drug history, HRCT features, histological findings and outcome at 3 months in 20 patients with drug induced-lung disease were reviewed retrospectively. The HRCT images were assessed for the pattern and distribution of abnormalities and classified as most suggestive of interstitial pneumonitis/fibrosis, diffuse alveolar damage (DAD), organizing pneumonia (OP) reaction, or a hypersensitivity reaction. RESULTS: On histopathological examination there were eight cases of interstitial pneumonitis/fibrosis, five of DAD, five of OP reactions, one of hypersensitivity reaction and one of pulmonary eosinophilia. The most common abnormalities on HRCT were ground-glass opacities (n = 17), consolidation (n = 14), interlobular septal thickening (n = 15) and centrilobular nodules (n 8). HRCT interpretation and histological diagnosis were concordant in only nine (45%) of 20 patients. The pattern, distribution, and extent of HRCT abnormalities were of limited prognostic value: all eight patients with histological findings of OP, hypersensitivity reaction, or eosinophilic infiltrate improved on follow-up compared to only five of 13 patients with interstitial pneumonitis/fibrosis or DAD. CONCLUSION: In many cases of drug-induced lung injury HRCT is of limited value in determining the histological pattern and prognosis. Cleverly, J.R. et al

  11. SU-F-R-31: Identification of Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induced Lung Disease

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W; Riyahi, S; Lu, W [University of Maryland School of Medicine, Baltimore, MD (United States)

    2016-06-15

    Purpose: Normal lung CT texture features have been used for the prediction of radiation-induced lung disease (radiation pneumonitis and radiation fibrosis). For these features to be clinically useful, they need to be relatively invariant (robust) to tumor size and not correlated with normal lung volume. Methods: The free-breathing CTs of 14 lung SBRT patients were studied. Different sizes of GTVs were simulated with spheres placed at the upper lobe and lower lobe respectively in the normal lung (contralateral to tumor). 27 texture features (9 from intensity histogram, 8 from grey-level co-occurrence matrix [GLCM] and 10 from grey-level run-length matrix [GLRM]) were extracted from [normal lung-GTV]. To measure the variability of a feature F, the relative difference D=|Fref -Fsim|/Fref*100% was calculated, where Fref was for the entire normal lung and Fsim was for [normal lung-GTV]. A feature was considered as robust if the largest non-outlier (Q3+1.5*IQR) D was less than 5%, and considered as not correlated with normal lung volume when their Pearson correlation was lower than 0.50. Results: Only 11 features were robust. All first-order intensity-histogram features (mean, max, etc.) were robust, while most higher-order features (skewness, kurtosis, etc.) were unrobust. Only two of the GLCM and four of the GLRM features were robust. Larger GTV resulted greater feature variation, this was particularly true for unrobust features. All robust features were not correlated with normal lung volume while three unrobust features showed high correlation. Excessive variations were observed in two low grey-level run features and were later identified to be from one patient with local lung diseases (atelectasis) in the normal lung. There was no dependence on GTV location. Conclusion: We identified 11 robust normal lung CT texture features that can be further examined for the prediction of radiation-induced lung disease. Interestingly, low grey-level run features identified normal

  12. Mixed Herbal Medicine Induced Diffuse Infiltrative Lung Disease: The HRCT and Histopathologic Findings

    International Nuclear Information System (INIS)

    Kim, Tae Gyu; Shin, Eun A; Kim, Joung Sook

    2010-01-01

    The purpose of this study was to evaluate the high-resolution CT (HRCT) and pathologic findings of mixed herbal medicine-induced diffuse interstitial lung disease. Eight patients (6 women and 2 men, age range: 31 to 81 years, mean age: 51.4 years) who presented with cough or dyspnea after taking mixed herbal medicine were included in this study. All the patients underwent plain chest radiography and HRCT. We obtained pathologic specimens from 7 patients via fluoroscopy guided large bore cutting needle biopsy and transbronchial lung biopsy. All the patients were treated with steroid therapy. The most common HRCT finding was bilateral diffuse ground glass opacity (n=7), followed by peribronchial consolidation (n=5) and inter- or intralobular septal thickening (n=2). For the disease distribution, the lower lung zone was dominantly involved. The pathologic results of 7 patients were nonspecific interstitial pneumonia (n=3), bronchiolitis obliterans organizing pneumonia (n=2), hypersensitivity pneumonitis (n=1) and eosinophilic pneumonia (n=1). Irrespective of the pathologic results, all 8 patients improved clinically and radiologically after steroid treatment. The HRCT findings of mixed herbal medicine-induced diffuse infiltrative lung disease were mainly bilateral diffuse ground glass opacity, peribronchial consolidation and dominant involvement of the lower lung zone. Those pathologic findings were nonspecific and the differential diagnosis could include interstitial pneumonia, bronchiolitis obliterans organizing pneumonia, hypersensitivity pneumonitis and eosinophilic pneumonia

  13. Mixed Herbal Medicine Induced Diffuse Infiltrative Lung Disease: The HRCT and Histopathologic Findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Gyu; Shin, Eun A [Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of); Kim, Joung Sook [Mokdong Hospital, Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    2010-12-15

    The purpose of this study was to evaluate the high-resolution CT (HRCT) and pathologic findings of mixed herbal medicine-induced diffuse interstitial lung disease. Eight patients (6 women and 2 men, age range: 31 to 81 years, mean age: 51.4 years) who presented with cough or dyspnea after taking mixed herbal medicine were included in this study. All the patients underwent plain chest radiography and HRCT. We obtained pathologic specimens from 7 patients via fluoroscopy guided large bore cutting needle biopsy and transbronchial lung biopsy. All the patients were treated with steroid therapy. The most common HRCT finding was bilateral diffuse ground glass opacity (n=7), followed by peribronchial consolidation (n=5) and inter- or intralobular septal thickening (n=2). For the disease distribution, the lower lung zone was dominantly involved. The pathologic results of 7 patients were nonspecific interstitial pneumonia (n=3), bronchiolitis obliterans organizing pneumonia (n=2), hypersensitivity pneumonitis (n=1) and eosinophilic pneumonia (n=1). Irrespective of the pathologic results, all 8 patients improved clinically and radiologically after steroid treatment. The HRCT findings of mixed herbal medicine-induced diffuse infiltrative lung disease were mainly bilateral diffuse ground glass opacity, peribronchial consolidation and dominant involvement of the lower lung zone. Those pathologic findings were nonspecific and the differential diagnosis could include interstitial pneumonia, bronchiolitis obliterans organizing pneumonia, hypersensitivity pneumonitis and eosinophilic pneumonia

  14. Th17/Treg immunoregulation and implications in treatment of sulfur mustard gas-induced lung diseases.

    Science.gov (United States)

    Iman, Maryam; Rezaei, Ramazan; Azimzadeh Jamalkandi, Sadegh; Shariati, Parvin; Kheradmand, Farrah; Salimian, Jafar

    2017-12-01

    Sulfur mustard (SM) is an extremely toxic gas used in chemical warfare to cause massive lung injury and death. Victims exposed to SM gas acutely present with inhalational lung injury, but among those who survive, some develop obstructive airway diseases referred to as SM-lung syndrome. Pathophysiologically, SM-lung shares many characteristics with smoking-induced chronic obstructive pulmonary disease (COPD), including airway remodeling, goblet cell metaplasia, and obstructive ventilation defect. Some of the hallmarks of COPD pathogenesis, which include dysregulated lung inflammation, neutrophilia, recruitment of interleukin 17A (IL -17A) expressing CD4 + T cells (Th17), and the paucity of lung regulatory T cells (Tregs), have also been described in SM-lung. Areas covered: A literature search was performed using the MEDLINE, EMBASE, and Web of Science databases inclusive of all literature prior to and including May 2017. Expert commentary: Here we review some of the recent findings that suggest a role for Th17 cell-mediated inflammatory changes associated with pulmonary complications in SM-lung and suggest new therapeutic approaches that could potentially alter disease progression with immune modulating biologics that can restore the lung Th17/Treg balance.

  15. Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis

    Science.gov (United States)

    Monin, Leticia; Griffiths, Kristin L.; Lam, Wing Y.; Gopal, Radha; Kang, Dongwan D.; Ahmed, Mushtaq; Rajamanickam, Anuradha; Cruz-Lagunas, Alfredo; Zúñiga, Joaquín; Babu, Subash; Kolls, Jay K.; Mitreva, Makedonka; Rosa, Bruce A.; Ramos-Payan, Rosalio; Morrison, Thomas E.; Murray, Peter J.; Rangel-Moreno, Javier; Pearce, Edward J.; Khader, Shabaana A.

    2015-01-01

    Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1–expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1–expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB. PMID:26571397

  16. New era of radiotherapy: An update in radiation-induced lung disease

    International Nuclear Information System (INIS)

    Benveniste, M.F.K.; Welsh, J.; Godoy, M.C.B.; Betancourt, S.L.; Mawlawi, O.R.; Munden, R.F.

    2013-01-01

    Over the last few decades, advances in radiotherapy (RT) technology have improved delivery of radiation therapy dramatically. Advances in treatment planning with the development of image-guided radiotherapy and in techniques such as proton therapy, allows the radiation therapist to direct high doses of radiation to the tumour. These advancements result in improved local regional control while reducing potentially damaging dosage to surrounding normal tissues. It is important for radiologists to be aware of the radiological findings from these advances in order to differentiate expected radiation-induced lung injury (RILD) from recurrence, infection, and other lung diseases. In order to understand these changes and correlate them with imaging, the radiologist should have access to the radiation therapy treatment plans

  17. Lung Oxidative Stress, DNA Damage, Apoptosis, and Fibrosis in Adenine-Induced Chronic Kidney Disease in Mice

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2017-11-01

    Full Text Available It is well-established that there is a crosstalk between the lung and the kidney, and several studies have reported association between chronic kidney disease (CKD and pulmonary pathophysiological changes. Experimentally, CKD can be caused in mice by dietary intake of adenine. Nevertheless, the consequence of such intervention on the lung received only scant attention. Here, we assessed the pulmonary effects of adenine (0.2% w/w in feed for 4 weeks-induced CKD in mice by assessing various physiological histological and biochemical endpoints. Adenine treatment induced a significant increase in urine output, urea and creatinine concentrations, and it decreased the body weight and creatinine clearance. It also increased proteinuria and the urinary levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Compared with control group, the histopathological evaluation of lungs from adenine-treated mice showed polymorphonuclear leukocytes infiltration in alveolar and bronchial walls, injury, and fibrosis. Moreover, adenine caused a significant increase in lung lipid peroxidation and reactive oxygen species and decreased the antioxidant catalase. Adenine also induced DNA damage assessed by COMET assay. Similarly, adenine caused apoptosis in the lung characterized by a significant increase of cleaved caspase-3. Moreover, adenine induced a significant increase in the expression of nuclear factor erythroid 2–related factor 2 (Nrf2 in the lung. We conclude that administration of adenine in mice induced CKD is accompanied by lung oxidative stress, DNA damage, apoptosis, and Nrf2 expression and fibrosis.

  18. Drug-induced interstitial lung diseases. Often forgotten; Medikamenteninduzierte interstitielle Lungenerkrankungen. Haeufig vergessen

    Energy Technology Data Exchange (ETDEWEB)

    Poschenrieder, F.; Stroszczynski, C. [Universitaetsklinikum Regensburg, Institut fuer Roentgendiagnostik, Regensburg (Germany); Hamer, O.W. [Universitaetsklinikum Regensburg, Institut fuer Roentgendiagnostik, Regensburg (Germany); Lungenfachklinik Donaustauf, Donaustauf (Germany)

    2014-12-15

    Drug-induced interstitial lung diseases (DILD) are probably more common than diagnosed. Due to their potential reversibility, increased vigilance towards DILD is appropriate also from the radiologist's point of view, particularly as these diseases regularly exhibit radiological correlates in high-resolution computed tomography (HRCT) of the lungs. Based on personal experience typical relatively common manifestations of DILD are diffuse alveolar damage (DAD), eosinophilic pneumonia (EP), hypersensitivity pneumonitis (HP), organizing pneumonia (OP), non-specific interstitial pneumonia (NSIP) and usual interstitial pneumonia (UIP). These patterns are presented based on case studies, whereby emphasis is placed on the clinical context. This is to highlight the relevance of interdisciplinary communication and discussion in the diagnostic field of DILD as it is a diagnosis of exclusion or of probability in most cases. Helpful differential diagnostic indications for the presence of DILD, such as an accompanying eosinophilia or increased attenuation of pulmonary consolidations in amiodarone-induced pneumopathy are mentioned and the freely available online database http://www.pneumotox.com is presented. (orig.) [German] Medikamenteninduzierte interstitielle Lungenerkrankungen (engl. ''drug-induced interstitial lung diseases'', DILD) sind wahrscheinlich haeufiger, als sie diagnostiziert werden. Aufgrund ihrer potenziellen Reversibilitaet ist eine erhoehte Vigilanz gegenueber DILD auch seitens der Radiologie angebracht, da diese regelmaessig ein radiomorphologisches Korrelat in der hochaufloesenden Computertomographie (''high-resolution CT'', HRCT) der Lunge aufweisen. Typische, nach eigener Erfahrung relativ haeufige Manifestationsformen von DILD sind der diffuse Alveolarschaden (engl. ''diffuse alveolar damage'', DAD), die eosinophile Pneumonie (EP), die Hypersensitivitaetspneumonitis (HP), die organisierende

  19. Occupational Lung Disease: Clinical-Pathological-Radiological Correlation

    International Nuclear Information System (INIS)

    Carrillo Bayona, Jorge Alberto; Rivera Bernal, Aura Lucia; Ojeda Paulina; Paez Garcia, Diana Sofia

    2008-01-01

    People are exposed to hundreds of substances daily, some of which may induce pulmonary injury. Occupational Lung Disease diagnosis requires 4 elements: Exposure to the harmful agent, adequate latency between exposure and beginning of the symptoms, syndrome with post-exposure abnormalities, and exclusion of other conditions which may otherwise explain signs and symptoms. Several occupational lung disease classifications based on structural or functional injury, type of agent, or both have been proposed. Generally, 5 groups are considered: Pneumoconiosis, hypersensitivity pneumonitis, toxic fumes exposure, asthma, and occupational lung infections. Conventional radiographs and in specific situations, CT, are crucial elements for the diagnosis of Occupational Lung Disease. In the patient with respiratory symptoms and altered imaging studies, the possibility of Occupational Lung Disease should be considered. Radiologist should be familiar the variety of substances that cause these entities and their radiological features. In this article Occupational Lung diseases are reviewed, including diagnostic criteria, classification, physiopathology, clinical and radiological manifestations as well as their corresponding histopathological features.

  20. [New toxicity of fotemustine: diffuse interstitial lung disease].

    Science.gov (United States)

    Bertrand, M; Wémeau-Stervinou, L; Gauthier, S; Auffret, M; Mortier, L

    2012-04-01

    Fotemustine is an alkylating cytostatic drug belonging to the nitrosourea family and is used in particular in the treatment of disseminated malignant melanoma. Herein, we report a case of interstitial lung disease associated with fotemustine. An 81-year-old man treated with fotemustine for metastatic melanoma presented acute interstitial lung disease 20 days after a fourth course of fotemustine monotherapy. The condition regressed spontaneously, with the patient returning to the clinical, radiological and blood gas status that had preceded fotemustine treatment. After other potential aetiologies had been ruled out, acute fotemustine-induced lung toxicity was considered and this treatment was definitively withdrawn. Other cytostatic agents belonging to the nitrosourea family can cause similar pictures, with a number of cases of interstitial lung disease thus being ascribed to fotemustine and dacarbazine. To our knowledge, this is the first case of interstitial lung disease induced by fotemustine monotherapy. This diagnosis should be considered where respiratory signs appear in melanoma patients undergoing fotemustine treatment. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. Four Cases of Interstitial Lung Disease Induced by Erlotinib 
and A Review of the Literatures

    Directory of Open Access Journals (Sweden)

    Xiaoling WU

    2012-08-01

    Full Text Available Erlotinib is an agent of oral epidermal growth factor receptor (EGFR tyrosine kinase inhibitors which are used for non-small cell lung cancer. Although this class of agents is considered to be relatively safe, the most serious, but rare, adverse reaction is drug-associated interstitial lung disease (ILD. ILD induced by gefitinib been often described, but the ILD induced by erlotinib is relatively less well known. We here describle four cases of ILD related to erlotinib and review recent literatures to help physicians earlier alert erlotinib-induced ILD. It is important to carefully monitor pulmonary symptoms in all patients who are receiving erlotinib. Early diagnosis and timely intervention is critical in the treatment of drug-induced ILD.

  2. Improved dosimetry and risk assessment for plutonium-induced lung disease using a microdosimetric approach

    Energy Technology Data Exchange (ETDEWEB)

    Nikula, K.J.; Hahn, F.F.; Guilmette, R.A. [Lovelace Respiratory Research Inst., Albuquerque, NM (United States); Romanov, S.A.; Muksinova, K.N.; Nifatov, A.P.; Revina, V.S.

    2000-05-01

    The risk of developing radiation-induced lung cancer is currently estimated using models based on epidemiological data from populations exposed either to relatively uniform, low-LET radiation, or from uranium miners exposed to radon and its progeny. Because inhaled alpha-emitting radionuclides (e.g., Pu, Am) produce nonuniform, chronic irradiation of the parenchymal region of the lung, a better scientific basis is needed for assessing the risk of developing radiation-induced disease from these radionuclides. Scientists at FIB-1 and LRRI are using a unique resource at the FIB-1, i.e., a set of about 600 lung specimens fixed in 10% formalin, and obtained from a population of workers at the Mayak Production Association, many of whom inhaled significant quantities of Pu and other alpha-emitting radionuclides during their careers. The objectives of this research are to measure the microscopic distribution of Pu by quantitative autoradiography, to determine the spatial distribution of Pu in human lung tissue with respect to specific lung structures and to determine the effect of chronic tobacco-smoke exposure on the distribution of local Pu radiation dose. The approach to analyzing these lung samples is to utilize contemporary stereological sampling and analysis techniques together with quantitative alpha-particle autoradiography. Our initial results have validated the usefulness of these lung specimens for determining Pu particle distribution with respect to anatomic location, as well as identifying normal and diseased compartments in the lung. In brief, particles were most often found associated with parenchymal and nonparenchymal scars, with other particles in organized lymphoid tissue or the interstitium of the pulmonary parenchyma (respiratory bronchioles and alveolar region). Based on comparison of one lung from a smoker and one from a nonsmoker, there was an increased fraction of Pu particles associated with tissue scars in the smoker vs the nonsmoker, and this

  3. The role of endotoxin in grain dust-induced lung disease.

    Science.gov (United States)

    Schwartz, D A; Thorne, P S; Yagla, S J; Burmeister, L F; Olenchock, S A; Watt, J L; Quinn, T J

    1995-08-01

    To identify the role of endotoxin in grain dust-induced lung disease, we conducted a population-based, cross-sectional investigation among grain handlers and postal workers. The study subjects were selected by randomly sampling all grain facilities and post offices within 100 miles of Iowa City. Our study population consisted of 410 grain workers and 201 postal workers. Grain workers were found to be exposed to higher concentrations of airborne dust (p = 0.0001) and endotoxin (p = 0.0001) when compared with postal workers. Grain workers had a significantly higher prevalence of work-related (cough, phlegm, wheezing, chest tightness, and dyspnea) and chronic (usual cough or phlegm production) respiratory symptoms than postal workers. Moreover, after controlling for age, gender, and cigarette smoking status, work-related respiratory symptoms were strongly associated with the concentration of endotoxin in the bioaerosol in the work setting. The concentration of total dust in the bioaerosol was marginally related to these respiratory problems. After controlling for age, gender, and cigarette smoking status, grain workers were found to have reduced spirometric measures of airflow (FEV1, FEV1/FVC, and FEF25-75) and enhanced airway reactivity to inhaled histamine when compared with postal workers. Although the total dust concentration in the work environment appeared to have little effect on these measures of airflow obstruction, higher concentrations of endotoxin in the bioaerosol were associated with diminished measures of airflow and enhanced bronchial reactivity. Our results indicate that the concentration of endotoxin in the bioaerosol may be particularly important in the development of grain dust-induced lung disease.

  4. Interstitial lung disease induced by fluoxetine: Systematic review of literature and analysis of Vigiaccess, Eudravigilance and a national pharmacovigilance database.

    Science.gov (United States)

    Deidda, Arianna; Pisanu, Claudia; Micheletto, Laura; Bocchetta, Alberto; Del Zompo, Maria; Stochino, Maria Erminia

    2017-06-01

    We investigated a pulmonary adverse drug reaction possibly induced by fluoxetine, the Interstitial Lung Disease, by performing a systematic review of published case reports on this subject, a review of the World Health Organization VigiAccess database, of the European EudraVigilance database and of a national Pharmacovigilance database (Italian Pharmacovigilance Network). The research found a total of seven cases linking fluoxetine to Interstitial Lung Disease in the literature. 36 cases of interstitial lung disease related to fluoxetine were retrieved from the VigiAccess database (updated to July 2016), and 36 reports were found in EudraVigilance database (updated to June 2016). In the Italian Pharmacovigilance database (updated to August 2016), we found only one case of Interstitial Lung Disease, codified as "pulmonary disease". Our investigation shows that fluoxetine might be considered as a possible cause of Interstitial Lung Disease. In particular, although here we do not discuss the assessment of benefits and harms of fluoxetine, since this antidepressant is widely used, our review suggests that fluoxetine-induced Interstitial Lung Disease should be considered in patients with dyspnea, associated or not with dry cough, who are treated with this drug. An early withdrawn of fluoxetine could be useful to obtain a complete remission of this adverse drug reaction and special attention should be particularly devoted to long-term therapy, and to female and elderly patients. Although the spontaneous reporting system is affected by important limitations, drug post- marketing surveillance represents an important tool to evaluate the real world effectiveness and safety of drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mast cells and exosomes in hyperoxia-induced neonatal lung disease.

    Science.gov (United States)

    Veerappan, A; Thompson, M; Savage, A R; Silverman, M L; Chan, W S; Sung, B; Summers, B; Montelione, K C; Benedict, P; Groh, B; Vicencio, A G; Peinado, H; Worgall, S; Silver, R B

    2016-06-01

    Chronic lung disease of prematurity (CLD) is a frequent sequela of premature birth and oxygen toxicity is a major associated risk factor. Impaired alveolarization, scarring, and inflammation are hallmarks of CLD. Mast cell hyperplasia is a feature of CLD but the role of mast cells in its pathogenesis is unknown. We hypothesized that mast cell hyperplasia is a consequence of neonatal hyperoxia and contributes to CLD. Additionally, mast cell products may have diagnostic and prognostic value in preterm infants predisposed to CLD. To model CLD, neonatal wild-type and mast cell-deficient mice were placed in an O2 chamber delivering hyperoxic gas mixture [inspired O2 fraction (FiO2 ) of 0.8] (HO) for 2 wk and then returned to room air (RA) for an additional 3 wk. Age-matched controls were kept in RA (FiO2 of 0.21). Lungs from HO mice had increased numbers of mast cells, alveolar simplification and enlargement, and increased lung compliance. Mast cell deficiency proved protective by preserving air space integrity and lung compliance. The mast cell mediators β-hexosaminidase (β-hex), histamine, and elastase increased in the bronchoalveolar lavage fluid of HO wild-type mice. Tracheal aspirate fluids (TAs) from oxygenated and mechanically ventilated preterm infants were analyzed for mast cell products. In TAs from infants with confirmed cases of CLD, β-hex was elevated over time and correlated with FiO2 Mast cell exosomes were also present in the TAs. Collectively, these data show that mast cells play a significant role in hyperoxia-induced lung injury and their products could serve as potential biomarkers in evolving CLD. Copyright © 2016 the American Physiological Society.

  6. Loss of hypoxia-inducible factor 2 alpha in the lung alveolar epithelium of mice leads to enhanced eosinophilic inflammation in cobalt-induced lung injury.

    Science.gov (United States)

    Proper, Steven P; Saini, Yogesh; Greenwood, Krista K; Bramble, Lori A; Downing, Nathaniel J; Harkema, Jack R; Lapres, John J

    2014-02-01

    Hard metal lung disease (HMLD) is an occupational lung disease specific to inhalation of cobalt-containing particles whose mechanism is largely unknown. Cobalt is a known hypoxia mimic and stabilizer of the alpha subunits of hypoxia-inducible factors (HIFs). Previous work revealed that though HIF1α contrib utes to cobalt toxicity in vitro, loss of HIF1α in the alveolar epithelial cells does not provide in vivo protection from cobalt-induced lung inflammation. HIF1α and HIF2α show unique tissue expression profiles, and HIF2α is known to be the predominant HIF mRNA isoform in the adult lung. Thus, if HIF2α activation by cobalt contributes to pathophysiology of HMLD, we hypothesized that loss of HIF2α in lung epithelium would provide protection from cobalt-induced inflammation. Mice with HIF2α-deficiency in Club and alveolar type II epithelial cells (ATIIs) (HIF2α(Δ/Δ)) were exposed to cobalt (60 µg/day) or saline using a subacute occupational exposure model. Bronchoalveolar lavage cellularity, cytokines, qRT-PCR, and histopathology were analyzed. Results show that loss of HIF2α leads to enhanced eosinophilic inflammation and increased goblet cell metaplasia. Additionally, control mice demonstrated a mild recovery from cobalt-induced lung injury compared with HIF2α(Δ/Δ) mice, suggesting a role for epithelial HIF2α in repair mechanisms. The expression of important cytokines, such as interleukin (IL)-5 and IL-10, displayed significant differences following cobalt exposure when HIF2α(Δ/Δ) and control mice were compared. In summary, our data suggest that although loss of HIF2α does not afford protection from cobalt-induced lung inflammation, epithelial HIF2α signaling does play an important role in modulating the inflammatory and repair response in the lung.

  7. Adalimumab-induced acute interstitial lung disease in a patient with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Olivia Meira Dias

    2014-01-01

    Full Text Available The use of immunobiological agents for the treatment of autoimmune diseases is increasing in medical practice. Anti-TNF therapies have been increasingly used in refractory autoimmune diseases, especially rheumatoid arthritis, with promising results. However, the use of such therapies has been associated with an increased risk of developing other autoimmune diseases. In addition, the use of anti-TNF agents can cause pulmonary complications, such as reactivation of mycobacterial and fungal infections, as well as sarcoidosis and other interstitial lung diseases (ILDs. There is evidence of an association between ILD and the use of anti-TNF agents, etanercept and infliximab in particular. Adalimumab is the newest drug in this class, and some authors have suggested that its use might induce or exacerbate preexisting ILDs. In this study, we report the first case of acute ILD secondary to the use of adalimumab in Brazil, in a patient with rheumatoid arthritis and without a history of ILD.

  8. Surfactant Protein D is a candidate biomarker for subclinical tobacco smoke-induced lung damage

    DEFF Research Database (Denmark)

    Lock Johansson, Sofie; Tan, Qihua; Holst, Rene

    2014-01-01

    Variation in Surfactant Protein D (SP-D) is associated with lung function in tobacco smoke-induced chronic respiratory disease. We hypothesized that the same association exists in the general population and could be used to identify individuals sensitive to smoke-induced lung damage. The associat......Variation in Surfactant Protein D (SP-D) is associated with lung function in tobacco smoke-induced chronic respiratory disease. We hypothesized that the same association exists in the general population and could be used to identify individuals sensitive to smoke-induced lung damage...... or haplotypes, and expiratory lung function were assessed using twin study methodology and mixed-effects models. Significant inverse associations were evident between sSP-D and the forced expiratory volume in 1 second and forced vital capacity in the presence of current tobacco smoking but not in non...... with lung function measures in interaction with tobacco smoking. The obtained data suggest sSP-D as a candidate biomarker in risk assessments for subclinical tobacco smoke-induced lung damage. The data and derived conclusion warrant confirmation in a longitudinal population following chronic obstructive...

  9. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema.

    Directory of Open Access Journals (Sweden)

    Sandra Grumelli

    2004-10-01

    Full Text Available Chronic obstructive pulmonary disease and emphysema are a frequent result of long-term smoking, but the exact mechanisms, specifically which types of cells are associated with the lung destruction, are unclear.We studied different subsets of lymphocytes taken from portions of human lungs removed surgically to find out which lymphocytes were the most frequent, which cell-surface markers these lymphocytes expressed, and whether the lymphocytes secreted any specific factors that could be associated with disease. We found that loss of lung function in patients with chronic obstructive pulmonary disease and emphysema was associated with a high percentage of CD4+ and CD8+ T lymphocytes that expressed chemokine receptors CCR5 and CXCR3 (both markers of T helper 1 cells, but not CCR3 or CCR4 (markers of T helper 2 cells. Lung lymphocytes in patients with chronic obstructive pulmonary disease and emphysema secrete more interferon gamma--often associated with T helper 1 cells--and interferon-inducible protein 10 and monokine induced by interferon, both of which bind to CXCR3 and are involved in attracting T helper 1 cells. In response to interferon-inducible protein 10 and monokine induced by interferon, but not interferon gamma, lung macrophages secreted macrophage metalloelastase (matrix metalloproteinase-12, a potent elastin-degrading enzyme that causes tissue destruction and which has been linked to emphysema.These data suggest that Th1 lymphoctytes in the lungs of people with smoking-related damage drive progression of emphysema through CXCR3 ligands, interferon-inducible protein 10, and monokine induced by interferon.

  10. Mechanisms of protein misfolding in conformational lung diseases.

    LENUS (Irish Health Repository)

    McElvaney, N G

    2012-08-01

    Genetic or environmentally-induced alterations in protein structure interfere with the correct folding, assembly and trafficking of proteins. In the lung the expression of misfolded proteins can induce a variety of pathogenetic effects. Cystic fibrosis (CF) and alpha-1 antitrypsin (AAT) deficiency are two major clinically relevant pulmonary disorders associated with protein misfolding. Both are genetic diseases the primary causes of which are expression of mutant alleles of the cystic fibrosis transmembrane conductance regulator (CFTR) and SERPINA1, respectively. The most common and best studied mutant forms of CFTR and AAT are ΔF508 CFTR and the Glu342Lys mutant of AAT called ZAAT, respectively. Non-genetic mechanisms can also damage protein structure and induce protein misfolding in the lung. Cigarette-smoke contains oxidants and other factors that can modify a protein\\'s structure, and is one of the most significant environmental causes of protein damage within the lung. Herein we describe the mechanisms controlling the folding of wild type and mutant versions of CFTR and AAT proteins, and explore the consequences of cigarette-smoke-induced effects on the protein folding machinery in the lung.

  11. Protein misfolding and obstructive lung disease.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2010-11-01

    The endoplasmic reticulum has evolved a number of mechanisms to manage the accumulation of incorrectly folded proteins. This results in loss of function of these proteins, but occasionally, in conditions such as α-1 antitrpysin (A1AT) deficiency, the misfolded protein can acquire a toxic gain of function promoting exaggerated ER stress responses and inflammation. Mutations leading to deficiency in a second serine proteinase inhibitor, α-1 antichymotrpysin (ACT), can induce potentially similar consequences. A1AT and ACT deficiencies are associated with chronic obstructive lung disease. Until recently, it was thought that the lung diseases associated with these conditions were entirely due to loss of antiprotease protection in the lung (i.e., loss of function), whereas gain of function was the major cause of the liver disease associated with A1AT deficiency. This paradigm is being increasingly challenged because ER stress is being recognized in bronchial epithelial cells and inflammatory cells normally resident in the lung, giving rise to an inflammatory phenotype that adds to the proteolytic burden associated with these conditions. In this article, we describe the cellular mechanisms that are activated to cope with an increasing burden of misfolded proteins within the ER in A1AT and ACT deficiency, show how these events are linked to inflammation, and outline the therapeutic strategies that can potentially interfere with production of misfolded proteins.

  12. Tumorous interstitial lung disease

    International Nuclear Information System (INIS)

    Dinkel, E.; Meyer, E.; Mundinger, A.; Helwig, A.; Blum, U.; Wuertemberger, G.

    1990-01-01

    The radiological findings in pulmonary lymphangitic carcinomatosis and in leukemic pulmonary infiltrates mirror the tumor-dependent monomorphic interstitial pathology of lung parenchyma. It is a proven fact that pulmonary lymphangitic carcinomatosis is caused by hematogenous tumor embolization to the lungs; pathogenesis by contiguous lymphangitic spread is the exception. High-resolution CT performed as a supplement to the radiological work-up improves the sensitivity for pulmonary infiltrates in general and thus makes the differential diagnosis decided easier. Radiological criteria cannot discriminate the different forms of leukemia. Plain chest X-ray allows the diagnosis of pulmonary involvement in leukemia due to tumorous infiltrates and of tumor- or therapy-induced complications. It is essential that the radiological findings be interpreted with reference to the stage of tumor disease and the clinical parameters to make the radiological differential diagnosis of opportunistic infections more reliable. (orig.) [de

  13. Acute fibrinous and organising pneumonia: a rare histopathological variant of chemotherapy-induced lung injury.

    Science.gov (United States)

    Gupta, Arjun; Sen, Shiraj; Naina, Harris

    2016-04-06

    Bleomycin-induced lung injury is the most common chemotherapy-associated lung disease, and is linked with several histopathological patterns. Acute fibrinous and organising pneumonia (AFOP) is a relatively new and rare histological pattern of diffuse lung injury. We report the first known case of bleomycin-induced AFOP. A 36-year-old man with metastatic testicular cancer received three cycles of bleomycin, etoposide and cisplatin, before being transitioned to paclitaxel, ifosfamide and cisplatin. He subsequently presented with exertional dyspnoea, cough and pleuritic chest pain. CT of the chest demonstrated bilateral ground glass opacities with peribronchovascular distribution and pulmonary function tests demonstrated a restrictive pattern of lung disease with impaired diffusion. Transbronchial biopsy revealed intra-alveolar fibrin deposits with organising pneumonia, consisting of intraluminal loose connective tissue consistent with AFOP. The patient received high-dose corticosteroids with symptomatic and radiographic improvement. AFOP should be recognised as a histopathological variant of bleomycin-induced lung injury. 2016 BMJ Publishing Group Ltd.

  14. Childhood Interstitial Lung Disease

    Science.gov (United States)

    ... rule out conditions such as asthma , cystic fibrosis , acid reflux, heart disease, neuromuscular disease, and immune deficiency. Various ... a lung infection. Acid-blocking medicines can prevent acid reflux, which can lead to aspiration. Lung Transplant A ...

  15. Occupational lung diseases.

    Science.gov (United States)

    Furlow, Bryant

    2011-01-01

    Chest radiography and high-resolution computed tomography are indispensable tools in the detection, classification and characterization of occupational lung diseases that are caused by inhaling mineral particles such as asbestos, silicon-containing rock dust and other tissue-damaging antigens, nanomaterials and toxins. Radiographic evidence of occupational lung disease is interpreted with a patient's clinical signs and symptoms and a detailed occupational history in mind because of high variability in radiographic findings. This Directed Reading reviews the history, epidemiology, functional anatomy, pathobiology and medical diagnostic imaging of occupational lung diseases associated with inhalation of fine particulates in the workplace. This article is a Directed Reading. Your access to Directed Reading quizzes for continuing education credit is determined by your CE preference. For access to other quizzes, go to www.asrt.org/store.

  16. Occupational lung diseases in Australia.

    Science.gov (United States)

    Hoy, Ryan F; Brims, Fraser

    2017-11-20

    Occupational exposures are an important determinant of respiratory health. International estimates note that about 15% of adult-onset asthma, 15% of chronic obstructive pulmonary disease and 10-30% of lung cancer may be attributable to hazardous occupational exposures. One-quarter of working asthmatics either have had their asthma caused by work or adversely affected by workplace conditions. Recently, cases of historical occupational lung diseases have been noted to occur with new exposures, such as cases of silicosis in workers fabricating kitchen benchtops from artificial stone products. Identification of an occupational cause of a lung disease can be difficult and requires maintaining a high index of suspicion. When an occupational lung disease is identified, this may facilitate a cure and help to protect coworkers. Currently, very little information is collected regarding actual cases of occupational lung diseases in Australia. Most assumptions about many occupational lung diseases are based on extrapolation from overseas data. This lack of information is a major impediment to development of targeted interventions and timely identification of new hazardous exposures. All employers, governments and health care providers in Australia have a responsibility to ensure that the highest possible standards are in place to protect workers' respiratory health.

  17. DNaseI Protects against Paraquat-Induced Acute Lung Injury and Pulmonary Fibrosis Mediated by Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Guo Li

    2015-01-01

    Full Text Available Background. Paraquat (PQ poisoning is a lethal toxicological challenge that served as a disease model of acute lung injury and pulmonary fibrosis, but the mechanism is undetermined and no effective treatment has been discovered. Methods and Findings. We demonstrated that PQ injures mitochondria and leads to mtDNA release. The mtDNA mediated PBMC recruitment and stimulated the alveolar epithelial cell production of TGF-β1 in vitro. The levels of mtDNA in circulation and bronchial alveolar lavage fluid (BALF were elevated in a mouse of PQ-induced lung injury. DNaseI could protect PQ-induced lung injury and significantly improved survival. Acute lung injury markers, such as TNFα, IL-1β, and IL-6, and marker of fibrosis, collagen I, were downregulated in parallel with the elimination of mtDNA by DNaseI. These data indicate a possible mechanism for PQ-induced, mtDNA-mediated lung injury, which may be shared by other causes of lung injury, as suggested by the same protective effect of DNaseI in bleomycin-induced lung injury model. Interestingly, increased mtDNA in the BALF of patients with amyopathic dermatomyositis-interstitial lung disease can be appreciated. Conclusions. DNaseI targeting mtDNA may be a promising approach for the treatment of PQ-induced acute lung injury and pulmonary fibrosis that merits fast tracking through clinical trials.

  18. SLPI and inflammatory lung disease in females.

    LENUS (Irish Health Repository)

    McKiernan, Paul J

    2012-02-01

    During the course of certain inflammatory lung diseases, SLPI (secretory leucoprotease inhibitor) plays a number of important roles. As a serine antiprotease it functions to protect the airways from proteolytic damage due to neutrophil and other immune cell-derived serine proteases. With respect to infection it has known antimicrobial and anti-viral properties that are likely to contribute to host defence. Another of its properties is the ability to control inflammation within the lung where it can interfere with the transcriptional induction of pro-inflammatory gene expression induced by NF-kappaB (nuclear factor kappaB). Thus, factors that regulate the expression of SLPI in the airways can impact on disease severity and outcome. Gender represents once such idiosyncratic factor. In females with CF (cystic fibrosis), it is now thought that circulating oestrogen contributes, in part, to the observed gender gap whereby females have worse disease and poorer prognosis than males. Conversely, in asthma, sufferers who are females have more frequent exacerbations at times of low-circulating oestrogen. In the present paper, we discuss how SLPI participates in these events and speculate on whether regulatory mechanisms such as post-transcriptional modulation by miRNAs (microRNAs) are important in the control of SLPI expression in inflammatory lung disease.

  19. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    Science.gov (United States)

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions.

  20. Pulmonary Hypertension in Parenchymal Lung Disease

    Science.gov (United States)

    Tsangaris, Iraklis; Tsaknis, Georgios; Anthi, Anastasia; Orfanos, Stylianos E.

    2012-01-01

    Idiopathic pulmonary arterial hypertension (IPAH) has been extensively investigated, although it represents a less common form of the pulmonary hypertension (PH) family, as shown by international registries. Interestingly, in types of PH that are encountered in parenchymal lung diseases such as interstitial lung diseases (ILDs), chronic obstructive pulmonary disease (COPD), and many other diffuse parenchymal lung diseases, some of which are very common, the available data is limited. In this paper, we try to browse in the latest available data regarding the occurrence, pathogenesis, and treatment of PH in chronic parenchymal lung diseases. PMID:23094153

  1. Occupational and environmental lung disease.

    Science.gov (United States)

    Seaman, Danielle M; Meyer, Cristopher A; Kanne, Jeffrey P

    2015-06-01

    Occupational and environmental lung disease remains a major cause of respiratory impairment worldwide. Despite regulations, increasing rates of coal worker's pneumoconiosis and progressive massive fibrosis are being reported in the United States. Dust exposures are occurring in new industries, for instance, silica in hydraulic fracking. Nonoccupational environmental lung disease contributes to major respiratory disease, asthma, and COPD. Knowledge of the imaging patterns of occupational and environmental lung disease is critical in diagnosing patients with occult exposures and managing patients with suspected or known exposures. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Can mechanical ventilation strategies reduce chronic lung disease?

    Science.gov (United States)

    Donn, Steven M; Sinha, Sunil K

    2003-12-01

    Chronic lung disease (CLD) continues to be a significant complication in newborn infants undergoing mechanical ventilation for respiratory failure. Although the aetiology of CLD is multifactorial, specific factors related to mechanical ventilation, including barotrauma, volutrauma and atelectrauma, have been implicated as important aetiologic mechanisms. This article discusses the ways in which these factors might be manipulated by various mechanical ventilatory strategies to reduce ventilator-induced lung injury. These include continuous positive airway pressure, permissive hypercapnia, patient-triggered ventilation, volume-targeted ventilation, proportional assist ventilation, high-frequency ventilation and real-time monitoring.

  3. Histopathology of lung disease in the connective tissue diseases.

    Science.gov (United States)

    Vivero, Marina; Padera, Robert F

    2015-05-01

    The pathologic correlates of interstitial lung disease (ILD) secondary to connective tissue disease (CTD) comprise a diverse group of histologic patterns. Lung biopsies in patients with CTD-associated ILD tend to demonstrate simultaneous involvement of multiple anatomic compartments of the lung. Certain histologic patterns tend to predominate in each defined CTD, and it is possible in many cases to confirm connective tissue-associated lung disease and guide patient management using surgical lung biopsy. This article will cover the pulmonary pathologies seen in rheumatoid arthritis, systemic sclerosis, myositis, systemic lupus erythematosus, Sjögren syndrome, and mixed CTD. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Stereotactic body radiotherapy for Stage I lung cancer with chronic obstructive pulmonary disease. Special reference to survival and radiation-induced pneumonitis

    International Nuclear Information System (INIS)

    Inoue, Toshihiko; Shiomi, Hiroya; Oh, Ryoong-Jin

    2015-01-01

    This retrospective study aimed to evaluate radiation-induced pneumonitis (RIP) and a related condition that we define in this report — prolonged minimal RIP (pmRIP) — after stereotactic body radiotherapy (SBRT) for Stage I primary lung cancer in patients with chronic obstructive pulmonary disease (COPD). We assessed 136 Stage I lung cancer patients with COPD who underwent SBRT. Airflow limitation on spirometry was classified into four Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades, with minor modifications: GOLD 1 (mild), GOLD 2 (moderate), GOLD 3 (severe) and GOLD 4 (very severe). On this basis, we defined two subgroups: COPD-free (COPD -) and COPD-positive (COPD +). There was no significant difference in overall survival or cause-specific–survival between these groups. Of the 136 patients, 44 (32%) had pmRIP. Multivariate analysis showed that COPD and the Brinkman index were statistically significant risk factors for the development of pmRIP. COPD and the Brinkman index were predictive factors for pmRIP, although our findings also indicate that SBRT can be tolerated in early lung cancer patients with COPD. (author)

  5. Transbronchial biopsies safely diagnose amyloid lung disease

    Science.gov (United States)

    Govender, Praveen; Keyes, Colleen M.; Hankinson, Elizabeth A.; O’Hara, Carl J.; Sanchorawala, Vaishali; Berk, John L.

    2018-01-01

    Background Autopsy identifies lung involvement in 58–92% of patients with the most prevalent forms of systemic amyloidoses. In the absence of lung biopsies, amyloid lung disease often goes unrecognized. Report of a death following transbronchial biopsies in a patient with systemic amyloidosis cautioned against the procedure in this patient cohort. We reviewed our experience with transbronchial biopsies in patients with amyloidosis to determine the safety and utility of bronchoscopic lung biopsies. Methods We identified patients referred to the Amyloidosis Center at Boston Medical Center with lung amyloidosis diagnosed by transbronchial lung biopsies (TBBX). Amyloid typing was determined by immunohistochemistry or mass spectrometry. Standard end organ assessments, including pulmonary function test (PFT) and chest tomography (CT) imaging, and extra-thoracic biopsies established the extent of disease. Results Twenty-five (21.7%) of 115 patients with lung amyloidosis were diagnosed by TBBX. PFT classified 33.3% with restrictive physiology, 28.6% with obstructive disease, and 9.5% mixed physiology; 9.5% exhibited isolated diffusion defects while 19% had normal pulmonary testing. Two view chest or CT imaging identified focal opacities in 52% of cases and diffuse interstitial disease in 48%. Amyloid type and disease extent included 68% systemic AL disease, 16% localized (lung limited) AL disease, 12% ATTR disease, and 4% AA amyloidosis. Fluoroscopy was not used during biopsy. No procedure complications were reported. Conclusions Our case series of 25 patients supports the use of bronchoscopic transbronchial biopsies for diagnosis of parenchymal lung amyloidosis. Normal PFTs do not rule out the histologic presence of amyloid lung disease. PMID:28393574

  6. Idh2 Deficiency Exacerbates Acrolein-Induced Lung Injury through Mitochondrial Redox Environment Deterioration

    Directory of Open Access Journals (Sweden)

    Jung Hyun Park

    2017-01-01

    Full Text Available Acrolein is known to be involved in acute lung injury and other pulmonary diseases. A number of studies have suggested that acrolein-induced toxic effects are associated with depletion of antioxidants, such as reduced glutathione and protein thiols, and production of reactive oxygen species. Mitochondrial NADP+-dependent isocitrate dehydrogenase (idh2 regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury via generation of NADPH. Therefore, we evaluated the role of idh2 in acrolein-induced lung injury using idh2 short hairpin RNA- (shRNA- transfected Lewis lung carcinoma (LLC cells and idh2-deficient (idh2−/− mice. Downregulation of idh2 expression increased susceptibility to acrolein via induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Idh2 deficiency also promoted acrolein-induced lung injury in idh2 knockout mice through the disruption of mitochondrial redox status. In addition, acrolein-induced toxicity in idh2 shRNA-transfected LLC cells and in idh2 knockout mice was ameliorated by the antioxidant, N-acetylcysteine, through attenuation of oxidative stress resulting from idh2 deficiency. In conclusion, idh2 deficiency leads to mitochondrial redox environment deterioration, which causes acrolein-mediated apoptosis of LLC cells and acrolein-induced lung injury in idh2−/− mice. The present study supports the central role of idh2 deficiency in inducing oxidative stress resulting from acrolein-induced disruption of mitochondrial redox status in the lung.

  7. Idh2 Deficiency Exacerbates Acrolein-Induced Lung Injury through Mitochondrial Redox Environment Deterioration.

    Science.gov (United States)

    Park, Jung Hyun; Ku, Hyeong Jun; Lee, Jin Hyup; Park, Jeen-Woo

    2017-01-01

    Acrolein is known to be involved in acute lung injury and other pulmonary diseases. A number of studies have suggested that acrolein-induced toxic effects are associated with depletion of antioxidants, such as reduced glutathione and protein thiols, and production of reactive oxygen species. Mitochondrial NADP + -dependent isocitrate dehydrogenase ( idh2 ) regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury via generation of NADPH. Therefore, we evaluated the role of idh2 in acrolein-induced lung injury using idh2 short hairpin RNA- (shRNA-) transfected Lewis lung carcinoma (LLC) cells and idh2 -deficient ( idh2 -/- ) mice. Downregulation of idh2 expression increased susceptibility to acrolein via induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Idh2 deficiency also promoted acrolein-induced lung injury in idh2 knockout mice through the disruption of mitochondrial redox status. In addition, acrolein-induced toxicity in idh2 shRNA-transfected LLC cells and in idh2 knockout mice was ameliorated by the antioxidant, N-acetylcysteine, through attenuation of oxidative stress resulting from idh2 deficiency. In conclusion, idh2 deficiency leads to mitochondrial redox environment deterioration, which causes acrolein-mediated apoptosis of LLC cells and acrolein-induced lung injury in idh2 -/- mice. The present study supports the central role of idh2 deficiency in inducing oxidative stress resulting from acrolein-induced disruption of mitochondrial redox status in the lung.

  8. Uranium induces oxidative stress in lung epithelial cells

    International Nuclear Information System (INIS)

    Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.; Ramesh, Govindarajan T.

    2007-01-01

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system's response to the oxidative stress induced by uranium in the cells. (orig.)

  9. Number of deaths due to lung diseases: How large is the problem?

    International Nuclear Information System (INIS)

    Wagener, D.K.

    1990-01-01

    The importance of lung disease as an indicator of environmentally induced adverse health effects has been recognized by inclusion among the Health Objectives for the Nation. The 1990 Health Objectives for the Nation (US Department of Health and Human Services, 1986) includes an objective that there should be virtually no new cases among newly exposed workers for four preventable occupational lung diseases-asbestosis, byssinosis, silicosis, and coal workers' pneumoconiosis. This brief communication describes two types of cause-of-death statistics- underlying and multiple cause-and demonstrates the differences between the two statistics using lung disease deaths among adult men. The choice of statistic has a large impact on estimated lung disease mortality rates. The choice of statistics also may have large effect on the estimated mortality rates due to other chromic diseases thought to be environmentally mediated. Issues of comorbidity and the way causes of death are reported become important in the interpretation of these statistics. The choice of which statistic to use when comparing data from a study population with national statistics may greatly affect the interpretations of the study findings

  10. Pulmonary nuclear medicine: Techniques in diagnosis of lung disease

    International Nuclear Information System (INIS)

    Atkins, H.L.

    1984-01-01

    This book presents papers on the application of nuclear medicine to the diagnosis of lung diseases. Topics considered include lung physiology and anatomy, radiopharmaceuticals in pulmonary medicine, pulmonary embolism, obstructive pulmonary disease, diffuse infiltrative lung disease, pneumoconioses, tumor localization scans in primary lung tumors, the interactions of heart diseases and lung diseases on radionuclide tests of lung anatomy and function, radionuclide imaging in pediatric lung diseases, and future possibilities in pulmonary nuclear medicine

  11. Mechanisms of physical activity limitation in chronic lung diseases.

    Science.gov (United States)

    Vogiatzis, Ioannis; Zakynthinos, George; Andrianopoulos, Vasileios

    2012-01-01

    In chronic lung diseases physical activity limitation is multifactorial involving respiratory, hemodynamic, and peripheral muscle abnormalities. The mechanisms of limitation discussed in this paper relate to (i) the imbalance between ventilatory capacity and demand, (ii) the imbalance between energy demand and supply to working respiratory and peripheral muscles, and (iii) the factors that induce peripheral muscle dysfunction. In practice, intolerable exertional symptoms (i.e., dyspnea) and/or leg discomfort are the main symptoms that limit physical performance in patients with chronic lung diseases. Furthermore, the reduced capacity for physical work and the adoption of a sedentary lifestyle, in an attempt to avoid breathlessness upon physical exertion, cause profound muscle deconditioning which in turn leads to disability and loss of functional independence. Accordingly, physical inactivity is an important component of worsening the patients' quality of life and contributes importantly to poor prognosis. Identifying the factors which prevent a patient with lung disease to easily carry out activities of daily living provides a unique as well as important perspective for the choice of the appropriate therapeutic strategy.

  12. Mechanisms of Physical Activity Limitation in Chronic Lung Diseases

    Directory of Open Access Journals (Sweden)

    Ioannis Vogiatzis

    2012-01-01

    Full Text Available In chronic lung diseases physical activity limitation is multifactorial involving respiratory, hemodynamic, and peripheral muscle abnormalities. The mechanisms of limitation discussed in this paper relate to (i the imbalance between ventilatory capacity and demand, (ii the imbalance between energy demand and supply to working respiratory and peripheral muscles, and (iii the factors that induce peripheral muscle dysfunction. In practice, intolerable exertional symptoms (i.e., dyspnea and/or leg discomfort are the main symptoms that limit physical performance in patients with chronic lung diseases. Furthermore, the reduced capacity for physical work and the adoption of a sedentary lifestyle, in an attempt to avoid breathlessness upon physical exertion, cause profound muscle deconditioning which in turn leads to disability and loss of functional independence. Accordingly, physical inactivity is an important component of worsening the patients’ quality of life and contributes importantly to poor prognosis. Identifying the factors which prevent a patient with lung disease to easily carry out activities of daily living provides a unique as well as important perspective for the choice of the appropriate therapeutic strategy.

  13. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    OpenAIRE

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Liu, Lintao; Isobe, Ken-ichi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing...

  14. Mitochondria in Lung Diseases

    Science.gov (United States)

    Aravamudan, Bharathi; Thompson, Michael A.; Pabelick, Christina M.; Prakash, Y. S.

    2014-01-01

    Summary Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering, and cell fate determination. Regulation of their morphology and diverse activities beyond energy production are being recognized as playing major roles in cellular health and dysfunction. This review is aimed at summarizing what is known regarding mitochondrial contributions to pathogenesis of lung diseases. Emphasis is given to understanding the importance of structural and functional aspects of mitochondria in both normal cellular function (based on knowledge from other cell types) and in development and modulation of lung diseases such as asthma, COPD, cystic fibrosis and cancer. Emerging techniques that allow examination of mitochondria, and potential strategies to target mitochondria in the treatment of lung diseases are also discussed. PMID:23978003

  15. Interstitial lung disease: Diagnostic approach

    OpenAIRE

    Kaushik Saha

    2014-01-01

    Interstitial lung disease (ILD) is a final common pathway of a broad heterogeneous group of parenchymal lung disorders. It is characterized by progressive fibrosis of the lung leading to restriction and diminished oxygen transfer. Clinically, the presenting symptoms of ILD are non-specific (cough and progressive dyspnea on exertion) and are often attributed to other diseases, thus delaying diagnosis and timely therapy. Clues from the medical history along with the clinical context and radiolo...

  16. Intersections of lung progenitor cells, lung disease and lung cancer.

    Science.gov (United States)

    Kim, Carla F

    2017-06-30

    The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.

  17. Intersections of lung progenitor cells, lung disease and lung cancer

    Directory of Open Access Journals (Sweden)

    Carla F. Kim

    2017-06-01

    Full Text Available The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials.

  18. Gastroesophageal reflux and lung disease.

    Science.gov (United States)

    Meyer, Keith C

    2015-08-01

    Gastroesophageal reflux (GER) can cause respiratory symptoms and may trigger, drive and/or worsen airway disorders, interstitial lung diseases and lung allograft dysfunction. Whether lifestyle changes and acid suppression alone can counter and prevent the adverse effects of GER on the respiratory tract remains unclear. Recent data suggest that antireflux surgery may be more effective in preventing lung disease progression in patients with idiopathic pulmonary fibrosis or lung transplant recipients who have evidence of allograft dysfunction associated with the presence of excessive GER. Additional research and clinical trials are needed to determine the role of GER in various lung disorders and identify which interventions are most efficacious in preventing the respiratory consequences of gastroesophageal reflux disease. In addition, measuring biomarkers that indicate that gastric refluxate has been aspirated into the lower respiratory tract (e.g., pepsin and bile acid concentrations in bronchoalveolar lavage fluid) may prove helpful in both diagnosis and therapeutic decision making.

  19. Lung Manifestations in the Rheumatic Diseases.

    Science.gov (United States)

    Doyle, Tracy J; Dellaripa, Paul F

    2017-12-01

    Lung ailments in rheumatic diseases present unique challenges for diagnosis and management and are a source of significant morbidity and mortality for patients. Unlike the idiopathic interstitial pneumonias, patients with rheumatic diseases experience lung disease in the context of a systemic disease that may make it more difficult to recognize and that may present greater risks with treatment. Despite recent advances in our awareness of these diseases, there is still a significant lack of understanding of natural history to elucidate which patients will have disease that is progressive and thus warrants treatment. What we do know is that a subset of patients with rheumatic disease experience parenchymal lung disease that can prognostically resemble idiopathic pulmonary fibrosis, such as in rheumatoid arthritis, and that others can have aggressive inflammatory lung disease in the context of autoimmune myositis, systemic sclerosis, or an undifferentiated autoimmune process. As we enter into a paradigm shift where we view lung health as a cornerstone of our care of patients with rheumatic diseases, we hopefully will improve our ability to identify those patients at highest risk for pulmonary disease and progression, and offer emerging treatments which will result in better outcomes and a better quality of life. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  20. Obesity-Induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury.

    Science.gov (United States)

    Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross

    2017-08-01

    Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese

  1. Parasitic diseases of lungs

    International Nuclear Information System (INIS)

    Rozenshtraukh, L.C.; Rybakova, N.I.; Vinner, M.G.

    1987-01-01

    Roentgenologic semiotics of the main parasitic diseases of lungs is described: echinococcosis, paragonimiasis, cysticercosis, toxoplasmosis, ascariasis, amebiosis and some rarely met parasitic diseases

  2. Exposure to neonatal cigarette smoke causes durable lung changes but does not potentiate cigarette smoke–induced chronic obstructive pulmonary disease in adult mice

    Science.gov (United States)

    McGrath-Morrow, Sharon; Malhotra, Deepti; Lauer, Thomas; Collaco, J. Michael; Mitzner, Wayne; Neptune, Enid; Wise, Robert; Biswal, Shyam

    2016-01-01

    The impact of early childhood cigarette smoke (CS) exposure on CS-induced chronic obstructive pulmonary disease (COPD) is unknown. This study was performed to evaluate the individual and combined effects of neonatal and adult CS exposure on lung structure, function, and gene expression in adult mice. To model a childhood CS exposure, neonatal C57/B6 mice were exposed to 14 days of CS (Neo CS). At 10 weeks of age, Neo CS and control mice were exposed to 4 months of CS. Pulmonary function tests, bronchoalveolar lavage, and lung morphometry were measured and gene expression profiling was performed on lung tissue. Mean chord lengths and lung volumes were increased in neonatal and/or adult CS-exposed mice. Differences in immune, cornified envelope protein, muscle, and erythrocyte genes were found in CS-exposed lung. Neonatal CS exposure caused durable structural and functional changes in the adult lung but did not potentiate CS-induced COPD changes. Cornified envelope protein gene expression was decreased in all CS-exposed mice, whereas myosin and erythrocyte gene expression was increased in mice exposed to both neonatal and adult CS, suggesting an adaptive response. Additional studies may be warranted to determine the utility of these genes as biomarkers of respiratory outcomes. PMID:21649527

  3. Interactions of heart disease and lung disease on radionuclide tests of lung anatomy and function

    International Nuclear Information System (INIS)

    Pierson, R.N. Jr.; Barrett, C.R. Jr.; Yamashina, A.; Friedman, M.I.

    1984-01-01

    This paper considers the effects of heat diseases on lung anatomy, lung function, and pulmonary nuclear test procedures, and also the effects of lung diseases on cardiac function, with particular reference to radionuclide tests. Historically, pulmonary nuclear medicine has been focused on discovering and quantifying pulmonary embolism, but the potential of nuclear tracer techniques to carry out high-precision, regional, quantitative measurements of blood flow, air flow, and membrane transport promises a much more powerful and wide-ranging diagnostic application than the search for pulmonary emboli. The authors therefore define normal anatomy and function in a framework suitable to develop the relationships between cardiac and pulmonary function, with particular attention to regional differences in lung function, since regional measurements provide a special province for radionuclide lung studies

  4. Enhancement of the acrolein-induced production of reactive oxygen species and lung injury by GADD34.

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Liu, Lintao; Isobe, Ken-ichi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS). Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury.

  5. Inhaled ENaC antisense oligonucleotide ameliorates cystic fibrosis-like lung disease in mice.

    Science.gov (United States)

    Crosby, Jeff R; Zhao, Chenguang; Jiang, Chong; Bai, Dong; Katz, Melanie; Greenlee, Sarah; Kawabe, Hiroshi; McCaleb, Michael; Rotin, Daniela; Guo, Shuling; Monia, Brett P

    2017-11-01

    Epithelial sodium channel (ENaC, Scnn1) hyperactivity in the lung leads to airway surface dehydration and mucus accumulation in cystic fibrosis (CF) patients and in mice with CF-like lung disease. We identified several potent ENaC specific antisense oligonucleotides (ASOs) and tested them by inhalation in mouse models of CF-like lung disease. The inhaled ASOs distributed into lung airway epithelial cells and decreased ENaC expression by inducing RNase H1-dependent degradation of the targeted Scnn1a mRNA. Aerosol delivered ENaC ASO down-regulated mucus marker expression and ameliorated goblet cell metaplasia, inflammation, and airway hyper-responsiveness. Lack of systemic activity of ASOs delivered via the aerosol route ensures the safety of this approach. Our results demonstrate that antisense inhibition of ENaC in airway epithelial cells could be an effective and safe approach for the prevention and reversal of lung symptoms in CF and potentially other inflammatory diseases of the lung. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  6. Correlates of lung/heart ratio of thallium-201 in coronary artery disease

    International Nuclear Information System (INIS)

    Homma, S.; Kaul, S.; Boucher, C.A.

    1987-01-01

    We studied 306 patients with chest pain (262 with coronary artery disease and 44 with no coronary artery disease) to determine which of 23 clinical, exercise, thallium, and angiographic variables best discriminate between patients with increased lung/heart ratios of thallium versus those with normal ratios. Normal lung/heart ratio values were defined using an additional 45 subjects with less than 1% probability of coronary artery disease. The number of diseased vessels was the best discriminator between patients with increased ratios versus those with normal ratios. Double product at peak exercise, number of segments with abnormal wall motion, patient gender, and duration of exercise were also significant discriminators. Using discriminant function analysis these variables could correctly identify 81% of cases with increased lung/heart ratios and 72% of cases with normal ratios. These results indicate that an increased lung/heart ratio of thallium reflects exercise-induced left ventricular dysfunction and affords a better understanding of why this thallium parameter is a powerful prognostic indicator in patients with chest pain

  7. Prostaglandin D2 Attenuates Bleomycin-Induced Lung Inflammation and Pulmonary Fibrosis.

    Science.gov (United States)

    Kida, Taiki; Ayabe, Shinya; Omori, Keisuke; Nakamura, Tatsuro; Maehara, Toko; Aritake, Kosuke; Urade, Yoshihiro; Murata, Takahisa

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal lung disease with limited therapeutic options. Although it is well known that lipid mediator prostaglandins are involved in the development of pulmonary fibrosis, the role of prostaglandin D2 (PGD2) remains unknown. Here, we investigated whether genetic disruption of hematopoietic PGD synthase (H-PGDS) affects the bleomycin-induced lung inflammation and pulmonary fibrosis in mouse. Compared with H-PGDS naïve (WT) mice, H-PGDS-deficient mice (H-PGDS-/-) represented increased collagen deposition in lungs 14 days after the bleomycin injection. The enhanced fibrotic response was accompanied by an increased mRNA expression of inflammatory mediators, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and cyclooxygenase-2 on day 3. H-PGDS deficiency also increased vascular permeability on day 3 and infiltration of neutrophils and macrophages in lungs on day 3 and 7. Immunostaining showed that the neutrophils and macrophages expressed H-PGDS, and its mRNA expression was increased on day 3and 7 in WT lungs. These observations suggest that H-PGDS-derived PGD2 plays a protective role in bleomycin-induced lung inflammation and pulmonary fibrosis.

  8. Endoplasmic reticulum stress in lung disease

    Directory of Open Access Journals (Sweden)

    Stefan J. Marciniak

    2017-06-01

    Full Text Available Exposure to inhaled pollutants, including fine particulates and cigarette smoke is a major cause of lung disease in Europe. While it is established that inhaled pollutants have devastating effects on the genome, it is now recognised that additional effects on protein folding also drive the development of lung disease. Protein misfolding in the endoplasmic reticulum affects the pathogenesis of many diseases, ranging from pulmonary fibrosis to cancer. It is therefore important to understand how cells respond to endoplasmic reticulum stress and how this affects pulmonary tissues in disease. These insights may offer opportunities to manipulate such endoplasmic reticulum stress pathways and thereby cure lung disease.

  9. Appearance of radiation-induced lesions after radiotherapy for Hodgkin's disease of the mediastinum and lungs

    Energy Technology Data Exchange (ETDEWEB)

    Zomer-Drozda, J [Instytut Onkologii, Warsaw (Poland)

    1976-01-01

    The incidence of radiation-induced lesions of lung tissue adjacent to the mediastinum and covered by radiation was established on the basis of a retrospective analysis of radiograms of 245 patients treated at the Institute of Oncology in Warsaw in the years 1951-1968, who received radiotherapy to the mediastinal lymph nodes. The radiation-induced lesions were divided into 4 grades depending on their extent and intensity of pulmonary tissue damage. Criteria for classification of radiation-induced fibrosis into the above mentioned grades were established. The correlation between radiation-induced injury and the doses of X-rays applied to the mediastinal lymph nodes was analysed. The importance of radiation-induced changes in the mediastinum and lungs for the diagnosis of recurrences in the irradiated fields, in the marginal areas and granulomatous infiltrations in pulmonary tissue is discussed.

  10. Imaging of macrophage-related lung diseases

    International Nuclear Information System (INIS)

    Marten, Katharina; Hansell, David M.

    2005-01-01

    Macrophage-related pulmonary diseases are a heterogeneous group of disorders characterized by macrophage accumulation, activation or dysfunction. These conditions include smoking-related interstitial lung diseases, metabolic disorders such as Niemann-Pick or Gaucher disease, and rare primary lung tumors. High-resolution computed tomography abnormalities include pulmonary ground-glass opacification secondary to infiltration by macrophages, centrilobular nodules or interlobular septal thickening reflecting peribronchiolar or septal macrophage accumulation, respectively, emphysema caused by macrophage dysfunction, and honeycombing following macrophage-related lung matrix remodeling. (orig.)

  11. Histological findings and lung dust analysis as the basis for occupational disease compensation in asbestos-related lung cancer in Germany.

    Science.gov (United States)

    Feder, Inke Sabine; Theile, Anja; Tannapfel, Andrea

    2018-01-15

    This study has researched the significance of histologically raised findings and lung dust analyses in the context of claiming the recognition of and thus compensation for an asbestos-associated occupational disease. For this approach, all findings from the German Mesothelioma Register in 2015 that included lung dust analyses were evaluated and were compared with information on asbestos fiber exposure at work based on fiber years, and with the results of radiological findings. For 68 insured persons, recognition of an asbestos-induced lung disease according to Section 4104 of the German Ordinance on Occupational Diseases (Berufskrankheitenverordnung - BKV) could be recommended solely on the basis of the histological examinations of lung tissues and complementary lung dust analyses. Neither did the calculation of the cumulative asbestos dust exposure at work yield 25 fiber years, nor could bridge findings (e.g., plaques) be identified. In addition, the autopsies of 12 patients revealed plaques that had not been diagnosed during radiological examinations. These results show that - irrespective of the prescribed working techniques and radiological diagnosis - pathological/anatomical and histological diagnostics are often the only way for the insureds to demonstrate the causal connection between asbestos and their disease. Even after long intervals of up to 40 years post last exposure, the asbestos fibers would still be easily detectable in the lung tissues evaluated. Whenever suitable tissue is available, it should be examined for mild asbestosis with the aid of a lung dust analysis. Otherwise there is a risk that an occupational disease is wrongfully rejected. In the context of health insurance, the lung dust analysis and the resulting proof of the presence of asbestosis often constitute one option of providing evidence of an occupational disease. Int J Occup Med Environ Health 2018;31(3):293-305. This work is available in Open Access model and licensed under a CC BY

  12. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-ichi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS). Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury. PMID:25821552

  13. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2015-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS. Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury.

  14. Interstitial lung disease associated with connective tissue diseases

    International Nuclear Information System (INIS)

    Medina, Yimy F; Restrepo, Jose Felix; Iglesias, Antonio; Ojeda, Paulina; Matiz, Carlos

    2007-01-01

    An interstitial lung disease (ILD) belongs to a group of diffuse parenchyma lung diseases it should be differentiated from other pathologies among those are idiopathic and ILD associated to connective tissue diseases (CTD) New concepts have been developed in the last years and they have been classified in seven defined subgroups. It has been described the association of each one of these subgroups with CTD. Natural history and other aspects of its treatment is not known completely .For complete diagnose it is required clinical, image and histopathologic approaches. The biopsy lung plays an essential role. It is important to promote and to stimulate the subclasification of each subgroup with the purpose of knowing their natural history directing the treatment and to improve their outcome

  15. Chronic interstitial lung disease in children

    Directory of Open Access Journals (Sweden)

    Matthias Griese

    2018-02-01

    Full Text Available Children's interstitial lung diseases (chILD are increasingly recognised and contain many lung developmental and genetic disorders not yet identified in adult pneumology. Worldwide, several registers have been established. The Australasian Registry Network for Orphan Lung Disease (ARNOLD has identified problems in estimating rare disease prevalence; focusing on chILD in immunocompetent patients, a period prevalence of 1.5 cases per million children and a mortality rate of 7% were determined. The chILD-EU register highlighted the workload to be covered per patient included and provided protocols for diagnosis and initial treatment, similar to the United States chILD network. Whereas case reports may be useful for young physicians to practise writing articles, cohorts of patients can catapult progress, as demonstrated by recent studies on persistent tachypnoea of infancy, hypersensitivity pneumonitis in children and interstitial lung disease related to interferonopathies from mutations in transmembrane protein 173. Translational research has linked heterozygous mutations in the ABCA3 transporter to an increased risk of interstitial lung diseases, not only in neonates, but also in older children and adults. For surfactant dysfunction disorders in infancy and early childhood, lung transplantation was reported to be as successful as in adult patients. Mutual potentiation of paediatric and adult pneumologists is mandatory in this rapidly extending field for successful future development. This brief review highlights publications in the field of paediatric interstitial lung disease as reviewed during the Clinical Year in Review session presented at the 2017 European Respiratory Society (ERS Annual Congress in Milan, Italy. It was commissioned by the ERS and critically presents progress made as well as drawbacks.

  16. 67Gallium citrate lung scans in interstitial lung disease

    International Nuclear Information System (INIS)

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.

    1976-01-01

    Patients with diffuse interstitial lung disease often require a lung biopsy to determine the diagnosis and proper therapy. However, once the diagnosis is established, clinical evaluation of symptoms, chest roentgenogram and pulmonary function testing are the only noninvasive means currently available to assess activity of the disease process and response to the therapy. Although these measures appear adequate in the presence of acute active disease in which response to therapy results in readily demonstrable changes in the above parameters, they may be insensitive to subtle changes that can occur in minimally active disease with slowly progressive interstitial pulmonary fibrosis over a period of years. A more sensitive noninvasive technique for identifying these cases with a smoldering diffuse interstitial inflammatory process might greatly improve our ability to effectively manage such patients. With this in mind, the value of gallium lung scan was investigated to assess its ability to predict inflammatory activity in such a clinical setting

  17. Induced hypernatraemia is protective in acute lung injury.

    Science.gov (United States)

    Bihari, Shailesh; Dixon, Dani-Louise; Lawrence, Mark D; Bersten, Andrew D

    2016-06-15

    Sucrose induced hyperosmolarity is lung protective but the safety of administering hyperosmolar sucrose in patients is unknown. Hypertonic saline is commonly used to produce hyperosmolarity aimed at reducing intra cranial pressure in patients with intracranial pathology. Therefore we studied the protective effects of 20% saline in a lipopolysaccharide lung injury rat model. 20% saline was also compared with other commonly used fluids. Following lipopolysaccharide-induced acute lung injury, male Sprague Dawley rats received either 20% hypertonic saline, 0.9% saline, 4% albumin, 20% albumin, 5% glucose or 20% albumin with 5% glucose, i.v. During 2h of non-injurious mechanical ventilation parameters of acute lung injury were assessed. Hypertonic saline resulted in hypernatraemia (160 (1) mmol/l, mean (SD)) maintained through 2h of ventilation, and in amelioration of lung oedema, myeloperoxidase, bronchoalveolar cell infiltrate, total soluble protein and inflammatory cytokines, and lung histological injury score, compared with positive control and all other fluids (p ≤ 0.001). Lung physiology was maintained (conserved PaO2, elastance), associated with preservation of alveolar surfactant (p ≤ 0.0001). Independent of fluid or sodium load, induced hypernatraemia is lung protective in lipopolysaccharide-induced acute lung injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Gastroesophageal Reflux Disease in Children with Interstitial Lung Disease.

    Science.gov (United States)

    Dziekiewicz, M A; Karolewska-Bochenek, K; Dembiński, Ł; Gawronska, A; Krenke, K; Lange, J; Banasiuk, M; Kuchar, E; Kulus, M; Albrecht, P; Banaszkiewicz, A

    2016-01-01

    Gastroesophageal reflux disease is common in adult patients with interstitial lung disease. However, no data currently exist regarding the prevalence and characteristics of the disease in pediatric patients with interstitial lung disease. The aim of the present study was to prospectively assess the incidence of gastroesophageal reflux disease and characterize its features in children with interstitial lung disease. Gastroesophageal reflux disease was established based on 24 h pH-impedance monitoring (MII-pH). Gastroesophageal reflux episodes (GERs) were classified according to widely recognized criteria as acid, weakly acid, weakly alkaline, or proximal. Eighteen consecutive patients (15 boys, aged 0.2-11.6 years) were enrolled in the study. Gastroesophageal reflux disease was diagnosed in a half (9/18) of children. A thousand GERs were detected by MII-pH (median 53.5; IQR 39.0-75.5). Of these, 585 (58.5 %) episodes were acidic, 407 (40.7 %) were weakly acidic, and eight (0.8 %) were weakly alkaline. There were 637 (63.7 %) proximal GERs. The patients in whom gastroesophageal reflux disease was diagnosed had a significantly higher number of proximal and total GERs. We conclude that the prevalence of gastroesophageal reflux disease in children with interstitial lung disease is high; thus, the disease should be considered regardless of presenting clinical symptoms. A high frequency of non-acid and proximal GERs makes the MII-pH method a preferable choice for the detection of reflux episodes in this patient population.

  19. Nontypeable Haemophilus influenzae induces sustained lung oxidative stress and protease expression.

    Directory of Open Access Journals (Sweden)

    Paul T King

    Full Text Available Nontypeable Haemophilus influenzae (NTHi is a prevalent bacterium found in a variety of chronic respiratory diseases. The role of this bacterium in the pathogenesis of lung inflammation is not well defined. In this study we examined the effect of NTHi on two important lung inflammatory processes 1, oxidative stress and 2, protease expression. Bronchoalveolar macrophages were obtained from 121 human subjects, blood neutrophils from 15 subjects, and human-lung fibroblast and epithelial cell lines from 16 subjects. Cells were stimulated with NTHi to measure the effect on reactive oxygen species (ROS production and extracellular trap formation. We also measured the production of the oxidant, 3-nitrotyrosine (3-NT in the lungs of mice infected with this bacterium. NTHi induced widespread production of 3-NT in mouse lungs. This bacterium induced significantly increased ROS production in human fibroblasts, epithelial cells, macrophages and neutrophils; with the highest levels in the phagocytic cells. In human macrophages NTHi caused a sustained, extracellular production of ROS that increased over time. The production of ROS was associated with the formation of macrophage extracellular trap-like structures which co-expressed the protease metalloproteinase-12. The formation of the macrophage extracellular trap-like structures was markedly inhibited by the addition of DNase. In this study we have demonstrated that NTHi induces lung oxidative stress with macrophage extracellular trap formation and associated protease expression. DNase inhibited the formation of extracellular traps.

  20. Endothelial Semaphorin 7A promotes inflammation in seawater aspiration-induced acute lung injury.

    Science.gov (United States)

    Zhang, Minlong; Wang, Li; Dong, Mingqing; Li, Zhichao; Jin, Faguang

    2014-10-28

    Inflammation is involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI). Although several studies have shown that Semaphorin 7A (SEMA7A) promotes inflammation, there are limited reports regarding immunological function of SEMA7A in seawater aspiration-induced ALI. Therefore, we investigated the role of SEMA7A during seawater aspiration-induced ALI. Male Sprague-Dawley rats were underwent seawater instillation. Then, lung samples were collected at an indicated time for analysis. In addition, rat pulmonary microvascular endothelial cells (RPMVECs) were cultured and then stimulated with 25% seawater for indicated time point. After these treatments, cells samples were collected for analysis. In vivo, seawater instillation induced lung histopathologic changes, pro-inflammation cytokines release and increased expression of SEMA7A. In vitro, seawater stimulation led to pro-inflammation cytokine release, cytoskeleton remodeling and increased monolayer permeability in pulmonary microvascular endothelial cells. In addition, knockdown of hypoxia-inducible factor (HIF)-1α inhibited the seawater induced increase expression of SEMA7A. Meanwhile, knockdown of SEMA7A by specific siRNA inhibited the seawater induced aberrant inflammation, endothelial cytoskeleton remodeling and endothelial permeability. These results suggest that SEMA7A is critical in the development of lung inflammation and pulmonary edema in seawater aspiration-induced ALI, and may be a therapeutic target for this disease.

  1. Interstitial lung disease during trimethoprim/sulfamethoxazole administration

    International Nuclear Information System (INIS)

    Yuzurio, Syota; Horita, Naokatsu; Shiota, Yutaro; Kanehiro, Arihiko; Tanimoto, Mitsune

    2010-01-01

    We studied clinical and radiographic features of interstitial lung disease (ILD) during trimethoprim/sulfamethoxazole (TMP/SMX) administration. Ten patients who had received prednisolone treatment for underlying diffuse pulmonary disease showed various ILDs after introduction of TMP/SMX. The radiographic features of the ILDs were not consistent with infectious disease or exacerbation of the underlying disease, and these diagnoses were excluded radiographically and on clinical grounds during the differential diagnosis of the ILDs. These ILDs emerged relatively early after introduction of TMP/SMX, which is consistent with the former case report of drug-induced ILD (DI-ILD) caused by TMP/SMX. Therefore DI-ILDs caused by TMP/SMX were suspected in these cases. In most of these cases, the ILDs were clinically mild and disappeared immediately although administration of TMP/SMX was continued. (author)

  2. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    International Nuclear Information System (INIS)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-01-01

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H 2 O 2 ) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H 2 O 2 treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells

  3. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  4. Pathophysiology of Pulmonary Hypertension in Chronic Parenchymal Lung Disease.

    Science.gov (United States)

    Singh, Inderjit; Ma, Kevin Cong; Berlin, David Adam

    2016-04-01

    Pulmonary hypertension commonly complicates chronic obstructive pulmonary disease and interstitial lung disease. The association of chronic lung disease and pulmonary hypertension portends a worse prognosis. The pathophysiology of pulmonary hypertension differs in the presence or absence of lung disease. We describe the physiological determinants of the normal pulmonary circulation to better understand the pathophysiological factors implicated in chronic parenchymal lung disease-associated pulmonary hypertension. This review will focus on the pathophysiology of 3 forms of chronic lung disease-associated pulmonary hypertension: idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and sarcoidosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Pneumovirus-Induced Lung Disease in Mice Is Independent of Neutrophil-Driven Inflammation

    NARCIS (Netherlands)

    Cortjens, Bart; Lutter, René; Boon, Louis; Bem, Reinout A.; van Woensel, Job B. M.

    2016-01-01

    The human pneumovirus respiratory syncytial virus (RSV) is the most common pathogen causing lower respiratory tract disease in young children worldwide. A hallmark of severe human RSV infection is the strong neutrophil recruitment to the airways and lungs. Massive neutrophil activation has been

  6. Black lung: the social production of disease.

    Science.gov (United States)

    Smith, B E

    1981-01-01

    The black lung movement that erupted in West Virginia in 1968 was not simply a struggle for recognition of an occupational disease; it grew into a bitter controversy over who would control the definition of that disease. This article examines the historical background and medical politics of that controversy, arguing that black lung was socially produced and defined on several different levels. As a medical construct, the changing definitions of this disease can be traced to major shifts in the political economy of the coal industry. As an occupational disease, the history of black lung is internally related to the history of the workplace in which it is produced. As the object of a mass movement, black lung acquired a political definition that grew out of the collective experience of miners and their families. The definition of disease with which black lung activists challenged the medical establishment has historical roots and justification; their experience suggests that other health advocates may need to redefine the diseases they hope to eradicate.

  7. Experimental chronic kidney disease attenuates ischemia-reperfusion injury in an ex vivo rat lung model.

    Directory of Open Access Journals (Sweden)

    Chung-Kan Peng

    Full Text Available Lung ischemia reperfusion injury (LIRI is one of important complications following lung transplant and cardiopulmonary bypass. Although patients on hemodialysis are still excluded as lung transplant donors because of the possible effects of renal failure on the lungs, increased organ demand has led us to evaluate the influence of chronic kidney disease (CKD on LIRI. A CKD model was induced by feeding Sprague-Dawley rats an adenine-rich (0.75% diet for 2, 4 and 6 weeks, and an isolated rat lung in situ model was used to evaluate ischemia reperfusion (IR-induced acute lung injury. The clinicopathological parameters of LIRI, including pulmonary edema, lipid peroxidation, histopathological changes, immunohistochemistry changes, chemokine CXCL1, inducible nitric oxide synthase (iNOS, proinflammatory and anti-inflammatory cytokines, heat shock protein expression, and nuclear factor-κB (NF-κB activation were determined. Our results indicated that adenine-fed rats developed CKD as characterized by increased blood urea nitrogen and creatinine levels and the deposition of crystals in the renal tubules and interstitium. IR induced a significant increase in the pulmonary arterial pressure, lung edema, lung injury scores, the expression of CXCL1 mRNA, iNOS level, and protein concentration of the bronchial alveolar lavage fluid (BALF. The tumor necrosis factor-α levels in the BALF and perfusate; the interleukin-10 level in the perfusate; and the malondialdehyde levels in the lung tissue and perfusate were also significantly increased by LIRI. Counterintuitively, adenine-induced CKD significantly attenuated the severity of lung injury induced by IR. CKD rats exhibited increased heat shock protein 70 expression and decreased activation of NF-κB signaling. In conclusion, adenine-induced CKD attenuated LIRI by inhibiting the NF-κB pathway.

  8. Diffuse infiltrative lung disease

    International Nuclear Information System (INIS)

    Niden, A.H.; Mishkin, F.S.

    1984-01-01

    The authors discuss their approach to the diagnosis and management of patients with DILD. Gallium scans play a central role in this process. Not only do they help them decide whom to biopsy, but also where to biopsy. The scans can be used for the early detection of disease in a high-risk population, for following the progression and regression of disease, for the regulation of medication, and for the evaluation of therapy. Bronchoalveolar lung lavage appears to be equally sensitive. However, patients are less willing to undergo repeated fiberoptic bronchoscopies than lung scans. Both tests may prove useful, one complementing the other. Gallium imaging has also been utilized by the authors in select patients with questionable diffuse lung infiltrates roentgenographically or with a normal chest roentgenogram, chronic respiratory symptoms, and abnormal pulmonary function studies. An abnormal gallium lung scan in these clinical situations helps them select which patients have a diffuse active pulmonary process meriting transbronchial biopsies. This has proven to be of particular value in the management of older patients

  9. The effect of patient-specific factors on radiation-induced regional lung injury

    International Nuclear Information System (INIS)

    Garipagaoglu, Melahat; Munley, Michael T.; Hollis, Donna; Poulson, Jean M.; Bentel, Gunilla C.; Sibley, Gregory; Anscher, Mitchell S.; Fan Ming; Jaszczak, Ronald J.; Coleman, R. Edward; Marks, Lawrence B.

    1999-01-01

    Purpose: To assess the impact of patient-specific factors on radiation (RT)-induced reductions in regional lung perfusion. Methods: Fifty patients (32 lung carcinoma, 7 Hodgkin's disease, 9 breast carcinoma and 2 other thoracic tumors) had pre-RT and ≥24-week post-RT single photon emission computed tomography (SPECT) perfusion images to assess the dose dependence of RT-induced reductions in regional lung perfusion. The SPECT data were analyzed using a normalized and non-normalized approach. Furthermore, two different mathematical methods were used to assess the impact of patient-specific factors on the dose-response curve (DRC). First, DRCs for different patient subgroups were generated and compared. Second, in a more formal statistical approach, individual DRCs for regional lung injury for each patient were fit to a linear-quadratic model (reduction = coefficient 1 x dose + coefficient 2 x dose 2 ). Multiple patient-specific factors including tobacco history, pre-RT diffusion capacity to carbon monoxide (DLCO), transforming growth factor-beta (TGF-β), chemotherapy exposure, disease type, and mean lung dose were explored in a multivariate analysis to assess their impact on the coefficients. Results: None of the variables tested had a consistent impact on the radiation sensitivity of regional lung (i.e., the slope of the DRC). In the formal statistical analysis, there was a suggestion of a slight increase in radiation sensitivity in the dose range >40 Gy for nonsmokers (vs. smokers) and in those receiving chemotherapy (vs. no chemotherapy). However, this finding was very dependent on the specific statistical and normalization method used. Conclusion: Patient-specific factors do not have a dramatic effect on RT-induced reduction in regional lung perfusion. Additional studies are underway to better clarify this issue. We continue to postulate that patient-specific factors will impact on how the summation of regional injury translates into whole organ injury

  10. Smoking-related interstitial lung diseases

    International Nuclear Information System (INIS)

    Marten, K.

    2007-01-01

    The most important smoking-related interstitial lung diseases (ILD) are respiratory bronchiolitis, respiratory bronchiolitis-associated interstitial lung disease, desquamative interstitial pneumonia, and Langerhans' cell histiocytosis. Although traditionally considered to be discrete entities, smoking-related ILDs often coexist, thus accounting for the sometimes complex patterns encountered on high-resolution computed tomography (HRCT). Further studies are needed to elucidate the causative role of smoking in the development of pulmonary fibrosis

  11. Estimation of pulmonary hypertension in lung and valvular heart diseases by perfusion lung scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tadashige [Shinshu Univ., Matsumoto, Nagano (Japan). School of Allied Medical Sciences; Tanaka, Masao; Yazaki, Yoshikazu; Kitabayashi, Hirosi; Koizumi, Tomonori; Kubo, Keisi; Sekiguchi, Morie; Yano, Kesato

    1999-06-01

    To estimate pulmonary hypertension, we measured postural differences in pulmonary blood flow for the lateral decubitus positions on perfusion lung scintigrams with Tc-99 m macro-aggregated albumin, applying the method devised by Tanaka et al (Eur J Nucl Med 17: 320-326, 1990). Utilizing a scintillation camera coupled to a minicomputer system, changes in the distribution of pulmonary blood flow caused by gravitational effects, namely, changes in the total count ratios for the right lung versus the left lung in the right and left lateral decubitus positions (R/L), were obtained for 44 patients with lung disease, 95 patients with valvular heart disease, and 23 normal subjects. Mean standard deviation in the R/L ratios was 3.09{+-}1.28 for the normal subjects, 1.97{+-}0.89 for the patients with lung disease, and 1.59{+-}0.59 for the patients with valvular heart disease. The R/L ratios correlated with mean pulmonary arterial pressure and cardio-thoracic ratios in the lung disease and valvular heart disease groups, with pulmonary arteriolar resistance in the former, and with pulmonary capillary wedge pressure in the latter. Defining pulmonary hypertension (>20 mmHg) as an R/L ratio of less than 1.81, which is the mean-1 standard deviation for normal subjects, the sensitivity and the specificity of the R/L ratio for the diagnosis of pulmonary hypertension were 62.9% and 76.2%, respectively, for the lung disease patients, and 80.3% and 61.8%, respectively, for the valvular heart disease patients. This method seems to be useful for the pathophysiologic evaluation of pulmonary perfusion in cases of lung disease and valvular heart disease. (author)

  12. Estimation of pulmonary hypertension in lung and valvular heart diseases by perfusion lung scintigraphy

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Tanaka, Masao; Yazaki, Yoshikazu; Kitabayashi, Hirosi; Koizumi, Tomonori; Kubo, Keisi; Sekiguchi, Morie; Yano, Kesato

    1999-01-01

    To estimate pulmonary hypertension, we measured postural differences in pulmonary blood flow for the lateral decubitus positions on perfusion lung scintigrams with Tc-99 m macro-aggregated albumin, applying the method devised by Tanaka et al (Eur J Nucl Med 17: 320-326, 1990). Utilizing a scintillation camera coupled to a minicomputer system, changes in the distribution of pulmonary blood flow caused by gravitational effects, namely, changes in the total count ratios for the right lung versus the left lung in the right and left lateral decubitus positions (R/L), were obtained for 44 patients with lung disease, 95 patients with valvular heart disease, and 23 normal subjects. Mean standard deviation in the R/L ratios was 3.09±1.28 for the normal subjects, 1.97±0.89 for the patients with lung disease, and 1.59±0.59 for the patients with valvular heart disease. The R/L ratios correlated with mean pulmonary arterial pressure and cardio-thoracic ratios in the lung disease and valvular heart disease groups, with pulmonary arteriolar resistance in the former, and with pulmonary capillary wedge pressure in the latter. Defining pulmonary hypertension (>20 mmHg) as an R/L ratio of less than 1.81, which is the mean-1 standard deviation for normal subjects, the sensitivity and the specificity of the R/L ratio for the diagnosis of pulmonary hypertension were 62.9% and 76.2%, respectively, for the lung disease patients, and 80.3% and 61.8%, respectively, for the valvular heart disease patients. This method seems to be useful for the pathophysiologic evaluation of pulmonary perfusion in cases of lung disease and valvular heart disease. (author)

  13. Malfolded protein structure and proteostasis in lung diseases.

    Science.gov (United States)

    Balch, William E; Sznajder, Jacob I; Budinger, Scott; Finley, Daniel; Laposky, Aaron D; Cuervo, Ana Maria; Benjamin, Ivor J; Barreiro, Esther; Morimoto, Richard I; Postow, Lisa; Weissman, Allan M; Gail, Dorothy; Banks-Schlegel, Susan; Croxton, Thomas; Gan, Weiniu

    2014-01-01

    Recent discoveries indicate that disorders of protein folding and degradation play a particularly important role in the development of lung diseases and their associated complications. The overarching purpose of the National Heart, Lung, and Blood Institute workshop on "Malformed Protein Structure and Proteostasis in Lung Diseases" was to identify mechanistic and clinical research opportunities indicated by these recent discoveries in proteostasis science that will advance our molecular understanding of lung pathobiology and facilitate the development of new diagnostic and therapeutic strategies for the prevention and treatment of lung disease. The workshop's discussion focused on identifying gaps in scientific knowledge with respect to proteostasis and lung disease, discussing new research advances and opportunities in protein folding science, and highlighting novel technologies with potential therapeutic applications for diagnosis and treatment.

  14. Nano-based theranostics for chronic obstructive lung diseases: challenges and therapeutic potential.

    Science.gov (United States)

    Vij, Neeraj

    2011-09-01

    The major challenges in the delivery and therapeutic efficacy of nano-delivery systems in chronic obstructive airway conditions are airway defense, severe inflammation and mucous hypersecretion. Chronic airway inflammation and mucous hypersecretion are hallmarks of chronic obstructive airway diseases, including asthma, COPD (chronic obstructive pulmonary disease) and CF (cystic fibrosis). Distinct etiologies drive inflammation and mucous hypersecretion in these diseases, which are further induced by infection or components of cigarette smoke. Controlling chronic inflammation is at the root of treatments such as corticosteroids, antibiotics or other available drugs, which pose the challenge of sustained delivery of drugs to target cells or tissues. In spite of the wide application of nano-based drug delivery systems, very few are tested to date. Targeted nanoparticle-mediated sustained drug delivery is required to control inflammatory cell chemotaxis, fibrosis, protease-mediated chronic emphysema and/or chronic lung obstruction in COPD. Moreover, targeted epithelial delivery is indispensable for correcting the underlying defects in CF and targeted inflammatory cell delivery for controlling other chronic inflammatory lung diseases. We propose that the design and development of nano-based targeted theranostic vehicles with therapeutic, imaging and airway-defense penetrating capability, will be invaluable for treating chronic obstructive lung diseases. This paper discusses a novel nano-theranostic strategy that we are currently evaluating to treat the underlying cause of CF and COPD lung disease.

  15. Flock worker's lung: chronic interstitial lung disease in the nylon flocking industry.

    Science.gov (United States)

    Kern, D G; Crausman, R S; Durand, K T; Nayer, A; Kuhn, C

    1998-08-15

    Two young men working at a nylon flocking plant in Rhode Island developed interstitial lung disease of unknown cause. Similar clusters at the same company's Canadian plant were reported previously. To define the extent, clinicopathologic features, and potential causes of the apparent disease outbreak. Case-finding survey and retrospective cohort study. Academic occupational medicine program. All workers employed at the Rhode Island plant on or after 15 June 1990. Symptomatic employees had chest radiography, pulmonary function tests, high-resolution computed tomography, and serologic testing. Those with unexplained radiographic or pulmonary function abnormalities underwent bronchoalveolar lavage, lung biopsy, or both. The case definition of "flock worker's lung" required histologic evidence of interstitial lung disease (or lavage evidence of lung inflammation) not explained by another condition. Eight cases of flock worker's lung were identified at the Rhode Island plant. Three cases were characterized by a high proportion of eosinophils (25% to 40%) in lavage fluid. Six of the seven patients who had biopsy had histologic findings of nonspecific interstitial pneumonia, and the seventh had bronchiolitis obliterans organizing pneumonia. All seven of these patients had peribronchovascular interstitial lymphoid nodules, usually with germinal centers, and most had lymphocytic bronchiolitis and interstitial fibrosis. All improved after leaving work. Review of the Canadian tissue specimens showed many similar histologic findings. Among the 165-member study cohort, a 48-fold or greater increase was seen in the sex-adjusted incidence rate of all interstitial lung disease. Work in the nylon flocking industry poses substantial risk for a previously unrecognized occupational interstitial lung disease. Nylon fiber is the suspected cause of this condition.

  16. Comorbidities in interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    George A. Margaritopoulos

    2017-01-01

    Full Text Available Fibrosing lung disorders include a large number of diseases with diverse behaviour. Patients can die because of the progression of their illness, remain stable or even improve after appropriate treatment has been instituted. Comorbidities, such as acute and chronic infection, gastro-oesophageal reflux, pulmonary hypertension, lung cancer, cardiovascular diseases, and obstructive sleep apnoea, can pre-exist or develop at any time during the course of the disease and, if unidentified and untreated, may impair quality of life, impact upon the respiratory status of the patients, and ultimately lead to disease progression and death. Therefore, early identification and accurate treatment of comorbidities is essential.

  17. Allicin Protects against Lipopolysaccharide-Induced Acute Lung ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of allicin, an active component of garlic, on lipopolysaccharide (LPS)- induced acute lung injury. Methods: Wistar rats were subjected to LPS intravenous injection with or without allicin treatment to induce acute lung injury (ALI) model. Also, A549 cells were stimulated with LPS in the ...

  18. [Modern Views on Children's Interstitial Lung Disease].

    Science.gov (United States)

    Boĭtsova, E V; Beliashova, M A; Ovsiannikov, D Iu

    2015-01-01

    Interstitial lung diseases (ILD, diffuse lung diseases) are a heterogeneous group of diseases in which a pathological process primarily involved alveoli and perialveolar interstitium, resulting in impaired gas exchange, restrictive changes of lung ventilation function and diffuse interstitial changes detectable by X-ray. Children's interstitial lung diseases is an topical problem ofpediatricpulmonoogy. The article presents current information about classification, epidemiology, clinical presentation, diagnostics, treatment and prognosis of these rare diseases. The article describes the differences in the structure, pathogenesis, detection of various histological changes in children's ILD compared with adult patients with ILD. Authors cite an instance of registers pediatric patients with ILD. The clinical semiotics of ILD, the possible results of objective research, the frequency of symptoms, the features of medical history, the changes detected on chest X-rays, CT semiotics described in detail. Particular attention was paid to interstitial lung diseases, occurring mainly in newborns and children during the first two years of life, such as congenital deficiencies of surfactant proteins, neuroendocrine cell hyperplasia of infancy, pulmonary interstitial glycogenosis. The diagnostic program for children's ILD, therapy options are presented in this article.

  19. X-ray analysis in lung leptospira disease

    International Nuclear Information System (INIS)

    Deng Shiyong; Peng Shi; He Guoman

    2006-01-01

    Objective: To analysis the X-ray signs and subtype of the lung leptospira disease, and improve the undersdand, reduce the error diagnosis of this diseases. Methods: 40 cases of lung leptospira disease were evaluated about the check X-ray sings and clinical data, the check X-ray sings were dynamic observated and typed, and 40 cases had a diagnostic treatment. Results: There were various X-ray changes of lung leptospira disease. in 40 cases, 12 cases (30%) pulmonary marking, 21 cases (52%) little lesions, and 7 cases(18%) lager lesions, respectively. The patients who were correctly diagnosed made a recovery after effective treatment, the patients who were error diagnosed died because of multiple system organ damage. Conclusion: The check X-ray signs in lung leptospira disease have some characteristics. It may play an important role in improving this disease' diagnosis combining the dynamic observation of check X-ray sings with clinical data. (authors)

  20. The role of lymphocytes in radiotherapy-induced adverse late effects in the lung

    Directory of Open Access Journals (Sweden)

    Florian Wirsdörfer

    2016-12-01

    Full Text Available Radiation-induced pneumonitis and fibrosis are dose-limiting side effects of thoracic irradiation. Thoracic irradiation triggers acute and chronic environmental lung changes that are shaped by the damage response of resident cells, by the resulting reaction of the immune system, and by repair processes. Although considerable progress has been made during the last decade in defining involved effector cells and soluble mediators, the network of pathophysiological events and the cellular cross-talk linking acute tissue damage to chronic inflammation and fibrosis still require further definition. Infiltration of cells from the innate and adaptive immune systems is a common response of normal tissues to ionizing radiation. Herein lymphocytes represent a versatile and wide-ranged group of cells of the adaptive immune system that can react under specific conditions in various ways and participate in modulating the lung environment by adopting pro-inflammatory, anti-inflammatory or even pro- or anti-fibrotic phenotypes. The present review provides an overview on published data about the role of lymphocytes in radiation-induced lung disease and related damage-associated pulmonary diseases with a focus on T-lymphocytes and B-lymphocytes. We also discuss the suspected dual role of specific lymphocyte subsets during the pneumonitic phase and fibrotic phase that is shaped by the environmental conditions and the interaction and the intercellular cross-talk between cells from the innate and adaptive immune systems and (damaged resident epithelial cells and stromal cells (e.g. endothelial cells, mesenchymal stem cells (MSC, fibroblasts. Finally, we highlight potential therapeutic targets suited to counteract pathological lymphocyte responses to prevent or treat radiation-induced lung disease.

  1. Esophageal involvement and interstitial lung disease in mixed connective tissue disease.

    Science.gov (United States)

    Fagundes, M N; Caleiro, M T C; Navarro-Rodriguez, T; Baldi, B G; Kavakama, J; Salge, J M; Kairalla, R; Carvalho, C R R

    2009-06-01

    Mixed connective tissue disease is a systemic inflammatory disorder that results in both pulmonary and esophageal manifestations. We sought to evaluate the relationship between esophageal dysfunction and interstitial lung disease in patients with mixed connective tissue disease. We correlated the pulmonary function data and the high-resolution computed tomography findings of interstitial lung disease with the results of esophageal evaluation in manometry, 24-hour intraesophageal pH measurements, and the presence of esophageal dilatation on computed tomography scan. Fifty consecutive patients with mixed connective tissue disease, according to Kasukawa's classification criteria, were included in this prospective study. High-resolution computed tomography parenchymal abnormalities were present in 39 of 50 patients. Esophageal dilatation, gastroesophageal reflux, and esophageal motor impairment were also very prevalent (28 of 50, 18 of 36, and 30 of 36, respectively). The presence of interstitial lung disease on computed tomography was significantly higher among patients with esophageal dilatation (92% vs. 45%; pmotor dysfunction (90% vs. 35%; pesophageal and pulmonary involvement, our series revealed a strong association between esophageal motor dysfunction and interstitial lung disease in patients with mixed connective tissue disease.

  2. Assessing the feasibility of a web-based registry for multiple orphan lung diseases: the Australasian Registry Network for Orphan Lung Disease (ARNOLD) experience.

    Science.gov (United States)

    Casamento, K; Laverty, A; Wilsher, M; Twiss, J; Gabbay, E; Glaspole, I; Jaffe, A

    2016-04-18

    We investigated the feasibility of using an online registry to provide prevalence data for multiple orphan lung diseases in Australia and New Zealand. A web-based registry, The Australasian Registry Network of Orphan Lung Diseases (ARNOLD) was developed based on the existing British Paediatric Orphan Lung Disease Registry. All adult and paediatric respiratory physicians who were members of the Thoracic Society of Australia and New Zealand in Australia and New Zealand were sent regular emails between July 2009 and June 2014 requesting information on patients they had seen with any of 30 rare lung diseases. Prevalence rates were calculated using population statistics. Emails were sent to 649 Australian respiratory physicians and 65 in New Zealand. 231 (32.4%) physicians responded to emails a total of 1554 times (average 7.6 responses per physician). Prevalence rates of 30 rare lung diseases are reported. A multi-disease rare lung disease registry was implemented in the Australian and New Zealand health care settings that provided prevalence data on orphan lung diseases in this region but was limited by under reporting.

  3. High resolution CT in diffuse lung disease

    International Nuclear Information System (INIS)

    Webb, W.R.

    1995-01-01

    High resolution CT (computerized tomography) was discussed in detail. The conclusions were HRCT is able to define lung anatomy at the secondary lobular level and define a variety of abnormalities in patients with diffuse lung diseases. Evidence from numerous studies indicates that HRCT can play a major role in the assessment of diffuse infiltrative lung disease and is indicate clinically (95 refs.)

  4. High resolution CT in diffuse lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Webb, W R [California Univ., San Francisco, CA (United States). Dept. of Radiology

    1996-12-31

    High resolution CT (computerized tomography) was discussed in detail. The conclusions were HRCT is able to define lung anatomy at the secondary lobular level and define a variety of abnormalities in patients with diffuse lung diseases. Evidence from numerous studies indicates that HRCT can play a major role in the assessment of diffuse infiltrative lung disease and is indicate clinically (95 refs.).

  5. /sup 67/Gallium citrate lung scans in interstitial lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.

    1976-02-01

    Patients with diffuse interstitial lung disease often require a lung biopsy to determine the diagnosis and proper therapy. However, once the diagnosis is established, clinical evaluation of symptoms, chest roentgenogram and pulmonary function testing are the only noninvasive means currently available to assess activity of the disease process and response to the therapy. Although these measures appear adequate in the presence of acute active disease in which response to therapy results in readily demonstrable changes in the above parameters, they may be insensitive to subtle changes that can occur in minimally active disease with slowly progressive interstitial pulmonary fibrosis over a period of years. A more sensitive noninvasive technique for identifying these cases with a smoldering diffuse interstitial inflammatory process might greatly improve our ability to effectively manage such patients. With this in mind, the value of gallium lung scan was investigated to assess its ability to predict inflammatory activity in such a clinical setting.

  6. IgG4-related lung disease presenting as interstitial lung disease with bronchiolitis: A case report.

    Science.gov (United States)

    Chen, Chiu-Fan; Chu, Kuo-An; Tseng, Yen-Chiang; Wu, Chang-Che; Lai, Ruay-Sheng

    2017-12-01

    IgG4-related disease is a rare and novel disease entity that tends to involve multiple organs. The pulmonary manifestation of this disease is highly variable and may mimic lung cancer, pneumonia, interstitial lung disease (ILD), sarcoidosis, and so forth. Small airway disease is rarely reported in IgG4-related lung disease (IgG4-RLD). In the current study, we describe a rare case of IgG4-RLD with patterns of ILD and bronchiolitis. A 43-year-old man had chronic cough and dyspnea on exertion for 4 years. Initial chest radiography showed diffuse interstitial infiltration. Follow-up chest computed tomography 4 years later revealed bilateral diffuse centrilobular nodules with tree-in-bud pattern, bronchial wall thickening, and mediastinal lymph nodes. Bilateral diffuse multifocal ground-glass opacities and mosaic attenuation were also observed. Pulmonary function test revealed mixed restrictive and obstructive ventilatory impairment. Video-assisted thoracoscopic surgery (VATS) lung biopsy showed interstitial fibrosis with lymphoplasmacytic infiltration rich in IgG4-positive plasma cells. Serum IgG4 level also showed remarkable elevation. Therefore, IgG4-RLD is confirmed. VATS wedge resection of right upper lobe and mediastinal lymph node. The patient responded well to steroid and immunosuppression therapy, and was regular followed-up in outpatient clinic. IgG4-RLD should be considered not only in ILD, but also in small airway disease. Serum IgG4 level may be a useful tool for screening.

  7. Polyhexamethyleneguanidine phosphate induces severe lung inflammation, fibrosis, and thymic atrophy.

    Science.gov (United States)

    Song, Jeong Ah; Park, Hyun-Ju; Yang, Mi-Jin; Jung, Kyung Jin; Yang, Hyo-Seon; Song, Chang-Woo; Lee, Kyuhong

    2014-07-01

    Polyhexamethyleneguanidine phosphate (PHMG-P) has been widely used as a disinfectant because of its strong bactericidal activity and low toxicity. However, in 2011, the Korea Centers for Disease Control and Prevention and the Ministry of Health and Welfare reported that a suspicious outbreak of pulmonary disease might have originated from humidifier disinfectants. The purpose of this study was to assess the toxicity of PHMG-P following direct exposure to the lung. PHMG-P (0.3, 0.9, or 1.5 mg/kg) was instilled into the lungs of mice. The levels of proinflammatory markers and fibrotic markers were quantified in lung tissues and flow cytometry was used to evaluate T cell distribution in the thymus. Administration of PHMG-P induced proinflammatory cytokines elevation and infiltration of immune cells into the lungs. Histopathological analysis revealed a dose-dependent exacerbation of both inflammation and pulmonary fibrosis on day 14. PHMG-P also decreased the total cell number and the CD4(+)/CD8(+) cell ratio in the thymus, with the histopathological examination indicating severe reduction of cortex and medulla. The mRNA levels of biomarkers associated with T cell development also decreased markedly. These findings suggest that exposure of lung tissue to PHMG-P leads to pulmonary inflammation and fibrosis as well as thymic atrophy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Lung emphysema induced by cigarette smoke: Studies in mice

    NARCIS (Netherlands)

    Eijl, Teunis Jan Ahasuerus van

    2006-01-01

    The experiments described in this thesis were designed to shed some more light on the mechanisms underlying cigarette smoke-induced lung emphysema. We used elastase instillation to induce lung emphysema, and subsequently perfused the lungs ex-vivo with buffer at a range of flows to measure changes

  9. Extracellular matrix in lung development, homeostasis and disease.

    Science.gov (United States)

    Zhou, Yong; Horowitz, Jeffrey C; Naba, Alexandra; Ambalavanan, Namasivayam; Atabai, Kamran; Balestrini, Jenna; Bitterman, Peter B; Corley, Richard A; Ding, Bi-Sen; Engler, Adam J; Hansen, Kirk C; Hagood, James S; Kheradmand, Farrah; Lin, Qing S; Neptune, Enid; Niklason, Laura; Ortiz, Luis A; Parks, William C; Tschumperlin, Daniel J; White, Eric S; Chapman, Harold A; Thannickal, Victor J

    2018-03-08

    The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases. Copyright © 2017. Published by Elsevier B.V.

  10. Low-dose cadmium exposure exacerbates polyhexamethylene guanidine-induced lung fibrosis in mice.

    Science.gov (United States)

    Kim, Min-Seok; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Han, Jin-Young; Kim, Bumseok; Lee, Kyuhong

    2018-01-01

    Cadmium (Cd) is a toxic metal present in tobacco smoke, air, food, and water. Inhalation is an important route of Cd exposure, and lungs are one of the main target organs for metal-induced toxicity. Cd inhalation is associated with an increased risk of pulmonary diseases. The present study aimed to assess the effects of repeated exposure to low-dose Cd in a mouse model of polyhexamethylene guanidine (PHMG)-induced lung fibrosis. Mice were grouped into the following groups: vehicle control (VC), PHMG, cadmium chloride (CdCl 2 ), and PHMG + CdCl 2 . Animals in the PHMG group exhibited increased numbers of total cells and inflammatory cells in the bronchoalveolar lavage fluid (BALF) accompanied by inflammation and fibrosis in lung tissues. These parameters were exacerbated in mice in the PHMG + CdCl 2 group. In contrast, mice in the CdCl 2 group alone displayed only minimal inflammation in pulmonary tissue. Expression of inflammatory cytokines and fibrogenic mediators was significantly elevated in lungs of mice in the PHMG group compared with that VC. Further, expression of these cytokines and mediators was enhanced in pulmonary tissue in mice administered PHMG + CdCl 2 . Data demonstrate that repeated exposure to low-dose Cd may enhance the development of PHMG-induced pulmonary fibrosis.

  11. Lansoprazole-induced acute lung and liver injury: a case report.

    Science.gov (United States)

    Atkins, Christopher; Maheswaran, Tina; Rushbrook, Simon; Kamath, Ajay

    2014-12-01

    A 61-year old woman was admitted with increasing dyspnea and deranged liver function tests. A chest X-ray revealed small volume lungs with reticulo-nodular shadowing. High resolution computed tomography of the chest revealed interlobular septal thickening. The patient subsequently underwent an open lung biopsy and ultrasound-guided liver biopsy, which were consistent with a hypersensitivity pneumonitis and drug-induced liver injury respectively. The patient had previously been commenced on lansoprazole 10 days before the onset of symptoms; this had been stopped at diagnosis. High dose prednisolone was commenced, and the patient went on to make a full recovery. Hypersensitivity pneumonitis is a form of interstitial lung disease that is rarely associated with lansoprazole; this is the first report of it causing an idiosyncratic reaction affecting the lung and liver simultaneously. This case demonstrates the importance of obtaining a full drug history, as early identification of the offending agent will improve outcomes.

  12. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  13. Faslodex inhibits estradiol-induced extracellular matrix dynamics and lung metastasis in a model of lymphangioleiomyomatosis.

    Science.gov (United States)

    Li, Chenggang; Zhou, Xiaobo; Sun, Yang; Zhang, Erik; Mancini, John D; Parkhitko, Andrey; Morrison, Tasha A; Silverman, Edwin K; Henske, Elizabeth P; Yu, Jane J

    2013-07-01

    Lymphangioleiomyomatosis (LAM) is a destructive lung disease primarily affecting women. Genetic studies indicate that LAM cells carry inactivating tuberous sclerosis complex (TSC)-2 mutations, and metastasize to the lung. We previously discovered that estradiol increases the metastasis of TSC2-deficient cells in mice carrying xenograft tumors. Here, we investigate the molecular basis underlying the estradiol-induced lung metastasis of TSC2-deficient cells, and test the efficacy of Faslodex (an estrogen receptor antagonist) in a preclinical model of LAM. We used a xenograft tumor model in which estradiol induces the lung metastasis of TSC2-deficient cells. We analyzed the impact of Faslodex on tumor size, the extracellular matrix organization, the expression of matrix metalloproteinase (MMP)-2, and lung metastasis. We also examined the effects of estradiol and Faslodex on MMP2 expression and activity in tuberin-deficient cells in vitro. Estradiol resulted in a marked reduction of Type IV collagen deposition in xenograft tumors, associated with 2-fold greater MMP2 concentrations compared with placebo-treated mice. Faslodex normalized the Type IV collagen changes in xenograft tumors, enhanced the survival of the mice, and completely blocked lung metastases. In vitro, estradiol enhanced MMP2 transcripts, protein accumulation, and activity. These estradiol-induced changes in MMP2 were blocked by Faslodex. In TSC2-deficient cells, estradiol increased MMP2 concentrations in vitro and in vivo, and induced extracellular matrix remodeling. Faslodex inhibits the estradiol-induced lung metastasis of TSC2-deficient cells. Targeting estrogen receptors with Faslodex may be of efficacy in the treatment of LAM.

  14. Faslodex Inhibits Estradiol-Induced Extracellular Matrix Dynamics and Lung Metastasis in a Model of Lymphangioleiomyomatosis

    Science.gov (United States)

    Li, Chenggang; Zhou, Xiaobo; Sun, Yang; Zhang, Erik; Mancini, John D.; Parkhitko, Andrey; Morrison, Tasha A.; Silverman, Edwin K.; Henske, Elizabeth P.

    2013-01-01

    Lymphangioleiomyomatosis (LAM) is a destructive lung disease primarily affecting women. Genetic studies indicate that LAM cells carry inactivating tuberous sclerosis complex (TSC)–2 mutations, and metastasize to the lung. We previously discovered that estradiol increases the metastasis of TSC2-deficient cells in mice carrying xenograft tumors. Here, we investigate the molecular basis underlying the estradiol-induced lung metastasis of TSC2-deficient cells, and test the efficacy of Faslodex (an estrogen receptor antagonist) in a preclinical model of LAM. We used a xenograft tumor model in which estradiol induces the lung metastasis of TSC2-deficient cells. We analyzed the impact of Faslodex on tumor size, the extracellular matrix organization, the expression of matrix metalloproteinase (MMP)–2, and lung metastasis. We also examined the effects of estradiol and Faslodex on MMP2 expression and activity in tuberin-deficient cells in vitro. Estradiol resulted in a marked reduction of Type IV collagen deposition in xenograft tumors, associated with 2-fold greater MMP2 concentrations compared with placebo-treated mice. Faslodex normalized the Type IV collagen changes in xenograft tumors, enhanced the survival of the mice, and completely blocked lung metastases. In vitro, estradiol enhanced MMP2 transcripts, protein accumulation, and activity. These estradiol-induced changes in MMP2 were blocked by Faslodex. In TSC2-deficient cells, estradiol increased MMP2 concentrations in vitro and in vivo, and induced extracellular matrix remodeling. Faslodex inhibits the estradiol-induced lung metastasis of TSC2-deficient cells. Targeting estrogen receptors with Faslodex may be of efficacy in the treatment of LAM. PMID:23526212

  15. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    International Nuclear Information System (INIS)

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, K. Monica; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-01-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  16. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C., E-mail: susan.tilton@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lee, K. Monica [Battelle Toxicology Northwest, Richland, WA 99352 (United States); Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  17. Lung vagal afferent activity in rats with bleomycin-induced lung fibrosis.

    Science.gov (United States)

    Schelegle, E S; Walby, W F; Mansoor, J K; Chen, A T

    2001-05-01

    Bleomycin treatment in rats results in pulmonary fibrosis that is characterized by a rapid shallow breathing pattern, a decrease in quasi-static lung compliance and a blunting of the Hering-Breuer Inflation Reflex. We examined the impulse activity of pulmonary vagal afferents in anesthetized, mechanically ventilated rats with bleomycin-induced lung fibrosis during the ventilator cycle and static lung inflations/deflations and following the injection of capsaicin into the right atrium. Bleomycin enhanced volume sensitivity of slowly adapting stretch receptors (SARs), while it blunted the sensitivity of these receptors to increasing transpulmonary pressure. Bleomycin treatment increased the inspiratory activity, while it decreased the expiratory activity of rapidly adapting stretch receptors (RARs). Pulmonary C-fiber impulse activity did not appear to be affected by bleomycin treatment. We conclude that the fibrosis-related shift in discharge profile and enhanced volume sensitivity of SARs combined with the increased inspiratory activity of RARs contributes to the observed rapid shallow breathing of bleomycin-induced lung fibrosis.

  18. Examination of Susceptibility to Libby Amphibole Asbestos-Induced Injury in Rat Models of Cardiovascular Disease

    Science.gov (United States)

    Although cardiovascular disease (CVD) is considered a risk factor for the exacerbation of air pollution health effects, no studies have been done assessing the influence of the disease on the development of lung injury induced by asbestos exposure. In this study we examined lung ...

  19. The mitochondrial activation of silicate and its role in silicosis, black lung disease and lung cancer.

    Science.gov (United States)

    Hadler, H I; Cook, G L

    1979-01-01

    Silicate substitutes for phosphate in the transitory uncoupling of rat liver mitochondria induced by hydrazine when beta-hydroxy-butyrate is the substrate. Uncoupling is blocked by rutamycin. Just as in the case when phosphate is combined with hydrazine, ATP, ADP, PPi, and Mg++ protect against hydrazine when silicate is combined with hydrazine. A high level of ADP in the absence of added phosphate, but in the presence of silicate, induces a pseudo state three of the mitochondria. Silicate, like sulfate and arsenate which have been reported previously, is activated by the enzymes which mediate oxidative phosphorylation. These results serve to explain a role for silicate in silicosis, black lung disease, and cancer. In addition, since there is suggestive evidence in the literature that lung tissue solubilizes asbestos fibers, these results not only expand the confluence between oxidative phosphorylation and chemical carcinogenesis but are correlated with the synergistic carcinogenicity of asbestos and smoking observed by epidemiologists.

  20. Immunologic lung disease

    International Nuclear Information System (INIS)

    Harman, E.M.

    1985-01-01

    The term immunologic lung disease comprises a broad spectrum of disease. The authors have covered a few entities in which recent studies have been particularly helpful in elucidating pathophysiology though not in uncovering the inciting cause. Common to all of these entities is the problem of finding appropriate methods of defining disease activity and response to treatment. As exemplified by the improved outlook for Goodpasture's syndrome with elucidation of its underlying immunopathology, it is likely that better understanding of the immunologic basis of sarcoid and interstitial disease may be helpful in planning more effective treatment strategies. 44 references

  1. Niacinamide mitigated the acute lung injury induced by phorbol myristate acetate in isolated rat's lungs.

    Science.gov (United States)

    Lin, Chia-Chih; Hsieh, Nan-Kuang; Liou, Huey Ling; Chen, Hsing I

    2012-03-01

    Phorbol myristate acetate (PMA) is a strong neutrophil activator and has been used to induce acute lung injury (ALI). Niacinamide (NAC) is a compound of B complex. It exerts protective effects on the ALI caused by various challenges. The purpose was to evaluate the protective effects of niacinamide (NAC) on the PMA-induced ALI and associated changes. The rat's lungs were isolated in situ and perfused with constant flow. A total of 60 isolated lungs were randomized into 6 groups to received Vehicle (DMSO 100 μg/g), PMA 4 μg/g (lung weight), cotreated with NAC 0, 100, 200 and 400 mg/g (lung weight). There were 10 isolated lungs in each group. We measured the lung weight and parameters related to ALI. The pulmonary arterial pressure and capillary filtration coefficient (Kfc) were determined in isolated lungs. ATP (adenotriphosphate) and PARP [poly(adenosine diphophate-ribose) polymerase] contents in lung tissues were detected. Real-time PCR was employed to display the expression of inducible and endothelial NO synthases (iNOS and eNOS). The neutrophil-derived mediators in lung perfusate were determined. PMA caused increases in lung weight parameters. This agent produced pulmonary hypertension and increased microvascular permeability. It resulted in decrease in ATP and increase in PARP. The expression of iNOS and eNOS was upregulated following PMA. PMA increased the neutrophil-derived mediators. Pathological examination revealed lung edema and hemorrhage with inflammatory cell infiltration. Immunohistochemical stain disclosed the presence of iNOS-positive cells in macrophages and endothelial cells. These pathophysiological and biochemical changes were diminished by NAC treatment. The NAC effects were dose-dependent. Our results suggest that neutrophil activation and release of neutrophil-derived mediators by PMA cause ALI and associated changes. NO production through the iNOS-producing cells plays a detrimental role in the PMA-induced lung injury. ATP is beneficial

  2. Niacinamide mitigated the acute lung injury induced by phorbol myristate acetate in isolated rat's lungs

    Directory of Open Access Journals (Sweden)

    Lin Chia-Chih

    2012-03-01

    Full Text Available Abstract Background Phorbol myristate acetate (PMA is a strong neutrophil activator and has been used to induce acute lung injury (ALI. Niacinamide (NAC is a compound of B complex. It exerts protective effects on the ALI caused by various challenges. The purpose was to evaluate the protective effects of niacinamide (NAC on the PMA-induced ALI and associated changes. Methods The rat's lungs were isolated in situ and perfused with constant flow. A total of 60 isolated lungs were randomized into 6 groups to received Vehicle (DMSO 100 μg/g, PMA 4 μg/g (lung weight, cotreated with NAC 0, 100, 200 and 400 mg/g (lung weight. There were 10 isolated lungs in each group. We measured the lung weight and parameters related to ALI. The pulmonary arterial pressure and capillary filtration coefficient (Kfc were determined in isolated lungs. ATP (adenotriphosphate and PARP [poly(adenosine diphophate-ribose polymerase] contents in lung tissues were detected. Real-time PCR was employed to display the expression of inducible and endothelial NO synthases (iNOS and eNOS. The neutrophil-derived mediators in lung perfusate were determined. Results PMA caused increases in lung weight parameters. This agent produced pulmonary hypertension and increased microvascular permeability. It resulted in decrease in ATP and increase in PARP. The expression of iNOS and eNOS was upregulated following PMA. PMA increased the neutrophil-derived mediators. Pathological examination revealed lung edema and hemorrhage with inflammatory cell infiltration. Immunohistochemical stain disclosed the presence of iNOS-positive cells in macrophages and endothelial cells. These pathophysiological and biochemical changes were diminished by NAC treatment. The NAC effects were dose-dependent. Conclusions Our results suggest that neutrophil activation and release of neutrophil-derived mediators by PMA cause ALI and associated changes. NO production through the iNOS-producing cells plays a detrimental

  3. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts.

    Science.gov (United States)

    Hasaneen, Nadia A; Cao, Jian; Pulkoski-Gross, Ashleigh; Zucker, Stanley; Foda, Hussein D

    2016-02-17

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressively fatal disease. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) is a glycosylated transmembrane protein that induces the expression of some matrix metalloproteinase (MMP) in neighboring stromal cells through direct epithelial-stromal interactions. EMMPRIN is highly expressed in type II alveolar epithelial cells at the edges of the fibrotic areas in IPF lung sections. However, the exact role of EMMPRIN in IPF is unknown. To determine if EMMPRIN contributes to lung fibroblast proliferation, resistance to apoptosis, and differentiation to myofibroblasts, normal Human lung fibroblasts (NHLF) transiently transfected with either EMMPRIN/GFP or GFP were treated with TGF- β1 from 0 to 10 ng/ml for 48 h and examined for cell proliferation (thymidine incorporation), apoptosis (FACS analysis and Cell Death Detection ELISA assay), cell migration (Modified Boyden chamber) and differentiation to myofibroblasts using Western blot for α-smooth actin of cell lysates. The effect of EMMPRIN inhibition on NHLF proliferation, apoptosis, migration and differentiation to myofibroblasts after TGF- β1 treatment was examined using EMMPRIN blocking antibody. We examined the mechanism by which EMMPRIN induces its effects on fibroblasts by studying the β-catenin/canonical Wnt signaling pathway using Wnt luciferase reporter assays and Western blot for total and phosphorylated β-catenin. Human lung fibroblasts overexpressing EMMPRIN had a significant increase in cell proliferation and migration compared to control fibroblasts. Furthermore, EMMPRIN promoted lung fibroblasts resistance to apoptosis. Lung fibroblasts overexpressing EMMPRIN showed a significantly increased expression of α- smooth muscle actin, a marker of differentiation to myofibroblasts compared to control cells. TGF-β1 increased the expression of EMMPRIN in lung fibroblasts in a dose-dependent manner. Attenuation of EMMPRIN expression with the use of an

  4. Evaluation of lung injury induced by pingyangmycin with 99Tcm-HMPAO lung imaging

    International Nuclear Information System (INIS)

    Zhao Changjiu; Yang Zhijie; Fu Peng; Zhang Rui

    2005-01-01

    Objective: To investigate the lung uptake of 99 Tc m -hexamethyl propylene amine oxime (HMPAO) in pingyangmycin-induced lung injury and its mechanism. Methods: 24 white rabbits were randomly divided into 4 groups. Group I: the control with normal diet. In group II, III and IV 0.2, 0.3 and 0.5 mg/kg pingyangmycin were given respectively by marginal vein of ear every other day. 99 Tc m -HMPAO static lung imaging was performed before and 8, 16, 24, 32 d after injection of pingyangmycin. 7 pixel x 5 pixel regions of interest (ROIs) were drawn on the right lung(R) and right upper limb(B), R/B were calculated. Also, 2 ml venous blood was withdrawn for measurement of endothelin by radioimmunoassay. 16 d after pingyangmycin in group IV and 32 d in group I, II and III, all the rabbits were sacrificed. Both lungs were examined immediately under light and electron microscopy. Results: Compared with the control group, there were statistical differences of 99 Tc m -HMPAO lung uptake in group II, III and IV (P 99 Tc m -HMPAO lung imaging can detect early pingyangmycin-induced lung injury. The endothelium of lung microcapillary is presumably the main location site of 99 Tc m -HMPAO abnormal concentration. (authors)

  5. Creation of lung-targeted dexamethasone immunoliposome and its therapeutic effect on bleomycin-induced lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xue-Yuan Chen

    Full Text Available OBJECTIVE: Acute lung injury (ALI, is a major cause of morbidity and mortality, which is routinely treated with the administration of systemic glucocorticoids. The current study investigated the distribution and therapeutic effect of a dexamethasone(DXM-loaded immunoliposome (NLP functionalized with pulmonary surfactant protein A (SP-A antibody (SPA-DXM-NLP in an animal model. METHODS: DXM-NLP was prepared using film dispersion combined with extrusion techniques. SP-A antibody was used as the lung targeting agent. Tissue distribution of SPA-DXM-NLP was investigated in liver, spleen, kidney and lung tissue. The efficacy of SPA-DXM-NLP against lung injury was assessed in a rat model of bleomycin-induced acute lung injury. RESULTS: The SPA-DXM-NLP complex was successfully synthesized and the particles were stable at 4°C. Pulmonary dexamethasone levels were 40 times higher with SPA-DXM-NLP than conventional dexamethasone injection. Administration of SPA-DXM-NLP significantly attenuated lung injury and inflammation, decreased incidence of infection, and increased survival in animal models. CONCLUSIONS: The administration of SPA-DXM-NLP to animal models resulted in increased levels of DXM in the lungs, indicating active targeting. The efficacy against ALI of the immunoliposomes was shown to be superior to conventional dexamethasone administration. These results demonstrate the potential of actively targeted glucocorticoid therapy in the treatment of lung disease in clinical practice.

  6. Lung inhalation scintigraphy with radioactive aerosols in several pulmonary diseases

    International Nuclear Information System (INIS)

    Martins, L.R.; Marioni Filho, H.; Romaldini, H.; Uehara, C.; Alonso, G.

    1983-01-01

    The pulmonary ventilation scintigraphy with 99m Tc diethylene-triamine-pentaacetate (99mTc-DTPA) delivered through a new nebulizer system when analyzed together with the classic lung perfusion scintigraphy with 99mTc-labeled albumin macroaggregates (99mTcMAA) is a very important diagnostic tool in several pulmonary diseases. Several aspects of the lung ventilation-perfusion scintigraphy are studied in 15 people with no lung disease, smokers and nonsmokers. The findings with the lung ventilation-perfusion scintigraphy are also discussed in 34 patients with several pulmonary diseases: lung cancer, chronic obstructive lung disease, policystic pulmonary disease, and pulmonary embolims. The authors concluded that the procedure is a valuable diagnostic tool in several pulmonary diseases, especially because good lung images are obtained, no side effects were detected, the technique is ease and low cost, and it brings new informations, not available with other diagnostic methods. (author)

  7. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Gu; Jeong, Ye Ji; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Sujae [Hanyang Univ., Seoul (Korea, Republic of)

    2014-05-15

    MMPs are classified into five subgroups: collagenases (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), as well as metalloelastase (MMP-12), the membrane-type MMPs (MMP14, MMP15), and other MMPS (e. g., MMP-19, and MMP20). MMP-12 (matrix metalloproteinase12), also known as macrophage metalloelastase, was first identified as an elastolytic metalloproteinase secreted by inflammatory macrophages 30 years ago. MMP-12 degrades extracellular matrix (ECM) components to facilitate tissue remodeling. It can degrade elastin and other substrates, such as type IV collagen, fibronectin, laminin, gelatin, vitronectin, entactin, heparin, and chondroitin sulfates. In the lung, MMP-12 is identified in alveolar macrophages of cigarette smokers as an elastolytic MMP. Inactivation of the MMP-12 gene in knockout mice demonstrates a critical role of MMP-12 in smoking-induced chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the effects of MMP-12 by radiation in lung, so we evaluate that MMP-12 expression pattern in normal lung tissue and cancer cell following radiation. Radiation induced lung injury most commonly occurs as a result of radiation therapy administered to treat cancer. The present study demonstrates that MMP-12 was highly increased in the lung damaged by radiation Thus, MMP-12 might be of potential relevance as a clinically diagnostic tool and sensitive biomarker for radiation induced lung injury and fibrosis.

  8. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis

    International Nuclear Information System (INIS)

    Jung, Myung Gu; Jeong, Ye Ji; Lee, Haejune; Lee, Sujae

    2014-01-01

    MMPs are classified into five subgroups: collagenases (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), as well as metalloelastase (MMP-12), the membrane-type MMPs (MMP14, MMP15), and other MMPS (e. g., MMP-19, and MMP20). MMP-12 (matrix metalloproteinase12), also known as macrophage metalloelastase, was first identified as an elastolytic metalloproteinase secreted by inflammatory macrophages 30 years ago. MMP-12 degrades extracellular matrix (ECM) components to facilitate tissue remodeling. It can degrade elastin and other substrates, such as type IV collagen, fibronectin, laminin, gelatin, vitronectin, entactin, heparin, and chondroitin sulfates. In the lung, MMP-12 is identified in alveolar macrophages of cigarette smokers as an elastolytic MMP. Inactivation of the MMP-12 gene in knockout mice demonstrates a critical role of MMP-12 in smoking-induced chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the effects of MMP-12 by radiation in lung, so we evaluate that MMP-12 expression pattern in normal lung tissue and cancer cell following radiation. Radiation induced lung injury most commonly occurs as a result of radiation therapy administered to treat cancer. The present study demonstrates that MMP-12 was highly increased in the lung damaged by radiation Thus, MMP-12 might be of potential relevance as a clinically diagnostic tool and sensitive biomarker for radiation induced lung injury and fibrosis

  9. Role of gastroesophageal reflux disease in lung transplantation

    Science.gov (United States)

    Hathorn, Kelly E; Chan, Walter W; Lo, Wai-Kit

    2017-01-01

    Lung transplantation is one of the highest risk solid organ transplant modalities. Recent studies have demonstrated a relationship between gastroesophageal reflux disease (GERD) and lung transplant outcomes, including acute and chronic rejection. The aim of this review is to discuss the pathophysiology, evaluation, and management of GERD in lung transplantation, as informed by the most recent publications in the field. The pathophysiology of reflux-induced lung injury includes the effects of aspiration and local immunomodulation in the development of pulmonary decline and histologic rejection, as reflective of allograft injury. Modalities of reflux and esophageal assessment, including ambulatory pH testing, impedance, and esophageal manometry, are discussed, as well as timing of these evaluations relative to transplantation. Finally, antireflux treatments are reviewed, including medical acid suppression and surgical fundoplication, as well as the safety, efficacy, and timing of such treatments relative to transplantation. Our review of the data supports an association between GERD and allograft injury, encouraging a strategy of early diagnosis and aggressive reflux management in lung transplant recipients to improve transplant outcomes. Further studies are needed to explore additional objective measures of reflux and aspiration, better compare medical and surgical antireflux treatment options, extend follow-up times to capture longer-term clinical outcomes, and investigate newer interventions including minimally invasive surgery and advanced endoscopic techniques. PMID:28507913

  10. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Williamson, James D; Sadofsky, Laura R; Hart, Simon P

    2015-03-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology, for which there is no curative pharmacological therapy. Bleomycin, an anti-neoplastic agent that causes lung fibrosis in human patients has been used extensively in rodent models to mimic IPF. In this review, we compare the pathogenesis and histological features of human IPF and bleomycin-induced pulmonary fibrosis (BPF) induced in rodents by intratracheal delivery. We discuss the current understanding of IPF and BPF disease development, from the contribution of alveolar epithelial cells and inflammation to the role of fibroblasts and cytokines, and draw conclusions about what we have learned from the intratracheal bleomycin model of lung fibrosis.

  11. Radiation-Induced Differentiation in Human Lung Fibroblast

    International Nuclear Information System (INIS)

    Park, Sa-Rah; Ahn, Ji-Yeon; Han, Young-Soo; Shim, Jie-Young; Yun, Yeon-Sook; Song, Jie-Young

    2007-01-01

    One of the most common tumors in many countries is lung cancer and patients with lung cancer may take radiotherapy. Although radiotherapy may have its own advantages, it can also induce serious problems such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of α-SMA and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-β), tumor necrosis factor (TNF), interleukin (IL)-1, IL-6, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) are related to fibrosis. Among them TGF-β with Smad signaling is known to be the main stream and other signaling molecules such as MAPK, ERK and JNK (3) also participates in the process. In addition to those above factors, it is thought that more diverse and complicate mechanisms may involve in the radiationinduced fibrosis. Therefore, to investigate the underlying mechanisms in radiation induced fibrosis, first of all, we confirmed whether radiation induces trans differentiation in human normal lung fibroblasts. Here, we suggest that not only TGF-β but also radiation can induce trans differentiation in human lung fibroblast WI-38 and IMR-90

  12. Enhancement of CD147 on M1 macrophages induces differentiation of Th17 cells in the lung interstitial fibrosis.

    Science.gov (United States)

    Geng, Jie-jie; Zhang, Kui; Chen, Li-na; Miao, Jin-lin; Yao, Meng; Ren, Ying; Fu, Zhi-guang; Chen, Zhi-nan; Zhu, Ping

    2014-09-01

    Lung interstitial fibrosis is a chronic lung disease, and few effective therapies are available to halt or reverse the progression of the disease. In murine and human lung fibrosis, the expression of CD147 is increased. However, the role of CD147 in lung fibrosis has not been identified, and it remains to be determined whether lung fibrosis would be improved by decreasing the expression of CD147. A murine bleomycin-induced lung interstitial fibrosis model was used in the experiments, and HAb18 mAbs and CsA were administered during the induction of lung fibrosis. In our study, we found that the HAb18 mAbs markedly reduced the collagen score and down-regulated M1 macrophages and Th17 cells. In vitro, flow cytometry analysis showed that M1 macrophages induced higher Th17 differentiation than M2 macrophages. After treatment with HAb18 mAbs or after reducing the expression of CD147 by lentivirus interference in M1 macrophages, the level of Th17 cells were significantly inhibited. In conclusion, HAb18 mAbs or CsA treatment ameliorates lung interstitial fibrosis. CD147 promoted M1 macrophage and induced the differentiation of Th17 cells in lung interstitial fibrosis, perhaps by regulating some cytokines such as IL-6, IL-1β, IL-12 and IL-23. These results indicated that CD147 may play an important role in the development of lung interstitial fibrosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Agmatine protects against zymosan-induced acute lung injury in mice by inhibiting NF-κB-mediated inflammatory response.

    Science.gov (United States)

    Li, Xuanfei; Liu, Zheng; Jin, He; Fan, Xia; Yang, Xue; Tang, Wanqi; Yan, Jun; Liang, Huaping

    2014-01-01

    Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson's disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM) challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF)-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.

  14. Advanced sickle cell associated interstitial lung disease presenting ...

    African Journals Online (AJOL)

    Previous studies have reported abnormal pulmonary function and pulmonary hypertension among Nigerians with sickle cell disease, but there is no report of interstitial lung disease among them. We report a Nigerian sickle cell patient who presented with computed tomography proven interstitial lung disease complicated by ...

  15. Protection Against Lung Cancer Patient Plasma-Induced Lymphocyte Suppression by Ganoderma Lucidum Polysaccharides

    Directory of Open Access Journals (Sweden)

    Li-Xin Sun

    2014-01-01

    Full Text Available Background/Aims: This study was conducted to determine the potential of Ganoderma lucidum polysaccharides (Gl-PS in protection against lung cancer patient plasma-induced suppression of lymphocytes. Lung cancer is a major cause of disease and loss of life in the United States and worldwide. Cancer cells release immunosuppressive mediators, such as PGE2, TGF-β, IL-10, and VEGF, to inhibit the immune response to escape from immune surveillance. Gl-PS has been shown to counteract this immune inhibition in an animal cell culture model, and thus to facilitate tumor control. The present study explored whether or not such an effect could also be demonstrated in human lung cancer patients. Methods: Immunofluorescence, flow cytometry, MTT, immunocytochemistry, and western blot analysis were used to assess lymphocyte activation with PHA. Results: The plasma of lung cancer patients suppressed proliferation, CD69 expression, and perforin and granzyme B production in lymphocytes upon activation by PHA, effects that were partially of fully reversed by Gl-PS. Conclusion: Lung cancer patient plasma-induced suppression of lymphocyte activation by phytohemagglutinin may be antagonized fully or partially by Gl-PS, an observation suggesting the potential of Gl-PS in cancer therapy.

  16. Stem cell treatment for chronic lung diseases.

    Science.gov (United States)

    Tzouvelekis, Argyris; Ntolios, Paschalis; Bouros, Demosthenes

    2013-01-01

    Chronic lung diseases such as idiopathic pulmonary fibrosis and cystic fibrosis or chronic obstructive pulmonary disease and asthma are leading causes of morbidity and mortality worldwide with a considerable human, societal and financial burden. In view of the current disappointing status of available pharmaceutical agents, there is an urgent need for alternative more effective therapeutic approaches that will not only help to relieve patient symptoms but will also affect the natural course of the respective disease. Regenerative medicine represents a promising option with several fruitful therapeutic applications in patients suffering from chronic lung diseases. Nevertheless, despite relative enthusiasm arising from experimental data, application of stem cell therapy in the clinical setting has been severely hampered by several safety concerns arising from the major lack of knowledge on the fate of exogenously administered stem cells within chronically injured lung as well as the mechanisms regulating the activation of resident progenitor cells. On the other hand, salient data arising from few 'brave' pilot investigations of the safety of stem cell treatment in chronic lung diseases seem promising. The main scope of this review article is to summarize the current state of knowledge regarding the application status of stem cell treatment in chronic lung diseases, address important safety and efficacy issues and present future challenges and perspectives. In this review, we argue in favor of large multicenter clinical trials setting realistic goals to assess treatment efficacy. We propose the use of biomarkers that reflect clinically inconspicuous alterations of the disease molecular phenotype before rigid conclusions can be safely drawn. Copyright © 2013 S. Karger AG, Basel.

  17. Resolvin D1 prevents smoking-induced emphysema and promotes lung tissue regeneration.

    Science.gov (United States)

    Kim, Kang-Hyun; Park, Tai Sun; Kim, You-Sun; Lee, Jae Seung; Oh, Yeon-Mok; Lee, Sang-Do; Lee, Sei Won

    2016-01-01

    Emphysema is an irreversible disease that is characterized by destruction of lung tissue as a result of inflammation caused by smoking. Resolvin D1 (RvD1), derived from docosahexaenoic acid, is a novel lipid that resolves inflammation. The present study tested whether RvD1 prevents smoking-induced emphysema and promotes lung tissue regeneration. C57BL/6 mice, 8 weeks of age, were randomly divided into four groups: control, RvD1 only, smoking only, and smoking with RvD1 administration. Four different protocols were used to induce emphysema and administer RvD1: mice were exposed to smoking for 4 weeks with poly(I:C) or to smoking only for 24 weeks, and RvD1 was injected within the smoking exposure period to prevent regeneration or after completion of smoking exposure to assess regeneration. The mean linear intercept and inflammation scores were measured in the lung tissue, and inflammatory cells and cytokines were measured in the bronchoalveolar lavage fluid. Measurements of mean linear intercept showed that RvD1 significantly attenuated smoking-induced lung destruction in all emphysema models. RvD1 also reduced smoking-induced inflammatory cell infiltration, which causes the structural derangements observed in emphysema. In the 4-week prevention model, RvD1 reduced the smoking-induced increase in eosinophils and interleukin-6 in the bronchoalveolar lavage fluid. In the 24-week prevention model, RvD1 also reduced the increased neutrophils and total cell counts induced by smoking. RvD1 attenuated smoking-induced emphysema in vivo by reducing inflammation and promoting tissue regeneration. This result suggests that RvD1 may be useful in the prevention and treatment of emphysema.

  18. Rheumatoid arthritis-associated interstitial lung disease: lung inflammation evaluated with high resolution computed tomography scan is correlated to rheumatoid arthritis disease activity.

    Science.gov (United States)

    Pérez-Dórame, Renzo; Mejía, Mayra; Mateos-Toledo, Heidegger; Rojas-Serrano, Jorge

    2015-01-01

    To describe the association between rheumatoid arthritis disease activity (RA) and interstitial lung damage (inflammation and fibrosis), in a group of patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD). A retrospective study of RA patients with interstitial lung disease (restrictive pattern in lung function tests and evidence of interstitial lung disease in high resolution computed tomography (HRCT)). Patients were evaluated to exclude other causes of pulmonary disease. RA disease activity was measured with the CDAI index. Interstitial lung inflammation and fibrosis were determined by Kazerooni scale. We compared Kazerooni ground-glass score with the nearest CDAI score to HRCT date scan of the first medical evaluation at our institution. In nine patients, we compared the first ground-glass score with a second one after treatment with DMARDs and corticosteroids. Spearman's rank correlation coefficient was used to evaluate association between RA disease activity and the Kazerooni ground-glass and fibrosis scores. Thirty-four patients were included. A positive correlation between CDAI and ground-glass scores was found (rs=0.3767, P<0.028). Fibrosis and CDAI scores were not associated (rs=-0.0747, P<0.6745). After treatment, a downward tendency in the ground-glass score was observed (median [IQR]): (2.33 [2,3] vs. 2 [1.33-2.16]), P<0.056, along with a lesser CDAI score (27 [8-43] vs. 9 [5-12]), P<0.063. There is a correlation between RA disease activity and ground-glass appearance in the HRCT of RA-ILD patients. These results suggest a positive association between RA disease activity and lung inflammation in RA-ILD. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  19. Hydrogen-rich saline inhibits tobacco smoke-induced chronic obstructive pulmonary disease by alleviating airway inflammation and mucus hypersecretion in rats.

    Science.gov (United States)

    Liu, Zibing; Geng, Wenye; Jiang, Chuanwei; Zhao, Shujun; Liu, Yong; Zhang, Ying; Qin, Shucun; Li, Chenxu; Zhang, Xinfang; Si, Yanhong

    2017-09-01

    Chronic obstructive pulmonary disease induced by tobacco smoke has been regarded as a great health problem worldwide. The purpose of this study is to evaluate the protective effect of hydrogen-rich saline, a novel antioxidant, on chronic obstructive pulmonary disease and explore the underlying mechanism. Sprague-Dawley rats were made chronic obstructive pulmonary disease models via tobacco smoke exposure for 12 weeks and the rats were treated with 10 ml/kg hydrogen-rich saline intraperitoneally during the last 4 weeks. Lung function testing indicated hydrogen-rich saline decreased lung airway resistance and increased lung compliance and the ratio of forced expiratory volume in 0.1 s/forced vital capacity in chronic obstructive pulmonary disease rats. Histological analysis revealed that hydrogen-rich saline alleviated morphological impairments of lung in tobacco smoke-induced chronic obstructive pulmonary disease rats. ELISA assay showed hydrogen-rich saline lowered the levels of pro-inflammatory cytokines (IL-8 and IL-6) and anti-inflammatory cytokine IL-10 in bronchoalveolar lavage fluid and serum of chronic obstructive pulmonary disease rats. The content of malondialdehyde in lung tissue and serum was also determined and the data indicated hydrogen-rich saline suppressed oxidative stress reaction. The protein expressions of mucin MUC5C and aquaporin 5 involved in mucus hypersecretion were analyzed by Western blot and ELISA and the data revealed that hydrogen-rich saline down-regulated MUC5AC level in bronchoalveolar lavage fluid and lung tissue and up-regulated aquaporin 5 level in lung tissue of chronic obstructive pulmonary disease rats. In conclusion, these results suggest that administration of hydrogen-rich saline exhibits significant protective effect on chronic obstructive pulmonary disease through alleviating inflammation, reducing oxidative stress and lessening mucus hypersecretion in tobacco smoke-induced chronic obstructive pulmonary disease rats

  20. The airway microbiota in early cystic fibrosis lung disease.

    Science.gov (United States)

    Frayman, Katherine B; Armstrong, David S; Grimwood, Keith; Ranganathan, Sarath C

    2017-11-01

    Infection plays a critical role in the pathogenesis of cystic fibrosis (CF) lung disease. Over the past two decades, the application of molecular and extended culture-based techniques to microbial analysis has changed our understanding of the lungs in both health and disease. CF lung disease is a polymicrobial disorder, with obligate and facultative anaerobes recovered alongside traditional pathogens in varying proportions, with some differences observed to correlate with disease stage. While healthy lungs are not sterile, differences between the lower airway microbiota of individuals with CF and disease-controls are already apparent in childhood. Understanding the evolution of the CF airway microbiota, and its relationship with clinical treatments and outcome at each disease stage, will improve our understanding of the pathogenesis of CF lung disease and potentially inform clinical management. This review summarizes current knowledge of the early development of the respiratory microbiota in healthy children and then discusses what is known about the airway microbiota in individuals with CF, including how it evolves over time and where future research priorities lie. © 2017 Wiley Periodicals, Inc.

  1. Black lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Ramani, R.V.; Frantz, R.L. [Pennsylvania State University, University Park, PA (United States)

    1995-12-31

    Coal workers` pneumoconiosis (CWP), often called Black Lung Disease is a occupational disease which results from inhalation of coal mine dust which usually contains small amounts of free crystalline silica. This chapter reviews the current knowledge of the epidemiology and clinical aspects of CWP and how it has been controlled in the USA through the 1969 Coal Mine Act and dust level standards. It describes the sampling methods used. Medical control methods and engineering control of the disease is discussed. Work of the Generic Mineral Technology Center for Respirable Dust is described. 28 refs., 6 figs.

  2. Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure.

    Directory of Open Access Journals (Sweden)

    Cristiane Miranda da Silva

    Full Text Available Lung diseases constitute an important public health problem and its growing level of concern has led to efforts for the development of new therapies, particularly for the control of lung inflammation. Low Level Laser Therapy (LLLT has been highlighted as a non-invasive therapy with few side effects, but its mechanisms need to be better understood and explored. Considering that pollution causes several harmful effects on human health, including lung inflammation, in this study, we have used formaldehyde (FA, an environmental and occupational pollutant, for the induction of neutrophilic lung inflammation. Our objective was to investigate the local and systemic effects of LLLT after FA exposure. Male Wistar rats were exposed to FA (1% or vehicle (distillated water during 3 consecutive days and treated or not with LLLT (1 and 5 hours after each FA exposure. Non-manipulated rats were used as control. 24 h after the last FA exposure, we analyzed the local and systemic effects of LLLT. The treatment with LLLT reduced the development of neutrophilic lung inflammation induced by FA, as observed by the reduced number of leukocytes, mast cells degranulated, and a decreased myeloperoxidase activity in the lung. Moreover, LLLT also reduced the microvascular lung permeability in the parenchyma and the intrapulmonary bronchi. Alterations on the profile of inflammatory cytokines were evidenced by the reduced levels of IL-6 and TNF-α and the elevated levels of IL-10 in the lung. Together, our results showed that LLLT abolishes FA-induced neutrophilic lung inflammation by a reduction of the inflammatory cytokines and mast cell degranulation. This study may provide important information about the mechanisms of LLLT in lung inflammation induced by a pollutant.

  3. Long-term activation of TLR3 by Poly(I:C induces inflammation and impairs lung function in mice

    Directory of Open Access Journals (Sweden)

    Alexopoulou Lena

    2009-06-01

    Full Text Available Abstract Background The immune mechanisms associated with infection-induced disease exacerbations in asthma and COPD are not fully understood. Toll-like receptor (TLR 3 has an important role in recognition of double-stranded viral RNA, which leads to the production of various inflammatory mediators. Thus, an understanding of TLR3 activation should provide insight into the mechanisms underlying virus-induced exacerbations of pulmonary diseases. Methods TLR3 knock-out (KO mice and C57B6 (WT mice were intranasally administered repeated doses of the synthetic double stranded RNA analog poly(I:C. Results There was a significant increase in total cells, especially neutrophils, in BALF samples from poly(I:C-treated mice. In addition, IL-6, CXCL10, JE, KC, mGCSF, CCL3, CCL5, and TNFα were up regulated. Histological analyses of the lungs revealed a cellular infiltrate in the interstitium and epithelial cell hypertrophy in small bronchioles. Associated with the pro-inflammatory effects of poly(I:C, the mice exhibited significant impairment of lung function both at baseline and in response to methacholine challenge as measured by whole body plethysmography and an invasive measure of airway resistance. Importantly, TLR3 KO mice were protected from poly(I:C-induced changes in lung function at baseline, which correlated with milder inflammation in the lung, and significantly reduced epithelial cell hypertrophy. Conclusion These findings demonstrate that TLR3 activation by poly(I:C modulates the local inflammatory response in the lung and suggest a critical role of TLR3 activation in driving lung function impairment. Thus, TLR3 activation may be one mechanism through which viral infections contribute toward exacerbation of respiratory disease.

  4. Idh2 Deficiency Exacerbates Acrolein-Induced Lung Injury through Mitochondrial Redox Environment Deterioration

    OpenAIRE

    Park, Jung Hyun; Ku, Hyeong Jun; Lee, Jin Hyup; Park, Jeen-Woo

    2017-01-01

    Acrolein is known to be involved in acute lung injury and other pulmonary diseases. A number of studies have suggested that acrolein-induced toxic effects are associated with depletion of antioxidants, such as reduced glutathione and protein thiols, and production of reactive oxygen species. Mitochondrial NADP+-dependent isocitrate dehydrogenase (idh2) regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury via generation of NADPH. Therefore, we evaluated the ro...

  5. Radioaerosol lung imaging in small airways disease

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, T; Dorow, P; Felix, R

    1981-06-01

    Aerosol inhalation lung imaging was performed in 35 asymptomatic smokers who have been selected on the basis of abnormal findings in small airways pulmonary function tests. Qualitative (image inspection) and quantitative (aerosol distribution index = ADI) analysis of the radioaerosol lung patterns was accomplished. Compared to healthy subjects as well as to patients with chronic obstructive lung disease significant differences of mean aerosol distribution homogeneity were observed. A characteristic type of abnormal aerosol pattern, indicating peripheral airways obstruction, was found in 71% of the patients with small airways disease.

  6. Pulmonary hypertension associated with lung diseases and hypoxemia.

    Science.gov (United States)

    Cuttica, Michael J

    2016-05-01

    Pulmonary hypertension that develops in the setting of underlying lung diseases such as COPD or idiopathic pulmonary fibrosis (IPF) is associated with decreased functional status, worsening hypoxemia and quality of life, and increased mortality. This complication of lung disease is complex in its origin and carries a unique set of diagnostic and therapeutic issues. This review attempts to provide an overview of mechanisms associated with the onset of pulmonary hypertension in COPD and IPF, touches on appropriate evaluation, and reviews the state of knowledge on treating pulmonary hypertension related to underlying lung disease.

  7. Agmatine Protects against Zymosan-Induced Acute Lung Injury in Mice by Inhibiting NF-κB-Mediated Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Xuanfei Li

    2014-01-01

    Full Text Available Acute lung injury (ALI is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson’s disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.

  8. Differential diagnosis of granulomatous lung disease: clues and pitfalls

    Directory of Open Access Journals (Sweden)

    Shinichiro Ohshimo

    2017-09-01

    Full Text Available Granulomatous lung diseases are a heterogeneous group of disorders that have a wide spectrum of pathologies with variable clinical manifestations and outcomes. Precise clinical evaluation, laboratory testing, pulmonary function testing, radiological imaging including high-resolution computed tomography and often histopathological assessment contribute to make a confident diagnosis of granulomatous lung diseases. Differential diagnosis is challenging, and includes both infectious (mycobacteria and fungi and noninfectious lung diseases (sarcoidosis, necrotising sarcoid granulomatosis, hypersensitivity pneumonitis, hot tub lung, berylliosis, granulomatosis with polyangiitis, eosinophilic granulomatosis with polyangiitis, rheumatoid nodules, talc granulomatosis, Langerhans cell histiocytosis and bronchocentric granulomatosis. Bronchoalveolar lavage, endobronchial ultrasound-guided transbronchial needle aspiration, transbronchial cryobiopsy, positron emission tomography and genetic evaluation are potential candidates to improve the diagnostic accuracy for granulomatous lung diseases. As granuloma alone is a nonspecific histopathological finding, the multidisciplinary approach is important for a confident diagnosis.

  9. Radionuclide-determined changes in pulmonary blood volume and thallium lung uptake in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Wilson, R.A.; Okada, R.D.; Boucher, C.A.; Strauss, H.W.; Pohost, G.M.

    1983-01-01

    Exercise-induced increases in radionuclide-determined pulmonary blood volume (PBV) and thallium lung uptake have been described in patients with coronary artery disease (CAD) and have been shown to correlate with transient exercise-induced left ventricular dysfunction. To compare these 2 techniques in the same patients, 74 patients (59 with and 15 without significant CAD) underwent supine bicycle exercise twice on the same day--first for thallium myocardial and lung imaging and then for technetium-99m gated blood pool imaging for the PBV ratio determination. Thallium activity of lung and myocardium was determined to calculate thallium lung/heart ratio. Relative changes in PBV from rest to exercise were expressed as a ratio of pulmonary counts (exercise/rest). Previously reported normal ranges for thallium lung/heart ratio and PBV ratio were used. The PBV ratio and thallium lung/heart ratio were abnormal in 71 and 36%, respectively, of patients with CAD (p less than 0.01). Both ratios were normal in all patients without CAD. Although the resting ejection fractions did not differ significantly in patients with normal versus those with abnormal PBV ratios or thallium lung/heart ratios, abnormal PBV ratios and thallium lung/heart ratios were associated with an exercise-induced decrease in ejection fraction. Propranolol use was significantly higher in patients with abnormal than in those with normal thallium lung/heart ratios (p less than 0.01). No significant difference in propranolol use was present in patients with abnormal or normal PBV ratios. In conclusion: (1) the prevalence of an abnormal thallium lung/heart ratio is less than that of the PBV ratio in patients with CAD; (2) both tests are normal in normal control subjects; (3) propranolol does not cause abnormal results in normal control subjects; however, propranolol may influence lung thallium uptake in patients with CAD; and (4) when both tests are abnormal, there is a high likelihood of multivessel disease

  10. Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study

    OpenAIRE

    Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis act...

  11. Cyclophosphamide for connective tissue disease-associated interstitial lung disease.

    Science.gov (United States)

    Barnes, Hayley; Holland, Anne E; Westall, Glen P; Goh, Nicole Sl; Glaspole, Ian N

    2018-01-03

    Approximately one-third of individuals with interstitial lung disease (ILD) have associated connective tissue disease (CTD). The connective tissue disorders most commonly associated with ILD include scleroderma/systemic sclerosis (SSc), rheumatoid arthritis, polymyositis/dermatomyositis, and Sjögren's syndrome. Although many people with CTD-ILD do not develop progressive lung disease, a significant proportion do progress, leading to reduced physical function, decreased quality of life, and death. ILD is now the major cause of death amongst individuals with systemic sclerosis.Cyclophosphamide is a highly potent immunosuppressant that has demonstrated efficacy in inducing and maintaining remission in autoimmune and inflammatory illnesses. However this comes with potential toxicities, including nausea, haemorrhagic cystitis, bladder cancer, bone marrow suppression, increased risk of opportunistic infections, and haematological and solid organ malignancies.Decision-making in the treatment of individuals with CTD-ILD is difficult; the clinician needs to identify those who will develop progressive disease, and to weigh up the balance between a high level of need for therapy in a severely unwell patient population against the potential for adverse effects from highly toxic therapy, for which only relatively limited data on efficacy can be found. Similarly, it is not clear whether histological subtype, disease duration, or disease extent can be used to predict treatment responsiveness. To assess the efficacy and adverse effects of cyclophosphamide in the treatment of individuals with CTD-ILD. We performed searches on CENTRAL, MEDLINE, Embase, CINAHL, and Web of Science up to May 2017. We handsearched review articles, clinical trial registries, and reference lists of retrieved articles. We included randomised controlled parallel-group trials that compared cyclophosphamide in any form, used individually or concomitantly with other immunomodulating therapies, versus non

  12. Nicotinamide exacerbates hypoxemia in ventilator-induced lung injury independent of neutrophil infiltration.

    Directory of Open Access Journals (Sweden)

    Heather D Jones

    Full Text Available Ventilator-induced lung injury is a form of acute lung injury that develops in critically ill patients on mechanical ventilation and has a high degree of mortality. Nicotinamide phosphoribosyltransferase is an enzyme that is highly upregulated in ventilator-induced lung injury and exacerbates the injury when given exogenously. Nicotinamide (vitamin B3 directly inhibits downstream pathways activated by Nicotinamide phosphoribosyltransferase and is protective in other models of acute lung injury.We administered nicotinamide i.p. to mice undergoing mechanical ventilation with high tidal volumes to study the effects of nicotinamide on ventilator-induced lung injury. Measures of injury included oxygen saturations and bronchoalveolar lavage neutrophil counts, protein, and cytokine levels. We also measured expression of nicotinamide phosophoribosyltransferase, and its downstream effectors Sirt1 and Cebpa, Cebpb, Cebpe. We assessed the effect of nicotinamide on the production of nitric oxide during ventilator-induced lung injury. We also studied the effects of ventilator-induced lung injury in mice deficient in C/EBPε.Nicotinamide treatment significantly inhibited neutrophil infiltration into the lungs during ventilator-induced lung injury, but did not affect protein leakage or cytokine production. Surprisingly, mice treated with nicotinamide developed significantly worse hypoxemia during mechanical ventilation. This effect was not linked to increases in nitric oxide production or alterations in expression of Nicotinamide phosphoribosyl transferase, Sirt1, or Cebpa and Cebpb. Cebpe mRNA levels were decreased with either nicotinamide treatment or mechanical ventilation, but mice lacking C/EBPε developed the same degree of hypoxemia and ventilator-induced lung injury as wild-type mice.Nicotinamide treatment during VILI inhibits neutrophil infiltration of the lungs consistent with a strong anti-inflammatory effect, but paradoxically also leads to the

  13. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis

    2001-11-01

    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  14. Current and new challenges in occupational lung diseases

    Directory of Open Access Journals (Sweden)

    Sara De Matteis

    2017-11-01

    Full Text Available Occupational lung diseases are an important public health issue and are avoidable through preventive interventions in the workplace. Up-to-date knowledge about changes in exposure to occupational hazards as a result of technological and industrial developments is essential to the design and implementation of efficient and effective workplace preventive measures. New occupational agents with unknown respiratory health effects are constantly introduced to the market and require periodic health surveillance among exposed workers to detect early signs of adverse respiratory effects. In addition, the ageing workforce, many of whom have pre-existing respiratory conditions, poses new challenges in terms of the diagnosis and management of occupational lung diseases. Primary preventive interventions aimed to reduce exposure levels in the workplace remain pivotal for elimination of the occupational lung disease burden. To achieve this goal there is still a clear need for setting standard occupational exposure limits based on transparent evidence-based methodology, in particular for carcinogens and sensitising agents that expose large working populations to risk. The present overview, focused on the occupational lung disease burden in Europe, proposes directions for all parties involved in the prevention of occupational lung disease, from researchers and occupational and respiratory health professionals to workers and employers.

  15. Cystic lung disease: Achieving a radiologic diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Trotman-Dickenson, Beatrice, E-mail: btrotmandickenson@partners.org

    2014-01-15

    Diffuse cystic lung disease represents a diverse group of uncommon disorders with characteristic appearance on high resolution CT imaging. The combination of imaging appearance with clinical features and genetic testing where appropriate permits a confident and accurate diagnosis in the majority of the diseases without recourse for open lung biopsy. The mechanism of cyst development disease is unclear but in some disorders appears to be related to small airways obstruction. These diseases are incurable, with the exception of Langerhans cell histiocytosis which may spontaneously remit or resolve on smoking cessation. Disease progression is unpredictable; in general older patients have a more benign disease, while young patients may progress rapidly to respiratory failure. An understanding of the complications of cystic lung disease and the appearance of disease progression is essential for the management of these patients. A number of these disorders are associated with malignancy, recognition of the potential tumors permits appropriate imaging surveillance. Due to the widespread use of CT, pulmonary cysts are increasingly discovered incidentally in an asymptomatic individual. The diagnostic challenge is to determine whether these cysts represent an early feature of a progressive disease or have no clinical significance. In the elderly population the cysts are unlikely to represent a progressive disease. In individuals <50 years further evaluation is recommended.

  16. Cystic lung disease: Achieving a radiologic diagnosis

    International Nuclear Information System (INIS)

    Trotman-Dickenson, Beatrice

    2014-01-01

    Diffuse cystic lung disease represents a diverse group of uncommon disorders with characteristic appearance on high resolution CT imaging. The combination of imaging appearance with clinical features and genetic testing where appropriate permits a confident and accurate diagnosis in the majority of the diseases without recourse for open lung biopsy. The mechanism of cyst development disease is unclear but in some disorders appears to be related to small airways obstruction. These diseases are incurable, with the exception of Langerhans cell histiocytosis which may spontaneously remit or resolve on smoking cessation. Disease progression is unpredictable; in general older patients have a more benign disease, while young patients may progress rapidly to respiratory failure. An understanding of the complications of cystic lung disease and the appearance of disease progression is essential for the management of these patients. A number of these disorders are associated with malignancy, recognition of the potential tumors permits appropriate imaging surveillance. Due to the widespread use of CT, pulmonary cysts are increasingly discovered incidentally in an asymptomatic individual. The diagnostic challenge is to determine whether these cysts represent an early feature of a progressive disease or have no clinical significance. In the elderly population the cysts are unlikely to represent a progressive disease. In individuals <50 years further evaluation is recommended

  17. Diffuse parenchymal lung disease

    Directory of Open Access Journals (Sweden)

    Sara Tomassetti

    2017-04-01

    Full Text Available Between September 2015 and August 2016 there were >1500 publications in the field of diffuse parenchymal lung diseases (DPLDs. For the Clinical Year in Review session at the European Respiratory Society Congress that was held in London, UK, in September 2016, we selected only five articles. This selection, made from the enormous number of published papers, does not include all the relevant studies that will significantly impact our knowledge in the field of DPLDs in the near future. This review article provides our personal view on the following topics: early diagnosis of idiopathic pulmonary fibrosis, current knowledge on the multidisciplinary team diagnosis of DPLDs and the diagnostic role of transbronchial cryobiopsy in this diagnostic setting, insights on the new entity of interstitial pneumonia with autoimmune features, and new therapeutic approaches for scleroderma-related interstitial lung disease.

  18. Assessing the feasibility of a web-based registry for multiple orphan lung diseases: the Australasian Registry Network for Orphan Lung Disease (ARNOLD) experience

    OpenAIRE

    Casamento, K.; Laverty, A.; Wilsher, M.; Twiss, J.; Gabbay, E.; Glaspole, I.; Jaffe, A.

    2016-01-01

    Background We investigated the feasibility of using an online registry to provide prevalence data for multiple orphan lung diseases in Australia and New Zealand. Methods A web-based registry, The Australasian Registry Network of Orphan Lung Diseases (ARNOLD) was developed based on the existing British Paediatric Orphan Lung Disease Registry. All adult and paediatric respiratory physicians who were members of the Thoracic Society of Australia and New Zealand in Australia and New Zealand were s...

  19. Mathematics of Ventilator-induced Lung Injury.

    Science.gov (United States)

    Rahaman, Ubaidur

    2017-08-01

    Ventilator-induced lung injury (VILI) results from mechanical disruption of blood-gas barrier and consequent edema and releases of inflammatory mediators. A transpulmonary pressure (P L ) of 17 cmH 2 O increases baby lung volume to its anatomical limit, predisposing to VILI. Viscoelastic property of lung makes pulmonary mechanics time dependent so that stress (P L ) increases with respiratory rate. Alveolar inhomogeneity in acute respiratory distress syndrome acts as a stress riser, multiplying global stress at regional level experienced by baby lung. Limitation of stress (P L ) rather than strain (tidal volume [V T ]) is the safe strategy of mechanical ventilation to prevent VILI. Driving pressure is the noninvasive surrogate of lung strain, but its relations to P L is dependent on the chest wall compliance. Determinants of lung stress (V T , driving pressure, positive end-expiratory pressure, and inspiratory flow) can be quantified in terms of mechanical power, and a safe threshold can be determined, which can be used in decision-making between safe mechanical ventilation and extracorporeal lung support.

  20. Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study.

    Science.gov (United States)

    Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis activation in lung cancer cells, which was evidenced by TRAIL/death receptor-5 (DR5) induction and caspase-8 activation. The caspase-8 inhibitor or TRAIL/DR5 siRNA knockdown alleviated ONC201's cytotoxicity against lung cancer cells. Molecularly, ONC201 in-activated Akt-S6K1 and Erk signalings in lung cancer cells, causing Foxo3a nuclear translocation. For the in vivo studies, intraperitoneal injection of ONC201 at well-tolerated doses significantly inhibited xenografted A549 tumor growth in severe combined immunodeficient (SCID) mice. Further, ONC201 administration induced TRAIL/DR5 expression, yet inactivated Akt-S6K1 and Erk in tumor tissues. These results of the study demonstrates the potent anti-lung cancer activity by ONC201.

  1. Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study.

    Directory of Open Access Journals (Sweden)

    Yuan Feng

    Full Text Available Tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis activation in lung cancer cells, which was evidenced by TRAIL/death receptor-5 (DR5 induction and caspase-8 activation. The caspase-8 inhibitor or TRAIL/DR5 siRNA knockdown alleviated ONC201's cytotoxicity against lung cancer cells. Molecularly, ONC201 in-activated Akt-S6K1 and Erk signalings in lung cancer cells, causing Foxo3a nuclear translocation. For the in vivo studies, intraperitoneal injection of ONC201 at well-tolerated doses significantly inhibited xenografted A549 tumor growth in severe combined immunodeficient (SCID mice. Further, ONC201 administration induced TRAIL/DR5 expression, yet inactivated Akt-S6K1 and Erk in tumor tissues. These results of the study demonstrates the potent anti-lung cancer activity by ONC201.

  2. Proceedings: Regenerative Medicine for Lung Diseases: A CIRM Workshop Report.

    Science.gov (United States)

    Kadyk, Lisa C; DeWitt, Natalie D; Gomperts, Brigitte

    2017-10-01

    The mission of the California Institute of Regenerative Medicine (CIRM) is to accelerate treatments to patients with unmet medical needs. In September 2016, CIRM sponsored a workshop held at the University of California, Los Angeles, to discuss regenerative medicine approaches for treatment of lung diseases and to identify the challenges remaining for advancing such treatments to the clinic and market approval. Workshop participants discussed current preclinical and clinical approaches to regenerative medicine in the lung, as well as the biology of lung stem cells and the role of stem cells in the etiology of various lung diseases. The outcome of this effort was the recognition that whereas transient cell delivery approaches are leading the way in the clinic, recent advances in the understanding of lung stem cell biology, in vitro and in vivo disease modeling, gene editing and replacement methods, and cell engraftment approaches raise the prospect of developing cures for some lung diseases in the foreseeable future. In addition, advances in in vitro modeling using lung organoids and "lung on a chip" technology are setting the stage for high quality small molecule drug screening to develop treatments for lung diseases with complex biology. Stem Cells Translational Medicine 2017;6:1823-1828. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  3. Fisetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury via TLR4-Mediated NF-κB Signaling Pathway in Rats.

    Science.gov (United States)

    Feng, Guang; Jiang, Ze-Yu; Sun, Bo; Fu, Jie; Li, Tian-Zuo

    2016-02-01

    Acute lung injury (ALI), a common component of systemic inflammatory disease, is a life-threatening condition without many effective treatments. Fisetin, a natural flavonoid from fruits and vegetables, was reported to have wide pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was to detect the effects of fisetin on lipopolysaccharide (LPS)-induced acute lung injury and investigate the potential mechanism. Fisetin was injected (1, 2, and 4 mg/kg, i.v.) 30 min before LPS administration (5 mg/kg, i.v.). Our results showed that fisetin effectively reduced the inflammatory cytokine release and total protein in bronchoalveolar lavage fluids (BALF), decreased the lung wet/dry ratios, and obviously improved the pulmonary histology in LPS-induced ALI. Furthermore, fisetin inhibited LPS-induced increases of neutrophils and macrophage infiltration and attenuated MPO activity in lung tissues. Additionally, fisetin could significantly inhibit the Toll-like receptor 4 (TLR4) expression and the activation of NF-κB in lung tissues. Our data indicates that fisetin has a protective effect against LPS-induced ALI via suppression of TLR4-mediated NF-κB signaling pathways, and fisetin may be a promising candidate for LPS-induced ALI treatment.

  4. Different imaging methods in the assessment of radiation-induced lung injury following hemithorax irradiation for pleural mesothelioma

    International Nuclear Information System (INIS)

    Maasilta, P.; Kivisaari, L.; Mattson, K.

    1990-01-01

    The authors have characterized the radiation-induced lung-injury on serial chest X-rays, CTs and ultralow field MRs and evaluated the clinical value and cost/benefit ratio of the different imaging methods in 30 patients receiving high-dose hemithorax irradiation for pleural mesothelioma. Lung injury was severe in all patients, but non-specific and essentially as described in text-books. CT provided no clinically relevant, cost effective diagnostic advantage over conventional X-rays in the detection of early or late radiation-induced lung injury, but it was necessary for the evaluation of the disease status of the mesothelioma. The possible advantage of MR over CT could not be evaluated and needs further studies. Optimal time-points for imaging CTs or MRs to detect early radiation-induced lung injury following high dose hemithorax irradiation were during the latter part of the treatment or very shortly after the end of the irradiation. Late injury or irreversible fibrosis develop rapidly after 6 months and was clearly documented by chest X-rays. The authors recommend serial chest X-rays at 1-2, 6 and 12 months following radiotherapy as a cost-effective method for the detection of radiation-induced lung injury with additional CTs to document the stage of mesothelioma, when needed. (author). 31 refs.; 4 figs

  5. Diet-Induced Obesity Reprograms the Inflammatory Response of the Murine Lung to Inhaled Endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, Monika K.; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures.

  6. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Heriberto Prado-Garcia

    2012-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer.

  7. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling.

    Science.gov (United States)

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-09-29

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model.Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells.

  8. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, David M. [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Powell, Karen S. [Research Resource Facilities, University of Louisville, Louisville, KY (United States); Roberts, Andrew M. [Department of Physiology, University of Louisville, Louisville, KY (United States); Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States)

    2017-01-15

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure–volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. - Highlights: • A novel rabbit model of chlorine-induced lung disease was developed.

  9. Pulmonary artery hypertension in chronic obstructive lung disease

    International Nuclear Information System (INIS)

    Dinkel, E.; Mundinger, A.; Reinbold, W.D.; Wuertemberger, G.

    1989-01-01

    Standard biplane chest X-rays were tested for the validity of morphometric criteria in the diagnosis of pulmonary artery hypertension. Twenty-seven patients suffering from chronic obstructive lung disease were examined and compared with a control group without cardiopulmonary disease. The diameter of the right and left pulmonary artery, pulmonary conus and the hilar-to-thoracic ratio were significantly increased in patients with chronic obstructive lung disease (p [de

  10. Trauma hemorrhagic shock-induced lung injury involves a gut-lymph-induced TLR4 pathway in mice.

    Directory of Open Access Journals (Sweden)

    Diego C Reino

    Full Text Available Injurious non-microbial factors released from the stressed gut during shocked states contribute to the development of acute lung injury (ALI and multiple organ dysfunction syndrome (MODS. Since Toll-like receptors (TLR act as sensors of tissue injury as well as microbial invasion and TLR4 signaling occurs in both sepsis and noninfectious models of ischemia/reperfusion (I/R injury, we hypothesized that factors in the intestinal mesenteric lymph after trauma hemorrhagic shock (T/HS mediate gut-induced lung injury via TLR4 activation.The concept that factors in T/HS lymph exiting the gut recreates ALI is evidenced by our findings that the infusion of porcine lymph, collected from animals subjected to global T/HS injury, into naïve wildtype (WT mice induced lung injury. Using C3H/HeJ mice that harbor a TLR4 mutation, we found that TLR4 activation was necessary for the development of T/HS porcine lymph-induced lung injury as determined by Evan's blue dye (EBD lung permeability and myeloperoxidase (MPO levels as well as the induction of the injurious pulmonary iNOS response. TRIF and Myd88 deficiency fully and partially attenuated T/HS lymph-induced increases in lung permeability respectively. Additional studies in TLR2 deficient mice showed that TLR2 activation was not involved in the pathology of T/HS lymph-induced lung injury. Lastly, the lymph samples were devoid of bacteria, endotoxin and bacterial DNA and passage of lymph through an endotoxin removal column did not abrogate the ability of T/HS lymph to cause lung injury in naïve mice.Our findings suggest that non-microbial factors in the intestinal mesenteric lymph after T/HS are capable of recreating T/HS-induced lung injury via TLR4 activation.

  11. Role of radio-aerosol and perfusion lung imaging in early detection of chronic obstructive lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A; Pande, J N; Guleria, J S; Gopinath, P G

    1983-04-01

    The efficacy of radio-aerosol and perfusion lung imaging in the early detection of chronic obstructive lung disease was evaluated in 38 subjects. The subjects included 5 non-smokers, 21 smokers with minimal or no respiratory symptoms and 12 patients with chronic obstructive lung disease. Each subject consented to a respiratory questionaire, detailed physical examination, chest X-ray examinations, detailed pulmonary function tests and sup(99m)Tc-radioaerosol-inhalation lung imaging. Perfusion lung imaging with sup(99m)Tc-labelled macroaggregated albumin was performed in 22 subjects. A significant correlation (P<0.001) was observed between the degree of abnormalities on radio-aerosol imaging and pulmonary function tests (PFTs) including forced expiratory volume in 1 s, maximum midexpiratory flow rate and mean transit time analysis. Abnormal radio-aerosol patterns and deranged PFTs were observed in 21 subjects each. Of 21 subjects with abnormal radioaerosol pattern 8 had normal PFTs. Of 21 subjects with abnormal PFTs 8 had normal aerosol images. Aerosol lung images and PFTs were abnormal more frequently than perfusion lung images. The results suggest that radio-aerosol lung imaging is as sensitive an indicator as PFTs for early detection of chronic obstructive lung disease and can be usefully combined with PFTs for early detection of alteration in pulmonary physiology in smokers.

  12. Clinical Utility of Additional Measurement of Total Lung Capacity in Diagnosing Obstructive Lung Disease in Subjects With Restrictive Pattern of Spirometry.

    Science.gov (United States)

    Lee, Hyun; Chang, Boksoon; Kim, Kyunga; Song, Won Jun; Chon, Hae Ri; Kang, Hyung Koo; Kim, Jung Soo; Jeong, Byeong-Ho; Oh, Yeon-Mok; Koh, Won-Jung; Park, Hye Yun

    2016-04-01

    Total lung capacity (TLC), forced expiratory flow between 25 and 75% (FEF25-75%), peak expiratory flow (PEF), or post-bronchodilator volume response is recommended to detect obstructive abnormalities in the lung. The present study was performed to evaluate the usefulness of these pulmonary function test (PFT) parameters to diagnose obstructive lung disease in subjects with a restrictive pattern of spirometry. A retrospective study was conducted in 64 subjects with a restrictive pattern of spirometry (normal FEV1/FVC and low FVC) out of 3,030 patients who underwent all pre- and post-bronchodilator spirometry and lung volume measurement between April 2008 and December 2010. After subjects were clinically classified into those with obstructive lung disease, restrictive lung disease, and mixed lung disease, the agreements between the clinical diagnosis and PFT classification according to TLC, FEF(25-75%), PEF, and post-bronchodilator response criteria were compared. Of 64 subjects, 18 (28.1%) were classified with obstructive lung disease, 39 (60.9%) had restrictive lung disease, 1 (1.6%) had mixed lung disease, and 6 (9.4%) had no clinical lung disease. Among the 58 subjects with clinical lung disease, 22 (37.9%), 37 (63.8%), 33 (56.9%), and 3 (5.2%) were classified as having obstructive pattern based on TLC, FEF25-75%, PEF, and post-bronchodilator response criteria, respectively. The kappa coefficients for the agreement between the clinical classification and PFT classification using TLC, FEF25-75%, PEF, and post-bronchodilator response criteria in 58 subjects were 0.59, 0.18, 0.17, and spirometry, when obstructive lung disease is clinically suspected. Copyright © 2016 by Daedalus Enterprises.

  13. Is Previous Respiratory Disease a Risk Factor for Lung Cancer?

    Science.gov (United States)

    Denholm, Rachel; Schüz, Joachim; Straif, Kurt; Stücker, Isabelle; Jöckel, Karl-Heinz; Brenner, Darren R.; De Matteis, Sara; Boffetta, Paolo; Guida, Florence; Brüske, Irene; Wichmann, Heinz-Erich; Landi, Maria Teresa; Caporaso, Neil; Siemiatycki, Jack; Ahrens, Wolfgang; Pohlabeln, Hermann; Zaridze, David; Field, John K.; McLaughlin, John; Demers, Paul; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Dumitru, Rodica Stanescu; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Kendzia, Benjamin; Peters, Susan; Behrens, Thomas; Vermeulen, Roel; Brüning, Thomas; Kromhout, Hans

    2014-01-01

    Rationale: Previous respiratory diseases have been associated with increased risk of lung cancer. Respiratory conditions often co-occur and few studies have investigated multiple conditions simultaneously. Objectives: Investigate lung cancer risk associated with chronic bronchitis, emphysema, tuberculosis, pneumonia, and asthma. Methods: The SYNERGY project pooled information on previous respiratory diseases from 12,739 case subjects and 14,945 control subjects from 7 case–control studies conducted in Europe and Canada. Multivariate logistic regression models were used to investigate the relationship between individual diseases adjusting for co-occurring conditions, and patterns of respiratory disease diagnoses and lung cancer. Analyses were stratified by sex, and adjusted for age, center, ever-employed in a high-risk occupation, education, smoking status, cigarette pack-years, and time since quitting smoking. Measurements and Main Results: Chronic bronchitis and emphysema were positively associated with lung cancer, after accounting for other respiratory diseases and smoking (e.g., in men: odds ratio [OR], 1.33; 95% confidence interval [CI], 1.20–1.48 and OR, 1.50; 95% CI, 1.21–1.87, respectively). A positive relationship was observed between lung cancer and pneumonia diagnosed 2 years or less before lung cancer (OR, 3.31; 95% CI, 2.33–4.70 for men), but not longer. Co-occurrence of chronic bronchitis and emphysema and/or pneumonia had a stronger positive association with lung cancer than chronic bronchitis “only.” Asthma had an inverse association with lung cancer, the association being stronger with an asthma diagnosis 5 years or more before lung cancer compared with shorter. Conclusions: Findings from this large international case–control consortium indicate that after accounting for co-occurring respiratory diseases, chronic bronchitis and emphysema continue to have a positive association with lung cancer. PMID:25054566

  14. Pediatric Interstitial Lung Disease Masquerading as Difficult Asthma: Management Dilemmas for Rare Lung Disease in Children

    Directory of Open Access Journals (Sweden)

    EY Chan

    2005-01-01

    Full Text Available Idiopathic nontransplant-related childhood bronchiolitis obliterans is an uncommon disease. Most patients present with chronic recurrent dyspnea, cough and wheezing, which are also features of asthma, by far a much more common condition. The present case study reports on a six-year-old girl who presented to a tertiary care centre with recurrent episodes of respiratory distress on a background of baseline tachypnea, chronic hypoxemia and exertional dyspnea. Her past medical history revealed significant lung disease in infancy, including respiratory syncytial virus bronchiolitis and repaired gastroesophageal reflux. She was treated for 'asthma exacerbations' throughout her early childhood years. Bronchiolitis obliterans was subsequently diagnosed with an open lung biopsy. She did not have sustained improvement with systemic corticosteroids, hydroxychloroquine or clarithromycin. Cardiac catheterization confirmed the presence of secondary pulmonary hypertension. Treatment options remain a dilemma for this patient because there is no known effective treatment for this condition, and the natural history is not well understood. The present case demonstrates the need for careful workup in 'atypical asthma', and the urgent need for further research into the rare lung diseases of childhood.

  15. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure

    International Nuclear Information System (INIS)

    Jessop, Forrest; Hamilton, Raymond F.; Rhoderick, Joseph F.; Shaw, Pamela K.; Holian, Andrij

    2016-01-01

    Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5 fl/fl LysM-Cre + mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5 fl/fl LysM-Cre + mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis. - Highlights: • Silica exposure increases autophagy in macrophages. • Autophagy deficient mice have enhanced inflammation and silicosis. • Autophagy deficiency in macrophages results in greater silica-induced cytotoxicity. • Autophagy deficiency in macrophages increases extracellular IL-18 and HMGB1.

  16. LPS-induced lung inflammation in marmoset monkeys - an acute model for anti-inflammatory drug testing.

    Directory of Open Access Journals (Sweden)

    Sophie Seehase

    Full Text Available Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS-induced inflammation model was established in marmoset monkeys (Callithrix jacchus to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4 inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α and macrophage inflammatory protein-1 beta (MIP-1β were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC(50. LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs.

  17. Rheumatoid Arthritis-Associated Interstitial Lung Disease and Idiopathic Pulmonary Fibrosis: Shared Mechanistic and Phenotypic Traits Suggest Overlapping Disease Mechanisms.

    Science.gov (United States)

    Paulin, Francisco; Doyle, Tracy J; Fletcher, Elaine A; Ascherman, Dana P; Rosas, Ivan O

    2015-01-01

    The prevalence of clinically evident interstitial lung disease in patients with rheumatoid arthritis is approximately 10%. An additional 33% of undiagnosed patients have interstitial lung abnormalities that can be detected with high-resolution computed tomography. Rheumatoid arthritis-interstitial lung disease patients have three times the risk of death compared to those with rheumatoid arthritis occurring in the absence of interstitial lung disease, and the mortality related to interstitial lung disease is rising. Rheumatoid arthritis-interstitial lung disease is most commonly classified as the usual interstitial pneumonia pattern, overlapping mechanistically and phenotypically with idiopathic pulmonary fibrosis, but can occur in a non-usual interstitial pneumonia pattern, mainly nonspecific interstitial pneumonia. Based on this, we propose two possible pathways to explain the coexistence of rheumatoid arthritis and interstitial lung disease: (i) Rheumatoid arthritis-interstitial lung disease with a non-usual interstitial pneumonia pattern may come about when an immune response against citrullinated peptides taking place in another site (e.g. the joints) subsequently affects the lungs; (ii) Rheumatoid arthritis-interstitial lung disease with a usual interstitial pneumonia pattern may represent a disease process in which idiopathic pulmonary fibrosis-like pathology triggers an immune response against citrullinated proteins that promotes articular disease indicative of rheumatoid arthritis. More studies focused on elucidating the basic mechanisms leading to different sub-phenotypes of rheumatoid arthritis-interstitial lung disease and the overlap with idiopathic pulmonary fibrosis are necessary to improve our understanding of the disease process and to define new therapeutic targets.

  18. Quantification of heterogeneity in lung disease with image-based pulmonary function testing.

    Science.gov (United States)

    Stahr, Charlene S; Samarage, Chaminda R; Donnelley, Martin; Farrow, Nigel; Morgan, Kaye S; Zosky, Graeme; Boucher, Richard C; Siu, Karen K W; Mall, Marcus A; Parsons, David W; Dubsky, Stephen; Fouras, Andreas

    2016-07-27

    Computed tomography (CT) and spirometry are the mainstays of clinical pulmonary assessment. Spirometry is effort dependent and only provides a single global measure that is insensitive for regional disease, and as such, poor for capturing the early onset of lung disease, especially patchy disease such as cystic fibrosis lung disease. CT sensitively measures change in structure associated with advanced lung disease. However, obstructions in the peripheral airways and early onset of lung stiffening are often difficult to detect. Furthermore, CT imaging poses a radiation risk, particularly for young children, and dose reduction tends to result in reduced resolution. Here, we apply a series of lung tissue motion analyses, to achieve regional pulmonary function assessment in β-ENaC-overexpressing mice, a well-established model of lung disease. The expiratory time constants of regional airflows in the segmented airway tree were quantified as a measure of regional lung function. Our results showed marked heterogeneous lung function in β-ENaC-Tg mice compared to wild-type littermate controls; identified locations of airway obstruction, and quantified regions of bimodal airway resistance demonstrating lung compensation. These results demonstrate the applicability of regional lung function derived from lung motion as an effective alternative respiratory diagnostic tool.

  19. The Murine Lung Microbiome Changes During Lung Inflammation and Intranasal Vancomycin Treatment

    Science.gov (United States)

    Barfod, Kenneth Klingenberg; Vrankx, Katleen; Mirsepasi-Lauridsen, Hengameh Chloé; Hansen, Jitka Stilund; Hougaard, Karin Sørig; Larsen, Søren Thor; Ouwenhand, Arthur C.; Krogfelt, Karen Angeliki

    2015-01-01

    Most microbiome research related to airway diseases has focused on the gut microbiome. This is despite advances in culture independent microbial identification techniques revealing that even healthy lungs possess a unique dynamic microbiome. This conceptual change raises the question; if lung diseases could be causally linked to local dysbiosis of the local lung microbiota. Here, we manipulate the murine lung and gut microbiome, in order to show that the lung microbiota can be changed experimentally. We have used four different approaches: lung inflammation by exposure to carbon nano-tube particles, oral probiotics and oral or intranasal exposure to the antibiotic vancomycin. Bacterial DNA was extracted from broncho-alveolar and nasal lavage fluids, caecum samples and compared by DGGE. Our results show that: the lung microbiota is sex dependent and not just a reflection of the gut microbiota, and that induced inflammation can change lung microbiota. This change is not transferred to offspring. Oral probiotics in adult mice do not change lung microbiome detectible by DGGE. Nasal vancomycin can change the lung microbiome preferentially, while oral exposure does not. These observations should be considered in future studies of the causal relationship between lung microbiota and lung diseases. PMID:26668669

  20. Longitudinal follow-up study of smoking-induced emphysema progression in low-dose CT screening of lung cancer

    Science.gov (United States)

    Suzuki, H.; Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, Masahiro; Moriyama, N.

    2014-03-01

    Chronic obstructive pulmonary disease is a major public health problem that is predicted to be third leading cause of death in 2030. Although spirometry is traditionally used to quantify emphysema progression, it is difficult to detect the loss of pulmonary function by emphysema in early stage, and to assess the susceptibility to smoking. This study presents quantification method of smoking-induced emphysema progression based on annual changes of low attenuation volume (LAV) by each lung lobe acquired from low-dose CT images in lung cancer screening. The method consists of three steps. First, lung lobes are segmented using extracted interlobar fissures by enhancement filter based on fourdimensional curvature. Second, LAV of each lung lobe is segmented. Finally, smoking-induced emphysema progression is assessed by statistical analysis of the annual changes represented by linear regression of LAV percentage in each lung lobe. This method was applied to 140 participants in lung cancer CT screening for six years. The results showed that LAV progressions of nonsmokers, past smokers, and current smokers are different in terms of pack-year and smoking cessation duration. This study demonstrates effectiveness in diagnosis and prognosis of early emphysema in lung cancer CT screening.

  1. Systems medicine advances in interstitial lung disease.

    Science.gov (United States)

    Greiffo, Flavia R; Eickelberg, Oliver; Fernandez, Isis E

    2017-09-30

    Fibrotic lung diseases involve subject-environment interactions, together with dysregulated homeostatic processes, impaired DNA repair and distorted immune functions. Systems medicine-based approaches are used to analyse diseases in a holistic manner, by integrating systems biology platforms along with clinical parameters, for the purpose of understanding disease origin, progression, exacerbation and remission.Interstitial lung diseases (ILDs) refer to a heterogeneous group of complex fibrotic diseases. The increase of systems medicine-based approaches in the understanding of ILDs provides exceptional advantages by improving diagnostics, unravelling phenotypical differences, and stratifying patient populations by predictable outcomes and personalised treatments. This review discusses the state-of-the-art contributions of systems medicine-based approaches in ILDs over the past 5 years. Copyright ©ERS 2017.

  2. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    International Nuclear Information System (INIS)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J.

    2016-01-01

    Ozone (O 3 )-related cardiorespiratory effects are a growing public health concern. Ground level O 3 can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O 3 -induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O 3 pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O 3 exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O 2 ) or hypoxia (10.0% O 2 ), followed by a 4-h exposure to either 1 ppm O 3 or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O 3 exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O 3 exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O 3 exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O 3 -induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic obstructive pulmonary disease (COPD). • It is unknown if comorbid

  3. 4-Methoxyestradiol-induced oxidative injuries in human lung epithelial cells

    International Nuclear Information System (INIS)

    Cheng Yahsin; Chang, Louis W.; Cheng Lichuan; Tsai, M.-H.; Lin Pinpin

    2007-01-01

    Epidemiological studies indicated that people exposed to dioxins were prone to the development of lung diseases including lung cancer. Animal studies demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased liver tumors and promoted lung metaplasia in females. Metabolic changes in 17β-estradiol (E 2 ) resulted from an interaction between TCDD and E 2 could be associated with gender difference. Previously, we reported that methoxylestradiols (MeOE 2 ), especially 4-MeOE 2 , accumulated in human lung cells (BEAS-2B) co-treated with TCDD and E 2 . In the present study, we demonstrate unique accumulation of 4-MeOE 2 , as a result of TCDD/E 2 interaction and revealed its bioactivity in human lung epithelial cell line (H1355). 4-Methoxyestradiol treatment significantly decreased cell growth and increased mitotic index. Elevation of ROS and SOD activity, with a concomitant decrease in the intracellular GSH/GSSG ratio, was also detected in 4-MeOE 2 -treated cells. Quantitative comet assay showed increased oxidative DNA damage in the 4-MeOE 2 -treated H1355 cells, which could be significantly reduced by the anti-oxidant N-acetylcysteine (NAC). However, inhibition of cell growth and increase in mitotic arrest induced by 4-MeOE 2 were unaffected by NAC. We concluded that 4-MeOE 2 accumulation resulting from TCDD and E 2 interaction would contribute to the higher vulnerability on lung pathogenesis in females when exposed to TCDD

  4. Stem cell therapy: the great promise in lung disease.

    Science.gov (United States)

    Siniscalco, Dario; Sullo, Nikol; Maione, Sabatino; Rossi, Francesco; D'Agostino, Bruno

    2008-06-01

    Lung injuries are leading causes of morbidity and mortality worldwide. Pulmonary diseases such as asthma or chronic obstructive pulmonary disease characterized by loss of lung elasticity, small airway tethers, and luminal obstruction with inflammatory mucoid secretions, or idiopathic pulmonary fibrosis characterized by excessive matrix deposition and destruction of the normal lung architecture, have essentially symptomatic treatments and their management is costly to the health care system.Regeneration of tissue by stem cells from endogenous, exogenous, and even genetically modified cells is a promising novel therapy. The use of adult stem cells to help with lung regeneration and repair could be a newer technology in clinical and regenerative medicine. In fact, different studies have shown that bone marrow progenitor cells contribute to repair and remodeling of lung in animal models of progressive pulmonary hypertension.Therefore, lung stem cell biology may provide novel approaches to therapy and could represent a great promise for the future of molecular medicine. In fact, several diseases can be slowed or even blocked by stem cell transplantation.

  5. Bronchoscopic cryobiopsy for the diagnosis of diffuse parenchymal lung disease.

    Directory of Open Access Journals (Sweden)

    Jonathan A Kropski

    Full Text Available Although in some cases clinical and radiographic features may be sufficient to establish a diagnosis of diffuse parenchymal lung disease (DPLD, surgical lung biopsy is frequently required. Recently a new technique for bronchoscopic lung biopsy has been developed using flexible cryo-probes. In this study we describe our clinical experience using bronchoscopic cryobiopsy for diagnosis of diffuse lung disease.A retrospective study of subjects who had undergone bronchoscopic cryobiopsy for evaluation of DPLD at an academic tertiary care center from January 1, 2012 through January 15, 2013 was performed. The procedure was performed using a flexible bronchoscope to acquire biopsies of lung parenchyma. H&E stained biopsies were reviewed by an expert lung pathologist.Twenty-five eligible subjects were identified. With a mean area of 64.2 mm(2, cryobiopsies were larger than that typically encountered with traditional transbronchial forceps biopsy. In 19 of the 25 subjects, a specific diagnosis was obtained. In one additional subject, biopsies demonstrating normal parenchyma were felt sufficient to exclude diffuse lung disease as a cause of dyspnea. The overall diagnostic yield of bronchoscopic cryobiopsy was 80% (20/25. The most frequent diagnosis was usual interstitial pneumonia (UIP (n = 7. Three of the 25 subjects ultimately required surgical lung biopsy. There were no significant complications.In patients with suspected diffuse parenchymal lung disease, bronchoscopic cryobiopsy is a promising and minimally invasive approach to obtain lung tissue with high diagnostic yield.

  6. Rheumatoid arthritis associated interstitial lung disease: a review

    Directory of Open Access Journals (Sweden)

    Deborah Assayag

    2014-04-01

    Full Text Available Rheumatoid arthritis is a common inflammatory disease affecting about 1% of the population. Interstitial lung disease is a serious and frequent complication of rheumatoid arthritis. Rheumatoid arthritis associated interstitial lung disease (RA-ILD is characterized by several histopathologic subtypes. This article reviews the proposed pathogenesis and risk factors for RA-ILD. We also outline the important steps involved in the work-up of RA-ILD and review the evidence for treatment and prognosis.

  7. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats

    Directory of Open Access Journals (Sweden)

    Li Jianjun

    2012-09-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs possess potent immunomodulatory properties and simultaneously lack the ability to illicit immune responses. Hence, MSCs have emerged as a promising candidate for cellular therapeutics for inflammatory diseases. Within the context of this study, we investigated whether human umbilical cord-derived mesenchymal stem cells (UC-MSCs could ameliorate lipopolysaccharide- (LPS- induced acute lung injury (ALI in a rat model. Methods ALI was induced via injection of LPS. Rats were divided into three groups: (1 saline group(control, (2 LPS group, and (3 MSC + LPS group. The rats were sacrificed at 6, 24, and 48 hours after injection. Serum, bronchoalveolar lavage fluid (BALF, and lungs were collected for cytokine concentration measurements, assessment of lung injury, and histology. Results UC-MSCs increased survival rate and suppressed LPS-induced increase of serum concentrations of pro-inflammatory mediators TNF-α, IL-1β, and IL-6 without decreasing the level of anti-inflammatory cytokine IL-10. The MSC + LPS group exhibited significant improvements in lung inflammation, injury, edema, lung wet/dry ratio, protein concentration, and neutrophil counts in the BALF, as well as improved myeloperoxidase (MPO activity in the lung tissue. Furthermore, UC-MSCs decreased malondialdehyde (MDA production and increased Heme Oxygenase-1 (HO-1 protein production and activity in the lung tissue. Conclusion UC-MSCs noticeably increased the survival rate of rats suffering from LPS-induced lung injury and significantly reduced systemic and pulmonary inflammation. Promoting anti-inflammatory homeostasis and reducing oxidative stress might be the therapeutic basis of UC-MSCs.

  8. Pulmonary hypertension in chronic obstructive and interstitial lung diseases

    DEFF Research Database (Denmark)

    Andersen, Charlotte U; Mellemkjær, Søren; Nielsen-Kudsk, Jens Erik

    2013-01-01

    , and is considered one of the most frequent types of PH. However, the prevalence of PH among patients with COPD and ILD is not clear. The diagnosis of PH in chronic lung disease is often established by echocardiographic screening, but definitive diagnosis requires right heart catheterization, which...... is not systematically performed in clinical practice. Given the large number of patients with chronic lung disease, biomarkers to preclude or increase suspicion of PH are needed. NT-proBNP may be used as a rule-out test, but biomarkers with a high specificity for PH are still required. It is not known whether specific...... treatment with existent drugs effective in pulmonary arterial hypertension (PAH) is beneficial in lung disease related PH. Studies investigating existing PAH drugs in animal models of lung disease related PH have indicated a positive effect, and so have case reports and open label studies. However...

  9. Spectrum of high-resolution computed tomography imaging in occupational lung disease.

    Science.gov (United States)

    Satija, Bhawna; Kumar, Sanyal; Ojha, Umesh Chandra; Gothi, Dipti

    2013-10-01

    Damage to the lungs caused by dusts or fumes or noxious substances inhaled by workers in certain specific occupation is known as occupational lung disease. Recognition of occupational lung disease is especially important not only for the primary worker, but also because of the implications with regard to primary and secondary disease prevention in the exposed co-workers. Although many of the disorders can be detected on chest radiography, high-resolution computed tomography (HRCT) is superior in delineating the lung architecture and depicting pathology. The characteristic radiological features suggest the correct diagnosis in some, whereas a combination of clinical features, occupational history, and radiological findings is essential in establishing the diagnosis in others. In the presence of a history of exposure and consistent clinical features, the diagnosis of even an uncommon occupational lung disease can be suggested by the characteristic described HRCT findings. In this article, we briefly review the HRCT appearance of a wide spectrum of occupational lung diseases.

  10. Spectrum of high-resolution computed tomography imaging in occupational lung disease

    Directory of Open Access Journals (Sweden)

    Bhawna Satija

    2013-01-01

    Full Text Available Damage to the lungs caused by dusts or fumes or noxious substances inhaled by workers in certain specific occupation is known as occupational lung disease. Recognition of occupational lung disease is especially important not only for the primary worker, but also because of the implications with regard to primary and secondary disease prevention in the exposed co-workers. Although many of the disorders can be detected on chest radiography, high-resolution computed tomography (HRCT is superior in delineating the lung architecture and depicting pathology. The characteristic radiological features suggest the correct diagnosis in some, whereas a combination of clinical features, occupational history, and radiological findings is essential in establishing the diagnosis in others. In the presence of a history of exposure and consistent clinical features, the diagnosis of even an uncommon occupational lung disease can be suggested by the characteristic described HRCT findings. In this article, we briefly review the HRCT appearance of a wide spectrum of occupational lung diseases.

  11. Spectrum of high-resolution computed tomography imaging in occupational lung disease

    International Nuclear Information System (INIS)

    Satija, Bhawna; Kumar, Sanyal; Ojha, Umesh Chandra; Gothi, Dipti

    2013-01-01

    Damage to the lungs caused by dusts or fumes or noxious substances inhaled by workers in certain specific occupation is known as occupational lung disease. Recognition of occupational lung disease is especially important not only for the primary worker, but also because of the implications with regard to primary and secondary disease prevention in the exposed co-workers. Although many of the disorders can be detected on chest radiography, high-resolution computed tomography (HRCT) is superior in delineating the lung architecture and depicting pathology. The characteristic radiological features suggest the correct diagnosis in some, whereas a combination of clinical features, occupational history, and radiological findings is essential in establishing the diagnosis in others. In the presence of a history of exposure and consistent clinical features, the diagnosis of even an uncommon occupational lung disease can be suggested by the characteristic described HRCT findings. In this article, we briefly review the HRCT appearance of a wide spectrum of occupational lung diseases

  12. Carbonic anhydrase inhibitor attenuates ischemia-reperfusion induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Chou-Chin Lan

    Full Text Available Ischemia-reperfusion (IR-induced acute lung injury (ALI is implicated in several clinical conditions including lung transplantation, cardiopulmonary bypass surgery, re-expansion of collapsed lung from pneumothorax or pleural effusion and etc. IR-induced ALI remains a challenge in the current treatment. Carbonic anhydrase has important physiological function and influences on transport of CO2. Some investigators suggest that CO2 influences lung injury. Therefore, carbonic anhydrase should have the role in ALI. This study was undertaken to define the effect of a carbonic anhydrase inhibitor, acetazolamide (AZA, in IR-induced ALI, that was conducted in a rat model of isolated-perfused lung with 30 minutes of ischemia and 90 minutes of reperfusion. The animals were divided into six groups (n = 6 per group: sham, sham + AZA 200 mg/kg body weight (BW, IR, IR + AZA 100 mg/kg BW, IR + AZA 200 mg/kg BW and IR+ AZA 400 mg/kg BW. IR caused significant pulmonary micro-vascular hyper-permeability, pulmonary edema, pulmonary hypertension, neutrophilic sequestration, and an increase in the expression of pro-inflammatory cytokines. Increases in carbonic anhydrase expression and perfusate pCO2 levels were noted, while decreased Na-K-ATPase expression was noted after IR. Administration of 200mg/kg BW and 400mg/kg BW AZA significantly suppressed the expression of pro-inflammatory cytokines (TNF-α, IL-1, IL-6 and IL-17 and attenuated IR-induced lung injury, represented by decreases in pulmonary hyper-permeability, pulmonary edema, pulmonary hypertension and neutrophilic sequestration. AZA attenuated IR-induced lung injury, associated with decreases in carbonic anhydrase expression and pCO2 levels, as well as restoration of Na-K-ATPase expression.

  13. Adult Lung Spheroid Cells Contain Progenitor Cells and Mediate Regeneration in Rodents With Bleomycin-Induced Pulmonary Fibrosis.

    Science.gov (United States)

    Henry, Eric; Cores, Jhon; Hensley, M Taylor; Anthony, Shirena; Vandergriff, Adam; de Andrade, James B M; Allen, Tyler; Caranasos, Thomas G; Lobo, Leonard J; Cheng, Ke

    2015-11-01

    Lung diseases are devastating conditions and ranked as one of the top five causes of mortality worldwide according to the World Health Organization. Stem cell therapy is a promising strategy for lung regeneration. Previous animal and clinical studies have focused on the use of mesenchymal stem cells (from other parts of the body) for lung regenerative therapies. We report a rapid and robust method to generate therapeutic resident lung progenitors from adult lung tissues. Outgrowth cells from healthy lung tissue explants are self-aggregated into three-dimensional lung spheroids in a suspension culture. Without antigenic sorting, the lung spheroids recapitulate the stem cell niche and contain a natural mixture of lung stem cells and supporting cells. In vitro, lung spheroid cells can be expanded to a large quantity and can form alveoli-like structures and acquire mature lung epithelial phenotypes. In severe combined immunodeficiency mice with bleomycin-induced pulmonary fibrosis, intravenous injection of human lung spheroid cells inhibited apoptosis, fibrosis, and infiltration but promoted angiogenesis. In a syngeneic rat model of pulmonary fibrosis, lung spheroid cells outperformed adipose-derived mesenchymal stem cells in reducing fibrotic thickening and infiltration. Previously, lung spheroid cells (the spheroid model) had only been used to study lung cancer cells. Our data suggest that lung spheroids and lung spheroid cells from healthy lung tissues are excellent sources of regenerative lung cells for therapeutic lung regeneration. The results from the present study will lead to future human clinical trials using lung stem cell therapies to treat various incurable lung diseases, including pulmonary fibrosis. The data presented here also provide fundamental knowledge regarding how injected stem cells mediate lung repair in pulmonary fibrosis. ©AlphaMed Press.

  14. Protective effects of ghrelin in ventilator-induced lung injury in rats.

    Science.gov (United States)

    Li, Guang; Liu, Jiao; Xia, Wen-Fang; Zhou, Chen-Liang; Lv, Li-Qiong

    2017-11-01

    Ghrelin has exhibited potent anti-inflammatory effects on various inflammatory diseases. The aim of this study was to investigate the potential effects of ghrelin on a model of ventilator-induced lung injury (VILI) established in rats. Male Sprague-Dawley rats were randomly divided into three groups: low volume ventilation (LV, Vt=8ml/kg) group, a VILI group (Vt=30ml/kg), and a VILI group pretreated with ghrelin (GH+VILI). For the LV group, for the VILI and GH+VILI groups, the same parameters were applied except the tidal volume was increased to 40ml/kg. After 4h of MV, blood gas, lung elastance, and levels of inflammatory mediators, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and (MIP)-2 and total protein in bronchoalveolar lavage fluid (BALF) were analyzed. Myeloperoxidase (MPO), (TLR)-4, and NF-κB, were detected in lung tissues. Water content (wet-to-dry ratio) and lung morphology were also evaluated. The VILI group had a higher acute lung injury (ALI) score, wet weight to dry ratio, MPO activity, and concentrations of inflammatory mediators (TNF-α, IL-6, IL-1β, and MIP-2) in BALF, as well as higher levels of TLR4 and NF-κB expression than the LV group (Pghrelin pretreatment (PGhrelin pretreatment also decreased TLR4 expression and NF-κB activity compared with the VILI group (PGhrelin pretreatment attenuated VILI in rats by reducing MV-induced pulmonary inflammation and might represent a novel therapeutic candidate for protection against VILI. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Weight preserving image registration for monitoring disease progression in lung CT.

    Science.gov (United States)

    Gorbunova, Vladlena; Lol, Pechin; Ashraf, Haseem; Dirksen, Asger; Nielsen, Mads; de Bruijne, Marleen

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan compared with intensities in the deformed baseline image indicate local loss of lung tissue that is associated with progression of emphysema. To account for differences in lung intensity owing to differences in the inspiration level in the two scans rather than disease progression, we propose to adjust the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans and may result in a more sensitive measure of disease progression than standard quantitative CT measures.

  16. Genetic Modification of the Lung Directed Toward Treatment of Human Disease.

    Science.gov (United States)

    Sondhi, Dolan; Stiles, Katie M; De, Bishnu P; Crystal, Ronald G

    2017-01-01

    Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.

  17. Smoking-related interstitial lung diseases: radiologic-pathologic correlation

    International Nuclear Information System (INIS)

    Hidalgo, Alberto; Franquet, Tomas; Gimenez, Ana; Pineda, Rosa; Madrid, Marta; Bordes, Ramon

    2006-01-01

    Smoking-related interstitial lung diseases (SRILD) are a heterogeneous group of entities of unknown cause. These diseases include desquamative interstitial pneumonia (DIP), respiratory-bronchiolitis-related interstitial lung disease (RB-ILD), pulmonary Langerhans' cell histiocytosis (LCH) and idiopathic pulmonary fibrosis (IPF). High-resolution CT is highly sensitive in the detection of abnormalities in the lung parenchyma and airways. Ground-glass attenuation can occur in DIP and RB-ILD. Whereas DIP is histologically characterized by intra-alveolar pigmented macrophages, RB-ILD shows alveolar macrophages in a patchy peribronchiolar distribution. LCH shows nodular infiltrates on histopathological examination containing varying amounts of characteristic Langerhans' histiocytes. The HRCT findings are characteristically bilateral, symmetrical and diffuse, involving the upper lobe zones with sparing of the costophrenic angles. The most prominent CT features are nodules (sometimes cavitary) measuring 1 to 10 mm in diameter, cysts and areas of ground-glass attenuation. Pathologically, IPF is characterized by its heterogeneity with areas of normal clung, alveolitis and end-stage fibrosis shown in the same biopsy specimen. High-resolution CT findings consist of honeycombing, traction bronchiectasis and intralobular interstitial thickening with subpleural and lower lung predominance. Since coexisting lesions in the same cases have been observed, a better understanding of the different smoking-related interstitial lung diseases (SRILD) allows a more confident and specific diagnosis. (orig.)

  18. Smoking-related interstitial lung diseases: radiologic-pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, Alberto [Universidad Autonoma de Barcelona, Department of Radiology, Hospital de Sant Pau, Barcelona (Spain); Hospital de la Santa Creu i Sant Pau, Thoracic Radiology, Department of Radiology, Barcelona (Spain); Franquet, Tomas; Gimenez, Ana; Pineda, Rosa; Madrid, Marta [Universidad Autonoma de Barcelona, Department of Radiology, Hospital de Sant Pau, Barcelona (Spain); Bordes, Ramon [Universidad Autonoma de Barcelona, Department of Pathology, Hospital de Sant Pau, Barcelona (Spain)

    2006-11-15

    Smoking-related interstitial lung diseases (SRILD) are a heterogeneous group of entities of unknown cause. These diseases include desquamative interstitial pneumonia (DIP), respiratory-bronchiolitis-related interstitial lung disease (RB-ILD), pulmonary Langerhans' cell histiocytosis (LCH) and idiopathic pulmonary fibrosis (IPF). High-resolution CT is highly sensitive in the detection of abnormalities in the lung parenchyma and airways. Ground-glass attenuation can occur in DIP and RB-ILD. Whereas DIP is histologically characterized by intra-alveolar pigmented macrophages, RB-ILD shows alveolar macrophages in a patchy peribronchiolar distribution. LCH shows nodular infiltrates on histopathological examination containing varying amounts of characteristic Langerhans' histiocytes. The HRCT findings are characteristically bilateral, symmetrical and diffuse, involving the upper lobe zones with sparing of the costophrenic angles. The most prominent CT features are nodules (sometimes cavitary) measuring 1 to 10 mm in diameter, cysts and areas of ground-glass attenuation. Pathologically, IPF is characterized by its heterogeneity with areas of normal clung, alveolitis and end-stage fibrosis shown in the same biopsy specimen. High-resolution CT findings consist of honeycombing, traction bronchiectasis and intralobular interstitial thickening with subpleural and lower lung predominance. Since coexisting lesions in the same cases have been observed, a better understanding of the different smoking-related interstitial lung diseases (SRILD) allows a more confident and specific diagnosis. (orig.)

  19. Anti-proline-glycine-proline or antielastin autoantibodies are not evident in chronic inflammatory lung disease.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2010-01-01

    In patients with chronic inflammatory lung disease, pulmonary proteases can generate neoantigens from elastin and collagen with the potential to fuel autoreactive immune responses. Antielastin peptide antibodies have been implicated in the pathogenesis of tobacco-smoke-induced emphysema. Collagen-derived peptides may also play a role.

  20. Procoagulant, tissue factor-bearing microparticles in bronchoalveolar lavage of interstitial lung disease patients: an observational study.

    Directory of Open Access Journals (Sweden)

    Federica Novelli

    Full Text Available Coagulation factor Xa appears involved in the pathogenesis of pulmonary fibrosis. Through its interaction with protease activated receptor-1, this protease signals myofibroblast differentiation in lung fibroblasts. Although fibrogenic stimuli induce factor X synthesis by alveolar cells, the mechanisms of local posttranslational factor X activation are not fully understood. Cell-derived microparticles are submicron vesicles involved in different physiological processes, including blood coagulation; they potentially activate factor X due to the exposure on their outer membrane of both phosphatidylserine and tissue factor. We postulated a role for procoagulant microparticles in the pathogenesis of interstitial lung diseases. Nineteen patients with interstitial lung diseases and 11 controls were studied. All subjects underwent bronchoalveolar lavage; interstitial lung disease patients also underwent pulmonary function tests and high resolution CT scan. Microparticles were enumerated in the bronchoalveolar lavage fluid with a solid-phase assay based on thrombin generation. Microparticles were also tested for tissue factor activity. In vitro shedding of microparticles upon incubation with H₂O₂ was assessed in the human alveolar cell line, A549 and in normal bronchial epithelial cells. Tissue factor synthesis was quantitated by real-time PCR. Total microparticle number and microparticle-associated tissue factor activity were increased in interstitial lung disease patients compared to controls (84±8 vs. 39±3 nM phosphatidylserine; 293±37 vs. 105±21 arbitrary units of tissue factor activity; mean±SEM; p<.05 for both comparisons. Microparticle-bound tissue factor activity was inversely correlated with lung function as assessed by both diffusion capacity and forced vital capacity (r² = .27 and .31, respectively; p<.05 for both correlations. Exposure of lung epithelial cells to H₂O₂ caused an increase in microparticle-bound tissue factor

  1. New insights into lung diseases using hyperpolarized gas MRI.

    Science.gov (United States)

    Flors, L; Altes, T A; Mugler, J P; de Lange, E E; Miller, G W; Mata, J F; Ruset, I C; Hersman, F W

    2015-01-01

    Hyperpolarized (HP) gases are a new class of contrast agents that permit to obtain high temporal and spatial resolution magnetic resonance images (MRI) of the lung airspaces. HP gas MRI has become important research tool not only for morphological and functional evaluation of normal pulmonary physiology but also for regional quantification of pathologic changes occurring in several lung diseases. The purpose of this work is to provide an introduction to MRI using HP noble gases, describing both the basic principles of the technique and the new information about lung disease provided by clinical studies with this method. The applications of the technique in normal subjects, smoking related lung disease, asthma, and cystic fibrosis are reviewed. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  2. Quantitative stratification of diffuse parenchymal lung diseases.

    Directory of Open Access Journals (Sweden)

    Sushravya Raghunath

    Full Text Available Diffuse parenchymal lung diseases (DPLDs are characterized by widespread pathological changes within the pulmonary tissue that impair the elasticity and gas exchange properties of the lungs. Clinical-radiological diagnosis of these diseases remains challenging and their clinical course is characterized by variable disease progression. These challenges have hindered the introduction of robust objective biomarkers for patient-specific prediction based on specific phenotypes in clinical practice for patients with DPLD. Therefore, strategies facilitating individualized clinical management, staging and identification of specific phenotypes linked to clinical disease outcomes or therapeutic responses are urgently needed. A classification schema consistently reflecting the radiological, clinical (lung function and clinical outcomes and pathological features of a disease represents a critical need in modern pulmonary medicine. Herein, we report a quantitative stratification paradigm to identify subsets of DPLD patients with characteristic radiologic patterns in an unsupervised manner and demonstrate significant correlation of these self-organized disease groups with clinically accepted surrogate endpoints. The proposed consistent and reproducible technique could potentially transform diagnostic staging, clinical management and prognostication of DPLD patients as well as facilitate patient selection for clinical trials beyond the ability of current radiological tools. In addition, the sequential quantitative stratification of the type and extent of parenchymal process may allow standardized and objective monitoring of disease, early assessment of treatment response and mortality prediction for DPLD patients.

  3. Quantitative Stratification of Diffuse Parenchymal Lung Diseases

    Science.gov (United States)

    Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Maldonado, Fabien; Peikert, Tobias; Moua, Teng; Ryu, Jay H.; Bartholmai, Brian J.; Robb, Richard A.

    2014-01-01

    Diffuse parenchymal lung diseases (DPLDs) are characterized by widespread pathological changes within the pulmonary tissue that impair the elasticity and gas exchange properties of the lungs. Clinical-radiological diagnosis of these diseases remains challenging and their clinical course is characterized by variable disease progression. These challenges have hindered the introduction of robust objective biomarkers for patient-specific prediction based on specific phenotypes in clinical practice for patients with DPLD. Therefore, strategies facilitating individualized clinical management, staging and identification of specific phenotypes linked to clinical disease outcomes or therapeutic responses are urgently needed. A classification schema consistently reflecting the radiological, clinical (lung function and clinical outcomes) and pathological features of a disease represents a critical need in modern pulmonary medicine. Herein, we report a quantitative stratification paradigm to identify subsets of DPLD patients with characteristic radiologic patterns in an unsupervised manner and demonstrate significant correlation of these self-organized disease groups with clinically accepted surrogate endpoints. The proposed consistent and reproducible technique could potentially transform diagnostic staging, clinical management and prognostication of DPLD patients as well as facilitate patient selection for clinical trials beyond the ability of current radiological tools. In addition, the sequential quantitative stratification of the type and extent of parenchymal process may allow standardized and objective monitoring of disease, early assessment of treatment response and mortality prediction for DPLD patients. PMID:24676019

  4. Lung volume reduction in chronic obstructive pulmonary disease ...

    African Journals Online (AJOL)

    Lung volume reduction in chronic obstructive pulmonary disease. ... loss to improve pulmonary mechanics and compliance, thereby reducing the work of breathing. ... of obtaining similar functional advantages to surgical lung volume reduction, ...

  5. Soluble tumor necrosis factor receptor-1 in preterm infants with chronic lung disease.

    Science.gov (United States)

    Sato, Miho; Mori, Masaaki; Nishimaki, Shigeru; An, Hiromi; Naruto, Takuya; Sugai, Toshiyuki; Shima, Yoshio; Seki, Kazuo; Yokota, Shumpei

    2010-04-01

    It is clear that inflammation plays an important role in developing chronic lung disease in preterm infants. The purpose of the present study is to investigate changes of serum soluble tumor necrosis factor receptor-1 levels over time in infants with chronic lung disease. The serum levels of soluble tumor necrosis factor receptor-1 were measured after delivery, and at 7, 14, 21 and 28 days of age in 10 infants with chronic lung disease and in 18 infants without chronic lung disease. The serum level of soluble tumor necrosis factor receptor-1 was significantly higher in infants with chronic lung disease than in infants without chronic lung disease after delivery. The differences between these two groups remained up to 28 days of age. Prenatal inflammation with persistence into postnatal inflammation may be involved in the onset of chronic lung disease.

  6. Connective tissue diseases, multimorbidity and the ageing lung.

    Science.gov (United States)

    Spagnolo, Paolo; Cordier, Jean-François; Cottin, Vincent

    2016-05-01

    Connective tissue diseases encompass a wide range of heterogeneous disorders characterised by immune-mediated chronic inflammation often leading to tissue damage, collagen deposition and possible loss of function of the target organ. Lung involvement is a common complication of connective tissue diseases. Depending on the underlying disease, various thoracic compartments can be involved but interstitial lung disease is a major contributor to morbidity and mortality. Interstitial lung disease, pulmonary hypertension or both are found most commonly in systemic sclerosis. In the elderly, the prevalence of connective tissue diseases continues to rise due to both longer life expectancy and more effective and better-tolerated treatments. In the geriatric population, connective tissue diseases are almost invariably accompanied by age-related comorbidities, and disease- and treatment-related complications, which contribute to the significant morbidity and mortality associated with these conditions, and complicate treatment decision-making. Connective tissue diseases in the elderly represent a growing concern for healthcare providers and an increasing burden of global health resources worldwide. A better understanding of the mechanisms involved in the regulation of the immune functions in the elderly and evidence-based guidelines specifically designed for this patient population are instrumental to improving the management of connective tissue diseases in elderly patients. Copyright ©ERS 2016.

  7. Lung transplantation for chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Liou TG

    2013-07-01

    Full Text Available Theodore G Liou, Sanjeev M Raman, Barbara C CahillDivision of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USAAbstract: Patients with end-stage chronic obstructive pulmonary disease (COPD comprise the largest single lung disease group undergoing transplantation. Selection of appropriate candidates requires consideration of specific clinical characteristics, prognosis in the absence of transplantation, and likely outcome of transplantation. Increased availability of alternatives to transplantation for end-stage patients and the many efforts to increase the supply of donor organs have complicated decision making for selecting transplant candidates. Many years of technical and clinical refinements in lung transplantation methods have improved survival and quality of life outcomes. Further advances will probably come from improved selection methods for the procedure. Because no prospective trial has been performed, and because of confounding and informative censoring bias inherent in the transplant selection process in studies of the existing experience, the survival effect of lung transplant in COPD patients remains undefined. There is a lack of conclusive data on the impact of lung transplantation on quality of life. For some patients with end-stage COPD, lung transplantation remains the only option for further treatment with a hope of improved survival and quality of life. A prospective trial of lung transplantation is needed to provide better guidance concerning survival benefit, resource utilization, and quality of life effects for patients with COPD.Keywords: outcomes, emphysema, COPD, alpha-1-antitrypsin deficiency, survival, single lung transplant, bilateral sequential single lung transplant, lung volume reduction, referral, guidelines, health related quality of life

  8. Smoking-related interstitial lung diseases: histopathological and imaging perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.R.; Ryan, S.M.; Colby, T.V

    2003-04-01

    The present review focuses on the interstitial lung diseases related to smoking. Thus, the pathology and radiology of Langerhans cell histiocytosis, desquamative interstitial pneumonia, respiratory bronchiolitis and respiratory bronchiolitis-associated-interstitial lung disease are considered. The more tenuous association between pulmonary fibrosis and smoking is also discussed.

  9. Smoking-related interstitial lung diseases: histopathological and imaging perspectives

    International Nuclear Information System (INIS)

    Desai, S.R.; Ryan, S.M.; Colby, T.V.

    2003-01-01

    The present review focuses on the interstitial lung diseases related to smoking. Thus, the pathology and radiology of Langerhans cell histiocytosis, desquamative interstitial pneumonia, respiratory bronchiolitis and respiratory bronchiolitis-associated-interstitial lung disease are considered. The more tenuous association between pulmonary fibrosis and smoking is also discussed

  10. Low power infrared laser modifies the morphology of lung affected with acute injury induced by sepsis

    Science.gov (United States)

    Sergio, L. P. S.; Trajano, L. A. S. N.; Thomé, A. M. C.; Mencalha, A. L.; Paoli, F.; Fonseca, A. S.

    2018-06-01

    Acute lung injury (ALI) is a potentially fatal disease characterized by uncontrolled hyperinflammatory responses in the lungs as a consequence of sepsis. ALI is divided into two sequential and time-dependent phases, exudative and fibroproliferative phases, with increased permeability of the alveolar barrier, causing edema and inflammation. However, there are no specific treatments for ALI. Low-power lasers have been successfully used in the resolution of acute inflammatory processes. The aim of this study was to evaluate the effects of low-power infrared laser exposure on alveolus and interalveolar septa of Wistar rats affected by ALI-induced by sepsis. Laser fluences, power, and the emission mode were those used in clinical protocols for the treatment of acute inflammation. Adult male Wistar rats were randomized into six groups: control, 10 J cm‑2, 20 J cm‑2, ALI, ALI  +  10 J cm‑2, and ALI  +  20 J cm‑2. ALI was induced by intraperitoneal Escherichia coli lipopolysaccharide (LPS). Lungs were removed and processed for hematoxylin–eosin staining. Morphological alterations induced by LPS in lung tissue were quantified by morphometry with a 32-point cyclic arcs test system in Stepanizer. Data showed that exposure to low-power infrared laser in both fluences reduced the thickening of interalveolar septa in lungs affected by ALI, increasing the alveolar space; however, inflammatory infiltrate was still observed. Our research showed that exposure to low-power infrared laser improves the lung parenchyma in Wistar rats affected by ALI, which could be an alternative approach for treatment of inflammatory lung injuries.

  11. Ischemia and reperfusion of the lung tissues induced increase of lung permeability and lung edema is attenuated by dimethylthiourea (PP69).

    Science.gov (United States)

    Chen, K H; Chao, D; Liu, C F; Chen, C F; Wang, D

    2010-04-01

    This study sought to determine whether oxygen radical scavengers of dimethylthiourea (DMTU), superoxide dismutase (SOD), or catalase (CAT) pretreatment attenuated ischemia-reperfusion (I/R)-induced lung injury. After isolation from a Sprague-Dawley rat, the lungs were perfused through the pulmonary artery cannula with rat whole blood diluted 1:1 with a physiological salt solution. An acute lung injury was induced by 10 minutes of hypoxia with 5% CO2-95% N2 followed by 65 minutes of ischemia and then 65 minutes of reperfusion. I/R significantly increased microvascular permeability as measured by the capillary filtration coefficient (Kfc), lung weight-to-body weight ratio (LW/BW), and protein concentration in bronchoalveolar lavage fluid (PCBAL). DMTU pretreatment significantly attenuated the acute lung injury. The capillary filtration coefficient (P<.01), LW/BW (P<.01) and PCBAL (P<.05) were significantly lower among the DMTU-treated rats than hosts pretreated with SOD or CAT. The possible mechanisms of the protective effect of DMTU in I/R-induced lung injury may relate to the permeability of the agent allowing it to scavenge intracellular hydroxyl radicals. However, whether superoxide dismutase or catalase antioxidants showed protective effects possibly due to their impermeability of the cell membrane not allowing scavenging of intracellular oxygen radicals. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ji Young Yhee

    2016-09-01

    Full Text Available Chronic lung diseases include a variety of obstinate and fatal diseases, including asthma, chronic obstructive pulmonary disease (COPD, cystic fibrosis (CF, idiopathic pulmonary fibrosis (IPF, and lung cancers. Pharmacotherapy is important for the treatment of chronic lung diseases, and current progress in nanoparticles offers great potential as an advanced strategy for drug delivery. Based on their biophysical properties, nanoparticles have shown improved pharmacokinetics of therapeutics and controlled drug delivery, gaining great attention. Herein, we will review the nanoparticle-based drug delivery system for the treatment of chronic lung diseases. Various types of nanoparticles will be introduced, and recent innovative efforts to utilize the nanoparticles as novel drug carriers for the effective treatment of chronic lung diseases will also be discussed.

  13. Hepatic Sinusoidal-obstruction Syndrome and Busulfan-induced Lung Injury in a Post-autologous Stem Cell Transplant Recipient.

    Science.gov (United States)

    Jain, Richa; Gupta, Kirti; Bhatia, Anmol; Bansal, Arun; Bansal, Deepak

    2017-09-15

    Veno-occlusive disease of the liver is mostly encountered as a complication of hematopoietic stem cell transplantation with myeloablative regimens with an incidence estimated to be 13.7%. It is clinically characterized by tender hepatomegaly, jaundice, weight gain and ascites. Strong clinical suspicion and an early recognition of clinical signs are essential to establish the diagnosis and institute effective regimen. Another complication of cytotoxic drugs given for cancers, is development of busulfan-induced lung injury. A strong index of suspicion is needed for its diagnosis, especially in setting where opportunistic fungal and viral infections manifest similarly. We illustrate the clinical and autopsy finings in a 2½-year-old boy who received autologous stem-cell transplantation following resection of stage IV neuroblastoma. He subsequently developed both hepatic veno-occlusive disease and busulfan-induced lung injury. The autopsy findings are remarkable for their rarity.

  14. Spred-2 deficiency exacerbates lipopolysaccharide-induced acute lung inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Yang Xu

    Full Text Available BACKGROUND: Acute respiratory distress syndrome (ARDS is a severe and life-threatening acute lung injury (ALI that is caused by noxious stimuli and pathogens. ALI is characterized by marked acute inflammation with elevated alveolar cytokine levels. Mitogen-activated protein kinase (MAPK pathways are involved in cytokine production, but the mechanisms that regulate these pathways remain poorly characterized. Here, we focused on the role of Sprouty-related EVH1-domain-containing protein (Spred-2, a negative regulator of the Ras-Raf-extracellular signal-regulated kinase (ERK-MAPK pathway, in lipopolysaccharide (LPS-induced acute lung inflammation. METHODS: Wild-type (WT mice and Spred-2(-/- mice were exposed to intratracheal LPS (50 µg in 50 µL PBS to induce pulmonary inflammation. After LPS-injection, the lungs were harvested to assess leukocyte infiltration, cytokine and chemokine production, ERK-MAPK activation and immunopathology. For ex vivo experiments, alveolar macrophages were harvested from untreated WT and Spred-2(-/- mice and stimulated with LPS. In in vitro experiments, specific knock down of Spred-2 by siRNA or overexpression of Spred-2 by transfection with a plasmid encoding the Spred-2 sense sequence was introduced into murine RAW264.7 macrophage cells or MLE-12 lung epithelial cells. RESULTS: LPS-induced acute lung inflammation was significantly exacerbated in Spred-2(-/- mice compared with WT mice, as indicated by the numbers of infiltrating leukocytes, levels of alveolar TNF-α, CXCL2 and CCL2 in a later phase, and lung pathology. U0126, a selective MEK/ERK inhibitor, reduced the augmented LPS-induced inflammation in Spred-2(-/- mice. Specific knock down of Spred-2 augmented LPS-induced cytokine and chemokine responses in RAW264.7 cells and MLE-12 cells, whereas Spred-2 overexpression decreased this response in RAW264.7 cells. CONCLUSIONS: The ERK-MAPK pathway is involved in LPS-induced acute lung inflammation. Spred-2 controls

  15. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Chen

    2008-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear.Increased autophagy was observed in lung tissue from COPD patients, as indicated by electron microscopic analysis, as well as by increased activation of autophagic proteins (microtubule-associated protein-1 light chain-3B, LC3B, Atg4, Atg5/12, Atg7. Cigarette smoke extract (CSE is an established model for studying the effects of cigarette smoke exposure in vitro. In human pulmonary epithelial cells, exposure to CSE or histone deacetylase (HDAC inhibitor rapidly induced autophagy. CSE decreased HDAC activity, resulting in increased binding of early growth response-1 (Egr-1 and E2F factors to the autophagy gene LC3B promoter, and increased LC3B expression. Knockdown of E2F-4 or Egr-1 inhibited CSE-induced LC3B expression. Knockdown of Egr-1 also inhibited the expression of Atg4B, a critical factor for LC3B conversion. Inhibition of autophagy by LC3B-knockdown protected epithelial cells from CSE-induced apoptosis. Egr-1(-/- mice, which displayed basal airspace enlargement, resisted cigarette-smoke induced autophagy, apoptosis, and emphysema.We demonstrate a critical role for Egr-1 in promoting autophagy and apoptosis in response to cigarette smoke exposure in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel therapeutic targets for the treatment of cigarette smoke induced lung injury.

  16. Vildagliptin-induced acute lung injury: a case report.

    Science.gov (United States)

    Ohara, Nobumasa; Kaneko, Masanori; Sato, Kazuhiro; Maruyama, Ryoko; Furukawa, Tomoyasu; Tanaka, Junta; Kaneko, Kenzo; Kamoi, Kyuzi

    2016-08-12

    Dipeptidyl peptidase-4 inhibitors are a class of oral hypoglycemic drugs and are used widely to treat type 2 diabetes mellitus in many countries. Adverse effects include nasopharyngitis, headache, elevated serum pancreatic enzymes, and gastrointestinal symptoms. In addition, a few cases of interstitial pneumonia associated with their use have been reported in the Japanese literature. Here we describe a patient who developed drug-induced acute lung injury shortly after the administration of the dipeptidyl peptidase-4 inhibitor vildagliptin. A 38-year-old Japanese woman with diabetes mellitus developed acute respiratory failure 1 day after administration of vildagliptin. Chest computed tomography revealed nonsegmental ground-glass opacities in her lungs. There was no evidence of bacterial pneumonia or any other cause of her respiratory manifestations. After discontinuation of vildagliptin, she recovered fully from her respiratory disorder. She received insulin therapy for her diabetes mellitus, and her subsequent clinical course has been uneventful. The period of drug exposure in previously reported cases of patients with drug-induced interstitial pneumonia caused by dipeptidyl peptidase-4 inhibitor varied from several days to over 6 months. In the present case, our patient developed interstitial pneumonia only 1 day after the administration of vildagliptin. The precise mechanism of her vildagliptin-induced lung injury remains uncertain, but physicians should consider that dipeptidyl peptidase-4 inhibitor-induced lung injury, although rare, may appear acutely, even within days after administration of this drug.

  17. Lung deformations and radiation-induced regional lung collapse in patients treated with stereotactic body radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Diot, Quentin, E-mail: quentin.diot@ucdenver.edu; Kavanagh, Brian; Vinogradskiy, Yevgeniy; Gaspar, Laurie; Miften, Moyed [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Garg, Kavita [Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)

    2015-11-15

    Purpose: To differentiate radiation-induced fibrosis from regional lung collapse outside of the high dose region in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Lung deformation maps were computed from pre-treatment and post-treatment computed tomography (CT) scans using a point-to-point translation method. Fifty anatomical landmarks inside the lung (vessel or airway branches) were matched on planning and follow-up scans for the computation process. Two methods using the deformation maps were developed to differentiate regional lung collapse from fibrosis: vector field and Jacobian methods. A total of 40 planning and follow-ups CT scans were analyzed for 20 lung SBRT patients. Results: Regional lung collapse was detected in 15 patients (75%) using the vector field method, in ten patients (50%) using the Jacobian method, and in 12 patients (60%) by radiologists. In terms of sensitivity and specificity the Jacobian method performed better. Only weak correlations were observed between the dose to the proximal airways and the occurrence of regional lung collapse. Conclusions: The authors presented and evaluated two novel methods using anatomical lung deformations to investigate lung collapse and fibrosis caused by SBRT treatment. Differentiation of these distinct physiological mechanisms beyond what is usually labeled “fibrosis” is necessary for accurate modeling of lung SBRT-induced injuries. With the help of better models, it becomes possible to expand the therapeutic benefits of SBRT to a larger population of lung patients with large or centrally located tumors that were previously considered ineligible.

  18. Lung involvement in systemic connective tissue diseases

    Directory of Open Access Journals (Sweden)

    Plavec Goran

    2008-01-01

    Full Text Available Background/Aim. Systemic connective tissue diseases (SCTD are chronic inflammatory autoimmune disorders of unknown cause that can involve different organs and systems. Their course and prognosis are different. All of them can, more or less, involve the respiratory system. The aim of this study was to find out the frequency of respiratory symptoms, lung function disorders, radiography and high-resolution computerized tomography (HRCT abnormalities, and their correlation with the duration of the disease and the applied treatment. Methods. In 47 non-randomized consecutive patients standard chest radiography, HRCT, and lung function tests were done. Results. Hypoxemia was present in nine of the patients with respiratory symptoms (20%. In all of them chest radiography was normal. In five of these patients lung fibrosis was established using HRCT. Half of all the patients with SCTD had symptoms of lung involvement. Lung function tests disorders of various degrees were found in 40% of the patients. The outcome and the degree of lung function disorders were neither in correlation with the duration of SCTD nor with therapy used (p > 0.05 Spearmans Ro. Conclusion. Pulmonary fibrosis occurs in about 10% of the patients with SCTD, and possibly not due to the applied treatment regimens. Hypoxemia could be a sing of existing pulmonary fibrosis in the absence of disorders on standard chest radiography.

  19. Inflammatory/granulomatous diseases of the lung

    International Nuclear Information System (INIS)

    Ivancevic, V.; Munz, D.L.

    1998-01-01

    The term 'inflammatory' and 'granulomatous' lung disease represents a pool of many etiologically different diseases, the pathologic mechanisms of which are characterized by inflammatory reactions of varying intensity and cell composition. In sarcoidosis and other granulomatous diseases as well as in lung fibroses, gallium scintigraphy allows reliable non-invasive estimation of alveolitis activity and is suitable for therapy monitoring. Granulomatous diseases seem to be detectable sensitively by means of somatostatin receptor scintigraphy as well. It is yet uncertain, whether positron emission tomography with F-18 fluordeoxyglucose will play a role in quantitative assessment of disease activity in sarcoidosis. Gallium scintigraphy is very useful in the early detection of pulmonary complications in AIDS patients. Pneumocystis carinii pneumonia, which is important in this patient population, can also be detected by both Tc-99m and In-111 labelled polyclonal human immunoglobulin, and in future possibly with a monoclonal antibody fragment against Pneumocystis carinii as well. The significance of primary bacterial pneumonias has decreased and nuclear medicine procedures for diagnosing inflammation are needed only exceptionally in this indication. (orig.) [de

  20. Imaging of Occupational Lung Disease.

    Science.gov (United States)

    Champlin, Jay; Edwards, Rachael; Pipavath, Sudhakar

    2016-11-01

    Occupational lung diseases span a variety of pulmonary disorders caused by inhalation of dusts or chemical antigens in a vocational setting. Included in these are the classic mineral pneumoconioses of silicosis, coal worker's pneumoconiosis, and asbestos-related diseases as well as many immune-mediated and airway-centric diseases, and new and emerging disorders. Although some of these have characteristic imaging appearances, a multidisciplinary approach with focus on occupational exposure history is essential to proper diagnosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effects of positive end-expiratory pressure titration and recruitment maneuver on lung inflammation and hyperinflation in experimental acid aspiration-induced lung injury.

    Science.gov (United States)

    Ambrosio, Aline M; Luo, Rubin; Fantoni, Denise T; Gutierres, Claudia; Lu, Qin; Gu, Wen-Jie; Otsuki, Denise A; Malbouisson, Luiz M S; Auler, Jose O C; Rouby, Jean-Jacques

    2012-12-01

    In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.

  2. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    International Nuclear Information System (INIS)

    Chen, Ying; Li, Cuiying; Weng, Dong; Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei; Chen, Jie

    2014-01-01

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  3. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying; Li, Cuiying [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Weng, Dong [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai (China); Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Chen, Jie, E-mail: chenjie@mail.cmu.edu.cn [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China)

    2014-02-15

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  4. Isoliquiritigenin protects against sepsis-induced lung and liver injury by reducing inflammatory responses.

    Science.gov (United States)

    Chen, Xiong; Cai, Xueding; Le, Rongrong; Zhang, Man; Gu, Xuemei; Shen, Feixia; Hong, Guangliang; Chen, Zimiao

    2018-02-05

    Sepsis, one of the most fatal diseases worldwide, often leads to multiple organ failure, mainly due to uncontrolled inflammatory responses. Despite accumulating knowledge obtained in recent years, effective drugs to treat sepsis in the clinic are still urgently needed. Isoliquiritigenin (ISL), a chalcone compound, has been reported to exert anti-inflammatory properties. However, little is known about the effects of ISL on sepsis and its related complications. In this study, we investigated the potential protective effects of ISL on lipopolysaccharide (LPS)-induced injuries and identified the mechanisms underlying these effects. ISL inhibited inflammatory cytokine expression in mouse primary peritoneal macrophages (MPMs) exposed to LPS. In an acute lung injury (ALI) mouse model, ISL prevented LPS-induced structural damage and inflammatory cell infiltration. Additionally, pretreatment with ISL attenuated sepsis-induced lung and liver injury, accompanied by a reduction in inflammatory responses. Moreover, these protective effects were mediated by the nuclear factor kappa B (NF-κB) pathway-mediated inhibition of inflammatory responses in vitro and in vivo. Our study suggests that ISL may be a potential therapeutic agent for sepsis-induced injuries. Copyright © 2017. Published by Elsevier Inc.

  5. Effectiveness of rosiglitazone on bleomycin-induced lung fibrosis: Assessed by micro-computed tomography and pathologic scores

    International Nuclear Information System (INIS)

    Jin, Gong Yong; Bok, Se Mi; Han, Young Min; Chung, Myung Ja; Yoon, Kwon-Ha; Kim, So Ri; Lee, Yong Chul

    2012-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) agonists exhibit potent anti-fibrotic effects in the lung and other tissues. Recently, micro-computed tomography (CT) has been a useful tool for the investigation of lung diseases in small animals and is now increasingly applied to visualize and quantify the pulmonary structures. However, there is little information on the assessment for therapeutic effects of PPARγ agonists on the pulmonary fibrosis in mice using micro-CT. This study was aimed to determine the capability of micro-CT in examining the effects of rosiglitazone on pulmonary fibrosis. We used a murine model of bleomycin-induced lung fibrosis to evaluate the feasibility of micro-CT in evaluating the therapeutic potential of rosiglitazone on pulmonary fibrosis, comparing with pathologic scores. On micro-CT findings, ground glass opacity (80%) and consolidation (20%) were observed predominantly at 3 weeks after the instillation of bleomycin, and the radiologic features became more complex at 6 weeks. In bleomycin-instilled mice treated with rosiglitazone, the majority (80%) showed normal lung features on micro-CT. Radiological-pathologic correlation analyses revealed that ground glass opacity and consolidation were correlated closely with acute inflammation, while reticular opacity was well correlated with histological honeycomb appearance. These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis in mice and that the visualization of bleomycin-induced pulmonary fibrosis using micro-CT is satisfactory to assess the effects of rosiglitazone. It implies that micro-CT can be applied to evaluate therapeutic efficacies of a variety of candidate drugs for lung diseases.

  6. Effectiveness of rosiglitazone on bleomycin-induced lung fibrosis: Assessed by micro-computed tomography and pathologic scores

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Gong Yong; Bok, Se Mi; Han, Young Min [Department of Radiology, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Chung, Myung Ja [Department of Pathology, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Yoon, Kwon-Ha [Department of Radiology, Iksan Hospital, Iksan (Korea, Republic of); Kim, So Ri [Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Yong Chul, E-mail: leeyc@jbnu.ac.kr [Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2012-08-15

    Peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) agonists exhibit potent anti-fibrotic effects in the lung and other tissues. Recently, micro-computed tomography (CT) has been a useful tool for the investigation of lung diseases in small animals and is now increasingly applied to visualize and quantify the pulmonary structures. However, there is little information on the assessment for therapeutic effects of PPAR{gamma} agonists on the pulmonary fibrosis in mice using micro-CT. This study was aimed to determine the capability of micro-CT in examining the effects of rosiglitazone on pulmonary fibrosis. We used a murine model of bleomycin-induced lung fibrosis to evaluate the feasibility of micro-CT in evaluating the therapeutic potential of rosiglitazone on pulmonary fibrosis, comparing with pathologic scores. On micro-CT findings, ground glass opacity (80%) and consolidation (20%) were observed predominantly at 3 weeks after the instillation of bleomycin, and the radiologic features became more complex at 6 weeks. In bleomycin-instilled mice treated with rosiglitazone, the majority (80%) showed normal lung features on micro-CT. Radiological-pathologic correlation analyses revealed that ground glass opacity and consolidation were correlated closely with acute inflammation, while reticular opacity was well correlated with histological honeycomb appearance. These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis in mice and that the visualization of bleomycin-induced pulmonary fibrosis using micro-CT is satisfactory to assess the effects of rosiglitazone. It implies that micro-CT can be applied to evaluate therapeutic efficacies of a variety of candidate drugs for lung diseases.

  7. Edaravone prevents lung injury induced by hepatic ischemia-reperfusion.

    Science.gov (United States)

    Uchiyama, Munehito; Tojo, Kentaro; Yazawa, Takuya; Ota, Shuhei; Goto, Takahisa; Kurahashi, Kiyoyasu

    2015-04-01

    Lung injury is a major clinical concern after hepatic ischemia-reperfusion (I/R), due to the production of reactive oxygen species in the reperfused liver. We investigated the efficacy of edaravone, a potent free-radical scavenger, for attenuating lung injury after hepatic I/R. Adult male Sprague-Dawley rats were assigned to sham + normal saline (NS), I/R + NS, or I/R + edaravone group. Rats in the I/R groups were subjected to 90 min of partial hepatic I/R. Five minutes before reperfusion, 3 mg/kg edaravone was administered to the I/R + edaravone group. After 6 h of reperfusion, we evaluated lung histopathology and wet-to-dry ratio. We also measured malondialdehyde (MDA), an indicator of oxidative stress, in the liver and the lung, as well as cytokine messenger RNA expressions in the reperfused liver and plasma cytokine concentrations. Histopathology revealed lung damages after 6 h reperfusion of partial ischemic liver. Moreover, a significant increase in lung wet-to-dry ratio was observed. MDA concentration increased in the reperfused liver, but not in the lungs. Edaravone administration attenuated the lung injury and the increase of MDA in the reperfused liver. Edaravone also suppressed the reperfusion-induced increase of interleukin-6 messenger RNA expressions in the liver and plasma interleukin-6 concentrations. Edaravone administration before reperfusion of the ischemic liver attenuates oxidative stress in the reperfused liver and the subsequent lung injury. Edaravone may be beneficial for preventing lung injury induced by hepatic I/R. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Sulforaphane?induced apoptosis in Xuanwei lung adenocarcinoma cell line XWLC?05

    OpenAIRE

    Zhou, Lan; Yao, Qian; Li, Yan; Huang, Yun?chao; Jiang, Hua; Wang, Chuan?qiong; Fan, Lei

    2016-01-01

    Background Xuanwei district in Yunnan Province has the highest incidence of lung cancer in China, especially among non?smoking women. Cruciferous vegetables can reduce lung cancer risk by prompting a protective mechanism against respiratory tract inflammation caused by air pollution, and are rich in sulforaphane, which can induce changes in gene expression. We investigated the effect of sulforaphane?induced apoptosis in Xuanwei lung adenocarcinoma cell line (XWCL?05) to explore the value of s...

  9. Molecular characterization of radon-induced rat lung tumors

    International Nuclear Information System (INIS)

    Guillet Bastide, K.

    2008-11-01

    The radon gas is a well known lung carcinogenic factor in human at high doses but the cancer risk at low doses is not established. Indeed, epidemiological studies at low doses are difficult to conduct because of the human exposure to other lung carcinogenic factors. These data underlined the necessity to conduct experiments on lung tumors developed on animal model. The aim of this work was to characterize rat lung tumors by working on a series of radon-induced tumors that included adenocarcinomas (A.C.), squamous cell carcinomas (S.C.C.) and adeno-squamous carcinomas (A.S.C.), that are mixed tumors with both A.C. and S.C.C. cellular components. A C.G.H. analysis of the three types of tumors allowed us to define chromosomal recurrent unbalances and to target candidate genes potentially implicated in lung carcinogenesis, as p16Ink4a, p19Arf, Rb1, K-Ras or c-Myc. A more precise analysis of the p16Ink4a/Cdk4/Rb1 and p19Arf/Mdm2/Tp53 pathways was performed and indicated that the Rb1 pathway was frequently inactivated through an absence of p16 Ink4a protein expression, indicating that it has a major role in rat lung carcinogenesis. Finally, a comparative transcriptomic analysis of the three types of tumors allowed us to show for the first time that the complex tumors A.S.C. have a transcriptomic profile in accordance with their mixed nature but that they also display their own expression profiles specificities. This work allowed us to find molecular characteristics common to murine and human lung tumors, indicating that the model of lung tumors in rat is pertinent to search for radiation-induced lung tumors specificities and to help for a better molecular identification of this type of tumors in human. (author)

  10. Endogenous lung regeneration: potential and limitations.

    Science.gov (United States)

    Rock, Jason; Königshoff, Melanie

    2012-12-15

    The exploration of the endogenous regenerative potential of the diseased adult human lung represents an innovative and exciting task. In this pulmonary perspective, we discuss three major components essential for endogenous lung repair and regeneration: epithelial progenitor populations, developmental signaling pathways that regulate their reparative and regenerative potential, and the surrounding extracellular matrix in the human diseased lung. Over the past years, several distinct epithelial progenitor populations have been discovered within the lung, all of which most likely respond to different injuries by varying degrees. It has become evident that several progenitor populations are mutually involved in maintenance and repair, which is highly regulated by developmental pathways, such as Wnt or Notch signaling. Third, endogenous progenitor cells and developmental signaling pathways act in close spatiotemporal synergy with the extracellular matrix. These three components define and refine the highly dynamic microenvironment of the lung, which is altered in a disease-specific fashion in several chronic lung diseases. The search for the right mixture to induce efficient and controlled repair and regeneration of the diseased lung is ongoing and will open completely novel avenues for the treatment of patients with chronic lung disease.

  11. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J., E-mail: mcampen@salud.unm.edu

    2016-08-15

    Ozone (O{sub 3})-related cardiorespiratory effects are a growing public health concern. Ground level O{sub 3} can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O{sub 3}-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O{sub 3} pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O{sub 3} exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O{sub 2}) or hypoxia (10.0% O{sub 2}), followed by a 4-h exposure to either 1 ppm O{sub 3} or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O{sub 3} exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O{sub 3} exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O{sub 3} exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O{sub 3}-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic obstructive

  12. Time course of polyhexamethyleneguanidine phosphate-induced lung inflammation and fibrosis in mice.

    Science.gov (United States)

    Song, Jeongah; Kim, Woojin; Kim, Yong-Bum; Kim, Bumseok; Lee, Kyuhong

    2018-04-15

    Pulmonary fibrosis is a chronic progressive disease with unknown etiology and has poor prognosis. Polyhexamethyleneguanidine phosphate (PHMG-P) causes acute interstitial pneumonia and pulmonary fibrosis in humans when it exposed to the lung. In a previous study, when rats were exposed to PHMG-P through inhalation for 3 weeks, lung inflammation and fibrosis was observed even after 3 weeks of recovery. In this study, we aimed to determine the time course of PHMG-P-induced lung inflammation and fibrosis. We compared pathological action of PHMG-P with that of bleomycin (BLM) and investigated the mechanism underlying PHMG-P-induced lung inflammation and fibrosis. PHMG-P (0.9 mg/kg) or BLM (1.5 mg/kg) was intratracheally administered to mice. At weeks 1, 2, 4 and 10 after instillation, the levels of inflammatory and fibrotic markers and the expression of inflammasome proteins were measured. The inflammatory and fibrotic responses were upregulated until 10 and 4 weeks in the PHMG-P and BLM groups, respectively. Immune cell infiltration and considerable collagen deposition in the peribronchiolar and interstitial areas of the lungs, fibroblast proliferation, and hyperplasia of type II epithelial cells were observed. NALP3 inflammasome activation was detected in the PHMG-P group until 4 weeks, which is suspected to be the main reason for the persistent inflammatory response and exacerbation of fibrotic changes. Most importantly, the pathological changes in the PHMG-P group were similar to those observed in humidifier disinfectant-associated patients. A single exposure of PHMG-P led to persistent pulmonary inflammation and fibrosis for at least 10 weeks. Copyright © 2018. Published by Elsevier Inc.

  13. Cartography of Pathway Signal Perturbations Identifies Distinct Molecular Pathomechanisms in Malignant and Chronic Lung Diseases

    Science.gov (United States)

    Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans

    2016-01-01

    Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent. PMID:27200087

  14. Estimation of 123I-metaiodobenzylguanidine lung uptake in heart and lung diseases. With reference to lung uptake ratio and decrease of lung uptake

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Tanaka, Masao; Yazaki, Yoshikazu; Kitabayashi, Hiroshi; Koizumi, Tomonori; Sekiguchi, Morie; Gomi, Tsutomu; Yano, Kesato; Itoh, Atsuko.

    1997-01-01

    123 I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy was performed in 64 patients with heart and lung diseases. Distribution of MIBG in the chest was evaluated by planar images, using counts ratios of the heart to the mediastinum (H/M) and the unilateral lung to the mediastinum (Lu/M). Most of patients with heart diseases showed obvious lung uptake of MIBG. The ratios of H/M were 1.75±0.20 in the group without heart failure and 1.55±0.19 in the group with heart failure. The ratios of Lu/M in the right and left lung were 1.56±0.16 and 1.28±0.16 in the group without heart failure. And those were 1.45±0.16 and 1.19±0.15 in the group with heart failure. But 3 patients complicated with chronic pulmonary emphysema and one patient with interstitial pneumonia due to dermatomyositis showed markedly decreased lung uptake. The ratios of Lu/M in the right and left lung of these patients were 1.20, 1.17; 1.17, 1.13; 1.01, 0.97 and 1.27, 0.94, respectively. These results suggest that the lung uptake of MIBG may reflect the state of pulmonary endothelial cell function in clinical situations, considering that it has been demonstrated that MIBG may be useful as a marker of pulmonary endothelial cell function in the isolated rat lung. (author)

  15. Esophageal motor disease and reflux patterns in patients with advanced pulmonary disease undergoing lung transplant evaluation.

    Science.gov (United States)

    Seccombe, J; Mirza, F; Hachem, R; Gyawali, C P

    2013-08-01

    Advanced pulmonary disorders are linked to esophageal hypomotility and reflux disease. However, characterization of esophageal function using high resolution manometry (HRM) and ambulatory pH monitoring, segregation by pulmonary pathology, and comparison to traditional reflux disease are all limited in the literature. Over a 4 year period, 73 patients (55.2 ± 1.3 years, 44F) were identified who underwent esophageal function testing as part of lung transplant evaluation for advanced pulmonary disease (interstitial lung disease, ILD = 47, obstructive lung disease, OLD = 24, other = 2). Proportions of patients with motor dysfunction (≥ 80% failed sequences = severe hypomotility) and/or abnormal reflux parameters (acid exposure time, AET ≥ 4%) were determined, and compared to a cohort of 1081 patients (48.4 ± 0.4 years, 613F) referred for esophageal function testing prior to antireflux surgery (ARS). The proportion of esophageal body hypomotility was significantly higher within advanced pulmonary disease categories (35.6%), particularly ILD (44.7%), compared to ARS patients (12.1%, P esophageal motor pattern or reflux evidence. Interstitial lung disease has a highly significant association with esophageal body hypomotility. Consequently, prevalence of abnormal esophageal acid exposure is high, but implications for post lung transplant chronic rejection remain unclear. © 2013 John Wiley & Sons Ltd.

  16. Nuclear techniques in the diagnosis of lung diseases

    Energy Technology Data Exchange (ETDEWEB)

    Isawa, T

    1993-12-31

    Lung studies by nuclear techniques have been mostly neglected so far in the developing countries because ``total lung imaging`` was not possible. The availability of radioaerosols had now provided means to do complete lung studies in these countries. IAEA`s effort to make radioaerosol techniques more widely available in the Asian countries has been most noteworthy. Pulmonary tuberculosis is still prevalent in the developing countries, scourge of smoking is becoming increasingly wide spread and atmospheric pollution is on the rise as these countries race towards industrialisation with insufficient technical and financial resources. These conditions would provide a fascinating backdrop of infective, cancerous and pollution-induced conditions of lungs where lung imaging techniques would have a large scope of providing useful service 11 figs, 1 tab

  17. Nuclear techniques in the diagnosis of lung diseases

    International Nuclear Information System (INIS)

    Isawa, T.

    1992-01-01

    Lung studies by nuclear techniques have been mostly neglected so far in the developing countries because ''total lung imaging'' was not possible. The availability of radioaerosols had now provided means to do complete lung studies in these countries. IAEA's effort to make radioaerosol techniques more widely available in the Asian countries has been most noteworthy. Pulmonary tuberculosis is still prevalent in the developing countries, scourge of smoking is becoming increasingly wide spread and atmospheric pollution is on the rise as these countries race towards industrialisation with insufficient technical and financial resources. These conditions would provide a fascinating backdrop of infective, cancerous and pollution-induced conditions of lungs where lung imaging techniques would have a large scope of providing useful service

  18. Interstitial lung disease associated with Equine Infectious Anemia Virus infection in horses.

    Science.gov (United States)

    Bolfa, Pompei; Nolf, Marie; Cadoré, Jean-Luc; Catoi, Cornel; Archer, Fabienne; Dolmazon, Christine; Mornex, Jean-François; Leroux, Caroline

    2013-12-01

    EIA (Equine Infectious Anemia) is a blood-borne disease primarily transmitted by haematophagous insects or needle punctures. Other routes of transmission have been poorly explored. We evaluated the potential of EIAV (Equine Infectious Anemia Virus) to induce pulmonary lesions in naturally infected equids. Lungs from 77 EIAV seropositive horses have been collected in Romania and France. Three types of lesions have been scored on paraffin-embedded lungs: lymphocyte infiltration, bronchiolar inflammation, and thickness of the alveolar septa. Expression of the p26 EIAV capsid (CA) protein has been evaluated by immunostaining. Compared to EIAV-negative horses, 52% of the EIAV-positive horses displayed a mild inflammation around the bronchioles, 22% had a moderate inflammation with inflammatory cells inside the wall and epithelial bronchiolar hyperplasia and 6.5% had a moderate to severe inflammation, with destruction of the bronchiolar epithelium and accumulation of smooth muscle cells within the pulmonary parenchyma. Changes in the thickness of the alveolar septa were also present. Expression of EIAV capsid has been evidenced in macrophages, endothelial as well as in alveolar and bronchiolar epithelial cells, as determined by their morphology and localization. To summarize, we found lesions of interstitial lung disease similar to that observed during other lentiviral infections such as FIV in cats, SRLV in sheep and goats or HIV in children. The presence of EIAV capsid in lung epithelial cells suggests that EIAV might be responsible for the broncho-interstitial damages observed.

  19. Assessment of airway lesion in obstructive lung diseases by CT

    International Nuclear Information System (INIS)

    Niimi, Akio; Matsumoto, Hisako; Ueda, Tetsuya; Mishima, Michiaki

    2002-01-01

    Airway lesion in obstructive pulmonary diseases, such as asthma or chronic obstructive pulmonary disease (COPD), has recently been assessed quantitatively. Especially in asthma, wall thickening of central airways, and its relation to the severity of disease or airflow obstruction has been clarified. Pathophysiologic importance of peripheral airway lesion has also been highlighted by pathologic or physiologic studies. However, direct evaluation of peripheral airway lesion is beyond resolutional limitation of CT. To assess airway trapping, an indirect CT finding of peripheral airway disease, by quantitative and semiquantitative measures and compare them with clinical indices such as pulmonary function, airway responsiveness, or airway inflammation. Patients with stable asthma (n=20) were studied. HRCT at 3 levels of both lungs were scanned. Low attenuation area (LAA)% and mean lung density were quantitatively assessed by an automatic method. Distribution of mosaic pattern was visually scored semiquantitatively. LAA% and mean lung density at full expiratory phase correlated with the degree of airflow obstruction. Mosaic score at full inspiratory phase correlated with the severity of disease and airflow obstruction. Expiratory/inspiratory ratio of mean lung density was also associated with airway responsiveness or residual volume/total lung capacity (RV/TLC). These CT findings may be useful as markers of asthma pathophysiology. (author)

  20. Overexpression of IL-38 protein in anticancer drug-induced lung injury and acute exacerbation of idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Tominaga, Masaki; Okamoto, Masaki; Kawayama, Tomotaka; Matsuoka, Masanobu; Kaieda, Shinjiro; Sakazaki, Yuki; Kinoshita, Takashi; Mori, Daisuke; Inoue, Akira; Hoshino, Tomoaki

    2017-09-01

    Interleukin (IL)-38, a member of the IL-1 family, shows high homology to IL-1 receptor antagonist (IL-1Ra) and IL-36 receptor antagonist (IL-36Ra). Its function in interstitial lung disease (ILD) is still unknown. To determine the expression pattern of IL-38 mRNA, a panel of cDNAs derived from various tissues was analyzed by quantitative real-time PCR. Immunohistochemical reactivity with anti-human IL-38 monoclonal antibody (clone H127C) was evaluated semi-quantitatively in lung tissue samples from 12 patients with idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP), 5 with acute exacerbation of IPF, and 10 with anticancer drug-induced ILD (bleomycin in 5 and epidermal growth factor receptor-tyrosine kinase inhibitor in 5). Control lung tissues were obtained from areas of normal lung in 22 lung cancer patients who underwent extirpation surgery. IL-38 transcripts were strongly expressed in the lung, spleen, synoviocytes, and peripheral blood mononuclear cells, and at a lower level in pancreas and muscle. IL-38 protein was not strongly expressed in normal pulmonary alveolar tissues in all 22 control lungs. In contrast, IL-38 was overexpressed in the lungs of 4 of 5 (80%) patients with acute IPF exacerbation and 100% (10/10) of the patients with drug-induced ILD. IL-38 overexpression was limited to hyperplastic type II pneumocytes, which are considered to reflect regenerative change following diffuse alveolar damage in ILD. IL-38 may play an important role in acute and/or chronic inflammation in anticancer drug-induced lung injury and acute exacerbation of IPF. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  1. Lung Surfactant and Its Use in Lung Diseases

    Directory of Open Access Journals (Sweden)

    O. A. Rosenberg

    2007-01-01

    Full Text Available The review considers the present views of lung surfactant (LS functions with emphasis on its protective and barrier properties and ability to maintain local and adaptive immunity. The composition of commercial LS formulations is analyzed. Data on qualitative and quantitative LS abnormalities are presented in various diseases in neonates and adults. The results of clinical trials of different LS formulations in the treatment of acute respiratory distress syndrome in adults are analyzed in detail. Recent data on the results of and prospects for surfactant therapy for bronchial asthma, chronic obstructive pulmonary disease and pulmonary tuberculosis are given. 

  2. [Expression of various matrix metalloproteinases in mice with hyperoxia-induced acute lung injury].

    Science.gov (United States)

    Zhang, Xiang-feng; Ding, Shao-fang; Gao, Yuan-ming; Liang, Ying; Foda, Hussein D

    2006-08-01

    To investigate the role of matrix metalloproteinases (MMPs) and extracellular matrix metalloproteinase inducer (EMMPRIN) in the pathogenesis of acute lung injury induced by hyperoxia. Fifty four mice were exposed in sealed cages to >98% oxygen (for 24-72 hours), and another 18 mice to room air. The severity of lung injury was assessed, and the expression of mRNA and protein of MMP-2, MMP-9 and EMMPRIN in lung tissue, after exposure for 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; this was accompanied by increased expression of an upregulation of MMP-2, MMP-9 and EMMPRIN mRNA and protein in lung tissues. Hyperoxia causes acute lung injury in mice; increases in MMP-2, MMP-9 and EMMPRIN may play an important role in the development of hyperoxia induced lung injury in mice.

  3. ‘WNT-er is coming’: WNT signalling in chronic lung diseases

    Science.gov (United States)

    Baarsma, H A

    2017-01-01

    Chronic lung diseases represent a major public health problem with only limited therapeutic options. An important unmet need is to identify compounds and drugs that target key molecular pathways involved in the pathogenesis of chronic lung diseases. Over the last decade, there has been extensive interest in investigating Wingless/integrase-1 (WNT) signalling pathways; and WNT signal alterations have been linked to pulmonary disease pathogenesis and progression. Here, we comprehensively review the cumulative evidence for WNT pathway alterations in chronic lung pathologies, including idiopathic pulmonary fibrosis, pulmonary arterial hypertension, asthma and COPD. While many studies have focused on the canonical WNT/β-catenin signalling pathway, recent reports highlight that non-canonical WNT signalling may also significantly contribute to chronic lung pathologies; these studies will be particularly featured in this review. We further discuss recent advances uncovering the role of WNT signalling early in life, the potential of pharmaceutically modulating WNT signalling pathways and highlight (pre)clinical studies describing promising new therapies for chronic lung diseases. PMID:28416592

  4. Weight preserving image registration for monitoring disease progression in lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Lo, Pechin Chien Pau; Haseem, Ashraf

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan...... the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans...

  5. Aeroparticles, composition and lung diseases

    Directory of Open Access Journals (Sweden)

    Carlos Ivan Falcon-Rodriguez

    2016-01-01

    Full Text Available Urban air pollution is a serious worldwide problem due to its impact on human health. In the past sixty years, growing evidence established a correlation between exposure to air pollutants and the developing of severe respiratory diseases. Recently Particulate matter (PM is drawing more public attention to various aspects including historical backgrounds, physicochemical characteristics and its pathological role. Therefore, this review is focused on these aspects. The most famous air pollution disaster happened in London on December 1952; it has been calculated that more than 4000 deaths occurred during this event. Air pollution is a complex mix of gases and particles. Gaseous pollutants disseminate deeply into the alveoli, allowing its diffusion through the blood-air barrier to several organs. Meanwhile, PM is a mix of solid or liquid particles suspended in the air. PM is deposited at different levels of the respiratory tract, depending on its size: Coarse particles (PM10 in upper airways and fine particles (PM2.5 can be accumulated in the lung parenchyma, inducing several respiratory diseases. Additionally to size, the composition of particulate matter has been associated with different toxicological outcomes on clinical, epidemiological, as well as in vivo and in vitro animal and human studies. PM can be constituted by organic, inorganic and biological compounds. All these compounds are capable of modifying several biological activities including alterations in cytokine production, coagulation factors balance, pulmonary function, respiratory symptoms, and cardiac function. It can also generate different modifications during its passage through the airways, like inflammatory cells recruitment, with the release of cytokines and reactive oxygen species (ROS. These inflammatory mediators can activate different pathways such as MAP-kinases, NF-B, and stat-1, or induce DNA adducts. All these alterations can mediate obstructive or restrictive

  6. Association Between RT-Induced Changes in Lung Tissue Density and Global Lung Function

    International Nuclear Information System (INIS)

    Ma Jinli; Zhang Junan; Zhou Sumin; Hubbs, Jessica L.; Foltz, Rodney J.; Hollis, Donna R.; Light, Kim L.; Wong, Terence Z.; Kelsey, Christopher R.; Marks, Lawrence B.

    2009-01-01

    Purpose: To assess the association between radiotherapy (RT)-induced changes in computed tomography (CT)-defined lung tissue density and pulmonary function tests (PFTs). Methods and Materials: Patients undergoing incidental partial lung RT were prospectively assessed for global (PFTs) and regional (CT and single photon emission CT [SPECT]) lung function before and, serially, after RT. The percent reductions in the PFT and the average changes in lung density were compared (Pearson correlations) in the overall group and subgroups stratified according to various clinical factors. Comparisons were also made between the CT- and SPECT-based computations using the Mann-Whitney U test. Results: Between 1991 and 2004, 343 patients were enrolled in this study. Of these, 111 patients had a total of 203 concurrent post-RT evaluations of changes in lung density and PFTs available for the analyses, and 81 patients had a total of 141 concurrent post-RT SPECT images. The average increases in lung density were related to the percent reductions in the PFTs, albeit with modest correlation coefficients (range, 0.20-0.43). The analyses also indicated that the association between lung density and PFT changes is essentially equivalent to the corresponding association with SPECT-defined lung perfusion. Conclusion: We found a weak quantitative association between the degree of increase in lung density as defined by CT and the percent reduction in the PFTs.

  7. The lung microbiome in health and disease.

    Science.gov (United States)

    Moffatt, Miriam F; Cookson, William Ocm

    2017-12-01

    The Human Microbiome Project began 10 years ago, leading to a significant growth in understanding of the role the human microbiome plays in health and disease. In this article, we explain with an emphasis on the lung, the origins of microbiome research. We discuss how 16S rRNA gene sequencing became the first major molecular tool to examine the bacterial communities present within the human body. We highlight the pitfalls of molecular-based studies, such as false findings resulting from contamination, and the limitations of 16S rRNA gene sequencing. Knowledge about the lung microbiome has evolved from initial scepticism to the realisation that it might have a significant influence on many illnesses. We also discuss the lung microbiome in the context of disease by giving examples of important respiratory conditions. In addition, we draw attention to the challenges for metagenomic studies of respiratory samples and the importance of systematic bacterial isolation to enable host-microbiome interactions to be understood. We conclude by discussing how knowledge of the lung microbiome impacts current clinical diagnostics. © Royal College of Physicians 2017. All rights reserved.

  8. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bakkal, B.H. [Department of Radiation Oncology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Gultekin, F.A. [Department of General Surgery, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Guven, B. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Turkcu, U.O. [Mugla School of Health Sciences, Mugla Sitki Kocman University, Mugla (Turkey); Bektas, S. [Department of Pathology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Can, M. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey)

    2013-09-27

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.

  9. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    International Nuclear Information System (INIS)

    Bakkal, B.H.; Gultekin, F.A.; Guven, B.; Turkcu, U.O.; Bektas, S.; Can, M.

    2013-01-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage

  10. Assessment of Mycoplasma hyopneumoniae-induced Pneumonia using Different Lung Lesion Scoring Systems: a Comparative Review.

    Science.gov (United States)

    Garcia-Morante, B; Segalés, J; Fraile, L; Pérez de Rozas, A; Maiti, H; Coll, T; Sibila, M

    2016-01-01

    Mycoplasma hyopneumoniae is the primary aetiological agent of swine enzootic pneumonia (EP) and one of the major contributors to the porcine respiratory disease complex (PRDC). Gross lung lesions in pigs affected by EP consist of cranioventral pulmonary consolidation (CVPC), usually distributed bilaterally in the apical, intermediate, accessory and cranial parts of the diaphragmatic lobes. Several lung scoring methods are currently in place for the evaluation of CVPC. The aims of this study were (1) to review the lung lesion scoring systems used to assess pneumonia associated with M. hyopneumoniae infection, and (2) to evaluate eight of these scoring systems by applying them to the lungs of 76 pigs with experimentally-induced M. hyopneumoniae pneumonia. A significant correlation between all lung lesion scoring systems was observed and the coefficients of determination in a regression analysis were very high between each pair-wise comparison, except for a unique scoring system based on image analysis. A formula of equivalence between lung scoring methods was developed in order to compare the results obtained with these methods. The present review provides a basis for comparison (even retrospectively) of lesions evaluated using different lung scoring systems. Copyright © 2015. Published by Elsevier Ltd.

  11. Pathology of radiation induced lung damage

    International Nuclear Information System (INIS)

    Kawabata, Yoshinori; Murata, Yoshihiko; Ogata, Hideo; Katagiri, Shiro; Sugita, Hironobu; Iwai, Kazuo; Sakurai, Isamu.

    1985-01-01

    We examined pathological findings of radiation induced lung damage. Twenty-three cases are chosen from our hospital autopsy cases for 9 years, which fulfil strict criteria of radiation lung damage. Lung damage could be classified into 3 groups : 1) interstitial pneumonia type (9 cases), 2) intermediate pneumonia type (8 cases), and 3) alveolar pneumonia type (6 cases), according to the degree of intra-luminal exudation. These classification is well correlated with clinical findings. Pathological alveolar pneumonia type corresponds to symptomatic, radiologic ground glass pneumonic shadow. And pathologic interstitial type corresponds to clinical asymptomatic, radiologic reticulo-nodular shadow. From the clinico-pathological view point these classification is reasonable one. Radiation affects many lung structures and showed characteristic feature of repair. Elastofibrosis of the alveolar wall is observed in every cases, obstructive bronchiolitis are observed in 5 cases, and obstructive bronchiolitis in 9 cases. They are remarkable additional findings. Thickening of the interlobular septum, broncho-vascular connective tissue, and pleural layer are observed in every cases together with vascular lesions. (author)

  12. What Are Asbestos-Related Lung Diseases?

    Science.gov (United States)

    ... asbestosis include: Fibrotic lung disease Pneumoconiosis (NOO-mo-ko-ne-O-sis) Interstitial (in-ter-STISH-al) ... tissue samples. One way is through bronchoscopy (bron-KOS-ko-pee). For this procedure, your doctor will ...

  13. The acknowledgement of the Schneeberg lung disease as occupational disease in the first decree of occupational diseases from 1925

    International Nuclear Information System (INIS)

    Schuettmann, W.

    1987-01-01

    The Schneeberg lung disease is the lung cancer, conditioned by radiation which is caused by the influence of radon and of its subsequent products. It has gained a great importance after World War II as a consequence of the intensified mining of uranium ore. From the history of the disease, lasting some centuries, the period of the twenties and thirties of this century is represented in which on one side the conception of the causal importance of radon has made its way little by little, and on the other side the disease was acknowledged as occupational disease within the first decree of occupational diseases in the former German Reich. Evaluating materials from Saxon archives it is described how the legislative preparations to the acknowledgement of the Schneeberg lung disease as occupational disease and the simultaneous research to the elucidation of nature and cause of the disease have penetrated and influenced each other. (author)

  14. How patient positioning affects radiographic signs of canine lung disease

    International Nuclear Information System (INIS)

    Steyn, P.F.; Green, R.W.

    1990-01-01

    A single radiographic projection risks missing signs of lung disease. Four case reports of dogs are given to emphasize inadequate visualization with just one or two radiographs. It is advisable to take both right and left lateral views along with a dorsoventral view in a patient, that might have lung disease

  15. Classification of diffuse lung diseases: why and how.

    Science.gov (United States)

    Hansell, David M

    2013-09-01

    The understanding of complex lung diseases, notably the idiopathic interstitial pneumonias and small airways diseases, owes as much to repeated attempts over the years to classify them as to any single conceptual breakthrough. One of the many benefits of a successful classification scheme is that it allows workers, within and between disciplines, to be clear that they are discussing the same disease. This may be of particular importance in the recruitment of individuals for a clinical trial that requires a standardized and homogeneous study population. Different specialties require fundamentally different things from a classification: for epidemiologic studies, a classification that requires categorization of individuals according to histopathologic pattern is not usually practicable. Conversely, a scheme that simply divides diffuse parenchymal disease into inflammatory and noninflammatory categories is unlikely to further the understanding about the pathogenesis of disease. Thus, for some disease groupings, for example, pulmonary vasculopathies, there may be several appropriate classifications, each with its merits and demerits. There has been an interesting shift in the past few years, from the accepted primacy of histopathology as the sole basis on which the classification of parenchymal lung disease has rested, to new ways of considering how these entities relate to each other. Some inventive thinking has resulted in new classifications that undoubtedly benefit patients and clinicians in their endeavor to improve management and outcome. The challenge of understanding the logic behind current classifications and their shortcomings are explored in various examples of lung diseases.

  16. Mechanisms Underlying HIV-Associated Noninfectious Lung Disease.

    Science.gov (United States)

    Presti, Rachel M; Flores, Sonia C; Palmer, Brent E; Atkinson, Jeffrey J; Lesko, Catherine R; Lau, Bryan; Fontenot, Andrew P; Roman, Jesse; McDyer, John F; Twigg, Homer L

    2017-11-01

    Pulmonary disease remains a primary source of morbidity and mortality in persons living with HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination antiretroviral therapy. The underlying mechanisms of this are incompletely understood, but recent research in both human and animal models suggests that oxidative stress, expression of matrix metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH to these conditions. Some of the factors that drive these processes include tobacco and other substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are needed to understand the relative importance of these factors to the development of lung disease in PLWH. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  17. ROS Mediates Radiation-Induced Differentiation in Human Lung Fibroblast

    International Nuclear Information System (INIS)

    Park, Sa Rah; Ahn, Ji Yeon; Kim, Mi Hyeung; Lim, Min Jin; Yun, Yeon Sook; Song, Jie Young

    2009-01-01

    One of the most common tumors worldwide is lung cancer and the number of patients with lung cancer received radiotherapy is increasing rapidly. Although radiotherapy may have lots of advantages, it can also induce serious adverse effects such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of smooth muscle actin-alpha (a-SMA) and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-b), tumor necrosis factor (TNF), IL-6, platelet-derived growth factor (PDGF) and reactive oxygen species are related to fibrosis. It is also reported that reactive oxygen species (ROS) can be induced by radiation and can act as a second messenger in various signaling pathways. Therefore we focused on the role of ROS in radiation induced fibrosis. Here, we suggest that irradiation generate ROS mainly through NOX4, result in differentiation of lung fibroblast into myofibroblast

  18. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Woode, Denzel; Shiomi, Takayuki; D’Armiento, Jeanine, E-mail: jmd12@cumc.columbia.edu [Department of Anesthesiology, Columbia University, College of Physicians and Surgeons, New York, NY 10033 (United States)

    2015-02-05

    Chronic obstructive pulmonary disease (COPD) and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs) in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD.

  19. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer

    International Nuclear Information System (INIS)

    Woode, Denzel; Shiomi, Takayuki; D’Armiento, Jeanine

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs) in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD

  20. Alda-1 Protects Against Acrolein-Induced Acute Lung Injury and Endothelial Barrier Dysfunction.

    Science.gov (United States)

    Lu, Qing; Mundy, Miles; Chambers, Eboni; Lange, Thilo; Newton, Julie; Borgas, Diana; Yao, Hongwei; Choudhary, Gaurav; Basak, Rajshekhar; Oldham, Mahogany; Rounds, Sharon

    2017-12-01

    Inhalation of acrolein, a highly reactive aldehyde, causes lung edema. The underlying mechanism is poorly understood and there is no effective treatment. In this study, we demonstrated that acrolein not only dose-dependently induced lung edema but also promoted LPS-induced acute lung injury. Importantly, acrolein-induced lung injury was prevented and rescued by Alda-1, an activator of mitochondrial aldehyde dehydrogenase 2. Acrolein also dose-dependently increased monolayer permeability, disrupted adherens junctions and focal adhesion complexes, and caused intercellular gap formation in primary cultured lung microvascular endothelial cells (LMVECs). These effects were attenuated by Alda-1 and the antioxidant N-acetylcysteine, but not by the NADPH inhibitor apocynin. Furthermore, acrolein inhibited AMP-activated protein kinase (AMPK) and increased mitochondrial reactive oxygen species levels in LMVECs-effects that were associated with impaired mitochondrial respiration. AMPK total protein levels were also reduced in lung tissue of mice and LMVECs exposed to acrolein. Activation of AMPK with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside blunted an acrolein-induced increase in endothelial monolayer permeability, but not mitochondrial oxidative stress or inhibition of mitochondrial respiration. Our results suggest that acrolein-induced mitochondrial dysfunction may not contribute to endothelial barrier dysfunction. We speculate that detoxification of acrolein by Alda-1 and activation of AMPK may be novel approaches to prevent and treat acrolein-associated acute lung injury, which may occur after smoke inhalation.

  1. High-resolution computed tomography to differentiate chronic diffuse interstitial lung diseases with predominant ground-glass pattern using logical analysis of data

    International Nuclear Information System (INIS)

    Martin, Sophie Grivaud; Brauner, Michel W.; Rety, Frederique; Kronek, Louis-Philippe; Brauner, Nadia; Valeyre, Dominique; Nunes, Hilario; Brillet, Pierre-Yves

    2010-01-01

    We evaluated the performance of high-resolution computed tomography (HRCT) to differentiate chronic diffuse interstitial lung diseases (CDILD) with predominant ground-glass pattern by using logical analysis of data (LAD). A total of 162 patients were classified into seven categories: sarcoidosis (n = 38), connective tissue disease (n = 32), hypersensitivity pneumonitis (n = 18), drug-induced lung disease (n = 15), alveolar proteinosis (n = 12), idiopathic non-specific interstitial pneumonia (n = 10) and miscellaneous (n = 37). First, 40 CT attributes were investigated by the LAD to build up patterns characterising a category. From the association of patterns, LAD determined models specific to each CDILD. Second, data were recomputed by adding eight clinical attributes to the analysis. The 20 x 5 cross-folding method was used for validation. Models could be individualised for sarcoidosis, hypersensitivity pneumonitis, connective tissue disease and alveolar proteinosis. An additional model was individualised for drug-induced lung disease by adding clinical data. No model was demonstrated for idiopathic non-specific interstitial pneumonia and the miscellaneous category. The results showed that HRCT had a good sensitivity (≥64%) and specificity (≥78%) and a high negative predictive value (≥93%) for diseases with a model. Higher sensitivity (≥78%) and specificity (≥89%) were achieved by adding clinical data. The diagnostic performance of HRCT is high and can be increased by adding clinical data. (orig.)

  2. Immunogenetic basis of environmental lung disease: Lessons from the berylliosis model

    International Nuclear Information System (INIS)

    Saltini, C.; Richeldi, L.; Amicosante, M.; Franchi, A.; Lombardi, G.

    1998-01-01

    The role of genetic factors has been hypothesized in the pathogenesis of a number of chronic inflammatory lung diseases. The genes of the major histocompatibility complex (MHC) locus on human chromosome 6 have been identified as important determinants in diseases caused both by inorganic and organic compounds such as beryllium, gold, acid anhydrides, isocyanates and grass pollens. Since many environmental factors are the determinants of the immunopathogenesis of asthma, pulmonary granulomatous disorders, hypersensitivity pneumonitis and fibrotic lung disorders, an understanding of the interaction between environmental factors is crucial to epidemiology, prevention and treatment of these disorders. Berylliosis is an environmental chronic inflammatory disorder of the lung caused by inhalation of beryllium dusts. A human leukocyte antigen class II marker (HLA-DP Glu69) has been found to be strongly associated with the disease. In in vitro studies, the gene has been shown to play a direct role in the immunopathogenesis of the disease. In human studies, the gene has been shown to confer increased susceptibility to beryllium in exposed workers, thus suggesting that HLA gene markers may be used as epidemiological probes to identify population groups at higher risk of environmental lung diseases, to identify environmental levels of lung immunotoxicants that would be safe for the entire population and the prevent disease risk associated with occupation, manufactured products and the environment. Studies on the associations between human leukocyte antigens and chronic inflammatory lung disorders are reviewed in the context of the berylliosis model. (au)

  3. Gallic Acid Induces a Reactive Oxygen Species-Provoked c-Jun NH2-Terminal Kinase-Dependent Apoptosis in Lung Fibroblasts

    Science.gov (United States)

    Chen, Chiu-Yuan; Chen, Kun-Chieh; Yang, Tsung-Ying; Liu, Hsiang-Chun; Hsu, Shih-Lan

    2013-01-01

    Idiopathic pulmonary fibrosis is a chronic lung disorder characterized by fibroblasts proliferation and extracellular matrix accumulation. Induction of fibroblast apoptosis therefore plays a crucial role in the resolution of this disease. Gallic acid (3,4,5-trihydroxybenzoic acid), a common botanic phenolic compound, has been reported to induce apoptosis in tumor cell lines and renal fibroblasts. The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in lung fibroblasts apoptosis induced by gallic acid. We found that treatment with gallic acid resulted in activation of c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB, Akt), but not p38MAPK, in mouse lung fibroblasts. Inhibition of JNK using pharmacologic inhibitor (SP600125) and genetic knockdown (JNK specific siRNA) significantly inhibited p53 accumulation, reduced PUMA and Fas expression, and abolished apoptosis induced by gallic acid. Moreover, treatment with antioxidants (vitamin C, N-acetyl cysteine, and catalase) effectively diminished gallic acid-induced hydrogen peroxide production, JNK and p53 activation, and cell death. These observations imply that gallic acid-mediated hydrogen peroxide formation acts as an initiator of JNK signaling pathways, leading to p53 activation and apoptosis in mouse lung fibroblasts. PMID:23533505

  4. Smoking-related interstitial lung diseases; Interstitielle Lungenerkrankungen bei Rauchern

    Energy Technology Data Exchange (ETDEWEB)

    Marten, K. [Technische Univ. Muenchen (Germany). Klinikum rechts der Isar, Inst. fuer Roentgendiagnostik

    2007-03-15

    The most important smoking-related interstitial lung diseases (ILD) are respiratory bronchiolitis, respiratory bronchiolitis-associated interstitial lung disease, desquamative interstitial pneumonia, and Langerhans' cell histiocytosis. Although traditionally considered to be discrete entities, smoking-related ILDs often coexist, thus accounting for the sometimes complex patterns encountered on high-resolution computed tomography (HRCT). Further studies are needed to elucidate the causative role of smoking in the development of pulmonary fibrosis.

  5. [Consumer surveys among hospitalized patients with lung disease].

    Science.gov (United States)

    Humborstad, O T; Omenaas, E; Gulsvik, A

    2001-03-30

    The aim of our survey was to record the experiences of hospitalised patients with respiratory diseases in order to create a more patient-friendly department. Our study included 609 patients (response rate 70%) with a median age of 64 years (range 13-91) who were discharged from the Department of Thoracic Medicine, Haukeland University Hospital in October 1991, 1992, 1994, 1995 and 1996. 268 patients had obstructive lung disease, 82 had lung cancer. They answered a questionnaire with 24 questions. Patient reception to the ward and staff knowledge of the patients' illnesses, were for the physicians rated as good or better by 92% and 79% and for the nurses by 94% and 70% respectively. 16% of the patients experienced insecurity, 17% anxiety, 12% helplessness, 9% loneliness and 12% little say in the decision making process. Trend factors for these emotional experiences were female sex, old age, obstructive lung disease and long stay in hospital. Patients aged 50 to 69 years and patients with lung cancer had the lowest rate of negative emotional experiences. Despite staff awareness of the prevalence and of the patients' emotional experiences and the risk factors involved, there was no clear reduction of negative experiences in the later surveys compared to the first survey. Patients in a university hospital with respiratory diseases showed unchanged experiences of health care and personal emotions in repeated surveys over a period of five years.

  6. Speech characteristics of miners with black lung disease (pneumoconiosis).

    Science.gov (United States)

    Gilbert, H R

    1975-06-01

    Speech samples were obtained from 10 miners with diagnosed black lung disease and 10 nonminers who had never worked in a dusty environment and who had no history of respiratory diseases. Frequency, intensity and durational measures were used as a basis upon which to compare the two groups. Results indicated that four of the six pausal measures, vowel duration, vowel intensity variation and vowel perturbation differentiated the miners from the nonminers. The results indicate that black lung disease may affect not only respiratory physiology associated with speech production but also laryngeal physiology.

  7. Role of Cardiovascular Disease-associated iron overload in Libby amphibole-induced acute pulmonary injury and inflammation

    Science.gov (United States)

    Pulmonary toxicity induced by asbestos is thought to be mediated through redox-cycling of fiber-bound and bioavailable iron (Fe). We hypothesized that Libby amphibole (LA)-induced cute lung injury will be exacerbated in rat models of cardiovascular disease (CVD)-associated Fe-ove...

  8. Lung-specific loss of α3 laminin worsens bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Morales-Nebreda, Luisa I; Rogel, Micah R; Eisenberg, Jessica L; Hamill, Kevin J; Soberanes, Saul; Nigdelioglu, Recep; Chi, Monica; Cho, Takugo; Radigan, Kathryn A; Ridge, Karen M; Misharin, Alexander V; Woychek, Alex; Hopkinson, Susan; Perlman, Harris; Mutlu, Gokhan M; Pardo, Annie; Selman, Moises; Jones, Jonathan C R; Budinger, G R Scott

    2015-04-01

    Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3(fl/fl)). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression.

  9. Propofol attenuates oxidant-induced acute lung injury in an isolated perfused rabbit-lung model.

    Science.gov (United States)

    Yumoto, Masato; Nishida, Osamu; Nakamura, Fujio; Katsuya, Hirotada

    2005-01-01

    Reactive oxygen species have been strongly implicated in the pathogenesis of acute lung injury (ALI). Some animal studies suggest that free radical scavengers inhibit the onset of oxidant-induced ALI. Propofol (2,6-diisopropylphenol) is chemically similar to phenol-based free radical scavengers such as the endogenous antioxidant vitamin E. Both in vivo and in vitro studies have suggested that propofol has antioxidant potential. We hypothesized that propofol may attenuate ALI by acting as a free-radical scavenger. We investigated the effects of propofol on oxidant-induced ALI induced by purine and xanthine oxidase (XO), in isolated perfused rabbit lung, in two series of experiments. In series 1, we examined the relationship between the severity of ALI and the presence of hydrogen peroxide (H2O2). In series 2, we evaluated the effects of propofol on attenuating ALI and the dose dependence of these effects. The lungs were perfused for 90 min, and we evaluated the effects on the severity of ALI by monitoring the pulmonary capillary filtration coefficient (Kfc), pulmonary arterial pressure (Ppa), and the pulmonary capillary hydrostatic pressure (Ppc). In series 1, treatment with catalase (an H2O2 scavenger) prior to the addition of purine and XO resulted in complete prevention of ALI, suggesting that H2O2 may be involved closely in the pathogenesis of ALI. In series 2, pretreatment with propofol at concentrations in excess of 0.5 mM significantly inhibited the increases in the Kfc values, and that in excess of 0.75 mM significantly inhibited the increase in the Ppa values. Propofol attenuates oxidant-induced ALI in an isolated perfused rabbit lung model, probably due to its antioxidant action.

  10. Lung cancer induced in mice by the envelope protein of jaagsiekte sheep retrovirus (JSRV closely resembles lung cancer in sheep infected with JSRV

    Directory of Open Access Journals (Sweden)

    York Denis

    2006-12-01

    Full Text Available Abstract Background Jaagsiekte sheep retrovirus (JSRV causes a lethal lung cancer in sheep and goats. Expression of the JSRV envelope (Env protein in mouse lung, by using a replication-defective adeno-associated virus type 6 (AAV6 vector, induces tumors resembling those seen in sheep. However, the mouse and sheep tumors have not been carefully compared to determine if Env expression alone in mice can account for the disease features observed in sheep, or whether additional aspects of virus replication in sheep are important, such as oncogene activation following retrovirus integration into the host cell genome. Results We have generated mouse monoclonal antibodies (Mab against JSRV Env and have used these to study mouse and sheep lung tumor histology. These Mab detect Env expression in tumors in sheep infected with JSRV from around the world with high sensitivity and specificity. Mouse and sheep tumors consisted mainly of well-differentiated adenomatous foci with little histological evidence of anaplasia, but at long times after vector exposure some mouse tumors did have a more malignant appearance typical of adenocarcinoma. In addition to epithelial cell tumors, lungs of three of 29 sheep examined contained fibroblastic cell masses that expressed Env and appeared to be separate neoplasms. The Mab also stained nasal adenocarcinoma tissue from one United States sheep, which we show was due to expression of Env from ovine enzootic nasal tumor virus (ENTV, a virus closely related to JSRV. Systemic administration of the AAV6 vector encoding JSRV Env to mice produced numerous hepatocellular tumors, and some hemangiomas and hemangiosarcomas, showing that the Env protein can induce tumors in multiple cell types. Conclusion Lung cancers induced by JSRV infection in sheep and by JSRV Env expression in mice have similar histologic features and are primarily characterized by adenomatous proliferation of peripheral lung epithelial cells. Thus it is

  11. A CURIOUS CASE OF FEVER AND INTERSTITIAL LUNG DISEASE

    OpenAIRE

    Dr. Shahid Mahdi; Dr. Darpanarayan Hazra; Dr. Zainab Mahdi

    2017-01-01

    Antisynthetase syndrome is a rare chronic autoimmune inflammatory myopathy with fever, interstitial lung disease, Raynaud’s phenomenon and polyarthritis. The exact underlying cause of antisynthetase syndrome is not yet known. Diagnosis is made with presence of Jo-1 (Histydyl t RNA synthase) antigen in a patient with underlying interstitial lung disease, myositis, arthritis, Raynaud’s phenomenon and mechanic’s hand. Some of the other antisynthetase anti bodies are PL-7 (antigen – threonyl-tRNA...

  12. Spirometry utilisation among Danish adults initiating medication targeting obstructive lung disease.

    Science.gov (United States)

    Koefoed, Mette Marie

    2015-02-01

    This PhD thesis was written during my employment at the Research Unit of General Practice in Odense, University of Southern Denmark. It comprises an overview and three papers, all published or submitted for publication in international peer-reviewed scientific journals.   Non-infectious dyspnoea, chronic cough and wheezing are common symptoms in the population. Patients often present with these symptoms in general practice and have a high probability of having obstructive lung diseases. However, there is an indication that the majority of these patients are treated empirically with pharmacotherapy targeting obstructive lung disease and only few have additional tests conducted, although the predictive value of respiratory symptoms for diagnosing obstructive lung disease has proven to be low. Spirometry is recommended as the gold standard for confirming obstructive lung disease, and testing can also rule out airway obstruction in patients with respiratory symptoms caused by other illnesses, such as heart failure or lung cancer. Initiating medication for obstructive lung disease without spirometry entails the risk of these patients experiencing unnecessary delay in the diagnostic process and being exposed to unnecessary economic costs and medication risks. The literature has indicated that many users of medication targeting obstructive lung medication have not had spirometry performed and do not actually have obstructive lung disease. This potential quality gap needs to be assessed. Also, in order to target interventions enhancing earlier spirometry utilisation among patients initiating medication targeting obstructive lung disease, improved knowledge on patient and practice factors associated with spirometry testing is needed.   Among first time users of obstructive lung medication we aimed: - To assess to what extent spirometry was performed within the first year of medication use (Study I) - To assess if patient characteristics like socioeconomic and demographic

  13. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer

    Directory of Open Access Journals (Sweden)

    Denzel Woode

    2015-02-01

    Full Text Available Chronic obstructive pulmonary disease (COPD and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD.

  14. Role of p53–fibrinolytic system cross-talk in the regulation of quartz-induced lung injury

    International Nuclear Information System (INIS)

    Bhandary, Yashodhar P.; Shetty, Shwetha K.; Marudamuthu, Amarnath S.; Fu, Jian; Pinson, Barbara M.; Levin, Jeffrey; Shetty, Sreerama

    2015-01-01

    Silica is the major component of airborne dust generated by wind, manufacturing and/or demolition. Chronic occupational inhalation of silica dust containing crystalline quartz is by far the predominant form of silicosis in humans. Silicosis is a progressive lung disease that typically arises after a very long latency and is a major occupational concern with no known effective treatment. The mechanism of silicosis is not clearly understood. However, silicosis is associated with increased cell death, expression of redox enzymes and pro-fibrotic cytokines and chemokines. Since alveolar epithelial cell (AEC) death and disruption of alveolar fibrinolysis is often associated with both acute and chronic lung injuries, we explored whether p53-mediated changes in the urokinase-type plasminogen activator (uPA) system contributes to silica-induced lung injury. We further sought to determine whether caveolin-1 scaffolding domain peptide (CSP), which inhibits p53 expression, mitigates lung injury associated with exposure to silica. Lung tissues and AECs isolated from wild-type (WT) mice exposed to silica exhibit increased apoptosis, p53 and PAI-1, and suppression of uPA expression. Treatment of WT mice with CSP inhibits PAI-1, restores uPA expression and prevents AEC apoptosis by suppressing p53, which is otherwise induced in mice exposed to silica. The process involves CSP-mediated inhibition of serine-15 phosphorylation of p53 by inhibition of protein phosphatase 2A-C (PP2A-C) interaction with silica-induced caveolin-1 in AECs. These observations suggest that changes in the p53–uPA fibrinolytic system cross-talk contribute to lung injury caused by inhalation of silica dust containing crystalline quartz and is protected by CSP by targeting this pathway. - Highlights: • Chronic exposure to quartz dusts is a major cause of lung injury and silicosis. • The survival of patients with silicosis is bleak due to lack of effective treatments. • This study defines a new role of

  15. MRI of interstitial lung diseases. What is possible?

    International Nuclear Information System (INIS)

    Biederer, J.; Wielpuetz, M.O.; Jobst, B.J.; Dinkel, J.

    2014-01-01

    Magnetic resonance imaging (MRI) of the lungs is becoming increasingly appreciated as a third diagnostic imaging modality besides chest x-ray and computed tomography (CT). Its value is well acknowledged for pediatric patients or for scientific use particularly when radiation exposure should be strictly avoided. However, the diagnosis of interstitial lung disease is the biggest challenge of all indications. The objective of this article is a summary of the current state of the art for diagnostic MRI of interstitial lung diseases. This article reflects the results of a current search of the literature and discusses them against the background of the authors own experience with lung MRI. Due to its lower spatial resolution and a higher susceptibility to artefacts MRI does not achieve the sensitivity of CT for the detection of small details for pattern recognition (e.g. fine reticulation and micronodules) but larger details (e.g. coarse fibrosis and honeycombing) can be clearly visualized. Moreover, it could be shown that MRI has the capability to add clinically valuable information on regional lung function (e.g. ventilation, perfusion and mechanical properties) and inflammation with native signal and contrast dynamics. In its present state MRI can be used for comprehensive cardiopulmonary imaging in patients with sarcoidosis or for follow-up of lung fibrosis after initial correlation with CT. Far more indications are expected when the capabilities of MRI for the assessment of regional lung function and activity of inflammation can be transferred into robust protocols for clinical use. (orig.) [de

  16. Changes in expression of cytokines in polyhexamethylene guanidine-induced lung fibrosis in mice: Comparison of bleomycin-induced lung fibrosis.

    Science.gov (United States)

    Kim, Min-Seok; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Lee, Kyuhong

    2018-01-15

    Inhalation of polyhexamethylene guanidine (PHMG) causes irreversible pulmonary injury, such as pulmonary fibrosis. However, the mechanism underlying PHMG-induced lung injury is unclear. In this study, we compared the difference in time-dependent lung injury between PHMG- and bleomycin (BLM)-treated mice and determined cytokines involved in inducing lung injury by performing cytokine antibody array analysis. Mice were treated once with 1.8mg/kg BLM or 1.2mg/kg PHMG through intratracheal instillation and were sacrificed on days 7 and 28. Bronchoalveolar lavage fluid (BALF) analysis showed that the number of neutrophils was significantly higher in PHMG-treated mice than in BLM-treated mice on day 7. Histopathological analysis showed inflammatory cell infiltration and fibrosis mainly in the terminal bronchioles and alveoli in the lungs of PHMG- and BLM-treated mice. However, continuous macrophage infiltration in the alveolar space and bronchioloalveolar epithelial hyperplasia (BEH) were only observed in PHMG-treated mice. Cytokine antibody array analysis showed that 15 and eight cytokines were upregulated in PHMG- and BLM-treated mice, respectively, on day 7. On day 28, 13 and five cytokines were upregulated in PHMG and BLM-treated mice, respectively. In addition, the expressed cytokines between days 7 and 28 in BLM-treated mice were clearly different, but were similar in PHMG-treated mice. Consequently, between PHMG- and BLM-treated mice, we observed differences in the expression patterns and types of cytokines. These differences are considered to be a result of the inflammatory processes induced by both substances, which may mainly involve macrophage infiltration. Therefore, continuous induction of the inflammatory response by PHMG may play an important role in the development of pulmonary fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Involvement of growth factors and their receptors in radon-induced rat lung tumors

    International Nuclear Information System (INIS)

    Leung, F.C.; Dagle, G.E.; Cross, F.T.

    1992-01-01

    In this paper we examine the role of growth factors (GF) and their receptors (GFR) in radon-induced rat lung tumors. Inhalation exposure of radon and its daughters induced lung tumors in rats, but the molecule/cellular mechanisms are not known. Recent evidence suggests that GF/GFR play a critical role in the growth and development of lung cancer in humans and animals. We have developed immunocytochemical methods for identifying sites of production and action of GF/GFR at the cellular level; for example, the avidin-biotin horseradish peroxidase technique. In radon-induced rat epidermoid carcinomas, epidermal growth factor (EGF), EGF-receptors (EGF-R), transforming growth factor alpha (TGF-α), and bombesin were found to be abnormally expressed. These abnormal expressions, mainly associated with epidermoid carcinomas of the lung, were not found in any other lung tumor types. Our data suggest that EGF, EGF-R, TGF-α, and bombesin are involved in radon oncogenesis in rat lungs, especially in epidermoid carcinomas, possibly through the autocrine/paracrine pathway

  18. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Yang, Yu-Xiu; Li, Xiu-Ling [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Michelli-Rivera, Audrey [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Han, Shuang-Yin [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Wang, Lei; Pratheeshkumar, Poyil; Wang, Xin; Lu, Jian; Yin, Yuan-Qin; Budhraja, Amit; Hitron, Andrew J. [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and

  19. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    Directory of Open Access Journals (Sweden)

    Rong Yao

    Full Text Available Pulmonary fibrosis is one of the most common complications of paraquat (PQ poisoning, which demands for more effective therapies. Accumulating evidence suggests adiponectin (APN may be a promising therapy against fibrotic diseases. In the current study, we determine whether the exogenous globular APN isoform protects against pulmonary fibrosis in PQ-treated mice and human lung fibroblasts, and dissect the responsible underlying mechanisms. BALB/C mice were divided into control group, PQ group, PQ + low-dose APN group, and PQ + high-dose APN group. Mice were sacrificed 3, 7, 14, and 21 days after PQ treatment. We compared pulmonary histopathological changes among different groups on the basis of fibrosis scores, TGF-β1, CTGF and α-SMA pulmonary content via Western blot and real-time quantitative fluorescence-PCR (RT-PCR. Blood levels of MMP-9 and TIMP-1 were determined by ELISA. Human lung fibroblasts WI-38 were divided into control group, PQ group, APN group, and APN receptor (AdipoR 1 small-interfering RNA (siRNA group. Fibroblasts were collected 24, 48, and 72 hours after PQ exposure for assay. Cell viability and apoptosis were determined via Kit-8 (CCK-8 and fluorescein Annexin V-FITC/PI double labeling. The protein and mRNA expression level of collagen type III, AdipoR1, and AdipoR2 were measured by Western blot and RT-PCR. APN treatment significantly decreased the lung fibrosis scores, protein and mRNA expression of pulmonary TGF-β1, CTGF and α-SMA content, and blood MMP-9 and TIMP-1 in a dose-dependent manner (p<0.05. Pretreatment with APN significantly attenuated the reduced cell viability and up-regulated collagen type III expression induced by PQ in lung fibroblasts, (p<0.05. APN pretreatment up-regulated AdipoR1, but not AdipoR2, expression in WI-38 fibroblasts. AdipoR1 siRNA abrogated APN-mediated protective effects in PQ-exposed fibroblasts. Taken together, our data suggests APN protects against PQ-induced pulmonary fibrosis in a

  20. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD on the human lung microbiome.

    Directory of Open Access Journals (Sweden)

    Marion Engel

    Full Text Available Changes in microbial community composition in the lung of patients suffering from moderate to severe COPD have been well documented. However, knowledge about specific microbiome structures in the human lung associated with CT defined abnormalities is limited.Bacterial community composition derived from brush samples from lungs of 16 patients suffering from different CT defined subtypes of COPD and 9 healthy subjects was analyzed using a cultivation independent barcoding approach applying 454-pyrosequencing of 16S rRNA gene fragment amplicons.We could show that bacterial community composition in patients with changes in CT (either airway or emphysema type changes, designated as severe subtypes was different from community composition in lungs of patients without visible changes in CT as well as from healthy subjects (designated as mild COPD subtype and control group (PC1, Padj = 0.002. Higher abundance of Prevotella in samples from patients with mild COPD subtype and from controls and of Streptococcus in the severe subtype cases mainly contributed to the separation of bacterial communities of subjects. No significant effects of treatment with inhaled glucocorticoids on bacterial community composition were detected within COPD cases with and without abnormalities in CT in PCoA. Co-occurrence analysis suggests the presence of networks of co-occurring bacteria. Four communities of positively correlated bacteria were revealed. The microbial communities can clearly be distinguished by their associations with the CT defined disease phenotype.Our findings indicate that CT detectable structural changes in the lung of COPD patients, which we termed severe subtypes, are associated with alterations in bacterial communities, which may induce further changes in the interaction between microbes and host cells. This might result in a changed interplay with the host immune system.

  1. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome.

    Science.gov (United States)

    Engel, Marion; Endesfelder, David; Schloter-Hai, Brigitte; Kublik, Susanne; Granitsiotis, Michael S; Boschetto, Piera; Stendardo, Mariarita; Barta, Imre; Dome, Balazs; Deleuze, Jean-François; Boland, Anne; Müller-Quernheim, Joachim; Prasse, Antje; Welte, Tobias; Hohlfeld, Jens; Subramanian, Deepak; Parr, David; Gut, Ivo Glynne; Greulich, Timm; Koczulla, Andreas Rembert; Nowinski, Adam; Gorecka, Dorota; Singh, Dave; Gupta, Sumit; Brightling, Christopher E; Hoffmann, Harald; Frankenberger, Marion; Hofer, Thomas P; Burggraf, Dorothe; Heiss-Neumann, Marion; Ziegler-Heitbrock, Loems; Schloter, Michael; Zu Castell, Wolfgang

    2017-01-01

    Changes in microbial community composition in the lung of patients suffering from moderate to severe COPD have been well documented. However, knowledge about specific microbiome structures in the human lung associated with CT defined abnormalities is limited. Bacterial community composition derived from brush samples from lungs of 16 patients suffering from different CT defined subtypes of COPD and 9 healthy subjects was analyzed using a cultivation independent barcoding approach applying 454-pyrosequencing of 16S rRNA gene fragment amplicons. We could show that bacterial community composition in patients with changes in CT (either airway or emphysema type changes, designated as severe subtypes) was different from community composition in lungs of patients without visible changes in CT as well as from healthy subjects (designated as mild COPD subtype and control group) (PC1, Padj = 0.002). Higher abundance of Prevotella in samples from patients with mild COPD subtype and from controls and of Streptococcus in the severe subtype cases mainly contributed to the separation of bacterial communities of subjects. No significant effects of treatment with inhaled glucocorticoids on bacterial community composition were detected within COPD cases with and without abnormalities in CT in PCoA. Co-occurrence analysis suggests the presence of networks of co-occurring bacteria. Four communities of positively correlated bacteria were revealed. The microbial communities can clearly be distinguished by their associations with the CT defined disease phenotype. Our findings indicate that CT detectable structural changes in the lung of COPD patients, which we termed severe subtypes, are associated with alterations in bacterial communities, which may induce further changes in the interaction between microbes and host cells. This might result in a changed interplay with the host immune system.

  2. Bleb Point: Mimicker of Pneumothorax in Bullous Lung Disease

    Directory of Open Access Journals (Sweden)

    Gelabert, Christopher

    2015-05-01

    Full Text Available In patients presenting with severe dyspnea, several diagnostic challenges arise in distinguishing the diagnosis of pneumothorax versus several other pulmonary etiologies like bullous lung disease, pneumonia, interstitial lung disease, and acute respiratory distress syndrome. Distinguishing between large pulmonary bullae and pneumothorax is of the utmost importance, as the acute management is very different. While multiple imaging modalities are available, plain radiographs may be inadequate to make the diagnosis and other advanced imaging may be difficult to obtain. Ultrasound has a very high specificity for pneumothorax. We present a case where a large pulmonary bleb mimics the lung point and therefore inaccurately suggests pneumothorax. [West J Emerg Med. 2015;16(3:447–449.

  3. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases.

    Science.gov (United States)

    Weiss, Daniel J

    2014-01-01

    Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPDs), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the third leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and COPD with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been used to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy-based clinical trials in lung diseases. © AlphaMed Press.

  4. Border Patrol Gone Awry: Lung NKT Cell Activation by Francisella tularensis Exacerbates Tularemia-Like Disease.

    Science.gov (United States)

    Hill, Timothy M; Gilchuk, Pavlo; Cicek, Basak B; Osina, Maria A; Boyd, Kelli L; Durrant, Douglas M; Metzger, Dennis W; Khanna, Kamal M; Joyce, Sebastian

    2015-06-01

    The respiratory mucosa is a major site for pathogen invasion and, hence, a site requiring constant immune surveillance. The type I, semi-invariant natural killer T (NKT) cells are enriched within the lung vasculature. Despite optimal positioning, the role of NKT cells in respiratory infectious diseases remains poorly understood. Hence, we assessed their function in a murine model of pulmonary tularemia--because tularemia is a sepsis-like proinflammatory disease and NKT cells are known to control the cellular and humoral responses underlying sepsis. Here we show for the first time that respiratory infection with Francisella tularensis live vaccine strain resulted in rapid accumulation of NKT cells within the lung interstitium. Activated NKT cells produced interferon-γ and promoted both local and systemic proinflammatory responses. Consistent with these results, NKT cell-deficient mice showed reduced inflammatory cytokine and chemokine response yet they survived the infection better than their wild type counterparts. Strikingly, NKT cell-deficient mice had increased lymphocytic infiltration in the lungs that organized into tertiary lymphoid structures resembling induced bronchus-associated lymphoid tissue (iBALT) at the peak of infection. Thus, NKT cell activation by F. tularensis infection hampers iBALT formation and promotes a systemic proinflammatory response, which exacerbates severe pulmonary tularemia-like disease in mice.

  5. Statin Use Is Associated with Reduced Mortality in Patients with Interstitial Lung Disease

    DEFF Research Database (Denmark)

    Vedel-Krogh, Signe; Nielsen, Sune F; Nordestgaard, Børge G

    2015-01-01

    INTRODUCTION: We hypothesized that statin use begun before the diagnosis of interstitial lung disease is associated with reduced mortality. METHODS: We studied all patients diagnosed with interstitial lung disease in the entire Danish population from 1995 through 2009, comparing statin use versus...... no statin use in a nested 1:2 matched study. RESULTS: The cumulative survival as a function of follow-up time from the date of diagnosis of interstitial lung disease (n = 1,786 + 3,572) and idiopathic lung fibrosis (n = 261 + 522) was higher for statin users versus never users (log-rank: P = 7 · 10......(-9) and P = 0.05). The median survival time in patients with interstitial lung disease was 3.3 years in statin users and 2.1 years in never users. Corresponding values in patients with idiopathic lung fibrosis were 3.4 versus 2.4 years. After multivariable adjustment, the hazard ratio for all...

  6. Cyclin D expression in plutonium-induced lung tumors in F344 rats

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, F.F.; Kelly, G. [SouthWest Scientific Resources, Inc., Albuquerque, NM (United States)

    1995-12-01

    The genetic mechanisms responsible for {alpha}-radiation-induced lung cancer in rats following inhalation of {sup 239}Pu is an ongoing area of research in our laboratory. Previous studies have examined the status of the p53 gene by immunohistochemistry. Only two tumors (2/26 squamous cell carcinomas) exhibited detectable levels of p53 products. Both were the result of mutations in codons 280 and 283. More recent studies of X-ray-induced lung tumors in rats showed a similar lack of involvement of p53. In conclusion, we found that {alpha}-radiation-induced rat lung tumors have a high incidence (31 of 39) of cyclin D{sub 1} overexpression.

  7. Imaging of cystic fibrosis lung disease and clinical interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Wielpuetz, M.O.; Eichinger, M.; Kauczor, H.U. [Heidelberg University Hospital (Germany). Dept. of Diagnostic and Interventional Radiology; Translational Lung Research Center Heidelberg (TLRC) (Germany); Heidelberg University Hospital (Germany). Dept. of Diagnostic and Interventional Radiology with Nuclear Medicine; Biederer, J. [Heidelberg University Hospital (Germany). Dept. of Diagnostic and Interventional Radiology; Translational Lung Research Center Heidelberg (TLRC) (Germany); Gross-Gerau Community Hospital (Germany). Radiologie Darmstadt; Wege, S. [Heidelberg University Hospital (Germany). Dept. of Pulmonology and Respiratory Medicine; Stahl, M.; Sommerburg, O. [Translational Lung Research Center Heidelberg (TLRC) (Germany); Heidelberg University Hospital (Germany). Div. of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center; Mall, M.A. [Translational Lung Research Center Heidelberg (TLRC) (Germany); Heidelberg University Hospital (Germany). Div. of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center; Heidelberg University Hospital (Germany). Dept. of Translational Pulmonology; Puderbach, M. [Heidelberg University Hospital (Germany). Dept. of Diagnostic and Interventional Radiology; Translational Lung Research Center Heidelberg (TLRC) (Germany); Heidelberg University Hospital (Germany). Dept. of Diagnostic and Interventional Radiology with Nuclear Medicine; Hufeland Hospital, Bad Langensalza (Germany). Dept. of Diagnostic and Interventional Radiology

    2016-09-15

    Progressive lung disease in cystic fibrosis (CF) is the life-limiting factor of this autosomal recessive genetic disorder. Increasing implementation of CF newborn screening allows for a diagnosis even in pre-symptomatic stages. Improvements in therapy have led to a significant improvement in survival, the majority now being of adult age. Imaging provides detailed information on the regional distribution of CF lung disease, hence longitudinal imaging is recommended for disease monitoring in the clinical routine. Chest X-ray (CXR), computed tomography (CT) and magnetic resonance imaging (MRI) are now available as routine modalities, each with individual strengths and drawbacks, which need to be considered when choosing the optimal modality adapted to the clinical situation of the patient. CT stands out with the highest morphological detail and has often been a substitute for CXR for regular severity monitoring at specialized centers. Multidetector CT data can be post-processed with dedicated software for a detailed measurement of airway dimensions and bronchiectasis and potentially a more objective and precise grading of disease severity. However, changing to CT was inseparably accompanied by an increase in radiation exposure of CF patients, a young population with high sensitivity to ionizing radiation and lifetime accumulation of dose. MRI as a cross-sectional imaging modality free of ionizing radiation can depict morphological hallmarks of CF lung disease at lower spatial resolution but excels with comprehensive functional lung imaging, with time-resolved perfusion imaging currently being most valuable.

  8. Role of heme in bromine-induced lung injury

    Science.gov (United States)

    Lam, Adam; Vetal, Nilam; Matalon, Sadis; Aggarwal, Saurabh

    2016-01-01

    Bromine (Br2) gas inhalation poses an environmental and occupational hazard resulting in high morbidity and mortality. In this review, we underline the acute lung pathology (within 24 hours of exposure) and potential therapeutic interventions that may be utilized to mitigate Br2-induced human toxicity. We will discuss our latest published data, which suggests that an increase in heme-dependent tissue injury underlies the pathogenesis of Br2 toxicity. Our study was based on previous findings that demonstrated that Br2 upregulates the heme-degrading enzyme heme oxygenase-1 (HO-1), which converts toxic heme into billiverdin. Interestingly, following Br2 inhalation, heme levels were indeed elevated in bronchoalveolar lavage fluid, plasma, and whole lung tissue in C57BL/6 mice. High heme levels correlated with increased lung oxidative stress, lung inflammation, respiratory acidosis, lung edema, higher airway resistance, and mortality. However, therapeutic reduction of heme levels, by either scavenging with hemopexin or degradation by HO-1, improved lung function and survival. Therefore, heme attenuation may prove a useful adjuvant therapy to treat patients after Br2 exposure. PMID:27244263

  9. Marijuana and lung diseases.

    Science.gov (United States)

    Joshi, Manish; Joshi, Anita; Bartter, Thaddeus

    2014-03-01

    Cannabis sativa (marijuana) is used throughout the world, and its use is increasing. In much of the world, marijuana is illicit. While inhalation of smoke generated by igniting dried components of the plant is the most common way marijuana is used, there is concern over potential adverse lung effects. The purpose of this review is to highlight recent studies that explore the impact upon the respiratory system of inhaling marijuana smoke. Smoking marijuana is associated with chronic bronchitis symptoms and large airway inflammation. Occasional use of marijuana with low cumulative use is not a risk factor for the development of chronic obstructive pulmonary disease. The heavy use of marijuana alone may lead to airflow obstruction. The immuno-histopathologic and epidemiologic evidence in marijuana users suggests biological plausibility of marijuana smoking as a risk for the development of lung cancer; at present, it has been difficult to conclusively link marijuana smoking and cancer development. There is unequivocal evidence that habitual or regular marijuana smoking is not harmless. A caution against regular heavy marijuana usage is prudent. The medicinal use of marijuana is likely not harmful to lungs in low cumulative doses, but the dose limit needs to be defined. Recreational use is not the same as medicinal use and should be discouraged.

  10. Periodontal Disease and Incident Lung Cancer Risk: A Meta-Analysis of Cohort Studies.

    Science.gov (United States)

    Zeng, Xian-Tao; Xia, Ling-Yun; Zhang, Yong-Gang; Li, Sheng; Leng, Wei-Dong; Kwong, Joey S W

    2016-10-01

    Periodontal disease is linked to a number of systemic diseases such as cardiovascular diseases and diabetes mellitus. Recent evidence has suggested periodontal disease might be associated with lung cancer. However, their precise relationship is yet to be explored. Hence, this study aims to investigate the association of periodontal disease and risk of incident lung cancer using a meta-analytic approach. PubMed, Scopus, and ScienceDirect were searched up to June 10, 2015. Cohort and nested case-control studies investigating risk of lung cancer in patients with periodontal disease were included. Hazard ratios (HRs) were calculated, as were their 95% confidence intervals (CIs) using a fixed-effect inverse-variance model. Statistical heterogeneity was explored using the Q test as well as the I(2) statistic. Publication bias was assessed by visual inspection of funnel plots symmetry and Egger's test. Five cohort studies were included, involving 321,420 participants in this meta-analysis. Summary estimates based on adjusted data showed that periodontal disease was associated with a significant risk of lung cancer (HR = 1.24, 95% CI = 1.13 to 1.36; I(2) = 30%). No publication bias was detected. Subgroup analysis indicated that the association of periodontal disease and lung cancer remained significant in the female population. Evidence from cohort studies suggests that patients with periodontal disease are at increased risk of developing lung cancer.

  11. Successful oral desensitization against skin rash induced by alectinib in a patient with anaplastic lymphoma kinase-positive lung adenocarcinoma: A case report.

    Science.gov (United States)

    Shirasawa, Masayuki; Kubotaa, Masaru; Harada, Shinya; Niwa, Hideyuki; Kusuhara, Seiichiro; Kasajima, Masashi; Hiyoshi, Yasuhiro; Ishihara, Mikiko; Igawa, Satoshi; Masuda, Noriyuki

    2016-09-01

    Alectinib has been approved for the treatment of patients with anaplastic lymphoma kinase (ALK) gene rearrangement-positive advanced non-small cell lung cancer. In terms of adverse effects, the occurrence of a severe skin rash induced by alectinib is reportedly rare, compared with the occurrence of skin rash induced by epithelial growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). In the present case report, a 76-year-old woman with ALK-positive lung adenocarcinoma experienced disease progression after undergoing first-line chemotherapy. Subsequently, alectinib was administered as a second-line therapy. However, she discontinued alectinib therapy after 11days because of the occurrence of an alectinib-induced skin rash. Since the skin rash improved within one week, we attempted to perform oral desensitization to alectinib. The patient has not shown any recurrence of the rash or disease progression for 7 months since the successful oral desensitization to alectinib. Here, we describe the first case of successful oral desensitization against a skin rash induced by alectinib in a patient with ALK-positive lung adenocarcinoma. Desensitization to overcome adverse effects and to enable sustained treatment with alectinib should be considered in patients who develop alectinib sensitivities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Acrolein induced both pulmonary inflammation and the death of lung epithelial cells.

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-Ichi

    2014-09-02

    Acrolein, a compound found in cigarette smoke, is a major risk factor for respiratory diseases. Previous research determined that both acrolein and cigarette smoke produced reactive oxygen species (ROS). As many types of pulmonary injuries are associated with inflammation, this study sought to ascertain the extent to which exposure to acrolein advanced inflammatory state in the lungs. Our results showed that intranasal exposure of mice to acrolein increased CD11c(+)F4/80(high) macrophages in the lungs and increased ROS formation via induction of NF-κB signaling. Treatment with acrolein activated macrophages and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. In in vitro studies, acrolein treatment of bone marrow-derived GM-CSF-dependent immature macrophages (GM-IMs), activated the cells and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. Acrolein treatment of macrophages induced apoptosis of lung epithelial cells. Inclusion of an inhibitor of ROS formation markedly decreased acrolein-mediated macrophage activation and reduced the extent of epithelial cell death. These results indicate that acrolein can cause lung damage, in great part by mediating the increased release of pro-inflammatory cytokines/factors by macrophages. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. The COPD Assessment Test as a Prognostic Marker in Interstitial Lung Disease

    Directory of Open Access Journals (Sweden)

    Fujiko Someya

    2016-01-01

    Full Text Available The chronic obstructive pulmonary disease (COPD Assessment Test (CAT, which was developed to measure the health status of patients with COPD, was applied to patients with interstitial lung disease, aiming to examine the CAT as a predictor of outcome. Over a follow-up period of more than one year, 101 consecutive patients with interstitial lung disease were evaluated by the CAT. The CAT scores of 40 in total were categorized into four subsets according to the severity. Patients with higher (more severe scores exhibited lower forced vital capacity and lung diffusion capacity for carbon monoxide. The survival rate was significantly lower in patients with higher scores (log-rank test, P = 0.0002, and the hazard ratios for death of the higher scores and lower lung diffusion capacity for carbon monoxide were independently significant. These findings suggest that CAT can indicate the risk of mortality in patients with interstitial lung disease.

  14. Radioaerosol lung scanning in chronic obstructive pulmonary disease (COPD) and related disorders

    International Nuclear Information System (INIS)

    Yong Whee Bahk; Soo Kyo Chung

    1994-01-01

    As a coordinated research project of the International Atomic Energy Agency (IAEA), a multicentre joint study on radioaerosol lung scan using the BARC nebulizer has prospectively been carried out during 1988-1992 with the participation of 10 member countries in Asia [Bangladesh, China, India, Indonesia, Japan, Korea, Pakistan, Philippines, Singapore and Thailand]. The study was designed so that it would primarily cover chronic obstructive pulmonary disease (COPD) and the other related and common pulmonary diseases. The study also included normal controls and asymptomatic smokers. The purposes of this presentation are three fold: firstly, to document the usefulness of the nebulizer and the validity of user's protocol in imaging COPD and other lung diseases; secondly, to discuss scan features of the individual COPD and other disorders studied and thirdly, to correlate scan alterations with radiographic findings. Before proceeding with a systematic analysis of aerosol scan patterns in the disease groups, we documented normal pattern. The next step was the assessment of scan features in those who had been smoking for more than several years but had no symptoms or signs referable to airways. The lung diseases we analyzed included COPD [emphysema, chronic bronchitis, asthma and bronchiectasis], bronchial obstruction, compensatory overinflation and other common lung diseases such as lobar pneumonia, tuberculosis, interstitial fibrosis, diffuse panbronchiolitis, lung edema and primary and metastatic lung cancers. Lung embolism, inhalation bums and glue-sniffer's lung are separately discussed by Dr. Sundram of Singapore elsewhere in this book. The larger portion of this chapter is allocated to the discussion of COPD with a special effort made in sorting out differential scan features. Diagnostic criteria in individual COPD were defined for each category of disease and basic clinical symptoms and signs and pertinent laboratory data as well as radiographic manifestations are

  15. Radioaerosol lung scanning in chronic obstructive pulmonary disease (COPD) and related disorders

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yong Whee [Departments of Radiology and Nuclear Medicine, Kangnam St. Mary' s Hospital, Catholic University Medical College, Seoul (Korea, Republic of); Chung, Soo Kyo [Department of Nuclear Medicine, Kangnam St. Mary' s Hospital, Catholic University Medical College, Seoul (Korea, Republic of)

    1994-07-01

    As a coordinated research project of the International Atomic Energy Agency (IAEA), a multicentre joint study on radioaerosol lung scan using the BARC nebulizer has prospectively been carried out during 1988-1992 with the participation of 10 member countries in Asia [Bangladesh, China, India, Indonesia, Japan, Korea, Pakistan, Philippines, Singapore and Thailand]. The study was designed so that it would primarily cover chronic obstructive pulmonary disease (COPD) and the other related and common pulmonary diseases. The study also included normal controls and asymptomatic smokers. The purposes of this presentation are three fold: firstly, to document the usefulness of the nebulizer and the validity of user's protocol in imaging COPD and other lung diseases; secondly, to discuss scan features of the individual COPD and other disorders studied and thirdly, to correlate scan alterations with radiographic findings. Before proceeding with a systematic analysis of aerosol scan patterns in the disease groups, we documented normal pattern. The next step was the assessment of scan features in those who had been smoking for more than several years but had no symptoms or signs referable to airways. The lung diseases we analyzed included COPD [emphysema, chronic bronchitis, asthma and bronchiectasis], bronchial obstruction, compensatory overinflation and other common lung diseases such as lobar pneumonia, tuberculosis, interstitial fibrosis, diffuse panbronchiolitis, lung edema and primary and metastatic lung cancers. Lung embolism, inhalation bums and glue-sniffer's lung are separately discussed by Dr. Sundram of Singapore elsewhere in this book. The larger portion of this chapter is allocated to the discussion of COPD with a special effort made in sorting out differential scan features. Diagnostic criteria in individual COPD were defined for each category of disease and basic clinical symptoms and signs and pertinent laboratory data as well as radiographic manifestations are

  16. [Analysis of 2 patients with occupational hard mental lung disease].

    Science.gov (United States)

    Ding, Bangmei; Ding, Lu; Yu, Bin; Fan, Cunhua; Han, Lei; Hu, Jinmei; Zhu, Baoli

    2015-01-01

    We sought to master the clinical characteristics and prognosis of hard mental lung disease, improving this disease's diagnosis and treatment quality. We recruited two suspected patients with hard mental lung disease and collected their occupational history, examination results of occupational health, and past medical records. By virtue of laboratory tests, high Kv chest radiography, CT and HRCT of chest, fiberoptic bronchoscopy and ECG examination, diagnostic report was synthesized respectively by respiratory physicians and pathologist from three different agencies. Then the report was submitted to diagnosis organizations of occupational disease, and diagnostic conclusion of occupational disease was drawn after discussion by at least three diagnosticians of occupational disease. We found that both of the two suspected patients were exposed to dusts of hard metal, and length of exposure service ranged from 8 to 9 years. Clinical manifestations were dominated by dry cough, wheezing after activities, and pathological manifestation was characteristic giant cell interstitial pneumonia. The prognosis and outcome of the disease were different. According to exact occupational exposure history, clinical manifestations, combined with the results of high Kv chest radiography, CT of chest and pathological manifestation, it can be diagnosed with hard mental lung disease.

  17. Variation in Cilia Protein Genes and Progression of Lung Disease in Cystic Fibrosis.

    Science.gov (United States)

    Blue, Elizabeth; Louie, Tin L; Chong, Jessica X; Hebbring, Scott J; Barnes, Kathleen C; Rafaels, Nicholas M; Knowles, Michael R; Gibson, Ronald L; Bamshad, Michael J; Emond, Mary J

    2018-04-01

    Cystic fibrosis, like primary ciliary dyskinesia, is an autosomal recessive disorder characterized by abnormal mucociliary clearance and obstructive lung disease. We hypothesized that genes underlying the development or function of cilia may modify lung disease severity in persons with cystic fibrosis. To test this hypothesis, we compared variants in 93 candidate genes in both upper and lower tertiles of lung function in a large cohort of children and adults with cystic fibrosis with those of a population control dataset. Variants within candidate genes were tested for association using the SKAT-O test, comparing cystic fibrosis cases defined by poor (n = 127) or preserved (n = 127) lung function with population controls (n = 3,269 or 3,148, respectively). Associated variants were then tested for association with related phenotypes in independent datasets. Variants in DNAH14 and DNAAF3 were associated with poor lung function in cystic fibrosis, whereas variants in DNAH14 and DNAH6 were associated with preserved lung function in cystic fibrosis. Associations between DNAH14 and lung function were replicated in disease-related phenotypes characterized by obstructive lung disease in adults. Genetic variants within DNAH6, DNAH14, and DNAAF3 are associated with variation in lung function among persons with cystic fibrosis.

  18. Interstitial Lung disease in Systemic Sclerosis

    International Nuclear Information System (INIS)

    Ooi, G.C.; Mok, M.Y.; Tsang, K.W.T.; Khong, P.L.; Fung, P.C.W.; Chan, S.; Tse, H.F.; Wong, R.W.S.; Lam, W.K.; Lau, C.S.; Wong, Y.

    2003-01-01

    Purpose: To evaluate high-resolution CT (HRCT) parameters of inflammation and fibrosis in systemic sclerosis (SSc), for correlation with lung function, skin scores and exercise tolerance. Material and Methods: : 45 SSc patients (40 women, 48.5±13.4 years), underwent thoracic HRCT, lung function assessment, and modified Rodnan skin scores. Exercise tolerance was also graded. HRCT were scored for extent of 4 HRCT patterns of interstitial lung disease (ILD): ground glass opacification (GGO), reticular, mixed and honeycomb pattern in each lobe. Total HRCT score, inflammation index (GGO and mixed score) and fibrosis index (reticular and honeycomb scores) were correlated with lung function and clinical parameters. Results: ILD was present in 39/45 (86.7%) patients. Abnormal (<80% predicted) forced vital capacity (FVC), total lung capacity (TLC) and carbon monoxide diffusion factor (DLco) were detected in 30%, 22% and 46% of patients. Total HRCT score correlated with FVC (r=0.43, p=0.008), FEV1 (forced expiratory volume) (r=-0.37, p=0.03), TLC (r=-0.47, p=0.003), and DLCO (r=-0.43, p=0.008); inflammatory index with DLCO (r=-0.43, p=0.008) and exercise tolerance (r=-0.39, p < 0.05); and fibrosis index with FVC (r=-0.31, p=0.05) and TLC (r=-0.38, p=0.02). Higher total HRCT score, and inflammation and fibrosis indices were found in patients with abnormal lung function. Conclusion: Qualitative HRCT is able to evaluate inflammation and fibrosis, showing important relationships with diffusion capacity and lung volume, respectively

  19. Molecular and cytogenetic characterization of radon-induced lung tumors in the rat

    International Nuclear Information System (INIS)

    Dano, Laurent

    2000-01-01

    Radon is a natural radioactive gas. This radioelement, which is an α-particle emitter, is omnipresent in the environment. Inhalation of atmospheric radon is the major exposure route in man of natural radioactivity which results in respiratory tract contamination. An increased lung cancer risk associated with radon inhalation has been shown both in humans and animals by epidemiological and experimental studies, respectively. In rats, characterization of dose-effect relationships has led to the construction of statistical models that may help theoretically in the prediction of human health involvements of both occupational and domestic chronic exposure to radon. However, little is known about the cellular and molecular mechanisms of radon-induced lung carcinogenesis. In the laboratory, a model of lung cancers induced in rats after radon inhalation is available. This model represents a good tool to identify and characterize the genetic events contributing to the development of radon-induced lung tumors. Carrying out a global approach based on the combined use of classical and molecular cytogenetic methods, the analysis of 17 neoplasms allowed the identification of chromosomal regions frequently altered in these tumors. Numerous similarities have been found between our results and the cytogenetic data for human lung cancers, suggesting common underlying genetic molecular mechanisms for lung cancer development in both species. Moreover, our study has allowed to point to tumor suppressor genes and proto-oncogenes potentially involved in radon-induced lung carcinogenesis. Thus, our results may aid further molecular studies aimed either at confirming the role of these candidate genes or at demonstrating the involvement of yet to be identified genes. (author) [fr

  20. Fatal interstitial lung disease associated with icotinib

    OpenAIRE

    Zhang, Jiexia; Zhan, Yangqing; Ouyang, Ming; Qin, Yinyin; Zhou, Chengzhi; Chen, Rongchang

    2014-01-01

    The most serious, and maybe fatal, yet rare, adverse reaction of gefitinib and erlotinib is drug-associated interstitial lung disease (ILD), which has been often described. However, it has been less well described for icotinib, a similar orally small-molecule tyrosine kinase inhibitor (TKI). The case of a 25-year-old female patient with stage IV lung adenocarcinoma who developed fatal ILD is reported here. She denied chemotherapy, and received palliative treatment with icotinib (125 mg po, th...

  1. Lung imaging in pulmonary disease

    International Nuclear Information System (INIS)

    Taplin, G.V.; Chopra, S.K.

    1976-01-01

    Although it has been recognized for several years that chronic obstructive pulmonary disease (COPD) can cause lung perfusion defects which may simulate pulmonary embolism, relatively little use has been made of either the radioxenon or the radioaerosol inhalation lung imaging procedures until the last few years as a means of distinguishing pulmonary embolism (P.E.) from COPD is reported. Recent experience is reported with the use of both of these procedures in comparison with pulmonary function tests for the early detection of COPD in population studies and also in P.E. suspects. Equal emphasis is given to simultaneous aerosol ventilation-perfusion (V/P) imaging in the differential diagnosis of P.E. Finally, this paper is concerned with new developments in regional lung diffusion imaging following the inhalation of radioactive gases and rapidly absorbed radioaerosols. Their experimental basis is presented and their potential clinical applications in pulmonary embolism are discussed. As a result of these investigations, a functional (V/P) diagnosis of pulmonary embolism in patients may be possible in the near future with a sequential radioaerosol inhalation procedure alone

  2. Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach.

    Science.gov (United States)

    Kelsen, Steven G; Duan, Xunbao; Ji, Rong; Perez, Oscar; Liu, Chunli; Merali, Salim

    2008-05-01

    Cigarette smoking, which exposes the lung to high concentrations of reactive oxidant species (ROS) is the major risk factor for chronic obstructive pulmonary disease (COPD). Recent studies indicate that ROS interfere with protein folding in the endoplasmic reticulum and elicit a compensatory response termed the "unfolded protein response" (UPR). The importance of the UPR lies in its ability to alter expression of a variety of genes involved in antioxidant defense, inflammation, energy metabolism, protein synthesis, apoptosis, and cell cycle regulation. The present study used comparative proteomic technology to test the hypothesis that chronic cigarette smoking induces a UPR in the human lung. Studies were performed on lung tissue samples obtained from three groups of human subjects: nonsmokers, chronic cigarette smokers, and ex-smokers. Proteomes of lung samples from chronic cigarette smokers demonstrated 26 differentially expressed proteins (20 were up-regulated, 5 were down-regulated, and 1 was detected only in the smoking group) compared with nonsmokers. Several UPR proteins were up-regulated in smokers compared with nonsmokers and ex-smokers, including the chaperones, glucose-regulated protein 78 (GRP78) and calreticulin; a foldase, protein disulfide isomerase (PDI); and enzymes involved in antioxidant defense. In cultured human airway epithelial cells, GRP78 and the UPR-regulated basic leucine zipper, transcription factors, ATF4 and Nrf2, which enhance expression of important anti-oxidant genes, increased rapidly (< 24 h) with cigarette smoke extract. These data indicate that cigarette smoke induces a UPR response in the human lung that is rapid in onset, concentration dependent, and at least partially reversible with smoking cessation. We speculate that activation of a UPR by cigarette smoke may protect the lung from oxidant injury and the development of COPD.

  3. Chronic lung disease in newborns.

    Science.gov (United States)

    Sankar, M Jeeva; Agarwal, Ramesh; Deorari, Ashok K; Paul, Vinod K

    2008-04-01

    Chronic lung disease (CLD) or bronchopulmonary dysplasia (BPD) occurs in preterm infants who require respiratory support in the first few days of birth. Apart from prematurity, oxygen therapy and assisted ventilation, factors like intrauterine/postnatal infections, patent ductus arteriosus, and genetic polymorphisms also contribute to its pathogenesis. The severe form of BPD with extensive inflammatory changes is rarely seen nowadays; instead, a milder form characterized by decreased alveolar septation due to arrest in lung development is more common. A multitude of strategies, mainly pharmacological and ventilatory, have been employed for prevention and treatment of BPD. Unfortunately, most of them have not been proved to be beneficial. A comprehensive protocol for management of BPD based on the current evidence is discussed here.

  4. Preemptive hemodynamic intervention restricting the administration of fluids attenuates lung edema progression in oleic acid-induced lung injury.

    Science.gov (United States)

    Gil Cano, A; Gracia Romero, M; Monge García, M I; Guijo González, P; Ruiz Campos, J

    2017-04-01

    A study is made of the influence of preemptive hemodynamic intervention restricting fluid administration upon the development of oleic acid-induced lung injury. A randomized in vivo study in rabbits was carried out. University research laboratory. Sixteen anesthetized, mechanically ventilated rabbits. Hemodynamic measurements obtained by transesophageal Doppler signal. Respiratory mechanics computed by a least square fitting method. Lung edema assessed by the ratio of wet weight to dry weight of the right lung. Histological examination of the left lung. Animals were randomly assigned to either the early protective lung strategy (EPLS) (n=8) or the early protective hemodynamic strategy (EPHS) (n=8). In both groups, lung injury was induced by the intravenous infusion of oleic acid (OA) (0.133mlkg -1 h -1 for 2h). At the same time, the EPLS group received 15mlkg -1 h -1 of Ringer lactate solution, while the EPHS group received 30mlkg -1 h -1 . Measurements were obtained at baseline and 1 and 2h after starting OA infusion. After 2h, the cardiac index decreased in the EPLS group (p<0.05), whereas in the EPHS group it remained unchanged. Lung compliance decreased significantly only in the EPHS group (p<0.05). Lung edema was greater in the EPHS group (p<0.05). Histological damage proved similar in both groups (p=0.4). In this experimental model of early lung injury, lung edema progression was attenuated by preemptively restricting the administration of fluids. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  5. Apocynin and ebselen reduce influenza A virus-induced lung inflammation in cigarette smoke-exposed mice.

    Science.gov (United States)

    Oostwoud, L C; Gunasinghe, P; Seow, H J; Ye, J M; Selemidis, S; Bozinovski, S; Vlahos, R

    2016-02-15

    Influenza A virus (IAV) infections are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Oxidative stress is increased in COPD, IAV-induced lung inflammation and AECOPD. Therefore, we investigated whether targeting oxidative stress with the Nox2 oxidase inhibitors and ROS scavengers, apocynin and ebselen could ameliorate lung inflammation in a mouse model of AECOPD. Male BALB/c mice were exposed to cigarette smoke (CS) generated from 9 cigarettes per day for 4 days. On day 5, mice were infected with 1 × 10(4.5) PFUs of the IAV Mem71 (H3N1). BALF inflammation, viral titers, superoxide production and whole lung cytokine, chemokine and protease mRNA expression were assessed 3 and 7 days post infection. IAV infection resulted in a greater increase in BALF inflammation in mice that had been exposed to CS compared to non-smoking mice. This increase in BALF inflammation in CS-exposed mice caused by IAV infection was associated with elevated gene expression of pro-inflammatory cytokines, chemokines and proteases, compared to CS alone mice. Apocynin and ebselen significantly reduced the exacerbated BALF inflammation and pro-inflammatory cytokine, chemokine and protease expression caused by IAV infection in CS mice. Targeting oxidative stress using apocynin and ebselen reduces IAV-induced lung inflammation in CS-exposed mice and may be therapeutically exploited to alleviate AECOPD.

  6. The safety and efficacy of carboplatin plus nanoparticle albumin-bound paclitaxel in the treatment of non-small cell lung cancer patients with interstitial lung disease.

    Science.gov (United States)

    Yasuda, Yuichiro; Hattori, Yoshihiro; Tohnai, Rie; Ito, Shoichi; Kawa, Yoshitaka; Kono, Yuko; Urata, Yoshiko; Nogami, Munenobu; Takenaka, Daisuke; Negoro, Shunichi; Satouchi, Miyako

    2018-01-01

    The optimal chemotherapy regimen for non-small cell lung cancer patients with interstitial lung disease is unclear. We therefore investigated the safety and efficacy of carboplatin plus nab-paclitaxel as a first-line regimen for non-small cell lung cancer in patients with interstitial lung disease. We retrospectively reviewed advanced non-small cell lung cancer patients with interstitial lung disease who received carboplatin plus nab-paclitaxel as a first-line chemotherapy regimen at Hyogo Cancer Center between February 2013 and August 2016. interstitial lung disease was diagnosed according to the findings of pretreatment chest high-resolution computed tomography. Twelve patients were included (male, n = 11; female, n = 1). The overall response rate was 67% and the disease control rate was 100%. The median progression free survival was 5.1 months (95% CI: 2.9-8.3 months) and the median overall survival was 14.9 months (95% CI: 4.8-not reached). A chemotherapy-related acute exacerbation of interstitial lung disease was observed in one patient; the extent of this event was Grade 2. There were no treatment-related deaths. Carboplatin plus nab-paclitaxel, as a first-line chemotherapy regimen for non-small cell lung cancer, showed favorable efficacy and safety in patients with preexisting interstitial lung disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  7. Chitinase 1 Is a Biomarker for and Therapeutic Target in Scleroderma-Associated Interstitial Lung Disease That Augments TGF-β1 Signaling

    Science.gov (United States)

    Lee, Chun Geun; Herzog, Erica L.; Ahangari, Farida; Zhou, Yang; Gulati, Mridu; Lee, Chang-Min; Peng, Xueyan; Feghali-Bostwick, Carol; Jimenez, Sergio A.; Varga, John; Elias, Jack A.

    2014-01-01

    Interstitial lung disease (ILD) with pulmonary fibrosis is an important manifestation in systemic sclerosis (SSc, scleroderma) where it portends a poor prognosis. However, biomarkers that predict the development and or severity of SSc-ILD have not been validated, and the pathogenetic mechanisms that engender this pulmonary response are poorly understood. In this study, we demonstrate in two different patient cohorts that the levels of chitotriosidase (Chit1) bioactivity and protein are significantly increased in the circulation and lungs of SSc patients compared with demographically matched controls. We also demonstrate that, compared with patients without lung involvement, patients with ILD show high levels of circulating Chit1 activity that correlate with disease severity. Murine modeling shows that in comparison with wild-type mice, bleomycin-induced pulmonary fibrosis was significantly reduced in Chit1−/− mice and significantly enhanced in lungs from Chit1 overexpressing transgenic animals. In vitro studies also demonstrated that Chit1 interacts with TGF-β1 to augment fibroblast TGF-β receptors 1 and 2 expression and TGF-β–induced Smad and MAPK/ERK activation. These studies indicate that Chit1 is potential biomarker for ILD in SSc and a therapeutic target in SSc-associated lung fibrosis and demonstrate that Chit1 augments TGF-β1 effects by increasing receptor expression and canonical and noncanonical TGF-β1 signaling. PMID:22826322

  8. Spirometry utilisation among Danish adults initiating medication targeting obstructive lung disease

    DEFF Research Database (Denmark)

    Koefoed, Mette

    2015-01-01

    performed. RESULTS: A total of 40,969 adults initiated medication targeting obstructive lung medication in 2008 in Denmark. The mean age of the cohort was 55.6 years (SD18.7) and approximately half of the mediations users had spirometry test performed. Initiating several types of medication targeting......UNLABELLED: This PhD thesis was written during my employment at the Research Unit of General Practice in Odense, University of Southern Denmark. It comprises an overview and three papers, all published or submitted for publication in international peer-reviewed scientific journals. BACKGROUND: Non...... with pharmacotherapy targeting obstructive lung disease and only few have additional tests conducted, although the predictive value of respiratory symptoms for diagnosing obstructive lung disease has proven to be low. Spirometry is recommended as the gold standard for confirming obstructive lung disease, and testing...

  9. Gastro-oesophageal reflux disease and non-asthma lung disease

    Directory of Open Access Journals (Sweden)

    R. S. Morehead

    2009-12-01

    Full Text Available Gastro-oesophageal reflux disease (GERD is a common disorder in Western countries, and its relationship to airways disorders (e.g. asthma has been well established. Lung diseases other than asthma have also been associated with GERD, but the nature and scope of this relationship has not been fully defined. Diseases that have been associated with GERD include bronchiolitis syndromes, idiopathic pulmonary fibrosis, scleroderma and nontubercular mycobacterial infection. Diagnostic evaluation centres upon proving both reflux and pulmonary aspiration, which may be accomplished in some cases by lung biopsy. However, in many cases a compatible clinical and radiographic picture coupled with proof of proximal reflux by combined oesophageal probe testing may suffice for a provisional diagnosis and allow institution of anti-reflux measures. Proton-pump inhibitors are the medications of choice for GERD; other interventions shown to reduce reflux are weight loss, elevation of the head of the bed and avoidance of recumbency after meals. However, acid suppression therapy does not address non-acid reflux that may be important in disease pathogenesis in select patients, and lifestyle modifications often fail. Laparoscopic fundoplication is the procedure of choice for medically refractory GERD with excellent short-term results with respect to respiratory symptoms associated with GERD; however, long-term studies document a significant percentage of patients requiring ongoing acid suppression therapy.

  10. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  11. Nicotine induces resistance to chemotherapy by modulating mitochondrial signaling in lung cancer.

    Science.gov (United States)

    Zhang, Jingmei; Kamdar, Opal; Le, Wei; Rosen, Glenn D; Upadhyay, Daya

    2009-02-01

    Continued smoking causes tumor progression and resistance to therapy in lung cancer. Carcinogens possess the ability to block apoptosis, and thus may induce development of cancers and resistance to therapy. Tobacco carcinogens have been studied widely; however, little is known about the agents that inhibit apoptosis, such as nicotine. We determine whether mitochondrial signaling mediates antiapoptotic effects of nicotine in lung cancer. A549 cells were exposed to nicotine (1 muM) followed by cisplatin (35 muM) plus etoposide (20 muM) for 24 hours. We found that nicotine prevented chemotherapy-induced apoptosis, improved cell survival, and caused modest increases in DNA synthesis. Inhibition of mitogen-activated protein kinase (MAPK) and Akt prevented the antiapoptotic effects of nicotine and decreased chemotherapy-induced apoptosis. Small interfering RNA MAPK kinase-1 blocked antiapoptotic effects of nicotine, whereas small interfering RNA MAPK kinase-2 blocked chemotherapy-induced apoptosis. Nicotine prevented chemotherapy-induced reduction in mitochondrial membrane potential and caspase-9 activation. Antiapoptotic effects of nicotine were blocked by mitochondrial anion channel inhibitor, 4,4'diisothiocyanatostilbene-2,2'disulfonic acid. Chemotherapy enhanced translocation of proapoptotic Bax to the mitochondria, whereas nicotine blocked these effects. Nicotine up-regulated Akt-mediated antiapoptotic X-linked inhibitor of apoptosis protein and phosphorylated proapoptotic Bcl2-antagonist of cell death. The A549-rho0 cells, which lack mitochondrial DNA, demonstrated partial resistance to chemotherapy-induced apoptosis, but blocked the antiapoptotic effects of nicotine. Accordingly, we provide evidence that nicotine modulates mitochondrial signaling and inhibits chemotherapy-induced apoptosis in lung cancer. The mitochondrial regulation of nicotine imposes an important mechanism that can critically impair the treatment of lung cancer, because many cancer

  12. Fitness to Fly Testing in Patients with Congenital Heart and Lung Disease.

    Science.gov (United States)

    Spoorenberg, Mandy E; van den Oord, Marieke H A H; Meeuwsen, Ted; Takken, Tim

    2016-01-01

    During commercial air travel passengers are exposed to a low ambient cabin pressure, comparable to altitudes of 5000 to 8000 ft (1524 to 2438 m). In healthy passengers this causes a fall in partial pressure of oxygen, which results in relative hypoxemia, usually without symptoms. Patients with congenital heart or lung disease may experience more severe hypoxemia during air travel. This systematic review provides an overview of the current literature focusing on whether it is safe for patients with congenital heart or lung disease to fly. The Pubmed database was searched and all studies carried out at an (simulated) altitude of 5000-8000 ft (1524-2438 m) for a short time period (several hours) and related to patients with congenital heart or lung disease were reviewed. Included were 11 studies. These studies examined patients with cystic fibrosis, neonatal (chronic) lung disease and congenital (a)cyanotic heart disease during a hypoxic challenge test, in a hypobaric chamber, during commercial air travel, or in the mountains. Peripheral/arterial saturation, blood gases, lung function, and/or the occurrence of symptoms were listed. Based on the current literature, it can be concluded that air travel is safe for most patients. However, those at risk of hypoxia can benefit from supplemental in-flight oxygen. Therefore, patients with congenital heart and lung disease should be evaluated carefully prior to air travel to select the patients at risk for hypoxia using the current studies and guidelines.

  13. Cordycepin alleviates lipopolysaccharide-induced acute lung injury via Nrf2/HO-1 pathway.

    Science.gov (United States)

    Qing, Rui; Huang, Zezhi; Tang, Yufei; Xiang, Qingke; Yang, Fan

    2018-04-24

    The present study is to investigate the protective effect of cordycepin on inflammatory reactions in rats with acute lung injury (ALI) induced by lipopolysaccharide (LPS), as well as the underlying mechanism. Wistar rat model of ALI was induced by intravenous injection of LPS (30 mg/kg body weight). One hour later, intravenous injection of cordycepin (1, 10 or 30 mg/kg body weight) was administered. The wet-to-dry weight ratio of lung tissues and myeloperoxidase activity in the lung tissues were measured. The contents of nitrite and nitrate were measured by reduction method, while chemiluminescence was used to determine the content of superoxide. Quantitative real-time polymerase chain reaction and Western blotting were used to determine the expression of mRNA and protein, respectively. Colorimetry was performed to determine the enzymatic activity of heme oxygenase-1 (HO-1). Nuclear translocation of Nrf2 was identified by Western blotting. The plasma contents of cytokines were measured by enzyme-linked immunosorbent assay. Cordycepin enhanced the expression and enzymatic activity of HO-1 in ALI rats, and activated Nrf2 by inducing the translocation of Nrf2 from cytoplasm to nucleus. In addition, cordycepin regulated the secretion of TNF-α, IL-6 and IL-10 via HO-1, and suppressed inflammation in lung tissues of ALI rats by inducing the expression of HO-1. HO-1 played important roles in the down-regulation of superoxide levels in lung tissues by cordycepin, and HO-1 expression induced by cordycepin affected nitrite and nitrate concentrations in plasma and iNOS protein expression in lung tissues. Cordycepin showed protective effect on injuries in lung tissues. The present study demonstrates that cordycepin alleviates inflammation induced by LPS via the activation of Nrf2 and up-regulation of HO-1 expression. Copyright © 2018. Published by Elsevier B.V.

  14. Identification of Novel Targets for Lung Cancer Therapy Using an Induced Pluripotent Stem Cell Model.

    Science.gov (United States)

    Shukla, Vivek; Rao, Mahadev; Zhang, Hongen; Beers, Jeanette; Wangsa, Darawalee; Wangsa, Danny; Buishand, Floryne O; Wang, Yonghong; Yu, Zhiya; Stevenson, Holly; Reardon, Emily; McLoughlin, Kaitlin C; Kaufman, Andrew; Payabyab, Eden; Hong, Julie A; Zhang, Mary; Davis, Sean R; Edelman, Daniel C; Chen, Guokai; Miettinen, Markku; Restifo, Nicholas; Ried, Thomas; Meltzer, Paul S; Schrump, David S

    2018-04-01

    Despite extensive studies, the genetic and epigenetic mechanisms that mediate initiation and progression of lung cancers have not been fully elucidated. Previously, we have demonstrated that via complementary mechanisms, including DNA methylation, polycomb repressive complexes, and noncoding RNAs, cigarette smoke induces stem-like phenotypes that coincide with progression to malignancy in normal respiratory epithelia as well as enhanced growth and metastatic potential of lung cancer cells. To further investigate epigenetic mechanisms contributing to stemness/pluripotency in lung cancers and potentially identify novel therapeutic targets in these malignancies, induced pluripotent stem cells were generated from normal human small airway epithelial cells. Lung induced pluripotent stem cells were generated by lentiviral transduction of small airway epithelial cells of OSKM (Yamanaka) factors (octamer-binding transcription factor 4 [Oct4], sex-determining region Y box 2 [SOX2], Kruppel-like factor 4 [KLF4], and MYC proto-oncogene, bHLH transcription factor [MYC]). Western blot, real-time polymerase chain reaction, and chromatin immunoprecipitation sequencing analysis were performed. The lung induced pluripotent stem cells exhibited hallmarks of pluripotency, including morphology, surface antigen and stem cell gene expression, in vitro proliferation, and teratoma formation. In addition, lung induced pluripotent stem cells exhibited no chromosomal aberrations, complete silencing of reprogramming transgenes, genomic hypermethylation, upregulation of genes encoding components of polycomb repressive complex 2, hypermethylation of stem cell polycomb targets, and modulation of more than 15,000 other genes relative to parental small airway epithelial cells. Additional sex combs like-3 (ASXL3), encoding a polycomb repressive complex 2-associated protein not previously described in reprogrammed cells, was markedly upregulated in lung induced pluripotent stem cell as well as human

  15. The role of proteases, endoplasmic reticulum stress and SERPINA1 heterozygosity in lung disease and alpha-1 anti-trypsin deficiency.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2012-02-01

    The serine proteinase inhibitor alpha-1 anti-trypsin (AAT) provides an antiprotease protective screen throughout the body. Mutations in the AAT gene (SERPINA1) that lead to deficiency in AAT are associated with chronic obstructive pulmonary diseases. The Z mutation encodes a misfolded variant of AAT that is not secreted effectively and accumulates intracellularly in the endoplasmic reticulum of hepatocytes and other AAT-producing cells. Until recently, it was thought that loss of antiprotease function was the major cause of ZAAT-related lung disease. However, the contribution of gain-of-function effects is now being recognized. Here we describe how both loss- and gain-of-function effects can contribute to ZAAT-related lung disease. In addition, we explore how SERPINA1 heterozygosity could contribute to smoking-induced chronic obstructive pulmonary diseases and consider the consequences.

  16. Marijuana and Lung Disease.

    Science.gov (United States)

    Tashkin, Donald P

    2018-05-17

    As marijuana smoking prevalence increases in the U.S. concern regarding its potential risks to lung health has also risen, given the general similarity in the smoke contents between marijuana and tobacco. Most studies have found a significant association between marijuana smoking and chronic bronchitis symptoms after adjustment for tobacco. While reports are mixed regarding associations between marijuana smoking and lung function, none has shown a relationship to decrements in forced expired volume in 1 sec (FEV1) and few have found a relationship to a decreased ratio of FEV1 to forced vital capacity (FVC), possibly related to an association between marijuana and an increased FVC. A few studies have found a modest reduction in specific airway conductance in relation to marijuana, probably reflecting endoscopic evidence of bronchial mucosal edema among habitual marijuana smokers. Diffusing capacity in marijuana smokers has been normal and two studies of thoracic high-resolution computed tomography (HRCT) have not shown any association of marijuana smoking with emphysema. Although bronchial biopsies from habitual marijuana smokers have shown precancerous histopathological changes, a large cohort study and a pooled analysis of six well-designed case-control studies have not found evidence of a link between marijuana smoking and lung cancer. The immunosuppressive effects of delta-9 tetrahydrocannabinol raise the possibility of an increased risk of pneumonia, but further studies are needed to evaluate this potential risk. Several cases series have demonstrated pneumothoraces/pneumomediastinum, as well as bullous lung disease, in marijuana smokers, but these associations require epidemiologic studies for firmer evidence of possible causality. Copyright © 2018. Published by Elsevier Inc.

  17. Evaluation of imaging of the ventilatory lung motion in pulmonary diseases

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Kanai, Hisakata; Tanaka, Masao; Hirayama, Jiro; Handa, Kenjiro

    1988-01-01

    Using perfusion lung scintigram with 99m Tc-macroaggregated albumin at maximal expiration (E) and inspiration (I), images of the motion of the regional pulmonary areas and lung margins during ventilation ((E-I)/I) was obtained in patients with various respiratory diseases. The image of (E-I)/I consisted of positive and negative components. The former component visualized the motion of the regional pulmonary areas that corresponded with the ventilatory amplitude of the videodensigram. The sum of the positive component of (E-I)/I in both lungs correlated with the vital capacity (n = 50, r = 0.62). It was 163.5 ± 52.5 in cases with a vital capacity of more than 3.01, 94.1 ± 61.5 in primary lung cancer, 89.2 ± 44.7 in chronic obstructive lung diseases and 69.0 ± 27.5 in diffuse interstitial pneumonia. The distribution pattern of pulmonary perfusion and the positive component of (E-I)/I matched fairly in many cases, but did not match in some cases. The negative component of (E-I)/I demonstrated the ventilatory motion of the lung margin and its decreased activity was shown in cases with hypoventilation of various causes including pleural diseases. The sum of the negative component of (E-I)/I in the both lungs correlated with the vital capacity (n = 50, r = 0.44). These results suggest that this technique is useful to estimate the regional pulmonary ventilatioin and motion of the lung margins. (author)

  18. Inhibition of thromboxane synthase induces lung cancer cell death via increasing the nuclear p27

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Kin Chung; Hsin, Michael K.Y.; Chan, Joey S.Y.; Yip, Johnson H.Y.; Li, Mingyue; Leung, Billy C.S. [Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong); Mok, Tony S.K. [Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong); Warner, Timothy D. [The William Harvey Research Institute, Queen Mary University of London, London (United Kingdom); Underwood, Malcolm J. [Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong); Chen, George G., E-mail: gchen@cuhk.edu.hk [Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong)

    2009-10-15

    The role of thromboxane in lung carcinogenesis is not clearly known, though thromboxane B2 (TXB{sub 2}) level is increased and antagonists of thromboxane receptors or TXA2 can induce apoptosis of lung cancer cells. p27, an atypical tumor suppressor, is normally sequestered in the nucleus. The increased nuclear p27 may result in apoptosis of tumor cells. We hypothesize that the inhibition of thromboxane synthase (TXS) induces the death of lung cancer cells and that such inhibition is associated with the nuclear p27 level. Our experiment showed that the inhibition of TXS significantly induced the death or apoptosis in lung cancer cells. The activity of TXS was increased in lung cancer. The nuclear p27 was remarkably reduced in lung cancer tissues. The inhibition of TXS caused the cell death and apoptosis of lung cancer cells, likely via the elevation of the nuclear p27 since the TXS inhibition promoted the nuclear p27 level and the inhibition of p27 by its siRNA recovered the cell death induced by TXS inhibition. Collectively, lung cancer cells produce high levels of TXB{sub 2} but their nuclear p27 is markedly reduced. The inhibition of TXS results in the p27-related induction of cell death in lung cancer cells.

  19. Inhibition of thromboxane synthase induces lung cancer cell death via increasing the nuclear p27

    International Nuclear Information System (INIS)

    Leung, Kin Chung; Hsin, Michael K.Y.; Chan, Joey S.Y.; Yip, Johnson H.Y.; Li, Mingyue; Leung, Billy C.S.; Mok, Tony S.K.; Warner, Timothy D.; Underwood, Malcolm J.; Chen, George G.

    2009-01-01

    The role of thromboxane in lung carcinogenesis is not clearly known, though thromboxane B2 (TXB 2 ) level is increased and antagonists of thromboxane receptors or TXA2 can induce apoptosis of lung cancer cells. p27, an atypical tumor suppressor, is normally sequestered in the nucleus. The increased nuclear p27 may result in apoptosis of tumor cells. We hypothesize that the inhibition of thromboxane synthase (TXS) induces the death of lung cancer cells and that such inhibition is associated with the nuclear p27 level. Our experiment showed that the inhibition of TXS significantly induced the death or apoptosis in lung cancer cells. The activity of TXS was increased in lung cancer. The nuclear p27 was remarkably reduced in lung cancer tissues. The inhibition of TXS caused the cell death and apoptosis of lung cancer cells, likely via the elevation of the nuclear p27 since the TXS inhibition promoted the nuclear p27 level and the inhibition of p27 by its siRNA recovered the cell death induced by TXS inhibition. Collectively, lung cancer cells produce high levels of TXB 2 but their nuclear p27 is markedly reduced. The inhibition of TXS results in the p27-related induction of cell death in lung cancer cells.

  20. 'Biomass lung': primitive biomass combustion and lung disease

    International Nuclear Information System (INIS)

    Baris, Y. I.; Seyfikli, Z.; Demir, A.; Hoskins, J. A.

    2002-01-01

    Domestic burning of biomass fuel is one of the most important risk factors for the development of respiratory diseases and infant mortality. The fuel which causes the highest level of disease is dung. In the rural areas of developing countries some 80% of households rely on biomass fuels for cooking and often heating as well and so suffer high indoor air pollution. Even when the fire or stove is outside the home those near it are still exposed to the smoke. In areas where the winters are long and cold the problem is aggravated since the fire or stove is indoors for many months of the year. The consequence of biomass burning is a level of morbidity in those exposed to the smoke as well as mortality. The rural areas of Turkey are among many in the world where biomass is the major fuel source. In this case report 8 patients from rural areas, particularly Anatolia, who used biomass are presented. Many of these are non-smoking, female patients who have respiratory complaints and a clinical picture of the chronic lung diseases which would have been expected if they had been heavy smokers. Typically patients cook on the traditional 'tandir' stove using dung and crop residues as the fuel. Ventilation systems are poor and they are exposed to a high level of smoke pollution leading to cough and dyspnoea. Anthracosis is a common outcome of this level of exposure and several of the patients developed lung tumours. The findings from clinical examination of 8 of these patients (2 M, 6 F) are presented together with their outcome where known. (author)

  1. Basic principles of pulmonary anatomy and physiology for CT interpretation of lung diseases

    International Nuclear Information System (INIS)

    Remy-Jardin, M.; Beigelman, C.; Desfontaines, C.; Dupont, S.; Remy, J.

    1989-01-01

    High resolution CT is now the method of choice in the diagnosis of lung diseases, especially in their early recognition. However, the radiologist must be aware of precise anatomic, pathologic and physiologic data which are observed when the patient is supine. This concept leads to a transversal analysis of lung diseases by CT, as previously proposed in the coronal and sagittal planes for conventional chest X Ray interpretation. The aim of the study is to demonstrate that these regional differences in the lung must be included in the method of chest scanning but also in the interpretation of lung diseases [fr

  2. Interstitial Lung Disease in a 70-Year-Old Man with Ulcerative Colitis.

    Science.gov (United States)

    Collins, Hampton W; Frye, Jeanetta W

    2018-01-01

    Interstitial lung disease is a rare but increasingly recognized extraintestinal manifestation of inflammatory bowel disease that can have devastating consequences if left untreated. We report a case of ulcerative colitis-associated interstitial lung disease presenting with acute hypoxic respiratory failure during an ulcerative colitis flare. Gastroenterologists and pulmonologists should be aware of the numerous bronchopulmonary signs and symptoms that can suggest systemic illness in inflammatory bowel disease.

  3. Lung Transcriptomics during Protective Ventilatory Support in Sepsis-Induced Acute Lung Injury.

    Directory of Open Access Journals (Sweden)

    Marialbert Acosta-Herrera

    Full Text Available Acute lung injury (ALI is a severe inflammatory process of the lung. The only proven life-saving support is mechanical ventilation (MV using low tidal volumes (LVT plus moderate to high levels of positive end-expiratory pressure (PEEP. However, it is currently unknown how they exert the protective effects. To identify the molecular mechanisms modulated by protective MV, this study reports transcriptomic analyses based on microarray and microRNA sequencing in lung tissues from a clinically relevant animal model of sepsis-induced ALI. Sepsis was induced by cecal ligation and puncture (CLP in male Sprague-Dawley rats. At 24 hours post-CLP, septic animals were randomized to three ventilatory strategies: spontaneous breathing, LVT (6 ml/kg plus 10 cmH2O PEEP and high tidal volume (HVT, 20 ml/kg plus 2 cmH2O PEEP. Healthy, non-septic, non-ventilated animals served as controls. After 4 hours of ventilation, lung samples were obtained for histological examination and gene expression analysis using microarray and microRNA sequencing. Validations were assessed using parallel analyses on existing publicly available genome-wide association study findings and transcriptomic human data. The catalogue of deregulated processes differed among experimental groups. The 'response to microorganisms' was the most prominent biological process in septic, non-ventilated and in HVT animals. Unexpectedly, the 'neuron projection morphogenesis' process was one of the most significantly deregulated in LVT. Further support for the key role of the latter process was obtained by microRNA studies, as four species targeting many of its genes (Mir-27a, Mir-103, Mir-17-5p and Mir-130a were found deregulated. Additional analyses revealed 'VEGF signaling' as a central underlying response mechanism to all the septic groups (spontaneously breathing or mechanically ventilated. Based on this data, we conclude that a co-deregulation of 'VEGF signaling' along with 'neuron projection

  4. Lung Transcriptomics during Protective Ventilatory Support in Sepsis-Induced Acute Lung Injury

    Science.gov (United States)

    Acosta-Herrera, Marialbert; Lorenzo-Diaz, Fabian; Pino-Yanes, Maria; Corrales, Almudena; Valladares, Francisco; Klassert, Tilman E.; Valladares, Basilio; Slevogt, Hortense; Ma, Shwu-Fan

    2015-01-01

    Acute lung injury (ALI) is a severe inflammatory process of the lung. The only proven life-saving support is mechanical ventilation (MV) using low tidal volumes (LVT) plus moderate to high levels of positive end-expiratory pressure (PEEP). However, it is currently unknown how they exert the protective effects. To identify the molecular mechanisms modulated by protective MV, this study reports transcriptomic analyses based on microarray and microRNA sequencing in lung tissues from a clinically relevant animal model of sepsis-induced ALI. Sepsis was induced by cecal ligation and puncture (CLP) in male Sprague-Dawley rats. At 24 hours post-CLP, septic animals were randomized to three ventilatory strategies: spontaneous breathing, LVT (6 ml/kg) plus 10 cmH2O PEEP and high tidal volume (HVT, 20 ml/kg) plus 2 cmH2O PEEP. Healthy, non-septic, non-ventilated animals served as controls. After 4 hours of ventilation, lung samples were obtained for histological examination and gene expression analysis using microarray and microRNA sequencing. Validations were assessed using parallel analyses on existing publicly available genome-wide association study findings and transcriptomic human data. The catalogue of deregulated processes differed among experimental groups. The ‘response to microorganisms’ was the most prominent biological process in septic, non-ventilated and in HVT animals. Unexpectedly, the ‘neuron projection morphogenesis’ process was one of the most significantly deregulated in LVT. Further support for the key role of the latter process was obtained by microRNA studies, as four species targeting many of its genes (Mir-27a, Mir-103, Mir-17-5p and Mir-130a) were found deregulated. Additional analyses revealed 'VEGF signaling' as a central underlying response mechanism to all the septic groups (spontaneously breathing or mechanically ventilated). Based on this data, we conclude that a co-deregulation of 'VEGF signaling' along with 'neuron projection

  5. 4-Hydroxyphenylacetic Acid Attenuated Inflammation and Edema via Suppressing HIF-1α in Seawater Aspiration-Induced Lung Injury in Rats

    Science.gov (United States)

    Liu, Zhongyang; Xi, Ronggang; Zhang, Zhiran; Li, Wangping; Liu, Yan; Jin, Faguang; Wang, Xiaobo

    2014-01-01

    4-Hydroxyphenylacetic acid (4-HPA) is an active component of Chinese herb Aster tataricus which had been widely used in China for the treatment of pulmonary diseases. The aim of this study is to investigate the effect of 4-HPA on seawater aspiration-induced lung injury. Pulmonary inflammation and edema were assessed by enzyme-linked immunosorbent assay (ELISA), bronchoalveolar lavage fluid (BALF) white cell count, Evans blue dye analysis, wet to dry weight ratios, and histology study. Hypoxia-inducible factor-1α (HIF-1α) siRNA and permeability assay were used to study the effect of 4-HPA on the production of inflammatory cytokines and monolayer permeability in vitro. The results showed that 4-HPA reduced seawater instillation-induced mortality in rats. In lung tissues, 4-HPA attenuated hypoxia, inflammation, vascular leak, and edema, and decreased HIF-1α protein level. In primary rat alveolar epithelial cells (AEC), 4-HPA decreased hypertonicity- and hypoxia-induced HIF-1α protein levels through inhibiting the activations of protein translational regulators and via promoting HIF-1α protein degradation. In addition, 4-HPA lowered inflammatory cytokines levels through suppressing hypertonicity- and hypoxia-induced HIF-1α in NR8383 macrophages. Moreover, 4-HPA decreased monolayer permeability through suppressing hypertonicity and hypoxia-induced HIF-1α, which was mediated by inhibiting vascular endothelial growth factor (VEGF) in rat lung microvascular endothelial cell line (RLMVEC). In conclusion, 4-HPA attenuated inflammation and edema through suppressing hypertonic and hypoxic induction of HIF-1α in seawater aspiration-induced lung injury in rats. PMID:25050781

  6. Inflammation-induced preterm lung maturation: lessons from animal experimentation.

    Science.gov (United States)

    Moss, Timothy J M; Westover, Alana J

    2017-06-01

    Intrauterine inflammation, or chorioamnionitis, is a major contributor to preterm birth. Prematurity per se is associated with considerable morbidity and mortality resulting from lung immaturity but exposure to chorioamnionitis reduces the risk of neonatal respiratory distress syndrome (RDS) in preterm infants. Animal experiments have identified that an increase in pulmonary surfactant production by the preterm lungs likely underlies this decreased risk of RDS in infants exposed to chorioamnionitis. Further animal experimentation has shown that infectious or inflammatory agents in amniotic fluid exert their effects on lung development by direct effects within the developing respiratory tract, and probably not by systemic pathways. Differences in the effects of intrauterine inflammation and glucocorticoids demonstrate that canonical glucocorticoid-mediated lung maturation is not responsible for inflammation-induced changes in lung development. Animal experimentation is identifying alternative lung maturational pathways, and transgenic animals and cell culture techniques will allow identification of novel mechanisms of lung maturation that may lead to new treatments for the prevention of RDS. Copyright © 2016. Published by Elsevier Ltd.

  7. Titanium Dioxide Exposure Induces Acute Eosinophilic Lung Inflammation in Rabbits

    Science.gov (United States)

    CHOI, Gil Soon; OAK, Chulho; CHUN, Bong-Kwon; WILSON, Donald; JANG, Tae Won; KIM, Hee-Kyoo; JUNG, Mannhong; TUTKUN, Engin; PARK, Eun-Kee

    2014-01-01

    Titanium dioxide (TiO2) is increasingly widely used in industrial, commercial and home products. TiO2 aggravates respiratory symptoms by induction of pulmonary inflammation although the mechanisms have not been well investigated. We aimed to investigate lung inflammation in rabbits after intratracheal instillation of P25 TiO2. One ml of 10, 50 and 250 µg of P25 TiO2 was instilled into one of the lungs of rabbits, chest computed-tomography was performed, and bronchoalveolar lavage (BAL) fluid was collected before, at 1 and 24 h after P25 TiO2 exposure. Changes in inflammatory cells in the BAL fluids were measured. Lung pathological assay was also carried out at 24 h after P25 TiO2 exposure. Ground glass opacities were noted in both lungs 1 h after P25 TiO2 and saline (control) instillation. Although the control lung showed complete resolution at 24 h, the lung exposed to P25 TiO2 showed persistent ground glass opacities at 24 h. The eosinophil counts in BAL fluid were significantly increased after P25 TiO2 exposure. P25 TiO2 induced a dose dependent increase of eosinophils in BAL fluid but no significant differences in neutrophil and lymphocyte cell counts were detected. The present findings suggest that P25 TiO2 induces lung inflammation in rabbits which is associated with eosinophilic inflammation. PMID:24705802

  8. CT of chronic infiltrative lung disease: Prevalence of mediastinal lymphadenopathy

    Energy Technology Data Exchange (ETDEWEB)

    Niimi, Hiroshi; Kang, Eun-Young; Kwong, S. [Univ. of British Columbia and Vancouver Hospital and Health Sciences Centre (Canada)] [and others

    1996-03-01

    Our goal was to determine the prevalence of mediastinal lymph node enlargement at CT in patients with diffuse infiltrative lung disease. The study was retrospective and included 175 consecutive patients with diffuse infiltrative lung diseases. Diagnoses included idiopathic pulmonary fibrosis (IPF) (n = 61), usual interstitial pneumonia associated with collagen vascular disease (CVD) (n = 20), idiopathic bronchiolitis obliterans organizing pneumonia (BOOP) (n = 22), extrinsic allergic alveolitis (EAA) (n = 17), and sarcoidosis (n = 55). Fifty-eight age-matched patients with CT of the chest performed for unrelated conditions served as controls. The presence, number, and sites of enlarged nodes (short axis {ge}10 mm in diameter) were recorded. Enlarged mediastinal nodes were present in 118 of 175 patients (67%) with infiltrative lung disease and 3 of 58 controls (5%) (p < 0.001). The prevalence of enlarged nodes was 84% (46 of 55) in sarcoidosis, 67% (41 of 61) in IPF, 70% (14 of 20) in CVD, 53% (9 of 17) in EAA, and 36% (8 of 22) in BOOP. The mean number of enlarged nodes was higher in sarcoidosis (mean 3.2) than in the other infiltrative diseases (mean 1.2) (p < 0.001). Enlarged nodes were most commonly present in station 10R, followed by 7, 4R, and 5. Patients with infiltrative lung disease frequently have enlarged mediastinal lymph nodes. However, in diseases other than sarcoid, usually only one or two nodes are enlarged and their maximal short axis diameter is <15 mm. 11 refs., 2 figs., 1 tab.

  9. Antioxidant intervention of smoking-induced lung tumor in mice by vitamin E and quercetin

    International Nuclear Information System (INIS)

    Yang, Jie; Li, Jun-Wen; Wang, Lu; Chen, Zhaoli; Shen, Zhi-Qiang; Jin, Min; Wang, Xin-Wei; Zheng, Yufei; Qiu, Zhi-Gang; Wang, Jing-feng

    2008-01-01

    Epidemiological and in vitro studies suggest that antioxidants such as quercetin and vitamin E (VE) can prevent lung tumor caused by smoking; however, there is limited evidence from animal studies. In the present study, Swiss mouse was used to examine the potential of quercetin and VE for prevention lung tumor induced by smoking. Our results suggest that the incidence of lung tumor and tumor multiplicity were 43.5% and 1.00 ± 0.29 in smoking group; Quercetin has limited effects on lung tumor prevention in this in vivo model, as measured by assays for free radical scavenging, reduction of smoke-induced DNA damage and inhibition of apoptosis. On the other hand, vitamin E drastically decreased the incidence of lung tumor and tumor multiplicity which were 17.0% and 0.32 ± 0.16, respectively (p < 0.05); and demonstrated prominent antioxidant effects, reduction of DNA damage and decreased cell apoptosis (p < 0.05). Combined treatment with quercetin and VE in this animal model did not demonstrate any effect greater than that due to vitamin E alone. In addition, gender differences in the occurrence of smoke induced-lung tumor and antioxidant intervention were also observed. We conclude that VE might prevent lung tumor induced by smoking in Swiss mice

  10. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  11. Activation of rho is involved in the mechanism of hydrogen-peroxide-induced lung edema in isolated perfused rabbit lung.

    Science.gov (United States)

    Chiba, Y; Ishii, Y; Kitamura, S; Sugiyama, Y

    2001-09-01

    Acute lung injury is attributed primarily to increased vascular permeability caused by reactive oxygen species derived from neutrophils, such as hydrogen peroxide (H2O2). Increased permeability is accompanied by the contraction and cytoskeleton reorganization of endothelial cells, resulting in intercellular gap formation. The Rho family of Ras-like GTPases is implicated in the regulation of the cytoskeleton and cell contraction. We examined the role of Rho in H2O2-induced pulmonary edema with the use of isolated perfused rabbit lungs. To our knowledge, this is the first study to examine the role of Rho in increased vascular permeability induced by H2O2 in perfused lungs. Vascular permeability was evaluated on the basis of the capillary filtration coefficient (Kfc, ml/min/cm H2O/100 g). We found that H2O2 (300 microM) increased lung weight, Kfc, and pulmonary capillary pressure. These effects of H2O2 were abolished by treatment with Y-27632 (50 microM), an inhibitor of the Rho effector p160 ROCK. In contrast, the muscular relaxant papaverine inhibited the H2O2-induced rise in pulmonary capillary pressure, but did not suppress the increases in lung weight and Kfc. These findings indicate that H2O2 causes pulmonary edema by elevating hydrostatic pressure and increasing vascular permeability. Y-27632 inhibited the formation of pulmonary edema by blocking both of these H2O2-induced effects. Our results suggest that Rho-related pathways have a part in the mechanism of H2O2-induced pulmonary edema. Copyright 2001 Academic Press.

  12. Treatment of stage III non-small cell lung cancer and limited-disease small-cell lung cancer

    NARCIS (Netherlands)

    El Sharouni, S.Y.

    2009-01-01

    This thesis concerns the treatment of stage III non-small cell lung cancer (NSCLC) and limited disease small-cell lung cancer (SCLC). We described a systematic review on the clinical results of radiotherapy, combined or not with chemotherapy, for inoperable NSCLC stage III with the aim to define the

  13. Lung disease with chronic obstruction in opium smokers in Singapore

    Science.gov (United States)

    Da Costa, J. L.; Tock, E. P. C.; Boey, H. K.

    1971-01-01

    Fifty-four opium smokers with chronic obstructive lung disease were studied for two-and-a-half years. Forty-eight patients had a cough for at least two years before the onset of inappropriate exertional dyspnoea. Fine, bubbling adventitious sounds suggesting small airway disease were heard on auscultation over the middle and lower lobes in 38 patients. The prevalence of inflammatory lung disease and chronic respiratory failure in this series is suggested as the main cause for the frequent finding of right ventricular hypertrophy and congestive heart failure. Physiological studies revealed moderate to severe airways obstruction with gross over-inflation and, in 32 patients, an additional restrictive defect probably due to peribronchiolar fibrosis. Radiological evidence of chronic bronchitis and bronchiolitis was observed in 45 patients, `pure' chronic bronchiolitis in six patients, and `widespread' emphysema in 25 patients respectively. Necropsy examinations in nine patients, however, showed destructive emphysema of variable severity in all. Chronic bronchiolitis often associated with striking bronchiolectasis was present in six cases. More severe bronchiolar rather than bronchial inflammation was noted. The heavy opium smokers had characteristic nodular shadows on chest radiography, sometimes associated with a striking reticular pattern not seen in `pure' cigarette smokers. This was due to gross pigmented dust (presumably carbon) deposition in relation to blood vessels, lymphatics, and bronchioles, and also within the alveoli. It is speculated that the initial lesion is an acquired bronchiolitis. Opium smoking induces an irritative bronchopathy favouring repeated attacks of acute bronchiolitis and eventually resulting in obliterative bronchiolitis, peribronchiolar fibrosis, chronic bronchitis, and destructive emphysema. Images PMID:5134057

  14. Initial experience with lung-MRI at 3.0 T: Comparison with CT and clinical data in the evaluation of interstitial lung disease activity

    International Nuclear Information System (INIS)

    Lutterbey, G.; Grohe, C.; Gieseke, J.; Falkenhausen, M. von; Morakkabati, N.; Wattjes, M.P.; Manka, R.; Trog, D.; Schild, H.H.

    2007-01-01

    Objectives: We evaluated the feasibility of highfield lung-MRI at 3.0 T. A comparison with Computed Tomography (CT) and clinical data regarding the assessment of inflammatory activity in patients with diffuse lung disease was performed. Material and methods: Prospective evaluation of 21 patients (15 males, 6 females, 43-80 y) with diffuse lung diseases who underwent clinical work-up inclusive laboratory tests, lung-function tests and transbronchial biopsy. After routine helical CT (additional 12 HRCT) a lung-MRI (3.0 Intera, Philips Medical Systems, Best, The Netherlands) using a T2-weighted, cardiac and respiratory triggered Fast-Spinecho-Sequence (TE/TR = 80/1500-2500 ms, 22 transverse slices, 7/2 mm slice-thickness/-gap) was performed. A pneumologist classified the cases into two groups: A = temporary acute interstitial disease or chronic interstitial lung disease with acute episode or superimposed infection/B = burned out interstitial lung disease without activity. Two blinded CT-radiologists graded the cases in active/inactive disease on the basis of nine morphological criteria each. A third radiologist rated the MRI-cases as active/inactive, depending on the signal-intensities of lung tissues. Results: The pneumologist classified 14 patients into group A and 7 patients into group B. Using CT, 6 cases were classified as active, 15 cases as inactive disease. With MRI 12 cases were classified as active and 9 cases as inactive. In the complete group of 21 patients MRI decisions and CT decisions respectively were false positive/false negative/correct in 2/4/15 respectively 0/8/13 cases. Correct diagnoses were obtained in 72% (MRI) respectively 62% (CT). In the subgroup of 12 cases including HRCT, MRI respectively CT were false positive/false negative/correct in 2/1/9 respectively 0/5/7 cases. Correct diagnoses were obtained in 75% (MRI) respectively 58% (CT). Conclusion: Highfield MRI of the lung is feasible and performed slightly better compared to CT in the

  15. Initial experience with lung-MRI at 3.0 T: Comparison with CT and clinical data in the evaluation of interstitial lung disease activity

    Energy Technology Data Exchange (ETDEWEB)

    Lutterbey, G. [Department of Radiology, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn (Germany)]. E-mail: goetz.lutterbey@ukb.uni-bonn.de; Grohe, C. [Department of Internal Medicine, University of Bonn (Germany); Gieseke, J. [PHILIPS Medical Systems, Best (Netherlands); Falkenhausen, M. von [Department of Radiology, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn (Germany); Morakkabati, N. [Department of Radiology, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn (Germany); Wattjes, M.P. [Department of Radiology, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn (Germany); Manka, R. [Department of Internal Medicine, University of Bonn (Germany); Trog, D. [Department of Radiology, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn (Germany); Schild, H.H. [Department of Radiology, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn (Germany)

    2007-02-15

    Objectives: We evaluated the feasibility of highfield lung-MRI at 3.0 T. A comparison with Computed Tomography (CT) and clinical data regarding the assessment of inflammatory activity in patients with diffuse lung disease was performed. Material and methods: Prospective evaluation of 21 patients (15 males, 6 females, 43-80 y) with diffuse lung diseases who underwent clinical work-up inclusive laboratory tests, lung-function tests and transbronchial biopsy. After routine helical CT (additional 12 HRCT) a lung-MRI (3.0 Intera, Philips Medical Systems, Best, The Netherlands) using a T2-weighted, cardiac and respiratory triggered Fast-Spinecho-Sequence (TE/TR = 80/1500-2500 ms, 22 transverse slices, 7/2 mm slice-thickness/-gap) was performed. A pneumologist classified the cases into two groups: A = temporary acute interstitial disease or chronic interstitial lung disease with acute episode or superimposed infection/B = burned out interstitial lung disease without activity. Two blinded CT-radiologists graded the cases in active/inactive disease on the basis of nine morphological criteria each. A third radiologist rated the MRI-cases as active/inactive, depending on the signal-intensities of lung tissues. Results: The pneumologist classified 14 patients into group A and 7 patients into group B. Using CT, 6 cases were classified as active, 15 cases as inactive disease. With MRI 12 cases were classified as active and 9 cases as inactive. In the complete group of 21 patients MRI decisions and CT decisions respectively were false positive/false negative/correct in 2/4/15 respectively 0/8/13 cases. Correct diagnoses were obtained in 72% (MRI) respectively 62% (CT). In the subgroup of 12 cases including HRCT, MRI respectively CT were false positive/false negative/correct in 2/1/9 respectively 0/5/7 cases. Correct diagnoses were obtained in 75% (MRI) respectively 58% (CT). Conclusion: Highfield MRI of the lung is feasible and performed slightly better compared to CT in the

  16. Progression of Common Variable Immunodeficiency Interstitial Lung Disease Accompanies Distinct Pulmonary and Laboratory Findings.

    Science.gov (United States)

    Maglione, Paul J; Overbey, Jessica R; Cunningham-Rundles, Charlotte

    2015-01-01

    Common variable immunodeficiency may be complicated by interstitial lung disease, which leads to worsened morbidity and mortality in some. Although immunomodulatory treatment has efficacy, choice of patient, duration of treatment, and long-term follow-up are not available. Interstitial lung disease appears stable in certain instances, so it is not known whether all patients will develop progressive disease or require immunomodulatory therapy. This study aims to determine if all common variable immunodeficiency patients with interstitial lung disease have physiological worsening, and if clinical and/or laboratory parameters may correlate with disease progression. A retrospective review of medical records at Mount Sinai Medical Center in New York was conducted for referred patients with common variable immunodeficiency, CT scan-confirmed interstitial lung disease, and periodic pulmonary function testing covering 20 or more months before immunomodulatory therapy. Fifteen patients were identified from the retrospective review and included in this study. Of the 15 patients with common variable immunodeficiency, 9 had physiological worsening of interstitial lung disease adapted from consensus guidelines, associated with significant reductions in forced expiratory volume in 1 second, forced vital capacity, and diffusion capacity of the lung for carbon monoxide. Those with progressive lung disease also had significantly lower mean immunoglobulin G levels, greater increases and highest levels of serum immunoglobulin M (IgM), and more significant thrombocytopenia. Interstitial lung disease resulted in physiological worsening in many, but not all subjects, and was associated with suboptimal immunoglobulin G replacement. Those with worsening pulmonary function tests, elevated IgM, and severe thrombocytopenic episodes appear to be at highest risk for progressive disease. Such patients may benefit from immunomodulatory treatment. Copyright © 2015 American Academy of Allergy

  17. Expression of Angiotensin II and Aldosterone in Radiation-induced Lung Injury

    OpenAIRE

    Cao, Shuo; Wu, Rong

    2012-01-01

    Objective Radiation-induced lung injury (RILI) is the most common, dose-limiting complication in thoracic malignancy radiotherapy. Considering its negative impact on patients and restrictions to efficacy, the mechanism of RILI was studied. Methods Wistar rats were locally irradiated with a single dose of 0, 16, and 20 Gy to the right half of the lung to establish a lung injury model. Two and six months after irradiation, the right half of the rat lung tissue was removed, and the concentration...

  18. Sevoflurane posttreatment prevents oxidative and inflammatory injury in ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Julie Wagner

    Full Text Available Mechanical ventilation is a life-saving clinical treatment but it can induce or aggravate lung injury. New therapeutic strategies, aimed at reducing the negative effects of mechanical ventilation such as excessive production of reactive oxygen species, release of pro-inflammatory cytokines, and transmigration as well as activation of neutrophil cells, are needed to improve the clinical outcome of ventilated patients. Though the inhaled anesthetic sevoflurane is known to exert organ-protective effects, little is known about the potential of sevoflurane therapy in ventilator-induced lung injury. This study focused on the effects of delayed sevoflurane application in mechanically ventilated C57BL/6N mice. Lung function, lung injury, oxidative stress, and inflammatory parameters were analyzed and compared between non-ventilated and ventilated groups with or without sevoflurane anesthesia. Mechanical ventilation led to a substantial induction of lung injury, reactive oxygen species production, pro-inflammatory cytokine release, and neutrophil influx. In contrast, sevoflurane posttreatment time dependently reduced histological signs of lung injury. Most interestingly, increased production of reactive oxygen species was clearly inhibited in all sevoflurane posttreatment groups. Likewise, the release of the pro-inflammatory cytokines interleukin-1β and MIP-1β and neutrophil transmigration were completely prevented by sevoflurane independent of the onset of sevoflurane administration. In conclusion, sevoflurane posttreatment time dependently limits lung injury, and oxidative and pro-inflammatory responses are clearly prevented by sevoflurane irrespective of the onset of posttreatment. These findings underline the therapeutic potential of sevoflurane treatment in ventilator-induced lung injury.

  19. Prenatal and Perinatal Determinants of Lung Health and Disease in Early Life: A National Heart, Lung, and Blood Institute Workshop Report.

    Science.gov (United States)

    Manuck, Tracy A; Levy, Philip T; Gyamfi-Bannerman, Cynthia; Jobe, Alan H; Blaisdell, Carol J

    2016-05-02

    Human lung growth and development begins with preconception exposures and continues through conception and childhood into early adulthood. Numerous environmental exposures (both positive and negative) can affect lung health and disease throughout life. Infant lung health correlates with adult lung function, but significant knowledge gaps exist regarding the influence of preconception, perinatal, and postnatal exposures on general lung health throughout life. On October 1 and 2, 2015, the National Heart, Lung, and Blood Institute convened a group of extramural investigators to develop their recommendations for the direction(s) for future research in prenatal and perinatal determinants of lung health and disease in early life and to identify opportunities for scientific advancement. They identified that future investigations will need not only to examine abnormal lung development, but also to use developing technology and resources to better define normal and/or enhanced lung health. Birth cohort studies offer key opportunities to capture the important influence of preconception and obstetric risk factors on lung health, development, and disease. These studies should include well-characterized obstetrical data and comprehensive plans for prospective follow-up. The importance of continued basic science, translational, and animal studies for providing mechanisms to explain causality using new methods cannot be overemphasized. Multidisciplinary approaches involving obstetricians, neonatologists, pediatric and adult pulmonologists, and basic scientists should be encouraged to design and conduct comprehensive and impactful research on the early stages of normal and abnormal human lung growth that influence adult outcome.

  20. Lung disease in a global context. A call for public health action.

    Science.gov (United States)

    Schluger, Neil W; Koppaka, Ram

    2014-03-01

    As described in a recently released report of the Forum of International Respiratory Societies, four of the leading causes of death in the world are chronic obstructive pulmonary disease, acute respiratory tract infections, lung cancer, and tuberculosis. A fifth, asthma, causes enormous global morbidity. Not enough progress has been made in introducing new therapies and reducing disease burden for these illnesses in the last few decades, despite generous investments and some notable progress in biomedical research. Four external and modifiable drivers are responsible for a substantial percentage of the disease burden represented by the major lung diseases: tobacco, outdoor air pollution, household air pollution, and occupational exposures to lung toxins. Especially in low- and middle-income countries, but in highly developed economies as well, pressures for economic development and lax regulation are contributing to the continued proliferation of these drivers. Public health approaches to the most common lung diseases could have enormous effects on reducing morbidity and mortality. There must be increased advocacy from and mobilization of civil society to bring attention to the drivers of lung diseases in the world. The World Health Organization should negotiate accords similar to the Framework Convention on Tobacco Control to address air pollution and occupational exposures. Large increases in funding by government agencies and nongovernmental organizations around the world are needed to identify technologies that will reduce health risks while allowing populations to enjoy the benefits of economic development. This paradigm, focused more on public health than on individual medical treatment, has the best chance of substantial reduction in the burden of lung disease around the world in the next several years.

  1. Automated diagnosis of interstitial lung diseases and emphysema in MDCT imaging

    Science.gov (United States)

    Fetita, Catalin; Chang Chien, Kuang-Che; Brillet, Pierre-Yves; Prêteux, Françoise

    2007-09-01

    Diffuse lung diseases (DLD) include a heterogeneous group of non-neoplasic disease resulting from damage to the lung parenchyma by varying patterns of inflammation. Characterization and quantification of DLD severity using MDCT, mainly in interstitial lung diseases and emphysema, is an important issue in clinical research for the evaluation of new therapies. This paper develops a 3D automated approach for detection and diagnosis of diffuse lung diseases such as fibrosis/honeycombing, ground glass and emphysema. The proposed methodology combines multi-resolution 3D morphological filtering (exploiting the sup-constrained connection cost operator) and graph-based classification for a full characterization of the parenchymal tissue. The morphological filtering performs a multi-level segmentation of the low- and medium-attenuated lung regions as well as their classification with respect to a granularity criterion (multi-resolution analysis). The original intensity range of the CT data volume is thus reduced in the segmented data to a number of levels equal to the resolution depth used (generally ten levels). The specificity of such morphological filtering is to extract tissue patterns locally contrasting with their neighborhood and of size inferior to the resolution depth, while preserving their original shape. A multi-valued hierarchical graph describing the segmentation result is built-up according to the resolution level and the adjacency of the different segmented components. The graph nodes are then enriched with the textural information carried out by their associated components. A graph analysis-reorganization based on the nodes attributes delivers the final classification of the lung parenchyma in normal and ILD/emphysematous regions. It also makes possible to discriminate between different types, or development stages, among the same class of diseases.

  2. Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2018-05-01

    Full Text Available Exposure to (bisulfite (HSO3– and sulfite (SO32– has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bisulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3–, peroxymonosulfate (–O3SOO., and especially the sulfate (SO4. – anion radicals. One such peroxidase in neutrophils is myeloperoxidase (MPO, which has been shown to form protein radicals. Although formation of (bisulfite-derived protein radicals is documented in isolated neutrophils, its involvement and role in in vivo inflammatory processes, has not been demonstrated. Therefore, we aimed to investigate (bisulfite-derived protein radical formation and its mechanism in LPS aerosol-challenged mice, a model of non-atopic asthma. Using immuno-spin trapping to detect protein radical formation, we show that, in the presence of (bisulfite, neutrophils present in bronchoalveolar lavage and in the lung parenchyma exhibit, MPO-catalyzed oxidation of MPO to a protein radical. The absence of radical formation in LPS-challenged MPO- or NADPH oxidase-knockout mice indicates that sulfite-derived radical formation is dependent on both MPO and NADPH oxidase activity. In addition to its oxidation by the MPO-catalyzed pathway, (bisulfite is efficiently detoxified to sulfate by the sulfite oxidase (SOX pathway, which forms sulfate in a two-electron oxidation reaction. Since SOX activity in rodents is much higher than in humans, to better model sulfite toxicity in humans, we induced SOX deficiency in mice by feeding them a low molybdenum diet with tungstate. We found that mice treated with the SOX deficiency diet prior to exposure to (bisulfite had much higher protein radical formation than mice with normal SOX activity. Altogether, these results demonstrate the role of MPO and NADPH oxidase in (bisulfite-derived protein radical formation and show the involvement of

  3. Inhibition of acid-induced lung injury by hyperosmolar sucrose in rats.

    Science.gov (United States)

    Safdar, Zeenat; Yiming, Maimiti; Grunig, Gabriele; Bhattacharya, Jahar

    2005-10-15

    Acid aspiration causes acute lung injury (ALI). Recently, we showed that a brief intravascular infusion of hyperosmolar sucrose, given concurrently with airway acid instillation, effectively blocks the ensuing ALI. The objective of the present study was to determine the extent to which intravascular infusion of hyperosmolar sucrose might protect against acid-induced ALI when given either before or after acid instillation. Our studies were conducted in anesthetized rats and in isolated, blood-perfused rat lungs. We instilled HCl through the airway, and we quantified lung injury in terms of the extravascular lung water (EVLW) content, filtration coefficient (Kfc), and cell counts and protein concentration in the bronchoalveolar lavage. We infused hyperosmolar sucrose via the femoral vein. In anesthetized rats, airway HCl instillation induced ALI as indicated by a 52% increase of EVLW and a threefold increase in Kfc. However, a 15-min intravenous infusion of hyperosmolar sucrose given up to 1 h before or 30 min after acid instillation markedly blunted the increases in EVLW, as well as the increases in cell count, and in protein concentration in the bronchoalveolar lavage. Hyperosmolar pretreatment also blocked the acid-induced increase of Kfc. Studies in isolated perfused lungs indicated that the protective effect of hyperosmolar sucrose was leukocyte independent. We conclude that a brief period of vascular hyperosmolarity protects against acid-induced ALI when the infusion is administered shortly before, or shortly after, acid instillation in the airway. The potential applicability of hyperosmolar sucrose in therapy for ALI requires consideration.

  4. Limited value of transbronchial lung biopsy for diagnosing Mycobacterium avium complex lung disease.

    Science.gov (United States)

    Sekine, Akimasa; Saito, Takefumi; Satoh, Hiroaki; Morishita, Yukio; Tsunoda, Yoshiya; Tanaka, Toru; Yatagai, Yohei; Lin, Shih-Yuen; Miyazaki, Kunihiko; Miura, Yukiko; Hayashihara, Kenji

    2017-11-01

    It remains unclear whether transbronchial lung biopsy (TBLB) is useful for diagnosing Mycobacterium avium complex (MAC) lung disease. Thirty-eight consecutive patients with MAC lung disease, who were evaluated with TBLB tissue culture between June 2006 and May 2010, were included. Bronchial washing (BW) and histopathological evaluation were performed in all patients. The positivity rates of BW and TBLB tissue culture, and typical histopathological findings for MAC disease were investigated. Furthermore, all patients were divided into two groups according to the presence of intrabronchial purulent or mucopurulent secretion and the clinical, bacteriological and pathological characteristics were compared between the two groups. The positive culture rates of BW and TBLB specimens for MAC were 100% (38 patients) and 28.9% (11 patients). BW materials were much more sensitive for culture positivity than TBLB specimens (P present in the TBLB specimens of only 11 patients (28.9%). Intrabronchial secretion was identified in 15 patients (39.5%, secretion-positive group) and absent in 23 patients (60.5%, secretion-negative group). Typical histopathological findings for MAC disease were more common in the secretion-positive group than in the secretion-negative group (53.3% vs 13.0%, P = 0.01), although the radiological classification and smear positivity of BW were not different between the two groups. TBLB for pathological and bacterial investigations would provide only a limited value for MAC diagnosis. Moreover, the presence of intrabronchial secretion may be an important manifestation of ongoing airway damage, which would require early treatment. © 2016 John Wiley & Sons Ltd.

  5. On Academician Behounek's paper ''Lung cancer induced by ionizing radiation''

    International Nuclear Information System (INIS)

    Thomas, J.

    1979-01-01

    The significance and scientific contribution are discussed of the paper ''Lung Cancer Induced by Ionizing Radiation'' submitted by Academician Frantisek Behounek to the nation-wide workshop of the Czechoslovak Society of Pneumology and Oncology in Prague, October 3 and 4, 1952 and published in the Proceedings in 1953. The paper discussed the problem which still remains topical, ie., lung exposure to radon daughters, which Academician Behounek considered to be the true cause of lung cancer in Jachymov miners. (B.S.)

  6. Graphene-induced apoptosis in lung epithelial cells through EGFR

    Science.gov (United States)

    Tsai, Shih-Ming; Bangalore, Preeti; Chen, Eric Y.; Lu, David; Chiu, Meng-Hsuen; Suh, Andrew; Gehring, Matthew; Cangco, John P.; Garcia, Santiago G.; Chin, Wei-Chun

    2017-07-01

    Expanding interest in nanotechnology applied to electronic and biomedical fields has led to fast-growing development of various nanomaterials. Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms with unique physical and chemical properties. Recently, graphene has been used in many studies on electronics, photonics, composite materials, energy generation and storage, sensors, and biomedicine. However, the current health risk assessment for graphene has been relatively limited and inconclusive. This study evaluated the toxicity effects of graphene on the airway epithelial cell line BEAS-2B, which represents the first barrier of the human body to interact with airborne graphene particles. Our result showed that graphene can induce the cellular Ca2+ by phospholipase C (PLC) associated pathway by activating epidermal growth factor receptor (EGFR). Subsequently, inositol 1,4,5-triphosphate (IP3) receptors activate the release of Ca2+ from the endoplasmic reticulum (ER) Ca2+ stores. Those Ca2+ signals further trigger the calcium-regulated apoptosis in the cell. Furthermore, the stimulation can cause EGFR upregulation, which have been demonstrated to associate with diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), and cardiovascular diseases. This study highlights the additional health risk considering that it can function as a contributing factor for other respiratory diseases.

  7. Lung perfusion scintigraphy in congenital heart disease

    International Nuclear Information System (INIS)

    Sugimura, Hiroshi; Nagamachi, Shigeki; Hoshi, Hiroaki; Jinnouchi, Seishi; Oonishi, Takashi; Futami, Shigemi; Watanabe, Katsushi

    1990-01-01

    Lung perfusion scintigrams were reviewed retrospectively in 28 patients with congenital heart disease, whose ages ranged from the first year to 16 years with an average age of 5 years and 6 months. Seventy four MBq (2 mCi), 111 MBq (2 mCi), and 185 MBq (5 mCi) of Tc-99m macroaggregated albumin were iv injected in the age groups of 0-3, 4-11, and more than 11 years, respectively. Five minutes later, images were obtained in six projections. Abnormal findings on lung perfusion scintigrams were observed in 13 patients (46%). Of these patients, 8 (29%) had a partially decreased blood flow and 5 (17%) had a decreased blood flow in the unilateral lung. No significant difference in the occurrence of abnormal findings was observed among the age groups, although they tended to occur in younger patients. Sex, underlying conditions, and hemodynamics were also independent of scintigraphically abnormal findings. Even when classifying the patients as having either cyanotic or non-cyanotic heart disease, no significant difference in hemodynamics was observed between the group of abnormal findings and the group of normal findings. Pulmonary arteriography available in all patients failed to reveal abnormal findings, with the exception of pulmonary artery stenosis in 2 patients that corresponded to a decreased blood flow in the unilateral lung. Pulmonary artery stenosis seemed to be responsible for abnormal pulmonary blood flow, although other causes remained uncertain. (N.K.)

  8. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  9. Limit of probability of causation in the compensation of radiation induced malignant diseases

    International Nuclear Information System (INIS)

    Sun Shiquan

    1989-01-01

    Etiological relationship between previous radiation exposure and malignant diseases concerned could be estimated from NIH Epidemiological Tables expressed as Probability of Causation (PC). But the limit of PC in the compensation of radiation induced malignant diseases has not been decided definitely. In this paper PC calculations were made for populations of occupational exposure with typical distribution of individual doses and levels of exposure. The results show that it is feasible to choice PC ≥ 50% as a limit of compensation for leukemia and radon induced lung cancer. Some lenient limits may be taken for other radiation related solid carcinomas

  10. Netrin-1 regulates fibrocyte accumulation in the decellularized fibrotic scleroderma lung microenvironment and in bleomycin induced pulmonary fibrosis

    Science.gov (United States)

    Sun, Huanxing; Zhu, Yangyang; Pan, Hongyi; Chen, Xiaosong; Balestrini, Jenna L.; Lam, TuKiet T.; Kanyo, Jean E.; Eichmann, Anne; Gulati, Mridu; Fares, Wassim H.; Bai, Hanwen; Feghali-Bostwick, Carol A.; Gan, Ye; Peng, Xueyan; Moore, Meagan W.; White, Eric S.; Sava, Parid; Gonzalez, Anjelica L.; Cheng, Yuwei; Niklason, Laura E.; Herzog, Erica L.

    2017-01-01

    Objectives Fibrocytes are collagen-producing leukocytes that accumulate in Scleroderma-associated interstitial lung disease (SSc-ILD) via unknown mechanisms. The extracellular matrix (ECM) influences cellular phenotypes. However, a relationship between the lung ECM and fibrocytes in Scleroderma has not been explored. This study uses a novel translational platform based on decellularized human lungs to determine whether the scleroderma lung ECM controls fibrocyte development from peripheral blood mononuclear cells. Methods Decellularized scaffolds prepared from healthy and fibrotic Scleroderma lung explants underwent biomechanical evaluation using tensile testing and biochemical analysis using proteomics. Cells from healthy and SSc-ILD subjects were cultured on these scaffolds, and CD45+Pro-ColIα1+ cells meeting criteria for fibrocytes were quantified. The contribution of Netrin-1 to fibrosis was assessed using neutralizing antibodies in this system and via the inhalational administration of bleomycin to Netrin-1+/− mice. Results Compared to control lung scaffold, SSc-ILD lung scaffolds showed aberrant anatomy, enhanced stiffness, and abnormal extracellular matrix composition. Culture of control cells in Scleroderma scaffolds increased Pro-ColIα1+ production, which was stimulated by enhanced stiffness and abnormal ECM composition. SSc-ILD cells demonstrated increased Pro-ColIα1 responsiveness to Scleroderma lung scaffolds, but not enhanced stiffness. Enhanced Netrin-1 expression was seen on CD14lo SSc-ILD cells and antibody mediated Netrin-1 neutralization attenuated CD45+Pro-ColIα1+ detection in all settings. Netrin-1+/− mice were protected from bleomycin induced lung fibrosis and fibrocyte accumulation. Conclusion Factors present in Scleroderma lung matrices regulate fibrocyte accumulation via a Netrin-1-dependent pathway. Netrin-1 regulates bleomycin induced murine pulmonary fibrosis. Netrin-1 might be a novel therapeutic target in SSc-ILD. PMID:26749424

  11. Mustard vesicant-induced lung injury: Advances in therapy

    International Nuclear Information System (INIS)

    Weinberger, Barry; Malaviya, Rama; Sunil, Vasanthi R.; Venosa, Alessandro; Heck, Diane E.; Laskin, Jeffrey D.; Laskin, Debra L.

    2016-01-01

    Most mortality and morbidity following exposure to vesicants such as sulfur mustard is due to pulmonary toxicity. Acute injury is characterized by epithelial detachment and necrosis in the pharynx, trachea and bronchioles, while long-term consequences include fibrosis and, in some instances, cancer. Current therapies to treat mustard poisoning are primarily palliative and do not target underlying pathophysiologic mechanisms. New knowledge about vesicant-induced pulmonary disease pathogenesis has led to the identification of potentially efficacious strategies to reduce injury by targeting inflammatory cells and mediators including reactive oxygen and nitrogen species, proteases and proinflammatory/cytotoxic cytokines. Therapeutics under investigation include corticosteroids, N-acetyl cysteine, which has both mucolytic and antioxidant properties, inducible nitric oxide synthase inhibitors, liposomes containing superoxide dismutase, catalase, and/or tocopherols, protease inhibitors, and cytokine antagonists such as anti-tumor necrosis factor (TNF)-α antibody and pentoxifylline. Antifibrotic and fibrinolytic treatments may also prove beneficial in ameliorating airway obstruction and lung remodeling. More speculative approaches include inhibitors of transient receptor potential channels, which regulate pulmonary epithelial cell membrane permeability, non-coding RNAs and mesenchymal stem cells. As mustards represent high priority chemical threat agents, identification of effective therapeutics for mitigating toxicity is highly significant.

  12. Mustard vesicant-induced lung injury: Advances in therapy

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, Barry, E-mail: bweinberger@northwell.edu [Division of Neonatal and Perinatal Medicine, Hofstra Northwell School of Medicine, Cohen Children' s Medical Center of New York, New Hyde Park, NY 11040 (United States); Malaviya, Rama; Sunil, Vasanthi R.; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Heck, Diane E. [Department of Environmental Health Science, New York Medical College, School of Public Health, Valhalla, NY 10595 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2016-08-15

    Most mortality and morbidity following exposure to vesicants such as sulfur mustard is due to pulmonary toxicity. Acute injury is characterized by epithelial detachment and necrosis in the pharynx, trachea and bronchioles, while long-term consequences include fibrosis and, in some instances, cancer. Current therapies to treat mustard poisoning are primarily palliative and do not target underlying pathophysiologic mechanisms. New knowledge about vesicant-induced pulmonary disease pathogenesis has led to the identification of potentially efficacious strategies to reduce injury by targeting inflammatory cells and mediators including reactive oxygen and nitrogen species, proteases and proinflammatory/cytotoxic cytokines. Therapeutics under investigation include corticosteroids, N-acetyl cysteine, which has both mucolytic and antioxidant properties, inducible nitric oxide synthase inhibitors, liposomes containing superoxide dismutase, catalase, and/or tocopherols, protease inhibitors, and cytokine antagonists such as anti-tumor necrosis factor (TNF)-α antibody and pentoxifylline. Antifibrotic and fibrinolytic treatments may also prove beneficial in ameliorating airway obstruction and lung remodeling. More speculative approaches include inhibitors of transient receptor potential channels, which regulate pulmonary epithelial cell membrane permeability, non-coding RNAs and mesenchymal stem cells. As mustards represent high priority chemical threat agents, identification of effective therapeutics for mitigating toxicity is highly significant.

  13. Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace.

    Science.gov (United States)

    Hecker, Louise

    2018-04-01

    The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic and acute lung diseases. Numerous studies have implicated aging and oxidative stress in the pathogenesis of various pulmonary diseases; however, despite recent advances in these fields, the specific contributions of aging and oxidative stress remain elusive. This review will discuss the consequences of aging on lung morphology and physiology, and how redox imbalance with aging contributes to lung disease susceptibility. Here, we focus on three lung diseases for which aging is a significant risk factor: acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Preclinical and clinical development for redox- and senescence-altering therapeutic strategies are discussed, as well as scientific advancements that may direct current and future therapeutic development. A deeper understanding of how aging impacts normal lung function, redox balance, and injury-repair processes will inspire the development of new therapies to prevent and/or reverse age-associated pulmonary diseases, and ultimately increase health span and longevity. This review is intended to encourage basic, clinical, and translational research that will bridge knowledge gaps at the intersection of aging, oxidative stress, and lung disease to fuel the development of more effective therapeutic strategies for lung diseases that disproportionately afflict the elderly.

  14. Protective effect of U74500A on phorbol myristate acetate-induced acute lung injury.

    Science.gov (United States)

    Chu, Shi-Jye; Chang, Deh-Ming; Wang, David; Lin, Hen-I; Lin, Shih-Hua; Hsu, Kang

    2004-08-01

    1. The present study was designed to determine whether U74500A could ameliorate acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in our rat isolated lung model compared with any amelioration induced by dimethylthiourea (DMTU), superoxide dismutase (SOD) and catalase. 2. Acute lung injury was induced successfully by PMA during 60 min of observation. At 2 microg/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, the lung weight/bodyweight ratio, pulmonary arterial pressure and protein concentration of the bronchoalveolar lavage fluid. 3. Pretreatment with 1.5 mg/kg U74500A significantly attenuated ALI; there was no significant increase in any parameters measured, except for pulmonary arterial pressure. The protective effect of U74500A was approximately the same as that of 600 mg/kg DMTU. However, 6000 U/kg SOD, 50,000 U/kg catalase and 6000 U/kg SOD + 50,000 U/kg catalase had no protective effect. 4. These experimental data suggest that U74500A significantly ameliorates ALI induced by PMA in rats.

  15. Serial perfusion in native lungs in patients with idiopathic pulmonary fibrosis and other interstitial lung diseases after single lung transplantation.

    Science.gov (United States)

    Sokai, Akihiko; Handa, Tomohiro; Chen, Fengshi; Tanizawa, Kiminobu; Aoyama, Akihiro; Kubo, Takeshi; Ikezoe, Kohei; Nakatsuka, Yoshinari; Oguma, Tsuyoshi; Hirai, Toyohiro; Nagai, Sonoko; Chin, Kazuo; Date, Hiroshi; Mishima, Michiaki

    2016-04-01

    Lung perfusions after single lung transplantation (SLT) have not been fully clarified in patients with interstitial lung disease (ILD). The present study aimed to investigate temporal changes in native lung perfusion and their associated clinical factors in patients with ILD who have undergone SLT. Eleven patients were enrolled. Perfusion scintigraphy was serially performed up to 12 months after SLT. Correlations between the post-operative perfusion ratio in the native lung and clinical parameters, including pre-operative perfusion ratio and computed tomography (CT) volumetric parameters, were evaluated. On average, the perfusion ratio of the native lung was maintained at approximately 30% until 12 months after SLT. However, the ratio declined more significantly in idiopathic pulmonary fibrosis (IPF) than in other ILDs (p = 0.014). The perfusion ratio before SLT was significantly correlated with that at three months after SLT (ρ = 0.64, p = 0.048). The temporal change of the perfusion ratio in the native lung did not correlate with those of the CT parameters. The pre-operative perfusion ratio may predict the post-operative perfusion ratio of the native lung shortly after SLT in ILD. Perfusion of the native lung may decline faster in IPF compared with other ILDs. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. PET imaging approaches for inflammatory lung diseases: Current concepts and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Delphine L., E-mail: chend@wustl.edu [Divisions of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Campus Box 8225, 510S, Kingshighway Blvd, St. Louis, MO (United States); Schiebler, Mark L. [Department of Radiology, UW-Madison School of Medicine and Public Heath, Madison, WI (United States); Goo, Jin Mo [Department of Radiology, Seoul National University, Seoul (Korea, Republic of); Beek, Edwin J.R. van [Clinical Research Imaging Centre, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh (United Kingdom)

    2017-01-15

    Highlights: • Positron emission tomography can provide molecular information inflammatory lung disease mechanisms and assess targeted treatment responses. • {sup 18}F-Fluorodeoxyglucose, {sup 18}F-(+/−)NOS, and {sup 18}F-fluciclatide have potential for serving as biomarkers of inflammation and fibrosis. • PET can complement computed tomography and magnetic resonance imaging to improve our understanding of inflammatory lung disease mechanisms. - Abstract: Inflammatory lung disease is one of the most common clinical scenarios, and yet, it is often poorly understood. Inflammatory lung disorders, such as chronic obstructive pulmonary diseases, which are causing significant mortality and morbidity, have limited therapeutic options. Recently, new treatments have become available for pulmonary fibrosis. This review article will describe the new insights that are starting to be gained from positron emission tomography (PET) methods, by targeting molecular processes using dedicated radiotracers. Ultimately, this should aid in deriving better pathophysiological classification of these disorders, which will ultimately result in better evaluation of novel therapies.

  17. Osteopontin protects against hyperoxia-induced lung injury by inhibiting nitric oxide synthases.

    Science.gov (United States)

    Zhang, Xiang-Feng; Liu, Shuang; Zhou, Yu-Jie; Zhu, Guang-Fa; Foda, Hussein D

    2010-04-05

    Exposure of adult mice to more than 95% O(2) produces a lethal injury by 72 hours. Nitric oxide synthase (NOS) is thought to contribute to the pathophysiology of murine hyperoxia-induced acute lung injury (ALI). Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of nitric oxide production. However, the relationship between nitric oxide and endogenous OPN in lung tissue during hyperoxia-induced ALI has not yet been elucidated, thus we examined the role that OPN plays in the hyperoxia-induced lung injury and its relationships with NOS. One hundred and forty-four osteopontin knock-out (KO) mice and their matched wild type background control (WT) were exposed in sealed cages > 95% oxygen or room air for 24- 72 hours, and the severity of lung injury was assessed; expression of OPN, endothelial nitric oxide synthase (eNOS) and iNOS mRNA in lung tissues at 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR); immunohistochemistry (IHC) was performed for the detection of iNOS, eNOS, and OPN protein in lung tissues. OPN KO mice developed more severe acute lung injury at 72 hours of hyperoxia. The wet/dry weight ratio increased to 6.85 +/- 0.66 in the KO mice at 72 hours of hyperoxia as compared to 5.31 +/- 0.92 in the WT group (P < 0.05). iNOS mRNA (48 hours: 1.04 +/- 0.08 vs. 0.63 +/- 0.09, P < 0.01; 72 hours: 0.89 +/- 0.08 vs. 0.72 +/- 0.09, P < 0.05) and eNOS mRNA (48 hours: 0.62 +/- 0.08 vs. 0.43 +/- 0.09, P < 0.05; 72 hours: 0.67 +/- 0.08 vs. 0.45 +/- 0.09, P < 0.05) expression was more significantly increased in OPN KO mice than their matched WT mice when exposed to hyperoxia. IHC study showed higher expression of iNOS (20.54 +/- 3.18 vs. 12.52 +/- 2.46, P < 0.05) and eNOS (19.83 +/- 5.64 vs. 9.45 +/- 3.82, P < 0.05) in lung tissues of OPN KO mice at 72 hours of hyperoxia. OPN can protect against

  18. Radiation-induced Pulmonary Damage in Lung Cancer Patients

    International Nuclear Information System (INIS)

    Chung, Su Mi; Choi, Ihl Bohng; Kang, Mi Mun; Kim, In Ah; Shinn, Kyung Sub

    1993-01-01

    Purpose: A retrospective analysis was performed to evaluate the incidence of radiation induced lung damage after the radiation therapy for the patients with carcinoma of the lung. Method and Materials: Sixty-six patients with lung cancer (squamous cell carcinoma 27, adenocarcinoma 14, large cell carcinoma 2, small cell carcinoma 13, unknown 10) were treated with definitive, postoperative or palliative radiation therapy with or without chemotherapy between July 1987 and December 1991. There were 50 males and 16 females with median age of 63 years(range: 33-80 years). Total lung doses ranged from 500 to 6,660 cGy (median 3960 cGy) given in 2 to 38 fractions (median 20) over a range of 2 to 150 days (median 40 days) using 6 MV or 15 MV linear accelerator. To represent different fractionation schedules of equivalent biological effect, the estimated single dose(ED) model, ED=D·N-0.377·T-0.058 was used in which D was the lung dose in cGy, N was the number of fractions, and T was the overall treatment time in days. The range of ED was 370 to 1357. The endpoint was a visible increase in lung density within the irradiated volume on chest X-ray as observed independently by three diagnostic radiologists. Patients were grouped according to ED, treatment duration, treatment modality and age, and the percent incidence of pulmonary damage for each group was determined. Result: In 40 of 66 patients, radiation induced change was seen on chest radiographs between 11 days and 314 days after initiation of radiation therapy. The incidence of radiation pneumonitis was increased according to increased ED, which was statistically significant (p=0.001). Roentgenographic charges consistent with radiation pneumonitis were seen in 100% of patients receiving radiotherapy after lobectomy or pneumonectomy, which was not statistically significant. In 32 patients who also received chemotherapy, there was no difference in the incidence of radiation induced charge between the group with radiation

  19. S1P-induced airway smooth muscle hyperresponsiveness and lung inflammation in vivo: molecular and cellular mechanisms.

    Science.gov (United States)

    Roviezzo, F; Sorrentino, R; Bertolino, A; De Gruttola, L; Terlizzi, M; Pinto, A; Napolitano, M; Castello, G; D'Agostino, B; Ianaro, A; Sorrentino, R; Cirino, G

    2015-04-01

    Sphingosine-1-phosphate (S1P) has been shown to be involved in the asthmatic disease as well in preclinical mouse experimental models of this disease. The aim of this study was to understand the mechanism(s) underlying S1P effects on the lung. BALB/c, mast cell-deficient and Nude mice were injected with S1P (s.c.) on days 0 and 7. Functional, molecular and cellular studies were performed. S1P administration to BALB/c mice increased airway smooth muscle reactivity, mucus production, PGD2 , IgE, IL-4 and IL-13 release. These features were associated to a higher recruitment of mast cells to the lung. Mast cell-deficient Kit (W) (-sh/) (W) (-sh) mice injected with S1P did not display airway smooth muscle hyper-reactivity. However, lung inflammation and IgE production were still present. Treatment in vivo with the anti-CD23 antibody B3B4, which blocks IgE production, inhibited both S1P-induced airway smooth muscle reactivity in vitro and lung inflammation. S1P administration to Nude mice did not elicit airway smooth muscle hyper-reactivity and lung inflammation. Naïve (untreated) mice subjected to the adoptive transfer of CD4+ T-cells harvested from S1P-treated mice presented all the features elicited by S1P in the lung. S1P triggers a cascade of events that sequentially involves T-cells, IgE and mast cells reproducing several asthma-like features. This model may represent a useful tool for defining the role of S1P in the mechanism of action of currently-used drugs as well as in the development of new therapeutic approaches for asthma-like diseases. © 2014 The British Pharmacological Society.

  20. The value of the abnormalities of bronchovascular bundles in the diagnosis of diffused lung diseases

    International Nuclear Information System (INIS)

    Li Tieyi; Ji Jingling

    1997-01-01

    To evaluate the abnormalities of bronchovascular bundles in the differential diagnosis of the diffuse lung disease, seventy-two patients with diffuse lung diseases were evaluated, 15 of 72 patients were pathologically proven and the others clinically proven. Of these 72 patients, there were 33 patients with diffuse pulmonary interstitial disease, 5 patients with pulmonary parenchymal disease, 14 patients with bronchial disease, and 20 patients with disseminated disease. All patients had conventional CT scan of the chest, some also had HRCT scan. All CT images were jointly reviewed by two radiologists. The features of the abnormalities of bronchovascular bundles included: (1) Thinning of bronchovascular bundles, predominantly seen in diffuse interstitial disease of lung and chronic bronchitis; (2) thickening of bronchovascular bundles, predominantly seen in interstitial diseases and disseminated lung diseases such as sarcoidosis and lymphangitis carcinomatosis with beaded appearance of bronchovascular bundles; (3) Increased visibility of bronchovascular bundles, predominantly seen in bronchiolitis and disseminated lung diseases. CT features of the abnormalities of bronchovascular bundles are present in 80% of diffuse lung diseases. The features are not specific, but the beaded bronchovascular bundles are always seen in sarcoidosis and lymphangitis carcinomatosis. In making a distinction between idiopathic pulmonary fibrosis and chronic bronchitis complicated with interstitial fibrosis, the position of diaphragm is of value in differential diagnosis, normal or elevated diaphragm is usually seen in the former, while low and flattened diaphragm in the latter. Change of the appearance of bronchovascular bundles from normality to abnormality reflects the process of development of the lung disease

  1. Role of the Lung Microbiome in the Pathogenesis of Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Wang, Lei; Hao, Ke; Yang, Ting; Wang, Chen

    2017-09-05

    The development of culture-independent techniques for microbiological analysis shows that bronchial tree is not sterile in either healthy or chronic obstructive pulmonary disease (COPD) individuals. With the advance of sequencing technologies, lung microbiome has become a new frontier for pulmonary disease research, and such advance has led to better understanding of the lung microbiome in COPD. This review aimed to summarize the recent advances in lung microbiome, its relationships with COPD, and the possible mechanisms that microbiome contributed to COPD pathogenesis. Literature search was conducted using PubMed to collect all available studies concerning lung microbiome in COPD. The search terms were "microbiome" and "chronic obstructive pulmonary disease", or "microbiome" and "lung/pulmonary". The papers in English about lung microbiome or lung microbiome in COPD were selected, and the type of articles was not limited. The lung is a complex microbial ecosystem; the microbiome in lung is a collection of viable and nonviable microbiota (bacteria, viruses, and fungi) residing in the bronchial tree and parenchymal tissues, which is important for health. The following types of respiratory samples are often used to detect the lung microbiome: sputum, bronchial aspirate, bronchoalveolar lavage, and bronchial mucosa. Disordered bacterial microbiome is participated in pathogenesis of COPD; there are also dynamic changes in microbiota during COPD exacerbations. Lung microbiome may contribute to the pathogenesis of COPD by manipulating inflammatory and/or immune process. Normal lung microbiome could be useful for prophylactic or therapeutic management in COPD, and the changes of lung microbiome could also serve as biomarkers for the evaluation of COPD.

  2. Will chronic e-cigarette use cause lung disease?

    OpenAIRE

    Rowell, Temperance R.; Tarran, Robert

    2015-01-01

    Chronic tobacco smoking is a major cause of preventable morbidity and mortality worldwide. In the lung, tobacco smoking increases the risk of lung cancer, and also causes chronic obstructive pulmonary disease (COPD), which encompasses both emphysema and chronic bronchitis. E-cigarettes (E-Cigs), or electronic nicotine delivery systems, were developed over a decade ago and are designed to deliver nicotine without combusting tobacco. Although tobacco smoking has declined since the 1950s, E-Cig ...

  3. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A₂ in Mice.

    Science.gov (United States)

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-04-30

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A₂ (bvPLA₂) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA₂ in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA₂ six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA₂ treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA₂ treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes' mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA₂ on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA₂ in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA₂ are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA₂ in radiation pneumonitis and fibrosis treatments.

  4. Joint effects of smoking and silicosis on diseases to the lungs.

    Directory of Open Access Journals (Sweden)

    Lap Ah Tse

    Full Text Available Smokers are subject to being more susceptible to the long-term effects of silica dust, whilst it remains unclear whether the joint effect of smoking and silicosis differs amongst diseases to the lungs; this study aims to address this knowledge gap. This was a historical cohort study comprised of 3202 silicotics in Hong Kong during 1981-2005 who were followed up till 31/12/2006. We estimated the standardized mortality ratio (SMR in the smoking and never smoking silicotics using the mortality rates of male general population indiscriminately by smoking status, but these SMRs were regarded as biased. We adjusted these biased SMRs using "smoking adjustment factors (SAF". We assessed the multiplicative interaction between smoking and silicosis using 'relative silicosis effect (RSE' that was the ratio of SAF-corrected SMR of smoking silicotics to the never smokers. A RSE differs significantly from one implies the presence of multiplicative interaction. A significant excess SMR was observed for respiratory diseases (lung cancer, chronic obstructive pulmonary diseases [COPD], silicosis and other diseases to the lungs (pulmonary heart disease, tuberculosis. All the 'biased-SMRs' in smokers were higher than those in never smokers, but the SAF-corrected SMRs became higher in never smokers. The RSE was 0.95 (95%CI: 0.37-3.55, 0.94 (95%CI: 0.42-2.60, and 0.81 (95%CI: 0.60-1.19 for lung cancer, COPD, and silicosis; whilst it was 1.21 (95%CI: 0.32-10.26 for tuberculosis and 1.02 (95%CI: 0.16-42.90 for pulmonary heart disease. This study firstly demonstrated the joint effect of smoking and silicosis may differ amongst diseases to the lungs, but power is limited.

  5. Lung Disease Including Asthma and Adult Vaccination

    Science.gov (United States)

    ... can make it hard to breathe. Certain vaccinepreventable diseases can also increase swelling of your airways and lungs. The combination of the two can lead to pneumonia and other serious respiratory illnesses. Vaccines are one of the safest ways ...

  6. Hypothalamic digoxin, hemispheric chemical dominance, and interstitial lung disease.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-10-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin, dolichol, and ubiquinone. This was assessed in patients with idiopathic pulmonary fibrosis and in individuals of differing hemispheric dominance to find out the role of hemispheric dominance in the pathogenesis of idiopathic pulmonary fibrosis. All 15 cases of interstitial lung disease were right-handed/left hemispheric dominant by the dichotic listening test. The isoprenoidal metabolites--digoxin, dolichol, and ubiquinone, RBC membrane Na(+)-K+ ATPase activity, serum magnesium, tyrosine/tryptophan catabolic patterns, free radical metabolism, glycoconjugate metabolism, and RBC membrane composition--were assessed in idiopathic pulmonary fibrosis as well as in individuals with differing hemispheric dominance. In patients with idiopathic pulmonary fibrosis there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in cholesterol phospholipid ratio and a reduction in glycoconjugate level of RBC membrane in patients with idiopathic pulmonary fibrosis. Isoprenoid pathway dysfunction con tributes to the pathogenesis of idiopathic pulmonary fibrosis. The biochemical patterns obtained in interstitial lung disease are similar to those obtained in left-handed/right hemispheric chemically dominant individuals by the dichotic listening test. However, all the patients with interstitial lung disease were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Interstitial lung disease occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function.

  7. Predictors of end stage lung disease in a cohort of patients with scleroderma

    OpenAIRE

    Morgan, C; Knight, C; Lunt, M; Black, C; Silman, A

    2003-01-01

    Objectives: To estimate the incidence of severe lung disease in patients with scleroderma and identify the combination(s) of features present at first assessment which would be useful to predict future risk of severe lung disease.

  8. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  9. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  10. Commentary: research on the mechanisms of the occupational lung diseases

    International Nuclear Information System (INIS)

    Rom, W.N.

    1984-01-01

    In this commentary, the pathogenesis of alveolitis is examined and elucidated by animal models. The use of broncho alveolar lavage (BAL) and Ga-67 citrate whole-body scanning as a measure of the activity of alveolar inflammation in workers is discussed. Gallium scan indices have been reported to be elevated in asbestosis, silicosis, and coal workers' pneumoconiosis; diseases which may now be evaluated at earlier, potentially reversible stages. Research in emphysema and other lung diseases associated with α 1 antitrypsin deficiency may help explain why coal miners develop focal emphysema. Furthermore, investigation of genetic factors may reveal why workers with similar exposures have a different susceptibility for the development of pneumoconiosis or lung cancer. Occupational asthma may not respond to removal of the worker from exposure because reactive airways may be a predisposing factor for chronic ashthma and chronic obstructive lung disease. A continuing challenge will be disease risk in new industries such as electronics and alternate energy industries and new diseases in worker groups not previously studied, such as the variety of pneumoconioses among dental laboratory technicians who work with exotic metal alloys. 52 references

  11. Pulmonary microRNA profiling: implications in upper lobe predominant lung disease.

    Science.gov (United States)

    Armstrong, David A; Nymon, Amanda B; Ringelberg, Carol S; Lesseur, Corina; Hazlett, Haley F; Howard, Louisa; Marsit, Carmen J; Ashare, Alix

    2017-01-01

    Numerous pulmonary diseases manifest with upper lobe predominance including cystic fibrosis, smoking-related chronic obstructive pulmonary disease, and tuberculosis. Zonal hypoxia, characteristic of these pulmonary maladies, and oxygen stress in general is known to exert profound effects on various important aspects of cell biology. Lung macrophages are major participants in the pulmonary innate immune response and regional differences in macrophage responsiveness to hypoxia may contribute in the development of lung disease. MicroRNAs are ubiquitous regulators of human biology and emerging evidence indicates altered microRNA expression modulates respiratory disease processes. The objective of this study is to gain insight into the epigenetic and cellular mechanisms influencing regional differences in lung disease by investigating effect of hypoxia on regional microRNA expression in the lung. All studies were performed using primary alveolar macrophages ( n  = 10) or bronchoalveolar lavage fluid ( n  = 16) isolated from human subjects. MicroRNA was assayed via the NanoString nCounter microRNA assay. Divergent molecular patterns of microRNA expression were observed in alternate lung lobes, specifically noted was disparate expression of miR-93 and miR-4454 in alveolar macrophages along with altered expression of miR-451a and miR-663a in bronchoalveolar lavage fluid. Gene ontology was used to identify potential downstream targets of divergent microRNAs. Targets include cytokines and matrix metalloproteinases, molecules that could have a significant impact on pulmonary inflammation and fibrosis. Our findings show variant regional microRNA expression associated with hypoxia in alveolar macrophages and BAL fluid in the lung-upper vs lower lobe. Future studies should address whether these specific microRNAs may act intracellularly, in a paracrine/endocrine manner to direct the innate immune response or may ultimately be involved in pulmonary host-to-pathogen trans

  12. Chronic Exposure to Particulate Nickel Induces Neoplastic Transformation in Human Lung Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amie L. Holmes

    2013-11-01

    Full Text Available Nickel is a well-known human lung carcinogen with the particulate form being the most potent; however, the carcinogenic mechanism remains largely unknown. Few studies have investigated the genotoxicity and carcinogenicity of nickel in its target cell, human bronchial epithelial cells. Thus, the goal of this study was to investigate the effects of particulate nickel in human lung epithelial cells. We found that nickel subsulfide induced concentration- and time-dependent increases in both cytotoxicity and genotoxicity in human lung epithelial cells (BEP2D. Chronic exposure to nickel subsulfide readily induced cellular transformation, inducing 2.55, 2.9 and 2.35 foci per dish after exposure to 1, 2.5 and 5 μg/cm2 nickel subsulfide, respectively. Sixty-one, 100 and 70 percent of the foci isolated from 1, 2.5, and 5 μg/cm2 nickel subsulfide treatments formed colonies in soft agar and the degree of soft agar colony growth increased in a concentration-dependent manner. Thus, chronic exposure to particulate nickel induces genotoxicity and cellular transformation in human lung epithelial cells.

  13. Effects of an Amifostine analogue on radiation induced lung inflammation and fibrosis

    International Nuclear Information System (INIS)

    Arora, Aastha; Bhuria, Vikas; Soni, Ravi; Singh, Saurabh; Hazari, Puja Panwar; Bhatt, Anant Narayan; Dwarakanath, B.S.; Pathak, Uma; Mathur, Shweta; Sandhir, Rajat

    2014-01-01

    Radiation-induced pulmonary toxicity causes significant morbidity and mortality in patients irradiated for thoracic malignancies as well as in victims of accidental radiation exposure. We have recently established the efficacy of an analogue of Amifostine (DRDE-30) in reducing the mortality of whole body irradiated mice. The widely used radioprotector Amifostine has been found to reduce the incidence of radiation induced pneumonitis during radiation therapy for non small cell lung carcinoma. In the present study, we investigated the potential of DRDE-30 in ameliorating the radiation induced lung damage. Intra-peritoneal administration of DRDE-30 at 220 mg/kg b.wt 30 min. prior to 13.5 Gy thoracic radiation enhanced the 24-month survival of C57BL/6 mice to 80% compared to 0% with radiation alone. Reduced protein content and cell number in the broncheo-alveolar lavage fluid suggested reduction in radiation induced vascular permeability in DRDE-30 treated mice. Higher levels of MnSOD and Catalase observed under these conditions indicated that strengthening of the anti-oxidant defense system by DRDE-30 could also contribute to the protection against radiation induced lung damage. Reduced levels of p-p38 observed under these conditions suggested down-regulation of the p38/MAP kinase pathway as one of the plausible mechanisms underlying anti-inflammatory effects of DRDE-30, while lower levels of Vimentin seen, indicated inhibition of epithelial to mesenchymal transition revealing its anti-fibrotic effect as well. Structural analysis with X-ray CT indicated comparable lung architecture in control and drug treated mice in terms of reduced opacity, which correlated well with the lung morphology (H and E staining) and reduced collagen deposition (trichrome staining). These results demonstrate the potential of DRDE-30 in reducing radiation induced pulmonary toxicity by attenuating the inflammatory and fibrotic responses. (author)

  14. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    Energy Technology Data Exchange (ETDEWEB)

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 of 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.

  15. Effects of sevoflurane on ventilator induced lung injury in a healthy lung experimental model.

    Science.gov (United States)

    Romero, A; Moreno, A; García, J; Sánchez, C; Santos, M; García, J

    2016-01-01

    Ventilator-induced lung injury (VILI) causes a systemic inflammatory response in tissues, with an increase in IL-1, IL-6 and TNF-α in blood and tissues. Cytoprotective effects of sevoflurane in different experimental models are well known, and this protective effect can also be observed in VILI. The objective of this study was to assess the effects of sevoflurane in VILI. A prospective, randomized, controlled study was designed. Twenty female rats were studied. The animals were mechanically ventilated, without sevoflurane in the control group and sevoflurane 3% in the treated group (SEV group). VILI was induced applying a maximal inspiratory pressure of 35 cmH2O for 20 min without any positive end-expiratory pressure for 20 min (INJURY time). The animals were then ventilated 30 min with a maximal inspiratory pressure of 12 cmH2O and 3 cmH2O positive end-expiratory pressure (time 30 min POST-INJURY), at which time the animals were euthanized and pathological and biomarkers studies were performed. Heart rate, invasive blood pressure, pH, PaO2, and PaCO2 were recorded. The lung wet-to-dry weight ratio was used as an index of lung edema. No differences were found in the blood gas analysis parameters or heart rate between the 2 groups. Blood pressure was statistically higher in the control group, but still within the normal clinical range. The percentage of pulmonary edema and concentrations of TNF-α and IL-6 in lung tissue in the SEV group were lower than in the control group. Sevoflurane attenuates VILI in a previous healthy lung in an experimental subclinical model in rats. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Quantitative measurement of lung density with x-ray CT and positron CT, (2). Diseased subjects

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kengo; Ito, Masatoshi; Kubota, Kazuo

    1985-05-01

    Lung density was quantitatively measured on six diseased patients with X-ray CT (XCT) and Positron CT(PCT). The findings are as follows: In the silicosis, extravascular lung density was found to be remarkably increased compared to normals (0.29gcm/sup 3/), but blood volume was in normal range. In the post-irradiated lung cancers, extravascular lung density increased in the irradiated sites compared to the non-irradiated opposite sites, and blood volume varied in each case. In a patient with chronic heart failure, blood volume decreased (0.11mlcm/sup 3/) with increased extravascular lung density (0.23gcm/sup 3/). In the chronic obstructive pulmonary disease, both extravascular lung density and blood volume decreased (0.11gcm/sup 3/ and 0.10mlcm/sup 3/ respectively). Lung density measured with XCT was constantly lower than that with PCT in all cases. But changes in the values of lung density measured, correlated well with each other. In conclusion, the method presented here may clarify the etiology of the diffuse pulmonary diseases, and be used to differentiate and grade the diseases.

  17. Interstitial lung disease caused by TS-1: a case of long-term drug retention as a fatal adverse reaction.

    Science.gov (United States)

    Park, Joong-Min; Hwang, In Gyu; Suh, Suk-Won; Chi, Kyong-Choun

    2011-12-01

    TS-1 is an oral anti-cancer agent for gastric cancer with a high response rate and low toxicity. We report a case of long-term drug retention of TS-1 causing interstitial lung disease (ILD) as a fatal adverse reaction. A 65-year-old woman underwent a total gastrectomy with pathologic confirmation of gastric adenocarcinoma. She received 6 cycles of TS-1 and low-dose cisplatin for post-operative adjuvant chemotherapy followed by single-agent maintenance therapy with TS-1. After 8 months, the patient complained of a productive cough with sputum and mild dyspnea. A pulmonary evaluation revealed diffuse ILD in the lung fields, bilaterally. In spite of discontinuing chemotherapy and the administration of corticosteroids, the pulmonary symptoms did not improve, and the patient died of pulmonary failure. TS-1-induced ILD can be caused by long-term drug retention that alters the lung parenchyma irreversibly, the outcome of which can be life-threatening. Pulmonary evaluation for early detection of disease is recommended.

  18. Lung cancer in connective tissue disease-associated interstitial lung disease: clinical features and impact on outcomes.

    Science.gov (United States)

    Watanabe, Satoshi; Saeki, Keigo; Waseda, Yuko; Murata, Akari; Takato, Hazuki; Ichikawa, Yukari; Yasui, Masahide; Kimura, Hideharu; Hamaguchi, Yasuhito; Matsushita, Takashi; Yamada, Kazunori; Kawano, Mitsuhiro; Furuichi, Kengo; Wada, Takashi; Kasahara, Kazuo

    2018-02-01

    Lung cancer (LC) adversely impacts survival in patients with idiopathic pulmonary fibrosis. However, little is known about LC in patients with connective tissue disease-associated interstitial lung disease (CTD-ILD). The aim of this study was to evaluate the prevalence of and risk factors for LC in CTD-ILD, and the clinical characteristics and survival of CTD-ILD patients with LC. We conducted a single-center, retrospective review of patients with CTD-ILD from 2003 to 2016. Patients with pathologically diagnosed LC were identified. The prevalence, risk factors, and clinical features of LC and the impact of LC on CTD-ILD patient outcomes were observed. Of 266 patients with CTD-ILD, 24 (9.0%) had LC. CTD-ILD with LC was more likely in patients who were older, male, and smokers; had rheumatoid arthritis, a usual interstitial pneumonia pattern, emphysema on chest computed tomography scan, and lower diffusing capacity of the lung carbon monoxide (DLco)% predicted; and were not receiving immunosuppressive therapy. Multivariate analysis indicated that the presence of emphysema [odds ratio (OR), 8.473; 95% confidence interval (CI), 2.241-32.033] and nonuse of immunosuppressive therapy (OR, 8.111; 95% CI, 2.457-26.775) were independent risk factors for LC. CTD-ILD patients with LC had significantly worse survival than patients without LC (10-year survival rate: 28.5% vs. 81.8%, P<0.001). LC is associated with the presence of emphysema and nonuse of immunosuppressive therapy, and contributes to increased mortality in patients with CTD-ILD.

  19. Glufosinate aerogenic exposure induces glutamate and IL-1 receptor dependent lung inflammation.

    Science.gov (United States)

    Maillet, Isabelle; Perche, Olivier; Pâris, Arnaud; Richard, Olivier; Gombault, Aurélie; Herzine, Ameziane; Pichon, Jacques; Huaux, Francois; Mortaud, Stéphane; Ryffel, Bernhard; Quesniaux, Valérie F J; Montécot-Dubourg, Céline

    2016-11-01

    Glufosinate-ammonium (GLA), the active component of an herbicide, is known to cause neurotoxicity. GLA shares structural analogy with glutamate. It is a powerful inhibitor of glutamine synthetase (GS) and may bind to glutamate receptors. Since these potentials targets of GLA are present in lung and immune cells, we asked whether airway exposure to GLA may cause lung inflammation in mice. A single GLA exposure (1 mg/kg) induced seizures and inflammatory cell recruitment in the broncho-alveolar space, and increased myeloperoxidase (MPO), inducible NO synthase (iNOS), interstitial inflammation and disruption of alveolar septae within 6-24 h. Interleukin 1β (IL-1β) was increased and lung inflammation depended on IL-1 receptor 1 (IL-1R1). We demonstrate that glutamate receptor pathway is central, since the N-methyl-D-aspartate (NMDA) receptor inhibitor MK-801 prevented GLA-induced lung inflammation. Chronic exposure (0.2 mg/kg 3× per week for 4 weeks) caused moderate lung inflammation and enhanced airway hyperreactivity with significant increased airway resistance. In conclusion, GLA aerosol exposure causes glutamate signalling and IL-1R-dependent pulmonary inflammation with airway hyperreactivity in mice. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  20. [Lung Cancer as an Occupational Disease].

    Science.gov (United States)

    Baur, X; Woitowitz, H-J

    2016-08-01

    Lung cancer is one of the most frequently encountered cancer types. According to the latest WHO data, about 10 % of this disease are due to occupational exposure to cancerogens. Asbestos is still the number one carcinogen. Further frequent causes include quarz and ionizing radiation (uranium mining). Probable causes of the disease can be identified only with the help of detailed occupational history taken by a medical specialist and qualified exposure assessment. Without clarifying the cause of the disease, there is neither a correct insurance procedure nor compensation for the victim, and furthermore, required preventive measures cannot be initiated. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Hypoxia-preconditioned mesenchymal stem cells ameliorate ischemia/reperfusion-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Yung-Yang Liu

    Full Text Available Hypoxia preconditioning has been proven to be an effective method to enhance the therapeutic action of mesenchymal stem cells (MSCs. However, the beneficial effects of hypoxic MSCs in ischemia/reperfusion (I/R lung injury have yet to be investigated. In this study, we hypothesized that the administration of hypoxic MSCs would have a positive therapeutic impact on I/R lung injury at molecular, cellular, and functional levels.I/R lung injury was induced in isolated and perfused rat lungs. Hypoxic MSCs were administered in perfusate at a low (2.5×105 cells and high (1×106 cells dose. Rats ventilated with a low tidal volume of 6 ml/kg served as controls. Hemodynamics, lung injury indices, inflammatory responses and activation of apoptotic pathways were determined.I/R induced permeability pulmonary edema with capillary leakage and increased levels of reactive oxygen species (ROS, pro-inflammatory cytokines, adhesion molecules, cytosolic cytochrome C, and activated MAPK, NF-κB, and apoptotic pathways. The administration of a low dose of hypoxic MSCs effectively attenuated I/R pathologic lung injury score by inhibiting inflammatory responses associated with the generation of ROS and anti-apoptosis effect, however this effect was not observed with a high dose of hypoxic MSCs. Mechanistically, a low dose of hypoxic MSCs down-regulated P38 MAPK and NF-κB signaling but upregulated glutathione, prostaglandin E2, IL-10, mitochondrial cytochrome C and Bcl-2. MSCs infused at a low dose migrated into interstitial and alveolar spaces and bronchial trees, while MSCs infused at a high dose aggregated in the microcirculation and induced pulmonary embolism.Hypoxic MSCs can quickly migrate into extravascular lung tissue and adhere to other inflammatory or structure cells and attenuate I/R lung injury through anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms. However, the dose of MSCs needs to be optimized to prevent pulmonary embolism and thrombosis.

  2. Subchronic inhalation of soluble manganese induces expression of hypoxia-associated angiogenic genes in adult mouse lungs

    International Nuclear Information System (INIS)

    Bredow, Sebastian; Falgout, Melanie M.; March, Thomas H.; Yingling, Christin M.; Malkoski, Stephen P.; Aden, James; Bedrick, Edward J.; Lewis, Johnnye L.; Divine, Kevin K.

    2007-01-01

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE), these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m 3 for 5 days at 6 h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease

  3. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    International Nuclear Information System (INIS)

    Gan, Lu; Xue, Jian-Xin; Li, Xin; Liu, De-Song; Ge, Yan; Ni, Pei-Yan; Deng, Lin; Lu, You; Jiang, Wei

    2011-01-01

    Highlights: → Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. → Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. → VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. → LPA-LPAR1/3 signaling regulated TGFβ1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. → LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGFβ1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor β1 (TGFβ1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1/3 signaling system is involved in the

  4. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Lu [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Xue, Jian-Xin [Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu (China); Li, Xin [Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Liu, De-Song [Department of Pediatrics, Sichuan Provincial Hospital of Women and Children, Chengdu (China); Ge, Yan; Ni, Pei-Yan; Deng, Lin [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Lu, You, E-mail: radyoulu@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Jiang, Wei, E-mail: wcumsjw72@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu (China)

    2011-05-27

    Highlights: {yields} Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. {yields} Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. {yields} VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. {yields} LPA-LPAR1/3 signaling regulated TGF{beta}1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. {yields} LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGF{beta}1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor {beta}1 (TGF{beta}1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1

  5. Chronic obstructive pulmonary disease with lung cancer: Prevalence, severity, and common pathogenesis

    Directory of Open Access Journals (Sweden)

    Griffin JP

    2016-01-01

    Full Text Available Objectives: To develop a clinical prediction model of contribution of chronic obstructive pulmonary disease (COPD to the pathogenesis of lung cancer, by reporting the estimated prevalence and severity by GOLD criteria in a single-institution cohort of patients with newly diagnosed lung cancer. Primary objective was investigating the effects of impaired lung function with various histological cell types on crude survival, while considering the initial staging of disease extent. Materials & methods: A total of 441 patients, in this historical cohort from electronic medical records, completed spirometry prior to invasive diagnostic procedures and initial treatment of their lung cancer. All statistical analyses, including ANOVA and survival analysis, were performed using SAS version 9.1 software. Results: Estimated prevalence of COPD was 79.1% (95% confidence interval: 71.3%-82.9%. Lung function as measured by spirometry was a significant predictor of survival time in months (p<0.0001 both with and without adjusting for tumor-cell-type, age, and stage of disease. Median survival was similar (p=0.32 and longer among those patients with normal pulmonary function, those with restrictive disease patterns, and those with COPD–GOLD-1 defects. Median survival was shortest among patients with COPD–GOLD-4 impairment (p=0.001. Those patients with COPD–GOLD-2 and COPD-GOLD-3 impairment levels had intermediate survival times (p=0.003. Conclusions: This investigation suggests that strategies for early detection and slowing the progression of COPD before the development of lung cancer might increase patient survival. As demonstrated in this study, the presence and severity of COPD in lung cancer patients is an independent predictor of survival time, different from the established staging of initial extent of disease.

  6. Development and assessment of countermeasure formulations for treatment of lung injury induced by chlorine inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Chen, Jing; Schlueter, Connie F.; Mo, Yiqun; Humphrey, David M. [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Rawson, Greg; Niño, Joe A.; Carson, Kenneth H. [Microencapsulation and Nanomaterials Department, Chemistry and Chemical Engineering Division, Southwest Research Institute, San Antonio, TX (United States)

    2016-05-01

    Chlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection. Multiple parameters were varied to produce formulations with a wide range of in vitro release kinetics. Testing of selected formulations in chlorine-exposed mice demonstrated efficacy against key aspects of acute lung injury. The results show the feasibility of developing microencapsulated formulations that could be used to treat chlorine-induced acute lung injury by intramuscular injection, which represents a preferred route of administration in a mass casualty situation. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Countermeasures for treatment of chlorine-induced acute lung injury are needed. • Formulations containing rolipram, triptolide, or budesonide were produced. • Formulations with a wide range of release properties were developed. • Countermeasure formulations inhibited chlorine-induced lung injury in mice.

  7. A role for cell adhesion in beryllium-mediated lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Hong-geller, Elizabeth [Los Alamos National Laboratory

    2008-01-01

    Chronic beryllium disease (CBD) is a debilitating lung disorder in which exposure to the lightweight metal beryllium (Be) causes the accumulation of beryllium-specific CD4+ T cells in the lung and formation of noncaseating pulmonary granulomas. Treatment for CBD patients who exhibit progressive pulmonary decline is limited to systemic corticosteroids, which suppress the severe host inflammatory response. Studies in the past several years have begun to highlight cell-cell adhesion interactions in the development of Be hypersensitivity and CBD. In particular, the high binding affinity between intercellular adhesion molecule 1 (I-CAM1) on lung epithelial cells and the {beta}{sub 2} integrin LFA-1 on migrating lymphocytes and macrophages regulates the concerted rolling of immune cells to sites of inflammation in the lung. In this review, we discuss the evidence that implicates cell adhesion processes in onset of Be disease and the potential of cell adhesion as an intervention point for development of novel therapies.

  8. [Lung transplantation in pulmonary fibrosis and other interstitial lung diseases].

    Science.gov (United States)

    Berastegui, Cristina; Monforte, Victor; Bravo, Carlos; Sole, Joan; Gavalda, Joan; Tenório, Luis; Villar, Ana; Rochera, M Isabel; Canela, Mercè; Morell, Ferran; Roman, Antonio

    2014-09-15

    Interstitial lung disease (ILD) is the second indication for lung transplantation (LT) after emphysema. The aim of this study is to review the results of LT for ILD in Hospital Vall d'Hebron (Barcelona, Spain). We retrospectively studied 150 patients, 87 (58%) men, mean age 48 (r: 20-67) years between August 1990 and January 2010. One hundred and four (69%) were single lung transplants (SLT) and 46 (31%) bilateral-lung transplants (BLT). The postoperative diagnoses were: 94 (63%) usual interstitial pneumonia, 23 (15%) nonspecific interstitial pneumonia, 11 (7%) unclassifiable interstitial pneumonia and 15% miscellaneous. We describe the functional results, complications and survival. The actuarial survival was 87, 70 and 53% at one, 3 and 5 years respectively. The most frequent causes of death included early graft dysfunction and development of chronic rejection in the form of bronchiolitis obliterans (BOS). The mean postoperative increase in forced vital capacity and forced expiratory volume in the first second (FEV1) was similar in SLT and BLT. The best FEV1 was reached after 10 (r: 1-36) months. Sixteen percent of patients returned to work. At some point during the evolution, proven acute rejection was diagnosed histologically in 53 (35%) patients. The prevalence of BOS among survivors was 20% per year, 45% at 3 years and 63% at 5 years. LT is the best treatment option currently available for ILD, in which medical treatment has failed. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  9. Intravascular Large B-Cell Lymphoma Presenting as Interstitial Lung Disease

    Directory of Open Access Journals (Sweden)

    Elham Vali Khojeini

    2014-01-01

    Full Text Available Intravascular large B-cell lymphoma (IVLBL is a rare subtype of diffuse large B-cell lymphoma that resides in the lumen of blood vessels. Patients typically present with nonspecific findings, particularly bizarre neurologic symptoms, fever, and skin lesions. A woman presented with shortness of breath and a chest CT scan showed diffuse interstitial thickening and ground glass opacities suggestive of an interstitial lung disease. On physical exam she was noted to have splenomegaly. The patient died and at autopsy was found to have an IVLBL in her lungs as well as nearly all her organs that were sampled. Although rare, IVLBL should be included in the differential diagnosis of interstitial lung disease and this case underscores the importance of the continuation of autopsies.

  10. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    Science.gov (United States)

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-19

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  11. Prevention of LPS-Induced Acute Lung Injury in Mice by Progranulin

    Directory of Open Access Journals (Sweden)

    Zhongliang Guo

    2012-01-01

    Full Text Available The acute respiratory distress syndrome (ARDS, a clinical complication of severe acute lung injury (ALI in humans, is a leading cause of morbidity and mortality in critically ill patients. Despite decades of research, few therapeutic strategies for clinical ARDS have emerged. Here we carefully evaluated the effect of progranulin (PGRN in treatment of ARDS using the murine model of lipopolysaccharide (LPS-induced ALI. We reported that administration of PGRN maintained the body weight and survival of ALI mice. We revealed that administration of PGRN significantly reduced LPS-induced pulmonary inflammation, as reflected by reductions in total cell and neutrophil counts, proinflammatory cytokines, as well as chemokines in bronchoalveolar lavage (BAL fluid. Furthermore, administration of PGRN resulted in remarkable reversal of LPS-induced increases in lung permeability as assessed by reductions in total protein, albumin, and IgM in BAL fluid. Consistently, we revealed a significant reduction of histopathology changes of lung in mice received PGRN treatment. Finally, we showed that PGRN/TNFR2 interaction was crucial for the protective effect of PGRN on the LPS-induced ALI. Our findings strongly demonstrated that PGRN could effectively ameliorate the LPS-induced ALI in mice, suggesting a potential application for PGRN-based therapy to treat clinical ARDS.

  12. Lung cancer and bronchi-pulmonary diseases of iron uranium miners

    International Nuclear Information System (INIS)

    Gneusheva, G. I.; Uspenskaya, K. M.

    2004-01-01

    The lung cancer mortality has been analyzed for 2.582 miners employed from 1943 to 1961. All persons observed had three years occupation at least. Basing upon the lung cancer risk value per unit of the exposure, the assessment of the effective standard of pulmonary organ irradiation to radon progeny was elaborated and mortality excess was calcuated. Medical demography studies of morbidity and mortality were elaborated for silicosis, silicotuberculosis, lung cancer and occupational bronchitis versus the magnitude of dust and radiation exposure. Annual and cumulative exposures have been assessed for seven cohorts of miners employed and vast primary material has been accumulated for the period of 40 years (1943-1984). Intensive indice of mortality were determined for observation periods. The mortality excess was compared to cumulated radiation exposure. The lung cancer mortality excess in iron-uranium miners was 3.3 cases per 106 man-years per 1 WLM; 4.8 cases per 106 man-years per 1 WLM was assessed if first years of occupation are negected. The latent period from radiation exposure to death from lung cancer is generally ten year or more. Changes of miners labor conditions (the magnitude of dust exposure) have been reflected by the bronchi pulmonary disease structure. The input of these dieseases into the occupational lung pathology has been significantly changed with the time course. Within first 18-20 years, pneumoconiosis was the only form of occupational lung pathology in the mine, whereas occupational bronchis and lung cancers were recorded within next then years thereafter. In cohorts of longest observation period, the average age of patients was increasingly ranked versus diseases as follows: silicosis, silicotuberculosis, chronic bronchitis, and lung cancer. (Author)

  13. Artificial intelligence in diagnosis of obstructive lung disease: current status and future potential.

    Science.gov (United States)

    Das, Nilakash; Topalovic, Marko; Janssens, Wim

    2018-03-01

    The application of artificial intelligence in the diagnosis of obstructive lung diseases is an exciting phenomenon. Artificial intelligence algorithms work by finding patterns in data obtained from diagnostic tests, which can be used to predict clinical outcomes or to detect obstructive phenotypes. The purpose of this review is to describe the latest trends and to discuss the future potential of artificial intelligence in the diagnosis of obstructive lung diseases. Machine learning has been successfully used in automated interpretation of pulmonary function tests for differential diagnosis of obstructive lung diseases. Deep learning models such as convolutional neural network are state-of-the art for obstructive pattern recognition in computed tomography. Machine learning has also been applied in other diagnostic approaches such as forced oscillation test, breath analysis, lung sound analysis and telemedicine with promising results in small-scale studies. Overall, the application of artificial intelligence has produced encouraging results in the diagnosis of obstructive lung diseases. However, large-scale studies are still required to validate current findings and to boost its adoption by the medical community.

  14. Lung disease and coal mining: what pulmonologists need to know.

    Science.gov (United States)

    Go, Leonard H T; Krefft, Silpa D; Cohen, Robert A; Rose, Cecile S

    2016-03-01

    Coal mine workers are at risk for a range of chronic respiratory diseases including coal workers' pneumoconiosis, diffuse dust-related fibrosis, and chronic obstructive pulmonary disease. The purpose of this review is to describe coal mining processes and associated exposures to inform the diagnostic evaluation of miners with respiratory symptoms. Although rates of coal workers' pneumoconiosis declined after regulations were enacted in the 1970s, more recent data shows a reversal in this downward trend. Rapidly progressive pneumoconiosis with progressive massive fibrosis (complicated coal workers' pneumoconiosis) is being observed with increased frequency in United States coal miners, with histologic findings of silicosis and mixed-dust pneumoconiosis. There is increasing evidence of decline in lung function in individuals with pneumoconiosis. Multiple recent cohort studies suggest increased risk of lung cancer in coal miners. A detailed understanding of coal mining methods and processes allows clinicians to better evaluate and confirm chronic lung diseases caused by inhalational hazards in the mine atmosphere.

  15. Lack of spirometry use in Danish patients initiating medication targeting obstructive lung disease

    DEFF Research Database (Denmark)

    Koefoed, Mette; Christensen, René Depont; Søndergaard, Jens

    2012-01-01

    Research indicates that a large proportion of patients using medication targeting obstructive lung disease have no history of spirometry testing.......Research indicates that a large proportion of patients using medication targeting obstructive lung disease have no history of spirometry testing....

  16. Mitigation of radiation-induced lung fibrosis by angiotensin converting enzyme inhibitors

    International Nuclear Information System (INIS)

    Kma, Lakhan; Gao, Feng; Jacobs, Elizabeth R.; Medhora, Meetha; Fish, Brian L.; Moulder, John E.

    2014-01-01

    The aim of this study was to test the mitigating potential of angiotensin converting enzyme inhibitors (ACEi) against radiation-induced pulmonary fibrosis, which could result from accidental exposure or radiological terrorism. Rats (WAG/RijCmcr) were exposed to a single dose of 13 Gy of X-irradiation to the whole thorax, at the dose rate of 1.43 Gy/min. Three structurally-different ACEi's, captopril (145-207 mg/m 2 /day), enalapril (19-28 mg/m 2 /day) and fosinopril (19-28 mg/m 2 /day) were administered in drinking water beginning 1 week after whole thoracic irradiation. Rats that survived acute pneumonitis (6-12 weeks) were accessed monthly after irradiation for the effects on lung structure and function. Endpoints included breathing rate, wet:dry weight ratio, collagen content and histolopathological studies. Treatment with captopril or enalapril, but not fosinopril, beginning 1 week after 13 Gy X-irradiation improved survival of rats. Mortality of 30-35% was observed with administration of captopril or enalapril compared to 70% for 13 Gy alone. All three ACEi's attenuated radiation-induced lung fibrosis at 7 months after irradiation based on histological indices and measurement of lung collagen. After whole-thoracic irradiation, ACEi's mitigate radiation induced pulmonary fibrosis based on histological and biochemical endpoints. These treatments were effective even when administration was not started until one week after irradiation. Our findings support the therapeutic potential of ACEi's against chronic radiation induced lung injury. (author)

  17. Will chronic e-cigarette use cause lung disease?

    Science.gov (United States)

    Rowell, Temperance R; Tarran, Robert

    2015-12-15

    Chronic tobacco smoking is a major cause of preventable morbidity and mortality worldwide. In the lung, tobacco smoking increases the risk of lung cancer, and also causes chronic obstructive pulmonary disease (COPD), which encompasses both emphysema and chronic bronchitis. E-cigarettes (E-Cigs), or electronic nicotine delivery systems, were developed over a decade ago and are designed to deliver nicotine without combusting tobacco. Although tobacco smoking has declined since the 1950s, E-Cig usage has increased, attracting both former tobacco smokers and never smokers. E-Cig liquids (e-liquids) contain nicotine in a glycerol/propylene glycol vehicle with flavorings, which are vaporized and inhaled. To date, neither E-Cig devices, nor e-liquids, are regulated by the Food and Drug Administration (FDA). The FDA has proposed a deeming rule, which aims to initiate legislation to regulate E-Cigs, but the timeline to take effect is uncertain. Proponents of E-Cigs say that they are safe and should not be regulated. Opposition is varied, with some opponents proposing that E-Cig usage will introduce a new generation to nicotine addiction, reversing the decline seen with tobacco smoking, or that E-Cigs generally may not be safe and will trigger diseases like tobacco. In this review, we shall discuss what is known about the effects of E-Cigs on the mammalian lung and isolated lung cells in vitro. We hope that collating this data will help illustrate gaps in the knowledge of this burgeoning field, directing researchers toward answering whether or not E-Cigs are capable of causing disease. Copyright © 2015 the American Physiological Society.

  18. Extracellular adenosine production by ecto-5′-nucleotidase (CD73) enhances radiation-induced lung fibrosis

    Science.gov (United States)

    Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V.; Gau, Eva; Thompson, Linda F.; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W.; Blackburn, Michael R.; Westendorf, Astrid M.; Stuschke, Martin; Jendrossek, Verena

    2016-01-01

    Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks post-irradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately three-fold. Histological evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P<0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase (PEG-ADA) or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacological strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. PMID:26921334

  19. Lung function imaging methods in Cystic Fibrosis pulmonary disease.

    Science.gov (United States)

    Kołodziej, Magdalena; de Veer, Michael J; Cholewa, Marian; Egan, Gary F; Thompson, Bruce R

    2017-05-17

    Monitoring of pulmonary physiology is fundamental to the clinical management of patients with Cystic Fibrosis. The current standard clinical practise uses spirometry to assess lung function which delivers a clinically relevant functional readout of total lung function, however does not supply any visible or localised information. High Resolution Computed Tomography (HRCT) is a well-established current 'gold standard' method for monitoring lung anatomical changes in Cystic Fibrosis patients. HRCT provides excellent morphological information, however, the X-ray radiation dose can become significant if multiple scans are required to monitor chronic diseases such as cystic fibrosis. X-ray phase-contrast imaging is another emerging X-ray based methodology for Cystic Fibrosis lung assessment which provides dynamic morphological and functional information, albeit with even higher X-ray doses than HRCT. Magnetic Resonance Imaging (MRI) is a non-ionising radiation imaging method that is garnering growing interest among researchers and clinicians working with Cystic Fibrosis patients. Recent advances in MRI have opened up the possibilities to observe lung function in real time to potentially allow sensitive and accurate assessment of disease progression. The use of hyperpolarized gas or non-contrast enhanced MRI can be tailored to clinical needs. While MRI offers significant promise it still suffers from poor spatial resolution and the development of an objective scoring system especially for ventilation assessment.

  20. [The association of lung cancer and atheromatous arterial disease].

    Science.gov (United States)

    Lamour, A; Azorin, J; Tchandjou Ngoko, L E; Valeyre, D; Morère, F; Destable, M D; de Saint-Florent, G

    1989-01-01

    This work is based on the retrospective study of the case history of 26 patients who were treated between September 1979 and January 1987 in the department of thoracic and vascular surgery at the Avicenne Hospital--and who were all suffering from both lung cancer and atheromatous arterial disease. It is now well established by all the epidemiologic research that the link between lung cancer and atheromatous arterial disease is smoking tobacco. The risks involved in the misunderstanding of such an association are not without danger for the patient, particularly the risk of severe complication of possible coronary or carotid lesions, threatening survival; from this derives the necessity to decide automatically for a minimum of pre-surgery vascular investigations in the case of patients suffering from lung cancer. The therapeutic strategy in this association must be thorough, considering that there are three priorities in the vascular field which must absolutely be treated before the lung itself: --the coronary and carotid lesions which are likely to be complicated cancer after surgery and any state of emergency in the other vascular territories. The fight against tobacco smoking must also be considered as a priority aim.

  1. Cystic fibrosis lung disease: genetic influences, microbial interactions, and radiological assessment

    International Nuclear Information System (INIS)

    Moskowitz, Samuel M.; Gibson, Ronald L.; Effmann, Eric L.

    2005-01-01

    Cystic fibrosis (CF) is a multiorgan disease caused by mutation of the CF transmembrane conductance regulator (CFTR) gene. Obstructive lung disease is the predominant cause of morbidity and mortality; thus, most efforts to improve outcomes are directed toward slowing or halting lung-disease progression. Current therapies, such as mucolytics, airway clearance techniques, bronchodilators, and antibiotics, aim to suppress airway inflammation and the processes that stimulate it, namely, retention and infection of mucus plaques at the airway surface. New approaches to therapy that aim to ameliorate specific CFTR mutations or mutational classes by restoring normal expression or function are being investigated. Because of its sensitivity in detecting changes associated with early airway obstruction and regional lung disease, high-resolution CT (HRCT) complements pulmonary function testing in defining disease natural history and measuring response to both conventional and experimental therapies. In this review, perspectives on the genetics and microbiology of CF provide a context for understanding the increasing importance of HRCT and other imaging techniques in assessing CF therapies. (orig.)

  2. Nutritional state and lung disease in cystic fibrosis.

    Science.gov (United States)

    Bakker, W

    1992-10-01

    The life expectancy of patients with cystic fibrosis (CF) is largely dependent on the severity and progress of the pulmonary involvement associated with the disease. Many data support the view that malnutrition and deterioration of lung function are closely interrelated and interdependent, with each affecting the other, leading to a spiral decline in both. The occurrence of malnutrition appears to be associated with poor lung function and poor survival, and conversely prevention of malnutrition appears to be associated with better lung function and improved survival. Nutritional intervention may lead to an improvement in body weight, lung function and exercise tolerance, provided that the intervention is combined with exercise training in order to increase both respiratory and other muscle mass. These improvements can be preserved when patients have the stamina to continue with a high-energy, high-fat diet and daily exercise training at home.

  3. The lung microbiome in moderate and severe chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Alexa A Pragman

    Full Text Available Chronic obstructive pulmonary disease (COPD is an inflammatory disorder characterized by incompletely reversible airflow obstruction. Bacterial infection of the lower respiratory tract contributes to approximately 50% of COPD exacerbations. Even during periods of stable lung function, the lung harbors a community of bacteria, termed the microbiome. The role of the lung microbiome in the pathogenesis of COPD remains unknown. The COPD lung microbiome, like the healthy lung microbiome, appears to reflect microaspiration of oral microflora. Here we describe the COPD lung microbiome of 22 patients with Moderate or Severe COPD compared to 10 healthy control patients. The composition of the lung microbiomes was determined using 454 pyrosequencing of 16S rDNA found in bronchoalveolar lavage fluid. Sequences were analyzed using mothur, Ribosomal Database Project, Fast UniFrac, and Metastats. Our results showed a significant increase in microbial diversity with the development of COPD. The main phyla in all samples were Actinobacteria, Firmicutes, and Proteobacteria. Principal coordinate analyses demonstrated separation of control and COPD samples, but samples did not cluster based on disease severity. However, samples did cluster based on the use of inhaled corticosteroids and inhaled bronchodilators. Metastats analyses demonstrated an increased abundance of several oral bacteria in COPD samples.

  4. A case of immunoglobulin G-4 related sclerosing disease mimicking lung cancer

    International Nuclear Information System (INIS)

    Kwon, Soo Hee; Lee, Young Kyung; Shim, Mi Suk; Lee, Hyang Im

    2013-01-01

    Immunoglobulin (Ig) G4-related sclerosing disease is a recently described systemic fibro-inflammatory disease associated with an elevated circulating level of IgG4 and extensive IgG4-positive lymphoplasmacytic infiltration, resulting in sclerosing inflammation involving various body organs. We experienced one case where surgery confirmed IgG4-related sclerosing disease as a solitary lung mass mimicking lung cancer. We report radiologic findings including chest computed tomography and positron emission tomography computed tomography, with clinical manifestations of IgG4-related sclerosing disease.

  5. Experimental studies on lung carcinogenesis and their relationship to future research on radiation-induced lung cancer in humans

    International Nuclear Information System (INIS)

    Cross, F.T.

    1991-03-01

    The usefulness of experimental systems for studying human lung carcinogenesis lies in the ease of studying components of a total problem. As an example, the main thrust of attack on possible synergistic interactions between radiation, cigarette smoke, and other irritants must be by means of research on animals. Because animals can be serially sacrificed, a systematic search can be made for progressive lung changes, thereby improving our understanding of carcinogenesis. The mechanisms of radiation-induced carcinogenesis have not yet been delineated, but modern concepts of molecular and cellular biology and of radiation dosimetry are being increasingly applied to both in vivo and in vitro exposure to determine the mechanisms of radiation-induced carcinogenesis, to elucidate human data, and to aid in extrapolating experimental animal data to human exposures. In addition, biologically based mathematical models of carcinogenesis are being developed to describe the nature of the events leading to malignancy; they are also an essential part of a rational approach to quantitative cancer risk assessment. This paper summarizes recent experimental and modeling data on radon-induced lung cancer and includes the confounding effects of cigarette-smoke exposures. The applicability of these data to understanding human exposures is emphasized, and areas of future research on human radiation-induced carcinogenesis are discussed. 7 refs., 2 figs., 3 tabs

  6. Change in lung function in never-smokers with nontuberculous mycobacterial lung disease: A retrospective study

    Directory of Open Access Journals (Sweden)

    Takehiko Kobayashi

    2018-05-01

    Full Text Available Purpose: Never-smokers account for a large proportion of subjects in general population studies on nontuberculous mycobacteria lung disease (NTM-LD. However, the influence of NTM infection on the lung function of never-smokers has not yet been evaluated. The aim of this study was to determine how NTM-LD impairs the lung function in never-smokers, and whether there are an association between successful NTM-LD treatment in radiologic outcomes and improvement in lung function of never-smokers with NTM-LD or not. Methods: We performed a retrospective study of patients (1 who have never smoked during their lifetime; (2 with at least two respiratory specimens from sputum, one bronchial washing sample, or one lung tissue that were culture positive for the same NTM species; and (3 who underwent at least two pulmonary function tests. We enrolled healthy never-smokers as the control group. Results: In 22 never-smokers with NTM-LD, the median forced expiratory volume in 1 s (FEV1 and forced vital capacity (FVC at baseline was lower than those in 9 healthy never-smokers [1800 vs 2080 ml (p = 0.23 and 2230 vs 2620 ml (p = 0.06], respectively. The median change in FEV1 in never-smokers with NTM-LD was lower than that in healthy never-smokers [−70 vs 20 ml per year (p = 0.07, respectively]. On univariate analysis, baseline %-predicted FEV1 in never-smokers with NTM-LD was associated with changes in FVC (p = 0.026 and FEV1 (p = 0.013. Anti-NTM treatment was administered for at least 1 year in 19 patients (86.4%. The relationship between worsening chest CT findings and rapid progressive decline in both FVC (p = 0.66 and FEV1 (p = 0.23 were not significant. Conclusion: Never-smokers with NTM-LD showed lung function decline. There was no association between successful NTM-LD treatment in radiologic outcomes and improvement in lung function of never-smokers. Keywords: Lung function, Never-smoker, Nontuberculous mycobacterial

  7. Urokinase Plasminogen Activator Receptor-Deficient Mice Demonstrate Reduced Hyperoxia-Induced Lung Injury

    NARCIS (Netherlands)

    van Zoelen, Marieke A. D.; Florquin, Sandrine; de Beer, Regina; Pater, Jennie M.; Verstege, Marleen I.; Meijers, Joost C. M.; van der Poll, Tom

    2009-01-01

    Patients with respiratory failure often require supplemental oxygen therapy and mechanical ventilation. Although both supportive measures are necessary to guarantee adequate oxygen uptake, they can also cause or worsen lung inflammation and injury. Hyperoxia-induced lung injury is characterized by

  8. Positive pressure ventilation with the open lung concept optimizes gas exchange and reduces ventilator-induced lung injury in newborn piglets

    NARCIS (Netherlands)

    van Kaam, Anton H.; de Jaegere, Anne; Haitsma, Jack J.; van Aalderen, Wim M.; Kok, Joke H.; Lachmann, Burkhard

    2003-01-01

    Previous studies demonstrated that high-frequency oscillatory ventilation using the open lung concept (OLC resulted in superior gas exchange and a reduction in ventilator-induced lung injury (VILI). We hypothesized that these beneficial effects could also be achieved by applying the OLC during

  9. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F. [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Rando, Roy J. [Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University Health Sciences Center, New Orleans, LA (United States); Pathak, Yashwant V. [College of Pharmacy, University of South Florida, Tampa, FL (United States); Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States)

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.

  10. Sex and smoking sensitive model of radon induced lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovsky, M.; Yarmoshenko, I. [Institute of Industrial Ecology of Ural Branch of Russian Academy of Sciences, Yekaterinburg (Russian Federation)

    2006-07-01

    Radon and radon progeny inhalation exposure are recognized to cause lung cancer. Only strong evidence of radon exposure health effects was results of epidemiological studies among underground miners. Any single epidemiological study among population failed to find reliable lung cancer risk due to indoor radon exposure. Indoor radon induced lung cancer risk models were developed exclusively basing on extrapolation of miners data. Meta analyses of indoor radon and lung cancer case control studies allowed only little improvements in approaches to radon induced lung cancer risk projections. Valuable data on characteristics of indoor radon health effects could be obtained after systematic analysis of pooled data from single residential radon studies. Two such analyses are recently published. Available new and previous data of epidemiological studies of workers and general population exposed to radon and other sources of ionizing radiation allow filling gaps in knowledge of lung cancer association with indoor radon exposure. The model of lung cancer induced by indoor radon exposure is suggested. The key point of this model is the assumption that excess relative risk depends on both sex and smoking habits of individual. This assumption based on data on occupational exposure by radon and plutonium and also on the data on external radiation exposure in Hiroshima and Nagasaki and the data on external exposure in Mayak nuclear facility. For non-corrected data of pooled European and North American studies the increased sensitivity of females to radon exposure is observed. The mean value of ks for non-corrected data obtained from independent source is in very good agreement with the L.S.S. study and Mayak plutonium workers data. Analysis of corrected data of pooled studies showed little influence of sex on E.R.R. value. The most probable cause of such effect is the change of men/women and smokers/nonsmokers ratios in corrected data sets in North American study. More correct

  11. Sex and smoking sensitive model of radon induced lung cancer

    International Nuclear Information System (INIS)

    Zhukovsky, M.; Yarmoshenko, I.

    2006-01-01

    Radon and radon progeny inhalation exposure are recognized to cause lung cancer. Only strong evidence of radon exposure health effects was results of epidemiological studies among underground miners. Any single epidemiological study among population failed to find reliable lung cancer risk due to indoor radon exposure. Indoor radon induced lung cancer risk models were developed exclusively basing on extrapolation of miners data. Meta analyses of indoor radon and lung cancer case control studies allowed only little improvements in approaches to radon induced lung cancer risk projections. Valuable data on characteristics of indoor radon health effects could be obtained after systematic analysis of pooled data from single residential radon studies. Two such analyses are recently published. Available new and previous data of epidemiological studies of workers and general population exposed to radon and other sources of ionizing radiation allow filling gaps in knowledge of lung cancer association with indoor radon exposure. The model of lung cancer induced by indoor radon exposure is suggested. The key point of this model is the assumption that excess relative risk depends on both sex and smoking habits of individual. This assumption based on data on occupational exposure by radon and plutonium and also on the data on external radiation exposure in Hiroshima and Nagasaki and the data on external exposure in Mayak nuclear facility. For non-corrected data of pooled European and North American studies the increased sensitivity of females to radon exposure is observed. The mean value of ks for non-corrected data obtained from independent source is in very good agreement with the L.S.S. study and Mayak plutonium workers data. Analysis of corrected data of pooled studies showed little influence of sex on E.R.R. value. The most probable cause of such effect is the change of men/women and smokers/nonsmokers ratios in corrected data sets in North American study. More correct

  12. Pattern of interstitial lung disease detected by high resolution ...

    African Journals Online (AJOL)

    Background: Diffuse lung diseases constitute a major cause of morbidity and mortality worldwide. High Resolution Computed Tomography (HRCT) is the recommended imaging technique in the diagnosis, assessment and followup of these diseases. Objectives: To describe the pattern of HRCT findings in patients with ...

  13. Intravenous Immunoglobulin Monotherapy for Granulomatous Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency.

    Science.gov (United States)

    Hasegawa, Mizue; Sakai, Fumikazu; Okabayashi, Asako; Sato, Akitoshi; Yokohori, Naoko; Katsura, Hideki; Asano, Chihiro; Kamata, Toshiko; Koh, Eitetsu; Sekine, Yasuo; Hiroshima, Kenzo; Ogura, Takashi; Takemura, Tamiko

    2017-11-01

    Common variable immunodeficiency (CVID) is a heterogeneous subset of immunodeficiency disorders. Recurrent bacterial infection is the main feature of CVID, but various non-infectious complications can occur. A 42-year-old woman presented with cough and abnormal chest X-ray shadows. Laboratory tests showed remarkable hypogammaglobulinemia. Computed tomography revealed multiple consolidation and nodules on the bilateral lung fields, systemic lymphadenopathy, and splenomegaly. A surgical lung biopsy specimen provided the final diagnosis of lymphoproliferative disease in CVID, which was grouped under the term granulomatous lymphocytic interstitial lung disease. Interestingly, the lung lesions of this case resolved immediately after the initiation of intravenous immunoglobulin monotherapy.

  14. Sustained activation of toll-like receptor 9 induces an invasive phenotype in lung fibroblasts: possible implications in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Kirillov, Varvara; Siler, Jonathan T; Ramadass, Mahalakshmi; Ge, Lingyin; Davis, James; Grant, Geraldine; Nathan, Steven D; Jarai, Gabor; Trujillo, Glenda

    2015-04-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by excessive scarring of the lung parenchyma, resulting in a steady decline of lung function and ultimately respiratory failure. The disease course of IPF is extremely variable, with some patients exhibiting stability of symptoms for prolonged periods of time, whereas others exhibit rapid progression and loss of lung function. Viral infections have been implicated in IPF and linked to disease severity; however, whether they directly contribute to progression is unclear. We previously classified patients as rapid and slow progressors on the basis of clinical features and expression of the pathogen recognition receptor, Toll-like receptor 9 (TLR9). Activation of TLR9 in vivo exacerbated IPF in mice and induced differentiation of myofibroblasts in vitro, but the mechanism of TLR9 up-regulation and progression of fibrosis are unknown. Herein, we investigate whether transforming growth factor (TGF)-β, a pleiotropic cytokine central to IPF pathogenesis, regulates TLR9 in lung myofibroblasts. Results showed induction of TLR9 expression by TGF-β in lung myofibroblasts and a distinct profibrotic myofibroblast phenotype driven by stimulation with the TLR9 agonist, CpG-DNA. Chronic TLR9 stimulation resulted in stably differentiated α-smooth muscle actin(+)/platelet-derived growth factor receptor α(+)/CD44(+)/matrix metalloproteinase-14(+)/matrix metalloproteinase-2(+) myofibroblasts, which secrete inflammatory cytokines, invade Matrigel toward platelet-derived growth factor, and resist hypoxia-induced apoptosis. These results suggest a mechanism by which TGF-β and TLR9 responses in myofibroblasts collaborate to drive rapid progression of IPF. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. [Evaluation of angiogenic activity in sera from patients with interstitial lung diseases].

    Science.gov (United States)

    Zielonka, T M; Demkow, U; Kowalski, J; Kuś, J; Krychniak-Soszka, A; Radzikowska, E; Skopińska-Rózewska, E; Rowińska-Zakrzewska, E

    1997-01-01

    Angiogenesis is a process of new blood vessels' formation occurring in many physiological and pathological conditions. Neovascularisation is the principal vascular response in chronic inflammation and concomitant fibrotic process. Microvascular changes in various organ sites in sarcoidosis (BBS) and some of the symptoms of the disease may be related to microangiopathy. Moreover, vascular alterations were also observed in lung specimens from idiopathic pulmonary fibrosis (IPF) and avian fanciers lung (AFL) patients. The present study was aimed at testing the effects of serum from 43 patients with ILD (24 BBS, 8 AFL, 8 IPF, 3 DIPF--drug induced pulmonary fibrosis) and 11 healthy controls on angiogenic capability of normal blood peripheral mononuclear cells (PBMC) in the murine intradermal angiogenesis assay (according to Sidky and Auerbach). The data demonstrated that sera from ILD patients significantly enhanced angiogenic capacity of normal PBMC as compared to control sera (p < 0.001). The effect was more pronounced for AFL patients than for BBS and IPF ones (p < 0.05). Sera from DIPF did not stimulate angiogenesis compared to control sera. The data showed that sera from ILD patients constitute sources of mediators participating in angiogenesis. This phenomenon may play role in pathogenesis of chronic immunological processes in lung.

  16. Interstitial lung disease: Diagnostic accuracy and safety of surgical lung biopsy

    Directory of Open Access Journals (Sweden)

    Miguel Guerra

    2009-05-01

    Full Text Available This study reports our experience, diagnostic accuracy and safety of surgical lung biopsy in patients with interstitial lung diseases. From January 1998 – December 2007 surgical lung biopsy was performed in 53 patients (22 female [41.5%]; age 47.2 ± 13 years. A total of 37 patients (69.8% underwent videothoracoscopic lung biopsy and minithoracotomy was performed in 16 patients (30.2%. Right lung was the choice in 47 patients (88.7%. Postoperative complications were rare (9.4% and included three prolonged air leaks (5.7%, one pneumothorax re-quiring a chest drain (1.9%, and one haemothorax requiring reoperation (1.9%. One patient died of cardiac arrest of unknown cause. Average chest tube duration was 4.4 ± 3 days and average hospital stay 5.4 ± 4 days. Lung biopsy contributed to the diagnosis in 50 patients (94.3%. In conclusion, the potential benefits of diagnostic surgical lung biopsy must be considered against the risks of the procedure especially in patients with severe cardiopulmonary dysfunction. Resumo: Os autores descrevem a sua casuística de biópsias pulmonares cirúrgicas em doentes com doença pulmonar intersticial, de forma a determinar a acuidade diagnóstica, os riscos e a morbimortalidade associados ao procedimento. Entre Janeiro de 1998 e Dezembro de 2007, 53 doentes (idade média de 47,2 ± 13 anos foram referenciados para a realização de biópsia pulmonar cirúrgica, dos quais 22 eram mulheres (41,5%. As biópsias pulmonares foram realizadas quer por videotoracoscopia (37 doentes, 69,8%, quer por minitoracotomia (16 doentes, 30,2%. Foi escolhido o pulmão direito para biopsar em 88,7% dos casos. Registaram-se complicações pós-operatórias em 5 doentes (9,4%: fuga aérea prolongada em 3 doentes (5,7%, persistência de loca de pneumotórax num doente (1,9% e hemorragia com necessidade de revisão de hemostase noutro doente (1,9%. Ocorreu um

  17. Correlation of the acute oxidative stress markers with radiation induced late lung disease response of pneumonitis and/or fibrosis

    International Nuclear Information System (INIS)

    Kunwar, Amit

    2016-01-01

    Biomarkers which predict for the occurrence of radiation-induced lung responses of pneumonitis and/or fibrosis are largely unknown. Herein, we investigated whether markers of oxidative stress and intracellular antioxidants, measured within days of radiation exposure, correlated with the lung tissue injury response occurring weeks later. Inbred strains of mice (KK/HIJ, C57BL/6J, 129S1/SvImJ, C3H/HeJ, A/J, AKR/J, CBA/J, NZW/LacJ) known to differ in their susceptibility to radiation induced pulmonary fibrosis, and to vary in time to onset of respiratory distress post thoracic irradiation (from 10-23 weeks) were studied. Mice were unirradiated (controls) or received whole thorax irradiation (18 Gy) and were euthanized at 6h, 1d, 7d, 8w and upon presentation of respiratory distress. Pulmonary levels of antioxidants superoxide dismutase, catalase, glutathione peroxidase (GPx) and glutathione, and of oxidative damage (reactive oxygen species (ROS), 8-hydroxydeoxyguanosine (8-OHdG) and numbers of γH2AX foci), were assessed

  18. Protective effects of edaravone combined puerarin on inhalation lung injury induced by black gunpowder smog.

    Science.gov (United States)

    Wang, Zhengguan; Li, Ruibing; Liu, Yifan; Liu, Xiaoting; Chen, Wenyan; Xu, Shumin; Guo, Yuni; Duan, Jinyang; Chen, Yihong; Wang, Chengbin

    2015-05-01

    The present study aimed to investigate the combined effects of puerarin with edaravone on inhalation lung injury induced by black gunpowder smog. Male Wistar rats were divided into five groups (control group, edaravone group, puerarin group, edaravone combined with puerarin group and inhalation group). The severity of pulmonary injuries was evaluated after inducing acute lung injury. Arterial blood gas, inflammatory cytokines, biochemical, parameters, cell counting, W/D weight ratio and histopathology were analyzed. Results in lung tissues, either edaravone or puerarin treatment alone showed significant protective effects against neutrophil infiltration and tissue injury, as demonstrated by myeloperoxidase activity and histopathological analysis (all pedaravone and puerarin demonstrated additive protective effects on smog-induced lung injury, compared with single treatment. Combination of edaravone and puerarin shows promise as a new treatment option for acute lung injury/acute respiratory distress syndrome patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Plasma 25-hydroxyvitamin D, lung function and risk of chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Afzal, Shoaib; Lange, Peter; Bojesen, Stig Egil

    2014-01-01

    25-hydroxyvitamin D (25(OH)D) may be associated with lung function through modulation of pulmonary protease-antiprotease imbalance, airway inflammation, lung remodelling and oxidative stress. We examined the association of plasma 25(OH)D levels with lung function, lung function decline and risk o...... of chronic obstructive pulmonary disease (COPD).......25-hydroxyvitamin D (25(OH)D) may be associated with lung function through modulation of pulmonary protease-antiprotease imbalance, airway inflammation, lung remodelling and oxidative stress. We examined the association of plasma 25(OH)D levels with lung function, lung function decline and risk...

  20. Sodium butyrate protects against severe burn-induced remote acute lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xun Liang

    Full Text Available High-mobility group box 1 protein (HMGB1, a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI. Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague-Dawley rats were divided into three groups: 1 sham group, sham burn treatment; 2 burn group, third-degree burns over 30% total body surface area (TBSA with lactated Ringer's solution for resuscitation; 3 burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer's solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D ratio. Tumor necrosis factor (TNF-α and interleukin (IL-8 protein concentrations in bronchoalveolar lavage fluid (BALF and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO activity and malondialdehyde (MDA concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1

  1. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice.

    Science.gov (United States)

    Zhang, Zhengping; Luo, Zhaowen; Bi, Aijing; Yang, Weidong; An, Wenji; Dong, Xiaoliang; Chen, Rong; Yang, Shibao; Tang, Huifang; Han, Xiaodong; Luo, Lan

    2017-09-15

    Acute lung injury (ALI) represents an unmet medical need with an urgency to develop effective pharmacotherapies. Compound edaravone, a combination of edaravone and borneol, has been developed for treatment of ischemia stroke in clinical phase III study. The purpose of the present study is to investigate the anti-inflammatory effect of compound edaravone on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and the therapeutic efficacy on LPS-induced ALI in mice. Edaravone and compound edaravone concentration-dependently decreased LPS-induced interleukin-6 (IL-6) production and cyclooxygenase-2 (COX-2) expression in RAW264.7 cells. The efficiency of compound edaravone was stronger than edaravone alone. In the animal study, compound edaravone was injected intravenously to mice after intratracheal instillation of LPS. It remarkably alleviated LPS-induced lung injury including pulmonary histological abnormalities, polymorphonuclear leukocyte (PMN) infiltration and extravasation. Further study demonstrated that compound edaravone suppressed LPS-induced TNF-α and IL-6 increase in mouse serum and bronchoalveolar lavage (BAL) fluid, and inhibited LPS-induced nuclear factor-κB (NF-κB) activation and COX-2 expression in mice lung tissues. Importantly, our findings demonstrated that the compound edaravone showed a stronger protective effect against mouse ALI than edaravone alone, which suggested the synergies between edaravone and borneol. In conclusion, compound edaravone could be a potential novel therapeutic drug for ALI treatment and borneol might produce a synergism with edaravone. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Indoline-3-propionate and 3-aminopropyl carbamates reduce lung injury and pro-inflammatory cytokines induced in mice by LPS.

    Science.gov (United States)

    Finkin-Groner, E; Moradov, D; Shifrin, H; Bejar, C; Nudelman, A; Weinstock, M

    2015-02-01

    In the search for safer and effective anti-inflammatory agents, we investigated the effect of methyl indoline-3-propionate and indoline-3-(3-aminopropyl) carbamates on LPS-induced lung injury and pro-inflammatory cytokines in mice. Their mechanism of action was determined in murine peritoneal macrophages. Lung injury was induced by intratracheal infusion of LPS and assessed by the change in lung weight and structure by light microscopy after staining by haematoxylin and eosin. In LPS-activated macrophages, MAPK proteins and IκBα were measured by Western blotting and the transcription factors, AP-1 and NF-κB by electromobility shift assay. Cytokines in the plasma and spleen of mice injected with LPS were measured by elisa-based assay. AN917 and AN680 (1-10 pM) decreased TNF-α protein in macrophages by inhibiting phosphorylation of p38 MAPK, IκBα degradation and activation of AP-1 and NF-κB without affecting cell viability. In vivo, these compounds (10 μmol · kg(-1)) markedly decreased lung injury induced by LPS and the elevation of TNF-α and IL-6 in lung, plasma and spleen. Activation of α-7nACh receptors contributed to the reduction of TNF-α by AN917, which inhibited AChE in the spleen by 35%. Indoline carbamates are potent inhibitors of pro-inflammatory mediators in murine macrophages and in mice injected with LPS, acting via the p38 MAPK, AP-1 and NF-κB cascades. Indirect α-7nACh receptor activation by AN917, through inhibition of AChE, contributes to its anti-inflammatory effect. Indoline carbamates may have therapeutic potential for lung injury and other diseases associated with chronic inflammation without causing immunosuppression. © 2014 The British Pharmacological Society.

  3. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures

    International Nuclear Information System (INIS)

    Proctor, Deborah M.; Suh, Mina; Campleman, Sharan L.; Thompson, Chad M.

    2014-01-01

    Highlights: • No published or well recognized MOA for Cr(VI)-induced lung tumors exists. • MOA analysis for Cr(VI)-induced lung cancer was conducted to inform risk assessment. • Cr(VI) epidemiologic, toxicokinetic, toxicological, mechanistic data were evaluated. • Weight of evidence does not support a mutagenic MOA for Cr(VI)-induced lung cancer. • Non-linear approaches should be considered for evaluating Cr(VI) lung cancer risk. - Abstract: Inhalation of hexavalent chromium [Cr(VI)] is associated with increased lung cancer risk among workers in several industries, most notably chromate production workers exposed to high concentrations of Cr(VI) (≥100 μg/m 3 ), for which clear exposure–response relationships and respiratory irritation and tissue damage have been reported. Data from this industry are used to assess lung cancer risk associated with environmental and current occupational exposures, occurring at concentrations that are significantly lower. There is considerable uncertainty in the low dose extrapolation of historical occupational epidemiology data to assess risk at current exposures because no published or well recognized mode of action (MOA) for Cr(VI)-induced lung tumors exists. We conducted a MOA analysis for Cr(VI)-induced lung cancer evaluating toxicokinetic and toxicological data in humans and rodents and mechanistic data to assess plausibility, dose–response, and temporal concordance for potential MOAs. Toxicokinetic data support that extracellular reduction of Cr(VI), which limits intracellular absorption of Cr(VI) and Cr(VI)-induced toxicity, can be overwhelmed at high exposure levels. In vivo genotoxicity and mutagenicity data are mostly negative and do not support a mutagenic MOA. Further, both chronic bioassays and the epidemiologic literature support that lung cancer occurs at exposures that cause tissue damage. Based on this MOA analysis, the overall weight of evidence supports a MOA involving deposition and accumulation

  4. Classical patterns of interstitial lung diseases

    International Nuclear Information System (INIS)

    Mueller-Mang, C.

    2014-01-01

    High resolution computed tomography (HRCT) is the most important non-invasive tool in the diagnostics and follow-up of patients with interstitial lung disease (ILD). A systematic review of the HRCT patterns of ILD was carried out and the most relevant differential diagnoses are discussed in order to provide a road map for the general radiologist to successfully navigate the complex field of ILD. Using HRCT four basic patterns of ILD can be identified: linear and reticular patterns, the nodular pattern, the high attenuation and low attenuation patterns. These patterns can be further differentiated according to their localization within the secondary pulmonary lobule (SPL), e.g. centrilobular or perilymphatic and their distribution within the lungs (e.g. upper or lower lobe predominance). Relevant clinical data, such as smoking history and course of the disease provide useful additional information in the diagnosis of ILD. On the basis of the pattern and anatomical distribution on HRCT, an accurate diagnosis can be achieved in some cases of ILD; however, due to morphological and clinical overlap the final diagnosis of many ILDs requires close cooperation between clinicians, radiologists and pathologists. (orig.) [de

  5. Trace metals in fluids lining the respiratory system of patients with idiopathic pulmonary fibrosis and diffuse lung diseases.

    Science.gov (United States)

    Bargagli, Elena; Lavorini, Federico; Pistolesi, Massimo; Rosi, Elisabetta; Prasse, Antje; Rota, Emilia; Voltolini, Luca

    2017-07-01

    Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with a poor prognosis and an undefined etiopathogenesis. Oxidative stress contributes to alveolar injury and fibrosis development and, because transition metals are essential to the functioning of most proteins involved in redox reactions, a better knowledge of metal concentrations and metabolism in the respiratory system of IPF patients may provide a valuable complementary approach to prevent and manage a disease which is often misdiagnosed or diagnosed in later stages. The present review summarizes and discusses literature data on the elemental composition of bronchoalveolar lavage (BAL), induced sputum and exhaled breath condensate (EBC) from patients affected by IPF and healthy subjects. Available data are scanty and the lack of consistent methods for the collection and analysis of lung and airways lining fluids makes it difficult to compare the results of different studies. However, the elemental composition of BAL samples from IPF patients seems to have a specific profile that can be distinguished from that of patients with other interstitial lung diseases (ILD) or control subjects. Suggestions are given towards standard sampling and analytical procedures of BAL samples, in the aim to assess typical element concentration patterns and their potential role as biomarkers of IPF. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Lung cancer in Hodgkin's disease: association with previous radiotherapy

    International Nuclear Information System (INIS)

    List, A.F.; Doll, D.C.; Greco, F.A.

    1985-01-01

    Seven cases of lung cancer were observed in patients with Hodgkin's disease (HD) since 1970. The risk ratio for the development of lung cancer among HD patients was 5.6 times that expected in the general population. The pertinent clinical data from these patients are described and compared to 28 additional patients reported from other institutions. Small-cell lung cancer represented the predominant histologic type of lung cancer encountered in both smoking and nonsmoking patients with HD, accounting for 42% of cases overall and greater than 55% of cases reported in reviews of second malignancies. Tobacco use was noted in only 53% of patients. Twenty-eight (94%) of 30 patients developing metachronous lung cancer received supradiaphragmatic irradiation as primary therapy for HD. Nineteen (68%) of these patients received subsequent chemotherapy salvage. The median age at diagnosis of HD and lung cancer was 39 and 45 years, respectively. The interval between diagnosis of HD and metachronous lung cancer averaged seven years but appeared to vary inversely with age. HD patients treated with supradiaphragmatic irradiation or combined modality therapy may be at increased risk for developing lung cancer. The high frequency of in-field malignancies that the authors observed and the prevalence of small-cell lung cancer in both smoking and nonsmoking patients suggests that chest irradiation may influence the development of metachronous lung cancer in these patients. The finding of a mean latent interval in excess of seven years emphasizes the need for close long-term observation

  7. Interstitial Lung Disease

    Science.gov (United States)

    ... propranolol (Inderal, Innopran), may harm lung tissue. Some antibiotics. Nitrofurantoin (Macrobid, Macrodantin, others) and ethambutol (Myambutol) can cause lung damage. Anti-inflammatory drugs. Certain anti-inflammatory drugs, such as rituximab ( ...

  8. Erythropoietin Pretreatment Attenuates Seawater Aspiration-Induced Acute Lung Injury in Rats.

    Science.gov (United States)

    Ji, Mu-Huo; Tong, Jian-Hua; Tan, Yuan-Hui; Cao, Zhen-Yu; Ou, Cong-Yang; Li, Wei-Yan; Yang, Jian-Jun; Peng, Y G; Zhu, Si-Hai

    2016-02-01

    Seawater drowning-induced acute lung injury (ALI) is a serious clinical condition characterized by increased alveolar-capillary permeability, excessive inflammatory responses, and refractory hypoxemia. However, current therapeutic options are largely supportive; thus, it is of great interest to search for alternative agents to treat seawater aspiration-induced ALI. Erythropoietin (EPO) is a multifunctional agent with antiinflammatory, antioxidative, and antiapoptotic properties. However, the effects of EPO on seawater aspiration-induced ALI remain unclear. In the present study, male rats were randomly assigned to the naive group, normal saline group, seawater group, or seawater + EPO group. EPO was administered intraperitoneally at 48 and 24 h before seawater aspiration. Arterial blood gas analysis was performed with a gas analyzer at baseline, 30 min, 1 h, 4 h, and 24 h after seawater aspiration, respectively. Histological scores, computed tomography scan, nuclear factor kappa B p65, inducible nitric oxide synthase, caspase-3, tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, IL-10, wet-to-dry weight ratio, myeloperoxidase activity, malondialdehyde, and superoxide dismutase in the lung were determined 30 min after seawater aspiration. Our results showed that EPO pretreatment alleviated seawater aspiration-induced ALI, as indicated by increased arterial partial oxygen tension and decreased lung histological scores. Furthermore, EPO pretreatment attenuated seawater aspiration-induced increase in the expressions of pulmonary nuclear factor kappa B p65, inducible nitric oxide synthase, caspase-3, tumor necrosis factor-alpha, IL-1β, myeloperoxidase activity, and malondialdehyde when compared with the seawater group. Collectively, our study suggested that EPO pretreatment attenuates seawater aspiration-induced ALI by down-regulation of pulmonary pro-inflammatory cytokines, oxidative stress, and apoptosis.

  9. Methimazole-induced hypothyroidism causes cellular damage in the spleen, heart, liver, lung and kidney.

    Science.gov (United States)

    Cano-Europa, Edgar; Blas-Valdivia, Vanessa; Franco-Colin, Margarita; Gallardo-Casas, Carlos Angel; Ortiz-Butrón, Rocio

    2011-01-01

    It is known that a hypothyroidism-induced hypometabolic state protects against oxidative damage caused by toxins. However, some workers demonstrated that antithyroid drug-induced hypothyroidism can cause cellular damage. Our objective was to determine if methimazole (an antithyroid drug) or hypothyroidism causes cellular damage in the liver, kidney, lung, spleen and heart. Twenty-five male Wistar rats were divided into 5 groups: euthyroid, false thyroidectomy, thyroidectomy-induced hypothyroidism, methimazole-induced hypothyroidism (60 mg/kg), and treatment with methimazole (60 mg/kg) and a T₄ injection (20 μg/kg/d sc). At the end of the treatments (4 weeks for the pharmacological groups and 8 weeks for the surgical groups), the animals were anesthetized with sodium pentobarbital and they were transcardially perfused with 10% formaldehyde. The spleen, heart, liver, lung and kidney were removed and were processed for embedding in paraffin wax. Coronal sections were stained with hematoxylin-eosin. At the end of treatment, animals with both the methimazole- and thyroidectomy-induced hypothyroidism had a significant reduction of serum concentration of thyroid hormones. Only methimazole-induced hypothyroidism causes cellular damage in the kidney, lung, liver, heart, kidney and spleen. In addition, animals treated with methimazole and T₄ showed cellular damage in the lung, spleen and renal medulla with lesser damage in the liver, renal cortex and heart. The thyroidectomy only altered the lung structure. The alterations were prevented by T₄ completely in the heart and partially in the kidney cortex. These results indicate that tissue damage found in hypothyroidism is caused by methimazole. Copyright © 2009 Elsevier GmbH. All rights reserved.

  10. Long term radiological features of radiation-induced lung damage.

    Science.gov (United States)

    Veiga, Catarina; Landau, David; McClelland, Jamie R; Ledermann, Jonathan A; Hawkes, David; Janes, Sam M; Devaraj, Anand

    2018-02-01

    To describe the radiological findings of radiation-induced lung damage (RILD) present on CT imaging of lung cancer patients 12 months after radical chemoradiation. Baseline and 12-month CT scans of 33 patients were reviewed from a phase I/II clinical trial of isotoxic chemoradiation (IDEAL CRT). CT findings were scored in three categories derived from eleven sub-categories: (1) parenchymal change, defined as the presence of consolidation, ground-glass opacities (GGOs), traction bronchiectasis and/or reticulation; (2) lung volume reduction, identified through reduction in lung height and/or distortions in fissures, diaphragm, anterior junction line and major airways anatomy, and (3) pleural changes, either thickening and/or effusion. Six patients were excluded from the analysis due to anatomical changes caused by partial lung collapse and abscess. All remaining 27 patients had radiological evidence of lung damage. The three categories, parenchymal change, shrinkage and pleural change were present in 100%, 96% and 82% respectively. All patients had at least two categories of change present and 72% all three. GGOs, reticulation and traction bronchiectasis were present in 44%, 52% and 37% of patients. Parenchymal change, lung shrinkage and pleural change are present in a high proportion of patients and are frequently identified in RILD. GGOs, reticulation and traction bronchiectasis are common at 12 months but not diagnostic. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung.

    Science.gov (United States)

    Hwang, Ji Young; Randall, Troy D; Silva-Sanchez, Aaron

    2016-01-01

    Following pulmonary inflammation, leukocytes that infiltrate the lung often assemble into structures known as inducible Bronchus-Associated Lymphoid Tissue (iBALT). Like conventional lymphoid organs, areas of iBALT have segregated B and T cell areas, specialized stromal cells, high endothelial venules, and lymphatic vessels. After inflammation is resolved, iBALT is maintained for months, independently of inflammation. Once iBALT is formed, it participates in immune responses to pulmonary antigens, including those that are unrelated to the iBALT-initiating antigen, and often alters the clinical course of disease. However, the mechanisms that govern immune responses in iBALT and determine how iBALT impacts local and systemic immunity are poorly understood. Here, we review our current understanding of iBALT formation and discuss how iBALT participates in pulmonary immunity.

  12. Hesperidin as radioprotector against radiation-induced lung damage in rat: A histopathological study

    Directory of Open Access Journals (Sweden)

    Gholam Hassan Haddadi

    2017-01-01

    Full Text Available Reactive oxygen species (ROS are generated by ionizing radiation, and one of the organs commonly affected by ROS is the lung. Radiation-induced lung injury including pneumonia and lung fibrosis is a dose-limiting factor in radiotherapy (RT of patients with thorax irradiation. Administration of antioxidants has been proved to protect against ROS. The present study was aimed to assess the protective effect of hesperidin (HES against radiation-induced lung injury of male rats. Fifty rats were divided into three groups. G1: Received no HES and radiation (sham. G2: Underwent γ-irradiation to the thorax. G3: Received HES and underwent γ-irradiation. The rats were exposed to a single dose of 18 Gy using cobalt-60 unit and were administered HES (100 mg/kg for 7 days before irradiation. Histopathological analysis was performed 24 h and 8 weeks after RT. Histopathological results in 24 h showed radiation-induced inflammation and presence of more inflammatory cells as compared to G1 (P < 0.05. Administration of HES significantly decreased such an effect when compared to G2 (P < 0.05. Histopathological evaluation in 8 weeks showed a significant increase in mast cells, inflammation, inflammatory cells, alveolar thickness, vascular thickness, pulmonary edema, and fibrosis in G2 when compared to G1 (P < 0.05. HES significantly decreased inflammatory response, fibrosis, and mast cells when compared to G2 (P < 0.05. Administration of HES resulted in decreased radiation pneumonitis and radiation fibrosis in the lung tissue. Thus, the present study showed HES to be an efficient radioprotector against radiation-induced damage in the lung of tissue rats.

  13. Diagnosis of thromboembolic disease: combined ventilation perfusion lung scan and compression ultrasonography

    International Nuclear Information System (INIS)

    Dadparvar, S.; Woods, K.; Magno, R.M.; Sabatino, J. C.; Patil, S.; Dou, Y.

    2002-01-01

    The clinical management of pulmonary embolism and deep venous thrombosis of the legs are similar and require prolonged anticoagulation therapy. The standard diagnostic approach in patients suspected of pulmonary embolism is ventilation-perfusion (V/Q) lung scan and compression ultrasonography to detect deep venous thrombosis. This retrospective study analyzed the role of V Q lung scan and compression ultrasonography in detection of thromboembolic disease. One hundred-twenty consecutive patients (65 female, 55 male) age range 18-95 (mean age 60.7) suspected for pulmonary embolism underwent concomitant V/Q lung scan and compression ultrasonography of the lower extremities. The clinical and radiographic correlation was performed. Of patients with non-diagnostic (low or intermediate probability ) lung scans, 15.4 % (14/91) received anticoagulation therapy for pulmonary embolism. This patients had either high pre-clinical suspicion for PE or underwent pulmonary arterio gram. However, there was an additional 7 % (7/91) increase in the number of patients who received anticoagulation therapy based on the results of ultrasound with confidence interval (3 %-16 %). We conclude that V/Q lung scan is a more sensitive examination for thromboembolic disease, and has a high negative predictive value. Ultrasonography of lower extremities demonstrated higher specificity and positive value. Among patients with non-diagnostic lung scan, the detection rate of thromboembolic disease is improved with addition of ultrasound

  14. Caveolin-1 sensitizes cisplatin-induced lung cancer cell apoptosis via superoxide anion-dependent mechanism.

    Science.gov (United States)

    Pongjit, Kanittha; Chanvorachote, Pithi

    2011-12-01

    Caveolin-1 (Cav-1) expression frequently found in lung cancer was linked with disease prognosis and progression. This study reveals for the first time that Cav-1 sensitizes cisplatin-induced lung carcinoma cell death by the mechanism involving oxidative stress modulation. We established stable Cav-1 overexpressed (H460/Cav-1) cells and investigated their cisplatin susceptibility in comparison with control-transfected cells and found that Cav-1 expression significantly enhanced cisplatin-mediated cell death. Results indicated that the different response to cisplatin between these cells was resulted from different level of superoxide anion induced by cisplatin. Inhibitory study revealed that superoxide anion inhibitor MnTBAP could inhibit cisplatin-mediated toxicity only in H460/Cav-1 cells while had no effect on H460 cells. Further, superoxide anion detected by DHE probe indicated that H460/Cav-1 cells generated significantly higher superoxide anion level in response to cisplatin than that of control cells. The role of Cav-1 in regulating cisplatin sensitivity was confirmed in shRNA-mediated Cav-1 down-regulated (H460/shCav-1) cells and the cells exhibited decreased cisplatin susceptibility and superoxide generation. In summary, these findings reveal novel aspects regarding role of Cav-1 in modulating oxidative stress induced by cisplatin, possibly providing new insights for cancer biology and cisplatin-based chemotherapy.

  15. Nicotine prevents the apoptosis induced by menadione in human lung cancer cells

    International Nuclear Information System (INIS)

    Zhang Tao; Lu Heng; Shang Xuan; Tian Yihao; Zheng Congyi; Wang Shiwen; Cheng Hanhua; Zhou Rongjia

    2006-01-01

    Approximately 50% of long-term cigarette smokers die prematurely from the adverse effects of smoking, including on lung cancer and other illnesses. Nicotine is a main component in tobacco and has been implicated as a potential factor in the pathogenesis of human lung cancer. However, the mechanism of nicotine action in the development of lung cancer remains largely unknown. In the present study, we designed a nicotine-apoptosis system, by pre-treatment of nicotine making lung cancer cell A549 to be in a physiological nicotine environment, and observed that nicotine promoted cell proliferation and prevented the menadione-induced apoptosis, and exerts its role of anti-apoptosis by shift of apoptotic stage induced by menadione from late apoptotic stage to early apoptotic stage, in which NF-κB was up-regulated. Interference analysis of NF-κB in A549 cells showed that knock down of NF-κB resulted in apoptosis promotion and counteracted the protective effect of nicotine. The findings suggest that nicotine has potential effect in lung cancer genesis, especially in patients with undetectable early tumor development and development of specific NF-κB inhibitors would represent a potentially exciting new pharmacotherapy for tobacco-related lung cancer

  16. Riboflavin attenuates lipopolysaccharide-induced lung injury in rats.

    Science.gov (United States)

    Al-Harbi, Naif O; Imam, Faisal; Nadeem, Ahmed; Al-Harbi, Mohammed M; Korashy, Hesham M; Sayed-Ahmed, Mohammed M; Hafez, Mohamed M; Al-Shabanah, Othman A; Nagi, Mahmoud N; Bahashwan, Saleh

    2015-01-01

    Riboflavin (vitamin B2) is an easily absorbed micronutrient with a key role in maintaining health in humans and animals. It is the central component of the cofactors flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) and is therefore required by all flavoproteins. Riboflavin also works as an antioxidant by scavenging free radicals. The present study was designed to evaluate the effects of riboflavin against acute lungs injury induced by the administration of a single intranasal dose (20 μg/rat) of lipopolysaccharides (LPS) in experimental rats. Administration of LPS resulted in marked increase in malondialdehyde (MDA) level (p riboflavin in a dose-dependent manner (30 and 100 mg/kg, respectively). Riboflavin (100 mg/kg, p.o.) showed similar protective effects as dexamethasone (1 mg/kg, p.o.). Administration of LPS showed marked cellular changes including interstitial edema, hemorrhage, infiltration of PMNs, etc., which were reversed by riboflavin administration. Histopathological examinations showed normal morphological structures of lungs tissue in the control group. These biochemical and histopathological examination were appended with iNOS and CAT gene expression. The iNOS mRNA expression was increased significantly (p riboflavin significantly (p riboflavin caused a protective effect against LPS-induced ALI. These results suggest that riboflavin may be used to protect against toxic effect of LPS in lungs.

  17. Myofibroblasts in interstitial lung diseases show diverse electron microscopic and invasive features.

    Science.gov (United States)

    Karvonen, Henna M; Lehtonen, Siri T; Sormunen, Raija T; Harju, Terttu H; Lappi-Blanco, Elisa; Bloigu, Risto S; Kaarteenaho, Riitta L

    2012-09-01

    The characteristic features of myofibroblasts in various lung disorders are poorly understood. We have evaluated the ultrastructure and invasive capacities of myofibroblasts cultured from small volumes of diagnostic bronchoalveolar lavage (BAL) fluid samples from patients with different types of lung diseases. Cells were cultured from samples of BAL fluid collected from 51 patients that had undergone bronchoscopy and BAL for diagnostic purposes. The cells were visualized by transmission electron microscopy and immunoelectron microscopy to achieve ultrastructural localization of alpha-smooth muscle actin (α-SMA) and fibronectin. The levels of α-SMA protein and mRNA and fibronectin mRNA were measured by western blot and quantitative real-time reverse transcriptase polymerase chain reaction. The invasive capacities of the cells were evaluated. The cultured cells were either fibroblasts or myofibroblasts. The structure of the fibronexus, and the amounts of intracellular actin, extracellular fibronectin and cell junctions of myofibroblasts varied in different diseases. In electron and immunoelectron microscopy, cells cultured from interstitial lung diseases (ILDs) expressed more actin filaments and α-SMA than normal lung. The invasive capacity of the cells obtained from patients with idiopathic pulmonary fibrosis was higher than that from patients with other type of ILDs. Cells expressing more actin filaments had a higher invasion capacity. It is concluded that electron and immunoelectron microscopic studies of myofibroblasts can reveal differential features in various diseases. An analysis of myofibroblasts cultured from diagnostic BAL fluid samples may represent a new kind of tool for diagnostics and research into lung diseases.

  18. Pathway reconstruction of airway remodeling in chronic lung diseases: a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Ali Najafi

    Full Text Available Airway remodeling is a pathophysiologic process at the clinical, cellular, and molecular level relating to chronic obstructive airway diseases such as chronic obstructive pulmonary disease (COPD, asthma and mustard lung. These diseases are associated with the dysregulation of multiple molecular pathways in the airway cells. Little progress has so far been made in discovering the molecular causes of complex disease in a holistic systems manner. Therefore, pathway and network reconstruction is an essential part of a systems biology approach to solve this challenging problem. In this paper, multiple data sources were used to construct the molecular process of airway remodeling pathway in mustard lung as a model of airway disease. We first compiled a master list of genes that change with airway remodeling in the mustard lung disease and then reconstructed the pathway by generating and merging the protein-protein interaction and the gene regulatory networks. Experimental observations and literature mining were used to identify and validate the master list. The outcome of this paper can provide valuable information about closely related chronic obstructive airway diseases which are of great importance for biologists and their future research. Reconstructing the airway remodeling interactome provides a starting point and reference for the future experimental study of mustard lung, and further analysis and development of these maps will be critical to understanding airway diseases in patients.

  19. Xanthohumol ameliorates lipopolysaccharide (LPS-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis

    Directory of Open Access Journals (Sweden)

    Hongming Lv

    2017-08-01

    Full Text Available Abundant natural flavonoids can induce nuclear factor-erythroid 2 related factor 2 (Nrf2 and/or AMP-activated protein kinase (AMPK activation, which play crucial roles in the amelioration of various inflammation- and oxidative stress-induced diseases, including acute lung injury (ALI. Xanthohumol (Xn, a principal prenylflavonoid, possesses anti-inflammation and anti-oxidant activities. However, whether Xn could protect from LPS-induced ALI through inducing AMPK/Nrf2 activation and its downstream signals, are still poorly elucidated. Accordingly, we focused on exploring the protective effect of Xn in the context of ALI and the involvement of underlying molecular mechanisms. Our findings indicated that Xn effectively alleviated lung injury by reduction of lung W/D ratio and protein levels, neutrophil infiltration, MDA and MPO formation, and SOD and GSH depletion. Meanwhile, Xn significantly lessened histopathological changes, reactive oxygen species (ROS generation, several cytokines secretion, and iNOS and HMGB1 expression, and inhibited Txnip/NLRP3 inflammasome and NF-κB signaling pathway activation. Additionally, Xn evidently decreased t-BHP-stimulated cell apoptosis, ROS generation and GSH depletion but increased various anti-oxidative enzymes expression regulated by Keap1-Nrf2/ARE activation, which may be associated with AMPK and GSK3β phosphorylation. However, Xn-mediated inflammatory cytokines and ROS production, histopathological changes, Txnip/NLRP3 inflammasome and NF-κB signaling pathway in WT mice were remarkably abrogated in Nrf2-/- mice. Our experimental results firstly provided a support that Xn effectively protected LPS-induced ALI against oxidative stress and inflammation damage which are largely dependent upon upregulation of the Nrf2 pathway via activation of AMPK/GSK3β, thereby suppressing LPS-activated Txnip/NLRP3 inflammasome and NF-κB signaling pathway. Keywords: Xanthohumol, Acute lung injury, Oxidative stress

  20. Elemental analysis of occupational and environmental lung diseases by electron probe microanalyzer with wavelength dispersive spectrometer.

    Science.gov (United States)

    Takada, Toshinori; Moriyama, Hiroshi; Suzuki, Eiichi

    2014-01-01

    Occupational and environmental lung diseases are a group of pulmonary disorders caused by inhalation of harmful particles, mists, vapors or gases. Mineralogical analysis is not generally required in the diagnosis of most cases of these diseases. Apart from minerals that are encountered rarely or only in specific occupations, small quantities of mineral dusts are present in the healthy lung. As such when mineralogical analysis is required, quantitative or semi-quantitative methods must be employed. An electron probe microanalyzer with wavelength dispersive spectrometer (EPMA-WDS) enables analysis of human lung tissue for deposits of elements by both qualitative and semi-quantitative methods. Since 1993, we have analyzed 162 cases of suspected occupational and environmental lung diseases using an EPMA-WDS. Our institute has been accepting online requests for elemental analysis of lung tissue samples by EPMA-WDS since January 2011. Hard metal lung disease is an occupational interstitial lung disease that primarily affects workers exposed to the dust of tungsten carbide. The characteristic pathological findings of the disease are giant cell interstitial pneumonia (GIP) with centrilobular fibrosis, surrounded by mild alveolitis with giant cells within the alveolar space. EPMA-WDS analysis of biopsied lung tissue from patients with GIP has demonstrated that tungsten and/or cobalt is distributed in the giant cells and centrilobular fibrosing lesion in GIP. Pneumoconiosis, caused by amorphous silica, and acute interstitial pneumonia, associated with the giant tsunami, were also elementally analyzed by EPMA-WDS. The results suggest that commonly found elements, such as silicon, aluminum, and iron, may cause occupational and environmental lung diseases. Copyright © 2013 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  1. Left-sided breast cancer and risks of secondary lung cancer and ischemic heart disease. Effects of modern radiotherapy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Stefanie; Ballhausen, Hendrik; Weingandt, Helmut; Freislederer, Philipp; Schoenecker, Stephan; Niyazi, Maximilian; Belka, Claus [University Hospital, LMU Munich, Department of Radiation Oncology, Munich (Germany); Simonetto, Cristoforo; Eidemueller, Markus [Helmholtz Zentrum Muenchen, Institute of Radiation Protection, Neuherberg (Germany); Ganswindt, Ute [University Hospital, LMU Munich, Department of Radiation Oncology, Munich (Germany); Medical University, Department of Radiation Oncology, Innsbruck (Austria)

    2018-03-15

    Modern breast cancer radiotherapy techniques, such as respiratory-gated radiotherapy in deep-inspiration breath-hold (DIBH) or volumetric-modulated arc radiotherapy (VMAT) have been shown to reduce the high dose exposure of the heart in left-sided breast cancer. The aim of the present study was to comparatively estimate the excess relative and absolute risks of radiation-induced secondary lung cancer and ischemic heart disease for different modern radiotherapy techniques. Four different treatment plans were generated for ten computed tomography data sets of patients with left-sided breast cancer, using either three-dimensional conformal radiotherapy (3D-CRT) or VMAT, in free-breathing (FB) or DIBH. Dose-volume histograms were used for organ equivalent dose (OED) calculations using linear, linear-exponential, and plateau models for the lung. A linear model was applied to estimate the long-term risk of ischemic heart disease as motivated by epidemiologic data. Excess relative risk (ERR) and 10-year excess absolute risk (EAR) for radiation-induced secondary lung cancer and ischemic heart disease were estimated for different representative baseline risks. The DIBH maneuver resulted in a significant reduction of the ERR and estimated 10-year excess absolute risk for major coronary events compared to FB in 3D-CRT plans (p = 0.04). In VMAT plans, the mean predicted risk reduction through DIBH was less pronounced and not statistically significant (p = 0.44). The risk of radiation-induced secondary lung cancer was mainly influenced by the radiotherapy technique, with no beneficial effect through DIBH. VMAT plans correlated with an increase in 10-year EAR for radiation-induced lung cancer as compared to 3D-CRT plans (DIBH p = 0.007; FB p = 0.005, respectively). However, the EARs were affected more strongly by nonradiation-associated risk factors, such as smoking, as compared to the choice of treatment technique. The results indicate that 3D-CRT plans in DIBH pose the lowest

  2. Delayed lung scintigraphy with N-isopropyl-I-123-p-iodoamphetamine in lung cancer and inflammatory disease

    Energy Technology Data Exchange (ETDEWEB)

    Suematsu, Toru; Narabayashi, Isamu; Takada, Yoshiki and others

    1989-01-01

    Lung studies with N-Isopropyl-I-123-p-Iodoamphetamine (IMP) were performed on patients with lung cancer or inflammatory disease. In the present study, we evaluated the usefulness of the delayed scintigraphy. The subjects consisted of 27 patients with lung cancer (34 lesions), 3 with radiation pneumonitis, 2 with interstitial pneumonitis, 2 with old tuberculous lesion (tuberculomas), 1 with diffuse panbronchiolitis, 1 with pneumonia and 1 with lung abscess. The delayed scintigraphy was performed 24 hr after intravenous injection of 3 mCi IMP, in sitting position. In 10 patients, SPECT images were obtained following the delayed scintigraphy. Delayed scintigraphic appearances of lung cancer were classified into 5 types, high IMP uptake in the area congruent with the lesion of atelectasis and/or obstructive pneumonia (Type I), high IMP uptake in the area surrounded the tumor (Type II), a defect in the area consistent with the tumor and no high IMP uptake in the area surrounded the tumor (Type III), high IMP uptake in the area almost congruent with the tumor (Type IV) and no significant change (Type V). Excluding 10 lesions with Type IV or V, no IMP uptake was seen in the areas congruent with the tumors. Type II was the most frequently observed pattern. Normal scintigrams (Type V) were observed in 8 lesions, whose sizes were fairly small. There was no definite trend caused by difference in histological types of cancers. In 8 patients with viable inflammatory disease of the lung, the delayed scintigrams showed high IMP uptake in the areas congruent with the abnormalities on chest roentgenograms. On the other hand, no uptake was seen in the old tuberculous lesions. (J.P.N.).

  3. Delayed lung scintigraphy with N-isopropyl-I-123-p-iodoamphetamine in lung cancer and inflammatory disease

    International Nuclear Information System (INIS)

    Suematsu, Toru; Narabayashi, Isamu; Takada, Yoshiki

    1989-01-01

    Lung studies with N-Isopropyl-I-123-p-Iodoamphetamine (IMP) were performed on patients with lung cancer or inflammatory disease. In the present study, we evaluated the usefulness of the delayed scintigraphy. The subjects consisted of 27 patients with lung cancer (34 lesions), 3 with radiation pneumonitis, 2 with interstitial pneumonitis, 2 with old tuberculous lesion (tuberculomas), 1 with diffuse panbronchiolitis, 1 with pneumonia and 1 with lung abscess. The delayed scintigraphy was performed 24 hr after intravenous injection of 3 mCi IMP, in sitting position. In 10 patients, SPECT images were obtained following the delayed scintigraphy. Delayed scintigraphic appearances of lung cancer were classified into 5 types, high IMP uptake in the area congruent with the lesion of atelectasis and/or obstructive pneumonia (Type I), high IMP uptake in the area surrounded the tumor (Type II), a defect in the area consistent with the tumor and no high IMP uptake in the area surrounded the tumor (Type III), high IMP uptake in the area almost congruent with the tumor (Type IV) and no significant change (Type V). Excluding 10 lesions with Type IV or V, no IMP uptake was seen in the areas congruent with the tumors. Type II was the most frequently observed pattern. Normal scintigrams (Type V) were observed in 8 lesions, whose sizes were fairly small. There was no definite trend caused by difference in histological types of cancers. In 8 patients with viable inflammatory disease of the lung, the delayed scintigrams showed high IMP uptake in the areas congruent with the abnormalities on chest roentgenograms. On the other hand, no uptake was seen in the old tuberculous lesions. (J.P.N.)

  4. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1.

    Directory of Open Access Journals (Sweden)

    Christian Lacks Lino Cardenas

    Full Text Available As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF, remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls. In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFβ exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFβ signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that

  5. Radiation-induced changes in breathing frequency and lung histology of C57BL/6J mice are time- and dose-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Eldh, T.; Heinzelmann, F.; Velalakan, A. [Univ. Hospital of Tuebingen (Germany). Dept. of Radiation Oncology; Budach, W. [Duesseldorf Univ. (Germany). Dept. of Radiation Oncology; Belka, C. [Univ. Hospital of Tuebingen (Germany). Dept. of Radiation Oncology; Muenchen Univ. (Germany). Dept. of Radiation Oncology; Jendrossek, V. [Univ. Hospital of Tuebingen (Germany). Dept. of Radiation Oncology; Duisburg-Essen Univ., Essen (DE). Inst. of Cell Biology (Cancer Research)

    2012-03-15

    Pneumonitis and fibrosis constitute serious adverse effects of radiotherapy in the thoracic region. In this study, time-course and dose-dependence of clinically relevant parameters of radiation-induced lung injury in C57BL/6J mice were analyzed. A well-characterized disease model is necessary for the analysis of the cellular and molecular mechanisms using genetically modified mice. C57BL/6J mice received single dose right hemithorax irradiation with 12.5 or 22.5 Gy. Body weight and breathing frequency were recorded as parameters for health impairment. Lung tissue was collected over 24 weeks for histological analysis. Hemithorax irradiation with 12.5 or 22.5 Gy induced biphasic breathing impairment with the first increase between days 7 and 70. Although breathing impairment was more pronounced in the 22.5 Gy group, it was accompanied in both dose groups by pneumonitis-associated histological changes. A second rise in breathing frequency ratios became visible starting on day 70 with a steady increase until day 210. Again, breathing was more strongly affected in the 22.5 Gy group. However, breathing impairment coincided only in the 22.5 Gy group with a significant increase in collagen deposition in the lung tissue by day 210. Tissue inflammation and fibrosis were observed in the irradiated and the shielded lungs, pointing toward involvement of systemic effects. Hemithorax irradiation induces time-dependent pneumonitis and fibrosis in C57BL/6J mice. While hemithorax irradiation with 12.5 Gy is sufficient to induce lung inflammation, it is below the threshold for collagen deposition and fibrosis development by day 210.

  6. Streptococcus pneumoniae-Induced Oxidative Stress in Lung Epithelial Cells Depends on Pneumococcal Autolysis and Is Reversible by Resveratrol.

    Science.gov (United States)

    Zahlten, Janine; Kim, Ye-Ji; Doehn, Jan-Moritz; Pribyl, Thomas; Hocke, Andreas C; García, Pedro; Hammerschmidt, Sven; Suttorp, Norbert; Hippenstiel, Stefan; Hübner, Ralf-Harto

    2015-06-01

    Streptococcus pneumoniae is the most common cause of community-acquired pneumonia worldwide. During pneumococcal pneumonia, the human airway epithelium is exposed to large amounts of H2O2 as a product of host and pathogen oxidative metabolism. Airway cells are known to be highly vulnerable to oxidant damage, but the pathophysiology of oxidative stress induced by S. pneumoniae and the role of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant systems of the host are not well characterized. For gluthation/gluthathion disulfide analysis BEAS-2B cells, primary broncho-epithelial cells (pBEC), explanted human lung tissue and mouse lungs were infected with different S. pneumoniae strains (D39, A66, R6x, H2O2/pneumolysin/LytA- deficient mutants of R6x). Cell death was proven by LDH assay and cell viability by IL-8 ELISA. The translocation of Nrf2 and the expression of catalase were shown via Western blot. The binding of Nrf2 at the catalase promoter was analyzed by ChIP. We observed a significant induction of oxidative stress induced by S. pneumoniae in vivo, ex vivo, and in vitro. Upon stimulation, the oxidant-responsive transcription factor Nrf2 was activated, and catalase was upregulated via Nrf2. The pneumococci-induced oxidative stress was independent of S. pneumoniae-derived H2O2 and pneumolysin but depended on the pneumococcal autolysin LytA. The Nrf2 inducer resveratrol, as opposed to catalase, reversed oxidative stress in lung epithelial cells. These observations indicate a H2O2-independent induction of oxidative stress in lung epithelial cells via the release of bacterial factors of S. pneumoniae. Resveratrol might be an option for prevention of acute lung injury and inflammatory responses observed in pneumococcal pneumonia. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Milan PM1 induces adverse effects on mice lungs and cardiovascular system.

    Science.gov (United States)

    Farina, Francesca; Sancini, Giulio; Longhin, Eleonora; Mantecca, Paride; Camatini, Marina; Palestini, Paola

    2013-01-01

    Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with cardiorespiratory diseases. Since the response to PM1 has not yet been deeply investigated, its impact on mice lungs and cardiovascular system is here examined. A repeated exposure to Milan PM1 was performed on BALB/c mice. The bronchoalveolar lavage fluid (BALf) and the lung parenchyma were screened for markers of inflammation (cell counts, tumor necrosis factor-α (TNF-α); macrophage inflammatory protein-2 (MIP-2); heme oxygenase-1 (HO-1); nuclear factor kappa-light-chain-enhancer of activated B cells p50 subunit (NFκB-p50); inducible nitric oxide synthetase (iNOS); endothelial-selectin (E-selectin)), cytotoxicity (lactate dehydrogenase (LDH); alkaline phosphatase (ALP); heat shock protein 70 (Hsp70); caspase-8-p18), and a putative pro-carcinogenic marker (cytochrome 1B1 (Cyp1B1)). Heart tissue was tested for HO-1, caspase-8-p18, NFκB-p50, iNOS, E-selectin, and myeloperoxidase (MPO); plasma was screened for markers of platelet activation and clot formation (soluble platelet-selectin (sP-selectin); fibrinogen; plasminogen activator inhibitor 1 (PAI-1)). PM1 triggers inflammation and cytotoxicity in lungs. A similar cytotoxic effect was observed on heart tissues, while plasma analyses suggest blood-endothelium interface activation. These data highlight the importance of lung inflammation in mediating adverse cardiovascular events following increase in ambient PM1 levels, providing evidences of a positive correlation between PM1 exposure and cardiovascular morbidity.

  8. Milan PM1 Induces Adverse Effects on Mice Lungs and Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Francesca Farina

    2013-01-01

    Full Text Available Recent studies have suggested a link between inhaled particulate matter (PM exposure and increased mortality and morbidity associated with cardiorespiratory diseases. Since the response to PM1 has not yet been deeply investigated, its impact on mice lungs and cardiovascular system is here examined. A repeated exposure to Milan PM1 was performed on BALB/c mice. The bronchoalveolar lavage fluid (BALf and the lung parenchyma were screened for markers of inflammation (cell counts, tumor necrosis factor-α (TNF-α; macrophage inflammatory protein-2 (MIP-2; heme oxygenase-1 (HO-1; nuclear factor kappa-light-chain-enhancer of activated B cells p50 subunit (NFκB-p50; inducible nitric oxide synthetase (iNOS; endothelial-selectin (E-selectin, cytotoxicity (lactate dehydrogenase (LDH; alkaline phosphatase (ALP; heat shock protein 70 (Hsp70; caspase-8-p18, and a putative pro-carcinogenic marker (cytochrome 1B1 (Cyp1B1. Heart tissue was tested for HO-1, caspase-8-p18, NFκB-p50, iNOS, E-selectin, and myeloperoxidase (MPO; plasma was screened for markers of platelet activation and clot formation (soluble platelet-selectin (sP-selectin; fibrinogen; plasminogen activator inhibitor 1 (PAI-1. PM1 triggers inflammation and cytotoxicity in lungs. A similar cytotoxic effect was observed on heart tissues, while plasma analyses suggest blood-endothelium interface activation. These data highlight the importance of lung inflammation in mediating adverse cardiovascular events following increase in ambient PM1 levels, providing evidences of a positive correlation between PM1 exposure and cardiovascular morbidity.

  9. Disruption of the Hepcidin/Ferroportin Regulatory System Causes Pulmonary Iron Overload and Restrictive Lung Disease

    Directory of Open Access Journals (Sweden)

    Joana Neves

    2017-06-01

    Full Text Available Emerging evidence suggests that pulmonary iron accumulation is implicated in a spectrum of chronic lung diseases. However, the mechanism(s involved in pulmonary iron deposition and its role in the in vivo pathogenesis of lung diseases remains unknown. Here we show that a point mutation in the murine ferroportin gene, which causes hereditary hemochromatosis type 4 (Slc40a1C326S, increases iron levels in alveolar macrophages, epithelial cells lining the conducting airways and lung parenchyma, and in vascular smooth muscle cells. Pulmonary iron overload is associated with oxidative stress, restrictive lung disease with decreased total lung capacity and reduced blood oxygen saturation in homozygous Slc40a1C326S/C326S mice compared to wild-type controls. These findings implicate iron in lung pathology, which is so far not considered a classical iron-related disorder.

  10. Lung Ultrasound Has Limited Diagnostic Value in Rare Cystic Lung Diseases

    DEFF Research Database (Denmark)

    Davidsen, Jesper Rømhild; Bendstrup, Elisabeth; Henriksen, Daniel P

    2017-01-01

    : This single centre case-based cross-sectional study of patients diagnosed with LAM, PCLH and BHDS was conducted at a Danish DPLD specialist centre. Patients underwent clinical examination including LUS. LUS findings were compared to findings scored according to a modified Belmaati score on HRCT and reviewed...... value as a diagnostic tool in patients with LAM, PLCH, and BHDS as normal LUS findings did not rule out severe cystic lung disease....

  11. An Ultrasound Surface Wave Technique for Assessing Skin and Lung Diseases.

    Science.gov (United States)

    Zhang, Xiaoming; Zhou, Boran; Kalra, Sanjay; Bartholmai, Brian; Greenleaf, James; Osborn, Thomas

    2018-02-01

    Systemic sclerosis (SSc) is a multi-organ connective tissue disease characterized by immune dysregulation and organ fibrosis. Severe organ involvement, especially of the skin and lung, is the cause of morbidity and mortality in SSc. Interstitial lung disease (ILD) includes multiple lung disorders in which the lung tissue is fibrotic and stiffened. The purpose of this study was to translate ultrasound surface wave elastography (USWE) for assessing patients with SSc and/or ILD via measuring surface wave speeds of both skin and superficial lung tissue. Forty-one patients with both SSc and ILD and 30 healthy patients were enrolled in this study. An external harmonic vibration was used to generate the wave propagation on the skin or lung. Three excitation frequencies of 100, 150 and 200 Hz were used. An ultrasound probe was used to measure the wave propagation in the tissue non-invasively. Surface wave speeds were measured on the forearm and upper arm of both left and right arm, as well as the upper and lower lungs, through six intercostal spaces of patients and healthy patients. Viscoelasticity of the skin was calculated by the wave speed dispersion with frequency using the Voigt model. The magnitudes of surface wave speed and viscoelasticity of patients' skin were significantly higher than those of healthy patients (p wave speeds of patients' lung were significantly higher than those of healthy patients (p ionizing technique for measuring both skin and lung surface wave speed and may be useful for quantitative assessment of SSc and/or ILD. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  12. Clinical application of exhaled nitric oxide measurement in pediatric lung diseases

    Directory of Open Access Journals (Sweden)

    Manna Angelo

    2012-12-01

    Full Text Available Summary Fractional exhaled nitric oxide (FeNO is a non invasive method for assessing the inflammatory status of children with airway disease. Different ways to measure FeNO levels are currently available. The possibility of measuring FeNO levels in an office setting even in young children, and the commercial availability of portable devices, support the routine use of FeNO determination in the daily pediatric practice. Although many confounding factors may affect its measurement, FeNO is now widely used in the management of children with asthma, and seems to provide significantly higher diagnostic accuracy than lung function or bronchial challenge tests. The role of FeNO in airway infection (e.g. viral bronchiolitis and common acquired pneumonia, in bronchiectasis, or in cases with diffuse lung disease is less clear. This review focuses on the most recent advances and the current clinical applications of FeNO measurement in pediatric lung disease.

  13. 99Tcm-MIBI imaging in diagnosing benign/malign pulmonary disease and analysis of lung cancer DNA content

    International Nuclear Information System (INIS)

    Feng Yanlin; Tan Jiaju; Yang Jie; Zhu Zheng; Yu Fengwen; He Xiaohong; Huang Kemin; Yuan Baihong; Su Shaodi

    2002-01-01

    Objective: To evaluate the value of 99 Tc m -methoxyisobutylisonitrile (MIBI) lung imaging in diagnosing benign/malign pulmonary disease and the relation of 99 Tc m -MIBI uptake ratio (UR) with lung cancer DNA content. Methods: Early and delay imaging were performed on 27 cases of benign lung disease and 46 cases of malign lung disease. Visual analysis of the images and T/N uptake ratio measurement were performed on every case. Cancer cell DNA content and DNA index (DI) were measured in 24 cases of malign pulmonary disease. Results: The delay phase UR was 1.13 ± 0.19 in benign disease group, and the delay phase UR was 1.45 ± 0.21 in malign disease group (t6.51, P 99 Tc m -MIBI is not an ideal imaging agent for differentiating pulmonary benign/malign disease. Lung cancer DNA content may be reflected by delay phase UR

  14. Intracerebral abscess: A complication of severe cystic fibrosis lung disease

    OpenAIRE

    Fenton, Mark E; Cockcroft, Donald W; Gjevre, John A

    2008-01-01

    Intracerebral abscess is an uncommon complication of severe cystic fibrosis lung disease. The present report describes a case of fatal multiple intracerebral abscesses in a patient with a severely bronchiectatic, nonfunctioning right lung and chronic low-grade infection. The patient was previously turned down for pneumonectomy. Intracerebral abscess in cystic fibrosis and the potential role of pneumonectomy in the present patient are discussed.

  15. Role of CCL-2, CCR-2 and CCR-4 in cerulein-induced acute pancreatitis and pancreatitis-associated lung injury.

    Science.gov (United States)

    Frossard, Jean Louis; Lenglet, Sébastien; Montecucco, Fabrizio; Steffens, Sabine; Galan, Katia; Pelli, Graziano; Spahr, Laurent; Mach, Francois; Hadengue, Antoine

    2011-05-01

    Acute pancreatitis is an inflammatory process of variable severity. Leucocytes are thought to play a key role in the development of pancreatitis and pancreatitis-associated lung injury. The interactions between inflammatory cells and their mediators are crucial for determining tissue damage. Monocyte chemoattractant protein-1 (or CCL-2), CCR-2 and CCR-4 are chemokines and chemokine receptors involved in leucocyte trafficking. The aim of the study was to evaluate the role of the CCL-2, CCR-2 and CCR-4 chemokine receptors in the pathogenesis of cerulein-induced pancreatitis and pancreatitis-associated lung injury. To address the role of CCL-2, CCR-2 and CCR-4 that attracts leucocytes cells in inflamed tissues, pancreatitis was induced by administering supramaximal doses of cerulein in mice that do not express CCL-2, CCR-2 or CCR-4. The severity of pancreatitis was measured by serum amylase, pancreatic oedema and acinar cell necrosis. Lung injury was quantitated by evaluating lung microvascular permeability and lung myeloperoxidase activity. Chemokine and chemokine-receptor expression were quantitated by real-time PCR. The nature of inflammatory cells invading the pancreas and lungs was studied by immunostaining. The authors have found that pancreas CCL-2 and CCR-2 levels rise during pancreatitis. Both pancreatitis and the associated lung injury are blunted, but not completely prevented, in mice deficient in CCL-2, whereas the deficiency in either CCR-2 or CCR-4 does not reduce the severity of both the pancreatitis and the lung injury. The amounts of neutrophils and monocyte/macrophages (MOMA)-2 cells were significantly lower in mice deficient in CCL-2 compared with their sufficient littermates. These results suggest that CCL-2 plays a key role in pancreatitis by modulating the infiltration by neutrophils and MOMA-2 cells, and that its deficiency may improve the outcome of the disease.

  16. Inhibiting Bruton's Tyrosine Kinase Rescues Mice from Lethal Influenza Induced Acute Lung Injury.

    Science.gov (United States)

    Florence, Jon M; Krupa, Agnieszka; Booshehri, Laela M; Davis, Sandra A; Matthay, Michael A; Kurdowska, Anna K

    2018-03-08

    Infection with seasonal influenza A virus (IAV) leads to lung inflammation and respiratory failure, a main cause of death in influenza infected patients. Previous experiments in our laboratory indicated that Bruton's tyrosine kinase (Btk) plays a substantial role in regulating inflammation in the respiratory region during acute lung injury (ALI) in mice, therefore we sought to determine if blocking Btk activity had a protective effect in the lung during influenza induced inflammation. A Btk inhibitor (Btk Inh.) Ibrutinib (also known as PCI-32765) was administered intranasally to mice starting 72h after lethal infection with IAV. Our data indicates that treatment with the Btk inhibitor not only reduced weight loss and led to survival, but had a dramatic effect on morphological changes to the lungs of IAV infected mice. Attenuation of lung inflammation indicative of ALI such as alveolar hemorrhage, interstitial thickening, and the presence of alveolar exudate, together with reduced levels of inflammatory mediators TNFα, IL-1β, IL-6, KC, and MCP-1 strongly suggest amelioration of the pathological immune response in the lungs to promote resolution of the infection. Finally, we observed that blocking Btk specifically in the alveolar compartment led to significant attenuation of neutrophil extracellular traps (NET)s released into the lung in vivo, and NET formation in vitro. Our innovative findings suggest that Btk may be a new drug target for influenza induced lung injury, and in general immunomodulatory treatment may be key in treating lung dysfunction driven by excessive inflammation.

  17. Low-voltage electricity-induced lung injury.

    Science.gov (United States)

    Truong, Thai; Le, Thuong Vu; Smith, David L; Kantrow, Stephen P; Tran, Van Ngoc

    2018-02-01

    We report a case of bilateral pulmonary infiltrates and haemoptysis following low-voltage electricity exposure in an agricultural worker. A 58-year-old man standing in water reached for an electric watering machine and sustained an exposure to 220 V circuit for an uncertain duration. The electricity was turned off by another worker, and the patient was asymptomatic for the next 10 h until he developed haemoptysis. A chest radiograph demonstrated bilateral infiltrates, and chest computed tomography (CT) revealed ground-glass opacities with interstitial thickening. Evaluations, including electrocardiogram, serum troponin, N-terminal pro-B-type natriuretic peptide (NT-pro BNP), coagulation studies, and echocardiogram, found no abnormality. The patient was treated for suspected electricity-induced lung injury and bleeding with tranexamic acid and for rhabdomyolysis with volume resuscitation. He recovered with complete resolution of chest radiograph abnormalities by Day 7. This is the first reported case of bilateral lung oedema and/or injury after electricity exposure without cardiac arrest.

  18. Protective Effect of the Fruit Hull of Gleditsia sinensis on LPS-Induced Acute Lung Injury Is Associated with Nrf2 Activation

    Directory of Open Access Journals (Sweden)

    Jun-Young Choi

    2012-01-01

    Full Text Available The fruit hull of Gleditsia sinensis (FGS has been prescribed as a traditional eastern Asian medicinal remedy for the treatment of various respiratory diseases, but the efficacy and underlying mechanisms remain poorly characterized. Here, we explored a potential usage of FGS for the treatment of acute lung injury (ALI, a highly fatal inflammatory lung disease that urgently needs effective therapeutics, and investigated a mechanism for the anti-inflammatory activity of FGS. Pretreatment of C57BL/6 mice with FGS significantly attenuated LPS-induced neutrophilic lung inflammation compared to sham-treated, inflamed mice. Reporter assays, semiquantitative RT-PCR, and Western blot analyses show that while not affecting NF-κB, FGS activated Nrf2 and expressed Nrf2-regulated genes including GCLC, NQO-1, and HO-1 in RAW 264.7 cells. Furthermore, pretreatment of mice with FGS enhanced the expression of GCLC and HO-1 but suppressed that of proinflammatory cytokines in including TNF-α and IL-1β in the inflamed lungs. These results suggest that FGS effectively suppresses neutrophilic lung inflammation, which can be associated with, at least in part, FGS-activating anti-inflammatory factor Nrf2. Our results suggest that FGS can be developed as a therapeutic option for the treatment of ALI.

  19. The diffuse interstitial lung disease - with emphasis in the idiopathic interstitial pneumonias

    International Nuclear Information System (INIS)

    Bustillo P, Jose G; Pacheco, Pedro M; Matiz, Carlos; Ojeda, Paulina; Carrillo B, Jorge A.

    2003-01-01

    The term diffuse interstitial lung disease, it refers to those diseases that commit the interstice basically, the space between the membrane basal epithelial and endothelial, although the damage can also commit the outlying air spaces and the vessels; the supplement is centered in the diffuse interstitial lung illness of unknown cause; well-known as idiopathic interstitial pneumonias, making emphasis in the more frequents, the pulmonary fibrosis idiopathic or cryptogenic fibrosant alveolitis

  20. MicroRNAs in inflammatory lung disease - master regulators or target practice?

    LENUS (Irish Health Repository)

    Oglesby, Irene K

    2010-10-28

    Abstract MicroRNAs (miRNAs) have emerged as a class of regulatory RNAs with immense significance in numerous biological processes. When aberrantly expressed miRNAs have been shown to play a role in the pathogenesis of several disease states. Extensive research has explored miRNA involvement in the development and fate of immune cells and in both the innate and adaptive immune responses whereby strong evidence links miRNA expression to signalling pathways and receptors with critical roles in the inflammatory response such as NF-κB and the toll-like receptors, respectively. Recent studies have revealed that unique miRNA expression profiles exist in inflammatory lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and lung cancer. Evaluation of the global expression of miRNAs provides a unique opportunity to identify important target gene sets regulating susceptibility and response to infection and treatment, and control of inflammation in chronic airway disorders. Over 800 human miRNAs have been discovered to date, however the biological function of the majority remains to be uncovered. Understanding the role that miRNAs play in the modulation of gene expression leading to sustained chronic pulmonary inflammation is important for the development of new therapies which focus on prevention of disease progression rather than symptom relief. Here we discuss the current understanding of miRNA involvement in innate immunity, specifically in LPS\\/TLR4 signalling and in the progression of the chronic inflammatory lung diseases cystic fibrosis, COPD and asthma. miRNA in lung cancer and IPF are also reviewed.

  1. MicroRNAs in inflammatory lung disease--master regulators or target practice?

    LENUS (Irish Health Repository)

    Oglesby, Irene K

    2010-01-01

    MicroRNAs (miRNAs) have emerged as a class of regulatory RNAs with immense significance in numerous biological processes. When aberrantly expressed miRNAs have been shown to play a role in the pathogenesis of several disease states. Extensive research has explored miRNA involvement in the development and fate of immune cells and in both the innate and adaptive immune responses whereby strong evidence links miRNA expression to signalling pathways and receptors with critical roles in the inflammatory response such as NF-κB and the toll-like receptors, respectively. Recent studies have revealed that unique miRNA expression profiles exist in inflammatory lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and lung cancer. Evaluation of the global expression of miRNAs provides a unique opportunity to identify important target gene sets regulating susceptibility and response to infection and treatment, and control of inflammation in chronic airway disorders. Over 800 human miRNAs have been discovered to date, however the biological function of the majority remains to be uncovered. Understanding the role that miRNAs play in the modulation of gene expression leading to sustained chronic pulmonary inflammation is important for the development of new therapies which focus on prevention of disease progression rather than symptom relief. Here we discuss the current understanding of miRNA involvement in innate immunity, specifically in LPS\\/TLR4 signalling and in the progression of the chronic inflammatory lung diseases cystic fibrosis, COPD and asthma. miRNA in lung cancer and IPF are also reviewed.

  2. Perinatal exposure to environmental tobacco smoke is associated with changes in DNA methylation that precede the adult onset of lung disease in a mouse model.

    Science.gov (United States)

    Cole, Elizabeth; Brown, Traci A; Pinkerton, Kent E; Postma, Britten; Malany, Keegan; Yang, Mihi; Kim, Yang Jee; Hamilton, Raymond F; Holian, Andrij; Cho, Yoon Hee

    2017-08-01

    Prenatal and early-life environmental tobacco smoke (ETS) exposure can induce epigenetic alterations associated with inflammation and respiratory disease. The objective of this study was to address the long-term epigenetic consequences of perinatal ETS exposure on latent respiratory disease risk, which are still largely unknown. C57BL/6 mice were exposed to prenatal and early-life ETS; offspring lung pathology, global DNA, and gene-specific methylation were measured at two adult ages. Significant alterations in global DNA methylation and promoter methylation of IFN-γ and Thy-1 were found in ETS-exposed offspring at 10-12 and 20 weeks of age. These sustained epigenetic alterations preceded the onset of significant pulmonary pathologies observed at 20 weeks of age. This study suggests that perinatal ETS exposure induces persistent epigenetic alterations in global DNA, as well as IFN-γ and Thy-1 promoter methylation that precede the adult onset of fibrotic lung pathology. These epigenetic findings could represent potential biomarkers of latent respiratory disease risk.

  3. Silica-induced Chronic Inflammation Promotes Lung Carcinogenesis in the Context of an Immunosuppressive Microenvironment

    Directory of Open Access Journals (Sweden)

    Javier Freire

    2013-08-01

    Full Text Available The association between inflammation and lung tumor development has been clearly demonstrated. However, little is known concerning the molecular events preceding the development of lung cancer. In this study, we characterize a chemically induced lung cancer mouse model in which lung cancer developed in the presence of silicotic chronic inflammation. Silica-induced lung inflammation increased the incidence and multiplicity of lung cancer in mice treated with N-nitrosodimethylamine, a carcinogen found in tobacco smoke. Histologic and molecular analysis revealed that concomitant chronic inflammation contributed to lung tumorigenesis through induction of preneoplastic changes in lung epithelial cells. In addition, silica-mediated inflammation generated an immunosuppressive microenvironment in which we observed increased expression of programmed cell death protein 1 (PD-1, transforming growth factor-β1, monocyte chemotactic protein 1 (MCP-1, lymphocyte-activation gene 3 (LAG3, and forkhead box P3 (FOXP3, as well as the presence of regulatory T cells. Finally, the K-RAS mutational profile of the tumors changed from Q61R to G12D mutations in the inflammatory milieu. In summary, we describe some of the early molecular changes associated to lung carcinogenesis in a chronic inflammatory microenvironment and provide novel information concerning the mechanisms underlying the formation and the fate of preneoplastic lesions in the silicotic lung.

  4. HRCT patterns of the most important interstitial lung diseases; HRCT-Muster der wichtigsten interstitiellen Lungenerkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer-Prokop, C. [Meander Medisch Centrum, Abt. Radiologie, Amersfoort (Netherlands); Radboud Universitaet, Abt. Radiologie und Nuklearmedizin, Nijmegen (Netherlands)

    2014-12-15

    Interstitial lung diseases are a mixed group of diffuse parenchymal lung diseases which can have an acute or chronic course. Idiopathic diseases and diseases with an underlying cause (e.g. collagen vascular diseases) share the same patterns. Thin section computed tomography (CT) plays a central role in the diagnostic work-up. The article describes the most important interstitial lung diseases following a four pattern approach with a predominant nodular or reticular pattern or a pattern with increased or decreased lung density. (orig.) [German] Interstitielle Lungenerkrankungen stellen eine gemischte Gruppe diffuser Lungenparenchymerkrankungen dar, die einen akuten oder chronischen Verlauf haben koennen. Idiopathische Erkrankungen und Erkrankungen mit definierter Ursache (z. B. kollagenvaskulaere Erkrankungen) weisen ein gemeinsames Muster auf. Die Duennschichtcomputertomographie spielt eine zentrale Rolle in der diagnostischen Abklaerung. In dem vorliegenden Beitrag werden die wichtigsten interstitiellen Lungenerkrankungen beschrieben. Dabei gibt es 4 Grundmuster: ueberwiegend nodulaere Verdichtungen, vorwiegend retikulaere Verdichtungen, erhoehte oder erniedrigte Lungenparenchymdichte. (orig.)

  5. Cytotoxic potential of lung CD8(+) T cells increases with chronic obstructive pulmonary disease severity and with in vitro stimulation by IL-18 or IL-15.

    Science.gov (United States)

    Freeman, Christine M; Han, MeiLan K; Martinez, Fernando J; Murray, Susan; Liu, Lyrica X; Chensue, Stephen W; Polak, Timothy J; Sonstein, Joanne; Todt, Jill C; Ames, Theresa M; Arenberg, Douglas A; Meldrum, Catherine A; Getty, Christi; McCloskey, Lisa; Curtis, Jeffrey L

    2010-06-01

    Lung CD8(+) T cells might contribute to progression of chronic obstructive pulmonary disease (COPD) indirectly via IFN-gamma production or directly via cytolysis, but evidence for either mechanism is largely circumstantial. To gain insights into these potential mechanisms, we analyzed clinically indicated lung resections from three human cohorts, correlating findings with spirometrically defined disease severity. Expression by lung CD8(+) T cells of IL-18R and CD69 correlated with severity, as did mRNA transcripts for perforin and granzyme B, but not Fas ligand. These correlations persisted after correction for age, smoking history, presence of lung cancer, recent respiratory infection, or inhaled corticosteroid use. Analysis of transcripts for killer cell lectin-like receptor G1, IL-7R, and CD57 implied that lung CD8(+) T cells in COPD do not belong to the terminally differentiated effector populations associated with chronic infections or extreme age. In vitro stimulation of lung CD8(+) T cells with IL-18 plus IL-12 markedly increased production of IFN-gamma and TNF-alpha, whereas IL-15 stimulation induced increased intracellular perforin expression. Both IL-15 and IL-18 protein expression could be measured in whole lung tissue homogenates, but neither correlated in concentration with spirometric severity. Although lung CD8(+) T cell expression of mRNA for both T-box transcription factor expressed in T cells and GATA-binding protein 3 (but not retinoic acid receptor-related orphan receptor gamma or alpha) increased with spirometric severity, stimulation of lung CD8(+) T cells via CD3epsilon-induced secretion of IFN-gamma, TNF-alpha, and GM-CSF, but not IL-5, IL-13, and IL-17A. These findings suggest that the production of proinflammatory cytokines and cytotoxic molecules by lung-resident CD8(+) T cells contributes to COPD pathogenesis.

  6. The Selective Angiotensin II Type 2 Receptor Agonist, Compound 21, Attenuates the Progression of Lung Fibrosis and Pulmonary Hypertension in an Experimental Model of Bleomycin-Induced Lung Injury.

    Science.gov (United States)

    Rathinasabapathy, Anandharajan; Horowitz, Alana; Horton, Kelsey; Kumar, Ashok; Gladson, Santhi; Unger, Thomas; Martinez, Diana; Bedse, Gaurav; West, James; Raizada, Mohan K; Steckelings, Ulrike M; Sumners, Colin; Katovich, Michael J; Shenoy, Vinayak

    2018-01-01

    Idiopathic Pulmonary Fibrosis (IPF) is a chronic lung disease characterized by scar formation and respiratory insufficiency, which progressively leads to death. Pulmonary hypertension (PH) is a common complication of IPF that negatively impacts clinical outcomes, and has been classified as Group III PH. Despite scientific advances, the dismal prognosis of IPF and associated PH remains unchanged, necessitating the search for novel therapeutic strategies. Accumulating evidence suggests that stimulation of the angiotensin II type 2 (AT 2 ) receptor confers protection against a host of diseases. In this study, we investigated the therapeutic potential of Compound 21 (C21), a selective AT 2 receptor agonist in the bleomycin model of lung injury. A single intra-tracheal administration of bleomycin (2.5 mg/kg) to 8-week old male Sprague Dawley rats resulted in lung fibrosis and PH. Two experimental protocols were followed: C21 was administered (0.03 mg/kg/day, ip) either immediately (prevention protocol, BCP) or after 3 days (treatment protocol, BCT) of bleomycin-instillation. Echocardiography, hemodynamic, and Fulton's index assessments were performed after 2 weeks of bleomycin-instillation. Lung tissue was processed for gene expression, hydroxyproline content (a marker of collagen deposition), and histological analysis. C21 treatment prevented as well as attenuated the progression of lung fibrosis, and accompanying PH. The beneficial effects of C21 were associated with decreased infiltration of macrophages in the lungs, reduced lung inflammation and diminished pulmonary collagen accumulation. Further, C21 treatment also improved pulmonary pressure, reduced muscularization of the pulmonary vessels and normalized cardiac function in both the experimental protocols. However, there were no major differences in any of the outcomes measured from the two experimental protocols. Collectively, our findings indicate that stimulation of the AT 2 receptor by C21 attenuates

  7. The Selective Angiotensin II Type 2 Receptor Agonist, Compound 21, Attenuates the Progression of Lung Fibrosis and Pulmonary Hypertension in an Experimental Model of Bleomycin-Induced Lung Injury

    Directory of Open Access Journals (Sweden)

    Anandharajan Rathinasabapathy

    2018-03-01

    Full Text Available Idiopathic Pulmonary Fibrosis (IPF is a chronic lung disease characterized by scar formation and respiratory insufficiency, which progressively leads to death. Pulmonary hypertension (PH is a common complication of IPF that negatively impacts clinical outcomes, and has been classified as Group III PH. Despite scientific advances, the dismal prognosis of IPF and associated PH remains unchanged, necessitating the search for novel therapeutic strategies. Accumulating evidence suggests that stimulation of the angiotensin II type 2 (AT2 receptor confers protection against a host of diseases. In this study, we investigated the therapeutic potential of Compound 21 (C21, a selective AT2 receptor agonist in the bleomycin model of lung injury. A single intra-tracheal administration of bleomycin (2.5 mg/kg to 8-week old male Sprague Dawley rats resulted in lung fibrosis and PH. Two experimental protocols were followed: C21 was administered (0.03 mg/kg/day, ip either immediately (prevention protocol, BCP or after 3 days (treatment protocol, BCT of bleomycin-instillation. Echocardiography, hemodynamic, and Fulton's index assessments were performed after 2 weeks of bleomycin-instillation. Lung tissue was processed for gene expression, hydroxyproline content (a marker of collagen deposition, and histological analysis. C21 treatment prevented as well as attenuated the progression of lung fibrosis, and accompanying PH. The beneficial effects of C21 were associated with decreased infiltration of macrophages in the lungs, reduced lung inflammation and diminished pulmonary collagen accumulation. Further, C21 treatment also improved pulmonary pressure, reduced muscularization of the pulmonary vessels and normalized cardiac function in both the experimental protocols. However, there were no major differences in any of the outcomes measured from the two experimental protocols. Collectively, our findings indicate that stimulation of the AT2 receptor by C21 attenuates

  8. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    Science.gov (United States)

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Clinical use of pulmonary function tests and high-resolution tomography in interstitial lung diseases

    International Nuclear Information System (INIS)

    Garcia C, Clara P; Mejia M, Luis F

    2010-01-01

    Diagnosis of interstitial lung diseases is generally arrived at by clinical history, physical examination, and radiologic images, especially high-resolution CT-scanning. It is important to note that, while these diseases have different clinical and histological characteristics, they share a basic pattern of abnormal lung function. With regard to high-resolution tomography, the characteristics of these diseases are similar, although there are specific differences that can be helpful for correct diagnosis. These diseases have severe consequences on respiratory gas exchange. These alterations, combined with other abnormalities of lung function, cause the signs and symptoms and have an impact on quality of life. The use of physiologic parameters is not only helpful for diagnosis, but can also assess severity, help to define the consequences of treatment, and aid in the follow-up. Although some pulmonary function tests can remain completely normal with severe radiographic findings, 10% of patients have impaired lung function before radiologic changes. High-resolution tomography is an essential imaging tool for the study of these patients. This is true not only for diagnosis, but also with regard to clinical parameters and follow-up. Its prognostic use is continually gaining importance. In this article we assess the clinical use of pulmonary function tests and high-resolution tomography in interstitial lung diseases.

  10. Interstitial Lung Disease due to Siderosis in a Lathe Machine Worker.

    Science.gov (United States)

    Gothi, D; Satija, B; Kumar, S; Kaur, Omkar

    2015-01-01

    Since its first description in 1936, siderosis of lung has been considered a benign pneumoconiosis due to absence of significant clinical symptoms or respiratory impairment. Subsequently, authors have questioned the non-fibrogenic property of iron. However, siderosis causing interstitial lung disease with usual interstitial pneumonia (UIP) pattern has not been described in the past. We report a case of UIP on high resolution computed tomography, proven to be siderosis on transbronchial lung biopsy in a lathe machine worker.

  11. An approach to interstitial lung disease in India

    Directory of Open Access Journals (Sweden)

    J N Pande

    2014-07-01

    Full Text Available Interstitial lung diseases are common and have varied etiology, clinical presentation, clinical course and outcome. They pose a diagnostic challenge to physicians and pulmonologists. Patients present with dry cough, exertional dyspnoea, interstitial lesions on X-ray of the chest and restrictive ventilatory defect on spirometry. A sharp decline in oxygen saturation with exercise is characteristic. Careful evaluation of the history of the patient and physical examination help in narrowing down diagnostic probabilities. HRCT of the chest has emerged as an important tool in the evaluation of these disorders. Idiopathic Interstitial Pneumonias (IIP are a group of conditions which are classified into several types based on pathological features. Bronchoscopic procedures are helpful in diagnosis of certain disorders but are of limited value in classification of IIP which requires surgical biopsy. Usual Interstitial Pneumonia (UIP, also referred to as Idiopathic Pulmonary Fibrosis, has a progressive course and an unfavourable outcome. Certain new drugs have recently become available for treatment of UIP. Our approach towards diagnosis and management of interstitial lung diseases based on personal experience over the past three decades is reported here. Key words: Usual interstitial pneumonia – sarcoidosis – pneumoconiosis – bronchoscopy – lung biopsy 

  12. Caspase 3 activity in isolated fetal rat lung fibroblasts and rat periodontal ligament fibroblasts: cigarette smoke-induced alterations

    Directory of Open Access Journals (Sweden)

    James Elliot Scott

    2016-03-01

    Full Text Available Background Cigarette smoking is the leading cause of preventable death in the world. It has been implicated in the pathogenesis of pulmonary, oral and systemic diseases. Smoking during pregnancy is clearly a risk factor for the developing fetus and may be a major cause of infant mortality. Moreover, the oral cavity is the first site of exposure to cigarette smoke and may be a possible source for the spread of toxins to other organs of the body. Fibroblasts in general are morphologically heterogeneous connective tissue cells with diverse functions. Apoptosis or programmed cell death is a crucial process during embryogenesis and for the maintenance of homeostasis throughout life. Deregulation of apoptosis has been implicated in abnormal lung development in the fetus and disease progression in adults. Caspases, are proteases which belong to the family of cysteine aspartic acid proteases and are the key components for the downstream amplification of intra-cellular apoptotic signals. Of the 14 caspases known, caspase-3 is the key executioner of apoptosis. Fetal rat lung fibroblasts but not PDL viability is reduced by exposure to CSE. In addition Caspase 3 activity is elevated after CSE exposure in fetal lung fibroblasts but not in PDLs. Expression of caspase 3 is induced in CSE exposed lung fibroblasts but not in PDLs. Caspase 3 was localized to the cytoplasm in both cell types.

  13. Netrin-1 Regulates Fibrocyte Accumulation in the Decellularized Fibrotic Sclerodermatous Lung Microenvironment and in Bleomycin-Induced Pulmonary Fibrosis.

    Science.gov (United States)

    Sun, Huanxing; Zhu, Yangyang; Pan, Hongyi; Chen, Xiaosong; Balestrini, Jenna L; Lam, TuKiet T; Kanyo, Jean E; Eichmann, Anne; Gulati, Mridu; Fares, Wassim H; Bai, Hanwen; Feghali-Bostwick, Carol A; Gan, Ye; Peng, Xueyan; Moore, Meagan W; White, Eric S; Sava, Parid; Gonzalez, Anjelica L; Cheng, Yuwei; Niklason, Laura E; Herzog, Erica L

    2016-05-01

    Fibrocytes are collagen-producing leukocytes that accumulate in patients with systemic sclerosis (SSc; scleroderma)-related interstitial lung disease (ILD) via unknown mechanisms that have been associated with altered expression of neuroimmune proteins. The extracellular matrix (ECM) influences cellular phenotypes. However, a relationship between the lung ECM and fibrocytes in SSc has not been explored. The aim of this study was to use a novel translational platform based on decellularized human lungs to determine whether the lung ECM of patients with scleroderma controls the development of fibrocytes from peripheral blood mononuclear cells. We performed biomechanical evaluation of decellularized scaffolds prepared from lung explants from healthy control subjects and patients with scleroderma, using tensile testing and biochemical and proteomic analysis. Cells obtained from healthy controls and patients with SSc-related ILD were cultured on these scaffolds, and CD45+pro-ColIα1+ cells meeting the criteria for fibrocytes were quantified. The contribution of the neuromolecule netrin-1 to fibrosis was assessed using neutralizing antibodies in this system and by administering bleomycin via inhalation to netrin-1(+/-) mice. Compared with control lung scaffolds, lung scaffolds from patients with SSc-related ILD showed aberrant anatomy, enhanced stiffness, and abnormal ECM composition. Culture of control cells in lung scaffolds from patients with SSc-related ILD increased production of pro-ColIα1+ cells, which was stimulated by enhanced stiffness and abnormal ECM composition. Cells from patients with SSc-related ILD demonstrated increased pro-ColIα1 responsiveness to lung scaffolds from scleroderma patients but not enhanced stiffness. Enhanced detection of netrin-1-expressing CD14(low) cells in patients with SSc-related ILD was observed, and antibody-mediated netrin-1 neutralization attenuated detection of CD45+pro-ColIα1+ cells in all settings. Netrin-1(+/-) mice were

  14. Cardiac dysfunction in pneumovirus-induced lung injury in mice

    NARCIS (Netherlands)

    Bem, Reinout A.; van den Berg, Elske; Suidgeest, Ernst; van der Weerd, Louise; van Woensel, Job B. M.; Grotenhuis, Heynric B.

    2013-01-01

    To determine biventricular cardiac function in pneumovirus-induced acute lung injury in spontaneously breathing mice. Experimental animal study. Animal laboratory. C57Bl/6 mice. Mice were inoculated with the rodent pneumovirus, pneumonia virus of mice. Pneumonia virus of mice-infected mice were

  15. Endogenous PGI2 signaling through IP inhibits neutrophilic lung inflammation in LPS-induced acute lung injury mice model.

    Science.gov (United States)

    Toki, Shinji; Zhou, Weisong; Goleniewska, Kasia; Reiss, Sara; Dulek, Daniel E; Newcomb, Dawn C; Lawson, William E; Peebles, R Stokes

    2018-04-13

    Endogenous prostaglandin I 2 (PGI 2 ) has inhibitory effects on immune responses against pathogens or allergens; however, the immunomodulatory activity of endogenous PGI 2 signaling in endotoxin-induced inflammation is unknown. To test the hypothesis that endogenous PGI 2 down-regulates endotoxin-induced lung inflammation, C57BL/6 wild type (WT) and PGI 2 receptor (IP) KO mice were challenged intranasally with LPS. Urine 6-keto-PGF 1α , a stable metabolite of PGI 2, was significantly increased following the LPS-challenge, suggesting that endogenous PGI 2 signaling modulates the host response to LPS-challenge. IPKO mice had a significant increase in neutrophils in the BAL fluid as well as increased proteins of KC, LIX, and TNF-α in lung homogenates compared with WT mice. In contrast, IL-10 was decreased in LPS-challenged IPKO mice compared with WT mice. The PGI 2 analog cicaprost significantly decreased LPS-induced KC, and TNF-α, but increased IL-10 and AREG in bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived macrophages (BMMs) compared with vehicle-treatment. These results indicated that endogenous PGI 2 signaling attenuated neutrophilic lung inflammation through the reduced inflammatory cytokine and chemokine and enhanced IL-10. Copyright © 2018. Published by Elsevier Inc.

  16. Pulmonary Hypertension and Right Heart Dysfunction in Chronic Lung Disease

    Directory of Open Access Journals (Sweden)

    Amirmasoud Zangiabadi

    2014-01-01

    Full Text Available Group 3 pulmonary hypertension (PH is a common complication of chronic lung disease (CLD, including chronic obstructive pulmonary disease (COPD, interstitial lung disease, and sleep-disordered breathing. Development of PH is associated with poor prognosis and may progress to right heart failure, however, in the majority of the patients with CLD, PH is mild to moderate and only a small number of patients develop severe PH. The pathophysiology of PH in CLD is multifactorial and includes hypoxic pulmonary vasoconstriction, pulmonary vascular remodeling, small vessel destruction, and fibrosis. The effects of PH on the right ventricle (RV range between early RV remodeling, hypertrophy, dilatation, and eventual failure with associated increased mortality. The golden standard for diagnosis of PH is right heart catheterization, however, evidence of PH can be appreciated on clinical examination, serology, radiological imaging, and Doppler echocardiography. Treatment of PH in CLD focuses on management of the underlying lung disorder and hypoxia. There is, however, limited evidence to suggest that PH-specific vasodilators such as phosphodiesterase-type 5 inhibitors, endothelin receptor antagonists, and prostanoids may have a role in the treatment of patients with CLD and moderate-to-severe PH.

  17. Diethylcarbamazine Attenuates the Development of Carrageenan-Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Edlene Lima Ribeiro

    2014-01-01

    Full Text Available Diethylcarbamazine (DEC is an antifilarial drug with potent anti-inflammatory properties as a result of its interference with the metabolism of arachidonic acid. The aim of the present study was to evaluate the anti-inflammatory activity of DEC in a mouse model of acute inflammation (carrageenan-induced pleurisy. The injection of carrageenan into the pleural cavity induced the accumulation of fluid containing a large number of polymorphonuclear cells (PMNs as well as infiltration of PMNs in lung tissues and increased production of nitrite and tumor necrosis factor-α and increased expression of interleukin-1β, cyclooxygenase (COX-2, and inducible nitric oxide synthase. Carrageenan also induced the expression of nuclear factor-κB. The oral administration of DEC (50 mg/Kg three days prior to the carrageenan challenge led to a significant reduction in all inflammation markers. The present findings demonstrate that DEC is a potential drug for the treatment of acute lung inflammation.

  18. The association between combined non-cystic fibrosis bronchiectasis and lung cancer in patients with chronic obstructive lung disease

    Directory of Open Access Journals (Sweden)

    Kim YW

    2015-05-01

    Full Text Available Yeon Wook Kim,1 Kwang-Nam Jin,2 Eun Young Heo,3 Sung Soo Park,3 Hee Soon Chung,3 Deog Kyeom Kim31Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; 2Department of Radiology, Seoul National University College of Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea; 3Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of KoreaBackground: Whereas the epidemiological association between lung cancer and chronic obstructive pulmonary disease (COPD, a chronic inflammatory respiratory disease, is well known, limited studies have examined the association between lung cancer and non-cystic fibrosis bronchiectasis, a representative chronic airway inflammatory disease. This study evaluated the association between bronchiectasis and lung cancer in patients with COPD.Methods: A matched case–control study was conducted in a referral hospital in South Korea. Among COPD patients with moderate to very severe airflow limitation (forced expiratory volume in one second/forced vital capacity <0.7 and forced expiratory volume in one second ≤70% [% predicted] who underwent chest computed tomography (CT between January 1, 2010 and May 30, 2013, patients with lung cancer and controls matched for age, sex, and smoking history were selected. The risk of lung cancer was assessed according to the presence of underlying bronchiectasis confirmed by chest CT.Results: The study enrolled 99 cases and 198 controls. Combined bronchiectasis on chest CT was inversely associated with the risk of lung cancer compared with controls (odds ratio [OR] 0.25, 95% confidence interval [CI] 0.12–0.52, P<0.001. Significant associations were found in

  19. Morphologic and functional scoring of cystic fibrosis lung disease using MRI

    International Nuclear Information System (INIS)

    Eichinger, Monika; Optazaite, Daiva-Elzbieta; Kopp-Schneider, Annette; Hintze, Christian; Biederer, Jürgen; Niemann, Anne; Mall, Marcus A.; Wielpütz, Mark O.; Kauczor, Hans-Ulrich; Puderbach, Michael

    2012-01-01

    Magnetic resonance imaging (MRI) gains increasing importance in the assessment of cystic fibrosis (CF) lung disease. The aim of this study was to develop a morpho-functional MR-scoring-system and to evaluate its intra- and inter-observer reproducibility and clinical practicability to monitor CF lung disease over a broad severity range from infancy to adulthood. 35 CF patients with broad age range (mean 15.3 years; range 0.5–42) were examined by morphological and functional MRI. Lobe based analysis was performed for parameters bronchiectasis/bronchial-wall-thickening, mucus plugging, abscesses/sacculations, consolidations, special findings and perfusion defects. The maximum global score was 72. Two experienced radiologists scored the images at two time points (interval 10 weeks). Upper and lower limits of agreement, concordance correlation coefficients (CCC), total deviation index and coverage probability were calculated for global, morphology, function, component and lobar scores. Global scores ranged from 6 to 47. Intra- and inter-reader agreement for global scores were good (CCC: 0.98 (R1), 0.94 (R2), 0.97 (R1/R2)) and were comparable between high and low scores. Our results indicate that the proposed morpho-functional MR-scoring-system is reproducible and applicable for semi-quantitative evaluation of a large spectrum of CF lung disease severity. This scoring-system can be applied for the routine assessment of CF lung disease and maybe as endpoint for clinical trials.

  20. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice

    Directory of Open Access Journals (Sweden)

    Rafael Almeida-Reis

    2017-01-01

    Full Text Available Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods.  C57BL/6 mice received intratracheal elastase (ELA group or saline (SAL group. One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group. Controls received saline and BbCI (SALBC group. After 28 days, we evaluated respiratory mechanics, exhaled nitric oxide, and bronchoalveolar lavage fluid. In lung tissue we measured airspace enlargement, quantified neutrophils, TNFα-, MMP-9-, MMP-12-, TIMP-1-, iNOS-, and eNOS-positive cells, 8-iso-PGF2α, collagen, and elastic fibers in alveolar septa and airways. MUC-5-positive cells were quantified only in airways. Results. BbCI reduced elastase-induced changes in pulmonary mechanics, airspace enlargement and elastase-induced increases in total cells, and neutrophils in BALF. BbCI reduced macrophages and neutrophils positive cells in alveolar septa and neutrophils and TNFα-positive cells in airways. BbCI attenuated elastic and collagen fibers, MMP-9- and MMP-12-positive cells, and isoprostane and iNOS-positive cells in alveolar septa and airways. BbCI reduced MUC5ac-positive cells in airways. Conclusions. BbCI improved lung mechanics and reduced lung inflammation and airspace enlargement and increased oxidative stress levels induced by elastase. BbCI may have therapeutic potential in chronic obstructive pulmonary disease.

  1. Caffeine Mitigates Lung Inflammation Induced by Ischemia-Reperfusion of Lower Limbs in Rats

    Directory of Open Access Journals (Sweden)

    Wei-Chi Chou

    2015-01-01

    Full Text Available Reperfusion of ischemic limbs can induce inflammation and subsequently cause acute lung injury. Caffeine, a widely used psychostimulant, possesses potent anti-inflammatory capacity. We elucidated whether caffeine can mitigate lung inflammation caused by ischemia-reperfusion (IR of the lower limbs. Adult male Sprague-Dawley rats were randomly allocated to receive IR, IR plus caffeine (IR + Caf group, sham-operation (Sham, or sham plus caffeine (n=12 in each group. To induce IR, lower limbs were bilaterally tied by rubber bands high around each thigh for 3 hours followed by reperfusion for 3 hours. Caffeine (50 mg/kg, intraperitoneal injection was administered immediately after reperfusion. Our histological assay data revealed characteristics of severe lung inflammation in the IR group and mild to moderate characteristic of lung inflammation in the IR + Caf group. Total cells number and protein concentration in bronchoalveolar lavage fluid of the IR group were significantly higher than those of the IR + Caf group (P<0.001 and P=0.008, resp.. Similarly, pulmonary concentrations of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2 and pulmonary myeloperoxidase activity of the IR group were significantly higher than those of the IR + Caf group (all P<0.05. These data clearly demonstrate that caffeine could mitigate lung inflammation induced by ischemia-reperfusion of the lower limbs.

  2. Lung involvement in Osler's disease and cerebral complications

    Energy Technology Data Exchange (ETDEWEB)

    Piepgras, U.; Sielecki, S.

    1986-01-01

    About 50% of patients with Morbus Osler also have arteriovenous lung malformations. The wall-insufficiency mural inadequacy of the malformated vessels is due to the secondary infectious cerebral and meningeal complications which frequently occur in the disease. If a brain abscess is diagnosed one has first to take into consideration in a.-v. malformation of the lungs as possible source of the infection. (orig.).

  3. The Rabbit as a Model for Studying Lung Disease and Stem Cell Therapy

    OpenAIRE

    Kamaruzaman, Nurfatin Asyikhin; Kardia, Egi; Kamaldin, Nurulain ‘Atikah; Latahir, Ahmad Zaeri; Yahaya, Badrul Hisham

    2013-01-01

    No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, e...

  4. Local and Systemic Inflammation May Mediate Diesel Engine Exhaust-Induced Lung Function Impairment in a Chinese Occupational Cohort.

    Science.gov (United States)

    Wang, Haitao; Duan, Huawei; Meng, Tao; Yang, Mo; Cui, Lianhua; Bin, Ping; Dai, Yufei; Niu, Yong; Shen, Meili; Zhang, Liping; Zheng, Yuxin; Leng, Shuguang

    2018-04-01

    Diesel exhaust (DE) as the major source of vehicle-emitted particle matter in ambient air impairs lung function. The objectives were to assess the contribution of local (eg, the fraction of exhaled nitric oxide [FeNO] and serum Club cell secretory protein [CC16]) and systemic (eg, serum C-reaction protein [CRP] and interleukin-6 [IL-6]) inflammation to DE-induced lung function impairment using a unique cohort of diesel engine testers (DETs, n = 137) and non-DETs (n = 127), made up of current and noncurrent smokers. Urinary metabolites, FeNO, serum markers, and spirometry were assessed. A 19% reduction in CC16 and a 94% increase in CRP were identified in DETs compared with non-DETs (all p values regulatory risk assessment. Local and systemic inflammation may be key processes that contribute to the subsequent development of obstructive lung disease in DE-exposed populations.

  5. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung

    International Nuclear Information System (INIS)

    Ruebe, C.E.; Wilfert, F.; Palm, J.; Burdak-Rothkamm, S.; Ruebe, C.; Koenig, J.; Liu Li; Schuck, A.; Willich, N.

    2004-01-01

    Background and purpose: the precise pathophysiological mechanisms of radiation-induced lung injury are poorly understood, but have been shown to correlate with dysregulation of different cytokines. The purpose of this study was to evaluate the time course of the pro-inflammatory cytokines tumor necrosis factor-(TNF-)α, interleukin-(IL)-1α and IL-6 after whole-lung irradiation. Material and methods: the thoraces of C57BL/6J mice were irradiated with 12 Gy. Treated and control mice were sacrificed at 0.5, 1, 3, 6, 12, 24, 48, 72 h, 1, 2, 4, 8, 16, and 24 weeks post irradiation (p.i.). Real-time multiplex RT-PCR (reverse transcriptase polmyerase chain reaction) was established to evaluate the expression of TNF-α, IL-1α and IL-6 in the lung tissue of the mice. For histological analysis, lung tissue sections were stained by hematoxylin and eosin. Results: multiplex RT-PCR analysis revealed a biphasic expression of these pro-inflammatory cytokines in the lung tissue after irradiation. After an initial increase at 1 h p.i. for TNF-α and at 6 h p.i. for IL-1α and IL-6, the mRNA expression of these pro-inflammatory cytokines returned to basal levels (48 h, 72 h, 1 week, 2 weeks p.i.). During the pneumonic phase, TNF-α, IL-1α and IL-6 were significantly elevated and revealed their maximum at 8 weeks p.i. Histopathologic evaluation of the lung sections obtained within 4 weeks p.i. revealed only minor lung damage in 5-30% of the lung tissue. By contrast, at 8, 16, and 24 weeks p.i., 70-90% of the lung tissue revealed histopathologically detectable organizing alveolitis. Conclusion: irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. The initial transitory cytokine response occurred within the first hours after lung irradiation with no detectable histopathologic alterations. The second, more persistent cytokine elevation coincided with the onset of histologically discernible organizing acute pneumonitis. (orig.)

  6. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Ruebe, C.E.; Wilfert, F.; Palm, J.; Burdak-Rothkamm, S.; Ruebe, C. [Dept. of Radiotherapy - Radiooncology, Saarland Univ., Homburg/Saar (Germany); Koenig, J. [Inst. of Medical Biometrics, Epidemiology and Medical Informatics, Saarland Univ., Homburg/Saar (Germany); Liu Li [Dept. of Radiotherapy - Radiooncology, Saarland Univ., Homburg/Saar (Germany); Cancer Center, Union Hospital Tongji Medical Coll., Huazhong Univ. of Science and Technology, Wuhan (China); Schuck, A.; Willich, N. [Dept. of Radiotherapy - Radiooncology, Univ. of Muenster (Germany)

    2004-07-01

    Background and purpose: the precise pathophysiological mechanisms of radiation-induced lung injury are poorly understood, but have been shown to correlate with dysregulation of different cytokines. The purpose of this study was to evaluate the time course of the pro-inflammatory cytokines tumor necrosis factor-(TNF-){alpha}, interleukin-(IL)-1{alpha} and IL-6 after whole-lung irradiation. Material and methods: the thoraces of C57BL/6J mice were irradiated with 12 Gy. Treated and control mice were sacrificed at 0.5, 1, 3, 6, 12, 24, 48, 72 h, 1, 2, 4, 8, 16, and 24 weeks post irradiation (p.i.). Real-time multiplex RT-PCR (reverse transcriptase polmyerase chain reaction) was established to evaluate the expression of TNF-{alpha}, IL-1{alpha} and IL-6 in the lung tissue of the mice. For histological analysis, lung tissue sections were stained by hematoxylin and eosin. Results: multiplex RT-PCR analysis revealed a biphasic expression of these pro-inflammatory cytokines in the lung tissue after irradiation. After an initial increase at 1 h p.i. for TNF-{alpha} and at 6 h p.i. for IL-1{alpha} and IL-6, the mRNA expression of these pro-inflammatory cytokines returned to basal levels (48 h, 72 h, 1 week, 2 weeks p.i.). During the pneumonic phase, TNF-{alpha}, IL-1{alpha} and IL-6 were significantly elevated and revealed their maximum at 8 weeks p.i. Histopathologic evaluation of the lung sections obtained within 4 weeks p.i. revealed only minor lung damage in 5-30% of the lung tissue. By contrast, at 8, 16, and 24 weeks p.i., 70-90% of the lung tissue revealed histopathologically detectable organizing alveolitis. Conclusion: irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. The initial transitory cytokine response occurred within the first hours after lung irradiation with no detectable histopathologic alterations. The second, more persistent cytokine elevation coincided with the onset of histologically discernible organizing acute

  7. Therapeutic modulation of miRNA for the treatment of proinflammatory lung diseases.

    LENUS (Irish Health Repository)

    Hassan, Tidi

    2012-03-01

    miRNAs are short, nonprotein coding RNAs that regulate target gene expression principally by causing translational repression and\\/or mRNA degradation. miRNAs are involved in most mammalian biological processes and have pivotal roles in controlling the expression of factors involved in basal and stimulus-induced signaling pathways. Considering their central role in the regulation of gene expression, miRNAs represent therapeutic drug targets. Here we describe how miRNAs are involved in the regulation of aspects of innate immunity and inflammation, what happens when this goes awry, such as in the chronic inflammatory lung diseases cystic fibrosis and asthma, and discuss the current state-of-the-art miRNA-targeted therapeutics.

  8. Dihydrotestosterone Potentiates EGF-Induced ERK Activation by Inducing SRC in Fetal Lung Fibroblasts

    Science.gov (United States)

    Smith, Susan M.; Murray, Sandy; Pham, Lucia D.; Minoo, Parviz; Nielsen, Heber C.

    2014-01-01

    Lung maturation is regulated by interactions between mesenchymal and epithelial cells, and is delayed by androgens. Fibroblast–Type II cell communications are dependent on extracellular signal-regulated kinases (ERK) 1/2 activation by the ErbB receptor ligands epidermal growth factor (EGF), transforming growth factor (TGF)-α, and neuregulin (Nrg). In other tissues, dihydrotestosterone (DHT) has been shown to activate SRC by a novel nontranscriptional mechanism, which phosphorylates EGF receptors to potentiate EGF-induced ERK1/2 activation. This study sought to determine if DHT potentiates EGFR signaling by a nontranscriptional mechanism. Embryonic day (E)17 fetal lung cells were isolated from dams treated with or without DHT since E12. Cells were exposed to 30 ng/ml DHT for periods of 30 minutes to 3 days before being stimulated with 100 ng/ml EGF, TGF-α, or Nrg for up to 30 minutes. Lysates were immunoblotted for ErbB and SRC pathway signaling intermediates. DHT increased ERK1/2 activation by EGF, TGF-α, and Nrg in fibroblasts and Type II cells. Characterization in fibroblasts showed that potentiation of the EGF pathway was significant after 60 minutes of DHT exposure and persisted in the presence of the translational inhibitor cycloheximide. SRC and EGF receptor phosphorylation was increased by DHT, as was EGF-induced SHC1 phosphorylation and subsequent association with GRB2. Finally, SRC silencing, SRC inhibition with PP2, and overexpression of a dominant-negative SRC each prevented DHT from increasing EGF-induced ERK1/2 phosphorylation. These results suggest that DHT activates SRC to potentiate the signaling pathway leading from the EGF receptor to ERK activation in primary fetal lung fibroblasts. PMID:24484548

  9. Anacardic Acids from Cashew Nuts Ameliorate Lung Damage Induced by Exposure to Diesel Exhaust Particles in Mice

    Directory of Open Access Journals (Sweden)

    Ana Laura Nicoletti Carvalho

    2013-01-01

    Full Text Available Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP- induced lung inflammation. BALB/c mice received an intranasal instillation of 50 μg of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250 mg/kg of anacardic acids or vehicle (100 μL of cashew nut oil for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF, and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50 mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs.

  10. Chronic obstructive pulmonary disease among lung cancer-free smokers: The importance of healthy controls.

    Science.gov (United States)

    Karpman, Michelle D; Eldridge, Ronald; Follis, Jack L; Etzel, Carol J; Shete, Sanjay; El-Zein, Randa A

    2018-01-01

    The prevalence of chronic obstructive pulmonary disease (COPD) in smokers enrolled as "healthy" controls in studies is 10-50%. The COPD status of ideal smoker populations for lung cancer case-control studies should be checked via spirometry; however, this is often not feasible, because no medical indications exist for asymptomatic smokers to undergo spirometry prior to study enrollment. Therefore, there is an unmet need for robust, cost effective assays for identifying undiagnosed lung disease among asymptomatic smokers. Such assays would help excluding unhealthy smokers from lung cancer case-control studies. We used the cytokinesis-blocked micronucleus (CBMN) assay (a measure of genetic instability) to identify undiagnosed lung disease among asymptomatic smokers. We used a convenience population from an on-going lung cancer case-control study including smokers with lung cancer (n = 454), smoker controls (n = 797), and a self-reported COPD (n = 200) contingent within the smoker controls. Significant differences for all CBMN endpoints were observed when comparing lung cancer to All controls (which included COPD) and Healthy controls (with no COPD). The risk ratio (RR) was increased in the COPD group vs. Healthy controls for nuclear buds (RR 1.28, 95% confidence interval 1.01-1.62), and marginally increased for micronuclei (RR 1.06, 0.98-1.89) and nucleoplasmic bridges (RR 1.07, 0.97-1.15). These findings highlight the importance of using truly healthy controls in studies geared toward assessment of lung cancer risk. Using genetic instability biomarkers would facilitate the identification of smokers susceptible to tobacco smoke carcinogens and therefore predisposed to either disease. Copyright © 2017 The Japanese Respiratory Society. All rights reserved.

  11. Poor Baseline Pulmonary Function May Not Increase the Risk of Radiation-Induced Lung Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingbo [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Cao, Jianzhong [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Yuan, Shuanghu [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Ji, Wei [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Arenberg, Douglas [Department of Internal Medicine, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Dai, Jianrong [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Stanton, Paul; Tatro, Daniel; Ten Haken, Randall K. [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Wang, Luhua, E-mail: wlhwq@yahoo.com [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Kong, Feng-Ming, E-mail: fengkong@med.umich.edu [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States)

    2013-03-01

    Purpose: Poor pulmonary function (PF) is often considered a contraindication to definitive radiation therapy for lung cancer. This study investigated whether baseline PF was associated with radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) receiving conformal radiation therapy (CRT). Methods and Materials: NSCLC patients treated with CRT and tested for PF at baseline were eligible. Baseline predicted values of forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), and diffusion capacity of lung for carbon monoxide (DLCO) were analyzed. Additional factors included age, gender, smoking status, Karnofsky performance status, coexisting chronic obstructive pulmonary disease (COPD), tumor location, histology, concurrent chemotherapy, radiation dose, and mean lung dose (MLD) were evaluated for RILT. The primary endpoint was symptomatic RILT (SRILT), including grade ≥2 radiation pneumonitis and fibrosis. Results: There was a total of 260 patients, and SRILT occurred in 58 (22.3%) of them. Mean FEV1 values for SRILT and non-SRILT patients were 71.7% and 65.9% (P=.077). Under univariate analysis, risk of SRILT increased with MLD (P=.008), the absence of COPD (P=.047), and FEV1 (P=.077). Age (65 split) and MLD were significantly associated with SRILT in multivariate analysis. The addition of FEV1 and age with the MLD-based model slightly improved the predictability of SRILT (area under curve from 0.63-0.70, P=.088). Conclusions: Poor baseline PF does not increase the risk of SRILT, and combining FEV1, age, and MLD may improve the predictive ability.

  12. Interstital lung disease in ANCA vasculitis.

    Science.gov (United States)

    Alba, Marco A; Flores-Suárez, Luis Felipe; Henderson, Ashley G; Xiao, Hong; Hu, Peiqi; Nachman, Patrick H; Falk, Ronald J; Charles Jennette, J

    2017-07-01

    Anti-neutrophil cytoplasmic antibodies (ANCA) vasculitides are immune-mediated disorders that primarily affect small blood vessels of the airway and kidneys. Lung involvement, one of the hallmarks of microscopic polyangiitis and granulomatosis with polyangiitis, is associated with increased mortality and morbidity. In recent years, several retrospective series and case reports have described the association of interstitial lung disease (ILD) and ANCA vasculitis, particularly those positive for ANCA specific for myeloperoxidase. In the majority of these patients pulmonary fibrosis occurs concurrently or predates the diagnosis of ANCA vasculitis. More importantly, these studies have shown that ILD has an adverse impact on the long-term prognosis of ANCA vasculitis. This review focuses on the main clinical and radiologic features of pulmonary fibrosis associated with anti-neutrophil cytoplasmic antibodies. Major histopathology features, prognosis and therapeutic options are summarized. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Transbronchial Lung Cryobiopsy and Video-assisted Thoracoscopic Lung Biopsy in the Diagnosis of Diffuse Parenchymal Lung Disease. A Meta-analysis of Diagnostic Test Accuracy.

    Science.gov (United States)

    Iftikhar, Imran H; Alghothani, Lana; Sardi, Alejandro; Berkowitz, David; Musani, Ali I

    2017-07-01

    Transbronchial lung cryobiopsy is increasingly being used for the assessment of diffuse parenchymal lung diseases. Several studies have shown larger biopsy samples and higher yields compared with conventional transbronchial biopsies. However, the higher risk of bleeding and other complications has raised concerns for widespread use of this modality. To study the diagnostic accuracy and safety profile of transbronchial lung cryobiopsy and compare with video-assisted thoracoscopic surgery (VATS) by reviewing available evidence from the literature. Medline and PubMed were searched from inception until December 2016. Data on diagnostic performance were abstracted by constructing two-by-two contingency tables for each study. Data on a priori selected safety outcomes were collected. Risk of bias was assessed with the Quality Assessment of Diagnostic Accuracy Studies tool. Random effects meta-analyses were performed to obtain summary estimates of the diagnostic accuracy. The pooled diagnostic yield, pooled sensitivity, and pooled specificity of transbronchial lung cryobiopsy were 83.7% (76.9-88.8%), 87% (85-89%), and 57% (40-73%), respectively. The pooled diagnostic yield, pooled sensitivity, and pooled specificity of VATS were 92.7% (87.6-95.8%), 91.0% (89-92%), and 58% (31-81%), respectively. The incidence of grade 2 (moderate to severe) endobronchial bleeding after transbronchial lung cryobiopsy and of post-procedural pneumothorax was 4.9% (2.2-10.7%) and 9.5% (5.9-14.9%), respectively. Although the diagnostic test accuracy measures of transbronchial lung cryobiopsy lag behind those of VATS, with an acceptable safety profile and potential cost savings, the former could be considered as an alternative in the evaluation of patients with diffuse parenchymal lung diseases.

  14. Hazy increased density in diffuse lung disease

    International Nuclear Information System (INIS)

    Klein, J.S.; Webb, W.R.; Gamsu, G.; Warnock, M.; Park, C.K.

    1989-01-01

    In order to determine the significance of ground glass density on high-resolution CT scans of patients with idiopathic pulmonary fibrosis and other lung disorders, the authors have reviewed 200 high-resolution CT studies and found 50 cases demonstrating areas of hazy increased lung density. Disease entities most often associated with this finding included DIP, UIP, alveolar proteinosis, sarcoidosis, and bronchiolitis obliterans/ organizing pneumonia. Pathologic examination revealed either cellular or fluid material lining terminal air spaces, often associated with alveolar wall infiltration and an absence of fibrosis. Gallium scans and bronchoalveolar lavage in some cases showed active inflammation Follow-up high-resolution CT studies in 10 patients showed either change or resolution of the hazy densities, confirming the presence of a reversible parenchymal lesion

  15. Detection and Severity Scoring of Chronic Obstructive Pulmonary Disease Using Volumetric Analysis of Lung CT Images

    International Nuclear Information System (INIS)

    Hosseini, Mohammad Parsa; Soltanian-Zadeh, Hamid; Akhlaghpoor, Shahram

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease.While there is no cure for COPD and the lung damage associated with this disease cannot be reversed, it is still very important to diagnose it as early as possible. In this paper, we propose a novel method based on the measurement of air trapping in the lungs from CT images to detect COPD and to evaluate its severity. Twenty-five patients and twelve normal adults were included in this study. The proposed method found volumetric changes of the lungs from inspiration to expiration. To this end, trachea CT images at full inspiration and expiration were compared and changes in the areas and volumes of the lungs between inspiration and expiration were used to define quantitative measures (features). Using these features,the subjects were classified into two groups of normal and COPD patients using a Bayesian classifier. In addition, t-tests were applied to evaluate discrimination powers of the features for this classification. For the cases studied, the proposed method estimated air trapping in the lungs from CT images without human intervention. Based on the results, a mathematical model was developed to relate variations of lung volumes to the severity of the disease. As a computer aided diagnosis (CAD) system, the proposed method may assist radiologists in the detection of COPD. It quantifies air trapping in the lungs and thus may assist them with the scoring of the disease by quantifying the severity of the disease

  16. CD147 deficiency blocks IL-8 secretion and inhibits lung cancer-induced osteoclastogenesis

    International Nuclear Information System (INIS)

    Wang, Hongkai; Zhuo, Yunyun; Hu, Xu; Shen, Weiwei; Zhang, Ying; Chu, Tongwei

    2015-01-01

    Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and poor prognosis; however, the molecular basis of this process is still unknown. This study investigated the role of extracellular matrix metalloproteinase inducer (also known as cluster of differentiation (CD)147) in osteoclastogenesis resulting from bone metastasis, based on the enrichment of this glycoprotein on the surface of many malignant bone tumors. RNA interference was used to silence CD147 expression in A549 human lung cancer cells. Compared with conditioned medium (CM) from control cells (A549-CM), CM from CD147-deficient cells (A549-si-CM) suppressed receptor activator of nuclear factor κB ligand-stimulated osteoclastogenesis in RAW 264.7 cells and bone marrow-derived macrophages. The mRNA levels of osteoclast-specific genes such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K were also reduced in the presence of A549-si-CM. CD147 knockdown in A549 cells decreased interleukin (IL)-8mRNA and protein expression. IL-8 is present in large amounts in A549-CM and mimicked its inductive effect on osteoclastogenesis; this was reversed by depletion of IL-8 from the medium. Taken together, these results indicate that CD147 promotes lung cancer-induced osteoclastogenesis by modulating IL-8 secretion, and suggest that CD147 is a potential therapeutic target for cancer-associated bone resorption in lung cancer patients. - Highlights: • Bone loss frequently results from lung cancer metastasis. • Cluster of differentiation (CD)147 was depleted in A549 lung adenocarcinoma cells. • RAW 264.7 cell osteoclastogenesis was blocked by medium from CD147-deficient cells. • Interleukin (IL)-8 level was reduced in the conditioned medium. • Osteoclastogenesis induced by lung tumor cells requires CD147-mediated IL-8 release

  17. CD147 deficiency blocks IL-8 secretion and inhibits lung cancer-induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongkai; Zhuo, Yunyun; Hu, Xu; Shen, Weiwei; Zhang, Ying; Chu, Tongwei, E-mail: chtw@sina.com

    2015-03-06

    Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and poor prognosis; however, the molecular basis of this process is still unknown. This study investigated the role of extracellular matrix metalloproteinase inducer (also known as cluster of differentiation (CD)147) in osteoclastogenesis resulting from bone metastasis, based on the enrichment of this glycoprotein on the surface of many malignant bone tumors. RNA interference was used to silence CD147 expression in A549 human lung cancer cells. Compared with conditioned medium (CM) from control cells (A549-CM), CM from CD147-deficient cells (A549-si-CM) suppressed receptor activator of nuclear factor κB ligand-stimulated osteoclastogenesis in RAW 264.7 cells and bone marrow-derived macrophages. The mRNA levels of osteoclast-specific genes such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K were also reduced in the presence of A549-si-CM. CD147 knockdown in A549 cells decreased interleukin (IL)-8mRNA and protein expression. IL-8 is present in large amounts in A549-CM and mimicked its inductive effect on osteoclastogenesis; this was reversed by depletion of IL-8 from the medium. Taken together, these results indicate that CD147 promotes lung cancer-induced osteoclastogenesis by modulating IL-8 secretion, and suggest that CD147 is a potential therapeutic target for cancer-associated bone resorption in lung cancer patients. - Highlights: • Bone loss frequently results from lung cancer metastasis. • Cluster of differentiation (CD)147 was depleted in A549 lung adenocarcinoma cells. • RAW 264.7 cell osteoclastogenesis was blocked by medium from CD147-deficient cells. • Interleukin (IL)-8 level was reduced in the conditioned medium. • Osteoclastogenesis induced by lung tumor cells requires CD147-mediated IL-8 release.

  18. Solely lung-involved IgG4-related disease : a case report and review of the literature.

    Science.gov (United States)

    Zhang, Xiao-Qin; Chen, Guo-Ping; Wu, Sheng-Chang; Yu, Sa; Wang, Hong; Chen, Xuan-Yi; Ren, Zhuo-Chao

    2016-12-23

    By analyzing the clinical data of 1 case of IgG4-related lung disease(IgG4-RLD) and the review of literature, the author investigated the clinical characteristics of IgG4-RLD. IgG4-RLD is a rare disease characterized by significant elevation of serum IgG4 and infiltration of a large number of IgG4+ plasma cells. The clinical manifestations of the disease were nonspecific, and the imaging features were mixed with several types. The disease can only be involved in the lung, but also multiple organ involvement. Solely lung-involved IgG4-RD is not only extremely rare but also easily misdiagnosed as tuberculosis, lung cancer, lymphoma and other common pulmonary diseases. Histopathological examination is the key to the diagnosis of the disease. Corticosteroids are the first choice of treatment, and the overall prognosis is good.

  19. Clostridium sordellii lethal toxin kills mice by inducing a major increase in lung vascular permeability.

    Science.gov (United States)

    Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R

    2007-03-01

    When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication.

  20. A novel imidazopyridine derivative, X22, attenuates sepsis-induced lung and liver injury by inhibiting the inflammatory response in vitro and in vivo.

    Science.gov (United States)

    Ge, Xiangting; Feng, Zhiguo; Xu, Tingting; Wu, Beibei; Chen, Hongjin; Xu, Fengli; Fu, Lili; Shan, Xiaoou; Dai, Yuanrong; Zhang, Yali; Liang, Guang

    2016-01-01

    Sepsis remains a leading cause of death worldwide. Despite years of extensive research, effective drugs to treat sepsis in the clinic are lacking. In this study, we found a novel imidazopyridine derivative, X22, which has powerful anti-inflammatory activity. X22 dose-dependently inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine production in mouse primary peritoneal macrophages and RAW 264.7 macrophages. X22 also downregulated the LPS-induced proinflammatory gene expression in vitro. In vivo, X22 exhibited a significant protection against LPS-induced death. Pretreatment or treatment with X22 attenuated the sepsis-induced lung and liver injury by inhibiting the inflammatory response. In addition, X22 showed protection against LPS-induced acute lung injury. We additionally found that pretreatment with X22 reduced the inflammatory pain in the acetic acid and formalin models and reduced the dimethylbenzene-induced ear swelling and acetic acid-increased vascular permeability. Together, these data confirmed that X22 has multiple anti-inflammatory effects and may be a potential therapeutic option in the treatment of inflammatory diseases.