WorldWideScience

Sample records for lunar sample integration

  1. Integration of Apollo Lunar Sample Data into Google Moon

    Science.gov (United States)

    Dawson, Melissa D.; Todd, Nancy S.; Lofgren, Gary

    2010-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is a continuation of the Apollo 15 Google Moon Add-On project, which provides a scientific and educational tool for the study of the Moon and its geologic features. The main goal of this project is to provide a user-friendly interface for an interactive and educational outreach and learning tool for the Apollo missions. Specifically, this project?s focus is the dissemination of information about the lunar samples collected during the Apollo missions by providing any additional information needed to enhance the Apollo mission data on Google Moon. Apollo missions 15 and 16 were chosen to be completed first due to the availability of digitized lunar sample photographs and the amount of media associated with these missions. The user will be able to learn about the lunar samples collected in these Apollo missions, as well as see videos, pictures, and 360 degree panoramas of the lunar surface depicting the lunar samples in their natural state, following collection and during processing at NASA. Once completed, these interactive data layers will be submitted for inclusion into the Apollo 15 and 16 missions on Google Moon.

  2. Apollo Lunar Sample Integration into Google Moon: A New Approach to Digitization

    Science.gov (United States)

    Dawson, Melissa D.; Todd, nancy S.; Lofgren, Gary E.

    2011-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is part of a larger, LASER-funded 4-year lunar rock photo restoration project by NASA s Acquisition and Curation Office [1]. The objective of this project is to enhance the Apollo mission data already available on Google Moon with information about the lunar samples collected during the Apollo missions. To this end, we have combined rock sample data from various sources, including Curation databases, mission documentation and lunar sample catalogs, with newly available digital photography of rock samples to create a user-friendly, interactive tool for learning about the Apollo Moon samples

  3. Lunar Sample Compendium

    Science.gov (United States)

    Meyer, Charles

    2005-01-01

    The purpose of the Lunar Sample Compendium will be to inform scientists, astronauts and the public about the various lunar samples that have been returned from the Moon. This Compendium will be organized rock by rock in the manor of a catalog, but will not be as comprehensive, nor as complete, as the various lunar sample catalogs that are available. Likewise, this Compendium will not duplicate the various excellent books and reviews on the subject of lunar samples (Cadogen 1981, Heiken et al. 1991, Papike et al. 1998, Warren 2003, Eugster 2003). However, it is thought that an online Compendium, such as this, will prove useful to scientists proposing to study individual lunar samples and should help provide backup information for lunar sample displays. This Compendium will allow easy access to the scientific literature by briefly summarizing the significant findings of each rock along with the documentation of where the detailed scientific data are to be found. In general, discussion and interpretation of the results is left to the formal reviews found in the scientific literature. An advantage of this Compendium will be that it can be updated, expanded and corrected as need be.

  4. The Lunar Sample Compendium

    Science.gov (United States)

    Meyer, Charles

    2009-01-01

    The Lunar Sample Compendium is a succinct summary of the data obtained from 40 years of study of Apollo and Luna samples of the Moon. Basic petrographic, chemical and age information is compiled, sample-by-sample, in the form of an advanced catalog in order to provide a basic description of each sample. The LSC can be found online using Google. The initial allocation of lunar samples was done sparingly, because it was realized that scientific techniques would improve over the years and new questions would be formulated. The LSC is important because it enables scientists to select samples within the context of the work that has already been done and facilitates better review of proposed allocations. It also provides back up material for public displays, captures information found only in abstracts, grey literature and curatorial databases and serves as a ready access to the now-vast scientific literature.

  5. Lunar sample studies

    International Nuclear Information System (INIS)

    1977-01-01

    Lunar samples discussed and the nature of their analyses are: (1) an Apollo 15 breccia which is thoroughly analyzed as to the nature of the mature regolith from which it derived and the time and nature of the lithification process, (2) two Apollo 11 and one Apollo 12 basalts analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography, (3) eight Apollo 17 mare basalts, also analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography. The first seven are shown to be chemically similar although of two main textural groups; the eighth is seen to be distinct in both chemistry and mineralogy, (4) a troctolitic clast from a Fra Mauro breccia, analyzed and contrasted with other high-temperature lunar mineral assemblages. Two basaltic clasts from the same breccia are shown to have affinities with rock 14053, and (5) the uranium-thorium-lead systematics of three Apollo 16 samples are determined; serious terrestrial-lead contamination of the first two samples is attributed to bandsaw cutting in the lunar curatorial facility

  6. NASA Lunar and Meteorite Sample Disk Program

    Science.gov (United States)

    Foxworth, Suzanne

    2017-01-01

    The Lunar and Meteorite Sample Disk Program is designed for K-12 classroom educators who work in K-12 schools, museums, libraries, or planetariums. Educators have to be certified to borrow the Lunar and Meteorite Sample Disks by attending a NASA Certification Workshop provided by a NASA Authorized Sample Disk Certifier.

  7. Integrated lunar materials manufacturing process

    Science.gov (United States)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)

    1990-01-01

    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.-1,200.degree. C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  8. Lower-Cost, Relocatable Lunar Polar Lander and Lunar Surface Sample Return Probes

    Science.gov (United States)

    Amato, G. Michael; Garvin, James B.; Burt, I. Joseph; Karpati, Gabe

    2011-01-01

    Key science and exploration objectives of lunar robotic precursor missions can be achieved with the Lunar Explorer (LEx) low-cost, robotic surface mission concept described herein. Selected elements of the LEx concept can also be used to create a lunar surface sample return mission that we have called Boomerang

  9. Sample Curation at a Lunar Outpost

    Science.gov (United States)

    Allen, Carlton C.; Lofgren, Gary E.; Treiman, A. H.; Lindstrom, Marilyn L.

    2007-01-01

    The six Apollo surface missions returned 2,196 individual rock and soil samples, with a total mass of 381.6 kg. Samples were collected based on visual examination by the astronauts and consultation with geologists in the science back room in Houston. The samples were photographed during collection, packaged in uniquely-identified containers, and transported to the Lunar Module. All samples collected on the Moon were returned to Earth. NASA's upcoming return to the Moon will be different. Astronauts will have extended stays at an out-post and will collect more samples than they will return. They will need curation and analysis facilities on the Moon in order to carefully select samples for return to Earth.

  10. Technicians work with Apollo 14 lunar sample material in Lunar Receiving Lab.

    Science.gov (United States)

    1971-01-01

    Glove handlers work with freshly opened Apollo 14 lunar sample material in modularized cabinets in the Lunar Receiving Laboratory at the Manned Spacecraft Center. The glove operator on the right starts to pour fine lunar material which he has just taken from a tote bag. This powdery sample was among the last to be revealed of the 90-odd pounds of material brought back to Earth by the Apollo 14 crewmen.

  11. Characterization of Volatiles Loss from Soil Samples at Lunar Environments

    Science.gov (United States)

    Kleinhenz, Julie; Smith, Jim; Roush, Ted; Colaprete, Anthony; Zacny, Kris; Paulsen, Gale; Wang, Alex; Paz, Aaron

    2017-01-01

    Resource Prospector Integrated Thermal Vacuum Test Program A series of ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations for RP Volatiles loss during sampling operations Hardware performance Sample removal and transfer Concept of operationsInstrumentation5 test campaigns over 5 years have been conducted with RP hardware with advancing hardware designs and additional RP subsystems Volatiles sampling 4 years Using flight-forward regolith sampling hardware, empirically determine volatile retention at lunar-relevant conditions Use data to improve theoretical predictions Determine driving variables for retention Bound water loss potential to define measurement uncertainties. The main goal of this talk is to introduce you to our approach to characterizing volatiles loss for RP. Introduce the facility and its capabilities Overview of the RP hardware used in integrated testing (most recent iteration) Summarize the test variables used thus farReview a sample of the results.

  12. Apollo Lunar Sample Photographs: Digitizing the Moon Rock Collection

    Science.gov (United States)

    Lofgren, Gary E.; Todd, Nancy S.; Runco, S. K.; Stefanov, W. L.

    2011-01-01

    The Acquisition and Curation Office at JSC has undertaken a 4-year data restoration project effort for the lunar science community funded by the LASER program (Lunar Advanced Science and Exploration Research) to digitize photographs of the Apollo lunar rock samples and create high resolution digital images. These sample photographs are not easily accessible outside of JSC, and currently exist only on degradable film in the Curation Data Storage Facility

  13. Distribution and Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; McLain, H. L.; Noble, S. K.; Gibson, E. K., Jr.

    2015-01-01

    The existence of organic compounds on the lunar surface has been a question of interest from the Apollo era to the present. Investigations of amino acids immediately after collection of lunar samples yielded inconclusive identifications, in part due to analytical limitations including insensitivity to certain compounds, an inability to separate enantiomers, and lack of compound-specific isotopic measurements. It was not possible to determine if the detected amino acids were indigenous to the lunar samples or the result of terrestrial contamination. Recently, we presented initial data from the analysis of amino acid abundances in 12 lunar regolith samples and discussed those results in the context of four potential amino acid sources [5]. Here, we expand on our previous work, focusing on amino acid abundances and distributions in seven regolith samples and presenting the first compound-specific carbon isotopic ratios measured for amino acids in a lunar sample.

  14. Adsorption of Hg on lunar samples

    International Nuclear Information System (INIS)

    Reed, G.W. Jr.; Jovanovic, S.

    1985-01-01

    Understanding the presence, migration mechanisms and trapping of indigneous gases and volatiles on the moon is the objective of this study. The rare gases Ar and Xe and highly volatile Hg 0 and Br 0 (and/or their compounds) have been determined to be present in the lunar regolith. Evidence for these elements in the moon was recently reviewed. Studies of the sorption behavior of Xe on lunar material have been carried out. We report here preliminary results of a study designed to rationalize the behavior of Hg in lunar material

  15. A Virtual Petrological Microscope for All Apollo 11 Lunar Samples

    Science.gov (United States)

    Pillnger, C. T.; Tindle, A. G.; Kelley, S. P.; Quick, K.; Scott, P.; Gibson, E. K.; Zeigler, R. A.

    2014-01-01

    A means of viewing, over the Internet, polished thin sections of every rock in the Apollo lunar sample collections via software, duplicaing many of the functions of a petrological microscope, is described.

  16. Hydrogen and fluorine in the surfaces of lunar samples

    International Nuclear Information System (INIS)

    Leich, D.A.; Goldberg, R.H.; Burnett, D.S.; Tombrello, T.A.

    1974-04-01

    The resonant nuclear reaction F-19 (p, alpha gamma)O-16 was used to perform depth sensitive analyses for both fluorine and hydrogen in lunar samples. The resonance at 0.83 MeV (center-of-mass) in this reaction was applied to the measurement of the distribution of trapped solar protons in lunar samples to depths of about 1 / 2 micrometer. These results are interpreted in terms of terrestrial H 2 O surface contamination and a redistribution of the implanted solar H which has been influenced by heavy radiation damage in the surface region. Results are also presented for an experiment to test the penetration of H 2 O into laboratory glass samples which have been irradiated with O-16 to simulate the radiation damaged surfaces of lunar glasses. Fluorine determinations were performed in a 1 pm surface layer on lunar samples using the same F-19(alpha gamma)O-16 resonance. The data are discussed from the standpoint of lunar fluorine and Teflon contamination. (U.S.)

  17. The Apollo lunar samples collection analysis and results

    CERN Document Server

    Young, Anthony

    2017-01-01

    This book focuses on the specific mission planning for lunar sample collection, the equipment used, and the analysis and findings concerning the samples at the Lunar Receiving Laboratory in Texas. Anthony Young documents the collection of Apollo samples for the first time for readers of all backgrounds, and includes interviews with many of those involved in planning and analyzing the samples. NASA contracted with the U.S. Geologic Survey to perform classroom and field training of the Apollo astronauts. NASA’s Geology Group within the Manned Spacecraft Center in Houston, Texas, helped to establish the goals of sample collection, as well as the design of sample collection tools, bags, and storage containers. In this book, detailed descriptions are given on the design of the lunar sampling tools, the Modular Experiment Transporter used on Apollo 14, and the specific areas of the Lunar Rover vehicle used for the Apollo 15, 16, and 17 missions, which carried the sampling tools, bags, and other related equipment ...

  18. A spinner magnetometer for large Apollo lunar samples

    Science.gov (United States)

    Uehara, M.; Gattacceca, J.; Quesnel, Y.; Lepaulard, C.; Lima, E. A.; Manfredi, M.; Rochette, P.

    2017-10-01

    We developed a spinner magnetometer to measure the natural remanent magnetization of large Apollo lunar rocks in the storage vault of the Lunar Sample Laboratory Facility (LSLF) of NASA. The magnetometer mainly consists of a commercially available three-axial fluxgate sensor and a hand-rotating sample table with an optical encoder recording the rotation angles. The distance between the sample and the sensor is adjustable according to the sample size and magnetization intensity. The sensor and the sample are placed in a two-layer mu-metal shield to measure the sample natural remanent magnetization. The magnetic signals are acquired together with the rotation angle to obtain stacking of the measured signals over multiple revolutions. The developed magnetometer has a sensitivity of 5 × 10-7 Am2 at the standard sensor-to-sample distance of 15 cm. This sensitivity is sufficient to measure the natural remanent magnetization of almost all the lunar basalt and breccia samples with mass above 10 g in the LSLF vault.

  19. A spinner magnetometer for large Apollo lunar samples.

    Science.gov (United States)

    Uehara, M; Gattacceca, J; Quesnel, Y; Lepaulard, C; Lima, E A; Manfredi, M; Rochette, P

    2017-10-01

    We developed a spinner magnetometer to measure the natural remanent magnetization of large Apollo lunar rocks in the storage vault of the Lunar Sample Laboratory Facility (LSLF) of NASA. The magnetometer mainly consists of a commercially available three-axial fluxgate sensor and a hand-rotating sample table with an optical encoder recording the rotation angles. The distance between the sample and the sensor is adjustable according to the sample size and magnetization intensity. The sensor and the sample are placed in a two-layer mu-metal shield to measure the sample natural remanent magnetization. The magnetic signals are acquired together with the rotation angle to obtain stacking of the measured signals over multiple revolutions. The developed magnetometer has a sensitivity of 5 × 10 -7 Am 2 at the standard sensor-to-sample distance of 15 cm. This sensitivity is sufficient to measure the natural remanent magnetization of almost all the lunar basalt and breccia samples with mass above 10 g in the LSLF vault.

  20. The Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  1. MoonDB — A Data System for Analytical Data of Lunar Samples

    Science.gov (United States)

    Lehnert, K.; Ji, P.; Cai, M.; Evans, C.; Zeigler, R.

    2018-04-01

    MoonDB is a data system that makes analytical data from the Apollo lunar sample collection and lunar meteorites accessible by synthesizing published and unpublished datasets in a relational database with an online search interface.

  2. Gardening process of lunar surface layer inferred from the galactic cosmic-ray exposure ages of lunar samples

    International Nuclear Information System (INIS)

    Iriyama, Jun; Honda, Masatake.

    1979-01-01

    From the cosmic-ray exposure age data, (time scale 10 7 - 10 8 years), of the lunar surface materials, we discuss the gardening process of the lunar surface layer caused by the meteoroid impact cratering. At steady state, it is calculated that, in the region within 10 - 50 m of the surface, a mixing rate of 10 -4 to 10 -5 mm/yr is necessary to match the exposure ages. Observed exposure ages of the lunar samples could be explained by the gardening effect calculated using a crater formation rate which is slightly modified from the current crater population data. (author)

  3. The apollo 15 lunar samples: A preliminary description

    Science.gov (United States)

    Gast, P.W.; Phinney, W.C.; Duke, M.B.; Silver, L.T.; Hubbard, N.J.; Heiken, G.H.; Butler, P.; McKay, D.S.; Warner, J.L.; Morrison, D.A.; Horz, F.; Head, J.; Lofgren, G.E.; Ridley, W.I.; Reid, A.M.; Wilshire, H.; Lindsay, J.F.; Carrier, W.D.; Jakes, P.; Bass, M.N.; Brett, P.R.; Jackson, E.D.; Rhodes, J.M.; Bansal, B.M.; Wainwright, J.E.; Parker, K.A.; Rodgers, K.V.; Keith, J.E.; Clark, R.S.; Schonfeld, E.; Bennett, L.; Robbins, Martha M.; Portenier, W.; Bogard, D.D.; Hart, W.R.; Hirsch, W.C.; Wilkin, R.B.; Gibson, E.K.; Moore, C.B.; Lewis, C.F.

    1972-01-01

    Samples returned from the Apollo 15 site consist of mare basalts and breccias with a variety of premare igneous rocks. The mare basalts are from at least two different lava flows. The bulk chemical compositions and textures of these rocks confirm the previous conclusion that the lunar maria consist of a series of extrusive volcanic rocks that are rich in iron and poor in sodium. The breccias contain abundant clasts of anorthositic fragments along with clasts of basaltic rocks much richer in plagioclase than the mare basalts. These two rock types also occur as common components in soil samples from this site. The rocks and soils from both the front and mare region exhibit a variety of shock characteristics that can best be ascribed to ray material from the craters Aristillus or Autolycus.

  4. Spacesuit Integrated Carbon Nanotube Dust Mitigation System for Lunar Exploration

    Science.gov (United States)

    Manyapu, Kavya Kamal

    Lunar dust proved to be troublesome during the Apollo missions. The lunar dust comprises of fine particles, with electric charges imparted by solar winds and ultraviolet radiation. As such, it adheres readily, and easily penetrates through smallest crevices into mechanisms. During Apollo missions, the powdery dust substantially degraded the performance of spacesuits by abrading suit fabric and clogging seals. Dust also degraded other critical equipment such as rovers, thermal control and optical surfaces, solar arrays, and was thus shown to be a major issue for surface operations. Even inside the lunar module, Apollo astronauts were exposed to this dust when they removed their dust coated spacesuits. This historical evidence from the Apollo missions has compelled NASA to identify dust mitigation as a critical path. This important environmental challenge must be overcome prior to sending humans back to the lunar surface and potentially to other surfaces such as Mars and asteroids with dusty environments. Several concepts were successfully investigated by the international research community for preventing deposition of lunar dust on rigid surfaces (ex: solar cells, thermal radiators). However, applying these technologies for flexible surfaces and specifically to spacesuits has remained an open challenge, due to the complexity of the suit design, geometry, and dynamics. The research presented in this dissertation brings original contribution through the development and demonstration of the SPacesuit Integrated Carbon nanotube Dust Ejection/Removal (SPIcDER) system to protect spacesuits and other flexible surfaces from lunar dust. SPIcDER leverages the Electrodynamic Dust Shield (EDS) concept developed at NASA for use on solar cells. For the SPIcDER research, the EDS concept is customized for application on spacesuits and flexible surfaces utilizing novel materials and specialized design techniques. Furthermore, the performance of the active SPIcDER system is enhanced

  5. Lunar and Meteorite Sample Education Disk Program — Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, J.; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-03-01

    NASA’s Lunar and Meteorite Sample Education Disk Program has Lucite disks containing Apollo lunar samples and meteorite samples that are available for trained educators to borrow for use in classrooms, museums, science center, and libraries.

  6. Understanding the origin and evolution of water in the Moon through lunar sample studies.

    Science.gov (United States)

    Anand, Mahesh; Tartèse, Romain; Barnes, Jessica J

    2014-09-13

    A paradigm shift has recently occurred in our knowledge and understanding of water in the lunar interior. This has transpired principally through continued analysis of returned lunar samples using modern analytical instrumentation. While these recent studies have undoubtedly measured indigenous water in lunar samples they have also highlighted our current limitations and some future challenges that need to be overcome in order to fully understand the origin, distribution and evolution of water in the lunar interior. Another exciting recent development in the field of lunar science has been the unambiguous detection of water or water ice on the surface of the Moon through instruments flown on a number of orbiting spacecraft missions. Considered together, sample-based studies and those from orbit strongly suggest that the Moon is not an anhydrous planetary body, as previously believed. New observations and measurements support the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. Furthermore, an approach combining measurements of water abundance in lunar samples and its hydrogen isotopic composition has proved to be of vital importance to fingerprint and elucidate processes and source(s) involved in giving rise to the lunar water inventory. A number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar wind hydrogen with the lunar soil. Perhaps two of the most striking findings from these recent studies are the revelation that at least some portions of the lunar interior are as water-rich as some Mid-Ocean Ridge Basalt source regions on Earth and that the water in the Earth and the Moon probably share a common origin. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Extending the Reach of IGSN Beyond Earth: Implementing IGSN Registration to Link NASA's Apollo Lunar Samples and their Data

    Science.gov (United States)

    Todd, N. S.

    2016-12-01

    The rock and soil samples returned from the Apollo missions from 1969-72 have supported 46 years of research leading to advances in our understanding of the formation and evolution of the inner Solar System. NASA has been engaged in several initiatives that aim to restore, digitize, and make available to the public existing published and unpublished research data for the Apollo samples. One of these initiatives is a collaboration with IEDA (Interdisciplinary Earth Data Alliance) to develop MoonDB, a lunar geochemical database modeled after PetDB. In support of this initiative, NASA has adopted the use of IGSN (International Geo Sample Number) to generate persistent, unique identifiers for lunar samples that scientists can use when publishing research data. To facilitate the IGSN registration of the original 2,200 samples and over 120,000 subdivided samples, NASA has developed an application that retrieves sample metadata from the Lunar Curation Database and uses the SESAR API to automate the generation of IGSNs and registration of samples into SESAR (System for Earth Sample Registration). This presentation will describe the work done by NASA to map existing sample metadata to the IGSN metadata and integrate the IGSN registration process into the sample curation workflow, the lessons learned from this effort, and how this work can be extended in the future to help deal with the registration of large numbers of samples.

  8. Spinel-rich lithologies in the lunar highland crust: Linking lunar samples, crystallization experiments and remote sensing

    Science.gov (United States)

    Gross, J.; Treiman, A. H.

    2012-12-01

    The discovery of areas rich in (Mg,Fe)-Al spinel on the rims and central peaks of lunar impact basins (by the M3 mapping spectrometer on Chandrayaan-1) has revived the old puzzle of the origin of lunar spinel. (Mg,Fe)-Al spinel is rare but widespread in lunar highlands rocks, and thus might be an important component of the lunar crust [1-3]. However, the origin of this spinel is not clear. Lunar (Mg,Fe)-Al spinel could have formed (1) during 'normal' basalt petrogenesis at high pressure; (2) during low-pressure crystallization of melts rich in olivine and plagioclase components, e.g. impact-melted lunar troctolite; or (3) formed at low pressure during assimilation of anorthosite into picritic magma; thus, lunar spinel-rich areas represent old (pre-impact) intrusions of magma. In the absence of spinel-rich samples from the Moon, however, these ideas have been highly speculative. Here we describe a rock fragment from lunar meteorite ALHA 81005 that we recently reported [4] that not only contains spinel, but is the first spinel-rich lunar sample described. This fragment contains ~30% (Mg,Fe)Al spinel and is so fine grained that it reasonably could represent a larger rock body. However, the fragment is so rich in spinel that it could not have formed by melting a peridotitic mantle or a basaltic lunar crust. The clast's small grain size and its apparent disequilibrium between spinel and pyroxene suggest fairly rapid crystallization at low pressure. It could have formed as a spinel cumulate from an impact melt of troctolitic composition; or from a picritic magma that assimilated crustal anorthosite on its margins. The latter mechanism is preferred because it explains the petrographic and chemical features of our clast, and is consistent with the regional setting of the Moscoviense spinel deposit [4]. To better understand the origin and formation history(s) of spinel-rich rocks, we also performed liquidus/crystallization experiments at low-pressure as analogues for impact

  9. Enabling Global Lunar Sample Return and Life-Detection Studies Using a Deep-Space Gateway

    Science.gov (United States)

    Cohen, B. A.; Eigenbrode, J. A.; Young, K. E.; Bleacher, J. E.; Trainer, M. E.

    2018-02-01

    The Deep Space Gateway could uniquely enable a lunar robotic sampling campaign that would provide incredible science return as well as feed forward to Mars and Europa by testing instrument sterility and ability to distinguish biogenic signals.

  10. Virtual Microscope Views of the Apollo 11, 12, and 15 Lunar Samples

    Science.gov (United States)

    Gibson, E. K.; Tindle, A. G.; Kelley, S. P.; Pillinger, J. M.

    2017-01-01

    The Apollo virtual microscope is a means of viewing, over the Internet, polished thin sections of every rock in the Apollo lunar sample collections. It uses software that duplicates many of the functions of a petrological microscope.

  11. Magnetic Memory of two lunar samples, 15405 and 15445

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther; Kameníková, T.; Fuller, M.; Čížková, Kristýna

    2016-01-01

    Roč. 51, SI, Supplement 1 (2016), A375-A375 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /79./. 07.08.2016-12.08.2016, Berlin] Institutional support: RVO:67985831 Keywords : Lunar rocks * 15405 * 15445 * Apollo 15 * magnetic remanence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  12. Charged-particle track analysis, thermoluminescence and microcratering studies of lunar samples

    International Nuclear Information System (INIS)

    Durrani, S.A.

    1977-01-01

    Studies of lunar samples (from both Apollo and Luna missions) have been carried out, using track analysis and thermoluminescence (t.l.) techniques, with a view to shedding light on the radiation and temperature histories of the Moon. In addition, microcraters in lunar glasses have been studied in order to elucidate the cosmic-dust impact history of the lunar regolith. In tracks studies, the topics discussed include the stabilizing effect of the thermal annealing of fossil tracks due to the lunar temperature cycle; the 'radiation annealing' of fresh heavy-ion tracks by large doses of protons (to simulate the effect of lunar radiation-damage on track registration); and correction factors for the anisotropic etching of crystals which are required in reconstructing the exposure history of lunar grains. An abundance ratio of ca. (1.1 + 0.3) x 10 -3 has been obtained, by the differential annealing technique, for the nuclei beyond the iron group to those within that group in the cosmic rays incident on the Moon. The natural t.l. of lunar samples has been used to estimate their effective storage temperature and mean depth below the surface. The results of the study of natural and artificially produced microcraters have been studied. (author)

  13. Integrated Lunar Information Architecture for Decision Support Version 3.0 (ILIADS 3.0)

    Science.gov (United States)

    Talabac, Stephen; Ames, Troy; Blank, Karin; Hostetter, Carl; Brandt, Matthew

    2013-01-01

    ILIADS 3.0 provides the data management capabilities to access CxP-vetted lunar data sets from the LMMP-provided Data Portal and the LMMP-provided On-Moon lunar data product server. (LMMP stands for Lunar Mapping and Modeling Project.) It also provides specific quantitative analysis functions to meet the stated LMMP Level 3 functional and performance requirements specifications that were approved by the CxP. The purpose of ILIADS 3.0 is to provide an integrated, rich client lunar GIS software application

  14. Virtual Microscope Views of the Apollo 11 and 12 Lunar Samples

    Science.gov (United States)

    Gibson, E. K.; Tindle, A. G.; Kelley, S. P.; Pillinger, J. M.

    2016-01-01

    components, and publication on a website. Two large research quality microscopes are used to collect all the images required for a virtual microscope. The first is part of an integrated package that utilizes Leica PowerMosaic software and a motorised XYZ stage to generate large area mosaics. It includes a fast acquisition camera and depending on the PTS size normally is used to produce seamless mosaic images consisting of 100-500 individual photographs. If the sample is suitable, three mosaics of each sample are recorded - plane polarised light, between crossed polars and reflected light. In order for the VM to be a true petrological microscope it is necessary to recreate the features of a rotating stage and perform observations using filters to produce polarised light. Thus the petrological VM includes the capability of seeing changes in optical properties (pleochroism and birefringence) during rotation allowing mineral identification. The second microscope in the system provides the functions of the rotating stage. To this microscope we have added a robotically controlled motor to acquire seventy-two images (5 degree intervals) in plane polarised light and between crossed polars. To process the images acquired from the two microscopes involves a combination of proprietary software (Photoshop) and our own in-house code. The final stage involves assembling all the components in an HTML5 environment. Pathfinder investigations: We have undertaken a number of pilot studies to demonstrate the efficacy of the petrological microscope with lunar samples. The first was to make available on-line images collected from the Educational Package of Apollo samples provided by NASA to the UK STFC (Science and Technical Facilities Council) for loan as educational material e.g. for schools. The real PTSs of the samples are now no longer sent out to schools removing the risks associated with transport, accidental breakage and eliminating the possibility of loss. The availability of lunar

  15. The Luna 16 and Luna 20 samples and their integrated studies in India

    International Nuclear Information System (INIS)

    Lal, D.

    1974-01-01

    The results of an integrated study of physical and chemical properties of lunar samples returned to earth by the automatic Soviet stations Luna 16 and 20 carried out with a view to dilineate the evolutionary history of moon, are reported. The nature of the Luna 16 and Luna 20 landing sites and lunar samples, and the manner in which the integrated analyses were planned and executed, are discussed. It is noted that the two lunar missions have provided a wealth of new information in unravelling the early history of planetary formation. (A.K.)

  16. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    Science.gov (United States)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  17. Photomosaics of the cathodoluminescence of 60 sections of meteorites and lunar samples

    Science.gov (United States)

    Akridge, D.G.; Akridge, J.M.C.; Batchelor, J.D.; Benoit, P.H.; Brewer, J.; DeHart, J.M.; Keck, B.D.; Jie, L.; Meier, A.; Penrose, M.; Schneider, D.M.; Sears, D.W.G.; Symes, S.J.K.; Yanhong, Z.

    2004-01-01

    Cathodoluminescence (CL) petrography provides a means of observing petrographic and compositional properties of geological samples not readily observable by other techniques. We report the low-magnification CL images of 60 sections of extraterrestrial materials. The images we report include ordinary chondrites (including type 3 ordinary chondrites and gas-rich regolith breccias), enstatite chondrites, CO chondrites and a CM chondrite, eucrites and a howardite, lunar highland regolith breccias, and lunar soils. The CL images show how primitive materials respond to parent body metamorphism, how the metamorphic history of EL chondrites differs from that of EH chondrites, how dark matrix and light clasts of regolith breccias relate to each other, how metamorphism affects eucrites, the texture of lunar regolith breccias and the distribution of crystallized lunar spherules ("lunar chondrules"), and how regolith working affects the mineral properties of lunar soils. More particularly, we argue that such images are a rich source of new information on the nature and history of these materials and that our efforts to date are a small fraction of what can be done. Copyright 2004 by the American Geophysical Union.

  18. PDS Archive Release of Apollo 11, Apollo 12, and Apollo 17 Lunar Rock Sample Images

    Science.gov (United States)

    Garcia, P. A.; Stefanov, W. L.; Lofgren, G. E.; Todd, N. S.; Gaddis, L. R.

    2013-01-01

    Scientists at the Johnson Space Center (JSC) Lunar Sample Laboratory, Information Resources Directorate, and Image Science & Analysis Laboratory have been working to digitize (scan) the original film negatives of Apollo Lunar Rock Sample photographs [1, 2]. The rock samples, and associated regolith and lunar core samples, were obtained during the Apollo 11, 12, 14, 15, 16 and 17 missions. The images allow scientists to view the individual rock samples in their original or subdivided state prior to requesting physical samples for their research. In cases where access to the actual physical samples is not practical, the images provide an alternate mechanism for study of the subject samples. As the negatives are being scanned, they have been formatted and documented for permanent archive in the NASA Planetary Data System (PDS). The Astromaterials Research and Exploration Science Directorate (which includes the Lunar Sample Laboratory and Image Science & Analysis Laboratory) at JSC is working collaboratively with the Imaging Node of the PDS on the archiving of these valuable data. The PDS Imaging Node is now pleased to announce the release of the image archives for Apollo missions 11, 12, and 17.

  19. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    Science.gov (United States)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  20. Robotic traverse and sample return strategies for a lunar farside mission to the Schrodinger basin

    NARCIS (Netherlands)

    Potts, N.J.; Gullikson, A.L.; Curran, N.M.; Dhaliwal, J.K.; Leader, M.K.; Rege, R.N.; Klaus, K.K.; Kring, D.A.

    2015-01-01

    Most of the highest priority objectives for lunar science and exploration (e.g.; NRC, 2007) require sample return. Studies of the best places to conduct that work have identified Schrödinger basin as a geologically rich area, able to address a significant number of these scientific concepts. In this

  1. The Benefits of Sample Return: Connecting Apollo Soils and Diviner Lunar Radiometer Remote Sensing Data

    Science.gov (United States)

    Greenhagen, B. T.; Donaldson-Hanna, K. L.; Thomas, I. R.; Bowles, N. E.; Allen, C. C.; Pieters, C. M.; Paige, D. A.

    2014-01-01

    The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. We find that analyses of Diviner observations of individual sampling stations and SLE measurements of returned Apollo soils show good agreement, while comparisons to thermal infrared reflectance under terrestrial conditions do not agree well, which underscores the need for SLE measurements and validates the Diviner compositional dataset. Future work includes measurement of additional soils in SLE and cross comparisons with measurements in JPL Simulated Airless Body Emission Laboratory (SABEL).

  2. Rock sample brought to earth from the Apollo 12 lunar landing mission

    Science.gov (United States)

    1969-01-01

    A scientist's gloved hand holds one of the numerous rock samples brought back to Earth from the Apollo 12 lunar landing mission. This sample is a highly shattered basaltic rock with a thin black-glass coating on five of its six sides. Glass fills fractures and cements the rock together. The rock appears to have been shattered and thrown out by a meteorite impact explosion and coated with molten rock material before the rock fell to the surface.

  3. Yet Another Lunar Surface Geologic Exploration Architecture Concept (What, Again?): A Senior Field Geologist's Integrated View

    Science.gov (United States)

    Eppler, D. B.

    2015-01-01

    Lunar surface geological exploration should be founded on a number of key elements that are seemingly disparate, but which can form an integrated operational concept when properly conceived and deployed. If lunar surface geological exploration is to be useful, this integration of key elements needs to be undertaken throughout the development of both mission hardware, training and operational concepts. These elements include the concept of mission class, crew makeup and training, surface mobility assets that are matched with mission class, and field tools and IT assets that make data collection, sharing and archiving transparent to the surface crew.

  4. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the

  5. The origin of water in the primitive Moon as revealed by the lunar highlands samples

    Science.gov (United States)

    Barnes, Jessica J.; Tartèse, Romain; Anand, Mahesh; McCubbin, Francis M.; Franchi, Ian A.; Starkey, Natalie A.; Russell, Sara S.

    2014-03-01

    The recent discoveries of hydrogen (H) bearing species on the lunar surface and in samples derived from the lunar interior have necessitated a paradigm shift in our understanding of the water inventory of the Moon, which was previously considered to be a ‘bone-dry’ planetary body. Most sample-based studies have focused on assessing the water contents of the younger mare basalts and pyroclastic glasses, which are partial-melting products of the lunar mantle. In contrast, little attention has been paid to the inventory and source(s) of water in the lunar highlands rocks which are some of the oldest and most pristine materials available for laboratory investigations, and that have the potential to reveal the original history of water in the Earth-Moon system. Here, we report in-situ measurements of hydroxyl (OH) content and H isotopic composition of the mineral apatite from four lunar highlands samples (two norites, a troctolite, and a granite clast) collected during the Apollo missions. Apart from troctolite in which the measured OH contents in apatite are close to our analytical detection limit and its H isotopic composition appears to be severely compromised by secondary processes, we have measured up to ˜2200 ppm OH in the granite clast with a weighted average δD of ˜ -105±130‰, and up to ˜3400 ppm OH in the two norites (77215 and 78235) with weighted average δD values of -281±49‰ and -27±98‰, respectively. The apatites in the granite clast and the norites are characterised by higher OH contents than have been reported so far for highlands samples, and have H isotopic compositions similar to those of terrestrial materials and some carbonaceous chondrites, providing one of the strongest pieces of evidence yet for a common origin for water in the Earth-Moon system. In addition, the presence of water, of terrestrial affinity, in some samples of the earliest-formed lunar crust suggests that either primordial terrestrial water survived the aftermath

  6. A Multi-Decadal Sample Return Campaign Will Advance Lunar and Solar System Science and Exploration by 2050

    Science.gov (United States)

    Neal, C. R.; Lawrence, S. J.

    2017-01-01

    There have been 11 missions to the Moon this century, 10 of which have been orbital, from 5 different space agencies. China became the third country to successfully soft-land on the Moon in 2013, and the second to successfully remotely operate a rover on the lunar surface. We now have significant global datasets that, coupled with the 1990s Clementine and Lunar Prospector missions, show that the sample collection is not representative of the lithologies present on the Moon. The M3 data from the Indian Chandrayaan-1 mission have identified lithologies that are not present/under-represented in the sample collection. LRO datasets show that volcanism could be as young as 100 Ma and that significant felsic complexes exist within the lunar crust. A multi-decadal sample return campaign is the next logical step in advancing our understanding of lunar origin and evolution and Solar System processes.

  7. AN INTEGRATED PHOTOGRAMMETRIC AND PHOTOCLINOMETRIC APPROACH FOR PIXEL-RESOLUTION 3D MODELLING OF LUNAR SURFACE

    Directory of Open Access Journals (Sweden)

    W. C. Liu

    2018-04-01

    Full Text Available High-resolution 3D modelling of lunar surface is important for lunar scientific research and exploration missions. Photogrammetry is known for 3D mapping and modelling from a pair of stereo images based on dense image matching. However dense matching may fail in poorly textured areas and in situations when the image pair has large illumination differences. As a result, the actual achievable spatial resolution of the 3D model from photogrammetry is limited by the performance of dense image matching. On the other hand, photoclinometry (i.e., shape from shading is characterised by its ability to recover pixel-wise surface shapes based on image intensity and imaging conditions such as illumination and viewing directions. More robust shape reconstruction through photoclinometry can be achieved by incorporating images acquired under different illumination conditions (i.e., photometric stereo. Introducing photoclinometry into photogrammetric processing can therefore effectively increase the achievable resolution of the mapping result while maintaining its overall accuracy. This research presents an integrated photogrammetric and photoclinometric approach for pixel-resolution 3D modelling of the lunar surface. First, photoclinometry is interacted with stereo image matching to create robust and spatially well distributed dense conjugate points. Then, based on the 3D point cloud derived from photogrammetric processing of the dense conjugate points, photoclinometry is further introduced to derive the 3D positions of the unmatched points and to refine the final point cloud. The approach is able to produce one 3D point for each image pixel within the overlapping area of the stereo pair so that to obtain pixel-resolution 3D models. Experiments using the Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC images show the superior performances of the approach compared with traditional photogrammetric technique. The results and findings from this

  8. Predicted versus observed cosmic-ray-produced noble gases in lunar samples: improved Kr production ratios

    International Nuclear Information System (INIS)

    Regnier, S.; Hohenberg, C.M.; Marti, K.; Reedy, R.C.

    1979-01-01

    New sets of cross sections for the production of krypton isotopes from targets of Rb, Sr, Y, and Zr were constructed primarily on the bases of experimental excitation functions for Kr production from Y. These cross sections were used to calculate galactic-cosmic-ray and solar-proton production rates for Kr isotopes in the moon. Spallation Kr data obtained from ilmenite separates of rocks 10017 and 10047 are reported. Production rates and isotopic ratios for cosmogenic Kr observed in ten well-documented lunar samples and in ilmenite separates and bulk samples from several lunar rocks with long but unknown irradiation histories were compared with predicted rates and ratios. The agreements were generally quite good. Erosion of rock surfaces affected rates or ratios for only near-surface samples, where solar-proton production is important. There were considerable spreads in predicted-to-observed production rates of 83 Kr, due at least in part to uncertainties in chemical abundances. The 78 Kr/ 83 Kr ratios were predicted quite well for samples with a wide range of Zr/Sr abundance ratios. The calculated 80 Kr/ 83 Kr ratios were greater than the observed ratios when production by the 79 Br(n,γ) reaction was included, but were slightly undercalculated if the Br reaction was omitted; these results suggest that Br(n,γ)-produced Kr is not retained well by lunar rocks. The productions of 81 Kr and 82 Kr were overcalculated by approximately 10% relative to 83 Kr. Predicted-to-observed 84 Kr/ 83 ratios scattered considerably, possibly because of uncertainties in corrections for trapped and fission components and in cross sections for 84 Kr production. Most predicted 84 Kr and 86 Kr production rates were lower than observed. Shielding depths of several Apollo 11 rocks were determined from the measured 78 Kr/ 83 Kr ratios of ilmenite separates. 4 figures, 5 tables

  9. Ion microprobe mass analysis of plagioclase from 'non-mare' lunar samples

    Science.gov (United States)

    Meyer, C., Jr.; Anderson, D. H.; Bradley, J. G.

    1974-01-01

    The ion microprobe was used to measure the composition and distribution of trace elements in lunar plagioclase, and these analyses are used as criteria in determining the possible origins of some nonmare lunar samples. The Apollo 16 samples with metaclastic texture and high-bulk trace-element contents contain plagioclase clasts with extremely low trace-element contents. These plagioclase inclusions represent unequilibrated relicts of anorthositic, noritic, or troctolitic rocks that have been intermixed as a rock flour into the KREEP-rich matrix of these samples. All of the plagioclase-rich inclusions which were analyzed in the KREEP-rich Apollo 14 breccias were found to be rich in trace elements. This does not seem to be consistent with the interpretation that the Apollo 14 samples represent a pre-Imbrium regolith, because such an ancient regolith should have contained many plagioclase clasts with low trace-element contents more typical of plagioclase from the pre-Imbrium crust. Ion-microprobe analyses for Ba and Sr in large plagioclase phenocrysts in 14310 and 68415 are consistent with the bulk compositions of these rocks and with the known distribution coefficients for these elements. The distribution coefficient for Li (basaltic liquid/plagioclase) was measured to be about 2.

  10. The relationship between orbital, earth-based, and sample data for lunar landing sites

    Science.gov (United States)

    Clark, P. E.; Hawke, B. R.; Basu, A.

    1990-01-01

    Results are reported of a detailed examination of data available for the Apollo lunar landing sites, including the Apollo orbital measurements of six major elements derived from XRF and gamma-ray instruments and geochemical parameters derived from earth-based spectral reflectivity data. Wherever orbital coverage for Apollo landing sites exist, the remote data were correlated with geochemical data derived from the soil sample averages for major geological units and the major rock components associated with these units. Discrepancies were observed between the remote and the soil-anlysis elemental concentration data, which were apparently due to the differences in the extent of exposure of geological units, and, hence, major rock eomponents, in the area sampled. Differences were observed in signal depths between various orbital experiments, which may provide a mechanism for explaining differences between the XRF and other landing-site data.

  11. Solar flare and galactic cosmic ray tracks in lunar samples and meteorites - What they tell us about the ancient sun

    International Nuclear Information System (INIS)

    Crozaz, G.

    1980-01-01

    Evidence regarding the past activity of the sun in the form of nuclear particle tracks in lunar samples and meteorites produced by heavy ions in galactic cosmic rays and solar flares is reviewed. Observations of track-rich grains found in deep lunar cores and meteorite interiors are discussed which demonstrate the presence of solar flare activity for at least the past 4 billion years, and the similarity of track density profiles from various lunar and meteoritic samples with those in a glass filter from Surveyor 3 exposed at the lunar surface for almost three years is presented as evidence of the relative constancy of the solar flare energy spectrum over the same period. Indications of a heavy ion enrichment in solar flares are considered which are confirmed by recent satellite measurements, although difficult to quantify in lunar soil grains. Finally, it is argued that, despite previous claims, there exists as yet no conclusive evidence for either a higher solar activity during the early history of the moon or a change in galactic cosmic ray intensity, average composition or spectrum over the last 50 million years

  12. Lunar cement

    Science.gov (United States)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  13. Evolution of the Lunar Receiving Laboratory to the Astromaterial Sample Curation Facility: Technical Tensions Between Containment and Cleanliness, Between Particulate and Organic Cleanliness

    Science.gov (United States)

    Allton, J. H.; Zeigler, R. A.; Calaway, M. J.

    2016-01-01

    The Lunar Receiving Laboratory (LRL) was planned and constructed in the 1960s to support the Apollo program in the context of landing on the Moon and safely returning humans. The enduring science return from that effort is a result of careful curation of planetary materials. Technical decisions for the first facility included sample handling environment (vacuum vs inert gas), and instruments for making basic sample assessment, but the most difficult decision, and most visible, was stringent biosafety vs ultra-clean sample handling. Biosafety required handling of samples in negative pressure gloveboxes and rooms for containment and use of sterilizing protocols and animal/plant models for hazard assessment. Ultra-clean sample handling worked best in positive pressure nitrogen environment gloveboxes in positive pressure rooms, using cleanable tools of tightly controlled composition. The requirements for these two objectives were so different, that the solution was to design and build a new facility for specific purpose of preserving the scientific integrity of the samples. The resulting Lunar Curatorial Facility was designed and constructed, from 1972-1979, with advice and oversight by a very active committee comprised of lunar sample scientists. The high precision analyses required for planetary science are enabled by stringent contamination control of trace elements in the materials and protocols of construction (e.g., trace element screening for paint and flooring materials) and the equipment used in sample handling and storage. As other astromaterials, especially small particles and atoms, were added to the collections curated, the technical tension between particulate cleanliness and organic cleanliness was addressed in more detail. Techniques for minimizing particulate contamination in sample handling environments use high efficiency air filtering techniques typically requiring organic sealants which offgas. Protocols for reducing adventitious carbon on sample

  14. Research-Grade 3D Virtual Astromaterials Samples: Novel Visualization of NASA's Apollo Lunar Samples and Antarctic Meteorite Samples to Benefit Curation, Research, and Education

    Science.gov (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K. R.; Zeigler, R. A.; Righter, K.; Hanna, R. D.; Ketcham, R. A.

    2017-01-01

    NASA's vast and growing collections of astromaterials are both scientifically and culturally significant, requiring unique preservation strategies that need to be recurrently updated to contemporary technological capabilities and increasing accessibility demands. New technologies have made it possible to advance documentation and visualization practices that can enhance conservation and curation protocols for NASA's Astromaterials Collections. Our interdisciplinary team has developed a method to create 3D Virtual Astromaterials Samples (VAS) of the existing collections of Apollo Lunar Samples and Antarctic Meteorites. Research-grade 3D VAS will virtually put these samples in the hands of researchers and educators worldwide, increasing accessibility and visibility of these significant collections. With new sample return missions on the horizon, it is of primary importance to develop advanced curation standards for documentation and visualization methodologies.

  15. Dual Si and O Isotope Measurement of Lunar Samples Using IRMS

    Science.gov (United States)

    Banerjee, N.; Hill, P. J. A.; Osinski, G. R.

    2016-12-01

    The use of isotopic systems and their associated theoretical models have become an increasingly sophisticated tool for investigating the origin of planetary bodies in the solar system. It was originally hypothesized that evidence for the impact origin of Moon would manifest itself as an isotopic heterogeneity between lunar and terrestrial samples; however, most isotope systems show no difference between the bulk Earth and Moon. The stable isotopes of both silicon (Si) and oxygen (O) have been essential in further understanding planetary processes including core formation. Historically the analysis of the Si and O isotope ratios in terrestrial and extraterrestrial material has primarily been measured independent of each other through three main techniques: isotope ratio mass spectrometry (IRMS), secondary ion mass spectrometry (SIMS), and multi-collector inductively coupled plasma mass-spectrometry (MC-ICPMS). Each technique has its own strength and weakness in regards to resolution and precision; however, one of the main limiting factors in all three of these techniques rests on the requirement of multiple aliquots. As most literature focuses on the measurement of oxygen or silicon isotopes, this unique line allows for the precise analysis of Si and O isotopes from the same aliquot of bulk sample, which cannot be done with SIMS or ICP-MS analysis. To deal with this problem a unique laser line system has been developed in the Laboratory for Stable Isotope Science at Western University, Canada, that simultaneously extracts SiF4 and O2 from the same 1-2 mg aliquot. We present the application of analyzing both isotopic systems from the sample aliquot to Apollo, meteoritic, and terrestrial samples and its implication for the formation of the Moon. Preliminary results from this line suggest that although the O isotopes ratios are consistent with a homogenous Moon-Earth system, a difference is observed in Si isotopes between Apollo and terrestrial samples compared to

  16. {sup 53}Mn and {sup 60}Fe measurements in lunar samples by means of accelerator mass spectrometry (AMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fimiani, Leticia; Faestermann, Thomas; Gomez Guzman, Jose Manuel; Hain, Karin; Korschinek, Gunther; Ludwig, Peter [Fakultaet fuer Physik, Technische Universitaet Muenchen, D-85748, Garching (Germany); Herzog, Gregory; Ligon, Bret; Park, Jisun [Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854 (United States); Knie, Klaus [GSI, Planckstrasse 1, D-64291, Darmstadt (Germany); Rugel, Georg [Fakultaet fuer Physik, Technische Universitaet Muenchen, D-85748, Garching (Germany); Forschungszentrum Dresden-Rossendorf, D-01314, Dresden (Germany)

    2012-07-01

    Cook et al, 40th LPSC 1129 (2009) reported a concentration of 14{sup +9}{sub -6} dpm {sup 60}Fe/[kg Ni] (T{sub 1/2}=2.62.10{sup 6}a) in a surface sample of the Apollo 12 12025/8 drive tube. This value is higher than the one expected due to galactic or solar cosmic ray production and may suggest the deposition of supernova debris on the lunar surface about 2 Ma ago. In order to try to reproduce this result, new measurements were made in material from the same core and position. To widen the search for supernova debris, we also analyzed four near-surface samples of lunar drive tube 15008; and one each from the skim, scoop and under-boulder samples 69921/41/61 via AMS in the Maier Leibnitz Laboratorium in Garching, Germany. The measuring technique and the preliminary results are discussed.

  17. POLAR ORGANIC CHEMICAL INTEGRATIVE SAMPLING ...

    Science.gov (United States)

    The purpose of the research presented in this paper is two-fold: (1) to demonstrate the 4 coupling of two state-of-the-art techniques: a time-weighted polar organic integrative sampler (POCIS) and micro-liquid chromatography-electrospray/ion trap mass spectrometry (u-LC-6 ES/ITMS); and (2) the assessment of these methodologies in a real-world environment -wastewater effluent - for detecting six drugs (four prescription and two illicit). In the effluent from three wastewater treatment plants (WWTP), azithromycin was detected at concentrations ranging from 15ng/L to 66ng/L, equivalent to the total annual release of 0.4 -4 kg into the receiving waters. Detected and confirmed in the effluent from two WWTPs were two illicit drugs methamphetamine and methylenedioxymethamphetamine (MDMA), at 2ng/L and 0.5ng/L, respectively. While the ecotoxicological significance of drugs in environmental matrices, particularly water, has not been closely examined, it can only be surmised that these substances have the potential to adversely affect biota that are continuously exposed to them even at very low levels. The potential for chronic affects on human health is also unknown, but of increasing concern due to the multi use character of water, particularly in densely populated arid areas. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality

  18. Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets

    Science.gov (United States)

    Jolliff, Brad L.; Ryder, Graham

    1998-01-01

    It has been more than 25 years since Apollo 17 returned the last of the Apollo lunar samples. Since then, a vast amount of data has been obtained from the study of rocks and soils from the Apollo and Luna sample collections and, more recently, on a set of about a dozen lunar meteorites collected on Earth. Based on direct studies of the samples, many constraints have been established for the age, early differentiation, crust and mantle structure, and subsequent impact modification of the Moon. In addition, geophysical experiments at the surface, as well as remote sensing from orbit and Earth-based telescopic studies, have provided additional datasets about the Moon that constrain the nature of its surface and internal structure. Some might be tempted to say that we know all there is to know about the Moon and that it is time to move on from this simple satellite to more complex objects. However, the ongoing Lunar Prospector mission and the highly successful Clementine mission have provided important clues to the real geological complexity of the Moon, and have shown us that we still do not yet adequately understand the geologic history of Earth's companion. These missions, like Galileo during its lunar flyby, are providing global information viewed through new kinds of windows, and providing a fresh context for models of lunar origin, evolution, and resources, and perhaps even some grist for new questions and new hypotheses. The probable detection and characterization of water ice at the poles, the extreme concentration of Th and other radioactive elements in the Procellarum-Imbrium-Frigon's resurfaced areas of the nearside of the Moon, and the high-resolution gravity modeling enabled by these missions are examples of the kinds of exciting new results that must be integrated with the extant body of knowledge based on sample studies, in situ experiments, and remote-sensing missions to bring about the best possible understanding of the Moon and its history.

  19. Integrated sampling vs ion chromatography: Mathematical considerations

    International Nuclear Information System (INIS)

    Sundberg, L.L.

    1992-01-01

    This paper presents some general purpose considerations that can be utilized when comparisons are made between the results of integrated sampling over several hours or days, and ion chromatography where sample collection times are measured in minutes. The discussion is geared toward the measurement of soluble transition metal ions in BWR feedwater. Under steady-state conditions, the concentrations reported by both techniques should be in reasonable agreement. Transient operations effect both types of measurements. A simplistic model, applicable to both sampling techniques, is presented that demonstrates the effect of transients which occur during the acquisition of a steady-state sample. For a common set of conditions, the integrated concentration is proportional to the concentration and duration of the transient, and inversely proportional to the sample collection time. The adjustment of the collection period during a known transient allows an estimation of peak transient concentration. Though the probability of sampling a random transient with the integrated sampling technique is very high, the magnitude is severely diluted with long integration times. Transient concentrations are magnified with ion chromatography, but the probability of sampling a transient is significantly lower using normal ion chromatography operations. Various data averaging techniques are discussed for integrated sampling and IC determinations. The use of time-weighted averages appears to offer more advantages over arithmetic and geometric means for integrated sampling when the collection period is variable. For replicate steady-state ion chromatography determinations which bracket a transient sample, it may be advantageous to ignore the calculation of averages, and report the data as trending information only

  20. Cosmogenic /sup 22/Na and /sup 26/Al in samples of lunar ground from a drill column of Moon-24

    Energy Technology Data Exchange (ETDEWEB)

    Lavrukhina, A.K.; Povinets, P.; Ustinova, G.K.

    1984-01-01

    The method of low background (..beta..-..gamma..-..gamma..)-spectrometry without destruction of the sample has been used to measure /sup 22/Na and /sup 26/Al radioactivity in samples of lunar ground 24118.4-4, 24143.4-4 apd 24184.4-4 from the ''Luna-24'' drilling column. Equilibrium radioactivity of these cosmogenic isotopes is calculated by the analytic method. The analysis of theoretical and experimental data shows that at depths lower than approximately 40 cm from the lunar surface the drilling process did not bring about ground mixing in the drilling column. For the last million of years the regolite surface layer in the place of ''Luna-24'' landing remained pracically unchanged, i.e. has not been subjected to intensive effect of some mechanic processes on lunar surface. The average intensity of galactic cosmic rays with the rigidity > 0.5 GV for the last million years within the limits of approximtaely 20% remained stable and corresponded to their modern medium intensity 0.24 particlesxcm/sup -2/xc/sup -1/xsr/sup -1/. The average spectrum of galactic cosmic rays for a million years approximately corresponds to the average spectrum for 1962 or 1971.

  1. Cosmogenic 22Na and 26Al in samples of lunar ground from a drill column of Moon-24

    International Nuclear Information System (INIS)

    Lavrukhina, A.K.; Povinets, P.; Ustinova, G.K.

    1984-01-01

    The method of low background (β-γ-γ)-spectrometry without destruction of the sample has been used to measure 22 Na and 26 Al radioactivity in samples of lunar ground 24118.4-4, 24143.4-4 apd 24184.4-4 from the ''Luna-24'' drilling column. Equilibrium radioactivity of these cosmoqenic isotopes is calculated by the analytic method. The analysis of theoretical and experimental data shows that at depths lower than approximately 40 cm from the lunar surface the drilling process did not bring about ground mixing in the drilling column. For the last million of years the regolite surface layer in the place of ''Luna-24'' landing remained pracically unchanged, i. e. has not been subjected to intensive effect of some mechanic processes on lunar surface. The average intensity of galactic cosmic rays with the rigidity > 0.5 GV for the last million years within the limits of approximtaely 20% remained stable and corresponded to their modern medium intensity 0.24 particlesxcm -2 xc -1 xsr -1 . The average spectrum of galactic cosmic rays for a million years approximately corresponds to the average spectrum for 1962 or 1971

  2. Bioregenerative Life Support Experiment for 90-days in a Closed Integrative Experimental Facility LUNAR PALACE 1

    Science.gov (United States)

    Liu, Hong

    A 90-day bioregenerative life support experiment with three-member crew was carried out in the closed integrative experimental facility, LUNAR PALACE 1 regenerating basic living necessities and disposing wastes to provide life support for crew. It was composed of higher plant module, animal module, and waste treatment module. The higher plant module included wheat, chufa, pea, carrot and green leafy vegetables, with aim to satisfy requirement of 60% plant food and 100% O2 and water for crew. The yellow mealworm was selected as animal module to provide partial animal protein for crew, and reared on plant inedible biomass. The higher plant and yellow mealworm were both cultivated and harvested in the conveyor-type manner. The partial plant inedible biomass and human feces were mixed and co- fermented in the waste treatment module for preparation of soil-like substrate by bioconversion, maintaining gas balance and increasing closure degree. Meanwhile, in the waste treatment module, the water and partial nitrogen from human urine were recovered by physical-chemical means. Circulation of O2 and water as well as food supply from crops cultivated in the LUNAR PALACE 1 were investigated and calculated, and simultaneously gas exchange, mass flow among different components and system closure degree were also analyzed, respectively. Furthermore, the system robustness with respect to internal variation was tested and evaluated by sensitivity analysis of the aggregative index consisting of key performance indicators like crop yield, gaseous equilibrium concentration, microbial community composition, biogenic elements dynamics, etc., and comprehensively evaluating the operating state, to number change of crew from 2 to 4 during the 90-day closed experiment period.

  3. Structure from Motion Photogrammetry and Micro X-Ray Computed Tomography 3-D Reconstruction Data Fusion for Non-Destructive Conservation Documentation of Lunar Samples

    Science.gov (United States)

    Beaulieu, K. R.; Blumenfeld, E. H.; Liddle, D. A.; Oshel, E. R.; Evans, C. A.; Zeigler, R. A.; Righter, K.; Hanna, R. D.; Ketcham, R. A.

    2017-01-01

    Our team is developing a modern, cross-disciplinary approach to documentation and preservation of astromaterials, specifically lunar and meteorite samples stored at the Johnson Space Center (JSC) Lunar Sample Laboratory Facility. Apollo Lunar Sample 60639, collected as part of rake sample 60610 during the 3rd Extra-Vehicular Activity of the Apollo 16 mission in 1972, served as the first NASA-preserved lunar sample to be examined by our team in the development of a novel approach to internal and external sample visualization. Apollo Sample 60639 is classified as a breccia with a glass-coated side and pristine mare basalt and anorthosite clasts. The aim was to accurately register a 3-dimensional Micro X-Ray Computed Tomography (XCT)-derived internal composition data set and a Structure-From-Motion (SFM) Photogrammetry-derived high-fidelity, textured external polygonal model of Apollo Sample 60639. The developed process provided the means for accurate, comprehensive, non-destructive visualization of NASA's heritage lunar samples. The data products, to be ultimately served via an end-user web interface, will allow researchers and the public to interact with the unique heritage samples, providing a platform to "slice through" a photo-realistic rendering of a sample to analyze both its external visual and internal composition simultaneously.

  4. Bullialdus - Strengthening the case for lunar plutons

    Science.gov (United States)

    Pieters, Carle M.

    1991-01-01

    Although many craters expose materials of a composition different from that of the local surroundings, Bullialdus has excavated material representing three distinct stratigraphic zones that occur in the upper 6 km of crust, the top two of which are gabbroic and the deepest of which is noritic. This three-component stratigraphy at Bullialdus provides strong evidence that the lunar crust includes pockets of compositionally layered material reminiscent of mafic layered plutons. When combined with previous information on the compositional diversity at other large craters, these remote analyses obtained in a geologic context substantially strengthen the hypothesis suggested from lunar samples that plutons play an integral role in lunar crustal evolution.

  5. Cosmic-ray production of tungsten isotopes in lunar samples and meteorites and its implications for Hf-W cosmochemistry

    Science.gov (United States)

    Leya, Ingo; Wieler, Rainer; Halliday, Alex N.

    2000-01-01

    Excesses and deficiencies in 182W in meteorites and lunar samples relative to the terrestrial 182W atomic abundance have been assigned to the decay of 182Hf (t1/2=9 Ma) and have been used to date metal-silicate fractionation events in the early solar system. Because the effects are very small, production and burn-out of tungsten isotopes by cosmic ray interactions are a concern in such studies. Masarik [J. Masarik, Contribution of neutron-capture reactions to observed tungsten isotopic ratios, Earth Planet. Sci. Lett. 152 (1997) 181-185] showed that neutron-capture reactions on tungsten isotopes can account at best for a minor part of the observed deficit of 182W in Toluca and other iron meteorites. On the other hand, in lunar samples and stony meteorites the production of 182W from 181Ta may become crucial. Here, we calculate this contribution as well as production and consumption of 182-186W by other neutron-induced reactions. The neutron fluence of each sample is estimated by its nominal cosmic-ray exposure age deduced from noble gas data. This approach overestimates the true cosmogenic W isotopic shifts for samples that might have been irradiated very close to the regolith surface. A quantitative estimate is often also hampered by a lack of Ta data. Despite these reservations, it appears that in many lunar samples neutron-capture on Ta has caused a large part of the observed 182W excess. On the other hand, in some samples, especially those with very low exposure ages, clearly only a minor or even negligible fraction of the 182W excess can be cosmogenic. Therefore, the conclusion, based on Hf-W model ages, that the Moon formed 50 Myr after the start of the solar system remains valid. Martian meteorites have lower Ta/W ratios and cosmic ray exposure ages than most lunar samples. Therefore, cosmogenic production has not significantly altered the W isotopic composition in Martian meteorites. Observed 182W excesses in Martian meteorites as well as the very large

  6. Visual Sample Plan (VSP) - FIELDS Integration

    Energy Technology Data Exchange (ETDEWEB)

    Pulsipher, Brent A.; Wilson, John E.; Gilbert, Richard O.; Hassig, Nancy L.; Carlson, Deborah K.; Bing-Canar, John; Cooper, Brian; Roth, Chuck

    2003-04-19

    Two software packages, VSP 2.1 and FIELDS 3.5, are being used by environmental scientists to plan the number and type of samples required to meet project objectives, display those samples on maps, query a database of past sample results, produce spatial models of the data, and analyze the data in order to arrive at defensible decisions. VSP 2.0 is an interactive tool to calculate optimal sample size and optimal sample location based on user goals, risk tolerance, and variability in the environment and in lab methods. FIELDS 3.0 is a set of tools to explore the sample results in a variety of ways to make defensible decisions with quantified levels of risk and uncertainty. However, FIELDS 3.0 has a small sample design module. VSP 2.0, on the other hand, has over 20 sampling goals, allowing the user to input site-specific assumptions such as non-normality of sample results, separate variability between field and laboratory measurements, make two-sample comparisons, perform confidence interval estimation, use sequential search sampling methods, and much more. Over 1,000 copies of VSP are in use today. FIELDS is used in nine of the ten U.S. EPA regions, by state regulatory agencies, and most recently by several international countries. Both software packages have been peer-reviewed, enjoy broad usage, and have been accepted by regulatory agencies as well as site project managers as key tools to help collect data and make environmental cleanup decisions. Recently, the two software packages were integrated, allowing the user to take advantage of the many design options of VSP, and the analysis and modeling options of FIELDS. The transition between the two is simple for the user – VSP can be called from within FIELDS, automatically passing a map to VSP and automatically retrieving sample locations and design information when the user returns to FIELDS. This paper will describe the integration, give a demonstration of the integrated package, and give users download

  7. Lunar plant biology--a review of the Apollo era.

    Science.gov (United States)

    Ferl, Robert J; Paul, Anna-Lisa

    2010-04-01

    Recent plans for human return to the Moon have significantly elevated scientific interest in the lunar environment with emphasis on the science to be done in preparation for the return and while on the lunar surface. Since the return to the Moon is envisioned as a dedicated and potentially longer-term commitment to lunar exploration, questions of the lunar environment and particularly its impact on biology and biological systems have become a significant part of the lunar science discussion. Plants are integral to the discussion of biology on the Moon. Plants are envisioned as important components of advanced habitats and fundamental components of advanced life-support systems. Moreover, plants are sophisticated multicellular eukaryotic life-forms with highly orchestrated developmental processes, well-characterized signal transduction pathways, and exceedingly fine-tuned responses to their environments. Therefore, plants represent key test organisms for understanding the biological impact of the lunar environment on terrestrial life-forms. Indeed, plants were among the initial and primary organisms that were exposed to returned lunar regolith from the Apollo lunar missions. This review discusses the original experiments involving plants in association with the Apollo samples, with the intent of understanding those studies within the context of the first lunar exploration program and drawing from those experiments the data to inform the studies critical within the next lunar exploration science agenda.

  8. Comprehensive Non-Destructive Conservation Documentation of Lunar Samples Using High-Resolution Image-Based 3D Reconstructions and X-Ray CT Data

    Science.gov (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Hanna, R. D.; Ketcham, R. A.

    2015-01-01

    Established contemporary conservation methods within the fields of Natural and Cultural Heritage encourage an interdisciplinary approach to preservation of heritage material (both tangible and intangible) that holds "Outstanding Universal Value" for our global community. NASA's lunar samples were acquired from the moon for the primary purpose of intensive scientific investigation. These samples, however, also invoke cultural significance, as evidenced by the millions of people per year that visit lunar displays in museums and heritage centers around the world. Being both scientifically and culturally significant, the lunar samples require a unique conservation approach. Government mandate dictates that NASA's Astromaterials Acquisition and Curation Office develop and maintain protocols for "documentation, preservation, preparation and distribution of samples for research, education and public outreach" for both current and future collections of astromaterials. Documentation, considered the first stage within the conservation methodology, has evolved many new techniques since curation protocols for the lunar samples were first implemented, and the development of new documentation strategies for current and future astromaterials is beneficial to keeping curation protocols up to date. We have developed and tested a comprehensive non-destructive documentation technique using high-resolution image-based 3D reconstruction and X-ray CT (XCT) data in order to create interactive 3D models of lunar samples that would ultimately be served to both researchers and the public. These data enhance preliminary scientific investigations including targeted sample requests, and also provide a new visual platform for the public to experience and interact with the lunar samples. We intend to serve these data as they are acquired on NASA's Astromaterials Acquisistion and Curation website at http://curator.jsc.nasa.gov/. Providing 3D interior and exterior documentation of astromaterial

  9. Surface Support Systems for Co-Operative and Integrated Human/Robotic Lunar Exploration

    Science.gov (United States)

    Mueller, Robert P.

    2006-01-01

    Human and robotic partnerships to realize space goals can enhance space missions and provide increases in human productivity while decreasing the hazards that the humans are exposed to. For lunar exploration, the harsh environment of the moon and the repetitive nature of the tasks involved with lunar outpost construction, maintenance and operation as well as production tasks associated with in-situ resource utilization, make it highly desirable to use robotic systems in co-operation with human activity. A human lunar outpost is functionally examined and concepts for selected human/robotic tasks are discussed in the context of a lunar outpost which will enable the presence of humans on the moon for extended periods of time.

  10. Boson sampling with integrated optical circuits

    International Nuclear Information System (INIS)

    Bentivegna, M.

    2014-01-01

    Simulating the evolution of non-interacting bosons through a linear transformation acting on the system’s Fock state is strongly believed to be hard for a classical computer. This is commonly known as the Boson Sampling problem, and has recently got attention as the first possible way to demonstrate the superior computational power of quantum devices over classical ones. In this paper we describe the quantum optics approach to this problem, highlighting the role of integrated optical circuits.

  11. Multiscale sampling model for motion integration.

    Science.gov (United States)

    Sherbakov, Lena; Yazdanbakhsh, Arash

    2013-09-30

    Biologically plausible strategies for visual scene integration across spatial and temporal domains continues to be a challenging topic. The fundamental question we address is whether classical problems in motion integration, such as the aperture problem, can be solved in a model that samples the visual scene at multiple spatial and temporal scales in parallel. We hypothesize that fast interareal connections that allow feedback of information between cortical layers are the key processes that disambiguate motion direction. We developed a neural model showing how the aperture problem can be solved using different spatial sampling scales between LGN, V1 layer 4, V1 layer 6, and area MT. Our results suggest that multiscale sampling, rather than feedback explicitly, is the key process that gives rise to end-stopped cells in V1 and enables area MT to solve the aperture problem without the need for calculating intersecting constraints or crafting intricate patterns of spatiotemporal receptive fields. Furthermore, the model explains why end-stopped cells no longer emerge in the absence of V1 layer 6 activity (Bolz & Gilbert, 1986), why V1 layer 4 cells are significantly more end-stopped than V1 layer 6 cells (Pack, Livingstone, Duffy, & Born, 2003), and how it is possible to have a solution to the aperture problem in area MT with no solution in V1 in the presence of driving feedback. In summary, while much research in the field focuses on how a laminar architecture can give rise to complicated spatiotemporal receptive fields to solve problems in the motion domain, we show that one can reframe motion integration as an emergent property of multiscale sampling achieved concurrently within lamina and across multiple visual areas.

  12. Temperature-dependent magnetic properties of individual glass spherules, Apollo 11, 12, and 14 lunar samples.

    Science.gov (United States)

    Thorpe, A. N.; Sullivan, S.; Alexander, C. C.; Senftle, F. E.; Dwornik, E. J.

    1972-01-01

    Magnetic susceptibility of 11 glass spherules from the Apollo 14 lunar fines have been measured from room temperature to 4 K. Data taken at room temperature, 77 K, and 4.2 K, show that the soft saturation magnetization was temperature independent. In the temperature range 300 to 77 K the temperature-dependent component of the magnetic susceptibility obeys the Curie law. Susceptibility measurements on these same specimens and in addition 14 similar spherules from the Apollo 11 and 12 mission show a Curie-Weiss relation at temperatures less than 77 K with a Weiss temperature of 3-7 degrees in contrast to 2-3 degrees found for tektites and synthetic glasses of tektite composition. A proposed model and a theoretical expression closely predict the variation of the susceptibility of the glass spherules with temperature.

  13. Lunar CATALYST

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  14. In-motion initial alignment and positioning with INS/CNS/ODO integrated navigation system for lunar rovers

    Science.gov (United States)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming

    2017-06-01

    Many countries have been paying great attention to space exploration, especially about the Moon and the Mars. Autonomous and high-accuracy navigation systems are needed for probers and rovers to accomplish missions. Inertial navigation system (INS)/celestial navigation system (CNS) based navigation system has been used widely on the lunar rovers. Initialization is a particularly important step for navigation. This paper presents an in-motion alignment and positioning method for lunar rovers by INS/CNS/odometer integrated navigation. The method can estimate not only the position and attitude errors, but also the biases of the accelerometers and gyros using the standard Kalman filter. The differences between the platform star azimuth, elevation angles and the computed star azimuth, elevation angles, and the difference between the velocity measured by odometer and the velocity measured by inertial sensors are taken as measurements. The semi-physical experiments are implemented to demonstrate that the position error can reduce to 10 m and attitude error is within 2″ during 5 min. The experiment results prove that it is an effective and attractive initialization approach for lunar rovers.

  15. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  16. INTEGRATIVE SAMPLING OF ANTIBIOTICS AND OTHER ...

    Science.gov (United States)

    Pharmaceuticals from human and veterinary use continually enter the environment through municipal wastewater treatment plants (WWTPs), surface runoff from animal waste, and direct disposal of unused medications. The presence of these chemicals, albeit often at subtherapeutic trace levels, may be partly responsible for development of antibiotic-resistant bacteria and sublethal effects in aquatic organisms. Conventional sampling techniques (i.e., grab sampling) often are insufficient for detecting these trace levels. A new sampling technique, the Polar Organic Chemical Integrative Sampler (POCIS), developed by scientists at the USGS's Columbia Environmental Research Center, can provide the time-weighted average concentrations of these complex mixtures. A pilot study targeting the antibiotic azithromycin involved deploying the POCIS for 30 days in the effluents of three WWTPs in Nevada, Utah, and South Carolina. Azithromycin was detected at each WWTP at 19 to 66 ng/L. This translates to a yearly loading, into each of the three receiving waters, of 0.4 to 4 kg/year. In a separate study investigating potential impacts of confined animal feeding operations on national wildlife refuges in the Delmarva peninsula, the antibiotic tetracycline and the natural hormone 17B-estradiol were detected at multiple sites. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and

  17. Volatile and non-volatile elements in grain-size separated samples of Apollo 17 lunar soils

    International Nuclear Information System (INIS)

    Giovanoli, R.; Gunten, H.R. von; Kraehenbuehl, U.; Meyer, G.; Wegmueller, F.; Gruetter, A.; Wyttenbach, A.

    1977-01-01

    Three samples of Apollo 17 lunar soils (75081, 72501 and 72461) were separated into 9 grain-size fractions between 540 and 1 μm mean diameter. In order to detect mineral fractionations caused during the separation procedures major elements were determined by instrumental neutron activation analyses performed on small aliquots of the separated samples. Twenty elements were measured in each size fraction using instrumental and radiochemical neutron activation techniques. The concentration of the main elements in sample 75081 does not change with the grain-size. Exceptions are Fe and Ti which decrease slightly and Al which increases slightly with the decrease in the grain-size. These changes in the composition in main elements suggest a decrease in Ilmenite and an increase in Anorthite with decreasing grain-size. However, it can be concluded that the mineral composition of the fractions changes less than a factor of 2. Samples 72501 and 72461 are not yet analyzed for the main elements. (Auth.)

  18. Integrated Bio-ISRU and Life Support Systems at the Lunar Outpost: Concept and Preliminary Results

    Science.gov (United States)

    Brown, I. I.; Garrison, D. H.; Allen, C. C.; Pickering, K.; Sarkisova, S. A.; Galindo, C., Jr.; Pan, D.; Foraker, E.; Mckay, D. S.

    2009-01-01

    We continue the development of our concept of a biotechnological loop for in-situ resource extraction along with propellant and food production at a future lunar outpost, based on the cultivation of litholytic cyanobacteria (LCB) with lunar regolith (LR) in a geobioreactor energized by sunlight. Our preliminary studies have shown that phototropic cultivation of LCB with simulants of LR in a low-mineralized medium supplemented with CO2 leads to rock dissolution (bioweathering) with the resulting accumulation of Fe, Mg and Al in cyanobacterial cells and in the medium. LCB cultivated with LR simulants produces more O2 than the same organisms cultivated in a high-mineralized medium. The loss of rock mass after bioweathering with LCB suggests the release of O from regolith. Further studies of chemical pathways of released O are required. The bioweathering process is limited by the availability of CO2, N, and P. Since lunar regolith is mainly composed of O, Si, Ca, Al and Mg, we propose to use organic waste to supply a geobioreactor with C, N and P. The recycling of organic waste, including urine, through a geobioreactor will allow for efficient element extraction as well as oxygen and biomass production. The most critical conclusion is that a biological life support system tied to a geobioreactor might be more efficient for supporting an extraterrestrial outpost than a closed environmental system.

  19. Precise simultaneous determination of zirconium and hafnium in silicate rocks, meteorites and lunar samples. [Neutron reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P A; Garg, A N; Ehmann, W D [Kentucky Univ., Lexington (USA). Dept. of Chemistry

    1977-01-01

    A precise, sensitive and rapid analytical technique has been developed for the simultaneous determination of Zr and Hf in natural silicate matrices. The technique is based on radiochemical neutron activation analysis and employs a rapid fusion dissolution of the sample and simultaneous precipitation of the Zr-Hf pair with p-hydroxybenzene arsenic acid in an acidic medium. The indicator radionuclides, /sup 95/Zr and /sup 181/Hf, are counted and the /sup 95/Zr activity is corrected for the contribution from U fission. The chemical yields of the radiochemical separation are based on Hf carrier. The yield is determined by reactivation of the processed samples and standards with a /sup 252/Cf isotopic neutron source and by counting the 18.6 sec half-life sup(179m)Hf. The RNAA procedure for Zr and Hf has been shown to be precise and accurate for natural silicate samples, based on replicate analyses of samples containing Zr in the range of 1 ..mu..g/g to over 600 ..mu..g/g. The procedure is relatively rapid with a total chemical processing time of approximately 3 hours. At least 4 samples are processed simultaneously. Ten additional elements (Fe, Cr, Co, Sc, Eu, La, Lu, Ce, Th and Tb) can be determined by direct Ge(Li) spectrometry (INAA) on the samples prior to dissolution for the RNAA determination of Zr and Hf. Corrections for the U fission contribution can be made on the basis of the known U content or from the INAA Th content, based on the relatively constant natural Th/U ratio.

  20. Integration and interpolation of sampled waveforms

    International Nuclear Information System (INIS)

    Stearns, S.D.

    1978-01-01

    Methods for integrating, interpolating, and improving the signal-to-noise ratio of digitized waveforms are discussed with regard to seismic data from underground tests. The frequency-domain integration method and the digital interpolation method of Schafer and Rabiner are described and demonstrated using test data. The use of bandpass filtering for noise reduction is also demonstrated. With these methods, a backlog of seismic test data has been successfully processed

  1. Petrology of lunar rocks and implication to lunar evolution

    Science.gov (United States)

    Ridley, W. I.

    1976-01-01

    Recent advances in lunar petrology, based on studies of lunar rock samples available through the Apollo program, are reviewed. Samples of bedrock from both maria and terra have been collected where micrometeorite impact penetrated the regolith and brought bedrock to the surface, but no in situ cores have been taken. Lunar petrogenesis and lunar thermal history supported by studies of the rock sample are discussed and a tentative evolutionary scenario is constructed. Mare basalts, terra assemblages of breccias, soils, rocks, and regolith are subjected to elemental analysis, mineralogical analysis, trace content analysis, with studies of texture, ages and isotopic composition. Probable sources of mare basalts are indicated.

  2. Lunar Water Resource Demonstration

    Science.gov (United States)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  3. Lunar Meteorites: A Global Geochemical Dataset

    Science.gov (United States)

    Zeigler, R. A.; Joy, K. H.; Arai, T.; Gross, J.; Korotev, R. L.; McCubbin, F. M.

    2017-01-01

    To date, the world's meteorite collections contain over 260 lunar meteorite stones representing at least 120 different lunar meteorites. Additionally, there are 20-30 as yet unnamed stones currently in the process of being classified. Collectively these lunar meteorites likely represent 40-50 distinct sampling locations from random locations on the Moon. Although the exact provenance of each individual lunar meteorite is unknown, collectively the lunar meteorites represent the best global average of the lunar crust. The Apollo sites are all within or near the Procellarum KREEP Terrane (PKT), thus lithologies from the PKT are overrepresented in the Apollo sample suite. Nearly all of the lithologies present in the Apollo sample suite are found within the lunar meteorites (high-Ti basalts are a notable exception), and the lunar meteorites contain several lithologies not present in the Apollo sample suite (e.g., magnesian anorthosite). This chapter will not be a sample-by-sample summary of each individual lunar meteorite. Rather, the chapter will summarize the different types of lunar meteorites and their relative abundances, comparing and contrasting the lunar meteorite sample suite with the Apollo sample suite. This chapter will act as one of the introductory chapters to the volume, introducing lunar samples in general and setting the stage for more detailed discussions in later more specialized chapters. The chapter will begin with a description of how lunar meteorites are ejected from the Moon, how deep samples are being excavated from, what the likely pairing relationships are among the lunar meteorite samples, and how the lunar meteorites can help to constrain the impactor flux in the inner solar system. There will be a discussion of the biases inherent to the lunar meteorite sample suite in terms of underrepresented lithologies or regions of the Moon, and an examination of the contamination and limitations of lunar meteorites due to terrestrial weathering. The

  4. Apollo Missions to the Lunar Surface

    Science.gov (United States)

    Graff, Paige V.

    2018-01-01

    Six Apollo missions to the Moon, from 1969-1972, enabled astronauts to collect and bring lunar rocks and materials from the lunar surface to Earth. Apollo lunar samples are curated by NASA Astromaterials at the NASA Johnson Space Center in Houston, TX. Samples continue to be studied and provide clues about our early Solar System. Learn more and view collected samples at: https://curator.jsc.nasa.gov/lunar.

  5. Identification and characterization of science-rich landing sites for lunar lander missions using integrated remote sensing observations

    NARCIS (Netherlands)

    Flahaut, J.; Blanchette-Guertin, J.F.; Jilly, C.; Sharma, P.; Souchon, A.; van Westrenen, W.; Kring, D.A.

    2012-01-01

    Despite more than 52 years of lunar exploration, a wide range of first-order scientific questions remain about the Moon's formation, temporal evolution, and current surface and interior properties. Addressing many of these questions requires obtaining new in situ analyses or return of lunar surface

  6. Lunar horticulture.

    Science.gov (United States)

    Walkinshaw, C. H.

    1971-01-01

    Discussion of the role that lunar horticulture may fulfill in helping establish the life support system of an earth-independent lunar colony. Such a system is expected to be a hybrid between systems which depend on lunar horticulture and those which depend upon the chemical reclamation of metabolic waste and its resynthesis into nutrients and water. The feasibility of this approach has been established at several laboratories. Plants grow well under reduced pressures and with oxygen concentrations of less than 1% of the total pressure. The carbon dioxide collected from the lunar base personnel should provide sufficient gas pressure (approx. 100 mm Hg) for growing the plants.

  7. Robotic Subsurface Analyzer and Sample Handler for Resource Reconnaissance and Preliminary Site Assessment for ISRU Activities at the Lunar Cold Traps

    Science.gov (United States)

    Gorevan, S. P.; Wilson, J.; Bartlett, P.; Powderly, J.; Lawrence, D.; Elphic, R.; Mungas, G.; McCullough, E.; Stoker, C.; Cannon, H.

    2004-01-01

    Since the 1960s, claims have been made that water ice deposits should exist in permanently shadowed craters near both lunar poles. Recent interpretations of data from the Lunar Prospector-Neutron Spectrometer (LP- NS) confirm that significant concentrations of hydrogen exist, probably in the form of water ice, in the permanently shadowed polar cold traps. Yet, due to the large spatial resolution (45-60 Ian) of the LP-NS measurements relative to these shadowed craters (approx.5-25 km), these data offer little certainty regarding the precise location, form or distribution of these deposits. Even less is known about how such deposits of water ice might effect lunar regolith physical properties relevant to mining, excavation, water extraction and construction. These uncertainties will need to be addressed in order to validate fundamental lunar In Situ Resource Utilization (ISRU) precepts by 2011. Given the importance of the in situ utilization of water and other resources to the future of space exploration a need arises for the advanced deployment of a robotic and reconfigurable system for physical properties and resource reconnaissance. Based on a collection of high-TRL. designs, the Subsurface Analyzer and Sample Handler (SASH) addresses these needs, particularly determining the location and form of water ice and the physical properties of regolith. SASH would be capable of: (1) subsurface access via drilling, on the order of 3-10 meters into both competent targets (ice, rock) and regolith, (2) down-hole analysis through drill string embedded instrumentation and sensors (Neutron Spectrometer and Microscopic Imager), enabling water ice identification and physical properties measurements; (3) core and unconsolidated sample acquisition from rock and regolith; (4) sample handling and processing, with minimized contamination, sample containerization and delivery to a modular instrument payload. This system would be designed with three mission enabling goals, including: (1

  8. Lunar Riometry

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Burns, J. O.; Kasper, J. C.

    2011-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent and its behavior over time, including modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the peak plasma density of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of nanometer- to micron-scale dust. The LUNAR consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  9. A Dual Launch Robotic and Human Lunar Mission Architecture

    Science.gov (United States)

    Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David

    2010-01-01

    This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This

  10. Lunar magnetism

    Science.gov (United States)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.

    1984-01-01

    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  11. FISHprep: A Novel Integrated Device for Metaphase FISH Sample Preparation

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota

    2011-01-01

    We present a novel integrated device for preparing metaphase chromosomes spread slides (FISHprep). The quality of cytogenetic analysis from patient samples greatly relies on the efficiency of sample pre-treatment and/or slide preparation. In cytogenetic slide preparation, cell cultures...... are routinely used to process samples (for culture, arrest and fixation of cells) and/or to expand limited amount of samples (in case of prenatal diagnostics). Arguably, this expansion and other sample pretreatments form the longest part of the entire diagnostic protocols spanning over 3–4 days. We present here...... with minimal handling for metaphase FISH slide preparation....

  12. Hazard Detection Software for Lunar Landing

    Science.gov (United States)

    Huertas, Andres; Johnson, Andrew E.; Werner, Robert A.; Montgomery, James F.

    2011-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing a system for safe and precise manned lunar landing that involves novel sensors, but also specific algorithms. ALHAT has selected imaging LIDAR (light detection and ranging) as the sensing modality for onboard hazard detection because imaging LIDARs can rapidly generate direct measurements of the lunar surface elevation from high altitude. Then, starting with the LIDAR-based Hazard Detection and Avoidance (HDA) algorithm developed for Mars Landing, JPL has developed a mature set of HDA software for the manned lunar landing problem. Landing hazards exist everywhere on the Moon, and many of the more desirable landing sites are near the most hazardous terrain, so HDA is needed to autonomously and safely land payloads over much of the lunar surface. The HDA requirements used in the ALHAT project are to detect hazards that are 0.3 m tall or higher and slopes that are 5 or greater. Steep slopes, rocks, cliffs, and gullies are all hazards for landing and, by computing the local slope and roughness in an elevation map, all of these hazards can be detected. The algorithm in this innovation is used to measure slope and roughness hazards. In addition to detecting these hazards, the HDA capability also is able to find a safe landing site free of these hazards for a lunar lander with diameter .15 m over most of the lunar surface. This software includes an implementation of the HDA algorithm, software for generating simulated lunar terrain maps for testing, hazard detection performance analysis tools, and associated documentation. The HDA software has been deployed to Langley Research Center and integrated into the POST II Monte Carlo simulation environment. The high-fidelity Monte Carlo simulations determine the required ground spacing between LIDAR samples (ground sample distances) and the noise on the LIDAR range measurement. This simulation has also been used to determine the effect of

  13. Lunar Plants

    Data.gov (United States)

    National Aeronautics and Space Administration — We present an open design for a first plant growth module on the Moon (LPX). The primary science goal of lunar habitat is to investigate germination and initial...

  14. Lunar Flashlight

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Flashlight (LF) is an innovative cubesat mission sponsored by NASA’s Advanced Exploration Systems (AES) division to be launched on the Space Launch System...

  15. Approximation of the exponential integral (well function) using sampling methods

    Science.gov (United States)

    Baalousha, Husam Musa

    2015-04-01

    Exponential integral (also known as well function) is often used in hydrogeology to solve Theis and Hantush equations. Many methods have been developed to approximate the exponential integral. Most of these methods are based on numerical approximations and are valid for a certain range of the argument value. This paper presents a new approach to approximate the exponential integral. The new approach is based on sampling methods. Three different sampling methods; Latin Hypercube Sampling (LHS), Orthogonal Array (OA), and Orthogonal Array-based Latin Hypercube (OA-LH) have been used to approximate the function. Different argument values, covering a wide range, have been used. The results of sampling methods were compared with results obtained by Mathematica software, which was used as a benchmark. All three sampling methods converge to the result obtained by Mathematica, at different rates. It was found that the orthogonal array (OA) method has the fastest convergence rate compared with LHS and OA-LH. The root mean square error RMSE of OA was in the order of 1E-08. This method can be used with any argument value, and can be used to solve other integrals in hydrogeology such as the leaky aquifer integral.

  16. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Boyce, J. W.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Magna, T.; Ni, P.; Tartese, R.; hide

    2017-01-01

    The chapter will begin with an introduction that defines magmatic volatiles (e.g., H, F, Cl, S) versus geochemical volatiles (e.g., K, Rb, Zn). We will discuss our approach of understanding both types of volatiles in lunar samples and lay the ground work for how we will determine the overall volatile budget of the Moon. We will then discuss the importance of endogenous volatiles in shaping the "Newer Views of the Moon", specifically how endogenous volatiles feed forward into processes such as the origin of the Moon, magmatic differentiation, volcanism, and secondary processes during surface and crustal interactions. After the introduction, we will include a re-view/synthesis on the current state of 1) apatite compositions (volatile abundances and isotopic compositions); 2) nominally anhydrous mineral phases (moderately to highly volatile); 3) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar pyroclastic glass beads; 4) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar basalts; 5) volatile (moderately to highly volatile) abundances in and isotopic compositions of melt inclusions; and finally 6) experimental constraints on mineral-melt partitioning of moderately to highly volatile elements under lunar conditions. We anticipate that each section will summarize results since 2007 and focus on new results published since the 2015 Am Min review paper on lunar volatiles [9]. The next section will discuss how to use sample abundances of volatiles to understand the source region and potential caveats in estimating source abundances of volatiles. The following section will include our best estimates of volatile abundances and isotopic compositions (where permitted by available data) for each volatile element of interest in a number of important lunar reservoirs, including the crust, mantle, KREEP, and bulk Moon. The final section of the chapter will focus upon future work, outstanding questions

  17. Entropic sampling in the path integral Monte Carlo method

    International Nuclear Information System (INIS)

    Vorontsov-Velyaminov, P N; Lyubartsev, A P

    2003-01-01

    We have extended the entropic sampling Monte Carlo method to the case of path integral representation of a quantum system. A two-dimensional density of states is introduced into path integral form of the quantum canonical partition function. Entropic sampling technique within the algorithm suggested recently by Wang and Landau (Wang F and Landau D P 2001 Phys. Rev. Lett. 86 2050) is then applied to calculate the corresponding entropy distribution. A three-dimensional quantum oscillator is considered as an example. Canonical distributions for a wide range of temperatures are obtained in a single simulation run, and exact data for the energy are reproduced

  18. REE Partitioning in Lunar Minerals

    Science.gov (United States)

    Rapp, J. F.; Lapen, T. J.; Draper, D. S.

    2015-01-01

    Rare earth elements (REE) are an extremely useful tool in modeling lunar magmatic processes. Here we present the first experimentally derived plagioclase/melt partition coefficients in lunar compositions covering the entire suite of REE. Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. These features are taken as evidence of a large-scale differentiation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were subsequently derived. However, the extent of the Eu anomaly in lunar rocks is variable. Fagan and Neal [1] reported highly anorthitic plagioclase grains in lunar impact melt rock 60635,19 that displayed negative Eu anomalies as well as the more usual positive anomalies. Indeed some grains in the sample are reported to display both positive and negative anomalies. Judging from cathodoluminescence images, these anomalies do not appear to be associated with crystal overgrowths or zones.

  19. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, Sam; Farnham, Irene

    2014-10-01

    The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

  20. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Phillip F [ORNL

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  1. First oxygen from lunar basalt

    Science.gov (United States)

    Gibson, M. A.; Knudsen, C. W.; Brueneman, D. J.; Kanamori, H.; Ness, R. O.; Sharp, L. L.; Brekke, D. W.; Allen, C. C.; Morris, R. V.; Keller, L. P.

    1993-01-01

    The Carbotek/Shimizu process to produce oxygen from lunar soils has been successfully demonstrated on actual lunar samples in laboratory facilities at Carbotek with Shimizu funding and support. Apollo sample 70035 containing approximately 25 percent ilmenite (FeTiO3) was used in seven separate reactions with hydrogen varying temperature and pressure: FeTiO3 + H2 yields Fe + TiO2 + H2O. The experiments gave extremely encouraging results as all ilmenite was reduced in every experiment. The lunar ilmenite was found to be about twice as reactive as terrestrial ilmenite samples. Analytical techniques of the lunar and terrestrial ilmenite experiments performed by NASA Johnson Space Center include iron Mossbauer spectroscopy (FeMS), optical microscopy, SEM, TEM, and XRD. The Energy and Environmental Research Center at the University of North Dakota performed three SEM techniques (point count method, morphology determination, elemental mapping), XRD, and optical microscopy.

  2. Lunar Exploration Missions Since 2006

    Science.gov (United States)

    Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.

    2017-01-01

    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.

  3. Controlling a sample changer using the integrated counting system

    International Nuclear Information System (INIS)

    Deacon, S.; Stevens, M.P.

    1985-06-01

    Control of the Sample Changer from a counting system can be achieved by using a Scaler Timer type 6255 and Sample Changer Control Interface type 6263. The interface used, however, has quite complex circuitry. The application therefore lends itself to the use of another 6000 Series module the Integrated Counting System (ICS). Using this unit control is carried out through a control program written in BASIC for the Commodore PET (or any other device with an IEEE-488 interface). The ICS then controls the sample changer through an interface unit which is relatively simple. A brief description of how ICS controls the sample changer is given. The control program is then described, firstly the running options are given, followed by a program description listing and flowchart. (author)

  4. Controlling a sample changer using the integrated counting system

    Energy Technology Data Exchange (ETDEWEB)

    Deacon, S; Stevens, M P

    1985-06-01

    Control of the Sample Changer from a counting system can be achieved by using a Scaler Timer type 6255 and Sample Changer Control Interface type 6263. The interface used, however, has quite complex circuitry. The application therefore lends itself to the use of another 6000 Series module-the Integrated Counting System (ICS). Using this unit control is carried out through a control program written in BASIC for the Commodore PET (or any other device with an IEEE-488 interface). The ICS then controls the sample changer through an interface unit which is relatively simple. A brief description of how ICS controls the sample changer is given. The control program is then described; first the running options are given, followed by a program description listing and flowchart.

  5. An integrated approach for multi-level sample size determination

    International Nuclear Information System (INIS)

    Lu, M.S.; Teichmann, T.; Sanborn, J.B.

    1997-01-01

    Inspection procedures involving the sampling of items in a population often require steps of increasingly sensitive measurements, with correspondingly smaller sample sizes; these are referred to as multilevel sampling schemes. In the case of nuclear safeguards inspections verifying that there has been no diversion of Special Nuclear Material (SNM), these procedures have been examined often and increasingly complex algorithms have been developed to implement them. The aim in this paper is to provide an integrated approach, and, in so doing, to describe a systematic, consistent method that proceeds logically from level to level with increasing accuracy. The authors emphasize that the methods discussed are generally consistent with those presented in the references mentioned, and yield comparable results when the error models are the same. However, because of its systematic, integrated approach the proposed method elucidates the conceptual understanding of what goes on, and, in many cases, simplifies the calculations. In nuclear safeguards inspections, an important aspect of verifying nuclear items to detect any possible diversion of nuclear fissile materials is the sampling of such items at various levels of sensitivity. The first step usually is sampling by ''attributes'' involving measurements of relatively low accuracy, followed by further levels of sampling involving greater accuracy. This process is discussed in some detail in the references given; also, the nomenclature is described. Here, the authors outline a coordinated step-by-step procedure for achieving such multilevel sampling, and they develop the relationships between the accuracy of measurement and the sample size required at each stage, i.e., at the various levels. The logic of the underlying procedures is carefully elucidated; the calculations involved and their implications, are clearly described, and the process is put in a form that allows systematic generalization

  6. Phase contrast STEM for thin samples: Integrated differential phase contrast.

    Science.gov (United States)

    Lazić, Ivan; Bosch, Eric G T; Lazar, Sorin

    2016-01-01

    It has been known since the 1970s that the movement of the center of mass (COM) of a convergent beam electron diffraction (CBED) pattern is linearly related to the (projected) electrical field in the sample. We re-derive a contrast transfer function (CTF) for a scanning transmission electron microscopy (STEM) imaging technique based on this movement from the point of view of image formation and continue by performing a two-dimensional integration on the two images based on the two components of the COM movement. The resulting integrated COM (iCOM) STEM technique yields a scalar image that is linear in the phase shift caused by the sample and therefore also in the local (projected) electrostatic potential field of a thin sample. We confirm that the differential phase contrast (DPC) STEM technique using a segmented detector with 4 quadrants (4Q) yields a good approximation for the COM movement. Performing a two-dimensional integration, just as for the COM, we obtain an integrated DPC (iDPC) image which is approximately linear in the phase of the sample. Beside deriving the CTFs of iCOM and iDPC, we clearly point out the objects of the two corresponding imaging techniques, and highlight the differences to objects corresponding to COM-, DPC-, and (HA) ADF-STEM. The theory is validated with simulations and we present first experimental results of the iDPC-STEM technique showing its capability for imaging both light and heavy elements with atomic resolution and a good signal to noise ratio (SNR). Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Phase contrast STEM for thin samples: Integrated differential phase contrast

    International Nuclear Information System (INIS)

    Lazić, Ivan; Bosch, Eric G.T.; Lazar, Sorin

    2016-01-01

    It has been known since the 1970s that the movement of the center of mass (COM) of a convergent beam electron diffraction (CBED) pattern is linearly related to the (projected) electrical field in the sample. We re-derive a contrast transfer function (CTF) for a scanning transmission electron microscopy (STEM) imaging technique based on this movement from the point of view of image formation and continue by performing a two-dimensional integration on the two images based on the two components of the COM movement. The resulting integrated COM (iCOM) STEM technique yields a scalar image that is linear in the phase shift caused by the sample and therefore also in the local (projected) electrostatic potential field of a thin sample. We confirm that the differential phase contrast (DPC) STEM technique using a segmented detector with 4 quadrants (4Q) yields a good approximation for the COM movement. Performing a two-dimensional integration, just as for the COM, we obtain an integrated DPC (iDPC) image which is approximately linear in the phase of the sample. Beside deriving the CTFs of iCOM and iDPC, we clearly point out the objects of the two corresponding imaging techniques, and highlight the differences to objects corresponding to COM-, DPC-, and (HA) ADF-STEM. The theory is validated with simulations and we present first experimental results of the iDPC-STEM technique showing its capability for imaging both light and heavy elements with atomic resolution and a good signal to noise ratio (SNR). - Highlights: • First DPC-based atomic resolution images of potential and charge density are obtained. • This is enabled by integration and differentiation of 2D DPC signals, respectively. • Integrated DPC (iDPC) based on 4 quadrant imaging is compared to iCOM imaging. • Noise analysis and comparison with standard STEM imaging modes is provided. • iDPC allows direct imaging of light (C, N, O …) and heavy (Ga, Au …) atoms together.

  8. Phase contrast STEM for thin samples: Integrated differential phase contrast

    Energy Technology Data Exchange (ETDEWEB)

    Lazić, Ivan, E-mail: ivan.lazic@fei.com; Bosch, Eric G.T.; Lazar, Sorin

    2016-01-15

    It has been known since the 1970s that the movement of the center of mass (COM) of a convergent beam electron diffraction (CBED) pattern is linearly related to the (projected) electrical field in the sample. We re-derive a contrast transfer function (CTF) for a scanning transmission electron microscopy (STEM) imaging technique based on this movement from the point of view of image formation and continue by performing a two-dimensional integration on the two images based on the two components of the COM movement. The resulting integrated COM (iCOM) STEM technique yields a scalar image that is linear in the phase shift caused by the sample and therefore also in the local (projected) electrostatic potential field of a thin sample. We confirm that the differential phase contrast (DPC) STEM technique using a segmented detector with 4 quadrants (4Q) yields a good approximation for the COM movement. Performing a two-dimensional integration, just as for the COM, we obtain an integrated DPC (iDPC) image which is approximately linear in the phase of the sample. Beside deriving the CTFs of iCOM and iDPC, we clearly point out the objects of the two corresponding imaging techniques, and highlight the differences to objects corresponding to COM-, DPC-, and (HA) ADF-STEM. The theory is validated with simulations and we present first experimental results of the iDPC-STEM technique showing its capability for imaging both light and heavy elements with atomic resolution and a good signal to noise ratio (SNR). - Highlights: • First DPC-based atomic resolution images of potential and charge density are obtained. • This is enabled by integration and differentiation of 2D DPC signals, respectively. • Integrated DPC (iDPC) based on 4 quadrant imaging is compared to iCOM imaging. • Noise analysis and comparison with standard STEM imaging modes is provided. • iDPC allows direct imaging of light (C, N, O …) and heavy (Ga, Au …) atoms together.

  9. Dielectric properties of lunar surface

    Science.gov (United States)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  10. Integrated sampling and analysis plan for samples measuring >10 mrem/hour

    International Nuclear Information System (INIS)

    Haller, C.S.

    1992-03-01

    This integrated sampling and analysis plan was prepared to assist in planning and scheduling of Hanford Site sampling and analytical activities for all waste characterization samples that measure greater than 10 mrem/hour. This report also satisfies the requirements of the renegotiated Interim Milestone M-10-05 of the Hanford Federal Facility Agreement and Consent Order (the Tri-Party Agreement). For purposes of comparing the various analytical needs with the Hanford Site laboratory capabilities, the analytical requirements of the various programs were normalized by converting required laboratory effort for each type of sample to a common unit of work, the standard analytical equivalency unit (AEU). The AEU approximates the amount of laboratory resources required to perform an extensive suite of analyses on five core segments individually plus one additional suite of analyses on a composite sample derived from a mixture of the five core segments and prepare a validated RCRA-type data package

  11. Indigenous lunar construction materials

    Science.gov (United States)

    Rogers, Wayne P.; Sture, Stein

    1991-01-01

    The utilization of local resources for the construction and operation of a lunar base can significantly reduce the cost of transporting materials and supplies from Earth. The feasibility of processing lunar regolith to form construction materials and structural components is investigated. A preliminary review of potential processing methods such as sintering, hot-pressing, liquification, and cast basalt techniques, was completed. The processing method proposed is a variation on the cast basalt technique. It involves liquification of the regolith at 1200-1300 C, casting the liquid into a form, and controlled cooling. While the process temperature is higher than that for sintering or hot-pressing (1000-1100 C), this method is expected to yield a true engineering material with low variability in properties, high strength, and the potential to form large structural components. A scenario for this processing method was integrated with a design for a representative lunar base structure and potential construction techniques. The lunar shelter design is for a modular, segmented, pressurized, hemispherical dome which could serve as habitation and laboratory space. Based on this design, estimates of requirements for power, processing equipment, and construction equipment were made. This proposed combination of material processing method, structural design, and support requirements will help to establish the feasibility of lunar base construction using indigenous materials. Future work will refine the steps of the processing method. Specific areas where more information is needed are: furnace characteristics in vacuum; heat transfer during liquification; viscosity, pouring and forming behavior of molten regolith; design of high temperature forms; heat transfer during cooling; recrystallization of basalt; and refinement of estimates of elastic moduli, compressive and tensile strength, thermal expansion coefficient, thermal conductivity, and heat capacity. The preliminary

  12. An integrated and accessible sample data library for Mars sample return science

    Science.gov (United States)

    Tuite, M. L., Jr.; Williford, K. H.

    2015-12-01

    Over the course of the next decade or more, many thousands of geological samples will be collected and analyzed in a variety of ways by researchers at the Jet Propulsion Laboratory (California Institute of Technology) in order to facilitate discovery and contextualize observations made of Mars rocks both in situ and here on Earth if samples are eventually returned. Integration of data from multiple analyses of samples including petrography, thin section and SEM imaging, isotope and organic geochemistry, XRF, XRD, and Raman spectrometry is a challenge and a potential obstacle to discoveries that require supporting lines of evidence. We report the development of a web-accessible repository, the Sample Data Library (SDL) for the sample-based data that are generated by the laboratories and instruments that comprise JPL's Center for Analysis of Returned Samples (CARS) in order to facilitate collaborative interpretation of potential biosignatures in Mars-analog geological samples. The SDL is constructed using low-cost, open-standards-based Amazon Web Services (AWS), including web-accessible storage, relational data base services, and a virtual web server. The data structure is sample-centered with a shared registry for assigning unique identifiers to all samples including International Geo-Sample Numbers. Both raw and derived data produced by instruments and post-processing workflows are automatically uploaded to online storage and linked via the unique identifiers. Through the web interface, users are able to find all the analyses associated with a single sample or search across features shared by multiple samples, sample localities, and analysis types. Planned features include more sophisticated search and analytical interfaces as well as data discoverability through NSF's EarthCube program.

  13. Integrated Suit Test 1 - A Study to Evaluate Effects of Suit Weight, Pressure, and Kinematics on Human Performance during Lunar Ambulation

    Science.gov (United States)

    Gernhardt, Michael L.; Norcross, Jason; Vos, Jessica R.

    2008-01-01

    In an effort to design the next generation Lunar suit, NASA has initiated a series of tests aimed at understanding the human physiological and biomechanical affects of space suits under a variety of conditions. The first of these tests was the EVA Walkback Test (ICES 2007-01-3133). NASA-JSC assembled a multi-disciplinary team to conduct the second test of the series, titled Integrated Suit Test 1 (IST-1), from March 6 through July 24, 2007. Similar to the Walkback Test, this study was performed with the Mark III (MKIII) EVA Technology Demonstrator suit, a treadmill, and the Partial Gravity Simulator in the Space Vehicle Mock-Up Facility at Johnson Space Center. The data collected for IST-1 included metabolic rates, ground reaction forces, biomechanics, and subjective workload and controllability feedback on both suited and unsuited (shirt-sleeve) astronaut subjects. For IST-1 the center of gravity was controlled to a nearly perfect position while the weight, pressure and biomechanics (waist locked vs. unlocked) were varied individually to evaluate the effects of each on the ability to perform level (0 degree incline) ambulation in simulated Lunar gravity. The detailed test methodology and preliminary key findings of IST-1 are summarized in this report.

  14. Design and Construction of Manned Lunar Base

    Science.gov (United States)

    Li, Zhijie

    2016-07-01

    the condition of the same volume it has less weight than rigid module, but based on durable, high hermetic, low density and elastic modulus advanced materials. 3.The construction habitation has high expansibility and various configurations by using in situ resources as construction materials, but this technique is difficult to implement since it involves deep exploitation of lunar resources. Aiming at different missions' objects and development periods, three different patterns talked above can be chosen as the scheme of lunar base habitation establishments. But each of them is too simple to adapt high-level lunar base during a long period. Thereby, based on the design of rigid module and flexible module, this paper brings out an assumed scheme of an integrated lunar base, and the exterior part of lunar base is built by using construction technique. The design of lunar base follows the principle of crew-robot coordinated exploration, which functions automatically in a long period and short period with attention by astronauts. The technique characteristics are as follows: life period ≥ 8 years; 6 astronauts; single lunar surface mission period ≥ 3 months. The inner main body of integrated manned lunar base consists of habitation module, laboratory module and support module. In order to afford security and comfortableness, the habitation module provides astronauts kitchen, bedroom, gymnasium, toilet, and so on. The laboratory module is used for science experiments, which involves plant cultivation devices and animal cultivation devices of bioregenerative life support system. The communication system, main computer, central control system and backup powers are arranged in the support module. For convenience of outside working and emergency rescue, every module with two exports is connected with other modules or lunar rovers. In order to solve the problems of waste treatment, atmosphere/water regeneration and food supply, this paper designed a bioregenerative life

  15. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene

    2018-03-01

    The purpose is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the DOE/EM Nevada Program’s UGTA Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP) (NNSA/NFO, 2015); Federal Facility Agreement and Consent Order (FFACO) (1996, as amended); and DOE Order 458.1, Radiation Protection of the Public and the Environment (DOE, 2013). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing both the extent of groundwater contamination from underground nuclear testing and impact of testing on water quality in downgradient communities. This Plan identifies locations to be sampled by CAU and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well purging, detection levels, and accuracy requirements/recommendations; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling analytes of interest to UGTA. Information used in the Plan development—including the rationale for selection of wells, sampling frequency, and the analytical suite—is discussed under separate cover (N-I, 2014) and is not reproduced herein. This Plan does not address compliance for those wells involved in a permitted activity. Sampling and analysis requirements associated with these wells are described in their respective permits and are discussed in NNSS environmental reports (see Section 5.2). In addition, sampling for UGTA CAUs that are in the Closure Report (CR) stage are not included in this Plan. Sampling requirements for these CAUs are described in the CR

  16. The enigma of lunar magnetism

    Science.gov (United States)

    Hood, L. L.

    1981-01-01

    Current understandings of the nature and probable origin of lunar magnetism are surveyed. Results of examinations of returned lunar samples are discussed which reveal the main carrier of the observed natural remanent magnetization to be iron, occasionally alloyed with nickel and cobalt, but do not distinguish between thermoremanent and shock remanent origins, and surface magnetometer data is presented, which indicates small-scale magnetic fields with a wide range of field intensities implying localized, near-surface sources. A detailed examination is presented of orbital magnetometer and charged particle data concerning the geologic nature and origin of magnetic anomaly sources and the directional properties of the magnetization, which exhibit a random distribution except for a depletion in the north-south direction. A lunar magnetization survey with global coverage provided by a polar orbiting satellite is suggested as a means of placing stronger constraints on the origin of lunar crustal magnetization.

  17. An Interdisciplinary Method for the Visualization of Novel High-Resolution Precision Photography and Micro-XCT Data Sets of NASA's Apollo Lunar Samples and Antarctic Meteorite Samples to Create Combined Research-Grade 3D Virtual Samples for the Benefit of Astromaterials Collections Conservation, Curation, Scientific Research and Education

    Science.gov (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Hanna, R. D.; Ketcham, R. A.

    2016-01-01

    New technologies make possible the advancement of documentation and visualization practices that can enhance conservation and curation protocols for NASA's Astromaterials Collections. With increasing demands for accessibility to updated comprehensive data, and with new sample return missions on the horizon, it is of primary importance to develop new standards for contemporary documentation and visualization methodologies. Our interdisciplinary team has expertise in the fields of heritage conservation practices, professional photography, photogrammetry, imaging science, application engineering, data curation, geoscience, and astromaterials curation. Our objective is to create virtual 3D reconstructions of Apollo Lunar and Antarctic Meteorite samples that are a fusion of two state-of-the-art data sets: the interior view of the sample by collecting Micro-XCT data and the exterior view of the sample by collecting high-resolution precision photography data. These new data provide researchers an information-rich visualization of both compositional and textural information prior to any physical sub-sampling. Since January 2013 we have developed a process that resulted in the successful creation of the first image-based 3D reconstruction of an Apollo Lunar Sample correlated to a 3D reconstruction of the same sample's Micro- XCT data, illustrating that this technique is both operationally possible and functionally beneficial. In May of 2016 we began a 3-year research period during which we aim to produce Virtual Astromaterials Samples for 60 high-priority Apollo Lunar and Antarctic Meteorite samples and serve them on NASA's Astromaterials Acquisition and Curation website. Our research demonstrates that research-grade Virtual Astromaterials Samples are beneficial in preserving for posterity a precise 3D reconstruction of the sample prior to sub-sampling, which greatly improves documentation practices, provides unique and novel visualization of the sample's interior and

  18. Lunar Health Monitor (LHM)

    Science.gov (United States)

    Lisy, Frederick J.

    2015-01-01

    Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.

  19. Lunar feldspathic meteorites: Constraints on the geology of the lunar highlands, and the origin of the lunar crust

    Science.gov (United States)

    Gross, Juliane; Treiman, Allan H.; Mercer, Celestine N.

    2014-02-01

    The composition of the lunar crust provides clues about the processes that formed it and hence contains information on the origin and evolution of the Moon. Current understanding of lunar evolution is built on the Lunar Magma Ocean hypothesis that early in its history, the Moon was wholly or mostly molten. This hypothesis is based on analyses of Apollo samples of ferroan anorthosites (>90% plagioclase; molar Mg/(Mg+Fe)=Mg#Moon's surface, and remote sensing data, show that ferroan anorthosites are not globally distributed and that the Apollo highland samples, used as a basis for the model, are influenced by ejecta from the Imbrium basin. In this study we evaluate anorthosites from all currently available adequately described lunar highland meteorites, representing a more widespread sampling of the lunar highlands than Apollo samples alone, and find that ∼80% of them are significantly more magnesian than Apollo ferroan anorthosites. Interestingly, Luna mission anorthosites, collected outside the continuous Imbrium ejecta, are also highly magnesian. If the lunar highland crust consists dominantly of magnesian anorthosites, as suggested by their abundance in samples sourced outside Imbrium ejecta, a reevaluation of the Lunar Magma Ocean model is a sensible step forward in the endeavor to understand lunar evolution. Our results demonstrate that lunar anorthosites are more similar in their chemical trends and mineral abundance to terrestrial massif anorthosites than to anorthosites predicted in a Lunar Magma Ocean. This analysis does not invalidate the idea of a Lunar Magma Ocean, which seems a necessity under the giant impact hypothesis for the origin of the moon. However, it does indicate that most rocks now seen at the Moon's surface are not primary products of a magma ocean alone, but are products of more complex crustal processes.

  20. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 4 TANK 21H QUALIFICATION SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Fink, S.

    2011-06-22

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H to qualify them for use in the Integrated Salt Disposition Program (ISDP) Batch 4 processing. All sample results agree with expectations based on prior analyses where available. No issues with the projected Salt Batch 4 strategy are identified. This revision includes additional data points that were not available in the original issue of the document, such as additional plutonium results, the results of the monosodium titanate (MST) sorption test and the extraction, scrub strip (ESS) test. This report covers the revision to the Tank 21H qualification sample results for Macrobatch (Salt Batch) 4 of the Integrated Salt Disposition Program (ISDP). A previous document covers initial characterization which includes results for a number of non-radiological analytes. These results were used to perform aluminum solubility modeling to determine the hydroxide needs for Salt Batch 4 to prevent the precipitation of solids. Sodium hydroxide was then added to Tank 21 and additional samples were pulled for the analyses discussed in this report. This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP).

  1. Inert gases in a terra sample - Measurements in six grain-size fractions and two single particles from Lunar 20.

    Science.gov (United States)

    Heymann, D.; Lakatos, S.; Walton, J. R.

    1973-01-01

    Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.

  2. The influence of moonlight and lunar periodicity on the efficacy of CDC light trap in sampling Phlebotomus (Larroussius) orientalis Parrot, 1936 and other Phlebotomus sandflies (Diptera: Psychodidae) in Ethiopia.

    Science.gov (United States)

    Gebresilassie, Araya; Yared, Solomon; Aklilu, Essayas; Kirstein, Oscar David; Moncaz, Aviad; Tekie, Habte; Balkew, Meshesha; Warburg, Alon; Hailu, Asrat; Gebre-Michael, Teshome

    2015-02-15

    Phlebotomus orientalis is the main sandfly vector of visceral leishmaniasis in the north and northwest of Ethiopia. CDC light traps and sticky traps are commonly used for monitoring sandfly populations. However, their trapping efficiency is greatly influenced by various environmental factors including moonlight and lunar periodicity. In view of that, the current study assessed the effect of moonlight and lunar periodicity on the performance of light traps in collecting P. orientalis. Trapping of P. orientalis and other Phlebotomus spp. was conducted for 7 months between December 2012 and June 2013 using CDC light traps and sticky traps from peri-domestic and agricultural fields. Throughout the trapping periods, collections of sandfly specimens were carried out for 4 nights per month, totaling 28 trapping nights that coincided with the four lunar phases (viz., first quarter, third quarter, new and full moon) distributed in each month. In total, 13,533 sandflies of eight Phlebotomus species (P. orientalis, P. bergeroti, P. rodhaini, P. duboscqi, P. papatasi, P. martini, P. lesleyae and P. heischi) were recorded. The predominant species was P. orientalis in both trapping sites and by both methods of collection in all lunar phases. A significant difference (P lunar phases. The highest mean number (231.13 ± 36.27 flies/trap/night) of P. orientalis was collected during the new moon phases, when the moonlight is absent. Fewer sandflies were attracted to light traps during a full moon. However, the number of P. orientalis and the other Phlebotomus spp. from sticky traps did not differ in their density among the four lunar phases (P = 0.122). Results of the current study demonstrated that the attraction and trapping efficiency of CDC light traps is largely influenced by the presence moonlight, especially during a full moon. Therefore, sampling of sandflies using light traps to estimate population density and other epidemiological studies in the field should take

  3. First lunar outpost

    Science.gov (United States)

    Andino, Aureo F.; Silva, Daniel; Ortiz, Nelson; Alvarez, Omar; Colon, Julio A.; Colon, Myrelle; Diaz, Alicia; Escobar, Xochiquetzal Y.; Garcia, Alberto; Gonzalez, Isabel C.

    1992-01-01

    Design and research efforts at the University of Puerto Rico have focused on the evaluation and refinement of the Habitability Criteria for a prolonged human presence in space during the last four years. Living quarters for a Mars mission and a third generation lunar base concept were proposed. This academic year, 1991-92, work on further refinement of the habitability criteria and design of partial gravity furniture was carried on. During the first semester, design alternatives for furniture necessary in a habitat design optimized for lunar and Martian environments were developed. Designs are based on recent research data from lunar and Mars gravity simulations, and current NASA standards. Artifacts will be submitted to NASA architects to be tested in KC-135 flights. Test findings will be submitted for incorporation in future updates to NASA habitat design standards. Second semester work was aimed at integrating these findings into the First Lunar Outpost (FLO), a mission scenario currently being considered by NASA. The mission consists of a manned return to the moon by crews of four astronauts for periods of 45 days. The major hardware components of the mission are as follows: (1) a Crew Module for the delivery of the crew and their supplies, and (2) the Habitat Module, which will arrive on the Moon unmanned. Our design efforts concentrated on this Habitat Module and on application of habitability criteria. Different geometries for the pressure vessel and their impact on the interior architecture were studied. Upon the selection of a geometry, a more detailed analysis of the interior design was performed, taking into consideration the reduced gravity, and the protection against radiation, micrometeorites, and the extreme temperature variation. A proposal for a FLO was submitted by the students, consisting essentially of a 24-feet (7.3 m.) by 35-feet (10.67 m) high vertical cylinder with work areas, crew quarters, galley, wardroom, leisure facilities, health

  4. Astronaut Neil Armstrong participates in lunar surface siumlation training

    Science.gov (United States)

    1969-01-01

    Suited Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, participates in lunar surface simulation training on April 18, 1969, in bldg 9, Manned Spacecraft Center (MSC). Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he simulates scooping up a lunar surface sample.

  5. Low temperature thermophysical properties of lunar soil

    Science.gov (United States)

    Cremers, C. J.

    1973-01-01

    The thermal conductivity and thermal diffusivity of lunar fines samples from the Apollo 11 and Apollo 12 missions, determined at low temperatures as a function of temperature and various densities, are reviewed. It is shown that the thermal conductivity of lunar soil is nearly the same as that of terrestrial basaltic rock under the same temperature and pressure conditions.

  6. Krypton and xenon in lunar fines

    Science.gov (United States)

    Basford, J. R.; Dragon, J. C.; Pepin, R. O.; Coscio, M. R., Jr.; Murthy, V. R.

    1973-01-01

    Data from grain-size separates, stepwise-heated fractions, and bulk analyses of 20 samples of fines and breccias from five lunar sites are used to define three-isotope and ordinate intercept correlations in an attempt to resolve the lunar heavy rare gas system in a statistically valid approach. Tables of concentrations and isotope compositions are given.

  7. Integrated microfabricated biodevices. New advances in sample preparation (T2)

    International Nuclear Information System (INIS)

    Guttman, A.

    2002-01-01

    Full text: Interdisciplinary science and technologies have converged in the past few years to create exciting challenges and opportunities, which involve novel, integrated microfabricated systems, facilitating large-scale analytical applications. These new devices are referred to as lab-on-a-chip or micro Total Analysis Systems (uTAS). Their development involves both established and evolving technologies, which include microlithography, micromachining, micro-electromechanical systems (MEMS) technology, microfluidics and nanotechnology. The advent of this extremely powerful and rapid analysis technique opens up new horizons in analytical chemistry and molecular biology, capable of revealing global changes in gene expression levels by enabling genome, proteome and metabolome analysis on microchips. This presentation will provide an overview of the key device subject areas and the basic interdisciplinary technologies. It will also give a better understanding of how to utilize these miniaturized technologies as well as to provide appropriate technical solutions to problems perceived as being more fundamental. Theoretical and practical aspects of integrating sample preparation/purification and analysis units with chemical and biochemical reactors in monolithic microdevices are going to be thoroughly discussed. Important applications for this novel 'synergized' technology in high throughput analysis of biologically important molecules will also be addressed. (author)

  8. Photometric Lunar Surface Reconstruction

    Science.gov (United States)

    Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.

    2013-01-01

    Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.

  9. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  10. New Age for Lunar Exploration

    Science.gov (United States)

    Taylor, G. J.; Martel, L. M. V.

    2018-04-01

    Lunar-focused research and plans to return to the lunar surface for science and exploration have reemerged since the Space Policy Directive-1 of December 11, 2017 amended the National Space Policy to include the following, "Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations." In response to this revision, NASA proposes a Lunar Exploration and Discovery Program in the U.S. fiscal year 2019 Budget Request. It supports NASA's interests in commercial and international partnerships in Low-Earth Orbit (LEO), long-term exploration in Cislunar space beyond LEO, and research and exploration conducted on the Moon to inform future crewed missions, even to destinations beyond the Moon. (Cislunar refers to the volume of space between LEO and the Moon's orbital distance.) The lunar campaign strengthens the integration of human and robotic activities on the lunar surface with NASA's science, technology, and exploration goals.

  11. International Academy of Astronautics 5th cosmic study--preparing for a 21st century program of integrated, Lunar and Martian exploration and development (executive summary).

    Science.gov (United States)

    Koelle, H H; Stephenson, D G

    2003-04-01

    This report is an initial review of plans for a extensive program to survey and develop the Moon and to explore the planet Mars during the 21st century. It presents current typical plans for separate, associated and fully integrated programs of Lunar and Martian research, exploration and development, and concludes that detailed integrated plans must be prepared and be subject to formal criticism. Before responsible politicians approve a new thrust into space they will demand attractive, defensible, and detailed proposals that explain the WHEN, HOW and WHY of each stage of an expanded program of 21st century space research, development and exploration. In particular, the claims of daring, innovative, but untried systems must be compared with the known performance of existing technologies. The time has come to supersede the present haphazard approach to strategic space studies with a formal international structure to plan for future advanced space missions under the aegis of the world's national space agencies, and supported by governments and the corporate sector. c2002 Elsevier Science Ltd. All rights reserved.

  12. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    Science.gov (United States)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  13. Storage Effects on Sample Integrity of Environmental Surface Sampling Specimens with Bacillus anthracis Spores.

    Science.gov (United States)

    Perry, K Allison; O'Connell, Heather A; Rose, Laura J; Noble-Wang, Judith A; Arduino, Matthew J

    The effect of packaging, shipping temperatures and storage times on recovery of Bacillus anthracis . Sterne spores from swabs was investigated. Macrofoam swabs were pre-moistened, inoculated with Bacillus anthracis spores, and packaged in primary containment or secondary containment before storage at -15°C, 5°C, 21°C, or 35°C for 0-7 days. Swabs were processed according to validated Centers for Disease Control/Laboratory Response Network culture protocols, and the percent recovery relative to a reference sample (T 0 ) was determined for each variable. No differences were observed in recovery between swabs held at -15° and 5°C, (p ≥ 0.23). These two temperatures provided significantly better recovery than swabs held at 21°C or 35°C (all 7 days pooled, p ≤ 0.04). The percent recovery at 5°C was not significantly different if processed on days 1, 2 or 4, but was significantly lower on day 7 (day 2 vs. 7, 5°C, 10 2 , p=0.03). Secondary containment provided significantly better percent recovery than primary containment, regardless of storage time (5°C data, p ≤ 0.008). The integrity of environmental swab samples containing Bacillus anthracis spores shipped in secondary containment was maintained when stored at -15°C or 5°C and processed within 4 days to yield the optimum percent recovery of spores.

  14. Lunar Flashlight and Other Lunar Cubesats

    Science.gov (United States)

    Cohen, Barbara

    2017-01-01

    Water is a human-exploitable resource. Lunar Flashlight is a Cubesat mission to detect and map lunar surface ice in permanently-shadowed regions of the lunar south pole. EM-1 will carry 13 Cubesat-class missions to further smallsat science and exploration capabilities; much room to infuse LEO cubesat methodology, models, and technology. Exploring the value of concurrent measurements to measure dynamical processes of water sources and sinks.

  15. Lunar soil as shielding against space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. [Lawrence Berkeley National Laboratory, MS 83R0101, 1 Cyclotron Road, Berkeley, CA 94720 (United States)], E-mail: miller@lbl.gov; Taylor, L. [Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 (United States); Zeitlin, C. [Southwest Research Institute, Boulder, CO 80302 (United States); Heilbronn, L. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Guetersloh, S. [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); DiGiuseppe, M. [Northrop Grumman Corporation, Bethpage, NY 11714 (United States); Iwata, Y.; Murakami, T. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2009-02-15

    We have measured the radiation transport and dose reduction properties of lunar soil with respect to selected heavy ion beams with charges and energies comparable to some components of the galactic cosmic radiation (GCR), using soil samples returned by the Apollo missions and several types of synthetic soil glasses and lunar soil simulants. The suitability for shielding studies of synthetic soil and soil simulants as surrogates for lunar soil was established, and the energy deposition as a function of depth for a particular heavy ion beam passing through a new type of lunar highland simulant was measured. A fragmentation and energy loss model was used to extend the results over a range of heavy ion charges and energies, including protons at solar particle event (SPE) energies. The measurements and model calculations indicate that a modest amount of lunar soil affords substantial protection against primary GCR nuclei and SPE, with only modest residual dose from surviving charged fragments of the heavy beams.

  16. Lunar and Planetary Science XXXII

    Science.gov (United States)

    2001-01-01

    This CD-ROM publication contains the extended abstracts that were accepted for presentation at the 32nd Lunar and Planetary Science Conference held at Houston, TX, March 12-16, 2001. The papers are presented in PDF format and are indexed by author, keyword, meteorite, program and samples for quick reference.

  17. LADEE LUNAR DUST EXPERIMENT

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive bundle includes data taken by the Lunar Dust Experiment (LDEX) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft....

  18. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  19. Critical Robotic Lunar Missions

    Science.gov (United States)

    Plescia, J. B.

    2018-04-01

    Perhaps the most critical missions to understanding lunar history are in situ dating and network missions. These would constrain the volcanic and thermal history and interior structure. These data would better constrain lunar evolution models.

  20. Digging Deep: Is Lunar Mantle Excavated Around the Imbrium Basin?

    Science.gov (United States)

    Klima, R. L.; Bretzfelder, J.; Buczkowski, D.; Ernst, C. M.; Greenhagen, B. T.; Petro, N. E.; Shusterman, M. L.

    2017-12-01

    The Moon has experienced over a dozen impacts resulting in basins large enough to have excavated mantle material. With many of those basins concentrated on the lunar near side, and extensive regolith mixing since the lunar magma ocean crystallized, one might expect that some mantle material would have been found among the lunar samples on Earth. However, so far, no mantle clasts have been definitively identified in lunar samples [1]. From orbit, a number of olivine-bearing localities, potentially sourced from the mantle, have been identified around impact basins [2]. Based on analysis of near-infrared (NIR) and imaging data, [3] suggest that roughly 60% of these sites represent olivine from the mantle. If this is the case and the blocks are coherent and not extensively mixed into the regolith, these deposits should be ultramafic, containing olivine and/or pyroxenes and little to no plagioclase. In the mid-infrared, they would thus exhibit Christiansen features at wavelengths in excess of 8.5 μm, which has not been observed in global studies using the Diviner Lunar Radiometer [4]. We present an integrated study of the massifs surrounding the Imbrium basin, which, at over 1000 km wide, is large enough to have penetrated through the lunar crust and into the mantle. These massifs are clearly associated with the Imbrium basin-forming impact, but existing geological maps do not distinguish between whether they are likely ejecta or rather uplifted from beneath the surface during crustal rebound [5]. We examine these massifs using vis, NIR and Mid IR data to determine the relationships between and the bulk mineralogy of local lithologies. NIR data suggest that the massifs contain exposures of four dominant minerals: olivine, Mg-rich orthopyroxene, a second low-Ca pyroxene, and anorthite. Mid IR results suggest that though many of these massifs are plagioclase-rich, portions of some may be significantly more mafic. We will present our growing mineralogical map of the

  1. Distribution of Amino Acids in Lunar Regolith

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  2. Modeling Respiratory Toxicity of Authentic Lunar Dust

    Science.gov (United States)

    Santana, Patricia A.; James, John T.; Lam, Chiu-Wing

    2010-01-01

    The lunar expeditions of the Apollo operations from the 60 s and early 70 s have generated awareness about lunar dust exposures and their implication towards future lunar explorations. Critical analyses on the reports from the Apollo crew members suggest that lunar dust is a mild respiratory and ocular irritant. Currently, NASA s space toxicology group is functioning with the Lunar Airborne Dust Toxicity Assessment Group (LADTAG) and the National Institute for Occupational Safety and Health (NIOSH) to investigate and examine toxic effects to the respiratory system of rats in order to establish permissible exposure levels (PELs) for human exposure to lunar dust. In collaboration with the space toxicology group, LADTAG and NIOSH the goal of the present research is to analyze dose-response curves from rat exposures seven and twenty-eight days after intrapharyngeal instillations, and model the response using BenchMark Dose Software (BMDS) from the Environmental Protection Agency (EPA). Via this analysis, the relative toxicities of three types of Apollo 14 lunar dust samples and two control dust samples, titanium dioxide (TiO2) and quartz will be determined. This will be executed for several toxicity endpoints such as cell counts and biochemical markers in bronchoaveolar lavage fluid (BALF) harvested from the rats.

  3. Short Note An integrated remote sampling approach for aquatic ...

    African Journals Online (AJOL)

    A sampling method and apparatus for collecting meaningful and quantifiable samples of aquatic macroinvertebrates, and the macrophytes they are associated with, are presented. Where physical danger from wildlife is a significant factor, especially in Africa, this apparatus offers some safety in that it can be operated from a ...

  4. RESOLVE (Regolith & Environmental Science Oxygen & Lunar Volatile Extraction) Project

    Science.gov (United States)

    Parker, Ray; Coan, Mary; Captain, Janine; Cryderman, Kate; Quinn, Jacqueline

    2015-01-01

    The RESOLVE Project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer for the Surge Tank (NIRST), WDD, Sample Delivery System, and GC-MS in the vacuum chamber. Since LAVA is a scientific subsystem, the near infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  5. Glass sampling program during DWPF Integrated Cold Runs

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1990-01-01

    The described glass sampling program is designed to achieve two objectives: To demonstrate Defense Waste Processing Facility (DWPF) ability to control and verify the radionuclide release properties of the glass product; To confirm DWPF's readiness to obtain glass samples during production, and SRL's readiness to analyze and test those samples remotely. The DWPF strategy for control of the radionuclide release properties of the glass product, and verification of its acceptability are described in this report. The basic approach of the test program is then defined

  6. Multi-state autonomous drilling for lunar exploration

    Directory of Open Access Journals (Sweden)

    Chen Chongbin

    2016-10-01

    Full Text Available Due to the lack of information of subsurface lunar regolith stratification which varies along depth, the drilling device may encounter lunar soil and lunar rock randomly in the drilling process. To meet the load safety requirements of unmanned sampling mission under limited orbital resources, the control strategy of autonomous drilling should adapt to the indeterminable lunar environments. Based on the analysis of two types of typical drilling media (i.e., lunar soil and lunar rock, this paper proposes a multi-state control strategy for autonomous lunar drilling. To represent the working circumstances in the lunar subsurface and reduce the complexity of the control algorithm, lunar drilling process was categorized into three drilling states: the interface detection, initiation of drilling parameters for recognition and drilling medium recognition. Support vector machine (SVM and continuous wavelet transform were employed for the online recognition of drilling media and interface, respectively. Finite state machine was utilized to control the transition among different drilling states. To verify the effectiveness of the multi-state control strategy, drilling experiments were implemented with multi-layered drilling media constructed by lunar soil simulant and lunar rock simulant. The results reveal that the multi-state control method is capable of detecting drilling state variation and adjusting drilling parameters timely under vibration interferences. The multi-state control method provides a feasible reference for the control of extraterrestrial autonomous drilling.

  7. Our Lunar Destiny: Creating a Lunar Economy

    Science.gov (United States)

    Rohwer, Christopher J.

    2000-01-01

    "Our Lunar Destiny: Creating a Lunar Economy" supports a vision of people moving freely and economically between the earth and the Moon in an expansive space and lunar economy. It makes the economic case for the creation of a lunar space economy and projects the business plan that will make the venture an economic success. In addition, this paper argues that this vision can be created and sustained only by private enterprise and the legal right of private property in space and on the Moon. Finally, this paper advocates the use of lunar land grants as the key to unleashing the needed capital and the economic power of private enterprise in the creation of a 21st century lunar space economy. It is clear that the history of our United States economic system proves the value of private property rights in the creation of any new economy. It also teaches us that the successful development of new frontiers-those that provide economic opportunity for freedom-loving people-are frontiers that encourage, respect and protect the possession of private property and the fruits of labor and industry. Any new 21st century space and lunar economy should therefore be founded on this same principle.

  8. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    OpenAIRE

    Toffoli, Valeria; Carrato, Sergio; Lee, Dongkyu; Jeon, Sangmin; Lazzarino, Marco

    2013-01-01

    The design and characteristics of a micro-system for thermogravimetric analysis (TGA) in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using mill...

  9. Strength and compressibility of returned lunar soil.

    Science.gov (United States)

    Carrier, W. D., III; Bromwell, L. G.; Martin, R. T.

    1972-01-01

    Two oedometer and three direct shear tests have been performed in vacuum on a 200 g sample of lunar soil from Apollo 12 (12001, 119). The compressibility data have been used to calculate bulk density and shear wave velocity versus depth on the lunar surface. The shear wave velocity was found to increase approximately with the one-fourth power of the depth, and the results suggest that the Apollo 14 Active Seismic Experiment may not have detected the Fra Mauro formation at a depth of 8.5 m, but only naturally consolidated lunar soil. The shear data indicate that the strength of the lunar soil sample is about 65% that of a ground basalt simulant at the same void ratio.

  10. COMPASS Final Report: Lunar Communications Terminal (LCT)

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2010-01-01

    The Lunar Communications Terminal (LCT) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) session designed a terminal to provide communications between lunar South Pole assets, communications relay to/from these assets through an orbiting Lunar Relay Satellite (LRS) and navigation support. The design included a complete master equipment list, power requirement list, configuration design, and brief risk assessment and cost analysis. The Terminal consists of a pallet containing the communications and avionics equipment, surrounded by the thermal control system (radiator), an attached, deployable 10-m tower, upon which were mounted locally broadcasting and receiving modems and a deployable 1 m diameter Ka/S band dish which provides relay communications with the lunar relay satellites and, as a backup, Earth when it is in view. All power was assumed to come from the lunar outpost Habitat. Three LCT design options were explored: a stand-alone LCT servicing the manned outpost, an integrated LCT (into the Habitat or Lunar Lander), and a mini-LCT which provides a reduced level of communication for primarily robotic areas dealing as in situ resource utilization (ISRU) and remote science. Where possible all the designs assumed single fault tolerance. Significant mass savings were found when integrating the LCT into the Habitat or Lander but increases in costs occurred depending upon the level of man rating required for such designs.

  11. An integrate-over-temperature approach for enhanced sampling.

    Science.gov (United States)

    Gao, Yi Qin

    2008-02-14

    A simple method is introduced to achieve efficient random walking in the energy space in molecular dynamics simulations which thus enhances the sampling over a large energy range. The approach is closely related to multicanonical and replica exchange simulation methods in that it allows configurations of the system to be sampled in a wide energy range by making use of Boltzmann distribution functions at multiple temperatures. A biased potential is quickly generated using this method and is then used in accelerated molecular dynamics simulations.

  12. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION MST, ESS AND PODD SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Fink, S.

    2012-04-24

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 5 processing. This qualification material was a composite created from recent samples from Tank 21H and archived samples from Tank 49H to match the projected blend from these two tanks. Additionally, samples of the composite were used in the Actinide Removal Process (ARP) and extraction-scrub-strip (ESS) tests. ARP and ESS test results met expectations. A sample from Tank 21H was also analyzed for the Performance Objectives Demonstration Document (PODD) requirements. SRNL was able to meet all of the requirements, including the desired detection limits for all the PODD analytes. This report details the results of the Actinide Removal Process (ARP), Extraction-Scrub-Strip (ESS) and Performance Objectives Demonstration Document (PODD) samples of Macrobatch (Salt Batch) 5 of the Integrated Salt Disposition Program (ISDP).

  13. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    Directory of Open Access Journals (Sweden)

    Valeria Toffoli

    2013-12-01

    Full Text Available The design and characteristics of a micro-system for thermogravimetric analysis (TGA in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  14. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    Science.gov (United States)

    Toffoli, Valeria; Carrato, Sergio; Lee, Dongkyu; Jeon, Sangmin; Lazzarino, Marco

    2013-01-01

    The design and characteristics of a micro-system for thermogravimetric analysis (TGA) in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  15. Orbital studies of lunar magnetism

    Science.gov (United States)

    Mcleod, M. G.; Coleman, P. J., Jr.

    1982-01-01

    Limitations of present lunar magnetic maps are considered. Optimal processing of satellite derived magnetic anomaly data is also considered. Studies of coastal and core geomagnetism are discussed. Lunar remanent and induced lunar magnetization are included.

  16. Lunar resource base

    Science.gov (United States)

    Pulley, John; Wise, Todd K.; Roy, Claude; Richter, Phil

    A lunar base that exploits local resources to enhance the productivity of a total SEI scenario is discussed. The goals were to emphasize lunar science and to land men on Mars in 2016 using significant amounts of lunar resources. It was assumed that propulsion was chemical and the surface power was non-nuclear. Three phases of the base build-up are outlined, the robotic emplacement of the first elements is detailed and a discussion of future options is included.

  17. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin

    2016-01-01

    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  18. Lunar Reconnaissance Orbiter Lunar Workshops for Educators

    Science.gov (United States)

    Jones, A. P.; Hsu, B. C.; Hessen, K.; Bleacher, L.

    2012-12-01

    The Lunar Workshops for Educators (LWEs) are a series of weeklong professional development workshops, accompanied by quarterly follow-up sessions, designed to educate and inspire grade 6-12 science teachers, sponsored by the Lunar Reconnaissance Orbiter (LRO). Participants learn about lunar science and exploration, gain tools to help address common student misconceptions about the Moon, find out about the latest research results from LRO scientists, work with data from LRO and other lunar missions, and learn how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks and through authentic research experiences. LWEs are held around the country, primarily in locations underserved with respect to NASA workshops. Where possible, workshops also include tours of science facilities or field trips intended to help participants better understand mission operations or geologic processes relevant to the Moon. Scientist and engineer involvement is a central tenant of the LWEs. LRO scientists and engineers, as well as scientists working on other lunar missions, present their research or activities to the workshop participants and answer questions about lunar science and exploration. This interaction with the scientists and engineers is consistently ranked by the LWE participants as one of the most interesting and inspiring components of the workshops. Evaluation results from the 2010 and 2011 workshops, as well as preliminary analysis of survey responses from 2012 participants, demonstrated an improved understanding of lunar science concepts among LWE participants in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and effectively share LRO data with students. Teachers reported increased confidence in helping students conduct research using lunar data, and learned about programs that would allow their students to make authentic

  19. Lunar and Planetary Science XXXV: Moon and Mercury

    Science.gov (United States)

    2004-01-01

    The session" Moon and Mercury" included the following reports:Helium Production of Prompt Neutrinos on the Moon; Vapor Deposition and Solar Wind Implantation on Lunar Soil-Grain Surfaces as Comparable Processes; A New Lunar Geologic Mapping Program; Physical Backgrounds to Measure Instantaneous Spin Components of Terrestrial Planets from Earth with Arcsecond Accuracy; Preliminary Findings of a Study of the Lunar Global Megaregolith; Maps Characterizing the Lunar Regolith Maturity; Probable Model of Anomalies in the Polar Regions of Mercury; Parameters of the Maximum of Positive Polarization of the Moon; Database Structure Development for Space Surveying Results by Moon -Zond Program; CM2-type Micrometeoritic Lunar Winds During the Late Heavy Bombardment; A Comparison of Textural and Chemical Features of Spinel Within Lunar Mare Basalts; The Reiner Gamma Formation as Characterized by Earth-based Photometry at Large Phase Angles; The Significance of the Geometries of Linear Graben for the Widths of Shallow Dike Intrusions on the Moon; Lunar Prospector Data, Surface Roughness and IR Thermal Emission of the Moon; The Influence of a Magma Ocean on the Lunar Global Stress Field Due to Tidal Interaction Between the Earth and Moon; Variations of the Mercurian Photometric Relief; A Model of Positive Polarization of Regolith; Ground Truth and Lunar Global Thorium Map Calibration: Are We There Yet?;and Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes.

  20. An integrated sampling and analysis approach for improved biodiversity monitoring

    Science.gov (United States)

    DeWan, Amielle A.; Zipkin, Elise F.

    2010-01-01

    Successful biodiversity conservation requires high quality monitoring data and analyses to ensure scientifically defensible policy, legislation, and management. Although monitoring is a critical component in assessing population status and trends, many governmental and non-governmental organizations struggle to develop and implement effective sampling protocols and statistical analyses because of the magnitude and diversity of species in conservation concern. In this article we describe a practical and sophisticated data collection and analysis framework for developing a comprehensive wildlife monitoring program that includes multi-species inventory techniques and community-level hierarchical modeling. Compared to monitoring many species individually, the multi-species approach allows for improved estimates of individual species occurrences, including rare species, and an increased understanding of the aggregated response of a community to landscape and habitat heterogeneity. We demonstrate the benefits and practicality of this approach to address challenges associated with monitoring in the context of US state agencies that are legislatively required to monitor and protect species in greatest conservation need. We believe this approach will be useful to regional, national, and international organizations interested in assessing the status of both common and rare species.

  1. Rare Earth Element Partitioning in Lunar Minerals: An Experimental Study

    Science.gov (United States)

    McIntosh, E. C.; Rapp, J. F.; Draper, D. S.

    2016-01-01

    The partitioning behavior of rare earth elements (REE) between minerals and melts is widely used to interpret the petrogenesis and geologic context of terrestrial and extra-terrestrial samples. REE are important tools for modelling the evolution of the lunar interior. The ubiquitous negative Eu anomaly in lunar basalts is one of the main lines of evidence to support the lunar magma ocean (LMO) hypothesis, by which the plagioclase-rich lunar highlands were formed as a flotation crust during differentiation of a global-scale magma ocean. The separation of plagioclase from the mafic cumulates is thought to be the source of the Eu depletion, as Eu is very compatible in plagioclase. Lunar basalts and volcanic glasses are commonly depleted in light REEs (LREE), and more enriched in heavy REEs (HREE). However, there is very little experimental data available on REE partitioning between lunar minerals and melts. In order to interpret the source of these distinctive REE patterns, and to model lunar petrogenetic processes, REE partition coefficients (D) between lunar minerals and melts are needed at conditions relevant to lunar processes. New data on D(sub REE) for plagioclase, and pyroxenes are now available, but there is limited available data for olivine/melt D(sub REE), particularly at pressures higher than 1 bar, and in Fe-rich and reduced compositions - all conditions relevant to the lunar mantle. Based on terrestrial data, REE are highly incompatible in olivine (i.e. D much less than 1), however olivine is the predominant mineral in the lunar interior, so it is important to understand whether it is capable of storing even small amounts of REE, and how the REEs might be fractionatied, in order to understand the trace element budget of the lunar interior. This abstract presents results from high-pressure and temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to lunar magmatism.

  2. Lunar remote sensing and measurements

    Science.gov (United States)

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.

    1980-01-01

    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  3. The ESA Lunar Lander and the search for Lunar Volatiles

    Science.gov (United States)

    Morse, A. D.; Barber, S. J.; Pillinger, J. M.; Sheridan, S.; Wright, I. P.; Gibson, E. K.; Merrifield, J. A.; Waltham, N. R.; Waugh, L. J.; Pillinger, C. T.

    2011-10-01

    Following the Apollo era the moon was considered a volatile poor body. Samples collected from the Apollo missions contained only ppm levels of water formed by the interaction of the solar wind with the lunar regolith [1]. However more recent orbiter observations have indicated that water may exist as water ice in cold polar regions buried within craters at concentrations of a few wt. % [2]. Infrared images from M3 on Chandrayaan-1 have been interpreted as showing the presence of hydrated surface minerals with the ongoing hydroxyl/water process feeding cold polar traps. This has been supported by observation of ephemeral features termed "space dew" [3]. Meanwhile laboratory studies indicate that water could be present in appreciable quantities in lunar rocks [4] and could also have a cometary source [5]. The presence of sufficient quantities of volatiles could provide a resource which would simplify logistics for long term lunar missions. The European Space Agency (ESA's Directorate of Human Spaceflight and Operations) have provisionally scheduled a robotic mission to demonstrate key technologies to enable later human exploration. Planned for launch in 2018, the primary aim is for precise automated landing, with hazard avoidance, in zones which are almost constantly illuminated (e.g. at the edge of the Shackleton crater at the lunar south pole). These regions would enable the solar powered Lander to survive for long periods > 6 months, but require accurate navigation to within 200m. Although landing in an illuminated area, these regions are close to permanently shadowed volatile rich regions and the analysis of volatiles is a major science objective of the mission. The straw man payload includes provision for a Lunar Volatile and Resources Analysis Package (LVRAP). The authors have been commissioned by ESA to conduct an evaluation of possible technologies to be included in L-VRAP which can be included within the Lander payload. Scientific aims are to demonstrate the

  4. Lunar-A

    Indian Academy of Sciences (India)

    penetrators will be transmitted to the earth station via the Lunar-A mother spacecraft orbiting at an altitude of about .... to save the power consumption of the Lunar-A penetrator .... and an origin-time versus tidal-phases correlation. (Toksoz et al ...

  5. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  6. Production of continuous glass fiber using lunar simulant

    Science.gov (United States)

    Tucker, Dennis S.; Ethridge, Edwin C.; Curreri, Peter A.

    1991-01-01

    The processing parameters and mechanical properties of glass fibers pulled from simulated lunar basalt are tested. The simulant was prepared using a plasma technique. The composition is representative of a low titanium mare basalt (Apollo sample 10084). Lunar gravity experiments are to be performed utilizing parabolic aircraft free-fall maneuvers which yield 30 seconds of 1/6-g per maneuver.

  7. Integrating a sampling oscilloscope card and spectroscopy ADCs in a data acquisition system

    CERN Document Server

    Maartensson, L

    2001-01-01

    A high-rate sampling oscilloscope card has been integrated into an existing data acquisition system for spectroscopy ADCs. Experiments where pulse-shape analyses are important have then been made possible. Good performance characteristics of the integrated system have been achieved. Spectroscopy ADC data together with pulse-shape data sampled 512 times at 100 MHz are saved to hard disk at event rates up to about 1 kHz with low dead time losses.

  8. Lunar neutron source function

    International Nuclear Information System (INIS)

    Kornblum, J.J.

    1974-01-01

    The search for a quantitative neutron source function for the lunar surface region is justified because it contributes to our understanding of the history of the lunar surface and of nuclear process occurring on the moon since its formation. A knowledge of the neutron source function and neutron flux distribution is important for the interpretation of many experimental measurements. This dissertation uses the available pertinent experimental measurements together with theoretical calculations to obtain an estimate of the lunar neutron source function below 15 MeV. Based upon reasonable assumptions a lunar neutron source function having adjustable parameters is assumed for neutrons below 15 MeV. The lunar neutron source function is composed of several components resulting from the action of cosmic rays with lunar material. A comparison with previous neutron calculations is made and significant differences are discussed. Application of the results to the problem of lunar soil histories is examined using the statistical model for soil development proposed by Fireman. The conclusion is drawn that the moon is losing mass

  9. Lunar transportation system

    Science.gov (United States)

    1993-07-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  10. Passive sampling of selected endocrine disrupting compounds using polar organic chemical integrative samplers

    International Nuclear Information System (INIS)

    Arditsoglou, Anastasia; Voutsa, Dimitra

    2008-01-01

    Two types of polar organic chemical integrative samplers (pharmaceutical POCIS and pesticide POCIS) were examined for their sampling efficiency of selected endocrine disrupting compounds (EDCs). Laboratory-based calibration of POCISs was conducted by exposing them at high and low concentrations of 14 EDCs (4-alkyl-phenols, their ethoxylate oligomers, bisphenol A, selected estrogens and synthetic steroids) for different time periods. The kinetic studies showed an integrative uptake up to 28 days. The sampling rates for the individual compounds were obtained. The use of POCISs could result in an integrative approach to the quality status of the aquatic systems especially in the case of high variation of water concentrations of EDCs. The sampling efficiency of POCISs under various field conditions was assessed after their deployment in different aquatic environments. - Calibration and field performance of polar organic integrative samplers for monitoring EDCs in aquatic environments

  11. Background Information for the Nevada National Security Site Integrated Sampling Plan, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene; Marutzky, Sam

    2014-12-01

    This document describes the process followed to develop the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan). It provides the Plan’s purpose and objectives, and briefly describes the Underground Test Area (UGTA) Activity, including the conceptual model and regulatory requirements as they pertain to groundwater sampling. Background information on other NNSS groundwater monitoring programs—the Routine Radiological Environmental Monitoring Plan (RREMP) and Community Environmental Monitoring Program (CEMP)—and their integration with the Plan are presented. Descriptions of the evaluations, comments, and responses of two Sampling Plan topical committees are also included.

  12. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model.

    Science.gov (United States)

    Russell, Sara S; Joy, Katherine H; Jeffries, Teresa E; Consolmagno, Guy J; Kearsley, Anton

    2014-09-13

    The lunar magma ocean model is a well-established theory of the early evolution of the Moon. By this model, the Moon was initially largely molten and the anorthositic crust that now covers much of the lunar surface directly crystallized from this enormous magma source. We are undertaking a study of the geochemical characteristics of anorthosites from lunar meteorites to test this model. Rare earth and other element abundances have been measured in situ in relict anorthosite clasts from two feldspathic lunar meteorites: Dhofar 908 and Dhofar 081. The rare earth elements were present in abundances of approximately 0.1 to approximately 10× chondritic (CI) abundance. Every plagioclase exhibited a positive Eu-anomaly, with Eu abundances of up to approximately 20×CI. Calculations of the melt in equilibrium with anorthite show that it apparently crystallized from a magma that was unfractionated with respect to rare earth elements and ranged in abundance from 8 to 80×CI. Comparisons of our data with other lunar meteorites and Apollo samples suggest that there is notable heterogeneity in the trace element abundances of lunar anorthosites, suggesting these samples did not all crystallize from a common magma source. Compositional and isotopic data from other authors also suggest that lunar anorthosites are chemically heterogeneous and have a wide range of ages. These observations may support other models of crust formation on the Moon or suggest that there are complexities in the lunar magma ocean scenario to allow for multiple generations of anorthosite formation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Lunar Map Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Map Catalog includes various maps of the moon's surface, including Apollo landing sites; earthside, farside, and polar charts; photography index maps; zone...

  14. Consolidated Lunar Atlas

    Data.gov (United States)

    National Aeronautics and Space Administration — The Consolidated Lunar Atlas is a collection of the best photographic images of the moon, including low-oblique photography, full-moon photography, and tabular and...

  15. Asymptotic Effectiveness of the Event-Based Sampling According to the Integral Criterion

    Directory of Open Access Journals (Sweden)

    Marek Miskowicz

    2007-01-01

    Full Text Available A rapid progress in intelligent sensing technology creates new interest in a development of analysis and design of non-conventional sampling schemes. The investigation of the event-based sampling according to the integral criterion is presented in this paper. The investigated sampling scheme is an extension of the pure linear send-on- delta/level-crossing algorithm utilized for reporting the state of objects monitored by intelligent sensors. The motivation of using the event-based integral sampling is outlined. The related works in adaptive sampling are summarized. The analytical closed-form formulas for the evaluation of the mean rate of event-based traffic, and the asymptotic integral sampling effectiveness, are derived. The simulation results verifying the analytical formulas are reported. The effectiveness of the integral sampling is compared with the related linear send-on-delta/level-crossing scheme. The calculation of the asymptotic effectiveness for common signals, which model the state evolution of dynamic systems in time, is exemplified.

  16. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  17. Beneficiation of lunar ilmenite

    Science.gov (United States)

    Ruiz, Joaquin

    1991-01-01

    One of the most important commodities lacking in the moon is free oxygen which is required for life and used extensively for propellent. Free oxygen, however, can be obtained by liberating it from the oxides and silicates that form the lunar rocks and regolith. Ilmenite (FeTiO3) is considered one of the leading candidates for production of oxygen because it can be reduced with a reasonable amount of energy and it is an abundant mineral in the lunar regolith and many mare basalts. In order to obtain oxygen from ilmenite, a method must be developed to beneficiate ilmenite from lunar material. Two possible techniques are electrostatic or magnetic methods. Both methods have complications because lunar ilmenite completely lacks Fe(3+). Magnetic methods were tested on eucrite meteorites, which are a good chemical simulant for low Ti mare basalts. The ilmenite yields in the experiments were always very low and the eucrite had to be crushed to xxxx. These data suggest that magnetic separation of ilmenite from fine grain lunar basalts would not be cost effective. Presently, experiments are being performed with electrostatic separators, and lunar regolith is being waited for so that simulants do not have to be employed.

  18. Integrating sphere based reflectance measurements for small-area semiconductor samples

    Science.gov (United States)

    Saylan, S.; Howells, C. T.; Dahlem, M. S.

    2018-05-01

    This article describes a method that enables reflectance spectroscopy of small semiconductor samples using an integrating sphere, without the use of additional optical elements. We employed an inexpensive sample holder to measure the reflectance of different samples through 2-, 3-, and 4.5-mm-diameter apertures and applied a mathematical formulation to remove the bias from the measured spectra caused by illumination of the holder. Using the proposed method, the reflectance of samples fabricated using expensive or rare materials and/or low-throughput processes can be measured. It can also be incorporated to infer the internal quantum efficiency of small-area, research-level solar cells. Moreover, small samples that reflect light at large angles and develop scattering may also be measured reliably, by virtue of an integrating sphere insensitive to directionalities.

  19. Efficient sampling over rough energy landscapes with high barriers: A combination of metadynamics with integrated tempering sampling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. Isaac [Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Zhang, Jun; Che, Xing; Yang, Lijiang; Gao, Yi Qin, E-mail: gaoyq@pku.edu.cn [Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Biodynamic Optical Imaging Center, Peking University, Beijing 100871 (China)

    2016-03-07

    In order to efficiently overcome high free energy barriers embedded in a complex energy landscape and calculate overall thermodynamics properties using molecular dynamics simulations, we developed and implemented a sampling strategy by combining the metadynamics with (selective) integrated tempering sampling (ITS/SITS) method. The dominant local minima on the potential energy surface (PES) are partially exalted by accumulating history-dependent potentials as in metadynamics, and the sampling over the entire PES is further enhanced by ITS/SITS. With this hybrid method, the simulated system can be rapidly driven across the dominant barrier along selected collective coordinates. Then, ITS/SITS ensures a fast convergence of the sampling over the entire PES and an efficient calculation of the overall thermodynamic properties of the simulation system. To test the accuracy and efficiency of this method, we first benchmarked this method in the calculation of ϕ − ψ distribution of alanine dipeptide in explicit solvent. We further applied it to examine the design of template molecules for aromatic meta-C—H activation in solutions and investigate solution conformations of the nonapeptide Bradykinin involving slow cis-trans isomerizations of three proline residues.

  20. Accelerated sampling by infinite swapping of path integral molecular dynamics with surface hopping

    Science.gov (United States)

    Lu, Jianfeng; Zhou, Zhennan

    2018-02-01

    To accelerate the thermal equilibrium sampling of multi-level quantum systems, the infinite swapping limit of a recently proposed multi-level ring polymer representation is investigated. In the infinite swapping limit, the ring polymer evolves according to an averaged Hamiltonian with respect to all possible surface index configurations of the ring polymer and thus connects the surface hopping approach to the mean-field path-integral molecular dynamics. A multiscale integrator for the infinite swapping limit is also proposed to enable efficient sampling based on the limiting dynamics. Numerical results demonstrate the huge improvement of sampling efficiency of the infinite swapping compared with the direct simulation of path-integral molecular dynamics with surface hopping.

  1. Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust?

    Science.gov (United States)

    Rapp, Jennifer F.; Draper, David S.

    2013-01-01

    New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization

  2. When did the lunar core dynamo cease?

    Science.gov (United States)

    Tikoo, S. M.; Weiss, B. P.; Shuster, D. L.; Fuller, M.

    2013-12-01

    Remanent magnetization in the lunar crust and in returned Apollo samples has long suggested that the Moon formed a metallic core and an ancient dynamo magnetic field. Recent paleomagnetic investigations of lunar samples demonstrate that the Moon had a core dynamo which produced ~30-110 μT surface fields between at least 4.2 and 3.56 billion years ago (Ga). Tikoo et al. (1) recently found that the field declined to below several μT by 3.19 Ga. However, given that even values of a few μT are at the upper end of the intensities predicted by dynamo theory for this late in lunar history, it remains uncertain when the lunar dynamo actually ceased completely. Determining this requires a young lunar rock with extraordinarily high magnetic recording fidelity. With this goal, we are conducting a new analysis of young regolith breccia 15498. Although the breccia's age is currently uncertain, the presence of Apollo 15-type mare basalt clasts provides an upper limit constraint of ~3.3 Ga, while trapped Ar data suggest a lithification age of ~1.3 Ga. In stark contrast to the multidomain character of virtually all lunar crystalline rocks, the magnetic carriers in 15498 are on average pseudo-single domain to superparamagnetic, indicating that the sample should provide high-fidelity paleointensity records. A previous alternating field (AF) and thermal demagnetization study of 15498 by Gose et al. (2) observed that the sample carries stable remanent magnetization which persists to unblocking temperatures of at least 650°C. Using a modified Thellier technique, they reported a paleointensity of 2 μT. Although this value may have been influenced by spurious remanence acquired during pretreatment with AF demagnetization, our results confirm the presence of an extremely stable (blocked to coercivities >290 mT) magnetization in the glassy matrix. We also found that this magnetization is largely unidirectional across mutually oriented subsamples. The cooling timescale of this rock (~1

  3. Concentrations of radioactive elements in lunar materials

    Science.gov (United States)

    Korotev, Randy L.

    1998-01-01

    As an aid to interpreting data obtained remotely on the distribution of radioactive elements on the lunar surface, average concentrations of K, U, and Th as well as Al, Fe, and Ti in different types of lunar rocks and soils are tabulated. The U/Th ratio in representative samples of lunar rocks and regolith is constant at 0.27; K/Th ratios are more variable because K and Th are carried by different mineral phases. In nonmare regoliths at the Apollo sites, the main carriers of radioactive elements are mafic (i.e., 6-8 percent Fe) impact-melt breccias created at the time of basin formation and products derived therefrom.

  4. LOTT: A new small telescope to monitor lunar orientation parameters

    Science.gov (United States)

    Huang, Cheng-Li

    2015-08-01

    The lunar orientation (mostly libration) is so far mostly determined by lunar laser ranging (LLR), but due to the bad geometry among thelaser ray direction and the lunar reflector array, the lunar orientation parameters (LOP) are determined with precision worse than 0.1 arcsecond, especially of the components perpendicular to the direction pointing to geocenter. The LOP with such bad precision is almost nonsense for studying the lunar interior, and the error in the modeling of LOP becomes also a major error in the lunar ephemerides. Here, we propose a small optical telescope (LOTT: Lunar Orientation Trinity Telescope), with a brand-new design of tri-field of view and to be placed on the Moon, to monitor LOP and its variation. Its precision of LOP determination can be expected to be several milliarcsecond (mas) after two months observation. With this precision, LOP can then be used to derive meaningful information of the physics of the lunar interior. The concept and design of this LOTT will be introduced, and the test observation data of EOP by this principled sample machine on the earth, as well as the design of the second generation of LOTT, will be also presented.

  5. Prevalence of the integration status for human papillomavirus 16 in esophageal carcinoma samples.

    Science.gov (United States)

    Li, Shuying; Shen, Haie; Li, Ji; Hou, Xiaoli; Zhang, Ke; Li, Jintao

    2018-03-01

    To investigate the etiology of esophageal cancer (EC) related with human papillomavirus (HPV) infection. Fresh surgically resected tissue samples and clinical information were obtained from 189 patients. Genomic DNA was extracted, and HPV was detected using polymerase chain reaction (PCR) with HPV L1 gene primers of MY09/11; HPV16 was detected using HPV16 E6 type-specific primer sets. Copies of HPV16 E2, E6, and the human housekeeping gene β-actin were tested using quantitative PCR to analyze the relationship between HPV16 integration and esophageal squamous cell carcinoma and the relationship between the HPV16 integration status and clinical information of patients. Of the 189 samples, 168 HPV-positive samples were detected, of which 76 were HPV16 positive. Among the HPV16 positive samples, 2 cases (E2/E6 ratio>1) were 2.6% (2/76) purely episomal, 65 (E2/E6 ratio between 0 and 1) were 85.6% (65/76) mixture of integrated and episomal, and 9 (E2/E6 ratio=0) were 11.8% (9/76) purely integrated. The results indicate that integration of HPV16 was more common in the host genome than in the episome genome. The prevalence rate of HPV16 integration is increasing with the pathological stage progression of esophageal carcinoma (EC). A high prevalence of HPV16 suggested that HPV16 has an etiological effect on the progress of EC. Integration of HPV16 is more common than episome genome in the host cells, indicating that continuous HPV infection is the key to esophageal epithelial cell malignant conversion and canceration.

  6. Lunar geophysics, geodesy, and dynamics

    Science.gov (United States)

    Williams, J. G.; Dickey, J. O.

    2002-01-01

    Experience with the dynamics and data analyses for earth and moon reveals both similarities and differences. Analysis of Lunar Laser Ranging (LLR) data provides information on the lunar orbit, rotation, solid-body tides, and retroreflector locations.

  7. The Future Lunar Flora Colony

    Science.gov (United States)

    Goel, E. G.; Guven, U. G.

    2017-10-01

    A constructional design for the primary establishment for a lunar colony using the micrometeorite rich soil is proposed. It highlights the potential of lunar regolith combined with Earth technology for water and oxygen for human outposts on the Moon.

  8. Lunar and Vesta Web Portals

    Science.gov (United States)

    Law, E.; JPL Luna Mapping; Modeling Project Team

    2015-06-01

    The Lunar Mapping and Modeling Project offers Lunar Mapping and Modeling Portal (http://lmmp.nasa.gov) and Vesta Trek Portal (http://vestatrek.jpl.nasa.gov) providing interactive visualization and analysis tools to enable users to access mapped Lunar and Vesta data products.

  9. Trends and applications of integrated automated ultra-trace sample handling and analysis (T9)

    International Nuclear Information System (INIS)

    Kingston, H.M.S.; Ye Han; Stewart, L.; Link, D.

    2002-01-01

    Full text: Automated analysis, sub-ppt detection limits, and the trend toward speciated analysis (rather than just elemental analysis) force the innovation of sophisticated and integrated sample preparation and analysis techniques. Traditionally, the ability to handle samples at ppt and sub-ppt levels has been limited to clean laboratories and special sample handling techniques and equipment. The world of sample handling has passed a threshold where older or 'old fashioned' traditional techniques no longer provide the ability to see the sample due to the influence of the analytical blank and the fragile nature of the analyte. When samples require decomposition, extraction, separation and manipulation, application of newer more sophisticated sample handling systems are emerging that enable ultra-trace analysis and species manipulation. In addition, new instrumentation has emerged which integrate sample preparation and analysis to enable on-line near real-time analysis. Examples of those newer sample-handling methods will be discussed and current examples provided as alternatives to traditional sample handling. Two new techniques applying ultra-trace microwave energy enhanced sample handling have been developed that permit sample separation and refinement while performing species manipulation during decomposition. A demonstration, that applies to semiconductor materials, will be presented. Next, a new approach to the old problem of sample evaporation without losses will be demonstrated that is capable of retaining all elements and species tested. Both of those methods require microwave energy manipulation in specialized systems and are not accessible through convection, conduction, or other traditional energy applications. A new automated integrated method for handling samples for ultra-trace analysis has been developed. An on-line near real-time measurement system will be described that enables many new automated sample handling and measurement capabilities. This

  10. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  11. Geostatistical integration and uncertainty in pollutant concentration surface under preferential sampling

    Directory of Open Access Journals (Sweden)

    Laura Grisotto

    2016-04-01

    Full Text Available In this paper the focus is on environmental statistics, with the aim of estimating the concentration surface and related uncertainty of an air pollutant. We used air quality data recorded by a network of monitoring stations within a Bayesian framework to overcome difficulties in accounting for prediction uncertainty and to integrate information provided by deterministic models based on emissions meteorology and chemico-physical characteristics of the atmosphere. Several authors have proposed such integration, but all the proposed approaches rely on representativeness and completeness of existing air pollution monitoring networks. We considered the situation in which the spatial process of interest and the sampling locations are not independent. This is known in the literature as the preferential sampling problem, which if ignored in the analysis, can bias geostatistical inferences. We developed a Bayesian geostatistical model to account for preferential sampling with the main interest in statistical integration and uncertainty. We used PM10 data arising from the air quality network of the Environmental Protection Agency of Lombardy Region (Italy and numerical outputs from the deterministic model. We specified an inhomogeneous Poisson process for the sampling locations intensities and a shared spatial random component model for the dependence between the spatial location of monitors and the pollution surface. We found greater predicted standard deviation differences in areas not properly covered by the air quality network. In conclusion, in this context inferences on prediction uncertainty may be misleading when geostatistical modelling does not take into account preferential sampling.

  12. Passive sampling of selected pesticides in aquatic environment using polar organic chemical integrative samplers.

    Science.gov (United States)

    Thomatou, Alphanna-Akrivi; Zacharias, Ierotheos; Hela, Dimitra; Konstantinou, Ioannis

    2011-08-01

    Polar chemical integrative samplers (POCIS) were examined for their sampling efficiency of 12 pesticides and one metabolite commonly detected in surface waters. Laboratory-based calibration experiments of POCISs were conducted. The determined passive sampling rates were applied for the monitoring of pesticides levels in Lake Amvrakia, Western Greece. Spot sampling was also performed for comparison purposes. Calibration experiments were performed on the basis of static renewal exposure of POCIS under stirred conditions for different time periods of up to 28 days. The analytical procedures were based on the coupling of POCIS and solid phase extraction by Oasis HLB cartridges with gas chromatography-mass spectrometry. The recovery of the target pesticides from the POCIS was generally >79% with relative standard deviation (RSD) monitoring campaign using both passive and spot sampling whereas higher concentrations were measured by spot sampling in most cases. Passive sampling by POCIS provides a useful tool for the monitoring of pesticides in aquatic systems since integrative sampling at rates sufficient for analytical quantitation of ambient levels was observed. Calibration data are in demand for a greater number of compounds in order to extend the use in environmental monitoring.

  13. Sims Analysis of Water Abundance and Hydrogen Isotope in Lunar Highland Plagioclase

    Science.gov (United States)

    Hui, Hejiu; Guan, Yunbin; Chen, Yang; Peslier, Anne H.; Zhang, Youxue; Liu, Yang; Rossman, George R.; Eiler, John M.; Neal, Clive R.

    2015-01-01

    The detection of indigenous water in mare basaltic glass beads has challenged the view established since the Apollo era of a "dry" Moon. Since this discovery, measurements of water in lunar apatite, olivine-hosted melt inclusions, agglutinates, and nominally anhydrous minerals have confirmed that lunar igneous materials contain water, implying that some parts of lunar mantle may have as much water as Earth's upper mantle. The interpretation of hydrogen (H) isotopes in lunar samples, however, is controversial. The large variation of H isotope ratios in lunar apatite (delta Deuterium = -202 to +1010 per mille) has been taken as evidence that water in the lunar interior comes from the lunar mantle, solar wind protons, and/or comets. The very low deuterium/H ratios in lunar agglutinates indicate that solar wind protons have contributed to their hydrogen content. Conversely, H isotopes in lunar volcanic glass beads and olivine-hosted melt inclusions being similar to those of common terrestrial igneous rocks, suggest a common origin for water in both Earth and Moon. Lunar water could be inherited from carbonaceous chondrites, consistent with the model of late accretion of chondrite-type materials to the Moon as proposed by. One complication about the sources of lunar water, is that geologic processes (e.g., late accretion and magmatic degassing) may have modified the H isotope signatures of lunar materials. Recent FTIR analyses have shown that plagioclases in lunar ferroan anorthosite contain approximately 6 ppm H2O. So far, ferroan anorthosite is the only available lithology that is believed to be a primary product of the lunar magma ocean (LMO). A possible consequence is that the LMO could have contained up to approximately 320 ppm H2O. Here we examine the possible sources of water in the LMO through measurements of water abundances and H isotopes in plagioclase of two ferroan anorthosites and one troctolite from lunar highlands.

  14. Inhalation Toxicity of Ground Lunar Dust Prepared from Apollo-14 Soil

    Science.gov (United States)

    James, John T.; Lam, Chiu-wing; Scully, Robert R.; Cooper, Bonnie L.

    2011-01-01

    Within the decade one or more space-faring nations intend to return humans to the moon for more in depth exploration of the lunar surface and subsurface than was conducted during the Apollo days. The lunar surface is blanketed with fine dust, much of it in the respirable size range (<10 micron). Eventually, there is likely to be a habitable base and rovers available to reach distant targets for sample acquisition. Despite designs that could minimize the entry of dust into habitats and rovers, it is reasonable to expect lunar dust to pollute both as operations progress. Apollo astronauts were exposed briefly to dust at nuisance levels, but stays of up to 6 months on the lunar surface are envisioned. Will repeated episodic exposures to lunar dust present a health hazard to those engaged in lunar exploration? Using rats exposed to lunar dust by nose-only inhalation, we set out to investigate that question.

  15. Controlled cooling versus rapid freezing of teratozoospermic semen samples: Impact on sperm chromatin integrity

    Directory of Open Access Journals (Sweden)

    Shivananda N Kalludi

    2011-01-01

    Full Text Available Aim: The present study evaluates the impact of controlled slow cooling and rapid freezing techniques on the sperm chromatin integrity in teratozoospermic and normozoospermic samples. Setting: The study was done in a university infertility clinic, which is a tertiary healthcare center serving the general population. Design: It was a prospective study designed in vitro. Materials and Methods: Semen samples from normozoospermic (N=16 and teratozoospermic (N=13 infertile men were cryopreserved using controlled cooling and rapid freezing techniques. The sperm chromatin integrity was analyzed in fresh and frozen-thawed samples. Statistical Analysis Used: Data were reported as mean and standard error (mean ± SEM of mean. The difference between two techniques was determined by a paired t-test. Results: The freeze-thaw induced chromatin denaturation was significantly (P<0.01 elevated in the post-thaw samples of normozoospermic and teratozoospermic groups. Compared to rapid freezing, there was no difference in the number of red sperms (with DNA damage by the controlled slow cooling method in both normozoospermic and teratozoospermic groups. Freeze-thaw induced sperm chromatin denaturation in teratozoospermic samples did not vary between controlled slow cooling and rapid freezing techniques. Conclusions: Since the controlled slow cooling technique involves the use of expensive instrument and is a time consuming protocol, rapid freezing can be a good alternative technique for teratozoospermic and normozoospermic samples when sperm DNA damage is a concern.

  16. Lunar electrostatic effects and protection

    International Nuclear Information System (INIS)

    Sun, Yongwei; Yuan, Qingyun; Xiong, Jiuliang

    2013-01-01

    The space environment and features on the moon surface are factors in strong electrostatic electrification. Static electricity will be produced in upon friction between lunar soil and detectors or astronauts on the lunar surface. Lunar electrostatic environment effects from lunar exploration equipment are very harmful. Lunar dust with electrostatic charge may enter the equipment or even cover the instruments. It can affect the normal performance of moon detectors. Owing to the huge environmental differences between the moon and the earth, the electrostatic protection technology on the earth can not be applied. In this paper, we review the electrostatic characteristics of lunar dust, its effects on aerospace equipment and moon static elimination technologies. It was concluded that the effect of charged lunar dust on detectors and astronauts should be completely researched as soon as possible.

  17. MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Nakayasu, Ernesto S.; Nicora, Carrie D.; Sims, Amy C.; Burnum-Johnson, Kristin E.; Kim, Young-Mo; Kyle, Jennifer E.; Matzke, Melissa M.; Shukla, Anil K.; Chu, Rosalie K.; Schepmoes, Athena A.; Jacobs, Jon M.; Baric, Ralph S.; Webb-Robertson, Bobbie-Jo; Smith, Richard D.; Metz, Thomas O.; Chia, Nicholas

    2016-05-03

    ABSTRACT

    Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements. Themetabolite,protein, andlipidextraction (MPLEx) protocol proved to be robust and applicable to a diverse set of sample types, including cell cultures, microbial communities, and tissues. To illustrate the utility of this protocol, an integrative multi-omics analysis was performed using a lung epithelial cell line infected with Middle East respiratory syndrome coronavirus, which showed the impact of this virus on the host glycolytic pathway and also suggested a role for lipids during infection. The MPLEx method is a simple, fast, and robust protocol that can be applied for integrative multi-omic measurements from diverse sample types (e.g., environmental,in vitro, and clinical).

    IMPORTANCEIn systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated

  18. Integrated sample-to-detection chip for nucleic acid test assays.

    Science.gov (United States)

    Prakash, R; Pabbaraju, K; Wong, S; Tellier, R; Kaler, K V I S

    2016-06-01

    Nucleic acid based diagnostic techniques are routinely used for the detection of infectious agents. Most of these assays rely on nucleic acid extraction platforms for the extraction and purification of nucleic acids and a separate real-time PCR platform for quantitative nucleic acid amplification tests (NATs). Several microfluidic lab on chip (LOC) technologies have been developed, where mechanical and chemical methods are used for the extraction and purification of nucleic acids. Microfluidic technologies have also been effectively utilized for chip based real-time PCR assays. However, there are few examples of microfluidic systems which have successfully integrated these two key processes. In this study, we have implemented an electro-actuation based LOC micro-device that leverages multi-frequency actuation of samples and reagents droplets for chip based nucleic acid extraction and real-time, reverse transcription (RT) PCR (qRT-PCR) amplification from clinical samples. Our prototype micro-device combines chemical lysis with electric field assisted isolation of nucleic acid in a four channel parallel processing scheme. Furthermore, a four channel parallel qRT-PCR amplification and detection assay is integrated to deliver the sample-to-detection NAT chip. The NAT chip combines dielectrophoresis and electrostatic/electrowetting actuation methods with resistive micro-heaters and temperature sensors to perform chip based integrated NATs. The two chip modules have been validated using different panels of clinical samples and their performance compared with standard platforms. This study has established that our integrated NAT chip system has a sensitivity and specificity comparable to that of the standard platforms while providing up to 10 fold reduction in sample/reagent volumes.

  19. Detecting Volatiles Deep in the Lunar Regolith

    Science.gov (United States)

    Crotts, A.; Heggy, E.; Ciarletti, V.; Colaprete, A.; Moghaddam, M.; Siegler, M. A.

    2015-12-01

    There is increasing theoretical and empirical evidence, from the Apollo era and after, of volatiles deep in the lunar interior, in the crust and deeper, both hydrogen-rich and otherwise. This comes in the form of fire fountain samples from Apollo 15 and Apollo 17, of hydrated minerals excavated by impacts which reach the base of the lunar crust e.g., crater Bullialdus, of hydration of apatite and other minerals, as well as predictions of a water-concentrated layer along with the KREEP material at the base of the lunar crust. We discuss how the presence of these volatiles might be directly explored. In particular water vapor molecules percolating to the surface through lunar regolith might be expected to stick and freeze into the regolith, at depths of several meters depending on the regolith temperature profile, porosity and particle size distribution, quantities that are not well known beyond two meters depth. To explore these depths in the regolith we use and propose several modes of penetrating radar. We will present results using the SELENE/Kaguya's Lunar Sounding RADAR (LSR) to probe the bulk volatile dielectric and loss structure properties of the regolith in various locations, both within permanently shadowed regions (PSRs) and without, and within neutron suppression regions (NSRs) as traced by epithermal neutrons and without. We also propose installation of ground penetrating RADAR (GPR) on a roving lunar platform that should be able to probe between 0.2 and 1.6 GHz, which will provide a probe of the entire depth of the lunar regolith as well as a high-resolution (about 4 cm FWHM) probe of the upper meter or two of the lunar soil, where other probes of volatiles such as epithermal neutron absorption or drilling might be employed. We discuss predictions for what kinds of volatile density profiles might be distinguished in this way, and whether these will be detected from orbit as NSRs, whether these must be restricted to PSRs, and how these might appear in

  20. The Sooner Lunar Schooner: Lunar engineering education

    Science.gov (United States)

    Miller, D. P.; Hougen, D. F.; Shirley, D.

    2003-06-01

    The Sooner Lunar Schooner is a multi-disciplinary ongoing project at the University of Oklahoma to plan, design, prototype, cost and (when funds become available) build/contract and fly a robotic mission to the Moon. The goal of the flight will be to explore a small section of the Moon; conduct a materials analysis of the materials left there by an Apollo mission thirty years earlier; and to perform a selenographic survey of areas that were too distant or considered too dangerous to be done by the Apollo crew. The goal of the Sooner Lunar Schooner Project is to improve the science and engineering educations of the hundreds of undergraduate and graduate students working on the project. The participants, while primarily from engineering and physics, will also include representatives from business, art, journalism, law and education. This project ties together numerous existing research programs at the University, and provides a framework for the creation of many new research proposals. The authors were excited and motivated by the Apollo missions to the Moon. When we asked what we could do to similarly motivate students we realized that nothing is as exciting as going to the Moon. The students seem to agree.

  1. Radioactivity in returned lunar materials

    Science.gov (United States)

    1972-01-01

    The H-3, Ar-37, and Ar-39 radioactivities were measured at several depths in the large documented lunar rocks 14321 and 15555. The comparison of the Ar-37 activities from similar locations in rocks 12002, 14321, and 15555 gives direct measures of the amount of Ar-37 produced by the 2 November 1969 and 24 January 1971 solar flares. The tritium contents in the documented rocks decreased with increasing depths. The solar flare intensity averaged over 30 years obtained from the tritium depth dependence was approximately the same as the flare intensity averaged over 1000 years obtained from the Ar-37 measurements. Radioactivities in two Apollo 15 soil samples, H-3 in several Surveyor 3 samples, and tritium and radon weepage were also measured.

  2. Toxicity of lunar dust

    NARCIS (Netherlands)

    Linnarsson, D.; Carpenter, J.; Fubini, B.; Gerde, P.; Loftus, D.; Prisk, K.; Staufer, U.; Tranfield, E.; van Westrenen, W.

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of

  3. Lunar Phases Planisphere

    Science.gov (United States)

    Shawl, Stephen J.

    2010-01-01

    This paper describes a lunar phases planisphere with which a user can answer questions about the rising and setting times of the Moon as well as questions about where the Moon will be at a given phase and time. The article contains figures that can be photocopied to make the planisphere. (Contains 2 figures.)

  4. Lunar magma transport phenomena

    Science.gov (United States)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  5. Methodological integrative review of the work sampling technique used in nursing workload research.

    Science.gov (United States)

    Blay, Nicole; Duffield, Christine M; Gallagher, Robyn; Roche, Michael

    2014-11-01

    To critically review the work sampling technique used in nursing workload research. Work sampling is a technique frequently used by researchers and managers to explore and measure nursing activities. However, work sampling methods used are diverse making comparisons of results between studies difficult. Methodological integrative review. Four electronic databases were systematically searched for peer-reviewed articles published between 2002-2012. Manual scanning of reference lists and Rich Site Summary feeds from contemporary nursing journals were other sources of data. Articles published in the English language between 2002-2012 reporting on research which used work sampling to examine nursing workload. Eighteen articles were reviewed. The review identified that the work sampling technique lacks a standardized approach, which may have an impact on the sharing or comparison of results. Specific areas needing a shared understanding included the training of observers and subjects who self-report, standardization of the techniques used to assess observer inter-rater reliability, sampling methods and reporting of outcomes. Work sampling is a technique that can be used to explore the many facets of nursing work. Standardized reporting measures would enable greater comparison between studies and contribute to knowledge more effectively. Author suggestions for the reporting of results may act as guidelines for researchers considering work sampling as a research method. © 2014 John Wiley & Sons Ltd.

  6. Geochemistry of Lunar Highland Meteorites Mil, 090034, 090036 AND 090070

    Science.gov (United States)

    Shirai, N.aoki; Ebihara, M.; Sekimoto, S.; Yamaguchi, A.; Nyquist, L.; Shih, C.-Y.; Park, J.; Nagao, K.

    2012-01-01

    Apollo and Luna samples were collected from a restricted area on the near side of the Moon, while the source craters of the lunar meteorites are randomly distributed. For example, Takeda et al. [1] and Yamaguchi et al. [2] found a variety of lithic clasts in Dho 489 and Y 86032 which were not represented by Apollo samples, and some of these clasts have lower rare earth elements (REE) and FeO abundances than Apollo anorthosites, respectively. Takeda et al. [1] and Yamaguchi et al. [2] concluded that Dho 489 and Y 86032 originated from the lunar farside. Therefore, lunar meteorites provide an opportunity to study lunar surface rocks from areas not sampled by Apollo and Luna missions. Three lunar anorthitic breccias (MIL 090034, 090036 and 090070) were found on the Miller Range Ice Field in Antarctica during the 2009-2010 ANSMET season [3]. In this study, we determined elemental abudnances for MIL 090034, 090036 and 090070 by using INAA and aimed to characterize these meteorites in chemical compositions in comparison with those for other lunar meteorites and Apollo samples.

  7. Rearing Tenebrio molitor L. (Coleptera: Tenebrionidae) in the "Lunar Palace 1" during a 105-day multi-crew closed integrative BLSS experiment

    Science.gov (United States)

    Li, Leyuan; Xie, Beizhen; Dong, Chen; Hu, Dawei; Wang, Minjuan; Liu, Guanghui; Liu, Hong

    2015-11-01

    Yellow mealworm (Tenebrio molitor L.) is one of the animal candidates for space bioregenerative life support systems. In this study, T. molitor was involved in a 105-day multi-crew closed integrative BLSS experiment for a tentative rearing study. The results showed that the overall bioconversion rate (ratio of T. molitor gained to the total feed consumed) of T. molitor reared in the closed system was 8.13%, while 78.43% of the feed was excreted as frass. T. molitor reared in the closed system had a good nutritional composition. The eight essential amino acids (EAAs) in T. molitor larvae accounted for 41.30% of its total amino acids, and most EAA contents were higher than the suggested amino acid pattern recommended by the FAO/WHO. T. molitor sample obtained in this work was high in polyunsaturated fatty acids, and low in saturated fatty acids, indicating that the composition of fatty acids was beneficial to human health. In the open environment outside the experimental system, we simultaneously reared three parallel groups of larval T. molitor using the same feeding regime and temperature condition. Compared with T. molitor reared in the open environment, larvae reared in the closed system grew slower. With the course of time t, the growth rate of T. molitor in the open environment was 0.839e0.017t times that of larvae in the closed system. This paper can provide data for future design and improvement of BLSS containing a T. molitor rearing unit.

  8. Collisionless encounters and the origin of the lunar inclination.

    Science.gov (United States)

    Pahlevan, Kaveh; Morbidelli, Alessandro

    2015-11-26

    The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Models of the impact process predict that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near-equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value--a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals that were not yet accreted at the time of the Moon-forming event. The currently observed lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 Earth masses eventually accreted to the Earth) carried by a few bodies, consistent with the constraints and models of late accretion. Although the encounter process has a stochastic element, the observed value of the lunar inclination is among the most likely outcomes for a wide range of parameters. The excitation of the lunar orbit is most readily reproduced via collisionless encounters of planetesimals with the Earth-Moon system with strong dissipation of tidal energy on the early Earth. This mechanism obviates the need for previously proposed (but idealized) excitation mechanisms, places the Moon-forming event in the context of the formation of Earth, and constrains the pristineness of the dynamical state of the Earth-Moon system.

  9. Digital pulse-shape analyzer based on fast sampling of an integrated charge pulse

    International Nuclear Information System (INIS)

    Jordanov, V.T.; Knoll, G.F.

    1995-01-01

    A novel configuration for pulse-shape analysis and discrimination has been developed. The current pulse from detector is sent to a gated integrator and then sampled by a flash analog-to-digital converter (ADC). The sampled data are processed digitally, thus allowing implementation of a near-optimum weighting function and elimination some of the instabilities associated with the gated integrator. The analyzer incorporates pileup rejection circuit that reduces the pileup effects at high counting rates. The system was tested liquid scintillator. Figures of merit for neutron-gamma pulse-shape discrimination were found to be: 0.78 for 25 keV (electron equivalent energy) and 3.5 for 500 keV. The technique described in this paper was developed to be used in a near tissue-equivalent neutron-gamma dosimeter which employs a liquid scintillator detector

  10. Integrated Automation of High-Throughput Screening and Reverse Phase Protein Array Sample Preparation

    DEFF Research Database (Denmark)

    Pedersen, Marlene Lemvig; Block, Ines; List, Markus

    into automated robotic high-throughput screens, which allows subsequent protein quantification. In this integrated solution, samples are directly forwarded to automated cell lysate preparation and preparation of dilution series, including reformatting to a protein spotter-compatible format after the high......-throughput screening. Tracking of huge sample numbers and data analysis from a high-content screen to RPPAs is accomplished via MIRACLE, a custom made software suite developed by us. To this end, we demonstrate that the RPPAs generated in this manner deliver reliable protein readouts and that GAPDH and TFR levels can...

  11. Lunar Prospecting With Chandra

    Science.gov (United States)

    2003-09-01

    Observations of the bright side of the Moon with NASA's Chandra X-ray Observatory have detected oxygen, magnesium, aluminum and silicon over a large area of the lunar surface. The abundance and distribution of those elements will help to determine how the Moon was formed. "We see X-rays from these elements directly, independent of assumptions about the mineralogy and other complications," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., at a press conference at the "Four Years with Chandra" symposium in Huntsville, Alabama. "We have Moon samples from the six widely-space Apollo landing sites, but remote sensing with Chandra can cover a much wider area," continued Drake. "It's the next best thing to being there, and it's very fast and cost-effective." The lunar X-rays are caused by fluorescence, a process similar to the way that light is produced in fluorescent lamps. Solar X-rays bombard the surface of the Moon, knock electrons out of the inner parts of the atoms, putting them in a highly unstable state. Almost immediately, other electrons rush to fill the gaps, and in the process convert their energy into the fluorescent X-rays seen by Chandra. According to the currently popular "giant impact" theory for the formation of the Moon, a body about the size of Mars collided with the Earth about 4.5 billion years ago. This impact flung molten debris from the mantle of both the Earth and the impactor into orbit around the Earth. Over the course of tens of millions of years, the debris stuck together to form the Moon. By measuring the amounts of aluminum and other elements over a wide area of the Moon and comparing them to the Earth's mantle, Drake and his colleagues plan to help test the giant impact hypothesis. "One early result," quipped Drake, "is that there is no evidence for large amounts of calcium, so cheese is not a major constituent of the Moon." Illustration of Earth's Geocorona Illustration of Earth's Geocorona The same

  12. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter.

    Science.gov (United States)

    Mazarico, Erwan; Barker, Michael K; Neumann, Gregory A; Zuber, Maria T; Smith, David E

    2014-04-16

    The Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter spacecraft collected more than 5 billion measurements in the nominal 50 km orbit over ∼10,000 orbits. The data precision, geodetic accuracy, and spatial distribution enable two-dimensional crossovers to be used to infer relative radial position corrections between tracks to better than ∼1 m. We use nearly 500,000 altimetric crossovers to separate remaining high-frequency spacecraft trajectory errors from the periodic radial surface tidal deformation. The unusual sampling of the lunar body tide from polar lunar orbit limits the size of the typical differential signal expected at ground track intersections to ∼10 cm. Nevertheless, we reliably detect the topographic tidal signal and estimate the associated Love number h 2 to be 0.0371 ± 0.0033, which is consistent with but lower than recent results from lunar laser ranging. Altimetric data are used to create radial constraints on the tidal deformationThe body tide amplitude is estimated from the crossover dataThe estimated Love number is consistent with previous estimates but more precise.

  13. Determination of lunar ilmenite abundances from remotely sensed data

    Science.gov (United States)

    Larson, Stephen M.; Johnson, Jeffrey R.; Singer, Robert B.

    1991-01-01

    The mineral ilmenite (FeTiO3) was found in abundance in lunar mare soils returned during the Apollo project. Lunar ilmenite often contains greater than 50 weight-percent titanium dioxide (TiO2), and is a primary potential resource for oxygen and other raw materials to supply future lunar bases. Chemical and spectroscopic analysis of the returned lunar soils produced an empirical function that relates the spectral reflectance ratio at 400 and 560 nm to the weight percent abundance of TiO2. This allowed mapping of the lunar TiO2 distribution using telescopic vidicon multispectral imaging from the ground; however, the time variant photometric response of the vidicon detectors produced abundance uncertainties of at least 2 to 5 percent. Since that time, solid-state charge-coupled device (CCD) detector technology capable of much improved photometric response has become available. An investigation of the lunar TiO2 distribution was carried out utilizing groundbased telescopic CCD multispectral imagery and spectroscopy. The work was approached in phases to develop optimum technique based upon initial results. The goal is to achieve the best possible TiO2 abundance maps from the ground as a precursor to lunar orbiter and robotic sample return missions, and to produce a better idea of the peak abundances of TiO2 for benefaction studies. These phases and the results are summarized.

  14. Site-Wide Integrated Water Monitoring - Defining and Implementing Sampling Objectives to Support Site Closure - 13060

    International Nuclear Information System (INIS)

    Wilborn, Bill; Knapp, Kathryn; Farnham, Irene; Marutzky, Sam

    2013-01-01

    The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs. (authors)

  15. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY

    International Nuclear Information System (INIS)

    Crotts, Arlin P. S.

    2009-01-01

    Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: ∼50% of reports originate from near Aristarchus, ∼16% from Plato, ∼6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a 'feature' as defined). TLP count consistency for these features indicates that ∼80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. These reports begin almost exclusively after 1955, when TLPs became widely known and many more (and inexperienced) observers searched for TLPs. In a companion paper, we compare the spatial distribution of robust TLP sites to transient outgassing (seen by Apollo and Lunar Prospector instruments). To a high confidence, robust TLP sites and those of lunar outgassing correlate strongly, further arguing for the reality of TLPs.

  16. Feldspar basalts in lunar soil and the nature of the lunar continents

    Science.gov (United States)

    Reid, A. M.; Ridley, W. I.; Harmon, R. S.; Warner, J.; Brett, R.; Jakes, P.; Brown, R. W.

    1974-01-01

    It is found that 25% on the Apollo-14 glasses have the same composition as the glasses in two samples taken from the Luna-16 column. The compositions are equivalent to feldspar basalt and anorthosite gabbro, and are similar to the feldspar basalts identified from Surveyor-7 analysis for lunar continents.

  17. Human Lunar Destiny: Past, Present, and Future

    Science.gov (United States)

    Fletcher, David

    2002-01-01

    This paper offers conceptual strategy and rationale for returning astronauts to the moon. NASA's historic Apollo program enabled humans to make the first expeditionary voyages to the moon and to gather and return samples back to the earth for further study. To continue exploration of the moon within the next ten to fifteen years, one possible mission concept for returning astronauts using existing launch vehicle infrastructure is presented. During these early lunar missions, expeditionary trips are made to geographical destinations and permanent outposts are established at the lunar south pole. As these missions continue, mining operations begin in an effort to learn how to live off the land. Over time, a burgeoning economy based on mining and scientific activity emerges with the formation of more accommodating settlements and surface infrastructure assets. As lunar activity advances, surface infrastructure assets grow and become more complex, lunar settlements and outposts are established across the globe, travel to and from the moon becomes common place, and commerce between earth and the moon develops and flourishes. Colonization and development of the moon is completed with the construction of underground cities and the establishment of a full range of political, religious, educational, and recreational institutions with a diverse population from all nations of the world. Finally, rationale for diversifying concentrations of humanity throughout earth's neighborhood and the greater solar system is presented.

  18. Low Cost Precision Lander for Lunar Exploration

    Science.gov (United States)

    Head, J. N.; Gardner, T. G.; Hoppa, G. V.; Seybold, K. G.

    2004-12-01

    ) provide data for the terminal guidance algorithms. DSMAC acquires high-resolution images for real-time correlation with a reference map. This system provides ownship position with a resolution comparable to the map. Since the DSMAC can sample at 1.5 mrad, any imaging acquired below 70 km altitude will surpass the resolution available from previous missions. DSMAC has a mode where image data are compressed and downlinked. This capability could be used to downlink live images during terminal guidance. Approximately 500 kbitps telemetry would be required to provide the first live descent imaging sequence since Ranger. This would provide unique geologic context imaging for the landing site. The development path to produce such a vehicle is that used to develop missiles. First, a pathfinder vehicle is designed and built as a test bed for hardware integration including science instruments. Second, a hover test vehicle would be built. Equipped with mass mockups for the science payload, the vehicle would otherwise be an exact copy of the flight vehicle. The hover vehicle would be flown on earth to demonstrate the proper function and integration of the propulsion system, autopilots, navigation algorithms, and guidance sensors. There is sufficient delta-v in the proposed design to take off from the ground, fly a ballistic arc to over 100 m altitude, then guide to a precision soft landing. Once the vehicle has flown safely on earth, then the validated design would be used to produce the flight vehicle. Since this leverages the billions of dollars DOD has invested in these technologies, it should be possible to land useful science payloads precisely on the lunar surface at relatively low cost.

  19. A statistically rigorous sampling design to integrate avian monitoring and management within Bird Conservation Regions.

    Science.gov (United States)

    Pavlacky, David C; Lukacs, Paul M; Blakesley, Jennifer A; Skorkowsky, Robert C; Klute, David S; Hahn, Beth A; Dreitz, Victoria J; George, T Luke; Hanni, David J

    2017-01-01

    Monitoring is an essential component of wildlife management and conservation. However, the usefulness of monitoring data is often undermined by the lack of 1) coordination across organizations and regions, 2) meaningful management and conservation objectives, and 3) rigorous sampling designs. Although many improvements to avian monitoring have been discussed, the recommendations have been slow to emerge in large-scale programs. We introduce the Integrated Monitoring in Bird Conservation Regions (IMBCR) program designed to overcome the above limitations. Our objectives are to outline the development of a statistically defensible sampling design to increase the value of large-scale monitoring data and provide example applications to demonstrate the ability of the design to meet multiple conservation and management objectives. We outline the sampling process for the IMBCR program with a focus on the Badlands and Prairies Bird Conservation Region (BCR 17). We provide two examples for the Brewer's sparrow (Spizella breweri) in BCR 17 demonstrating the ability of the design to 1) determine hierarchical population responses to landscape change and 2) estimate hierarchical habitat relationships to predict the response of the Brewer's sparrow to conservation efforts at multiple spatial scales. The collaboration across organizations and regions provided economy of scale by leveraging a common data platform over large spatial scales to promote the efficient use of monitoring resources. We designed the IMBCR program to address the information needs and core conservation and management objectives of the participating partner organizations. Although it has been argued that probabilistic sampling designs are not practical for large-scale monitoring, the IMBCR program provides a precedent for implementing a statistically defensible sampling design from local to bioregional scales. We demonstrate that integrating conservation and management objectives with rigorous statistical

  20. A statistically rigorous sampling design to integrate avian monitoring and management within Bird Conservation Regions.

    Directory of Open Access Journals (Sweden)

    David C Pavlacky

    Full Text Available Monitoring is an essential component of wildlife management and conservation. However, the usefulness of monitoring data is often undermined by the lack of 1 coordination across organizations and regions, 2 meaningful management and conservation objectives, and 3 rigorous sampling designs. Although many improvements to avian monitoring have been discussed, the recommendations have been slow to emerge in large-scale programs. We introduce the Integrated Monitoring in Bird Conservation Regions (IMBCR program designed to overcome the above limitations. Our objectives are to outline the development of a statistically defensible sampling design to increase the value of large-scale monitoring data and provide example applications to demonstrate the ability of the design to meet multiple conservation and management objectives. We outline the sampling process for the IMBCR program with a focus on the Badlands and Prairies Bird Conservation Region (BCR 17. We provide two examples for the Brewer's sparrow (Spizella breweri in BCR 17 demonstrating the ability of the design to 1 determine hierarchical population responses to landscape change and 2 estimate hierarchical habitat relationships to predict the response of the Brewer's sparrow to conservation efforts at multiple spatial scales. The collaboration across organizations and regions provided economy of scale by leveraging a common data platform over large spatial scales to promote the efficient use of monitoring resources. We designed the IMBCR program to address the information needs and core conservation and management objectives of the participating partner organizations. Although it has been argued that probabilistic sampling designs are not practical for large-scale monitoring, the IMBCR program provides a precedent for implementing a statistically defensible sampling design from local to bioregional scales. We demonstrate that integrating conservation and management objectives with rigorous

  1. Manned in Situ Confirmation of Lunar Ice

    Science.gov (United States)

    Gerené, S. P. B.; Hummeling, R. W. J.; Ockels, W. J.

    A study is performed to investigate the feasibility of a manned expedition to the Moon using the European Ariane-5 launcher. The primary objective of this lunar mission is to confirm the presence of water at the South-Pole craters. It is believed that these permanently shadowed craters contain water in the form of ice. Secondary objective is to perform lunar surface science and making a first step towards a lunar outpost. Early results show that a minimum of two Ariane-5 launches is required. In this `two Ariane' scenario the first launch will bring a Lunar Landing Vehicle (LLV) into low lunar orbit. The second will launch two astronauts in a Crew Transfer Vehicle into a rendez- vous trajectory with the LLV. Arrived at the Moon, the astronauts will enter the LLV, undock from the CTV and land at the designated site located near the rim of the South-Pole Shackleton crater. The transfer strategy for both spacecraft will be the so-called direct transfer, taking about four days. At arrival the LLV will start mapping the landing site at a ground resolution of one meter. As a consequence of the polar orbit, the CTV has to arrive fourteen days later and surface operations can take about twelve days, accumulating in a total mission-duration of 36 days. 32 days for the CTV and 22 days for the LLV. In case a `two Ariane' flight does not posses sufficient capabilities also a `three Ariane' scenario is developed, in which the LLV is split-up into two stages and launched separately. These two will dock at the Moon forming a descent stage and an ascent stage. The third launch will be a CTV. During surface operations, astronauts will set up a solar power unit, install the sample retrieval system and carry out surface science. Samples of the crater floor will be retrieved by means of a probe or robot guided along a cable suspended over the crater rim. Also, this paper shows the way in which European astronauts can be brought to the Moon for other future missions, like the

  2. Homogeneous immunosubtraction integrated with sample preparation is enabled by a microfluidic format

    Science.gov (United States)

    Apori, Akwasi A.; Herr, Amy E.

    2011-01-01

    Immunosubtraction is a powerful and resource-intensive laboratory medicine assay that reports both protein mobility and binding specificity. To expedite and automate this electrophoretic assay, we report on advances to the electrophoretic immunosubtraction assay by introducing a homogeneous, not heterogeneous, format with integrated sample preparation. To accomplish homogeneous immunosubtraction, a step-decrease in separation matrix pore-size at the head of a polyacrylamide gel electrophoresis (PAGE) separation channel enables ‘subtraction’ of target analyte when capture antibody is present (as the large immune-complex is excluded from PAGE), but no subtraction when capture antibody is absent. Inclusion of sample preparation functionality via small pore size polyacrylamide membranes is also key to automated operation (i.e., sample enrichment, fluorescence sample labeling, and mixing of sample with free capture antibody). Homogenous sample preparation and assay operation allows on-the-fly, integrated subtraction of one to multiple protein targets and reuse of each device. Optimization of the assay is detailed which allowed for ~95% subtraction of target with 20% non-specific extraction of large species at the optimal antibody-antigen ratio, providing conditions needed for selective target identification. We demonstrate the assay on putative markers of injury and inflammation in cerebrospinal fluid (CSF), an emerging area of diagnostics research, by rapidly reporting protein mobility and binding specificity within the sample matrix. We simultaneously detect S100B and C-reactive protein, suspected biomarkers for traumatic brain injury (TBI), in ~2 min. Lastly, we demonstrate S100B detection (65 nM) in raw human CSF with a lower limit of detection of ~3.25 nM, within the clinically relevant concentration range for detecting TBI in CSF. Beyond the novel CSF assay introduced here, a fully automated immunosubtraction assay would impact a spectrum of routine but labor

  3. The International Lunar Decade Declaration

    Science.gov (United States)

    Beldavs, V.; Foing, B.; Bland, D.; Crisafulli, J.

    2015-10-01

    The International Lunar Decade Declaration was discussed at the conference held November 9-13, 2014 in Hawaii "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space" - http://2014giantleap.aerospacehawaii.info/ and accepted by a core group that forms the International Lunar Decade Working Group (ILDWG) that is seeking to make the proposed global event and decade long process a reality. The Declaration will be updated from time to time by members of the ILDWreflecting new knowledge and fresh perspectives that bear on building a global consortium with a mission to progress from lunar exploration to the transformation of the Moon into a wealth gene rating platform for the expansion of humankind into the solar system. When key organizations have endorsed the idea and joined the effort the text of the Declaration will be considered final. An earlier International Lunar Decade proposal was issued at the 8th ICEUM Conference in 2006 in Beijing together with 13 specific initiatives for lunar exploration[1,2,3]. These initiatives have been largely implemented with coordination among the different space agencies involved provided by the International Lunar Exploration Working Group[2,3]. The Second International Lunar Decade from 2015 reflects current trends towards increasing involvement of commercial firms in space, particularly seeking opportunities beyond low Earth orbit. The central vision of the International Lunar Decade is to build the foundations for a sustainable space economy through international collaboration concurrently addressing Lunar exploration and building a shared knowledge base;Policy development that enables collabo rative research and development leading to lunar mining and industrial and commercial development;Infrastructure on the Moon and in cislunar space (communications, transport, energy systems, way-stations, other) that reduces costs, lowers risks and speeds up the time to profitable operations;Enabling technologies

  4. Specific heats of lunar surface materials from 90 to 350 degrees Kelvin

    Science.gov (United States)

    Robie, R.A.; Hemingway, B.S.; Wilson, W.H.

    1970-01-01

    The specific heats of lunar samples 10057 and 10084 returned by the Apollo 11 mission have been measured between 90 and 350 degrees Kelvin by use of an adiabatic calorimeter. The samples are representative of type A vesicular basalt-like rocks and of finely divided lunar soil. The specific heat of these materials changes smoothly from about 0.06 calorie per gram per degree at 90 degrees Kelvin to about 0.2 calorie per gram per degree at 350 degrees Kelvin. The thermal parameter ??=(k??C)-1/2 for the lunar surface will accordingly vary by a factor of about 2 between lunar noon and midnight.

  5. Rearing Tenebrio molitor L. (Coleptera: Tenebrionidae) in the "Lunar Palace 1" during a 105-day multi-crew closed integrative BLSS experiment.

    Science.gov (United States)

    Li, Leyuan; Xie, Beizhen; Dong, Chen; Hu, Dawei; Wang, Minjuan; Liu, Guanghui; Liu, Hong

    2015-11-01

    Yellow mealworm (Tenebrio molitor L.) is one of the animal candidates for space bioregenerative life support systems. In this study, T. molitor was involved in a 105-day multi-crew closed integrative BLSS experiment for a tentative rearing study. The results showed that the overall bioconversion rate (ratio of T. molitor gained to the total feed consumed) of T. molitor reared in the closed system was 8.13%, while 78.43% of the feed was excreted as frass. T. molitor reared in the closed system had a good nutritional composition. The eight essential amino acids (EAAs) in T. molitor larvae accounted for 41.30% of its total amino acids, and most EAA contents were higher than the suggested amino acid pattern recommended by the FAO/WHO. T. molitor sample obtained in this work was high in polyunsaturated fatty acids, and low in saturated fatty acids, indicating that the composition of fatty acids was beneficial to human health. In the open environment outside the experimental system, we simultaneously reared three parallel groups of larval T. molitor using the same feeding regime and temperature condition. Compared with T. molitor reared in the open environment, larvae reared in the closed system grew slower. With the course of time t, the growth rate of T. molitor in the open environment was 0.839e(0.017t) times that of larvae in the closed system. This paper can provide data for future design and improvement of BLSS containing a T. molitor rearing unit. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  6. Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE): Lunar Advanced Volatile Analysis (LAVA) Capillary Fluid Dynamic Restriction Effects on Gas Chromatography

    Science.gov (United States)

    Gonzalez, Marianne; Quinn, Jacqueline; Captain, Janine; Santiago-Bond, Josephine; Starr, Stanley

    2015-01-01

    The Resource Prospector (RP) mission with the Regolith and Environment Science and Oxygen Lunar Volatile Extraction (RESOLVE) payload aims to show the presence of water in lunar regolith, and establish a proving ground for NASAs mission to Mars. One of the analysis is performed by the Lunar Advanced Volatiles Analysis (LAVA) subsystem, which consists of a fluid network that facilitates the transport of volatile samples to a gas chromatograph and mass spectrometer (GC-MS) instrument. The understanding of fluid dynamics directed from the GC to the MS is important due to the influence of flow rates and pressures that affect the accuracy of and prevent the damage to the overall GC-MS instrument. The micro-scale capillary fluid network within the GC alone has various lengths and inner-diameters; therefore, determination of pressure differentials and flow rates are difficult to model computationally, with additional complexity from the vacuum conditions in space and lack of a lunar atmosphere. A series of tests were performed on an experimental set-up of the system where the inner diameters of the GC transfer line connecting to the MS were varied. The effect on chromatography readings were also studied by applying these lines onto a GC instrument. It was found that a smaller inner diameter transfer line resulted in a lower flow rate, as well as a lower pressure differential across the thermal conductivity detector (TCD) unit of the GC and a negligible pressure drop across the mock-up capillary column. The chromatography was affected with longer retention times and broader peak integrations. It was concluded that a 0.050 mm inner diameter line still proved most suitable for the systems flow rate preferences. In addition, it was evident that this small transfer line portrayed some expense to GC signal characteristics and the wait time for steady-state operation.

  7. Sampled-data consensus in switching networks of integrators based on edge events

    Science.gov (United States)

    Xiao, Feng; Meng, Xiangyu; Chen, Tongwen

    2015-02-01

    This paper investigates the event-driven sampled-data consensus in switching networks of multiple integrators and studies both the bidirectional interaction and leader-following passive reaction topologies in a unified framework. In these topologies, each information link is modelled by an edge of the information graph and assigned a sequence of edge events, which activate the mutual data sampling and controller updates of the two linked agents. Two kinds of edge-event-detecting rules are proposed for the general asynchronous data-sampling case and the synchronous periodic event-detecting case. They are implemented in a distributed fashion, and their effectiveness in reducing communication costs and solving consensus problems under a jointly connected topology condition is shown by both theoretical analysis and simulation examples.

  8. Lunar phase-dependent expression of cryptochrome and a photoperiodic mechanism for lunar phase-recognition in a reef fish, goldlined spinefoot.

    Science.gov (United States)

    Fukushiro, Masato; Takeuchi, Takahiro; Takeuchi, Yuki; Hur, Sung-Pyo; Sugama, Nozomi; Takemura, Akihiro; Kubo, Yoko; Okano, Keiko; Okano, Toshiyuki

    2011-01-01

    Lunar cycle-associated physiology has been found in a wide variety of organisms. Recent study has revealed that mRNA levels of Cryptochrome (Cry), one of the circadian clock genes, were significantly higher on a full moon night than on a new moon night in coral, implying the involvement of a photoreception system in the lunar-synchronized spawning. To better establish the generalities surrounding such a mechanism and explore the underlying molecular mechanism, we focused on the relationship between lunar phase, Cry gene expression, and the spawning behavior in a lunar-synchronized spawner, the goldlined spinefoot (Siganus guttatus), and we identified two kinds of Cry genes in this animal. Their mRNA levels showed lunar cycle-dependent expression in the medial part of the brain (mesencephalon and diencephalon) peaking at the first quarter moon. Since this lunar phase coincided with the reproductive phase of the goldlined spinefoot, Cry gene expression was considered a state variable in the lunar phase recognition system. Based on the expression profiles of SgCrys together with the moonlight's pattern of timing and duration during its nightly lunar cycle, we have further speculated on a model of lunar phase recognition for reproductive control in the goldlined spinefoot, which integrates both moonlight and circadian signals in a manner similar to photoperiodic response.

  9. ''Fast track'' lunar NTR systems assessment for NASA's first lunar outpost and its evolvability to Mars

    International Nuclear Information System (INIS)

    Borowski, S.K.; Alexander, S.W.

    1993-01-01

    Integrated systems and missions studies are presented for an evolutionary lunar-to-Mars space transportion system (STS) based on nuclear thermal rocket (NTR) technology. A ''standardized'' set of engine and stage components are identified and used in a ''building block'' fashion to configure a variety of piloted and cargo, lunar and Mars vehicles. The reference NTR characteristics include a thrust of 50 thousand pounds force (klbf), specific impulse (I sp ) of 900 seconds, and an engine thrust-to-weight ratio of 4.3. For the National Aeronautics and Space Administration's (NASA) First Lunar Outpost (FLO) mission, an expendable NTR stage powered by two such engines can deliver ∼96 metric tonnes (t) to trans-lunar injection (TLI) conditions for an initial mass in low Earth orbit (IMLEO) of ∼198 t compared to 250 t for a cryogenic chemical system. The stage liquid hydrogen (LH 2 ) tank has a diameter, length, and capacity of 10 m, 14.5 m and 66 t, respectively. By extending the stage length and LH 2 capacity to ∼20 m and 96 t, a single launch Mars cargo vehicle could deliver to an elliptical Mars parking orbit a 63 t Mars excursion vehicle (MEV) with a 45 t surface payload. Three 50 klbf engines and the two standardized LH 2 tanks developed for the lunar and Mars cargo vehicles are used to configure the vehicles supporting piloted Mars missions as early as 2010. The ''modular'' NTR vehicle approach forms the basis for an efficient STS able to handle the needs of a wide spectrum of lunar and Mars missions

  10. Strategies for monitoring the emerging polar organic contaminants in water with emphasis on integrative passive sampling.

    Science.gov (United States)

    Söderström, Hanna; Lindberg, Richard H; Fick, Jerker

    2009-01-16

    Although polar organic contaminants (POCs) such as pharmaceuticals are considered as some of today's most emerging contaminants few of them are regulated or included in on-going monitoring programs. However, the growing concern among the public and researchers together with the new legislature within the European Union, the registration, evaluation and authorisation of chemicals (REACH) system will increase the future need of simple, low cost strategies for monitoring and risk assessment of POCs in aquatic environments. In this article, we overview the advantages and shortcomings of traditional and novel sampling techniques available for monitoring the emerging POCs in water. The benefits and drawbacks of using active and biological sampling were discussed and the principles of organic passive samplers (PS) presented. A detailed overview of type of polar organic PS available, and their classes of target compounds and field of applications were given, and the considerations involved in using them such as environmental effects and quality control were discussed. The usefulness of biological sampling of POCs in water was found to be limited. Polar organic PS was considered to be the only available, but nevertheless, an efficient alternative to active water sampling due to its simplicity, low cost, no need of power supply or maintenance, and the ability of collecting time-integrative samples with one sample collection. However, the polar organic PS need to be further developed before they can be used as standard in water quality monitoring programs.

  11. Sampling

    CERN Document Server

    Thompson, Steven K

    2012-01-01

    Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treat

  12. Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle

    Science.gov (United States)

    Gregg, T. K. P.; Yingst, R. A.

    2009-01-01

    Since the first lunar mapping program ended in the 1970s, new topographical, multispectral, elemental and albedo imaging datasets have become available (e.g., Clementine, Lunar Prospector, Galileo). Lunar science has also advanced within the intervening time period. A new systematic lunar geologic mapping effort endeavors to build on the success of earlier mapping programs by fully integrating the many disparate datasets using GIS software and bringing to bear the most current understanding of lunar geologic history. As part of this program, we report on a 1:2,500,000-scale preliminary map of a subset of Lunar Quadrangle 10 ("LQ-10" or the "Marius Quadrangle," see Figures 1 and 2), and discuss the first-order science results. By generating a geologic map of this region, we can constrain the stratigraphic and geologic relationships between features, revealing information about the Moon s chemical and thermal evolution.

  13. Laser-powered lunar base

    International Nuclear Information System (INIS)

    Costen, R.; Humes, D.H.; Walker, G.H.; Williams, M.D.; Deyoung, R.J.

    1989-01-01

    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized

  14. Lunar ash flows - Isothermal approximation.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  15. International Lunar Decade Status

    Science.gov (United States)

    Beldavs, VZ; Crisafulli, J.; Dunlop, D.; Foing, B.

    2017-09-01

    The International Lunar Decade is a global decadal event designed to provide a framework for strategically directed international cooperation for permanent return to the Moon. To be launched July 20, 2019, the 50th anniversary of the giant leap for mankind marked by Neil Armstrong's first step on the Moon, the ILD launch will include events around the world to celebrate space exploration, science, and the expansion of humanity into the Solar System. The ILD framework links lunar exploration and space sciences with the development of enabling technologies, infrastructure, means of financing, laws and policies aimed at lowering the costs and risks of venturing into space. Dramatically reduced costs will broaden the range of opportunities available in space and widen access to space for more states, companies and people worldwide. The ILD is intended to bring about the efflorescence of commercial business based on space resources from the Moon, asteroids, comets and other bodies in the Solar System.

  16. Lunar Core and Tides

    Science.gov (United States)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  17. Lunar concrete for construction

    Science.gov (United States)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  18. Towards an integrated petrophysical tool for multiphase flow properties of core samples

    Energy Technology Data Exchange (ETDEWEB)

    Lenormand, R. [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01

    This paper describes the first use of an Integrated Petrophysical Tool (IPT) on reservoir rock samples. The IPT simultaneously measures the following petrophysical properties: (1) Complete capillary pressure cycle: primary drainage, spontaneous and forced imbibitions, secondary drainage (the cycle leads to the wettability of the core by using the USBM index); End-points and parts of the relative permeability curves; Formation factor and resistivity index. The IPT is based on the steady-state injection of one fluid through the sample placed in a Hassler cell. The experiment leading to the whole Pc cycle on two reservoir sandstones consists of about 30 steps at various oil or water flow rates. It takes about four weeks and is operated at room conditions. Relative permeabilities are in line with standard steady-state measurements. Capillary pressures are in accordance with standard centrifuge measurements. There is no comparison for the resistivity index, but the results are in agreement with literature data. However, the accurate determination of saturation remains the main difficulty and some improvements are proposed. In conclusion, the Integrated Petrophysical Tool is as accurate as standard methods and has the advantage of providing the various parameters on the same sample and during a single experiment. The FIT is easy to use and can be automated. In addition, it can be operated in reservoir conditions.

  19. Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling

    DEFF Research Database (Denmark)

    Blasone, Roberta-Serena; Madsen, Henrik; Rosbjerg, Dan

    2008-01-01

    uncertainty estimation (GLUE) procedure based on Markov chain Monte Carlo sampling is applied in order to improve the performance of the methodology in estimating parameters and posterior output distributions. The description of the spatial variations of the hydrological processes is accounted for by defining......In recent years, there has been an increase in the application of distributed, physically-based and integrated hydrological models. Many questions regarding how to properly calibrate and validate distributed models and assess the uncertainty of the estimated parameters and the spatially......-site validation must complement the usual time validation. In this study, we develop, through an application, a comprehensive framework for multi-criteria calibration and uncertainty assessment of distributed physically-based, integrated hydrological models. A revised version of the generalized likelihood...

  20. Pulmonary and Systemic Immune Response to Chronic Lunar Dust Inhalation

    Science.gov (United States)

    Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence

    2014-01-01

    Background: Due to millennia of meteorite impact with virtually no erosive effects, the surface of the Moon is covered by a layer of ultra-fine, reactive Lunar dust. Very little is known regarding the toxicity of Lunar dust on human physiology. Given the size and electrostatic characteristics of Lunar dust, countermeasures to ensure non-exposure of astronauts will be difficult. To ensure astronaut safety during any future prolonged Lunar missions, it is necessary to establish the effect of chronic pulmonary Lunar dust exposure on all physiological systems. Methods: This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and system immune system parameters. Rats were exposed to 0, 20.8, or 60.8 mg/m3 of lunar dust (6h/d; 5d/wk) for up to 13 weeks. Sacrifices occurred after exposure durations of 1day, 7 days, 4 weeks and 13 weeks post-exposure, when both blood and lung lavage fluid were collected for analysis. Lavage and blood assays included leukocyte distribution by flow cytometry, electron/fluorescent microscopy, and cytokine concentration. Cytokine production profiles following mitogenic stimulation were performed on whole blood only. Results: Untreated lavage fluid was comprised primarily of pulmonary macrophages. Lunar dust inhalation resulted in an influx of neutrophils and lymphocytes. Although the percentage of lymphocytes increased, the T cell CD4:CD8 ratio was unchanged. Cytokine analysis of the lavage fluid showed increased levels of IL-1b and TNFa. These alterations generally persisted through the 13 week sampling. Blood analysis showed few systemic effects from the lunar dust inhalation. By week 4, the peripheral granulocyte percentage was elevated in the treated rats. Plasma cytokine levels were unchanged in all treated rats compared to controls. Peripheral blood analysis showed an increased granulocyte percentage and altered cytokine production profiles consisting of increased in IL-1b and IL-6, and decreased IL-2

  1. Religion and Lunar Exploration

    Science.gov (United States)

    Pop, V.

    1969: The Eagle lands on the Moon. A moment that would not only mark the highest scientific achievement of all times, but would also have significant religious impli- cations. While the island of Bali lodges a protest at the United Nations against the US for desecrating a sacred place, Hopi Indians celebrate the fulfilment of an ancient prophecy that would reveal the "truth of the Sacred Ways". The plaque fastened to the Eagle - "We Came in Peace for All Mankind" would have contained the words "under God" as directed by the US president, if not for an assistant administrator at NASA that did not want to offend any religion. In the same time, Buzz Aldrin takes the Holy Communion on the Moon, and a Bible is left there by another Apollo mission - not long after the crew of Apollo 8 reads a passage from Genesis while circling the Moon. 1998: Navajo Indians lodge a protest with NASA for placing human ashes aboard the Lunar Prospector, as the Moon is a sacred place in their religion. Past, present and fu- ture exploration of the Moon has significant religious and spiritual implications that, while not widely known, are nonetheless important. Is lunar exploration a divine duty, or a sacrilege? This article will feature and thoroughly analyse the examples quoted above, as well as other facts, as for instance the plans of establishing lunar cemeteries - welcomed by some religions, and opposed by others.

  2. Modeling lunar volcanic eruptions

    Science.gov (United States)

    Housley, R. M.

    1978-01-01

    Simple physical arguments are used to show that basaltic volcanos on different planetary bodies would fountain to the same height if the mole fraction of gas in the magma scaled with the acceleration of gravity. It is suggested that the actual eruption velocities and fountain heights are controlled by the velocities of sound in the two phase gas/liquid flows. These velocities are in turn determined by the gas contents in the magma. Predicted characteristics of Hawaiian volcanos are in excellent accord with observations. Assuming that the only gas in lunar volcano is the CO which would be produced if the observed Fe metal in lunar basalts resulted from graphite reduction, lunar volcanos would fountain vigorously, but not as spectacularly as their terrestrial counterparts. The volatile trace metals, halogens, and sulfur released would be transported over the entire moon by the transient atmosphere. Orange and black glass type pyroclastic materials would be transported in sufficient amounts to produce the observed dark mantle deposits.

  3. CisLunar Habitat Internal Architecture Design Criteria

    Science.gov (United States)

    Jones, R.; Kennedy, K.; Howard, R.; Whitmore, M.; Martin, C.; Garate, J.

    2017-01-01

    BACKGROUND: In preparation for human exploration to Mars, there is a need to define the development and test program that will validate deep space operations and systems. In that context, a Proving Grounds CisLunar habitat spacecraft is being defined as the next step towards this goal. This spacecraft will operate differently from the ISS or other spacecraft in human history. The performance envelope of this spacecraft (mass, volume, power, specifications, etc.) is being defined by the Future Capabilities Study Team. This team has recognized the need for a human-centered approach for the internal architecture of this spacecraft and has commissioned a CisLunar Phase-1 Habitat Internal Architecture Study Team to develop a NASA reference configuration, providing the Agency with a "smart buyer" approach for future acquisition. THE CISLUNAR HABITAT INTERNAL ARCHITECTURE STUDY: Overall, the CisLunar Habitat Internal Architecture study will address the most significant questions and risks in the current CisLunar architecture, habitation, and operations concept development. This effort is achieved through definition of design criteria, evaluation criteria and process, design of the CisLunar Habitat Phase-1 internal architecture, and the development and fabrication of internal architecture concepts combined with rigorous and methodical Human-in-the-Loop (HITL) evaluations and testing of the conceptual innovations in a controlled test environment. The vision of the CisLunar Habitat Internal Architecture Study is to design, build, and test a CisLunar Phase-1 Habitat Internal Architecture that will be used for habitation (e.g. habitability and human factors) evaluations. The evaluations will mature CisLunar habitat evaluation tools, guidelines, and standards, and will interface with other projects such as the Advanced Exploration Systems (AES) Program integrated Power, Avionics, Software (iPAS), and Logistics for integrated human-in-the-loop testing. The mission of the CisLunar

  4. Evaluation of inlet sampling integrity on NSF/NCAR airborne platforms

    Science.gov (United States)

    Campos, T. L.; Stith, J. L.; Stephens, B. B.; Romashkin, P.

    2017-12-01

    An inlet test project was conducted during IDEAS-IV-GV (2013), to evaluate the sampling integrity of two inlet designs. Use of a single CO2 sensor provided a high precision detector and a large difference in the mean cabin and external concentrations (500-700 ppmv in the cabin). The original HIAPER Modular InLet (HIMIL) is comprised of a tapered flow straightening flow through `cigar' mounted to a strut. The cigar center sampling line sits 12" from the fuselage skin. An o-ring seals the feedthrough plate coupling sampling lines from the strut into the cigar. However, there is no seal to prevent air inside the strut from seeping out around the cigar body. A pressure-equalizing drain hole in the strut access panel; it was positioned at an approximate distance of 4" from the fuselage to ensure that air from any source that drained out of the strut was confined to a low release point. A second aft-facing inlet design was also evaluated. The sampling center line was moved farther from the fuselage at a height of 16". A similar approach was also applied to sampling locations on the C-130 in 2015. The results of these tests and recommendations for best practices will be presented.

  5. Isotopes as tracers of the sources of the lunar material and processes of lunar origin.

    Science.gov (United States)

    Pahlevan, Kaveh

    2014-09-13

    Ever since the Apollo programme, isotopic abundances have been used as tracers to study lunar formation, in particular to study the sources of the lunar material. In the past decade, increasingly precise isotopic data have been reported that give strong indications that the Moon and the Earth's mantle have a common heritage. To reconcile these observations with the origin of the Moon via the collision of two distinct planetary bodies, it has been proposed (i) that the Earth-Moon system underwent convective mixing into a single isotopic reservoir during the approximately 10(3) year molten disc epoch after the giant impact but before lunar accretion, or (ii) that a high angular momentum impact injected a silicate disc into orbit sourced directly from the mantle of the proto-Earth and the impacting planet in the right proportions to match the isotopic observations. Recently, it has also become recognized that liquid-vapour fractionation in the energetic aftermath of the giant impact is capable of generating measurable mass-dependent isotopic offsets between the silicate Earth and Moon, rendering isotopic measurements sensitive not only to the sources of the lunar material, but also to the processes accompanying lunar origin. Here, we review the isotopic evidence that the silicate-Earth-Moon system represents a single planetary reservoir. We then discuss the development of new isotopic tracers sensitive to processes in the melt-vapour lunar disc and how theoretical calculations of their behaviour and sample observations can constrain scenarios of post-impact evolution in the earliest history of the Earth-Moon system. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. A Proof of Concept for In-Situ Lunar Dating

    Science.gov (United States)

    Anderson, F. S.; Whitaker, T.; Levine, J.; Draper, D. S.; Harris, W.; Olansen, J.; Devolites, J.

    2015-12-01

    We have obtained improved 87Rb-87Sr isochrons for the Duluth Gabbro, an analog for lunar KREEP rocks, using a prototype spaceflight laser ablation resonance ionization mass spectrometer (LARIMS). The near-side of the Moon comprises previously un-sampled, KREEP rich, young-lunar basalts critical for calibrating the dating to constrain lunar history. Using a novel normalization approach, and by correcting for matrix-dependent isotope effects, we have been able to obtain a date of 1100 ± 200 Ma (Figure 1), compared to the previously established thermal ionization mass spectrometry measurement of 1096 ± 14 Ma. The precision of LARIMS is sufficient to constrain the current 1 Ga uncertainty of the lunar flux curve, allowing us to reassess the timing of peak lunar volcanism, and constrain lunar thermal evolution. Furthermore, an updated lunar flux curve has implications throughout the solar system. For example, Mars could have undergone a longer epoch of voluminous, shield-forming volcanism and associated mantle evolution, as well as a longer era of abundant volatiles and hence potential habitability. These alternative chronologies could even affect our understanding of the evolution of life on Earth: under the classic chronology, life is thought to have originated after the dwindling of bombardment, but under the alternative chronology, it might have appeared during heavy bombardment. In order to resolve the science questions regarding the history of the Moon, and in light of the Duluth Gabbro results, we recently proposed a Discovery mission called MARE: The Moon Age and Regolith Explorer. MARE would accomplish these goals by landing on a young, nearside lunar basalt flow southwest of Aristarchus that has a crater density corresponding to a highly uncertain absolute age, collecting >10 rock samples, and assessing their radioisotopic age, geochemistry, and mineralogy.

  7. The sample of INTEGRAL SPI-ACS gamma-ray bursts

    International Nuclear Information System (INIS)

    Rau, A.; Kienlin, A. von; Licht, G.G.; Hurley, K.

    2005-01-01

    The anti-coincidence system of the spectrometer on board INTEGRAL is operated as a nearly omni directional gamma-ray burst detector above ∼ 75 KeV. During the elapsed mission time 324 burst candidates were detected. As part of the 3rd Interplanetary Network of gamma-ray detectors the cosmic origin of 115 burst was confirmed. Here we present a preliminary analysis of the SPI-ACS gamma-ray burst sample. In particular we discuss the origin of a significant population of short events (duration < 0.2 s) and a possible method for a flux calibration of the data

  8. Integrity of the Human Faecal Microbiota following Long-Term Sample Storage.

    Directory of Open Access Journals (Sweden)

    Elahe Kia

    Full Text Available In studies of the human microbiome, faecal samples are frequently used as a non-invasive proxy for the study of the intestinal microbiota. To obtain reliable insights, the need for bacterial DNA of high quality and integrity following appropriate faecal sample collection and preservation steps is paramount. In a study of dietary mineral balance in the context of type 2 diabetes (T2D, faecal samples were collected from healthy and T2D individuals throughout a 13-day residential trial. These samples were freeze-dried, then stored mostly at -20°C from the trial date in 2000/2001 until the current research in 2014. Given the relative antiquity of these samples (~14 years, we sought to evaluate DNA quality and comparability to freshly collected human faecal samples. Following the extraction of bacterial DNA, gel electrophoresis indicated that our DNA extracts were more sheared than extracts made from freshly collected faecal samples, but still of sufficiently high molecular weight to support amplicon-based studies. Likewise, spectrophotometric assessment of extracts revealed that they were of high quality and quantity. A subset of bacterial 16S rRNA gene amplicons were sequenced using Illumina MiSeq and compared against publicly available sequence data representing a similar cohort analysed by the American Gut Project (AGP. Notably, our bacterial community profiles were highly consistent with those from the AGP data. Our results suggest that when faecal specimens are stored appropriately, the microbial profiles are preserved and robust to extended storage periods.

  9. KOREAN LUNAR LANDER – CONCEPT STUDY FOR LANDING-SITE SELECTION FOR LUNAR RESOURCE EXPLORATION

    Directory of Open Access Journals (Sweden)

    K. J. Kim

    2016-06-01

    Full Text Available As part of the national space promotion plan and presidential national agendas South Korea’s institutes and agencies under the auspices of the Ministry of Science, Information and Communication Technology and Future Planning (MSIP are currently developing a lunar mission package expected to reach Moon in 2020. While the officially approved Korean Pathfinder Lunar Orbiter (KPLO is aimed at demonstrating technologies and monitoring the lunar environment from orbit, a lander – currently in pre-phase A – is being designed to explore the local geology with a particular focus on the detection and characterization of mineral resources. In addition to scientific and potential resource potentials, the selection of the landing-site will be partly constrained by engineering constraints imposed by payload and spacecraft layout. Given today’s accumulated volume and quality of available data returned from the Moon’s surface and from orbital observations, an identification of landing sites of potential interest and assessment of potential hazards can be more readily accomplished by generating synoptic snapshots through data integration. In order to achieve such a view on potential landing sites, higher level processing and derivation of data are required, which integrates their spatial context, with detailed topographic and geologic characterizations. We are currently assessing the possibility of using fuzzy c-means clustering algorithms as a way to perform (semi- automated terrain characterizations of interest. This paper provides information and background on the national lunar lander program, reviews existing approaches – including methods and tools – for landing site analysis and hazard assessment, and discusses concepts to detect and investigate elemental abundances from orbit and the surface. This is achieved by making use of manual, semi-automated as well as fully-automated remote-sensing methods to demonstrate the applicability of

  10. Lunar imaging and ionospheric calibration for the Lunar Cherenkov technique

    NARCIS (Netherlands)

    McFadden, R.; Scholten, O.; Mevius, M.

    2013-01-01

    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the

  11. Estimating cross-validatory predictive p-values with integrated importance sampling for disease mapping models.

    Science.gov (United States)

    Li, Longhai; Feng, Cindy X; Qiu, Shi

    2017-06-30

    An important statistical task in disease mapping problems is to identify divergent regions with unusually high or low risk of disease. Leave-one-out cross-validatory (LOOCV) model assessment is the gold standard for estimating predictive p-values that can flag such divergent regions. However, actual LOOCV is time-consuming because one needs to rerun a Markov chain Monte Carlo analysis for each posterior distribution in which an observation is held out as a test case. This paper introduces a new method, called integrated importance sampling (iIS), for estimating LOOCV predictive p-values with only Markov chain samples drawn from the posterior based on a full data set. The key step in iIS is that we integrate away the latent variables associated the test observation with respect to their conditional distribution without reference to the actual observation. By following the general theory for importance sampling, the formula used by iIS can be proved to be equivalent to the LOOCV predictive p-value. We compare iIS and other three existing methods in the literature with two disease mapping datasets. Our empirical results show that the predictive p-values estimated with iIS are almost identical to the predictive p-values estimated with actual LOOCV and outperform those given by the existing three methods, namely, the posterior predictive checking, the ordinary importance sampling, and the ghosting method by Marshall and Spiegelhalter (2003). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. LADEE UVS Observations of Atoms and Dust in the Lunar Tail

    Science.gov (United States)

    Wooden, Diane H.; Colaprete, Anthony; Cook, Amanda M.; Shirley, Mark H.; Vargo, Kara E.; Elphic, Richard C.; Stubbs, Timothy J.; Glenar, David A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) was a lunar orbiter launched in September 2013 that investigated the composition and temporal variation of the tenuous lunar exosphere and dust environment. A major goal of the mission was to characterize the dust exosphere prior to future lunar exploration activities, which may alter the lunar environment. The Ultraviolet/Visible Spectrometer (UVS) onboard LADEE addresses this goal, utilizing two sets of optics: a limbviewing telescope, and a solar-viewing telescope. We report on spectroscopic (approximately 280 - 820 nm) observations viewing down the lunar wake or along the 'lunar tail' from lunar orbit. Prior groundbased studies have observed the emission from neutral sodium atoms extended along the lunar tail, so often this region is referred to as the lunar sodium tail. UVS measurements were made on the dark side of the moon, with the UVS limb-viewing telescope pointed outward in the direction of the Moon's wake (almost anti-sun), during different lunar phases. These UVS observation activities sample a long column and allow the characterization of scattered light from dust and emission lines from atoms in the lunar tail. Observations in this UVS configuration show the largest excess of scattered blue light in our data set, indicative of the presence of small dust grains in the tail. Once lofted, nanoparticles may become charged and picked up by the solar wind, similar to the phenomena witnessed above Enceladus's northern hemisphere or by the STEREO/WAVES instrument while close to Earth's orbit. The UVS data show that small dust grains as well as atoms become entrained in the lunar tail.

  13. The 4-vessel Sampling Approach to Integrative Studies of Human Placental Physiology In Vivo.

    Science.gov (United States)

    Holme, Ane M; Holm, Maia B; Roland, Marie C P; Horne, Hildegunn; Michelsen, Trond M; Haugen, Guttorm; Henriksen, Tore

    2017-08-02

    The human placenta is highly inaccessible for research while still in utero. The current understanding of human placental physiology in vivo is therefore largely based on animal studies, despite the high diversity among species in placental anatomy, hemodynamics and duration of the pregnancy. The vast majority of human placenta studies are ex vivo perfusion studies or in vitro trophoblast studies. Although in vitro studies and animal models are essential, extrapolation of the results from such studies to the human placenta in vivo is uncertain. We aimed to study human placenta physiology in vivo at term, and present a detailed protocol of the method. Exploiting the intraabdominal access to the uterine vein just before the uterine incision during planned cesarean section, we collect blood samples from the incoming and outgoing vessels on the maternal and fetal sides of the placenta. When combining concentration measurements from blood samples with volume blood flow measurements, we are able to quantify placental and fetal uptake and release of any compound. Furthermore, placental tissue samples from the same mother-fetus pairs can provide measurements of transporter density and activity and other aspects of placental functions in vivo. Through this integrative use of the 4-vessel sampling method we are able to test some of the current concepts of placental nutrient transfer and metabolism in vivo, both in normal and pathological pregnancies. Furthermore, this method enables the identification of substances secreted by the placenta to the maternal circulation, which could be an important contribution to the search for biomarkers of placenta dysfunction.

  14. Validation of the abbreviated Radon Progeny Integrating Sampling Unit (RPISU) method for Mesa County, Colorado

    International Nuclear Information System (INIS)

    Langner, G.H. Jr.

    1987-06-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center at the DOE Grand Junction, Colorado, Projects Office to standardize, calibrate, and compare measurements made in support of DOE remedial action programs. Indoor radon-daughter concentration measurements are made to determine whether a structure is in need of remedial action. The Technical Measurements Center conducted this study to validate an abbreviated Radon Progeny Integrated Sampling Unit (RPISU) method of making indoor radon-daughter measurements to determine whether a structure has a radon-daughter concentration (RDC) below the levels specified in various program standards. The Technical Measurements Center established a criterion against which RDC measurements made using the RPISU sampling method are evaluated to determine if sampling can be terminated or whether further measurements are required. This abbreviated RPISU criterion was tested against 317 actual sets of RPISU data from measurements made over an eight-year period in Mesa County, Colorado. The data from each location were tested against a standard that was assumed to be the same as the actual annual average RDC from that location. At only two locations was the criterion found to fail. Using the abbreviated RPISU method, only 0.6% of locations sampled can be expected to be falsely indicated as having annual average RDC levels below a given standard

  15. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy.

    Science.gov (United States)

    Faas, F G A; Bárcena, M; Agronskaia, A V; Gerritsen, H C; Moscicka, K B; Diebolder, C A; van Driel, L F; Limpens, R W A L; Bos, E; Ravelli, R B G; Koning, R I; Koster, A J

    2013-03-01

    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain morphological and structural information from a selected field of view at nm-scale resolution. Previously, an integrated approach to room temperature correlative microscopy was described. Combined use of light and electron microscopy within one instrument greatly simplifies sample handling, avoids cumbersome experimental overheads, simplifies navigation between the two modalities, and improves the success rate of image correlation. Here, an integrated approach for correlative microscopy under cryogenic conditions is presented. Its advantages over the room temperature approach include safeguarding the native hydrated state of the biological specimen, preservation of the fluorescence signal without risk of quenching due to heavy atom stains, and reduced photo bleaching. The potential of cryo integrated light and electron microscopy is demonstrated for the detection of viable bacteria, the study of in vitro polymerized microtubules, the localization of mitochondria in mouse embryonic fibroblasts, and for a search into virus-induced intracellular membrane modifications within mammalian cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Author Contribution to the Pu Handbook II: Chapter 37 LLNL Integrated Sample Preparation Glovebox (TEM) Section

    International Nuclear Information System (INIS)

    Wall, Mark A.

    2016-01-01

    The development of our Integrated Actinide Sample Preparation Laboratory (IASPL) commenced in 1998 driven by the need to perform transmission electron microscopy studies on naturally aged plutonium and its alloys looking for the microstructural effects of the radiological decay process (1). Remodeling and construction of a laboratory within the Chemistry and Materials Science Directorate facilities at LLNL was required to turn a standard radiological laboratory into a Radiological Materials Area (RMA) and Radiological Buffer Area (RBA) containing type I, II and III workplaces. Two inert atmosphere dry-train glove boxes with antechambers and entry/exit fumehoods (Figure 1), having a baseline atmosphere of 1 ppm oxygen and 1 ppm water vapor, a utility fumehood and a portable, and a third double-walled enclosure have been installed and commissioned. These capabilities, along with highly trained technical staff, facilitate the safe operation of sample preparation processes and instrumentation, and sample handling while minimizing oxidation or corrosion of the plutonium. In addition, we are currently developing the capability to safely transfer small metallographically prepared samples to a mini-SEM for microstructural imaging and chemical analysis. The gloveboxes continue to be the most crucial element of the laboratory allowing nearly oxide-free sample preparation for a wide variety of LLNL-based characterization experiments, which includes transmission electron microscopy, electron energy loss spectroscopy, optical microscopy, electrical resistivity, ion implantation, X-ray diffraction and absorption, magnetometry, metrological surface measurements, high-pressure diamond anvil cell equation-of-state, phonon dispersion measurements, X-ray absorption and emission spectroscopy, and differential scanning calorimetry. The sample preparation and materials processing capabilities in the IASPL have also facilitated experimentation at world-class facilities such as the

  17. Author Contribution to the Pu Handbook II: Chapter 37 LLNL Integrated Sample Preparation Glovebox (TEM) Section

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Mark A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    The development of our Integrated Actinide Sample Preparation Laboratory (IASPL) commenced in 1998 driven by the need to perform transmission electron microscopy studies on naturally aged plutonium and its alloys looking for the microstructural effects of the radiological decay process (1). Remodeling and construction of a laboratory within the Chemistry and Materials Science Directorate facilities at LLNL was required to turn a standard radiological laboratory into a Radiological Materials Area (RMA) and Radiological Buffer Area (RBA) containing type I, II and III workplaces. Two inert atmosphere dry-train glove boxes with antechambers and entry/exit fumehoods (Figure 1), having a baseline atmosphere of 1 ppm oxygen and 1 ppm water vapor, a utility fumehood and a portable, and a third double-walled enclosure have been installed and commissioned. These capabilities, along with highly trained technical staff, facilitate the safe operation of sample preparation processes and instrumentation, and sample handling while minimizing oxidation or corrosion of the plutonium. In addition, we are currently developing the capability to safely transfer small metallographically prepared samples to a mini-SEM for microstructural imaging and chemical analysis. The gloveboxes continue to be the most crucial element of the laboratory allowing nearly oxide-free sample preparation for a wide variety of LLNL-based characterization experiments, which includes transmission electron microscopy, electron energy loss spectroscopy, optical microscopy, electrical resistivity, ion implantation, X-ray diffraction and absorption, magnetometry, metrological surface measurements, high-pressure diamond anvil cell equation-of-state, phonon dispersion measurements, X-ray absorption and emission spectroscopy, and differential scanning calorimetry. The sample preparation and materials processing capabilities in the IASPL have also facilitated experimentation at world-class facilities such as the

  18. A cost-effective technique for integrating personal radiation dose assessment with personal gravimetric sampling

    International Nuclear Information System (INIS)

    Strydom, R.; Rolle, R.; Van der Linde, A.

    1992-01-01

    During recent years there has been an increasing awareness internationally of radiation levels in the mining and milling of radioactive ores, including those from non-uranium mines. A major aspect of radiation control is concerned with the measurement of radiation levels and the assessment of radiation doses incurred by individual workers. Current techniques available internationally for personnel monitoring of radiation exposures are expensive and there is a particular need to reduce the cost of personal radiation monitoring in South African gold mines because of the large labour force employed. In this regard the obvious benefits of integrating personal radiation monitoring with existing personal monitoring systems already in place in South African gold mines should be exploited. A system which can be utilized for this purpose is personal gravimetric sampling. A new cost-effective technique for personal radiation monitoring, which can be fully integrated with the personal gravimetric sampling strategy being implemented on mines, has been developed in South Africa. The basic principles of this technique and its potential in South African mines are described. 9 refs., 7 figs

  19. Magnetic particles for in vitro molecular diagnosis: From sample preparation to integration into microsystems.

    Science.gov (United States)

    Tangchaikeeree, Tienrat; Polpanich, Duangporn; Elaissari, Abdelhamid; Jangpatarapongsa, Kulachart

    2017-10-01

    Colloidal magnetic particles (MPs) have been developed in association with molecular diagnosis for several decades. MPs have the great advantage of easy manipulation using a magnet. In nucleic acid detection, these particles can act as a capture support for rapid and simple biomolecule separation. The surfaces of MPs can be modified by coating with various polymer materials to provide functionalization for different applications. The use of MPs enhances the sensitivity and specificity of detection due to the specific activity on the surface of the particles. Practical applications of MPs demonstrate greater efficiency than conventional methods. Beyond traditional detection, MPs have been successfully adopted as a smart carrier in microfluidic and lab-on-a-chip biosensors. The versatility of MPs has enabled their integration into small single detection units. MPs-based biosensors can facilitate rapid and highly sensitive detection of very small amounts of a sample. In this review, the application of MPs to the detection of nucleic acids, from sample preparation to analytical readout systems, is described. State-of-the-art integrated microsystems containing microfluidic and lab-on-a-chip biosensors for the nucleic acid detection are also addressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The search for Ar in the lunar atmosphere using the Lunar Reconnaissance Orbiter's LAMP instrument.

    Science.gov (United States)

    Cook, J. C.; Stern, S. A.; Feldman, P. D.; Gladstone, R.; Retherford, K. D.; Greathouse, T. K.; Grava, C.

    2014-12-01

    The Apollo 17 mass spectrometer, LACE, first measured mass 40 particles in the lunar atmosphere, and over a nine-month period, detected variations correlated with the lunar day (Hoffman et al., 1973, LPSC, 4, 2865). LACE detected a high particle density at dusk (0.6-1.0x104 cm-3), decreasing through the lunar night to a few hundred cm-3, then increasing rapidly before dawn to levels 2-4 times greater than at dusk. No daytime measurements were made due to instrument saturation. Given the LACE measurements' periodic nature, and the Ar abundance in lunar regolith samples (Kaiser, 1972, EPSL, 13, 387), it was concluded that mass 40 was likely due to Ar. Benna et al. (2014, LPSC, 45, 1535) recently reported that the Neutral Mass Spectrometer (NMS) aboard LADEE also detected Ar (mass 40) with similar diurnal profiles. We report on UV spectra of the lunar atmosphere as obtained by the Lunar Reconnaissance Orbiter (LRO). Aboard LRO is the UV-spectrograph, LAMP (Lyman Alpha Mapping Project), spanning the spectral range 575 to 1965 Å. LAMP is typically oriented toward the surface and has been mapping the Moon since September 2009. LAMP also observes the tenuous lunar atmosphere when the surface is in darkness, but the atmospheric column below LRO is illuminated. We have previously used nadir oriented twilight observations to examine the sparse lunar atmosphere (Feldman et al., 2012, Icarus, 221, 854; Cook et al., 2013, Icarus, 225, 681; Stern et al., 2013, Icarus, 226, 1210; Cook & Stern 2014, Icarus, 236, 48). In Cook et al., 2013, we reported an upper limit for Ar of 2.3x104 cm-3. Since then, we have collected additional data and refined our search method by focusing on the regions (near equator) and local times (dawn and dusk) where Ar has been reported previously. We have carefully considered effective area calibration and g-factor accuracies and find these to be unlikely explanations for the order of magnitude differences. We will report new results, which provide much

  1. Integrating field sampling, geostatistics and remote sensing to map wetland vegetation in the Pantanal, Brazil

    Directory of Open Access Journals (Sweden)

    J. Arieira

    2011-03-01

    Full Text Available Development of efficient methodologies for mapping wetland vegetation is of key importance to wetland conservation. Here we propose the integration of a number of statistical techniques, in particular cluster analysis, universal kriging and error propagation modelling, to integrate observations from remote sensing and field sampling for mapping vegetation communities and estimating uncertainty. The approach results in seven vegetation communities with a known floral composition that can be mapped over large areas using remotely sensed data. The relationship between remotely sensed data and vegetation patterns, captured in four factorial axes, were described using multiple linear regression models. There were then used in a universal kriging procedure to reduce the mapping uncertainty. Cross-validation procedures and Monte Carlo simulations were used to quantify the uncertainty in the resulting map. Cross-validation showed that accuracy in classification varies according with the community type, as a result of sampling density and configuration. A map of uncertainty derived from Monte Carlo simulations revealed significant spatial variation in classification, but this had little impact on the proportion and arrangement of the communities observed. These results suggested that mapping improvement could be achieved by increasing the number of field observations of those communities with a scattered and small patch size distribution; or by including a larger number of digital images as explanatory variables in the model. Comparison of the resulting plant community map with a flood duration map, revealed that flooding duration is an important driver of vegetation zonation. This mapping approach is able to integrate field point data and high-resolution remote-sensing images, providing a new basis to map wetland vegetation and allow its future application in habitat management, conservation assessment and long-term ecological monitoring in wetland

  2. Integrated science and engineering for the OSIRIS-REx asteroid sample return mission

    Science.gov (United States)

    Lauretta, D.

    2014-07-01

    Introduction: The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission will survey near-Earth asteroid (101955) Bennu to understand its physical, mineralogical, and chemical properties, assess its resource potential, refine the impact hazard, and return a sample of this body to the Earth [1]. This mission is scheduled for launch in 2016 and will rendezvous with the asteroid in 2018. Sample return to the Earth follows in 2023. The OSIRIS-REx mission has the challenge of visiting asteroid Bennu, characterizing it at global and local scales, then selecting the best site on the asteroid surface to acquire a sample for return to the Earth. Minimizing the risk of exploring an unknown world requires a tight integration of science and engineering to inform flight system and mission design. Defining the Asteroid Environment: We have performed an extensive astronomical campaign in support of OSIRIS-REx. Lightcurve and phase function observations were obtained with UA Observatories telescopes located in southeastern Arizona during the 2005--2006 and 2011--2012 apparitions [2]. We observed Bennu using the 12.6-cm radar at the Arecibo Observatory in 1999, 2005, and 2011 and the 3.5-cm radar at the Goldstone tracking station in 1999 and 2005 [3]. We conducted near-infrared measurements using the NASA Infrared Telescope Facility at the Mauna Kea Observatory in Hawaii in September 2005 [4]. Additional spectral observations were obtained in July 2011 and May 2012 with the Magellan 6.5-m telescope [5]. We used the Spitzer space telescope to observe Bennu in May 2007 [6]. The extensive knowledge gained as a result of our telescopic characterization of Bennu was critical in the selection of this object as the OSIRIS-REx mission target. In addition, we use these data, combined with models of the asteroid, to constrain over 100 different asteroid parameters covering orbital, bulk, rotational, radar

  3. Analysis of Logistics in Support of a Human Lunar Outpost

    Science.gov (United States)

    Cirillo, William; Earle, Kevin; Goodliff, Kandyce; Reeves, j. D.; Andrashko, Mark; Merrill, R. Gabe; Stromgren, Chel

    2008-01-01

    Strategic level analysis of the integrated behavior of lunar transportation system and lunar surface system architecture options is performed to inform NASA Constellation Program senior management on the benefit, viability, affordability, and robustness of system design choices. This paper presents an overview of the approach used to perform the campaign (strategic) analysis, with an emphasis on the logistics modeling and the impacts of logistics resupply on campaign behavior. An overview of deterministic and probabilistic analysis approaches is provided, with a discussion of the importance of each approach to understanding the integrated system behavior. The logistics required to support lunar surface habitation are analyzed from both 'macro-logistics' and 'micro-logistics' perspectives, where macro-logistics focuses on the delivery of goods to a destination and micro-logistics focuses on local handling of re-supply goods at a destination. An example campaign is provided to tie the theories of campaign analysis to results generation capabilities.

  4. Elemental Mercury Diffusion Processes and Concentration at the Lunar Poles

    Science.gov (United States)

    Moxley, Frederick; Killen, Rosemary M.; Hurley, Dana M.

    2011-01-01

    In 2009, the Lyman Alpha Mapping Project (LAMP) spectrograph onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft made the first detection of element mercury (Hg) vapor in the lunar exosphere after the Lunar Crater Observing and Sensing Satellite (LCROSS) Centaur rocket impacted into the Cabeus crater in the southern polar region of the Moon. The lunar regolith core samples from the Apollo missions determined that Hg had a devolatilized pattern with a concentration gradient increasing with depth, in addition to a layered pattern suggesting multiple episodes of burial and volatile loss. Hg migration on the lunar surface resulted in cold trapping at the poles. We have modeled the rate at which indigenous Hg is lost from the regolith through diffusion out of lunar grains. We secondly modeled the migration of Hg vapor in the exosphere and estimated the rate of cold-trapping at the poles using a Monte Carlo technique. The Hg vapor may be lost from the exosphere via ionization, Jeans escape, or re-impact into the surface causing reabsorption.

  5. Chronology of early lunar crust

    International Nuclear Information System (INIS)

    Dasch, E.J.; Nyquist, L.E.; Ryder, G.

    1988-01-01

    The chronology of lunar rocks is summarized. The oldest pristine (i.e., lacking meteoritic contamination of admixed components) lunar rock, recently dated with Sm-Nd by Lugmair, is a ferroan anorthosite, with an age of 4.44 + 0.02 Ga. Ages of Mg-suite rocks (4.1 to 4.5 Ga) have large uncertainties, so that age differences between lunar plutonic rock suites cannot yet be resolved. Most mare basalts crystallized between 3.1 and 3.9 Ga. The vast bulk of the lunar crust, therefore, formed before the oldest preserved terrestrial rocks. If the Moon accreted at 4.56 Ga, then 120 Ma may have elapsed before lunar crust was formed

  6. Lunar Regolith Particle Shape Analysis

    Science.gov (United States)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  7. Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Vavpetič, P., E-mail: primoz.vavpetic@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, K. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Jeromel, L. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Ogrinc Potočnik, N. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); FOM-Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Pongrac, P. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Department of Plant Physiology, University of Bayreuth, Universitätstr. 30, 95447 Bayreuth (Germany); Drobne, D.; Pipan Tkalec, Ž.; Novak, S.; Kos, M.; Koren, Š.; Regvar, M. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Pelicon, P. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2015-04-01

    The analysis of biological samples in frozen-hydrated state with micro-PIXE technique at Jožef Stefan Institute (JSI) nuclear microprobe has matured to a point that enables us to measure and examine frozen tissue samples routinely as a standard research method. Cryotome-cut slice of frozen-hydrated biological sample is mounted between two thin foils and positioned on the sample holder. The temperature of the cold stage in the measuring chamber is kept below 130 K throughout the insertion of the samples and the proton beam exposure. Matrix composition of frozen-hydrated tissue is consisted mostly of ice. Sample deterioration during proton beam exposure is monitored during the experiment, as both Elastic Backscattering Spectrometry (EBS) and Scanning Transmission Ion Microscopy (STIM) in on–off axis geometry are recorded together with the events in two PIXE detectors and backscattered ions from the chopper in a single list-mode file. The aim of this experiment was to determine differences and similarities between two kinds of biological sample preparation techniques for micro-PIXE analysis, namely freeze-drying and frozen-hydrated sample preparation in order to evaluate the improvements in the elemental localisation of the latter technique if any. In the presented work, a standard micro-PIXE configuration for tissue mapping at JSI was used with five detection systems operating in parallel, with proton beam cross section of 1.0 × 1.0 μm{sup 2} and a beam current of 100 pA. The comparison of the resulting elemental distributions measured at the biological tissue prepared in the frozen-hydrated and in the freeze-dried state revealed differences in elemental distribution of particular elements at the cellular level due to the morphology alteration in particular tissue compartments induced either by water removal in the lyophilisation process or by unsatisfactory preparation of samples for cutting and mounting during the shock-freezing phase of sample preparation.

  8. Lunar Circular Structure Classification from Chang 'e 2 High Resolution Lunar Images with Convolutional Neural Network

    Science.gov (United States)

    Zeng, X. G.; Liu, J. J.; Zuo, W.; Chen, W. L.; Liu, Y. X.

    2018-04-01

    Circular structures are widely distributed around the lunar surface. The most typical of them could be lunar impact crater, lunar dome, et.al. In this approach, we are trying to use the Convolutional Neural Network to classify the lunar circular structures from the lunar images.

  9. An analog memory integrated circuit for waveform sampling up to 900 MHz

    International Nuclear Information System (INIS)

    Haller, G.M.; Wooley, B.A.

    1994-01-01

    The potential of switched-capacitor technology for acquiring analog signals in high-energy physics (HEP) applications has been demonstrated in a number of analog memory designs. The design and implementation of a switched-capacitor memory suitable for capturing high-speed analog waveforms is described. Highlights of the presented circuit are a 900 MHz sampling frequency (generated on chip), input signal independent cell pedestal and sampling instances, and cell gains that are insensitive to component sizes. A two-channel version of the memory with 32 cells for each channel has been integrate in a 2-μm complementary metal oxide semiconductor (CMOS) process with polysilicon-to-polysilicon capacitors. The measured rms cell response variation in a channel after cell pedestal subtraction is less than 0.3 mV across the full input signal range. The cell-to-cell gain matching is better than 0.01% rms, and the nonlinearity is less than 0.03% for a 2.5-V input range. The dynamic range of the memory exceeds 13 bits, and the peak signal-to-(noise + distortion) ratio for a 21.4 MHz sine wave sampled at 900 MHz is 59 dB

  10. NASA Lunar Impact Monitoring

    Science.gov (United States)

    Suggs, Robert M.; Moser, D. E.

    2015-01-01

    The MSFC lunar impact monitoring program began in 2006 in support of environment definition for the Constellation (return to Moon) program. Work continued by the Meteoroid Environment Office after Constellation cancellation. Over 330 impacts have been recorded. A paper published in Icarus reported on the first 5 years of observations and 126 calibrated flashes. Icarus: http://www.sciencedirect.com/science/article/pii/S0019103514002243; ArXiv: http://arxiv.org/abs/1404.6458 A NASA Technical Memorandum on flash locations is in press

  11. Lunar architecture and urbanism

    Science.gov (United States)

    Sherwood, Brent

    1992-01-01

    Human civilization and architecture have defined each other for over 5000 years on Earth. Even in the novel environment of space, persistent issues of human urbanism will eclipse, within a historically short time, the technical challenges of space settlement that dominate our current view. By adding modern topics in space engineering, planetology, life support, human factors, material invention, and conservation to their already renaissance array of expertise, urban designers can responsibly apply ancient, proven standards to the exciting new opportunities afforded by space. Inescapable facts about the Moon set real boundaries within which tenable lunar urbanism and its component architecture must eventually develop.

  12. Lunar Airborne Dust Toxicity Hazard Assessments (Invited)

    Science.gov (United States)

    Cooper, B. L.; McKay, D. S.; Taylor, L. A.; Wallace, W. T.; James, J.; Riofrio, L.; Gonzalez, C. P.

    2009-12-01

    The Lunar Airborne Dust Toxicity Assessment Group (LADTAG) is developing data to set the permissible limits for human exposure to lunar dust. This standard will guide the design of airlocks and ports for EVA, as well as the requirements for filtering and monitoring the atmosphere in habitable vehicles, rovers and other modules. LADTAG’s recommendation for permissible exposure limits will be delivered to the Constellation Program in late 2010. The current worst-case exposure limit of 0.05 mg/m3, estimated by LADTAG in 2006, reflects the concern that lunar dust may be as toxic as quartz dust. Freshly-ground quartz is known to be more toxic than un-ground quartz dust. Our research has shown that the surfaces of lunar soil grains can be more readily activated by grinding than quartz. Activation was measured by the amount of free radicals generated—activated simulants generate Reactive Oxygen Species (ROS) i.e., production of hydroxyl free radicals. Of the various influences in the lunar environment, micrometeorite bombardment probably creates the most long-lasting reactivity on the surfaces of grains, although solar wind impingement and short-wavelength UV radiation also contribute. The comminution process creates fractured surfaces with unsatisfied bonds. When these grains are inhaled and carried into the lungs, they will react with lung surfactant and cells, potentially causing tissue damage and disease. Tests on lunar simulants have shown that dissolution and leaching of metals can occur when the grains are exposed to water—the primary component of lung fluid. However, simulants may behave differently than actual lunar soils. Rodent toxicity testing will be done using the respirable fraction of actual lunar soils (particles with physical size of less than 2.5 micrometers). We are currently separating the fine material from the coarser material that comprises >95% of the mass of each soil sample. Dry sieving is not practical in this size range, so a new system

  13. Chlorine isotopic compositions of apatite in Apollo 14 rocks: Evidence for widespread vapor-phase metasomatism on the lunar nearside ∼4 billion years ago

    NARCIS (Netherlands)

    Potts, Nicola J.; Barnes, Jessica J.; Tartèse, Romain; Franchi, Ian A.; Anand, Mahesh

    2018-01-01

    Compared to most other planetary materials in the Solar System, some lunar rocks display high δ37Cl signatures. Loss of Cl in a H Cl environment has been invoked to explain the heavy signatures observed in lunar samples, either during volcanic eruptions onto the lunar surface or during large scale

  14. The Lunar Phases Project: A Mental Model-Based Observational Project for Undergraduate Nonscience Majors

    Science.gov (United States)

    Meyer, Angela Osterman; Mon, Manuel J.; Hibbard, Susan T.

    2011-01-01

    We present our Lunar Phases Project, an ongoing effort utilizing students' actual observations within a mental model building framework to improve student understanding of the causes and process of the lunar phases. We implement this project with a sample of undergraduate, nonscience major students enrolled in a midsized public university located…

  15. Hydrogen Distribution in the Lunar Polar Regions

    Science.gov (United States)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Bakhtin, B. N.; Bodnarik, J. G.; Boynton, W. V.; Chin, G.; Evans, L. G.; Harshmann, K.; Fedosov, F.; hide

    2016-01-01

    We present a method of conversion of the lunar neutron counting rate measured by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument collimated neutron detectors, to water equivalent hydrogen (WEH) in the top approximately 1 m layer of lunar regolith. Polar maps of the Moon’s inferred hydrogen abundance are presented and discussed.

  16. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  17. A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. in food samples

    DEFF Research Database (Denmark)

    Sun, Yi; Than Linh, Quyen; Hung, Tran Quang

    2015-01-01

    was capable to detect Salmonella at concentration of 50 cells per test within 40 min. The simple design, together with high level of integration, isothermal amplification, and quantitative analysis of multiple samples in short time will greatly enhance the practical applicability of the LOC system for rapid...... amplification (LAMP) for rapid and quantitative detection of Salmonella spp. in food samples. The whole diagnostic procedures including DNA isolation, isothermal amplification, and real-time detection were accomplished in a single chamber. Up to eight samples could be handled simultaneously and the system...... and usually take a few hours to days to complete. In response to the demand for rapid on line or at site detection of pathogens, in this study, we describe for the first time an eight-chamber lab-on-a-chip (LOC) system with integrated magnetic beads-based sample preparation and loop-mediated isothermal...

  18. Path integral methods for primordial density perturbations - sampling of constrained Gaussian random fields

    International Nuclear Information System (INIS)

    Bertschinger, E.

    1987-01-01

    Path integrals may be used to describe the statistical properties of a random field such as the primordial density perturbation field. In this framework the probability distribution is given for a Gaussian random field subjected to constraints such as the presence of a protovoid or supercluster at a specific location in the initial conditions. An algorithm has been constructed for generating samples of a constrained Gaussian random field on a lattice using Monte Carlo techniques. The method makes possible a systematic study of the density field around peaks or other constrained regions in the biased galaxy formation scenario, and it is effective for generating initial conditions for N-body simulations with rare objects in the computational volume. 21 references

  19. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  20. Sample Acquisition for Materials in Planetary Exploration (SAMPLE), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to analyze, design, and develop a device for autonomous lunar surface/subsurface sampling and processing applications. The Sample Acquisition for...

  1. A holistic passive integrative sampling approach for assessing the presence and potential impacts of waterborne environmental contaminants

    Science.gov (United States)

    Petty, J.D.; Huckins, J.N.; Alvarez, D.A.; Brumbaugh, W. G.; Cranor, W.L.; Gale, R.W.; Rastall, A.C.; Jones-Lepp, T. L.; Leiker, T.J.; Rostad, C. E.; Furlong, E.T.

    2004-01-01

    As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipermeable membrane device has gained widespread use for sampling hydrophobic chemicals from water and air, the polar organic chemical integrative sampler is applicable for sequestering waterborne hydrophilic organic chemicals, the stabilized liquid membrane device is used to integratively sample waterborne ionic metals, and the passive integrative mercury sampler is applicable for sampling vapor phase or dissolved neutral mercury species. This suite of integrative samplers forms the basis for a new passive sampling approach for assessing the presence and potential toxicological significance of a broad spectrum of environmental contaminants. In a proof-of-concept study, three of our four passive integrative samplers were used to assess the presence of a wide variety of contaminants in the waters of a constructed wetland, and to determine the effectiveness of the constructed wetland in removing contaminants. The wetland is used for final polishing of secondary-treatment municipal wastewater and the effluent is used as a source of water for a state wildlife area. Numerous contaminants, including organochlorine pesticides, polycyclic aromatic hydrocarbons, organophosphate pesticides, and pharmaceutical chemicals (e.g., ibuprofen, oxindole, etc.) were detected in the wastewater. Herein we summarize the results of the analysis of the field-deployed samplers and demonstrate the utility of this holistic approach.

  2. Pressurized Lunar Rover (PLR)

    Science.gov (United States)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; McClure, Kerry; Zeinali, Mazyar; Bhardwaj, Manoj; Bulsara, Vatsal; Kokan, David; Shariff, Shaun; Svarverud, Eric

    The objective of this project was to design a manned pressurized lunar rover (PLR) for long-range transportation and for exploration of the lunar surface. The vehicle must be capable of operating on a 14-day mission, traveling within a radius of 500 km during a lunar day or within a 50-km radius during a lunar night. The vehicle must accommodate a nominal crew of four, support two 28-hour EVA's, and in case of emergency, support a crew of six when near the lunar base. A nominal speed of ten km/hr and capability of towing a trailer with a mass of two mt are required. Two preliminary designs have been developed by two independent student teams. The PLR 1 design proposes a seven meter long cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, lighting, robotic arms, tools, and equipment for exploratory experiments. The rover uses a simple mobility system with six wheels on the main vehicle and two on the trailer. The nonpressurized trailer contains a modular radioisotope thermoelectric generator (RTG) supplying 6.5 kW continuous power. A secondary energy storage for short-term peak power needs is provided by a bank of lithium-sulfur dioxide batteries. The life support system is partly a regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center allowing the center to be used as a safe haven during solar flares. The PLR 1 has a total mass of 6197 kg. It has a top speed of 18 km/hr and is capable of towing three metric tons, in addition to the RTG trailer. The PLR 2 configuration consists of two four-meter diameter, cylindrical hulls which are passively connected by a flexible passageway, resulting in the overall vehicle length of 11 m. The vehicle is driven by eight independently suspended wheels. The dual-cylinder concept allows articulated as well as double

  3. Towards an Integrated QR Code Biosensor: Light-Driven Sample Acquisition and Bacterial Cellulose Paper Substrate.

    Science.gov (United States)

    Yuan, Mingquan; Jiang, Qisheng; Liu, Keng-Ku; Singamaneni, Srikanth; Chakrabartty, Shantanu

    2018-06-01

    This paper addresses two key challenges toward an integrated forward error-correcting biosensor based on our previously reported self-assembled quick-response (QR) code. The first challenge involves the choice of the paper substrate for printing and self-assembling the QR code. We have compared four different substrates that includes regular printing paper, Whatman filter paper, nitrocellulose membrane and lab synthesized bacterial cellulose. We report that out of the four substrates bacterial cellulose outperforms the others in terms of probe (gold nanorods) and ink retention capability. The second challenge involves remote activation of the analyte sampling and the QR code self-assembly process. In this paper, we use light as a trigger signal and a graphite layer as a light-absorbing material. The resulting change in temperature due to infrared absorption leads to a temperature gradient that then exerts a diffusive force driving the analyte toward the regions of self-assembly. The working principle has been verified in this paper using assembled biosensor prototypes where we demonstrate higher sample flow rate due to light induced thermal gradients.

  4. Comprehensive profiling of retroviral integration sites using target enrichment methods from historical koala samples without an assembled reference genome

    Directory of Open Access Journals (Sweden)

    Pin Cui

    2016-03-01

    Full Text Available Background. Retroviral integration into the host germline results in permanent viral colonization of vertebrate genomes. The koala retrovirus (KoRV is currently invading the germline of the koala (Phascolarctos cinereus and provides a unique opportunity for studying retroviral endogenization. Previous analysis of KoRV integration patterns in modern koalas demonstrate that they share integration sites primarily if they are related, indicating that the process is currently driven by vertical transmission rather than infection. However, due to methodological challenges, KoRV integrations have not been comprehensively characterized. Results. To overcome these challenges, we applied and compared three target enrichment techniques coupled with next generation sequencing (NGS and a newly customized sequence-clustering based computational pipeline to determine the integration sites for 10 museum Queensland and New South Wales (NSW koala samples collected between the 1870s and late 1980s. A secondary aim of this study sought to identify common integration sites across modern and historical specimens by comparing our dataset to previously published studies. Several million sequences were processed, and the KoRV integration sites in each koala were characterized. Conclusions. Although the three enrichment methods each exhibited bias in integration site retrieval, a combination of two methods, Primer Extension Capture and hybridization capture is recommended for future studies on historical samples. Moreover, identification of integration sites shows that the proportion of integration sites shared between any two koalas is quite small.

  5. Academic aspects of lunar water resources and their relevance to lunar protolife.

    Science.gov (United States)

    Green, Jack

    2011-01-01

    Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 10(9) metric tons. Various exogenic and endogenic sources of this water have been proposed. This paper focuses on endogenic water sources by fumaroles and hot springs in shadowed polar craters. A survey of theoretical and morphological details supports a volcanic model. Release of water and other constituents by defluidization over geological time was intensified in the Hadean Eon (c.a. 4600 to 4000 My). Intensification factors include higher heat flow by now-extinct radionuclides, tidal flexing and higher core temperatures. Lesser gravity would promote deeper bubble nucleation in lunar magmas, slower rise rates of gases and enhanced subsidence of lunar caldera floors. Hadean volcanism would likely have been more intense and regional in nature as opposed to suture-controlled location of calderas in Phanerozoic Benioff-style subduction environments. Seventy-seven morphological, remote sensing and return sample features were categorized into five categories ranging from a volcano-tectonic origin only to impact origin only. Scores for the most logical scenario were 69 to eight in favor of lunar volcanism. Ingredients in the Cabeus plume analysis showed many volcanic fluids and their derivatives plus a large amount of mercury. Mercury-rich fumaroles are well documented on Earth and are virtually absent in cometary gases and solids. There are no mercury anomalies in terrestrial impact craters. Volcanic fluids and their derivatives in lunar shadow can theoretically evolve into protolife. Energy for this evolution can be provided by vent flow charging intensified in the lunar Hadean and by charge separation on freezing fumarolic fluids in shadow. Fischer-Tropsch reactions on hydrothermal clays can yield lipids, polycyclic aromatic hydrocarbons and amino acids. Soluble

  6. Academic Aspects of Lunar Water Resources and Their Relevance to Lunar Protolife

    Directory of Open Access Journals (Sweden)

    Jack Green

    2011-09-01

    Full Text Available Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 109 metric tons. Various exogenic and endogenic sources of this water have been proposed. This paper focuses on endogenic water sources by fumaroles and hot springs in shadowed polar craters. A survey of theoretical and morphological details supports a volcanic model. Release of water and other constituents by defluidization over geological time was intensified in the Hadean Eon (c.a. 4600 to 4000 My. Intensification factors include higher heat flow by now-extinct radionuclides, tidal flexing and higher core temperatures. Lesser gravity would promote deeper bubble nucleation in lunar magmas, slower rise rates of gases and enhanced subsidence of lunar caldera floors. Hadean volcanism would likely have been more intense and regional in nature as opposed to suture-controlled location of calderas in Phanerozoic Benioff-style subduction environments. Seventy-seven morphological, remote sensing and return sample features were categorized into five categories ranging from a volcano-tectonic origin only to impact origin only. Scores for the most logical scenario were 69 to eight in favor of lunar volcanism. Ingredients in the Cabeus plume analysis showed many volcanic fluids and their derivatives plus a large amount of mercury. Mercury-rich fumaroles are well documented on Earth and are virtually absent in cometary gases and solids. There are no mercury anomalies in terrestrial impact craters. Volcanic fluids and their derivatives in lunar shadow can theoretically evolve into protolife. Energy for this evolution can be provided by vent flow charging intensified in the lunar Hadean and by charge separation on freezing fumarolic fluids in shadow. Fischer-Tropsch reactions on hydrothermal clays can yield lipids, polycyclic aromatic hydrocarbons and amino

  7. Tests of the lunar hypothesis

    Science.gov (United States)

    Taylor, S. R.

    1984-01-01

    The concept that the Moon was fissioned from the Earth after core separation is the most readily testable hypothesis of lunar origin, since direct comparisons of lunar and terrestrial compositions can be made. Differences found in such comparisons introduce so many ad hoc adjustments to the fission hypothesis that it becomes untestable. Further constraints may be obtained from attempting to date the volatile-refractory element fractionation. The combination of chemical and isotopic problems suggests that the fission hypothesis is no longer viable, and separate terrestrial and lunar accretion from a population of fractionated precursor planetesimals provides a more reasonable explanation.

  8. Development of a lunar infrastructure

    Science.gov (United States)

    Burke, J. D.

    1988-01-01

    The problem of building an infrastructure on the moon is discussed, assuming that earth-to-moon and moon-to-earth transport will be available. The sequence of events which would occur in the process of building an infrastructure is examined. The human needs which must be met on a lunar base are discussed, including minimal life support, quality of life, and growth stages. The technology available to meet these needs is reviewed and further research in fields related to a lunar base, such as the study of the moon's polar regions and the limits of lunar agriculture, is recommended.

  9. Advanced construction management for lunar base construction - Surface operations planner

    Science.gov (United States)

    Kehoe, Robert P.

    1992-01-01

    The study proposes a conceptual solution and lays the framework for developing a new, sophisticated and intelligent tool for a lunar base construction crew to use. This concept integrates expert systems for critical decision making, virtual reality for training, logistics and laydown optimization, automated productivity measurements, and an advanced scheduling tool to form a unique new planning tool. The concept features extensive use of computers and expert systems software to support the actual work, while allowing the crew to control the project from the lunar surface. Consideration is given to a logistics data base, laydown area management, flexible critical progress scheduler, video simulation of assembly tasks, and assembly information and tracking documentation.

  10. Year 3 LUNAR Annual Report to the NASA Lunar Science Institute

    OpenAIRE

    Burns, Jack; Lazio, Joseph

    2012-01-01

    The Lunar University Network for Astrophysics Research (LUNAR) is a team of researchers and students at leading universities, NASA centers, and federal research laboratories undertaking investigations aimed at using the Moon as a platform for space science. LUNAR research includes Lunar Interior Physics & Gravitation using Lunar Laser Ranging (LLR), Low Frequency Cosmology and Astrophysics (LFCA), Planetary Science and the Lunar Ionosphere, Radio Heliophysics, and Exploration Science. The LUN...

  11. Researches on the Orbit Determination and Positioning of the Chinese Lunar Exploration Program

    Science.gov (United States)

    Li, P. J.

    2015-07-01

    (DEM) as constraints in the lander positioning is helpful. The positioning method for the traverse of lunar rover is also investigated. The integration of delay-rate method is able to achieve higher precise positioning results than the point positioning method. This method provides a wide application of the VLBI data. In the automated sample return mission, the lunar orbit rendezvous and docking are involved. Precise orbit determination using the same-beam VLBI (SBI) measurement for two spacecraft at the same time is analyzed. The simulation results showed that the SBI data is able to improve the absolute and relative orbit accuracy for two targets by 1-2 orders of magnitude. In order to verify the simulation results and test the two-target POD software developed by SHAO (Shanghai Astronomical Observatory), the real SBI data of the SELENE (Selenological and Engineering Explorer) are processed. The POD results for the Rstar and the Vstar showed that the combination of SBI data could significantly improve the accuracy for the two spacecraft, especially for the Vstar with less ranging data, and the POD accuracy is improved by approximate one order of magnitude to the POD accuracy of the Rstar.

  12. Communications Relay and Human-Assisted Sample Return from the Deep Space Gateway

    Science.gov (United States)

    Cichan, T.; Hopkins, J. B.; Bierhaus, B.; Murrow, D. W.

    2018-02-01

    The Deep Space Gateway can enable or enhance exploration of the lunar surface through two capabilities: 1. communications relay, opening up access to the lunar farside, and 2. sample return, enhancing the ability to return large sample masses.

  13. Late Bombardment of the Lunar Highlands Recorded in MIL 090034, MIL 090036 and MIL 090070 Lunar Meteorites

    Science.gov (United States)

    Park, J.; Nyquist, L. E.; Shih, C.-Y.; Herzog, G. F.; Yamaguchi, A.; Shirai, N.; Ebihara, M.; Lindsay, F. N.; Delaney, J.; Turrin, B.; hide

    2013-01-01

    The Kaguya mission detected small but widespread outcrops of nearly pure ferroan anorthosite in and around large impact basins on the Moon. Along with certain lunar rocks, highly feldspathic lunar meteorites such as MIL 090034 (M34), 090036 (M36), and 090070 (M70) may provide samples of this material. We have measured the Ar-40/Ar-39 release patterns and cosmogenic Ar-38 concentrations of several small (<200 microg) samples separated from M34,36, and 70. From petrographic observations concluded that "some of the clasts and grains experienced generations of modifications," a conclusion that we examine in light of our data.

  14. NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Day, B. H.; Law, E.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as

  15. Constraining the volatile budget of the lunar interior

    Science.gov (United States)

    Potts, N. J.; Bromiley, G. D.

    2017-12-01

    Measurements of volatiles (F, Cl, S, H2O) in a range of lunar samples confirm the presence of volatile material in lunar magmas. It remains unknown, however, where this volatile material is stored and when it was delivered to the Moon. On Earth, point defects within mantle olivine, and its high-pressure polymorphs, are thought to be the largest reservoir of volatile material. However, as volatiles have been cycled into and out of the Earth's mantle throughout geological time, via subduction and volcanism, this masks any original volatile signatures. As the Moon has no plate tectonics, it is expected that any volatile material present in the deep lunar interior would have been inherited during accretion and differentiation, providing insight into the delivery of volatiles to the early Earth-Moon system. Our aim was, therefore, to test the volatile storage capacity of the deep lunar mantle and determine mineral/melt partitioning for key volatiles. Experiments were performed in a primitive lunar mantle composition and run at relevant T, P, and at fO2 below the IW buffer. Experiments replicated the initial stages of LMO solidification with either olivine + melt, olivine + pyroxene + melt, or pyroxene + melt as the only phases present. Mineral-melt partition coefficients (Dx) derived for volatile material (F, Cl, S, H2O) vary significantly compared to those derived for terrestrial conditions. An order of magnitude more H2O was found to partition into lunar olivine compared to the terrestrial upper mantle. DF derived for lunar olivine are comparable to the highest terrestrial derived values whilst no Cl was found to partition into lunar olivine under these conditions. Furthermore, an inverse trend between DF and DOH hints towards coupled-substitution mechanisms between H and F under low-fO2/lunar bulk composition. These results suggest that if volatile material was present in the LMO a significant proportion could be partitioned into the lower lunar mantle. The

  16. Lunar Reconnaissance Orbiter Lunar Workshops for Educators, Year 1 Report

    Science.gov (United States)

    Jones, A. P.; Hsu, B. C.; Bleacher, L.; Shaner, A. J.; Dalton, H.

    2011-12-01

    This past summer, the Lunar Reconnaissance Orbiter (LRO) sponsored a series of weeklong professional development workshops designed to educate and inspire grade 6-12 science teachers: the Lunar Workshops for Educators. Participants learned about lunar science and exploration, gained tools to help address common student misconceptions about the Moon, heard some of the latest research results from LRO scientists, worked with LRO data, and learned how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks. Where possible, the workshops also included tours of science facilities or field trips intended to help the teachers better understand mission operations or geologic processes relevant to the Moon. The workshops were very successful. Participants demonstrated an improved understanding of lunar science concepts in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and productively share data from LRO with their students and provide them with authentic research experiences. Participant feedback on workshop surveys was also enthusiastically positive. 5 additional Lunar Workshops for Educators will be held around the country in the summer of 2012. For more information and to register, visit http://lunar.gsfc.nasa.gov/lwe/index.html.

  17. Pathway Relevance Ranking for Tumor Samples through Network-Based Data Integration.

    Directory of Open Access Journals (Sweden)

    Lieven P C Verbeke

    Full Text Available The study of cancer, a highly heterogeneous disease with different causes and clinical outcomes, requires a multi-angle approach and the collection of large multi-omics datasets that, ideally, should be analyzed simultaneously. We present a new pathway relevance ranking method that is able to prioritize pathways according to the information contained in any combination of tumor related omics datasets. Key to the method is the conversion of all available data into a single comprehensive network representation containing not only genes but also individual patient samples. Additionally, all data are linked through a network of previously identified molecular interactions. We demonstrate the performance of the new method by applying it to breast and ovarian cancer datasets from The Cancer Genome Atlas. By integrating gene expression, copy number, mutation and methylation data, the method's potential to identify key pathways involved in breast cancer development shared by different molecular subtypes is illustrated. Interestingly, certain pathways were ranked equally important for different subtypes, even when the underlying (epi-genetic disturbances were diverse. Next to prioritizing universally high-scoring pathways, the pathway ranking method was able to identify subtype-specific pathways. Often the score of a pathway could not be motivated by a single mutation, copy number or methylation alteration, but rather by a combination of genetic and epi-genetic disturbances, stressing the need for a network-based data integration approach. The analysis of ovarian tumors, as a function of survival-based subtypes, demonstrated the method's ability to correctly identify key pathways, irrespective of tumor subtype. A differential analysis of survival-based subtypes revealed several pathways with higher importance for the bad-outcome patient group than for the good-outcome patient group. Many of the pathways exhibiting higher importance for the bad

  18. Carbon Nanotube Integrative Sampler (CNIS) for passive sampling of nanosilver in the aquatic environment.

    Science.gov (United States)

    Shen, Li; Fischer, Jillian; Martin, Jonathan; Hoque, Md Ehsanul; Telgmann, Lena; Hintelmann, Holger; Metcalfe, Chris D; Yargeau, Viviane

    2016-11-01

    Nanomaterials such as nanosilver (AgNP) can be released into the aquatic environment through production, usage, and disposal. Sensitive and cost-effective methods are needed to monitor AgNPs in the environment. This work is hampered by a lack of sensitive methods to detect nanomaterials in environmental matrixes. The present study focused on the development, calibration and application of a passive sampling technique for detecting AgNPs in aquatic matrixes. A Carbon Nanotube Integrative Sampler (CNIS) was developed using multi-walled carbon nanotubes (CNTs) as the sorbent for accumulating AgNPs and other Ag species from water. Sampling rates were determined in the laboratory for different sampler configurations and in different aquatic matrixes. The sampler was field tested at the Experimental Lakes Area, Canada, in lake water dosed with AgNPs. For a configuration of the CNIS consisting of CNTs bound to carbon fiber (i.e. CNT veil) placed in Chemcatcher® housing, the time weighted average (TWA) concentrations of silver estimated from deployments of the sampler in lake mesocosms dosed with AgNPs were similar to the measured concentrations of "colloidal silver" (i.e. <0.22μm in size) in the water column. For a configuration of CNIS consisting of CNTs in loose powder form placed in a custom made housing that were deployed in a whole lake dosed with AgNPs, the estimated TWA concentrations of "CNIS-labile Ag" were similar to the concentrations of total silver measured in the epilimnion of the lake. However, sampling rates for the CNIS in various matrixes are relatively low (i.e. 1-20mL/day), so deployment periods of several weeks are required to detect AgNPs at environmentally relevant concentrations, which can allow biofilms to develop on the sampler and could affect the sampling rates. With further development, this novel sampler may provide a simple and sensitive method for screening for the presence of AgNPs in surface waters. Copyright © 2016 Elsevier B.V. All

  19. Early lunar magnetism

    Science.gov (United States)

    Banerjee, S. K.; Mellema, J. P.

    1976-01-01

    A new method (Shaw, 1974) for investigating paleointensity (the ancient magnetic field) was applied to three subsamples of a single, 1-m homogeneous clast from a recrystallized boulder of lunar breccia. Several dating methods established 4 billion years as the age of boulder assembly. Results indicate that the strength of the ambient magnetic field at the Taurus-Littrow region of the moon was about 0.4 oersted at 4 billion years ago. Values as high as 1.2 oersted have been reported (Collison et al., 1973). The required fields are approximately 10,000 times greater than present interplanetary or solar flare fields. It is suggested that this large field could have arisen from a pre-main sequence T-Tauri sun.

  20. Electrochemistry of lunar rocks

    Science.gov (United States)

    Lindstrom, D. J.; Haskin, L. A.

    1979-01-01

    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  1. Google Moon Lunar Mapping Data

    Data.gov (United States)

    National Aeronautics and Space Administration — A collection of lunar maps and charts. This tool is an exciting new way to explore the story of the Apollo missions, still the only time mankind has set foot on...

  2. Thermodynamics of lunar ilmenite reduction

    Science.gov (United States)

    Altenberg, B. H.; Franklin, H. A.; Jones, C. H.

    1993-01-01

    With the prospect of returning to the moon, the development of a lunar occupation would fulfill one of the goals of the Space Exploration Initiative (SEI) of the late 1980's. Processing lunar resources into useful products, such as liquid oxygen for fuel and life support, would be one of many aspects of an active lunar base. ilmenite (FeTiO3) is found on the lunar surface and can be used as a feed stock to produce oxygen. Understanding the various ilmenite-reduction reactions elucidates many processing options. Defining the thermodynamic chemical behavior at equilibrium under various conditions of temperature and pressures can be helpful in specifying optimal operating conditions. Differences between a previous theoretical analysis and experimentally determined results has sparked interest in trying to understand the effect of operating pressure on the hydrogen-reduction-of-ilmenite reaction. Various aspects of this reduction reaction are discussed.

  3. Lunar Health Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During the Phase II Lunar Health Monitor program, Orbital Research will develop a second generation wearable sensor suite for astronaut physiologic monitoring. The...

  4. Determination of 222Rn in water samples from wells and springs in Tokyo by a modified integral counting method

    International Nuclear Information System (INIS)

    Homma, Y.; Murase, Y.; Handa, K.; Murakami, I.

    1997-01-01

    222 Rn in 2L-water samples was extracted with 30 mL toluene, and 21 mL of the toluene solution was transferred into a liquid scintillation vial, in which PPO - 2,5-diphenyloxazole was placed in advance. The total activity of 222 Rn in the water sample was calculated based on the Ostwald's coefficient of solubilities of 222 Rn in toluene and water at the temperature of the sample water and the volume of water and toluene. About 40% of 222 Rn dissolved in 2L-water sample can be collected. After allowing to stand for 3.5 h, the equilibrium mixture of 222 Rn and its daughters was measured with an Aloka liquid scintillation spectrometer using a modified integral counting method which extrapolates the integral counting curve not to the zero pulse-height, but to the zero detection threshold, an average energy required to produce a measurable pulse, of the liquid scintillation spectrometer. The general method which agitates water sample (usually about 10 mL) with a liquid scintillation cocktail is practical when the activity of 222 Rn is high. By adding 10 mL of water sample, however, it is possible also to add variable amounts of quencher. In some cases water sample is preserved with nitric acid. The slope of the integral counting rate curve increases as quench level of the sample increases. Therefore, it is clear that the modified integral counting method gives more accurate 222 Rn concentrations for water samples of strong quench than the conventional integral counting method. 222 Rn sample of 0.2 Bq/L can be determined within an overall uncertainty of 3.1%

  5. Prospective Ukrainian lunar orbiter mission

    Science.gov (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  6. The Lunar Regolith as a Recorder of Cosmic History

    Science.gov (United States)

    Cooper, Bonnie; McKay, D.; Riofrio, L.

    2012-01-01

    The Moon can be considered a giant tape recorder containing the history of the solar system and Universe. The lunar regolith (soil) has recorded the early history of the Moon, Earth, the solar system and Universe. A major goal of future lunar exploration should be to find and play back existing fragments of that tape . By reading the lunar tape, we can uncover a record of planetary bombardment, as well as solar and stellar variability. The Moon can tell us much about our place in the Universe. The lunar regolith has likely recorded the original meteoritic bombardment of Earth and Moon, a violent cataclysm that may have peaked around 4 Gyr, and the less intense bombardment occurring since that time. This impact history is preserved on the Moon as regolith layers, ejecta layers, impact melt rocks, and ancient impact breccias. The impact history of the Earth and Moon possibly had profound effects on the origin and development of life. Decrease in meteor bombardment allowed life to develop on Earth. Life may have developed first on another body, such as Mars, then arrived via meteorite on Earth. The solar system may have experienced bursts of severe radiation from the Sun, other stars, or from unknown sources. The lunar regolith has recorded this radiation history in the form of implanted solar wind, solar flare materials and radiation damage. Lunar soil can be found sandwiched between layers of basalt or pyroclastic deposits. This filling constitutes a buried time capsule that is likely to contain well-preserved ancient regolith. Study of such samples will show us how the solar system has evolved and changed over time. The lunar tape recorder can provide detailed information on specific portions of solar and stellar variability. Data from the Moon also offers clues as to whether so-called fundamental constants have changed over time.

  7. Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments

    Science.gov (United States)

    Rapp, J. F.; Draper, D. S.

    2015-01-01

    The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP

  8. Lights Will Guide You : Sample Preparation and Applications for Integrated Laser and Electron Microscopy

    Science.gov (United States)

    Karreman, M. A.

    2013-03-01

    Correlative microscopy is the combined use of two different forms of microscopy in the study of a specimen, allowing for the exploitation of the advantages of both imaging tools. The integrated Laser and Electron Microscope (iLEM), developed at Utrecht University, combines a fluorescence microscope (FM) and a transmission electron microscope (TEM) in a single set-up. The region of interest in the specimen is labeled or tagged with a fluorescent probe and can easily be identified within a large field of view with the FM. Next, this same area is retraced in the TEM and can be studied at high resolution. The iLEM demands samples that can be imaged with both FM and TEM. Biological specimen, typically composed of light elements, generate low image contrast in the TEM. Therefore, these samples are often ‘contrasted’ with heavy metal stains. FM, on the other hand, images fluorescent samples. Sample preparation for correlative microscopy, and iLEM in particular, is complicated by the fact that the heavy metals stains employed for TEM quench the fluorescent signal of the probe that is imaged with FM. The first part of this thesis outlines preparation procedures for biological material yielding specimen that can be imaged with the iLEM. Here, approaches for the contrasting of thin sections of cells and tissue are introduced that do not affect the fluorescence signal of the probe that marks the region of interest. Furthermore, two novel procedures, VIS2FIXH and VIS2FIX­FS are described that allow for the chemical fixation of thin sections of cryo-immobilized material. These procedures greatly expedite the sample preparation process, and open up novel possibilities for the immuno-labeling of difficult antigens, eg. proteins and lipids that are challenging to preserve. The second part of this thesis describes applications of iLEM in research in the field of life and material science. The iLEM was employed in the study of UVC induced apoptosis (programmed cell death) of

  9. A single launch lunar habitat derived from an NSTS external tank

    Science.gov (United States)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using a spent External Tank from the National Space Transportation System (Shuttle) to derive a Lunar habitat is described. The concept is that the External Tank is carried into Low-Earth Orbit (LEO) where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person Lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS Orbiter can place the External Tank in LEO, provide orbiter astronauts for disassembly of the External Tank, and transport the required subsystem hardware for outfitting the Lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen tank-intertank modifications utilize existing structures and openings for human access without compromising the structural integrity of the tank. The modification includes installation of living quarters, instrumentation, and an air lock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal-control, environmental-control and life-support, and propulsion. The converted Lunar habitat is designed for unmanned transport and autonomous soft landing on the Lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyor. The Lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a Lunar lander for crew changeover and resupply.

  10. Lunar Navigation Architecture Design Considerations

    Science.gov (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  11. Lunar Science from and for Planet Earth

    Science.gov (United States)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    anniversary in 2007 over the launch of Sputnik (from the former Soviet Union). The ensuing Apollo (US) and Luna (USSR) programs initiated serious exploration of the Moon. The samples returned from those (now historic!) early missions changed our understanding of our place in the universe forever. They were the first well documented samples from an extraterrestrial body and attracted some of the top scientists in the world to extract the first remarkable pieces of information about Earth's nearest neighbour. And so they did - filling bookcases with profound new discoveries about this airless, waterless, and beautifully mysterious ancient world. The Moon was found to represent pure geology for a silicate planetary body - without all the complicating factors of plate tectonics, climate, and weather that recycle or transform Earth materials repeatedly. And then nothing happened. After the flush of reconnaissance, there was no further exploration of the Moon. For several decades scientists had nothing except the returned samples and a few telescopes with which to further study Earth's neighbour. Lack of new information breeds ignorance and can be stifling. Even though the space age was expanding its horizons to the furthest reaches of the solar system and the universe, lunar science moved slowly if at all and was kept in the doldrums. The drought ended with two small missions to the Moon in the 1990's, Clementine and Lunar Prospector. As summarized in the SSB/NRC report (and more completely in Jolliff et al. Eds. 2006, New Views of the Moon, Rev. Min. & Geochem.), the limited data returned from these small spacecraft set in motion several fundamental paradigm shifts in our understanding of the Moon and re-invigorated an aging science community. We learned that the largest basin in the solar system and oldest on the Moon dominates the southern half of the lunar farside (only seen by spacecraft). The age of this huge basin, if known, would constrain the period of heavy bombardment

  12. imFASP: An integrated approach combining in-situ filter-aided sample pretreatment with microwave-assisted protein digestion for fast and efficient proteome sample preparation.

    Science.gov (United States)

    Zhao, Qun; Fang, Fei; Wu, Ci; Wu, Qi; Liang, Yu; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-03-17

    An integrated sample preparation method, termed "imFASP", which combined in-situ filter-aided sample pretreatment and microwave-assisted trypsin digestion, was developed for preparation of microgram and even nanogram amounts of complex protein samples with high efficiency in 1 h. For imFASP method, proteins dissolved in 8 M urea were loaded onto a filter device with molecular weight cut off (MWCO) as 10 kDa, followed by in-situ protein preconcentration, denaturation, reduction, alkylation, and microwave-assisted tryptic digestion. Compared with traditional in-solution sample preparation method, imFASP method generated more protein and peptide identifications (IDs) from preparation of 45 μg Escherichia coli protein sample due to the higher efficiency, and the sample preparation throughput was significantly improved by 14 times (1 h vs. 15 h). More importantly, when the starting amounts of E. coli cell lysate decreased to nanogram level (50-500 ng), the protein and peptide identified by imFASP method were improved at least 30% and 44%, compared with traditional in-solution preparation method, suggesting dramatically higher peptide recovery of imFASP method for trace amounts of complex proteome samples. All these results demonstrate that the imFASP method developed here is of high potential for high efficient and high throughput preparation of trace amounts of complex proteome samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Lunar Impact Basins: Stratigraphy, Sequence and Ages from Superposed Impact Crater Populations Measured from Lunar Orbiter Laser Altimeter (LOLA) Data

    Science.gov (United States)

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the superposed impact crater size-frequency distributions for 30 lunar basins (D = 300 km). These data generally support the widely used Wilhelms sequence of lunar basins, although we find significantly higher densities of superposed craters on many lunar basins than derived by Wilhelms (50% higher densities). Our data also provide new insight into the timing of the transition between distinct crater populations characteristic of ancient and young lunar terrains. The transition from a lunar impact flux dominated by Population 1 to Population 2 occurred before the mid-Nectarian. This is before the end of the period of rapid cratering, and potentially before the end of the hypothesized Late Heavy Bombardment. LOLA-derived crater densities also suggest that many Pre-Nectarian basins, such as South Pole-Aitken, have been cratered to saturation equilibrium. Finally, both crater counts and stratigraphic observations based on LOLA data are applicable to specific basin stratigraphic problems of interest; for example, using these data, we suggest that Serenitatis is older than Nectaris, and Humboldtianum is younger than Crisium. Sample return missions to specific basins can anchor these measurements to a Pre-Imbrian absolute chronology.

  14. The Design of Two Nano-Rovers for Lunar Surface Exploration in the Context of the Google Lunar X Prize

    Science.gov (United States)

    Gill, E.; Honfi Camilo, L.; Kuystermans, P.; Maas, A. S. B. B.; Buutfeld, B. A. M.; van der Pols, R. H.

    2008-09-01

    aid the human controller by obtaining stereoscopic images. An additional navigational camera in the rear is used as a contingency to drive rearwards. All navigational cameras have a maximal resolution of 640 by 480 pixels. Each rover has one main High Definition (HD) camera capable of acquiring still images and videos. These cameras have a resolution of 1920 by 1080 pixels and a frame rate of 60 frames per second. Resolution and sampling rates can be modified to accommodate data transmission constraints. To comply with the self portrait requirement imposed by the Google Lunar X Prize, the rovers will take images of each other, capturing 50% of the surface exploration system on the still image. As a contingency, both vehicles are also capable composing self portraits from an assembly of multiple images of its own structure, similar to the panoramic images. The camera is positioned above the rover on a mast providing two degrees of freedom for the camera to be able to rotate 360º horizontally and from -45º to 90º vertically. Both rovers are equipped with an omni-directional antenna. A WiMax system is used for all communication with the lander vehicle. The communication is done via the commonly used TCP/IP, which can be easily integrated in the software systems of the mission. The lander vehicle itself will act as a relay station for the data transfer with the ground station on Earth. The selected Digital Signal Processor (D.S.P.) has been specifically designed for compressing raw HD format using little power. The D.S.P. is capable of compressing the raw video data while at the same time performing remaining tasks such as navigation. Since the D.S.P. is designed for Earth use, it has to be adapted to cope with the lunar environment. This can be achieved by proper implication of radiation shielding. As the primary power source Gallium-Arsenide solar panels are used. These are the most efficient solar panels to date. Additionally, a Lithium-Ion battery is used as the

  15. Water Content of Lunar Alkali Fedlspar

    Science.gov (United States)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was likely very significant in the evolution of the lunar mantle. Conclusions: Lunar granites crystallized between 4.3-3.8 Ga from relatively wet melts that degassed upon crystallization. The formation of these granites likely removed significant amounts of water from some mantle source regions, e.g. later mare basalts predicting derivation from a

  16. Regolith Formation Rates and Evolution from the Diviner Lunar Radiometer

    Science.gov (United States)

    Hayne, P. O.; Ghent, R. R.; Bandfield, J. L.; Vasavada, A. R.; Williams, J. P.; Siegler, M. A.; Lucey, P. G.; Greenhagen, B. T.; Elder, C. M.; Paige, D. A.

    2015-12-01

    Fragmentation and overturn of lunar surface materials produces a layer of regolith, which increases in thickness through time. Experiments on the lunar surface during the Apollo era, combined with remote sensing, found that the upper 10's of cm of regolith exhibit a rapid increase in density and thermal conductivity with depth. This is interpreted to be the signature of impact gardening, which operates most rapidly in the uppermost layers. Gravity data from the GRAIL mission showed that impacts have also extensively fractured the deeper crust. The breakdown and mixing of crustal materials is therefore a central process to lunar evolution and must be understood in order to interpret compositional information from remote sensing and sample analysis. Recently, thermal infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner radiometer were used to provide the first remote observational constraints on the rate of ejecta breakdown around craters L., Campbell, B. A., Allen, C. C., Carter, L. M., & Paige, D. A. (2014). Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42(12), 1059-1062.

  17. How We Used NASA Lunar Set in Planetary Material Science Analog Studies on Lunar Basalts and Breccias with Industrial Materials of Steels and Ceramics

    Science.gov (United States)

    Berczi, S.; Cech, V.; Jozsa, S.; Szakmany, G.; Fabriczy, A.; Foldi, T.; Varga, T.

    2005-01-01

    Analog studies play important role in space materials education. Various aspects of analogies are used in our courses. In this year two main rock types of NASA Lunar Set were used in analog studies in respect of processes and textures with selected industrial material samples. For breccias and basalts on the lunar side, ceramics and steels were found as analogs on the industrial side. Their processing steps were identified on the basis of their textures both in lunar and in industrial groups of materials.

  18. The Neutral Mass Spectrometer on the Lunar Atmosphere and Dust Environment Explorer Mission

    Science.gov (United States)

    Mahaffy, Paul R.; Hodges, R. Richard; Benna, Mehdi; King, Todd; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carigan, Daniel; Errigo, Therese; Harpold, Daniel N.; hide

    2014-01-01

    The Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission is designed to measure the composition and variability of the tenuous lunar atmosphere. The NMS complements two other instruments on the LADEE spacecraft designed to secure spectroscopic measurements of lunar composition and in situ measurement of lunar dust over the course of a 100-day mission in order to sample multiple lunation periods. The NMS utilizes a dual ion source designed to measure both surface reactive and inert species and a quadrupole analyzer. The NMS is expected to secure time resolved measurements of helium and argon and determine abundance or upper limits for many other species either sputtered or thermally evolved from the lunar surface.

  19. A Comparison of Anorthositic Lunar Lithologies: Variation on the FAN Theme

    Science.gov (United States)

    Nyquist, L. E.; Shih, C-Y.; Yamaguchi, A.; Mittlefehldt, D. W.; Peng, Z. X.; Park, J.; Herzog, G. F.; Shirai, N.

    2014-01-01

    Certain anorthositic rocks that are rare in the returned lunar samples have been identified among lunar meteorites. The variety of anorthosites in the Apollo collection also is more varied than is widely recognized. James eta. identified three lithologies in a composite clast o ferroan anorthosite (FAN)-suite rocks in lunar breccia 64435. They further divided all FANs into four subgroups: anorthositic ferroan (AF), mafic magnesian (MM), mafic ferroan (MF), and anorthositic sodic (AS, absent in the 64435 clast). Here we report Sm-Nd isotopic studies of the lithologies present in the 64435 composite clast and compare the new data to our previous data for lunar anorthosites incuding lunar anorthositic meteorites. Mineralogy-petrography, in situ trace element studies, Sr-isotope studies, and Ar-Ar chronology are included, but only the Nd-isotopic studies are currently complete.

  20. Determination of lunar surface ages from crater frequency–size ...

    Indian Academy of Sciences (India)

    and the images from Apollo missions have been calibrated from the lunar soil samples from Apollo and Luna landing sites (Head 1976; Neukum et al. 1975). ... Table 1 shows the ages as derived for the craters with errors. Mare Humorum is believed to be made up of six ring structures of 210, 340, 425, 570 and 1195km.

  1. Mossbauer analysis of Luna 16 lunar surface material

    Science.gov (United States)

    Nady, D. L.; Cher, L.; Kulcsar, K.

    1974-01-01

    Samples of Apollo 11 lunar surface material were studied by the Mossbauer effect. Owing to the small number of other resonant isotopes, all measurements were made with Fe-57 nuclei. The principal constituents of the material were as follows: Iron containing silicates (olivine, pyroxene, and so on), ilmenite (FeTiO3), and metallic iron.

  2. Lunar Quest in Second Life, Lunar Exploration Island, Phase II

    Science.gov (United States)

    Ireton, F. M.; Day, B. H.; Mitchell, B.; Hsu, B. C.

    2010-12-01

    Linden Lab’s Second Life is a virtual 3D metaverse created by users. At any one time there may be 40,000-50,000 users on line. Users develop a persona and are seen on screen as a human figure or avatar. Avatars move through Second Life by walking, flying, or teleporting. Users form communities or groups of mutual interest such as music, computer graphics, and education. These groups communicate via e-mail, voice, and text within Second Life. Information on downloading the Second Life browser and joining can be found on the Second Life website: www.secondlife.com. This poster details Phase II in the development of Lunar Exploration Island (LEI) located in Second Life. Phase I LEI highlighted NASA’s LRO/LCROSS mission. Avatars enter LEI via teleportation arriving at a hall of flight housing interactive exhibits on the LRO/ LCROSS missions including full size models of the two spacecraft and launch vehicle. Storyboards with information about the missions interpret the exhibits while links to external websites provide further information on the mission, both spacecraft’s instrument suites, and related EPO. Other lunar related activities such as My Moon and NLSI EPO programs. A special exhibit was designed for International Observe the Moon Night activities with links to websites for further information. The sim includes several sites for meetings, a conference stage to host talks, and a screen for viewing NASATV coverage of mission and other televised events. In Phase II exhibits are updated to reflect on-going lunar exploration highlights, discoveries, and future missions. A new section of LEI has been developed to showcase NASA’s Lunar Quest program. A new exhibit hall with Lunar Quest information has been designed and is being populated with Lunar Quest information, spacecraft models (LADEE is in place) and kiosks. A two stage interactive demonstration illustrates lunar phases with static and 3-D stations. As NASA’s Lunar Quest program matures further

  3. Towards a fully automated lab-on-a-disc system integrating sample enrichment and detection of analytes from complex matrices

    DEFF Research Database (Denmark)

    Andreasen, Sune Zoëga

    the technology on a large scale from fulfilling its potential for maturing into applied technologies and products. In this work, we have taken the first steps towards realizing a capable and truly automated “sample-to-answer” analysis system, aimed at small molecule detection and quantification from a complex...... sample matrix. The main result is a working prototype of a microfluidic system, integrating both centrifugal microfluidics for sample handling, supported liquid membrane extraction (SLM) for selective and effective sample treatment, as well as in-situ electrochemical detection. As a case study...

  4. Precision Lunar Laser Ranging For Lunar and Gravitational Science

    Science.gov (United States)

    Merkowitz, S. M.; Arnold, D.; Dabney, P. W.; Livas, J. C.; McGarry, J. F.; Neumann, G. A.; Zagwodzki, T. W.

    2008-01-01

    Laser ranging to retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Lunar missions over the past 39 years have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Significant advances in these areas will require placing modern retroreflectors and/or active laser ranging systems at new locations on the lunar surface. Ranging to new locations will enable better measurements of the lunar librations, aiding in our understanding of the interior structure of the moon. More precise range measurements will allow us to study effects that are too small to be observed by the current capabilities as well as enabling more stringent tests of Einstein's theory of General Relativity. Setting up retroreflectors was a key part of the Apollo missions so it is natural to ask if future lunar missions should include them as well. The Apollo retroreflectors are still being used today, and nearly 40 years of ranging data has been invaluable for scientific as well as other studies such as orbital dynamics. However, the available retroreflectors all lie within 26 degrees latitude of the equator, and the most useful ones within 24 degrees longitude of the sub-earth meridian. This clustering weakens their geometrical strength.

  5. Experimental reduction of simulated lunar glass by carbon and hydrogen and implications for lunar base oxygen production

    International Nuclear Information System (INIS)

    Mckay, D.S.; Morris, R.V.; Jurewicz, A.J.

    1991-01-01

    The most abundant element in lunar rocks and soils is oxygen which makes up approximately 45 percent by weight of the typical lunar samples returned during the Apollo missions. This oxygen is not present as a gas but is tightly bound to other elements in mineral or glass. When people return to the Moon to explore and live, the extraction of this oxygen at a lunar outpost may be a major goal during the early years of operation. Among the most studied processes for oxygen extraction is the reduction of ilmenite by hydrogen gas to form metallic iron, titanium oxide, and oxygen. A related process is proposed which overcomes some of the disadvantages of ilmenite reduction. It is proposed that oxygen can be extracted by direct reduction of native lunar pyroclactic glass using either carbon, carbon monoxide, or hydrogen. In order to evaluate the feasibility of this proposed process a series of experiments on synthetic lunar glass are presented. The results and a discussion of the experiments are presented

  6. Lunar Industry & Research Base Concept

    Science.gov (United States)

    Lysenko, J.; Kaliapin, M.; Osinovyy, G.

    2017-09-01

    Currently, all main space industry players, such as Europe, USA, Russia, China, etc., are looking back again at the idea of Moon exploration building there a manned lunar base. Alongside with other world spacefaring nations, Yuzhnoye State Design Office with its long-time development experience, technological and intellectual potential, organized its own conceptual work on development of the Lunar Industry & Research Base. In the frames of conceptual project "Lunar Industrial & Research Base" were formed its appearance, preliminary configuration and infrastructure at different stages of operation, trajectory and flight scheme to the Moon, as well as terms of the project's realization, and main technical characteristics of the systems under development, such as space transportation system for crew and cargo delivery to lunar surface and return to Earth, standardized designs of lunar modules, lunar surface vehicles, etc. The "Lunar Industrial & Research Base" project's preliminary risk assessment has shown a high value of its overall risk due to the lack of reliable information about the Moon, technical risks, long-term development of its elements, very high financial costs and dependence on state support. This points to the fact that it is reasonable to create such a global project in cooperation with other countries. International cooperation will expand the capabilities of any nation, reduce risks and increase the success probability of automated or manned space missions. It is necessary to create and bring into operation practical mechanisms for long-term space exploration on a global scale. One of the ways to do this is to create a multinational agency which would include both state enterprises and private companies.

  7. Lunar Rocks: Available for Year of the Solar System Events

    Science.gov (United States)

    Allen, J. S.

    2010-12-01

    NASA is actively exploring the moon with our Lunar Reconnaissance Orbiter, the Grail Discovery Mission will launch next year, and each year there is an International Observe the Moon Night providing many events and lunar science focus opportunities to share rocks from the moon with students and the public. In our laboratories, we have Apollo rocks and soil from six different places on the moon, and their continued study provides incredibly valuable ground truth to complement space exploration missions. Extensive information and actual lunar samples are available for public display and education. The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. The lunar rocks and soils continue to be studied intensively by scientists around the world. Descriptions of the samples, research results, thousands of photographs, and information on how to request research samples are on the JSC Curation website: http://curator.jsc.nasa.gov/ NASA is eager for scientists and the public to have access to these exciting Apollo samples through our various loan procedures. NASA provides a limited number of Moon rock samples for either short-term or long-term displays at museums, planetariums, expositions, and professional events that are open to the public. The JSC Public Affairs Office handles requests for such display samples. Requestors should apply in writing to Mr. Louis Parker, JSC Exhibits Manager. Mr. Parker will advise successful applicants regarding provisions for receipt, display, and return of the samples. All loans will be preceded by a signed loan agreement executed between NASA and the requestor's organization. Email address: louis.a.parker@nasa.gov Sets of twelve thin sections of Apollo lunar samples are available for short-term loan from JSC Curation. The thin

  8. View of the Lunar Module 'Orion' and Lunar Roving Vehicle during first EVA

    Science.gov (United States)

    1972-01-01

    A view of the Lunar Module (LM) 'Orion' and Lunar Roving Vehicle (LRV), as photographed by Astronaut Charles M. Duke Jr., lunar module pilot, during the first Apollo 16 extravehicular activity (EVA-1) at the Descates landing site. Astronaut John W. Young, commander, can be seen directly behind the LRV. The lunar surface feature in the left background is Stone Mountain.

  9. Simulation of the Chang'E-5 mission contribution in lunar long wavelength gravity field improvement

    Science.gov (United States)

    Yan, Jianguo; Yang, Xuan; Ping, Jinsong; Ye, Mao; Liu, Shanhong; Jin, Weitong; Li, Fei; Barriot, Jean-Pierre

    2018-06-01

    The precision of lunar gravity field estimation has improved by means of three to five orders of magnitude since the successful GRAIL lunar mission. There are still discrepancies however, in the low degree coefficients and long wavelength components of the solutions developed by two space research centers (JPL and GSFC). These discrepancies hint at the possibilities for improving the accuracy in the long wavelength part of the lunar gravity field. In the near future, China will launch the Chang'E-5 lunar mission. In this sample-return mission, there will be a chance to do KBRR measurements between an ascending module and an orbiting module. These two modules will fly around lunar at an inclination of ˜49 degrees, with an orbital height of 100 km and an inter-satellite distance of 200 km. In our research, we simulated the contribution of the KBRR tracking mode for different GRAIL orbital geometries. This analysis indicated possible deficiencies in the low degree coefficient solutions for the polar satellite-to-satellite tracking mode at various orbital heights. We also investigated the potential contributions of the KBRR to the Chang'E-5 mission goal of lunar gravity field recovery, especially in the long wavelength component. Potential improvements were assessed using various power spectrums of the lunar gravity field models. In addition, we also investigated possible improvements in solving lunar tidal Love number K2. These results may assist the implementation of the Chang'E-5 mission.

  10. Cataclysm No More: New Views on the Timing and Delivery of Lunar Impactors.

    Science.gov (United States)

    Zellner, Nicolle E B

    2017-09-01

    If properly interpreted, the impact record of the Moon, Earth's nearest neighbour, can be used to gain insights into how the Earth has been influenced by impacting events since its formation ~4.5 billion years (Ga) ago. However, the nature and timing of the lunar impactors - and indeed the lunar impact record itself - are not well understood. Of particular interest are the ages of lunar impact basins and what they tell us about the proposed "lunar cataclysm" and/or the late heavy bombardment (LHB), and how this impact episode may have affected early life on Earth or other planets. Investigations of the lunar impactor population over time have been undertaken and include analyses of orbital data and images; lunar, terrestrial, and other planetary sample data; and dynamical modelling. Here, the existing information regarding the nature of the lunar impact record is reviewed and new interpretations are presented. Importantly, it is demonstrated that most evidence supports a prolonged lunar (and thus, terrestrial) bombardment from ~4.2 to 3.4 Ga and not a cataclysmic spike at ~3.9 Ga. Implications for the conditions required for the origin of life are addressed.

  11. Two lunar global asymmetries

    Science.gov (United States)

    Hartung, J. B.

    1984-01-01

    The Moon's center of mass is displaced from its center of figure about 2 km in a roughly earthward direction. Most maria are on the side of the Moon which faces the Earth. It is assumed that the Moon was initially spherically symmetric. The emplacement of mare basalts transfers mass which produces most of the observed center of mass displacement toward the Earth. The cause of the asymmetric distribution of lunar maria was examined. The Moon is in a spin orbit coupled relationship with the Earth and the effect of the Earth's gravity on the Moon is asymmetric. The earth-facing side of the Moon is a gravitational favored location for the extrusion of mare basalt magma in the same way that the topographically lower floor of a large impact basin is a gravitationally favored location. This asymmetric effect increases inversely with the fourth power of the Earth Moon distance. The history of the Earth-Moon system includes: formation of the Moon by accretion processes in a heliocentric orbit ner that of the Earth; a gravitational encounter with the Earth about 4 billion years ago resulting in capture of the Moon into a geocentric orbit and heating of the Moon through dissipation of energy related to tides raised during close approaches to the Earth(5) to produce mare basalt magma; and evolution of the Moon's orbit to its present position, slowly at first to accommodate more than 500 million years during which magmas were extruded.

  12. The Stratigraphy and Evolution of the Lunar Crust

    Science.gov (United States)

    McCallum, I. Stewart

    1998-01-01

    Reconstruction of stratigraphic relationships in the ancient lunar crust has proved to be a formidable task. The intense bombardment during the first 700 m.y. of lunar history has severely perturbed the original stratigraphy and destroyed the primary textures of all but a few nonmare rocks. However, a knowledge of the crustal stratigraphy as it existed prior to the cataclysmic bombardment about 3.9 Ga is essential to test the major models proposed for crustal origin, i.e., crystal fractionation in a global magmasphere or serial magmatism in a large number of smaller bodies. Despite the large difference in scale implicit in these two models, both require an efficient separation of plagioclase and mafic minerals to form the anorthositic crust and the mafic mantle. Despite the havoc wreaked by the large body impactors, these same impact processes have brought to the lunar surface crystalline samples derived from at least the upper half of the lunar crust, thereby providing an opportunity to reconstruct the stratigraphy in areas sampled by the Apollo missions. As noted, ejecta from the large multiring basins are dominantly, or even exclusively, of crustal origin. Given the most recent determinations of crustal thicknesses, this implies an upper limit to the depth of excavation of about 60 km. Of all the lunar samples studied, a small set has been recognized as "pristine", and within this pristine group, a small fraction have retained some vestiges of primary features formed during the earliest stages of crystallization or recrystallization prior to 4.0 Ga. We have examined a number of these samples that have retained some record of primary crystallization to deduce thermal histories from an analysis of structural, textural, and compositional features in minerals from these samples. Specifically, by quantitative modeling of (1) the growth rate and development of compositional profiles of exsolution lamellae in pyroxenes and (2) the rate of Fe-Mg ordering in

  13. Lunar surface engineering properties experiment definition

    Science.gov (United States)

    Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.

    1971-01-01

    Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.

  14. Lunar power systems. Final report

    International Nuclear Information System (INIS)

    1986-12-01

    The findings of a study on the feasibility of several methods of providing electrical power for a permanently manned lunar base are provided. Two fundamentally different methods for lunar electrical power generation are considered. One is the use of a small nuclear reactor and the other is the conversion of solar energy to electricity. The baseline goal was to initially provide 300 kW of power with growth capability to one megawatt and eventually to 10 megawatts. A detailed, day by day scenario for the establishment, build-up, and operational activity of the lunar base is presented. Also presented is a conceptual approach to a supporting transportation system which identifies the number, type, and deployment of transportation vehicles required to support the base. An approach to the use of solar cells in the lunar environment was developed. There are a number of heat engines which are applicable to solar/electric conversions, and these are examined. Several approaches to energy storage which were used by the electric power utilities were examined and those which could be used at a lunar base were identified

  15. Optical method for the characterization of laterally patterned samples in integrated circuits

    Science.gov (United States)

    Maris, Humphrey J [Barrington, RI

    2009-03-17

    Disclosed is a method for characterizing a sample having a structure disposed on or within the sample, comprising the steps of applying a first pulse of light to a surface of the sample for creating a propagating strain pulse in the sample, applying a second pulse of light to the surface so that the second pulse of light interacts with the propagating strain pulse in the sample, sensing from a reflection of the second pulse a change in optical response of the sample, and relating a time of occurrence of the change in optical response to at least one dimension of the structure.

  16. SEAMIST trademark in-situ instrumentation and vapor sampling system applications in the Sandia Mixed Waste Landfill Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Lowry, W.E.; Dunn, S.D.; Cremer, S.C.; Williams, C.

    1994-01-01

    The SEAMIST trademark inverting membrane deployment system has been used successfully at the Mixed Waste Landfill Integrated Demonstration (MWLID) for multipoint vapor sampling/pressure measurement/permeability measurement/sensor integration demonstrations and borehole lining. Several instruments were deployed inside the SEAMIST trademark lined boreholes to detect metals, radionuclides, moisture, and geologic variations. The liner protected the instruments from contamination, maintained support of the uncased borehole wall, and sealed the total borehole from air circulation. The current activities have included the installation of three multipoint vapor sampling systems and sensor integration systems in 100-foot-deep vertical boreholes. A long term pressure monitoring program has recorded barometric pressure effects at depth with relatively high spatial resolution. The SEAMIST trademark system has been integrated with a variety of hydrologic and chemical sensors for in-situ measurements, demonstrating its versatility as an instrument deployment system which allows easy emplacement and removal. Standard SEAMIST trademark vapor sampling systems were also integrated with state-of-the-art VOC analysis technologies (automated GC, UV laser fluorometer). The results and status of these demonstration tests are presented

  17. Distribution of iron and titanium on the lunar surface from lunar prospector gamma ray spectra

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Feldman, W.C.; Lawrence, David J.; Elphic, R.C.; Gasnault, O.M.; Maurice, S.; Moore, K.R.; Binder, A.B.

    2001-01-01

    Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. ∼140 g/cm 2 for inelastic scattering and ∼50 g/cm 2 for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods (e.g. Clementine Spectral Reflectance (CSR)), which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum in order to determine the contribution of individual elements.

  18. Basic radio interferometry for future lunar missions

    NARCIS (Netherlands)

    Aminaei, Amin; Klein Wolt, Marc; Chen, Linjie; Bronzwaer, Thomas; Pourshaghaghi, Hamid Reza; Bentum, Marinus Jan; Falcke, Heino

    2014-01-01

    In light of presently considered lunar missions, we investigate the feasibility of the basic radio interferometry (RIF) for lunar missions. We discuss the deployment of two-element radio interferometer on the Moon surface. With the first antenna element is envisaged to be placed on the lunar lander,

  19. Status and Future of Lunar Geoscience.

    Science.gov (United States)

    1986

    A review of the status, progress, and future direction of lunar research is presented in this report from the lunar geoscience working group of the National Aeronautics and Space Administration. Information is synthesized and presented in four major sections. These include: (1) an introduction (stating the reasons for lunar study and identifying…

  20. Nanophase Fe0 in lunar soils

    Indian Academy of Sciences (India)

    globules that occur in the rinds of many soil grains and in the ... tinitic glass is a quenched product of silicate melts, also produced by micrometeorite impacts on lunar soils ..... stand impact processes and their products. ... cules at night; the earth's atmosphere by con- .... deep lunar interior from an inversion of lunar free oscil-.

  1. Particle integrity, sampling, and application of a DNA-tagged tracer for aerosol transport studies

    Energy Technology Data Exchange (ETDEWEB)

    Kaeser, Cynthia Jeanne [Michigan State Univ., East Lansing, MI (United States)

    2017-07-21

    formulations of two different food-grade sugars (maltodextrin and erythritol) to humidity as high as 66% had no significant effect on the DNA label’s degradation or the particle’s aerodynamic diameter, confirming particle stability under such conditions. In summary, confirmation of the DNATrax particles’ size and label integrity under variable conditions combined with experiment multiplexing and high resolution sampling provides a powerful experimental design for modeling aerosol transport through occupied indoor and outdoor locations.

  2. Integrating the Theory of Sampling into Underground Mine Grade Control Strategies

    Directory of Open Access Journals (Sweden)

    Simon C. Dominy

    2018-05-01

    Full Text Available Grade control in underground mines aims to deliver quality tonnes to the process plant via the accurate definition of ore and waste. It comprises a decision-making process including data collection and interpretation; local estimation; development and mining supervision; ore and waste destination tracking; and stockpile management. The foundation of any grade control programme is that of high-quality samples collected in a geological context. The requirement for quality samples has long been recognised, where they should be representative and fit-for-purpose. Once a sampling error is introduced, it propagates through all subsequent processes contributing to data uncertainty, which leads to poor decisions and financial loss. Proper application of the Theory of Sampling reduces errors during sample collection, preparation, and assaying. To achieve quality, sampling techniques must minimise delimitation, extraction, and preparation errors. Underground sampling methods include linear (chip and channel, grab (broken rock, and drill-based samples. Grade control staff should be well-trained and motivated, and operating staff should understand the critical need for grade control. Sampling must always be undertaken with a strong focus on safety and alternatives sought if the risk to humans is high. A quality control/quality assurance programme must be implemented, particularly when samples contribute to a reserve estimate. This paper assesses grade control sampling with emphasis on underground gold operations and presents recommendations for optimal practice through the application of the Theory of Sampling.

  3. A simulation of the Four-way lunar Lander-Orbiter tracking mode for the Chang'E-5 mission

    Science.gov (United States)

    Li, Fei; Ye, Mao; Yan, Jianguo; Hao, Weifeng; Barriot, Jean-Pierre

    2016-06-01

    The Chang'E-5 mission is the third phase of the Chinese Lunar Exploration Program and will collect and return lunar samples. After sampling, the Orbiter and the ascent vehicle will rendezvous and dock, and both spacecraft will require high precision orbit navigation. In this paper, we present a novel tracking mode-Four-way lunar Lander-Orbiter tracking that possibly can be employed during the Chang'E-5 mission. The mathematical formulas for the Four-way lunar Lander-Orbiter tracking mode are given and implemented in our newly-designed lunar spacecraft orbit determination and gravity field recovery software, the LUnar Gravity REcovery and Analysis Software/System (LUGREAS). The simulated observables permit analysis of the potential contribution Four-way lunar Lander-Orbiter tracking could make to precision orbit determination for the Orbiter. Our results show that the Four-way lunar Lander-Orbiter Range Rate has better geometric constraint on the orbit, and is more sensitive than the traditional two-way range rate that only tracks data between the Earth station and lunar Orbiter. After combining the Four-way lunar Lander-Orbiter Range Rate data with the traditional two-way range rate data and considering the Lander position error and lunar gravity field error, the accuracy of precision orbit determination for the Orbiter in the simulation was improved significantly, with the biggest improvement being one order of magnitude, and the Lander position could be constrained to sub-meter level. This new tracking mode could provide a reference for the Chang'E-5 mission and have enormous potential for the positioning of future lunar farside Lander due to its relay characteristic.

  4. Lunar Cube Transfer Trajectory Options

    Science.gov (United States)

    Folta, David; Dichmann, Donald James; Clark, Pamela E.; Haapala, Amanda; Howell, Kathleen

    2015-01-01

    Numerous Earth-Moon trajectory and lunar orbit options are available for Cubesat missions. Given the limited Cubesat injection infrastructure, transfer trajectories are contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these transfers can be restricted by the selection or designs of Cubesat subsystems such as propulsion or communication. Nonetheless, many trajectory options can b e considered which have a wide range of transfer duration, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several options including deployment from low Earth orbit (LEO) geostationary transfer orbits (GTO) and higher energy direct lunar transfer and the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory.

  5. Lunar Rotation, Orientation and Science

    Science.gov (United States)

    Williams, J. G.; Ratcliff, J. T.; Boggs, D. H.

    2004-12-01

    The Moon is the most familiar example of the many satellites that exhibit synchronous rotation. For the Moon there is Lunar Laser Ranging measurements of tides and three-dimensional rotation variations plus supporting theoretical understanding of both effects. Compared to uniform rotation and precession the lunar rotational variations are up to 1 km, while tidal variations are about 0.1 m. Analysis of the lunar variations in pole direction and rotation about the pole gives moment of inertia differences, third-degree gravity harmonics, tidal Love number k2, tidal dissipation Q vs. frequency, dissipation at the fluid-core/solid-mantle boundary, and emerging evidence for an oblate boundary. The last two indicate a fluid core, but a solid inner core is not ruled out. Four retroreflectors provide very accurate positions on the Moon. The experience with the Moon is a starting point for exploring the tides, rotation and orientation of the other synchronous bodies of the solar system.

  6. Lunar heat-flow experiment

    Science.gov (United States)

    Langseth, M. G.

    1977-01-01

    The principal components of the experiment were probes, each with twelve thermometers of exceptional accuracy and stability, that recorded temperature variations at the surface and in the regolith down to 2.5 m. The Apollo 15 experiment and the Apollo 17 probes recorded lunar surface and subsurface temperatures. These data provided a unique and valuable history of the interaction of solar energy with lunar surface and the effects of heat flowing from the deep interior out through the surface of the moon. The interpretation of these data resulted in a clearer definition of the thermal and mechanical properties of the upper two meters of lunar regolith, direct measurements of the gradient in mean temperature due to heat flow from the interior and a determination of the heat flow at the Apollo 15 and Apollo 17 sites.

  7. A pyroloysis technique for determining microamounts of hydrogen in lunar soil using the helium ionization detector

    Science.gov (United States)

    Bustin, R.

    1983-01-01

    A method has been developed which will determine hydrogen in sub-milligram samples of lunar soil. It consists of heating the sample in a pyroprobe followed by the gas chromatographic determination of hydrogen using the helium ionization detector. Using a 7 foot, 1/8 OD stainless steel column packed with Carbosieve S, 120/140 mesh, hydrogen was well-separated from the other gases released from lunar soil. Standards of hydrogen in helium were used for calibration. The limit to detection under the conditions used was about 2 ng. The method was linear from 2 ng to 270 ng. The method was checked using some actual lunar samples. Results were typical of those obtained for lunar soils using other methods.

  8. Light element geochemistry and spallogenesis in lunar rocks

    International Nuclear Information System (INIS)

    Des Marais, D.J.

    1983-01-01

    The abundances and isotopic compositions of carbon, nitrogen and sulfur were measured in eleven lunar rocks. Samples were combusted sequentially at three temperatures to resolve terrestrial contamination from indigenous volatiles. Sulfur abundances in Apollo 16 highland rocks range from 73 to 1165 μg/g, whereas sulfur contents in Apollo 15 and 17 basalts range from 719 to 1455 μg/g and correlate with TiO 2 content. Lunar rocks as a group have a remarkably uniform sulfur isotopic composition, which may reflect the low oxygen fugacity of the basaltic magmas. Much of the range of reported delta 34 Ssub(CD) values is caused by systematic analytical discrepancies between laboratories. Lunar rocks very likely contain less than 0.1 μg/g of nitrogen. The measured spallogenic production rate, 4.1 x 10 -6 μg 15 N/g sample/m.y., agrees remarkably closely with previous estimates. An estimate which includes all available data is 3.7 x 10 -6 μg 15 N/g sample/m.y. Lunar basalts may contain no indigenous lunar carbon in excess of procedural blank levels. Highland rocks consistently release about 1 to 5 μg/g of carbon in excess of blank levels, but this carbon might either derive from ancient meteoritic debris or be a mineralogic product of terrestrial weathering. The average measured spallogenic 13 C production rate is 4.1 x 10 -6 μg 13 C/g sample/m.y. (author)

  9. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  10. The integrated performance evaluation program quality assurance guidance in support of EM environmental sampling and analysis activities

    International Nuclear Information System (INIS)

    1994-05-01

    EM's (DOE's Environmental Restoration and Waste Management) Integrated Performance Evaluation Program (IPEP) has the purpose of integrating information from existing PE programs with expanded QA activities to develop information about the quality of radiological, mixed waste, and hazardous environmental sample analyses provided by all laboratories supporting EM programs. The guidance addresses the goals of identifying specific PE sample programs and contacts, identifying specific requirements for participation in DOE's internal and external (regulatory) programs, identifying key issues relating to application and interpretation of PE materials for EM headquarters and field office managers, and providing technical guidance covering PE materials for site-specific activities. (PE) Performance Evaluation materials or samples are necessary for the quality assurance/control programs covering environmental data collection

  11. Uses for lunar crawler transporters

    Science.gov (United States)

    Kaden, Richard A.

    This article discusses state-of-the-art crawler transporters and expresses the need for additional research and development for lunar crawlers. The thrust of the paper illustrates how the basic crawler technology has progressed to a point where extremely large modules can be shop fabricated and move to some distant location at a considerable savings. Also, extremely heavy loads may be lifted by large crawler cranes and placed in designed locations. The Transi-Lift Crawler crane with its traveling counterweight is an attractive concept for lunar construction.

  12. Building lunar roads - An overview

    Science.gov (United States)

    Rutledge, Bennett

    The problems involved in constructing lunar roads are explored. The main challenges are airlessness, low gravity, and solar effects, especially temperature extremes. Also involved are the expense of delivering equipment and material to the job site (especially for bridges and other structures), obtaining skilled labor, and providing maintenance. The lunar road will most likely be gravel, but with the size of the material closer to cobblestone to reduce scattering. They will probably be very winding, even on the flats, and feature numerous bridges and some cuts. This traffic will be mostly automatic or teleoperated cargo carriers with a handful of shirtsleeve-pressurized 'passenger cars' large enough to live in for several days.

  13. Assessing Exhaustiveness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures.

    Science.gov (United States)

    Viswanath, Shruthi; Chemmama, Ilan E; Cimermancic, Peter; Sali, Andrej

    2017-12-05

    Modeling of macromolecular structures involves structural sampling guided by a scoring function, resulting in an ensemble of good-scoring models. By necessity, the sampling is often stochastic, and must be exhaustive at a precision sufficient for accurate modeling and assessment of model uncertainty. Therefore, the very first step in analyzing the ensemble is an estimation of the highest precision at which the sampling is exhaustive. Here, we present an objective and automated method for this task. As a proxy for sampling exhaustiveness, we evaluate whether two independently and stochastically generated sets of models are sufficiently similar. The protocol includes testing 1) convergence of the model score, 2) whether model scores for the two samples were drawn from the same parent distribution, 3) whether each structural cluster includes models from each sample proportionally to its size, and 4) whether there is sufficient structural similarity between the two model samples in each cluster. The evaluation also provides the sampling precision, defined as the smallest clustering threshold that satisfies the third, most stringent test. We validate the protocol with the aid of enumerated good-scoring models for five illustrative cases of binary protein complexes. Passing the proposed four tests is necessary, but not sufficient for thorough sampling. The protocol is general in nature and can be applied to the stochastic sampling of any set of models, not just structural models. In addition, the tests can be used to stop stochastic sampling as soon as exhaustiveness at desired precision is reached, thereby improving sampling efficiency; they may also help in selecting a model representation that is sufficiently detailed to be informative, yet also sufficiently coarse for sampling to be exhaustive. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Lunar phases and crisis center telephone calls.

    Science.gov (United States)

    Wilson, J E; Tobacyk, J J

    1990-02-01

    The lunar hypothesis, that is, the notion that lunar phases can directly affect human behavior, was tested by time-series analysis of 4,575 crisis center telephone calls (all calls recorded for a 6-month interval). As expected, the lunar hypothesis was not supported. The 28-day lunar cycle accounted for less than 1% of the variance of the frequency of crisis center calls. Also, as hypothesized from an attribution theory framework, crisis center workers reported significantly greater belief in lunar effects than a non-crisis-center-worker comparison group.

  15. What is a lunar standstill III?

    Directory of Open Access Journals (Sweden)

    Lionel Duke Sims

    2016-12-01

    Full Text Available Prehistoric monument alignments on lunar standstills are currently understood for horizon range, perturbation event, crossover event, eclipse prediction, solstice full Moon and the solarisation of the dark Moon. The first five models are found to fail the criteria of archaeoastronomy field methods. The final model of lunar-solar conflation draws upon all the observed components of lunar standstills – solarised reverse phased sidereal Moons culminating in solstice dark Moons in a roughly nine-year alternating cycle between major and minor standstills. This lunar-solar conflation model is a syncretic overlay upon an antecedent Palaeolithic template for lunar scheduled rituals and amenable to transformation.

  16. The negligible chondritic contribution in the lunar soils water.

    Science.gov (United States)

    Stephant, Alice; Robert, François

    2014-10-21

    Recent data from Apollo samples demonstrate the presence of water in the lunar interior and at the surface, challenging previous assumption that the Moon was free of water. However, the source(s) of this water remains enigmatic. The external flux of particles and solid materials that reach the surface of the airless Moon constitute a hydrogen (H) surface reservoir that can be converted to water (or OH) during proton implantation in rocks or remobilization during magmatic events. Our original goal was thus to quantify the relative contributions to this H surface reservoir. To this end, we report NanoSIMS measurements of D/H and (7)Li/(6)Li ratios on agglutinates, volcanic glasses, and plagioclase grains from the Apollo sample collection. Clear correlations emerge between cosmogenic D and (6)Li revealing that almost all D is produced by spallation reactions both on the surface and in the interior of the grains. In grain interiors, no evidence of chondritic water has been found. This observation allows us to constrain the H isotopic ratio of hypothetical juvenile lunar water to δD ≤ -550‰. On the grain surface, the hydroxyl concentrations are significant and the D/H ratios indicate that they originate from solar wind implantation. The scattering distribution of the data around the theoretical D vs. (6)Li spallation correlation is compatible with a chondritic contribution lunar surface, and (ii) the postulated chondritic lunar water is not retained in the regolith.

  17. Integrative analysis of single nucleotide polymorphisms and gene expression efficiently distinguishes samples from closely related ethnic populations

    Directory of Open Access Journals (Sweden)

    Yang Hsin-Chou

    2012-07-01

    Full Text Available Abstract Background Ancestry informative markers (AIMs are a type of genetic marker that is informative for tracing the ancestral ethnicity of individuals. Application of AIMs has gained substantial attention in population genetics, forensic sciences, and medical genetics. Single nucleotide polymorphisms (SNPs, the materials of AIMs, are useful for classifying individuals from distinct continental origins but cannot discriminate individuals with subtle genetic differences from closely related ancestral lineages. Proof-of-principle studies have shown that gene expression (GE also is a heritable human variation that exhibits differential intensity distributions among ethnic groups. GE supplies ethnic information supplemental to SNPs; this motivated us to integrate SNP and GE markers to construct AIM panels with a reduced number of required markers and provide high accuracy in ancestry inference. Few studies in the literature have considered GE in this aspect, and none have integrated SNP and GE markers to aid classification of samples from closely related ethnic populations. Results We integrated a forward variable selection procedure into flexible discriminant analysis to identify key SNP and/or GE markers with the highest cross-validation prediction accuracy. By analyzing genome-wide SNP and/or GE markers in 210 independent samples from four ethnic groups in the HapMap II Project, we found that average testing accuracies for a majority of classification analyses were quite high, except for SNP-only analyses that were performed to discern study samples containing individuals from two close Asian populations. The average testing accuracies ranged from 0.53 to 0.79 for SNP-only analyses and increased to around 0.90 when GE markers were integrated together with SNP markers for the classification of samples from closely related Asian populations. Compared to GE-only analyses, integrative analyses of SNP and GE markers showed comparable testing

  18. Design and performance of a multi-channel, multi-sampling, PSD-enabling integrated circuit

    International Nuclear Information System (INIS)

    Engel, G.L.; Hall, M.J.; Proctor, J.M.; Elson, J.M.; Sobotka, L.G.; Shane, R.; Charity, R.J.

    2009-01-01

    This paper presents the design and test results of an eight-channel prototype integrated circuit chip intended to greatly simplify the pulse-processing electronics needed for large arrays of scintillation detectors. Because the chip design employs (user-controlled) multi-region charge integration, particle identification is incorporated into the basic design. Each channel on the chip also contains a time-to-voltage converter which provides relative time information. The pulse-height integrals and the relative time are all stored on capacitors and are either reset, after a user controlled time, or sequentially read out if acquisition of the event is desired. Each of the three pulse-height sub-channels consists of a gated integrator with eight programmable charging rates and an externally programmable gate generator that defines the start (with four time ranges) and width (with four time ranges) of the gate relative to an external discriminator signal. The chip supports three triggering modes, two time ranges, two power modes, and produces four sparsified analog pulse trains (three for the integrators and another for the time) with synchronized addresses for off-chip digitization with a pipelined ADC. The eight-channel prototype chip occupies an area of 2.8 mmx5.7 mm, dissipates 60 mW (low-power mode), and was fabricated in the AMI 0.5-μm process (C5N).

  19. Design and performance of a multi-channel, multi-sampling, PSD-enabling integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Engel, G.L., E-mail: gengel@siue.ed [Department of Electrical and Computer Engineering, VLSI Design Research Laboratory, Southern Illinois University Edwardsville, Engineering Building, Room 3043 Edwardsville, IL 62026 1081 (United States); Hall, M.J.; Proctor, J.M. [Department of Electrical and Computer Engineering, VLSI Design Research Laboratory, Southern Illinois University Edwardsville, Engineering Building, Room 3043 Edwardsville, IL 62026 1081 (United States); Elson, J.M.; Sobotka, L.G.; Shane, R.; Charity, R.J. [Departments of Chemistry and Physics, Washington University, Saint Louis, MO 63130 (United States)

    2009-12-21

    This paper presents the design and test results of an eight-channel prototype integrated circuit chip intended to greatly simplify the pulse-processing electronics needed for large arrays of scintillation detectors. Because the chip design employs (user-controlled) multi-region charge integration, particle identification is incorporated into the basic design. Each channel on the chip also contains a time-to-voltage converter which provides relative time information. The pulse-height integrals and the relative time are all stored on capacitors and are either reset, after a user controlled time, or sequentially read out if acquisition of the event is desired. Each of the three pulse-height sub-channels consists of a gated integrator with eight programmable charging rates and an externally programmable gate generator that defines the start (with four time ranges) and width (with four time ranges) of the gate relative to an external discriminator signal. The chip supports three triggering modes, two time ranges, two power modes, and produces four sparsified analog pulse trains (three for the integrators and another for the time) with synchronized addresses for off-chip digitization with a pipelined ADC. The eight-channel prototype chip occupies an area of 2.8 mmx5.7 mm, dissipates 60 mW (low-power mode), and was fabricated in the AMI 0.5-mum process (C5N).

  20. Infrared spectra of lunar soils. [using a Michelson interferometer

    Science.gov (United States)

    Aronson, J. R.; Emslie, A. G.; Smith, E. M.

    1979-01-01

    Measured data obtained by Michelson interferometer spectrometer were stored in a computer file and smoothed by being passed forward and backward through a digital four-pole low pass filter. Infrared spectra of the 10 lunar samples are presented in the format of brightness temperature versus frequency. The mol % of feldspar, pyroxene, olivine, ilmenite and ferromagnetic silicate in each sample is presented in tables. The reflectance spectra of ilmenite and enstatite are shown in graphs.

  1. Mechanical properties of lunar regolith and lunar soil simulant

    Science.gov (United States)

    Perkins, Steven W.

    1989-01-01

    Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.

  2. Exploration of the Moon to Enable Lunar and Planetary Science

    Science.gov (United States)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  3. Quantification of integrated HIV DNA by repetitive-sampling Alu-HIV PCR on the basis of poisson statistics.

    Science.gov (United States)

    De Spiegelaere, Ward; Malatinkova, Eva; Lynch, Lindsay; Van Nieuwerburgh, Filip; Messiaen, Peter; O'Doherty, Una; Vandekerckhove, Linos

    2014-06-01

    Quantification of integrated proviral HIV DNA by repetitive-sampling Alu-HIV PCR is a candidate virological tool to monitor the HIV reservoir in patients. However, the experimental procedures and data analysis of the assay are complex and hinder its widespread use. Here, we provide an improved and simplified data analysis method by adopting binomial and Poisson statistics. A modified analysis method on the basis of Poisson statistics was used to analyze the binomial data of positive and negative reactions from a 42-replicate Alu-HIV PCR by use of dilutions of an integration standard and on samples of 57 HIV-infected patients. Results were compared with the quantitative output of the previously described Alu-HIV PCR method. Poisson-based quantification of the Alu-HIV PCR was linearly correlated with the standard dilution series, indicating that absolute quantification with the Poisson method is a valid alternative for data analysis of repetitive-sampling Alu-HIV PCR data. Quantitative outputs of patient samples assessed by the Poisson method correlated with the previously described Alu-HIV PCR analysis, indicating that this method is a valid alternative for quantifying integrated HIV DNA. Poisson-based analysis of the Alu-HIV PCR data enables absolute quantification without the need of a standard dilution curve. Implementation of the CI estimation permits improved qualitative analysis of the data and provides a statistical basis for the required minimal number of technical replicates. © 2014 The American Association for Clinical Chemistry.

  4. Loaded dice in Monte Carlo : importance sampling in phase space integration and probability distributions for discrepancies

    NARCIS (Netherlands)

    Hameren, Andreas Ferdinand Willem van

    2001-01-01

    Discrepancies play an important role in the study of uniformity properties of point sets. Their probability distributions are a help in the analysis of the efficiency of the Quasi Monte Carlo method of numerical integration, which uses point sets that are distributed more uniformly than sets of

  5. NASA Lunar Base Wireless System Propagation Analysis

    Science.gov (United States)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  6. Peripheral biomarkers revisited: integrative profiling of peripheral samples for psychiatric research.

    Science.gov (United States)

    Hayashi-Takagi, Akiko; Vawter, Marquis P; Iwamoto, Kazuya

    2014-06-15

    Peripheral samples, such as blood and skin, have been used for decades in psychiatric research as surrogates for central nervous system samples. Although the validity of the data obtained from peripheral samples has been questioned and other state-of-the-art techniques, such as human brain imaging, genomics, and induced pluripotent stem cells, seem to reduce the value of peripheral cells, accumulating evidence has suggested that revisiting peripheral samples is worthwhile. Here, we re-evaluate the utility of peripheral samples and argue that establishing an understanding of the common signaling and biological processes in the brain and peripheral samples is required for the validity of such models. First, we present an overview of the available types of peripheral cells and describe their advantages and disadvantages. We then briefly summarize the main achievements of omics studies, including epigenome, transcriptome, proteome, and metabolome analyses, as well as the main findings of functional cellular assays, the results of which imply that alterations in neurotransmission, metabolism, the cell cycle, and the immune system may be partially responsible for the pathophysiology of major psychiatric disorders such as schizophrenia. Finally, we discuss the future utility of peripheral samples for the development of biomarkers and tailor-made therapies, such as multimodal assays that are used as a battery of disease and trait pathways and that might be potent and complimentary tools for use in psychiatric research. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.

  7. Lunar Gene Bank for Endangered Species

    Science.gov (United States)

    Swain, Ramakrushna

    2016-07-01

    Introduction: Before the dawn of the 22nd century, we face the huge risk of losing our genetic heritage accumulated during aeons of evolution. The losses include hundreds of vertebrates, human gene pools, hundreds of thousands of plants and over a million insect species. As we have observed, adequate conservation of habitat is unfeasible and active breeding programs cover only a handful of the many thousand species threatened. We propose cryopreservation of germplasms by constructing a cDNA library based gene bank for endangered species in the permanently shadowed polar lunar craters that would provide immunity from both natural disadvantages and humanitarian intrusions. Rationale: Under such alarming circumstances, we turned to cryopreservation as an option but over thousands of years economic depression, sabotage, conflicts, warfare or even a brief disruption to the precise cryopreservation can hamper the storage of genetic samples.When we are considering conservation it is always preferable to go for a more secure and permanent solution. It was found out that the climatic and strategic location of the lunar polar craters are adequately hospitable, remote and free of maintenance and human observation as they provide naturally cryogenic temperature, reduced gravity and vacuum environment, non-reactive surface, safety from celestial intrusion and permanent shadow which doesn't allow the temperature to fluctuate thus providing most suitable storage facilities for the germplasms. PSRs provide steady temperature of 40- 60K and immunity to earthquakes due to low seismic activity. At these sites, burial in one meter or more of the regolith will provide protection against the solar wind, solar and galactic cosmic rays and micrometeorite impact. It provides the minimum necessary barrier from human intervention and at the same time enables easy retrieval for future usage. Genetic samples of endangered species can enable restoration even after its extinction. Preserved

  8. Concept of Lunar Energy Park

    Science.gov (United States)

    Niino, Masayuki; Kisara, Katsuto; Chen, Lidong

    1993-10-01

    This paper presents a new concept of energy supply system named Lunar Energy Park (LEP) as one of the next-generation clean energy sources. In this concept, electricity is generated by nuclear power plants built on the moon and then transmitted to receiving stations on the earth by laser beam through transporting systems situated in geostationary orbit. The lunar nuclear power plants use a high-efficiency composite energy conversion system consisting of thermionic and thermoelectric generators to change nuclear thermal energy into electricity directly. The nuclear resources are considered to be available from the moon, and nuclear fuel transport from earth to moon is not necessary. Because direct energy conversion systems are employed, the lunar nuclear plants can be operated and controlled by robots and are maintenance-free, and so will cause no pollution to humans. The key technologies for LEP include improvements of conversion efficiency of both thermionic and thermoelectric converters, and developments of laser-beam power transmission technology as well. The details, including the construction of lunar nuclear plants, energy conversion and energy transmission systems, as well as the research plan strategies for this concept are reviewed.

  9. Perspectives on Lunar Helium-3

    Science.gov (United States)

    Schmitt, Harrison H.

    1999-01-01

    Global demand for energy will likely increase by a factor of six or eight by the mid-point of the 21st Century due to a combination of population increase, new energy intensive technologies, and aspirations for improved standards of living in the less-developed world (1). Lunar helium-3 (3He), with a resource base in the Tranquillitatis titanium-rich lunar maria (2,3) of at least 10,000 tonnes (4), represents one potential energy source to meet this rapidly escalating demand. The energy equivalent value of 3He delivered to operating fusion power plants on Earth would be about 3 billion per tonne relative to today's coal which supplies most of the approximately 90 billion domestic electrical power market (5). These numbers illustrate the magnitude of the business opportunity. The results from the Lunar Prospector neutron spectrometer (6) suggests that 3He also may be concentrated at the lunar poles along with solar wind hydrogen (7). Mining, extraction, processing, and transportation of helium to Earth requires new innovations in engineering but no known new engineering concepts (1). By-products of lunar 3He extraction, largely hydrogen, oxygen, and water, have large potential markets in space and ultimately will add to the economic attractiveness of this business opportunity (5). Inertial electrostatic confinement (IEC) fusion technology appears to be the most attractive and least capital intensive approach to terrestrial fusion power plants (8). Heavy lift launch costs comprise the largest cost uncertainty facing initial business planning, however, many factors, particularly long term production contracts, promise to lower these costs into the range of 1-2000 per kilogram versus about 70,000 per kilogram fully burdened for the Apollo Saturn V rocket (1). A private enterprise approach to developing lunar 3He and terrestrial IEC fusion power would be the most expeditious means of realizing this unique opportunity (9). In spite of the large, long-term potential

  10. A Multispectral Micro-Imager for Lunar Field Geology

    Science.gov (United States)

    Nunez, Jorge; Farmer, Jack; Sellar, Glenn; Allen, Carlton

    2009-01-01

    Field geologists routinely assign rocks to one of three basic petrogenetic categories (igneous, sedimentary or metamorphic) based on microtextural and mineralogical information acquired with a simple magnifying lens. Indeed, such observations often comprise the core of interpretations of geological processes and history. The Multispectral Microscopic Imager (MMI) uses multi-wavelength, light-emitting diodes (LEDs) and a substrate-removed InGaAs focal-plane array to create multispectral, microscale reflectance images of geological samples (FOV 32 X 40 mm). Each pixel (62.5 microns) of an image is comprised of 21 spectral bands that extend from 470 to 1750 nm, enabling the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases. MMI images provide crucial context information for in situ robotic analyses using other onboard analytical instruments (e.g. XRD), or for the selection of return samples for analysis in terrestrial labs. To further assess the value of the MMI as a tool for lunar exploration, we used a field-portable, tripod-mounted version of the MMI to image a variety of Apollo samples housed at the Lunar Experiment Laboratory, NASA s Johnson Space Center. MMI images faithfully resolved the microtextural features of samples, while the application of ENVI-based spectral end member mapping methods revealed the distribution of Fe-bearing mineral phases (olivine, pyroxene and magnetite), along with plagioclase feldspars within samples. Samples included a broad range of lithologies and grain sizes. Our MMI-based petrogenetic interpretations compared favorably with thin section-based descriptions published in the Lunar Sample Compendium, revealing the value of MMI images for astronaut and rover-mediated lunar exploration.

  11. Element distribution and noble gas isotopic abundances in lunar meteorite Allan Hills A81005

    International Nuclear Information System (INIS)

    Kraehenbuehl, U.; Eugster, O.; Niedermann, S.

    1986-01-01

    Antarctic meteorite ALLAN HILLS A81005, an anorthositic breccia, is recognized to be of lunar origin. The noble gases in this meteorite were analyzed and found to be solar-wind implanted gases, whose absolute and relative concentrations are quite similar to those in lunar regolith samples. A sample of this meteorite was obtained for the analysis of the noble gas isotopes, including Kr(81), and for the determination of the elemental abundances. In order to better determine the volume derived from the surface correlated gases, grain size fractions were prepared. The results of the instrumental measurements of the gamma radiation are listed. From the amounts of cosmic ray produced noble gases and respective production rates, the lunar surface residence times were calculated. It was concluded that the lunar surface time is about half a billion years

  12. Cis-Lunar Base Camp

    Science.gov (United States)

    Merrill, Raymond G.; Goodliff, Kandyce E.; Mazanek, Daniel D.; Reeves, John D., Jr.

    2012-01-01

    Historically, when mounting expeditions into uncharted territories, explorers have established strategically positioned base camps to pre-position required equipment and consumables. These base camps are secure, safe positions from which expeditions can depart when conditions are favorable, at which technology and operations can be tested and validated, and facilitate timely access to more robust facilities in the event of an emergency. For human exploration missions into deep space, cis-lunar space is well suited to serve as such a base camp. The outer regions of cis-lunar space, such as the Earth-Moon Lagrange points, lie near the edge of Earth s gravity well, allowing equipment and consumables to be aggregated with easy access to deep space and to the lunar surface, as well as more distant destinations, such as near-Earth Asteroids (NEAs) and Mars and its moons. Several approaches to utilizing a cis-lunar base camp for sustainable human exploration, as well as some possible future applications are identified. The primary objective of the analysis presented in this paper is to identify options, show the macro trends, and provide information that can be used as a basis for more detailed mission development. Compared within are the high-level performance and cost of 15 preliminary cis-lunar exploration campaigns that establish the capability to conduct crewed missions of up to one year in duration, and then aggregate mass in cis-lunar space to facilitate an expedition from Cis-Lunar Base Camp. Launch vehicles, chemical propulsion stages, and electric propulsion stages are discussed and parametric sizing values are used to create architectures of in-space transportation elements that extend the existing in-space supply chain to cis-lunar space. The transportation options to cis-lunar space assessed vary in efficiency by almost 50%; from 0.16 to 0.68 kg of cargo in cis-lunar space for every kilogram of mass in Low Earth Orbit (LEO). For the 15 cases, 5-year campaign

  13. Integration of georeferencing, habitat, sampling, and genetic data for documentation of wild plant genetic resources

    Science.gov (United States)

    Plant genetic resource collections provide novel materials to the breeding and research communities. Availability of detailed documentation of passport, phenotypic, and genetic data increases the value of the genebank accessions. Inclusion of georeferenced sources, habitats, and sampling data in co...

  14. Lunar mission design using nuclear thermal rockets

    International Nuclear Information System (INIS)

    Stancati, M.L.; Collins, J.T.; Borowski, S.K.

    1991-01-01

    The NERVA-class Nuclear Thermal Rocket (NTR), with performance nearly double that of advanced chemical engines, has long been considered an enabling technology for human missions to Mars. NTR engines address the demanding trip time and payload delivery needs of both cargo-only and piloted flights. But NTR can also reduce the Earth launch requirements for manned lunar missions. First use of NTR for the Moon would be less demanding and would provide a test-bed for early operations experience with this powerful technology. Study of application and design options indicates that NTR propulsion can be integrated with the Space Exploration Initiative scenarios to deliver performance gains while managing controlled, long-term disposal of spent reactors to highly stable orbits

  15. A fast charge-integrating sample-and-hold circuit for fast decision-making with calorimeter arrays

    International Nuclear Information System (INIS)

    Schuler, G.

    1982-01-01

    This paper describes a fast charge-integrating sample-and-hold circuit, particularly suited to the fast trigger electronics used with large arrays of photomultipliers in total-energy measurements of high-energy particles interactions. During a gate logic pulse, the circuit charges a capacitor with the current fed into the signal input. The output voltage is equal to the voltage developed across the capacitor, which is held until a fast clear discharges the capacitor. The main characteristics of the fast-charge-integrating sample-and-hold circuit are: i) a conversion factor of 1 V/220 pC; ii) a droop rate of 4 mV/μs for a 50 Ω load; and iii) a 1 μs fast-clear time. (orig.)

  16. Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing.

    Science.gov (United States)

    Barca, E; Castrignanò, A; Buttafuoco, G; De Benedetto, D; Passarella, G

    2015-07-01

    Soil survey is generally time-consuming, labor-intensive, and costly. Optimization of sampling scheme allows one to reduce the number of sampling points without decreasing or even increasing the accuracy of investigated attribute. Maps of bulk soil electrical conductivity (EC a ) recorded with electromagnetic induction (EMI) sensors could be effectively used to direct soil sampling design for assessing spatial variability of soil moisture. A protocol, using a field-scale bulk EC a survey, has been applied in an agricultural field in Apulia region (southeastern Italy). Spatial simulated annealing was used as a method to optimize spatial soil sampling scheme taking into account sampling constraints, field boundaries, and preliminary observations. Three optimization criteria were used. the first criterion (minimization of mean of the shortest distances, MMSD) optimizes the spreading of the point observations over the entire field by minimizing the expectation of the distance between an arbitrarily chosen point and its nearest observation; the second criterion (minimization of weighted mean of the shortest distances, MWMSD) is a weighted version of the MMSD, which uses the digital gradient of the grid EC a data as weighting function; and the third criterion (mean of average ordinary kriging variance, MAOKV) minimizes mean kriging estimation variance of the target variable. The last criterion utilizes the variogram model of soil water content estimated in a previous trial. The procedures, or a combination of them, were tested and compared in a real case. Simulated annealing was implemented by the software MSANOS able to define or redesign any sampling scheme by increasing or decreasing the original sampling locations. The output consists of the computed sampling scheme, the convergence time, and the cooling law, which can be an invaluable support to the process of sampling design. The proposed approach has found the optimal solution in a reasonable computation time. The

  17. Effects of Apollo 12 lunar material on lipid levels of tobacco tissue and slash pine cultures

    Science.gov (United States)

    Weete, J. D.

    1972-01-01

    Investigations of the lipid components of pine tissues (Pinus elloitii) are discussed, emphasizing fatty acids and steroids. The response by slash pine tissue cultures to growth in contact with Apollo lunar soil, earth basalt, and Iowa soil is studied. Tissue cultures of tobacco grown for 12 weeks in contact with lunar material from Apollo 12 flight contained 21 to 35 percent more total pigment than control tissues. No differences were noted in the fresh or dry weight of the experimental and control samples.

  18. Naming Lunar Mare Basalts: Quo Vadimus Redux

    Science.gov (United States)

    Ryder, G.

    1999-01-01

    Nearly a decade ago, I noted that the nomenclature of lunar mare basalts was inconsistent, complicated, and arcane. I suggested that this reflected both the limitations of our understanding of the basalts, and the piecemeal progression made in lunar science by the nature of the Apollo missions. Although the word "classification" is commonly attached to various schemes of mare basalt nomenclature, there is still no classification of mare basalts that has any fundamental grounding. We remain basically at a classification of the first kind in the terms of Shand; that is, things have names. Quoting John Stuart Mill, Shand discussed classification of the second kind: "The ends of scientific classification are best answered when the objects are formed into groups respecting which a greater number of propositions can be made, and those propositions more important than could be made respecting any other groups into which the same things could be distributed." Here I repeat some of the main contents of my discussion from a decade ago, and add a further discussion based on events of the last decade. A necessary first step of sample studies that aims to understand lunar mare basalt processes is to associate samples with one another as members of the same igneous event, such as a single eruption lava flow, or differentiation event. This has been fairly successful, and discrete suites have been identified at all mare sites, members that are eruptively related to each other but not to members of other suites. These eruptive members have been given site-specific labels, e.g., Luna24 VLT, Apollo 11 hi-K, A12 olivine basalts, and Apollo 15 Green Glass C. This is classification of the first kind, but is not a useful classification of any other kind. At a minimum, a classification is inclusive (all objects have a place) and exclusive (all objects have only one place). The answer to "How should rocks be classified?" is far from trivial, for it demands a fundamental choice about nature

  19. Immunoassay of C-reactive protein by hot electron induced electrochemiluminescence using integrated electrodes with hydrophobic sample confinement

    Energy Technology Data Exchange (ETDEWEB)

    Ylinen-Hinkka, T., E-mail: tiina.ylinen-hinkka@aalto.fi [Laboratory of Analytical Chemistry, Aalto University School of Chemical Technology, P.O. Box 16100, FI-00076 Aalto (Finland); Niskanen, A.J.; Franssila, S. [Department of Materials Science and Engineering, Aalto University School of Chemical Technology, P.O. Box 16200, FI-00076 Aalto (Finland); Kulmala, S. [Laboratory of Analytical Chemistry, Aalto University School of Chemical Technology, P.O. Box 16100, FI-00076 Aalto (Finland)

    2011-09-19

    Highlights: {center_dot} C-reactive protein has been determined in the concentration range 0.01-10 mg L{sup -1} using an electrochemiluminescence microchip which employs integrated electrodes with hydrophobic sample confinement. {center_dot} This arrangement enables very simple and fast CRP analysis amenable to point-of-care applications. - Abstract: C-reactive protein (CRP) was determined in the concentration range 0.01-10 mg L{sup -1} using hot electron induced electrochemiluminescence (HECL) with devices combining both working and counter electrodes and sample confinement on a single chip. The sample area on the electrodes was defined by a hydrophobic ring, which enabled dispensing the reagents and the analyte directly on the electrode. Immunoassay of CRP by HECL using integrated electrodes is a good candidate for a high-sensitivity point-of-care CRP-test, because the concentration range is suitable, miniaturisation of the measurement system has been demonstrated and the assay method with integrated electrodes is easy to use. High-sensitivity CRP tests can be used to monitor the current state of cardiovascular disease and also to predict future cardiovascular problems in apparently healthy people.

  20. Dust particles investigation for future Russian lunar missions.

    Science.gov (United States)

    Dolnikov, Gennady; Horanyi, Mihaly; Esposito, Francesca; Zakharov, Alexander; Popel, Sergey; Afonin, Valeri; Borisov, Nikolay; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Kuznetsov, Ilya; Lyash, Andrey; Vorobyova, Elena; Petrov, Oleg; Lisin, Evgeny

    emission. Dust analyzer instrument PmL for future Russian lender missons intends for investigation the dynamics of dusty plasma near lunar surface. PmL consist of three blocks: Impact Sensor and two Electric Field Sensors. Dust Experiment goals are: 1) Impact sensor to investigate the dynamics of dust particles near the lunar surface (speed, charge, mass, vectors of a fluxes) a) high speed micrometeorites b) secondary particles after micrometeorites soil bombardment c) levitating dust particles due to electrostatic fields PmL instrument will measure dust particle impulses. In laboratory tests we used - min impulse so as 7•10-11 N•c, by SiO2 dust particles, 20-40 µm with velocity about 0,5 -2,5 m/c, dispersion 0.3, and - max impulse was 10-6 N•c with possibility increased it by particles Pb-Sn 0,7 mm with velocity 1 m/c, dispersion ±0.3. Also Impact Sensor will measure the charge of dust particle as far as 10-15 C ( 1000 electrons). In case the charge and impulse of a dust particle are measured we can obtain velocity and mass of them. 2) Electric field Sensor will measure the value and dynamics of the electric fields the lunar surface. Two Electric Field Sensors both are measured the concentration and temperature of charged particles (electrons, ions, dust particles). Uncertainty of measurements is 10%. Electric Field Sensors contain of Lengmure probe. Using Lengmure probe to dark and light Moon surface we can obtain the energy spectra photoelectrons in different period of time. PmL instrument is developing, working out and manufacturing in IKI. Simultaneously with the PmL dust instrument to study lunar dust it would be very important to use an onboard TV system adjusted for imaging physical properties of dust on the lunar surface (adhesion, albedo, porosity, etc), and to collect dust particles samples from the lunar surface to return these samples to the Earth for measure a number of physic-chemical properties of the lunar dust, e.g. a quantum yield of

  1. Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration

    DEFF Research Database (Denmark)

    Nielsen, Morten Ø.; Frederiksen, Per Houmann

    2005-01-01

    In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches, and we consider both parametric and semiparametric estimation methods. The es...... the time domain parametric methods, and (4) without sufficient trimming of scales the wavelet-based estimators are heavily biased.......In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches, and we consider both parametric and semiparametric estimation methods....... The estimators are briefly introduced and compared, and the criteria adopted for measuring finite sample performance are bias and root mean squared error. Most importantly, the simulations reveal that (1) the frequency domain maximum likelihood procedure is superior to the time domain parametric methods, (2) all...

  2. Feasibility Study of Commercial Markets for New Sample Acquisition Devices

    Science.gov (United States)

    Brady, Collin; Coyne, Jim; Bilen, Sven G.; Kisenwether, Liz; Miller, Garry; Mueller, Robert P.; Zacny, Kris

    2010-01-01

    The NASA Exploration Systems Mission Directorate (ESMD) and Penn State technology commercialization project was designed to assist in the maturation of a NASA SBIR Phase III technology. The project was funded by NASA's ESMD Education group with oversight from the Surface Systems Office at NASA Kennedy Space Center in the Engineering Directorate. Two Penn State engineering student interns managed the project with support from Honeybee Robotics and NASA Kennedy Space Center. The objective was to find an opportunity to integrate SBIR-developed Regolith Extractor and Sampling Technology as the payload for the future Lunar Lander or Rover missions. The team was able to identify two potential Google Lunar X Prize organizations with considerable interest in utilizing regolith acquisition and transfer technology.

  3. Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters.

    Science.gov (United States)

    Tyo, J Scott; LaCasse, Charles F; Ratliff, Bradley M

    2009-10-15

    Microgrid polarimeters operate by integrating a focal plane array with an array of micropolarizers. The Stokes parameters are estimated by comparing polarization measurements from pixels in a neighborhood around the point of interest. The main drawback is that the measurements used to estimate the Stokes vector are made at different locations, leading to a false polarization signature owing to instantaneous field-of-view (IFOV) errors. We demonstrate for the first time, to our knowledge, that spatially band limited polarization images can be ideally reconstructed with no IFOV error by using a linear system framework.

  4. Macrophyte species distribution, indices of biotic integrity and sampling intensity in isolated Florida marshes

    Science.gov (United States)

    This study tested macrophyte condition metrics calculated after decreasing the effort and area of sampling by 33% to 66%, as tested in 74 emergent isolated wetlands. Four belted transects from wetland edge to center were established and rooted macrophytes were identified. The eff...

  5. MyMoon: Engaging the “Missing Link” in Lunar Science Exploration through New Media

    Science.gov (United States)

    Shaner, A.; Shupla, C.; Shipp, S. S.; Eriksson, A.

    2009-12-01

    . Contests and polls encourage audience involvement. Semi-monthly webcasts allow audience members to interact directly with scientists, authors, and artists. A guest blog encourages audience responses to current lunar events and provocative viewpoints. Evaluation is an integral component to the MyMoon project. Evaluation data are obtained in short bursts through visitor feedback, prompted by a virtual squirrel who dares visitors to share their impressions, ideas, and interests in lunar science and exploration. Based on evaluation data, the current challenge that faces MyMoon is marketing further to the target audience; numerous approaches are being tested and evaluated. Dittmar, M. 2004, “The Market Study for Space Exploration,” (Houston, TX, Dittmar Associates, Inc.)

  6. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    Directory of Open Access Journals (Sweden)

    A. N. Rousseau

    2007-11-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i municipal clean water program; (ii agricultural nutrient management scenarios; (iii past and future land use changes, as well as (iv determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  7. Integration of sampling based battery state of health estimation method in electric vehicles

    International Nuclear Information System (INIS)

    Ozkurt, Celil; Camci, Fatih; Atamuradov, Vepa; Odorry, Christopher

    2016-01-01

    Highlights: • Presentation of a prototype system with full charge discharge cycling capability. • Presentation of SoH estimation results for systems degraded in the lab. • Discussion of integration alternatives of the presented method in EVs. • Simulation model based on presented SoH estimation for a real EV battery system. • Optimization of number of battery cells to be selected for SoH test. - Abstract: Battery cost is one of the crucial parameters affecting high deployment of Electric Vehicles (EVs) negatively. Accurate State of Health (SoH) estimation plays an important role in reducing the total ownership cost, availability, and safety of the battery avoiding early disposal of the batteries and decreasing unexpected failures. A circuit design for SoH estimation in a battery system that bases on selected battery cells and its integration to EVs are presented in this paper. A prototype microcontroller has been developed and used for accelerated aging tests for a battery system. The data collected in the lab tests have been utilized to simulate a real EV battery system. Results of accelerated aging tests and simulation have been presented in the paper. The paper also discusses identification of the best number of battery cells to be selected for SoH estimation test. In addition, different application options of the presented approach for EV batteries have been discussed in the paper.

  8. The Lunar Magma Ocean (LMO) Paradigm Versus the Realities of Lunar Anorthosites

    Science.gov (United States)

    Treiman, A. H.; Gross, J.

    2018-05-01

    The paradigm of the Lunar Magma Ocean (LMO) is inconsistent with much chemical and compositional data on lunar anorthosites. The paradigm of serial anorthosite diapirism is more consistent, though not a panacea.

  9. An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care.

    Science.gov (United States)

    Choi, Jane Ru; Hu, Jie; Tang, Ruihua; Gong, Yan; Feng, Shangsheng; Ren, Hui; Wen, Ting; Li, XiuJun; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng

    2016-02-07

    With advances in point-of-care testing (POCT), lateral flow assays (LFAs) have been explored for nucleic acid detection. However, biological samples generally contain complex compositions and low amounts of target nucleic acids, and currently require laborious off-chip nucleic acid extraction and amplification processes (e.g., tube-based extraction and polymerase chain reaction (PCR)) prior to detection. To the best of our knowledge, even though the integration of DNA extraction and amplification into a paper-based biosensor has been reported, a combination of LFA with the aforementioned steps for simple colorimetric readout has not yet been demonstrated. Here, we demonstrate for the first time an integrated paper-based biosensor incorporating nucleic acid extraction, amplification and visual detection or quantification using a smartphone. A handheld battery-powered heating device was specially developed for nucleic acid amplification in POC settings, which is coupled with this simple assay for rapid target detection. The biosensor can successfully detect Escherichia coli (as a model analyte) in spiked drinking water, milk, blood, and spinach with a detection limit of as low as 10-1000 CFU mL(-1), and Streptococcus pneumonia in clinical blood samples, highlighting its potential use in medical diagnostics, food safety analysis and environmental monitoring. As compared to the lengthy conventional assay, which requires more than 5 hours for the entire sample-to-answer process, it takes about 1 hour for our integrated biosensor. The integrated biosensor holds great potential for detection of various target analytes for wide applications in the near future.

  10. An integrated rock magnetic and EPR study in soil samples from a hydrocarbon prospective area

    Science.gov (United States)

    González, F.; Aldana, M.; Costanzo-Álvarez, V.; Díaz, M.; Romero, I.

    Magnetic susceptibility (MS) and organic matter free radical concentration (OMFRC) determined by electron paramagnetic resonance, have been measured in soil samples (≈1.5 m depth) from an oil prospective area located at the southern flank of the Venezuelan Andean Range. S-ratios close to 1, as well as high temperature susceptibility analyses, reveal magnetite as the chief magnetic phase in most of these samples. Ethane concentrations, MS and OMFRC normalized data have been plotted against the relative position of 22 sampling sites sequentially arranged from north to south. Although there is not a linear correlation between MS and OMFRC data, these two profiles seem to vary in like fashion. A MS and OMFRC southern anomaly coincides with the zone of highest ethane concentration that overlies a “Cretaceous kitchen”. OMFRC highs could be linked to the degradation or alteration of organic matter, the possible result of hydrocarbon gas leakage, whose surface expression is the stressed fern observed by remote sensing studies previously performed in the area. Ethane anomalies are associated to this seepage that also produces changes in the magnetic mineralogies detected as MS positive anomalies.

  11. Random Sampling with Interspike-Intervals of the Exponential Integrate and Fire Neuron: A Computational Interpretation of UP-States.

    Directory of Open Access Journals (Sweden)

    Andreas Steimer

    Full Text Available Oscillations between high and low values of the membrane potential (UP and DOWN states respectively are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon's implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs of the exponential integrate and fire (EIF model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike's preceding ISI. As we show, the EIF's exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron's ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing

  12. Use of spatially distributed time-integrated sediment sampling networks and distributed fine sediment modelling to inform catchment management.

    Science.gov (United States)

    Perks, M T; Warburton, J; Bracken, L J; Reaney, S M; Emery, S B; Hirst, S

    2017-11-01

    Under the EU Water Framework Directive, suspended sediment is omitted from environmental quality standards and compliance targets. This omission is partly explained by difficulties in assessing the complex dose-response of ecological communities. But equally, it is hindered by a lack of spatially distributed estimates of suspended sediment variability across catchments. In this paper, we demonstrate the inability of traditional, discrete sampling campaigns for assessing exposure to fine sediment. Sampling frequencies based on Environmental Quality Standard protocols, whilst reflecting typical manual sampling constraints, are unable to determine the magnitude of sediment exposure with an acceptable level of precision. Deviations from actual concentrations range between -35 and +20% based on the interquartile range of simulations. As an alternative, we assess the value of low-cost, suspended sediment sampling networks for quantifying suspended sediment transfer (SST). In this study of the 362 km 2 upland Esk catchment we observe that spatial patterns of sediment flux are consistent over the two year monitoring period across a network of 17 monitoring sites. This enables the key contributing sub-catchments of Butter Beck (SST: 1141 t km 2 yr -1 ) and Glaisdale Beck (SST: 841 t km 2 yr -1 ) to be identified. The time-integrated samplers offer a feasible alternative to traditional infrequent and discrete sampling approaches for assessing spatio-temporal changes in contamination. In conjunction with a spatially distributed diffuse pollution model (SCIMAP), time-integrated sediment sampling is an effective means of identifying critical sediment source areas in the catchment, which can better inform sediment management strategies for pollution prevention and control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Random Sampling with Interspike-Intervals of the Exponential Integrate and Fire Neuron: A Computational Interpretation of UP-States.

    Science.gov (United States)

    Steimer, Andreas; Schindler, Kaspar

    2015-01-01

    Oscillations between high and low values of the membrane potential (UP and DOWN states respectively) are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon's implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs) of the exponential integrate and fire (EIF) model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike's preceding ISI. As we show, the EIF's exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron's ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing computational

  14. Lunar domes properties and formation processes

    CERN Document Server

    Lena, Raffaello; Phillips, Jim; Chiocchetta, Maria Teresa

    2013-01-01

    Lunar domes are structures of volcanic origin which are usually difficult to observe due to their low heights. The Lunar Domes Handbook is a reference work on these elusive features. It provides a collection of images for a large number of lunar domes, including telescopic images acquired with advanced but still moderately intricate amateur equipment as well as recent orbital spacecraft images. Different methods for determining the morphometric properties of lunar domes (diameter, height, flank slope, edifice volume) from image data or orbital topographic data are discussed. Additionally, multispectral and hyperspectral image data are examined, providing insights into the composition of the dome material. Several classification schemes for lunar domes are described, including an approach based on the determined morphometric quantities and spectral analyses. Furthermore, the book provides a description of geophysical models of lunar domes, which yield information about the properties of the lava from which the...

  15. Integrated Circuits for Rapid Sample Processing and Electrochemical Detection of Biomarkers

    Science.gov (United States)

    Besant, Justin

    The trade-off between speed and sensitivity of detection is a fundamental challenge in the design of point-of-care diagnostics. As the relevant molecules in many diseases exist natively at extremely low levels, many gold-standard diagnostic tests are designed with high sensitivity at the expense of long incubations needed to amplify the target analytes. The central aim of this thesis is to design new strategies to detect biologically relevant analytes with both high speed and sensitivity. The response time of a biosensor is limited by the ability of the target analyte to accumulate to detectable levels at the sensor surface. We overcome this limitation by designing a range of integrated devices to optimize the flux of the analyte to the sensor by increasing the effective analyte concentration, shortening the required diffusion distance, and confining the analyte in close proximity to the sensor. We couple these devices with novel ultrasensitive electrochemical transduction strategies to convert rare analytes into a detectable signal. We showcase the clinical utility of these approaches with several applications including cancer diagnosis, bacterial identification, and antibiotic susceptibility profiling. We design and optimize a device to isolate rare cancer cells from the bloodstream with near 100% efficiency and 10 000-fold specificity. We analyse pathogen specific nucleic acids by lysing bacteria in close proximity to an electrochemical sensor and find that this approach has 10-fold higher sensitivity than standard lysis in bulk solution. We design an electronic chip to readout the antibiotic susceptibility profile with an hour-long incubation by concentrating bacteria into nanoliter chambers with integrated electrodes. Finally, we report a strategy for ultrasensitive visual readout of nucleic acids as low as 100 fM within 10 minutes using an amplification cascade. The strategies presented could guide the development of fast, sensitive and low-cost diagnostics

  16. SP-100 power system conceptual design for lunar base applications

    International Nuclear Information System (INIS)

    Mason, L.S.; Bloomfield, H.S.; Hainley, D.C.

    1989-01-01

    A conceptual design is presented for a nuclear power system utilizing an SP-100 reactor and multiple Stirling cycle engines for operation on the lunar surface. Based on the results of this study, it was concluded that this power plant could be a viable option for an evolutionary lunar base. The design concept consists of a 2500 kWt (kilowatt thermal) SP-100 reactor coupled to eight free-piston Stirling engines. Two of the engines are held in reserve to provide conversion system redundancy. The remaining engines operate at 91.7 percent of their rated capacity of 150 kWe. The design power level for this system is 825 kWe. Each engine has a pumped heat-rejection loop connected to a heat pipe radiator. Power system performance, sizing, layout configurations, shielding options, and transmission line characteristics are described. System components and integration options are compared for safety, high performance, low mass, and ease of assembly. The power plant was integrated with a proposed human lunar base concept to ensure mission compatibility. This study should be considered a preliminary investigation; further studies are planned to investigate the effect of different technologies on this baseline design

  17. Infrared Lunar Laser Ranging at Calern : Impact on Lunar Dynamics

    Science.gov (United States)

    Viswanathan, Vishnu; Fienga, Agnes; Manche, Herve; Gastineau, Mickael; Courde, Clement; Torre, Jean Marie; Exertier, Pierre; Laskar, Jacques

    2017-04-01

    Introduction: Since 2015, in addition to the traditional green (532nm), infrared (1064nm) has been the preferred wavelength for lunar laser ranging at the Calern lunar laser ranging (LLR) site in France. Due to the better atmospheric transmission of IR with respect to Green, nearly 3 times the number of normal points have been obtained in IR than in Green [1]. Dataset: In our study, in addition to the historical data obtained from various other LLR sites, we include the recent IR normal points obtained from Calern over the 1 year time span (2015-2016), constituting about 4.2% of data spread over 46 years of LLR. Near even distribution of data provided by IR on both the spatial and temporal domain, helps us to improve constraints on the internal structure of the Moon modeled within the planetary ephemeris : INPOP [2]. Data reduction: IERS recommended models have been used in the data reduction software GINS (GRGS,CNES) [3]. Constraints provided by GRAIL [4], on the Lunar gravitational potential and Love numbers have been taken into account in the least-square fit procedure. Earth orientation parameters from KEOF series have been used as per a recent study [5]. Results: New estimates on the dynamical parameters of the lunar core will be presented. Acknowledgements: We thank the lunar laser ranging observers at Observatoire de la Côte d'Azur, France, McDonald Observatory, Texas, Haleakala Observatory, Hawaii, and Apache Point Observatory in New Mexico for providing LLR observations that made this study possible. The research described in this abstract was carried out at Geoazur-CNRS, France, as a part of a PhD thesis funded by Observatoire de Paris and French Ministry of Education and Research. References: [1] Clement C. et al. (2016) submitted to A&A [2] Fienga A. et al. (2015) Celest Mech Dyn Astr, 123: 325. doi:10.1007/s10569-015-9639-y [3] Viswanathan V. et al. (2015) EGU, Abstract 18, 13995 [4] Konopliv A. S. et al. (2013) J. Geophys. Res. Planets, 118, 1415

  18. The Lyman alpha reference sample. II. Hubble space telescope imaging results, integrated properties, and trends

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Melinder, Jens; Rivera-Thorsen, Thøger [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Adamo, Angela [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Schaerer, Daniel [Université de Toulouse, UPS-OMP, IRAP, F-31000 Toulouse (France); Verhamme, Anne; Orlitová, Ivana [Geneva Observatory, University of Geneva, 51 Chemin des Maillettes, CH-1290 Versoix (Switzerland); Mas-Hesse, J. Miguel; Otí-Floranes, Héctor [Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, P.O. Box 78, E-28691 Villanueva de la Cañada (Spain); Cannon, John M.; Pardy, Stephen [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Atek, Hakim [Laboratoire dAstrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire, CH-1290 Sauverny (Switzerland); Kunth, Daniel [Institut d' Astrophysique de Paris, UMR 7095, CNRS and UPMC, 98 bis Bd Arago, F-75014 Paris (France); Laursen, Peter [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Herenz, E. Christian, E-mail: matthew@astro.su.se [Leibniz-Institut für Astrophysik (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2014-02-10

    We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of ≳ 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows f{sub esc}{sup Lyα} of 80%; such objects have not previously been reported at low-z.

  19. The Lyman alpha reference sample. II. Hubble space telescope imaging results, integrated properties, and trends

    International Nuclear Information System (INIS)

    Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Melinder, Jens; Rivera-Thorsen, Thøger; Adamo, Angela; Schaerer, Daniel; Verhamme, Anne; Orlitová, Ivana; Mas-Hesse, J. Miguel; Otí-Floranes, Héctor; Cannon, John M.; Pardy, Stephen; Atek, Hakim; Kunth, Daniel; Laursen, Peter; Herenz, E. Christian

    2014-01-01

    We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of ≳ 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows f esc Lyα of 80%; such objects have not previously been reported at low-z.

  20. Calibration model maintenance in melamine resin production: Integrating drift detection, smart sample selection and model adaptation.

    Science.gov (United States)

    Nikzad-Langerodi, Ramin; Lughofer, Edwin; Cernuda, Carlos; Reischer, Thomas; Kantner, Wolfgang; Pawliczek, Marcin; Brandstetter, Markus

    2018-07-12

    The physico-chemical properties of Melamine Formaldehyde (MF) based thermosets are largely influenced by the degree of polymerization (DP) in the underlying resin. On-line supervision of the turbidity point by means of vibrational spectroscopy has recently emerged as a promising technique to monitor the DP of MF resins. However, spectroscopic determination of the DP relies on chemometric models, which are usually sensitive to drifts caused by instrumental and/or sample-associated changes occurring over time. In order to detect the time point when drifts start causing prediction bias, we here explore a universal drift detector based on a faded version of the Page-Hinkley (PH) statistic, which we test in three data streams from an industrial MF resin production process. We employ committee disagreement (CD), computed as the variance of model predictions from an ensemble of partial least squares (PLS) models, as a measure for sample-wise prediction uncertainty and use the PH statistic to detect changes in this quantity. We further explore supervised and unsupervised strategies for (semi-)automatic model adaptation upon detection of a drift. For the former, manual reference measurements are requested whenever statistical thresholds on Hotelling's T 2 and/or Q-Residuals are violated. Models are subsequently re-calibrated using weighted partial least squares in order to increase the influence of newer samples, which increases the flexibility when adapting to new (drifted) states. Unsupervised model adaptation is carried out exploiting the dual antecedent-consequent structure of a recently developed fuzzy systems variant of PLS termed FLEXFIS-PLS. In particular, antecedent parts are updated while maintaining the internal structure of the local linear predictors (i.e. the consequents). We found improved drift detection capability of the CD compared to Hotelling's T 2 and Q-Residuals when used in combination with the proposed PH test. Furthermore, we found that active

  1. Partial pressures of oxygen, phosphorus and fluorine in some lunar lavas

    Science.gov (United States)

    Nash, W. P.; Hausel, W. D.

    1973-01-01

    Lunar sample 14310 is a feldspar-rich basalt which shows no evidence of shock deformation or recrystallization. Pyroxenes include Mg-rich orthopyroxene, pigeonite and augite; pyroxferroite occurs in the interstitial residuum. Plagioclase feldspars are zoned from An(96) to An(67), and variations in feldspar compositions do not necessarily indicate loss of Na during eruption of the lava. Opaque phases include ilmenite, ulvospinel, metallic iron, troilite, and schreibersite. Both whitlockite and apatite are present, and the interstitial residua contain baddeleyite, tranquillityite and barium-rich sanidine. Theoretical calculations provide estimates of partial pressures of oxygen, phosphorus, and fluorine in lunar magmas. In general, partial pressures of oxygen are restricted by the limiting assemblages of iron-wuestite and ilmenite-iron-rutile; phosphorus partial pressures are higher in lunar magmas than in terrestrial lavas. The occurrence of whitlockite indicates significantly lower fugacities of fluorine in lunar magmas than in terrestrial magmas.

  2. Alteration of Lunar Rock Surfaces through Interaction with the Space Environment

    Science.gov (United States)

    Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.

    2014-01-01

    Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.

  3. Energy for lunar resource exploitation

    Science.gov (United States)

    Glaser, Peter E.

    1992-02-01

    Humanity stands at the threshold of exploiting the known lunar resources that have opened up with the access to space. America's role in the future exploitation of space, and specifically of lunar resources, may well determine the level of achievement in technology development and global economic competition. Space activities during the coming decades will significantly influence the events on Earth. The 'shifting of history's tectonic plates' is a process that will be hastened by the increasingly insistent demands for higher living standards of the exponentially growing global population. Key to the achievement of a peaceful world in the 21st century, will be the development of a mix of energy resources at a societally acceptable and affordable cost within a realistic planning horizon. This must be the theme for the globally applicable energy sources that are compatible with the Earth's ecology. It is in this context that lunar resources development should be a primary goal for science missions to the Moon, and for establishing an expanding human presence. The economic viability and commercial business potential of mining, extracting, manufacturing, and transporting lunar resource based materials to Earth, Earth orbits, and to undertake macroengineering projects on the Moon remains to be demonstrated. These extensive activities will be supportive of the realization of the potential of space energy sources for use on Earth. These may include generating electricity for use on Earth based on beaming power from Earth orbits and from the Moon to the Earth, and for the production of helium 3 as a fuel for advanced fusion reactors.

  4. Long-Term Lunar Radiation Degradation Effects on Materials

    Science.gov (United States)

    Rojdev, Kristina; ORourke, Mary Jane; Koontz, Steve; Alred, John; Hill, Charles; Devivar, Rodrigo; Morera-Felix, Shakira; Atwell, William; Nutt, Steve; Sabbann, Leslie

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is focused on developing technologies for extending human presence beyond low Earth orbit. These technologies are to advance the state-of-the-art and provide for longer duration missions outside the protection of Earth's magnetosphere. One technology of great interest for large structures is advanced composite materials, due to their weight and cost savings, enhanced radiation protection for the crew, and potential for performance improvements when compared with existing metals. However, these materials have not been characterized for the interplanetary space environment, and particularly the effects of high energy radiation, which is known to cause damage to polymeric materials. Therefore, a study focusing on a lunar habitation element was undertaken to investigate the integrity of potential structural composite materials after exposure to a long-term lunar radiation environment. An overview of the study results are presented, along with a discussion of recommended future work.

  5. Critical early mission design considerations for lunar data systems architecture

    Science.gov (United States)

    Hei, Donald J., Jr.; Stephens, Elaine

    1992-01-01

    This paper outlines recent early mission design activites for a lunar data systems architecture. Each major functional element is shown to be strikingly similar when viewed in a common reference system. While this similarity probably deviates with lower levels of decomposition, the sub-functions can always be arranged into similar and dissimilar categories. Similar functions can be implemented as objects - implemented once and reused several times like today's advanced integrated circuits. This approach to mission data systems, applied to other NASA programs, may result in substantial agency implementation and maintenance savings. In today's zero-sum-game budgetary environment, this approach could help to enable a lunar exploration program in the next decade. Several early mission studies leading to such an object-oriented data systems design are recommended.

  6. Production of Synthetic Lunar Simulants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Zybek Advanced Products has proven the ability to produce industrial quantities of lunar simulant materials, including glass, agglutinate and melt breccias. These...

  7. Automation and integration of multiplexed on-line sample preparation with capillary electrophoresis for DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Tan, H.

    1999-03-31

    The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performed in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.

  8. Development of a lunar infrastructure

    Science.gov (United States)

    Burke, J. D.

    If humans are to reside continuously and productively on the Moon, they must be surrounded and supported there by an infrastructure having some attributes of the support systems that have made advanced civilization possible on Earth. Building this lunar infrastructure will, in a sense, be an investment. Creating it will require large resources from Earth, but once it exists it can do much to limit the further demands of a lunar base for Earthside support. What is needed for a viable lunar infrastructure? This question can be approached from two directions. The first is to examine history, which is essentially a record of growing information structures among humans on Earth (tribes, agriculture, specialization of work, education, ethics, arts and sciences, cities and states, technology). The second approach is much less secure but may provide useful insights: it is to examine the minimal needs of a small human community - not just for physical survival but for a stable existence with a net product output. This paper presents a summary, based on present knowledge of the Moon and of the likely functions of a human community there, of some of these infrastructure requirements, and also discusses possible ways to proceed toward meeting early infrastructure needs.

  9. Topography of the Lunar Poles and Application to Geodesy with the Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Mazarico, Erwan; Neumann, Gregory A.; Rowlands, David D.; Smith, David E.; Zuber, Maria T.

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) [1] onboard the Lunar Reconnaissance Orbiter (LRO) [2] has been operating continuously since July 2009 [3], accumulating approx.5.4 billion measurements from 2 billion on-orbit laser shots. LRO s near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, which are each sampled every 2h. With more than 10,000 orbits, high-resolution maps can be constructed [4] and studied [5]. However, this requires careful processing of the raw data, as subtle errors in the spacecraft position and pointing can lead to visible artifacts in the final map. In other locations on the Moon, ground tracks are subparallel and longitudinal separations are typically a few hundred meters. Near the poles, the track intersection angles can be large and the inter-track spacing is small (above 80 latitude, the effective resolution is better than 50m). Precision Orbit Determination (POD) of the LRO spacecraft [6] was performed to satisfy the LOLA and LRO mission requirements, which lead to a significant improvement in the orbit position knowledge over the short-release navigation products. However, with pixel resolutions of 10 to 25 meters, artifacts due to orbit reconstruction still exist. Here, we show how the complete LOLA dataset at both poles can be adjusted geometrically to produce a high-accuracy, high-resolution maps with minimal track artifacts. We also describe how those maps can then feedback to the POD work, by providing topographic base maps with which individual LOLA altimetric measurements can be contributing to orbit changes. These direct altimetry constraints improve accuracy and can be used more simply than the altimetric crossovers [6].

  10. Utility of the Community Integration Questionnaire in a sample of adults with neurological and neuropsychiatric disorders receiving prevocational training.

    Science.gov (United States)

    Tomaszewski, Robert; Mitrushina, Maura

    2015-08-03

    To investigate utility of the Community Integration Questionnaire (CIQ) in a mixed sample of adults with neurological and neuropsychiatric disorders. Cross-sectional, interview-based study. Participants were community-dwelling adults with disabilities resulting from neurological and neuropsychiatric disorders (N = 54), who participated in a pre-vocational readiness and social skills training program. Psychometric properties of the Community Integration Questionnaire (CIQ) were assessed and validated against Mayo-Portland Adaptability Inventory (MPAI) and The Problem Checklist from the New York University Head Injury Family Interview (PCL). Based on the revised scoring procedures, psychometric properties of the CIQ Home Competency scale were excellent, followed by the Total score and Social Integration scale. Productive Activity scale had low content validity and a weak association with the total score. Convergent and discriminant validity of the CIQ were demonstrated by correlation patterns with MPAI scales in the expected direction. Significant relationship was found with PCL Physical/Dependency scale. Significant associations were found with sex, living status, and record of subsequent employment. The results provide support for the use of the CIQ as a measure of participation in individuals with neurological and neuropsychiatric diagnoses and resulting disabilities. Implications for Rehabilitation An important goal of rehabilitation and training programs for individuals with dysfunction of the central nervous system is to promote their participation in social, vocational, and domestic activities. The Community Integration Questionnaire (CIQ) is a brief and efficient instrument for measuring these participation domains. This study demonstrated good psychometric properties and high utility of the CIQ in a sample of 54 individuals participating in a prevocational training program.

  11. Calibration and field performance of membrane-enclosed sorptive coating for integrative passive sampling of persistent organic pollutants in water

    International Nuclear Information System (INIS)

    Vrana, Branislav; Paschke, Albrecht; Popp, Peter

    2006-01-01

    Membrane-enclosed sorptive coating (MESCO) is a miniaturised monitoring device that enables integrative passive sampling of persistent, hydrophobic organic pollutants in water. The system combines the passive sampling with solventless preconcentration of organic pollutants from water and subsequent desorption of analytes on-line into a chromatographic system. Exchange kinetics of chemicals between water and MESCO was studied at different flow rates of water, in order to characterize the effect of variable environmental conditions on the sampler performance, and to identify a method for in situ correction of the laboratory-derived calibration data. It was found that the desorption of chemicals from MESCO into water is isotropic to the absorption of the analytes onto the sampler under the same exposure conditions. This allows for the in situ calibration of the uptake of pollutants using elimination kinetics of performance reference compounds and more accurate estimates of target analyte concentrations. A field study was conducted to test the sampler performance alongside spot sampling. A good agreement of contaminant patterns and water concentrations was obtained by the two sampling techniques. - A robust calibration method of a passive sampling device for monitoring of persistent organic pollutants in water is described

  12. Integrated preservation and sample clean up procedures for studying water ingestion by recreational swimmers via urinary biomarker determination.

    Science.gov (United States)

    Cantú, Ricardo; Shoemaker, Jody A; Kelty, Catherine A; Wymer, Larry J; Behymer, Thomas D; Dufour, Alfred P; Magnuson, Matthew L

    2017-08-22

    The use of cyanuric acid as a biomarker for ingestion of swimming pool water may lead to quantitative knowledge of the volume of water ingested during swimming, contributing to a better understanding of disease resulting from ingestion of environmental contaminants. When swimming pool water containing chlorinated cyanurates is inadvertently ingested, cyanuric acid is excreted quantitatively within 24 h as a urinary biomarker of ingestion. Because the volume of water ingested can be quantitatively estimated by calculation from the concentration of cyanuric acid in 24 h urine samples, a procedure for preservation, cleanup, and analysis of cyanuric acid was developed to meet the logistical demands of large scale studies. From a practical stand point, urine collected from swimmers cannot be analyzed immediately, given requirements of sample collection, shipping, handling, etc. Thus, to maintain quality control to allow confidence in the results, it is necessary to preserve the samples in a manner that ensures as quantitative analysis as possible. The preservation and clean-up of cyanuric acid in urine is complicated because typical approaches often are incompatible with the keto-enol tautomerization of cyanuric acid, interfering with cyanuric acid sample preparation, chromatography, and detection. Therefore, this paper presents a novel integration of sample preservation, clean-up, chromatography, and detection to determine cyanuric acid in 24 h urine samples. Fortification of urine with cyanuric acid (0.3-3.0 mg/L) demonstrated accuracy (86-93% recovery) and high reproducibility (RSD urine suggested sufficient cyanuric acid stability for sample collection procedures, while longer holding times suggested instability of the unpreserved urine. Preserved urine exhibited a loss of around 0.5% after 22 days at refrigerated storage conditions of 4 °C. Published by Elsevier B.V.

  13. Comparing the performance of cluster random sampling and integrated threshold mapping for targeting trachoma control, using computer simulation.

    Directory of Open Access Journals (Sweden)

    Jennifer L Smith

    Full Text Available Implementation of trachoma control strategies requires reliable district-level estimates of trachomatous inflammation-follicular (TF, generally collected using the recommended gold-standard cluster randomized surveys (CRS. Integrated Threshold Mapping (ITM has been proposed as an integrated and cost-effective means of rapidly surveying trachoma in order to classify districts according to treatment thresholds. ITM differs from CRS in a number of important ways, including the use of a school-based sampling platform for children aged 1-9 and a different age distribution of participants. This study uses computerised sampling simulations to compare the performance of these survey designs and evaluate the impact of varying key parameters.Realistic pseudo gold standard data for 100 districts were generated that maintained the relative risk of disease between important sub-groups and incorporated empirical estimates of disease clustering at the household, village and district level. To simulate the different sampling approaches, 20 clusters were selected from each district, with individuals sampled according to the protocol for ITM and CRS. Results showed that ITM generally under-estimated the true prevalence of TF over a range of epidemiological settings and introduced more district misclassification according to treatment thresholds than did CRS. However, the extent of underestimation and resulting misclassification was found to be dependent on three main factors: (i the district prevalence of TF; (ii the relative risk of TF between enrolled and non-enrolled children within clusters; and (iii the enrollment rate in schools.Although in some contexts the two methodologies may be equivalent, ITM can introduce a bias-dependent shift as prevalence of TF increases, resulting in a greater risk of misclassification around treatment thresholds. In addition to strengthening the evidence base around choice of trachoma survey methodologies, this study illustrates

  14. Lunar Science Conference, 5th, Houston, Tex., March 18-22, 1974, Proceedings. Volume 1 - Mineralogy and petrology. Volume 2 Chemical and isotope analyses. Organic chemistry. Volume 3 - Physical properties

    Science.gov (United States)

    Gose, W. A.

    1974-01-01

    Numerous studies on the properties of the moon based on Apollo findings and samples are presented. Topics treated include ages of the lunar nearside light plains and maria, orange material in the Sulpicius Gallus formation at the southwestern edge of Mare Serenitatis, impact-induced fractionation in the lunar highlands, igneous rocks from Apollo 16 rake samples, experimental liquid line of descent and liquid immiscibility for basalt 70017, ion microprobe mass analysis of plagioclase from 'non-mare' lunar samples, grain size and the evolution of lunar soils, chemical composition of rocks and soils at Taurus-Littrow, the geochemical evolution of the moon, U-Th-Pb systematics of some Apollo 17 lunar samples and implications for a lunar basin excavation chronology, volatile-element systematics and green glass in Apollo 15 lunar soils, solar wind nitrogen and indigenous nitrogen in Apollo 17 lunar samples, lunar trapped xenon, solar flare and lunar surface process characterization at the Apollo 17 site, and the permanent and induced magnetic dipole moment of the moon. Individual items are announced in this issue.

  15. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    International Nuclear Information System (INIS)

    Dai Shun; Su Yan; Xiao Yuan; Feng Jian-Qing; Xing Shu-Guo; Ding Chun-Yu

    2014-01-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed

  16. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    Science.gov (United States)

    Dai, Shun; Su, Yan; Xiao, Yuan; Feng, Jian-Qing; Xing, Shu-Guo; Ding, Chun-Yu

    2014-12-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.

  17. Discussion of thermal extraction chamber concepts for Lunar ISRU

    Science.gov (United States)

    Pfeiffer, Matthias; Hager, Philipp; Parzinger, Stephan; Dirlich, Thomas; Spinnler, Markus; Sattelmayer, Thomas; Walter, Ulrich

    The Exploration group of the Institute of Astronautics (LRT) of the Technische Universitüt a München focuses on long-term scenarios and sustainable human presence in space. One of the enabling technologies in this long-term perspective is in-situ resource utilization (ISRU). When dealing with the prospect of future manned missions to Moon and Mars the use of ISRU seems useful and intended. The activities presented in this paper focus on Lunar ISRU. This basically incorporates both the exploitation of Lunar oxygen from natural rock and the extraction of solar wind implanted particles (SWIP) from regolith dust. Presently the group at the LRT is examining possibilities for the extraction of SWIPs, which may provide several gaseous components (such as H2 and N2) valuable to a human presence on the Moon. As a major stepping stone in the near future a Lunar demonstrator/ verification experiment payload is being designed. This experiment, LUISE (LUnar ISru Experiment), will comprise a thermal process chamber for heating regolith dust (grain size below 500m), a solar thermal power supply, a sample distribution unit and a trace gas analysis. The first project stage includes the detailed design and analysis of the extraction chamber concepts and the thermal process involved in the removal of SWIP from Lunar Regolith dust. The technique of extracting Solar Wind volatiles from Regolith has been outlined by several sources. Heating the material to a threshold value seems to be the most reasonable approach. The present paper will give an overview over concepts for thermal extraction chambers to be used in the LUISE project and evaluate in detail the pros and cons of each concept. The special boundary conditions set by solar thermal heating of the chambers as well as the material properties of Regolith in a Lunar environment will be discussed. Both greatly influence the design of the extraction chamber. The performance of the chamber concepts is discussed with respect to the

  18. Man-Made Debris In and From Lunar Orbit

    Science.gov (United States)

    Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    During 1966-1976, as part of the first phase of lunar exploration, 29 manned and robotic missions placed more than 40 objects into lunar orbit. Whereas several vehicles later successfully landed on the Moon and/or returned to Earth, others were either abandoned in orbit or intentionally sent to their destruction on the lunar surface. The former now constitute a small population of lunar orbital debris; the latter, including four Lunar Orbiters and four Lunar Module ascent stages, have contributed to nearly 50 lunar sites of man's refuse. Other lunar satellites are known or suspected of having fallen from orbit. Unlike Earth satellite orbital decays and deorbits, lunar satellites impact the lunar surface unscathed by atmospheric burning or melting. Fragmentations of lunar satellites, which would produce clouds of numerous orbital debris, have not yet been detected. The return to lunar orbit in the 1990's by the Hagoromo, Hiten, Clementine, and Lunar Prospector spacecraft and plans for increased lunar exploration early in the 21st century, raise questions of how best to minimize and to dispose of lunar orbital debris. Some of the lessons learned from more than 40 years of Earth orbit exploitation can be applied to the lunar orbital environment. For the near-term, perhaps the most important of these is postmission passivation. Unique solutions, e.g., lunar equatorial dumps, may also prove attractive. However, as with Earth satellites, debris mitigation measures are most effectively adopted early in the concept and design phase, and prevention is less costly than remediation.

  19. Experimental Study of Lunar and SNC Magmas

    Science.gov (United States)

    Rutherford, Malcolm J.

    1998-01-01

    The research described in this progress report involved the study of petrological, geochemical and volcanic processes that occur on the Moon and the SNC parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the role of volatiles in magmatic processes and on processes of magma evolution on these planets. The work on the lunar volcanic glasses has resulted in some exciting new discoveries over the years of this grant. We discovered small metal blebs initially in the Al5 green glass, and determined the significant importance of this metal in fixing the oxidation state of the parent magma (Fogel and Rutherford, 1995). More recently, we discovered a variety of metal blebs in the Al7 orange glass. Some of these Fe-Ni metal blebs were in the glass; others were in olivine phenocrysts. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption (Weitz et al., 1997) They also yield important information about the composition of the gas phase present, the gas which drove the lunar fire-fountaining. One of the more exciting and controversial findings in our research over the past year has been the possible fractionation of H from D during shock (experimental) of hornblende bearing samples (Minitti et al., 1997). This research is directed at explaining some of the low H2O and high D/H observed in hydrous phases in the SNC meteorites.

  20. Proceedings of the 40th Lunar and Planetary Science Conference

    Science.gov (United States)

    2009-01-01

    The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology

  1. A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests - 13342

    International Nuclear Information System (INIS)

    Thien, Mike G.; Barnes, Steve M.

    2013-01-01

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described. (authors)

  2. A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests - 13342

    Energy Technology Data Exchange (ETDEWEB)

    Thien, Mike G. [Washington River Protection Solutions, LLC, P.O Box 850, Richland WA, 99352 (United States); Barnes, Steve M. [Waste Treatment Plant, 2435 Stevens Center Place, Richland WA 99354 (United States)

    2013-07-01

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described. (authors)

  3. A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests

    International Nuclear Information System (INIS)

    Thien, Mike G.; Barnes, Steve M.

    2013-01-01

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described

  4. Connecting Returned Apollo Soils and Remote Sensing: Application to the Diviner Lunar Radiometer

    Science.gov (United States)

    Greenhagen, B. T.; DonaldsonHanna, K. L.; Thomas, I. R.; Bowles, N. E.; Allen, Carlton C.; Pieters, C. M.; Paige, D. A.

    2014-01-01

    The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context, returned Apollo samples. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. It has been established previously that thermal infrared spectra measured in simulated lunar environment (SLE) are significantly altered from spectra measured under terrestrial or martian conditions. The data presented here were collected at the University of Oxford Simulated Lunar Environment Chamber (SLEC). In SLEC, we simulate the lunar environment by: (1) pumping the chamber to vacuum pressures (less than 10-4 mbar) sufficient to simulate lunar heat transport processes within the sample, (2) cooling the chamber with liquid nitrogen to simulate radiation to the cold space environment, and (3) heating the samples with heaters and lamp to set-up thermal gradients similar to those experienced in the upper hundreds of microns of the lunar surface. We then conducted a comprehensive suite of experiments using different sample preparation and heating conditions on Apollo soils 15071 (maria) and 67701 (highland) and compared the results to Diviner noontime data to select the optimal experimental conditions. This study includes thermal infrared SLE measurements of 10084 (A11 - LM), 12001 (A12 - LM), 14259 (A14 - LM), 15071 (A15 - S1), 15601 (A15 - S9a), 61141 (A16 - S1), 66031 (A16 - S6), 67701 (A16 - S11), and 70181 (A17 - LM). The Diviner dataset includes all six Apollo sites

  5. Lunar landing and launch facilities and operations

    Science.gov (United States)

    1988-01-01

    A preliminary design of a lunar landing and launch facility for a Phase 3 lunar base is formulated. A single multipurpose vehicle for the lunar module is assumed. Three traffic levels are envisioned: 6, 12, and 24 landings/launches per year. The facility is broken down into nine major design items. A conceptual description of each of these items is included. Preliminary sizes, capacities, and/or other relevant design data for some of these items are obtained. A quonset hut tent-like structure constructed of aluminum rods and aluminized mylar panels is proposed. This structure is used to provide a constant thermal environment for the lunar modules. A structural design and thermal analysis is presented. Two independent designs for a bridge crane to unload/load heavy cargo from the lunar module are included. Preliminary investigations into cryogenic propellant storage and handling, landing/launch guidance and control, and lunar module maintenance requirements are performed. Also, an initial study into advanced concepts for application to Phase 4 or 5 lunar bases has been completed in a report on capturing, condensing, and recycling the exhaust plume from a lunar launch.

  6. Lunar ranging instrument for Chandrayaan-1

    Indian Academy of Sciences (India)

    ... Committee on Scientific Values · Project Lifescape · Scientific Data of Public Interest ... Lunar Laser Ranging Instrument (LLRI)proposed for the first Indian lunar ... field by precisely measuring the altitude from a polar orbit around the Moon. ... Laboratory for Electro-Optics Systems, Indian Space Research Organization ...

  7. Armstrong practices in Lunar Module simulator

    Science.gov (United States)

    1969-01-01

    Neil A. Armstrong, Commander for the Apollo 11 Moon-landing mission, practices for the historic event in a Lunar Module simulator in the Flight Crew Training building at KSC. Accompanying Armstrong on the Moon flight will be Command Module Pilot Michael Collins and Lunar Module Pilot Edwin E. Aldrin Jr.

  8. Toxicity of Lunar Dust in Lungs Assessed by Examining Biomarkers in Exposed Mice

    Science.gov (United States)

    Lam, C.-W.; James, J. T.; Zeidler-Erdely, P. C.; Castranova, V.; Young, S. H.; Quan, C. L.; Khan-Mayberry, N.; Taylor, L. A.

    2010-01-01

    NASA is contemplating to build an outpost on the Moon for prolonged human habitation and research. The lunar surface is covered by a layer of soil, of which the finest portion is highly reactive dust. Dust samples of respirable sizes were aerodynamically isolated from two lunar soil samples of different maturities (cosmic exposure ages) collected during the Apollo 16 mission. The lunar dust samples, TiO2, or quartz, suspended in normal saline were given to groups of 5 C57 male mice by intrapharyngeal aspiration at 0. 1, 0.3, or 1.0 mg/mouse. Because lunar dust aggregates rapidly in aqueous media, some tests were conducted with dusts suspended in Survanta/saline (1:1). The mice were euthanized 7 or 30 days later, and their lungs were lavaged to assess the presence of toxicity biomarkers in bronchioalveolar lavage fluids. The overall results showed that the two lunar dust samples were similar in toxicity, they were more toxic than T102 , but less toxic than quartz. This preliminary study is a part of the large study to obtain data for setting exposure limits for astronauts living on the Moon

  9. Determination of hydrogen abundance in selected lunar soils

    Science.gov (United States)

    Bustin, Roberta

    1987-01-01

    Hydrogen was implanted in lunar soil through solar wind activity. In order to determine the feasibility of utilizing this solar wind hydrogen, it is necessary to know not only hydrogen abundances in bulk soils from a variety of locations but also the distribution of hydrogen within a given soil. Hydrogen distribution in bulk soils, grain size separates, mineral types, and core samples was investigated. Hydrogen was found in all samples studied. The amount varied considerably, depending on soil maturity, mineral types present, grain size distribution, and depth. Hydrogen implantation is definitely a surface phenomenon. However, as constructional particles are formed, previously exposed surfaces become embedded within particles, causing an enrichment of hydrogen in these species. In view of possibly extracting the hydrogen for use on the lunar surface, it is encouraging to know that hydrogen is present to a considerable depth and not only in the upper few millimeters. Based on these preliminary studies, extraction of solar wind hydrogen from lunar soil appears feasible, particulary if some kind of grain size separation is possible.

  10. Estimation of lunar FeO abundance based on imaging by LRO Diviner

    International Nuclear Information System (INIS)

    Tang, Xiao; Zhang, Xue-Wei; Chen, Yuan; Zhang, Xiao-Meng; Cai, Wei; Wu, Yun-Zhao; Luo, Xiao-Xing; Jiang, Yun; Xu, Ao-Ao; Wang, Zhen-Chao

    2016-01-01

    Understanding the abundance and distribution characteristics of FeO on the surface of the Moon is important for investigating its evolution. The current high resolution maps of the global FeO abundance are mostly produced with visible and near infrared reflectance spectra. The Christiansen Feature (CF) in mid-infrared has strong sensitivity to lunar minerals and correlates to major elements composing minerals. This paper investigates the possibility of mapping global FeO abundance using the CF values from the Diviner Lunar Radiometer Experiment aboard the Lunar Reconnaissance Orbiter (LRO) mission. A high correlation between the CF values and FeO abundances from the Apollo samples was found. Based on this high correlation, a new global map (±60°) of FeO was produced using the CF map. The results show that the global FeO average is 8.2 wt.%, the highland average is 4.7 wt.%, the global modal abundance is 5.4 wt.% and the lunar mare mode is 15.7 wt.%. These results are close to those derived from data provided by Clementine, the Lunar Prospector Gamma Ray Spectrometer (LP-GRS) and the Chang'e-1 Interference Imaging Spectrometer (IIM), demonstrating the feasibility of estimating FeO abundance based on the Diviner CF data. The near global FeO abundance map shows an enrichment of lunar major elements. (paper)

  11. The Lunar Magma Ocean: Sharpening the Focus on Process and Composition

    Science.gov (United States)

    Rapp, J. F.; Draper, D. S.

    2014-01-01

    The currently accepted model for the formation of the lunar anorthositic crust is by flotation from a crystallizing lunar magma ocean (LMO) shortly following lunar accretion. Anorthositic crust is globally distributed and old, whereas the mare basalts are younger and derived from a source region that has experienced plagioclase extraction. Several attempts at modelling such a crystallization sequence have been made [e.g. 1, 2], but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. This abstract presents results from our ongoing ex-periments simulating LMO crystallization and address-ing a range of variables. We investigate two bulk com-positions, which span most of the range of suggested lunar bulk compositions, from the refractory element enriched Taylor Whole Moon (TWM) [3] to the more Earth-like Lunar Primitive Upper Mantle (LPUM) [4]. We also investigate two potential crystallization mod-els: Fully fractional, where crystallizing phases are separated from the magma as they form and sink (or float in the case of plagioclase) throughout magma ocean solidification; and a two-step process suggested by [1, 5] with an initial stage of equilibrium crystalliza-tion, where crystals remain entrained in the magma before the crystal burden increases viscosity enough that convection slows and the crystals settle, followed by fractional crystallization. Here we consider the frac-tional crystallization part of this process; the equilibri-um cumulates having been determined by [6].

  12. Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.

    2005-01-01

    Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.

  13. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  14. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to those seen in free space. For a well designed shield, the additional mass required to be brought from earth should be less than 1,000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  15. Lunar nitrogen: Secular variation or mixing?

    International Nuclear Information System (INIS)

    Norris, S.J.; Wright, I.P.; Pillinger, C.T.

    1986-01-01

    The two current models to explain the nearly 40% variation of the lunar nitrogen isotopic composition are: (1) secular variation of solar wind nitrogen; and (2) a two component mixing model having a constant, heavy solar wind admixed with varying amounts of indigenous light lunar N (LLN). Both models are needed to explain the step pyrolysis extraction profile. The secular variation model proposes that the low temperature release is modern day solar wind implanted into grain surfaces, the 900 C to 1100 C release is from grain surfaces which were once exposed to the ancient solar wind but which are now trapped inside agglutinates, and the >1100 C release as spallogenic N produced by cosmic rays. The mixing model ascribes the components to solar wind, indigenous lunar N and spallogenic N respectively. An extension of either interpretation is that the light N seen in lunar breccias or deep drill cores represent conditions when more N-14 was available to the lunar surface

  16. APOLLO 10 ASTRONAUT ENTERS LUNAR MODULE SIMULATOR

    Science.gov (United States)

    1969-01-01

    Apollo 10 lunar module pilot Eugene A. Cernan prepares to enter the lunar module simulator at the Flight Crew Training Building at the NASA Spaceport. Cernan, Apollo 10 commander Thomas P. Stafford and John W. Young, command module pilot, are to be launched May 18 on the Apollo 10 mission, a dress rehearsal for a lunar landing later this summer. Cernan and Stafford are to detach the lunar module and drop to within 10 miles of the moon's surface before rejoining Young in the command/service module. Looking on as Cernan puts on his soft helmet is Snoopy, the lovable cartoon mutt whose name will be the lunar module code name during the Apollo 10 flight. The command/service module is to bear the code name Charlie Brown.

  17. Measurement of the integrated Luminosities of cross-section scan data samples around the {\\rm{\\psi }}(3770) mass region

    Science.gov (United States)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Alekseev, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Begzsuren, K.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chang, W. L.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, P. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Cossio, F.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garillon, B.; Garzia, I.; Gilman, A.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, L. M.; Gu, M. H.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Guskov, A.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Irshad, M.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuessner, M.; Kupsc, A.; Kurth, M.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leiber, S.; Leithoff, H.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, J. W.; Li, K. J.; Li, Kang; Li, Ke; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, L. Z.; Libby, J.; Lin, C. X.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, D. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. L.; Liu, H. M.; Liu, Huanhuan; Liu, Huihui; Liu, J. B.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lusso, S.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mangoni, A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu; Muramatsu, H.; Mustafa, A.; Nakhoul, S.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peng, Z. Y.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qi, T. Y.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shan, X. Y.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, X.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tan, Y. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, C. W.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, Meng; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, X.; Xia, Y.; Xiao, D.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, F.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, S. L.; Yang, Y. H.; Yang, Y. X.; Yang, Yifan; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. F.; Zhang, T. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yang; Zhang, Yao; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Q.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, A. N.; Zhu, J.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2018-05-01

    To investigate the nature of the {{\\psi }}(3770) resonance and to measure the cross section for {{{e}}}+{{{e}}}-\\to {{D}}\\bar{{{D}}}, a cross-section scan data sample, distributed among 41 center-of-mass energy points from 3.73 to 3.89 GeV, was taken with the BESIII detector operated at the BEPCII collider in the year 2010. By analyzing the large angle Bhabha scattering events, we measure the integrated luminosity of the data sample at each center-of-mass energy point. The total integrated luminosity of the data sample is 76.16+/- 0.04+/- 0.61 {pb}}-1, where the first uncertainty is statistical and the second systematic. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (11235011, 11335008, 11425524, 11625523, 11635010), the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, the CAS Center for Excellence in Particle Physics (CCEPP), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1332201, U1532257, U1532258), CAS Key Research Program of Frontier Sciences (QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG under Contracts Nos. Collaborative Research Center CRC 1044, FOR 2359, Istituto Nazionale di Fisica Nucleare, Italy, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03), Ministry of Development of Turkey (DPT2006K-120470), National Science and Technology fund, The Swedish Research Council, U. S. Department of Energy (DE-FG02-05ER41374, DE-SC-0010118, DE-SC-0010504, DE-SC-0012069), University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  18. High order resonances in the evolution of the lunar orbit

    International Nuclear Information System (INIS)

    Kovalevsky, J.

    1983-01-01

    This paper deals with the long term evolution of the motion of the Moon or any other natural satellite under the combined influence of gravitational forces (lunar theory) and the tidal effects. The author studied the equations that are left when all the periodic non-resonant terms are eliminated. They describe the evolution of the mean elements of the Moon. Only the equations involving the variation of the semi-major axis are considered here. Simplified equations, preserving the Hamiltonian form of the lunar theory are first considered and solved. It is shown that librations exist only for those terms which have a coefficient in the lunar theory larger than a quantity A which is a function of the magnitude of the tidal effects. The solution of the general case can be derived from a Hamiltonian solution by a method of variation of constants. The crossing of a libration region causes a retardation in the increase of the semi-major axis. These results are confirmed by numerical integration and orders of magnitude of this retardation are given. (Auth.)

  19. Lunar Advanced Volatile Analysis Subsystem: Pressure Transducer Trade Study

    Science.gov (United States)

    Kang, Edward Shinuk

    2017-01-01

    In Situ Resource Utilization (ISRU) is a key factor in paving the way for the future of human space exploration. The ability to harvest resources on foreign astronomical objects to produce consumables and propellant offers potential reduction in mission cost and risk. Through previous missions, the existence of water ice at the poles of the moon has been identified, however the feasibility of water extraction for resources remains unanswered. The Resource Prospector (RP) mission is currently in development to provide ground truth, and will enable us to characterize the distribution of water at one of the lunar poles. Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) is the primary payload on RP that will be used in conjunction with a rover. RESOLVE contains multiple instruments for systematically identifying the presence of water. The main process involves the use of two systems within RESOLVE: the Oxygen Volatile Extraction Node (OVEN) and Lunar Advanced Volatile Analysis (LAVA). Within the LAVA subsystem, there are multiple calculations that depend on accurate pressure readings. One of the most important instances where pressure transducers (PT) are used is for calculating the number of moles in a gas transfer from the OVEN subsystem. As a critical component of the main process, a mixture of custom and commercial off the shelf (COTS) PTs are currently being tested in the expected operating environment to eventually down select an option for integrated testing in the LAVA engineering test unit (ETU).

  20. Estimation of Apollo Lunar Dust Transport using Optical Extinction Measurements

    Science.gov (United States)

    Lane, John E.; Metzger, Philip T.

    2015-04-01

    A technique to estimate mass erosion rate of surface soil during landing of the Apollo Lunar Module (LM) and total mass ejected due to the rocket plume interaction is proposed and tested. The erosion rate is proportional to the product of the second moment of the lofted particle size distribution N(D), and third moment of the normalized soil size distribution S(D), divided by the integral of S(D)ṡD2/v(D), where D is particle diameter and v(D) is the vertical component of particle velocity. The second moment of N(D) is estimated by optical extinction analysis of the Apollo cockpit video. Because of the similarity between mass erosion rate of soil as measured by optical extinction and rainfall rate as measured by radar reflectivity, traditional NWS radar/rainfall correlation methodology can be applied to the lunar soil case where various S(D) models are assumed corresponding to specific lunar sites.

  1. Ferromagnetic resonance studies of lunar core stratigraphy

    Science.gov (United States)

    Housley, R. M.; Cirlin, E. H.; Goldberg, I. B.; Crowe, H.

    1976-01-01

    We first review the evidence which links the characteristic ferromagnetic resonance observed in lunar fines samples with agglutinatic glass produced primarily by micrometeorite impacts and present new results on Apollo 15, 16, and 17 breccias which support this link by showing that only regolith breccias contribute significantly to the characteristic FMR intensity. We then provide a calibration of the amount of Fe metal in the form of uniformly magnetized spheres required to give our observed FMR intensities and discuss the theoretical magnetic behavior to be expected of Fe spheres as a function of size. Finally, we present FMR results on samples from every 5 mm interval in the core segments 60003, 60009, and 70009. These results lead us to suggest: (1) that secondary mixing may generally be extensive during regolith deposition so that buried regolith surfaces are hard to recognize or define; and (2) that local grinding of rocks and pebbles during deposition may lead to short scale fluctuations in grain size, composition, and apparent exposure age of samples.

  2. K-Ca and Rb-Sr Dating of Lunar Granite 14321 Revisited

    Science.gov (United States)

    Simon, Justin I.; Shih, C.-Y.; Nyquist, L. E.

    2011-01-01

    K-Ca and Rb-Sr age determinations were made for a bulk feldspar-rich portion of an Apollo rock fragment of the pristine lunar granite clast (14321,1062), an acid-leached split of the sample, and the leachate. K-Ca and Rb-Sr data were also obtained for a whole rock sample of Apollo ferroan anorthosite (FAN, 15415). The recent detection [1] of widespread intermediate composition plagioclase indicates that the generation of a diversity of evolved lunar magmas maybe more common and therefore more important to our understanding of crust formation than previously believed. Our new data strengthen the K-Ca and Rb-Sr internal isochrons of the well-studied Apollo sample 14321 [2], which along with a renewed effort to study evolved lunar magmas will provide an improved understanding of the petrogenetic history of evolved rocks on the Moon.

  3. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  4. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    Science.gov (United States)

    Wallace, William; Jeevarajan, A. S.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 microns in diameter) was found to produce several problems with mechanical equipment and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent from the lunar surface, much of the finer fraction of this dust began to float and was inhaled by the astronauts. The short visits tothe Moon during Apollo lessened exposure to the dust, but the plan for future lunar stays of up to six months demands that methods be developed to minimize the risk of dust inhalation. The guidelines for what constitutes "safe" exposure will guide the development of engineering controls aimed at preventing the presence of dust in the lunar habitat. This work has shown the effects of grinding on the activation level of lunar dust, the changes in dissolution properties of lunar simulant, and the production of cytokines by cellular systems. Grinding of lunar dust leads to the production of radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Additionally, ground lunar simulant has been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. These results provide evidence of the need for further studies on these materials prior to returning to the lunar surface.

  5. Mineralogical and chemical properties of the lunar regolith

    Science.gov (United States)

    Mckay, David S.; Ming, Douglas W.

    1989-01-01

    The composition of lunar regolith and its attendant properties are discussed. Tables are provided listing lunar minerals, the abundance of plagioclase feldspar, pyroxene, olivine, and ilmenite in lunar materials, typical compositions of common lunar minerals, and cumulative grain-size distribution for a large number of lunar soils. Also provided are charts on the chemistry of breccias, the chemistry of lunar glass, and the comparative chemistry of surface soils for the Apollo sites. Lunar agglutinates, constructional particles made of lithic, mineral, and glass fragments welded together by a glassy matrix containing extremely fine-grained metallic iron and formed by micrometeoric impacts at the lunar surface, are discussed. Crystalline, igneous rock fragments, breccias, and lunar glass are examined. Volatiles implanted in lunar materials and regolith maturity are also addressed.

  6. Sample Return Mission to the South Pole Aitken Basin

    Science.gov (United States)

    Duke, M. B.; Clark, B. C.; Gamber, T.; Lucey, P. G.; Ryder, G.; Taylor, G. J.

    1999-01-01

    affected all of the planets of the inner solar system, and in particular, could have been critical to the history of life on Earth. If the SPA is significantly older, a more orderly cratering history may be inferred. Secondly, melt-rock compositions and clasts in melt rocks or breccias may yield evidence of the composition of the lunar mantle, which could have been penetrated by the impact or exposed by the rebound process that occurred after the impact. Thirdly, study of mare and cryptomare basalts could yield further constraints on the age of SPA and the thermal history of the crust and mantle in that region. The integration of these data may allow inferences to be made on the nature of the impacting body. Secondary science objectives in samples from the SPA could include analysis of the regolith for the latitudinal effects of solar wind irradiation, which should be reduced from its equatorial values; possible remnant magnetization of very old basalts; and evidence for Imbrium Basin ejecta and KREEP materials. If a sampling site is chosen close enough to the poles, it is possible that indirect evidence of polar-ice deposits may be found in the form of oxidized or hydrated regolith constituents. A sample return mission to the Moon may be possible within the constraints of NASA's Discovery Program. Recent progress in the development of sample return canisters for Genesis, Stardust, and Mars Sample Return missions suggests that a small capsule can be returned directly to the ground without a parachute, thus reducing its mass and complexity. Return of a 1-kg sample from the lunar surface would appear to be compatible with a Delta 11 class launch from Earth, or possibly with a piggyback opportunity on a commercial launch to GEO. A total mission price tag on the order of 100 million would be a goal. Target date would be late 2002. Samples would be returned to the curatorial facility at the Johnson Space Center for description and allocation for investigations. Concentration of

  7. Wide-range bipolar pulse conductance instrument employing current and voltage modes with sampled or integrated signal acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Calhoun, R K; Holler, F J [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry; Geiger, jr, R F; Nieman, T A [Illinois Univ., Urbana, IL (United States). Dept. of Chemistry; Caserta, K J [Procter and Gamble Co., Cincinnati, OH (United States)

    1991-11-05

    An instrument for measuring solution conductance using the bipolar pulse technique is described. The instrument is capable of measuring conductances in the range of 5x10{sup -9}-10{Omega}{sup -1} with 1% accuracy or better in as little as 32 {mu}s. Accuracy of 0.001-0.01% is achievable over the range 1x10{sup -6}-1{Omega}{sup -1}. Circuitry and software are described that allow the instrument to adjust automatically the pulse height, pulse duration, excitation mode (current or voltage pulse) and data acquisition mode (sampled or integrated) to acquire data of optimum accuracy and precision. The urease-catalyzed decomposition of urea is used to illustrate the versality of the instrument, and other applications are cited. (author). 60 refs.; 7 figs.; 2 tabs.

  8. NASA Lunar Mining and Construction Activities and Plans

    Science.gov (United States)

    Sanders, Gerald B.; Larson, William E.; Sacksteder, Kurt R.

    2009-01-01

    The Space Exploration Policy enacted by the US Congress in 2005 calls for the US National Aeronautics and Space Administration (NASA) to implement a sustained and affordable human and robotic program to explore the solar system and beyond; Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations; Develop the innovative technologies, knowledge, and infrastructures both to explore and to support decisions about the destinations for human exploration; and Promote international and commercial participation in exploration to further U.S. scientific, security, and economic interests. In 2006, NASA released the Lunar Architecture Study, which proposed establishing a lunar Outpost on the Moon with international participation to extend human presence beyond Earth's orbit, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere. The establishment of sustained human presence on the Moon for science and exploration combines the design, integration, and operation challenges experienced from both the short Apollo lunar missions and the build-up and sustained crew operations of the International Space Station (ISS). Apollo experience reminds developers and mission planners that hardware must operate under extremely harsh environmental and abrasive conditions and every kilogram of mass and payload must be critical to achieve the mission s objectives due to the difficulty and cost of reaching the lunar surface. Experience from the ISS reminds developers and mission planners that integration of all hardware must be designed and planned from the start of the program, operations and evolution of capabilities on a continuous basis are important, and long-term life-cycle costs and logistical needs are equally or more important than minimizing early development and test costs. Overarching all of this is

  9. Chlorine isotopic compositions of apatite in Apollo 14 rocks: Evidence for widespread vapor-phase metasomatism on the lunar nearside ∼4 billion years ago

    Science.gov (United States)

    Potts, Nicola J.; Barnes, Jessica J.; Tartèse, Romain; Franchi, Ian A.; Anand, Mahesh

    2018-06-01

    Compared to most other planetary materials in the Solar System, some lunar rocks display high δ37Cl signatures. Loss of Cl in a H ≪ Cl environment has been invoked to explain the heavy signatures observed in lunar samples, either during volcanic eruptions onto the lunar surface or during large scale degassing of the lunar magma ocean. To explore the conditions under which Cl isotope fractionation occurred in lunar basaltic melts, five Apollo 14 crystalline samples were selected (14053,19, 14072,13, 14073,9, 14310,171 along with basaltic clast 14321,1482) for in situ analysis of Cl isotopes using secondary ion mass spectrometry. Cl isotopes were measured within the mineral apatite, with δ37Cl values ranging from +14.6 ± 1.6‰ to +40.0 ± 2.9‰. These values expand the range previously reported for apatite in lunar rocks, and include some of the heaviest Cl isotope compositions measured in lunar samples to date. The data here do not display a trend between increasing rare earth elements contents and δ37Cl values, reported in previous studies. Other processes that can explain the wide inter- and intra-sample variability of δ37Cl values are explored. Magmatic degassing is suggested to have potentially played a role in fractionating Cl isotope in these samples. Degassing alone, however, could not create the wide variability in isotopic signatures. Our favored hypothesis, to explain small scale heterogeneity, is late-stage interaction with a volatile-rich gas phase, originating from devolatilization of lunar surface regolith rocks ∼4 billion years ago. This period coincides with vapor-induced metasomastism recorded in other lunar samples collected at the Apollo 16 and 17 landing sites, pointing to the possibility of widespread volatile-induced metasomatism on the lunar nearside at that time, potentially attributed to the Imbrium formation event.

  10. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  11. Robotic Lunar Lander Development Status

    Science.gov (United States)

    Ballard, Benjamin; Cohen, Barbara A.; McGee, Timothy; Reed, Cheryl

    2012-01-01

    NASA Marshall Space Flight Center and John Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.

  12. Simultaneous Laser Ranging and Communication from an Earth-Based Satellite Laser Ranging Station to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Neumann, Gregory A.; McIntire, Leva; Zellar, Ronald S.; Davidson, Frederic M.; Fong, Wai H.; hide

    2013-01-01

    We report a free space laser communication experiment from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit through the on board one-way Laser Ranging (LR) receiver. Pseudo random data and sample image files were transmitted to LRO using a 4096-ary pulse position modulation (PPM) signal format. Reed-Solomon forward error correction codes were used to achieve error free data transmission at a moderate coding overhead rate. The signal fading due to the atmosphere effect was measured and the coding gain could be estimated.

  13. Labor market integration, immigration experience, and psychological distress in a multi-ethnic sample of immigrants residing in Portugal.

    Science.gov (United States)

    Teixeira, Ana F; Dias, Sónia F

    2018-01-01

    This study aims at examining how factors relating to immigrants' experience in the host country affect psychological distress (PD). Specifically, we analyzed the association among socio-economic status (SES), integration in the labor market, specific immigration experience characteristics, and PD in a multi-ethnic sample of immigrant individuals residing in Lisbon, Portugal. Using a sample (n = 1375) consisting of all main immigrant groups residing in Portugal's metropolitan area of Lisbon, we estimated multivariable linear regression models of PD regressed on selected sets of socio-economic independent variables. A psychological distress scale was constructed based on five items (feeling physically tired, feeling psychologically tired, feeling happy, feeling full of energy, and feeling lonely). Variables associated with a decrease in PD are being a male (demographic), being satisfied with their income level (SES), living with the core family and having higher number of children (social isolation), planning to remain for longer periods of time in Portugal (migration project), and whether respondents considered themselves to be in good health condition (subjective health status). Study variables negatively associated with immigrants' PD were job insecurity (labor market), and the perception that health professionals were not willing to understand immigrants during a clinical interaction. The study findings emphasized the importance of labor market integration and access to good quality jobs for immigrants' psychological well-being, as well as the existence of family ties in the host country, intention to reside long term in the host country, and high subjective (physical) health. Our research suggests the need to foster cross-national studies of immigrant populations in order to understand the social mechanisms that transverse all migrant groups and contribute to lower psychological well-being.

  14. An integrative pharmacological approach to radio telemetry and blood sampling in pharmaceutical drug discovery and safety assessment.

    Science.gov (United States)

    Litwin, Dennis C; Lengel, David J; Kamendi, Harriet W; Bialecki, Russell A

    2011-01-18

    A successful integration of the automated blood sampling (ABS) and telemetry (ABST) system is described. The new ABST system facilitates concomitant collection of physiological variables with blood and urine samples for determination of drug concentrations and other biochemical measures in the same rat without handling artifact. Integration was achieved by designing a 13 inch circular receiving antenna that operates as a plug-in replacement for the existing pair of DSI's orthogonal antennas which is compatible with the rotating cage and open floor design of the BASi Culex® ABS system. The circular receiving antenna's electrical configuration consists of a pair of electrically orthogonal half-toroids that reinforce reception of a dipole transmitter operating within the coil's interior while reducing both external noise pickup and interference from other adjacent dipole transmitters. For validation, measured baclofen concentration (ABST vs. satellite (μM): 69.6 ± 23.8 vs. 76.6 ± 19.5, p = NS) and mean arterial pressure (ABST vs. traditional DSI telemetry (mm Hg): 150 ± 5 vs.147 ± 4, p = NS) variables were quantitatively and qualitatively similar between rats housed in the ABST system and traditional home cage approaches. The ABST system offers unique advantages over traditional between-group study paradigms that include improved data quality and significantly reduced animal use. The superior within-group model facilitates assessment of multiple physiological and biochemical responses to test compounds in the same animal. The ABST also provides opportunities to evaluate temporal relations between parameters and to investigate anomalous outlier events because drug concentrations, physiological and biochemical measures for each animal are available for comparisons.

  15. The Current Status of the Japanese Penetrator Mission: LUNAR-A

    Science.gov (United States)

    Tanaka, S.; Shiraishi, H.; Fujimura, A.; Hayakawa, H.

    communication link, between the penetrator and the orbiting spacecraft, and the improvement of data processing unit onboard penetrator should be made. And also, in compliance with the recommendation by the external review board, we have made a decision to suspend a development of LUNAR-A spacecraft and to concentrate on the completion of the penetrator technology. To solve the above technological issues, it was estimated to take a couple of years. In this paper, we present the current status of development and some results of the impact tests for component level models and for the full-size integrated model, which both are modified and re-designed.

  16. Understanding the Lunar System Architecture Design Space

    Science.gov (United States)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  17. Lunar Dust Separation for Toxicology Studies

    Science.gov (United States)

    Cooper, Bonnie L.; McKay, D. S.; Riofrio, L. M.; Taylor, L. A.; Gonzalex, C. P.

    2010-01-01

    During the Apollo missions, crewmembers were briefly exposed to dust in the lunar module, brought in after extravehicular activity. When the lunar ascent module returned to micro-gravity, the dust that had settled on the floor now floated into the air, causing eye discomfort and occasional respiratory symptoms. Because our goal is to set an exposure standard for 6 months of episodic exposure to lunar dust for crew on the lunar surface, these brief exposures of a few days are not conclusive. Based on experience with industrial minerals such as sandblasting quartz, an exposure of several months may cause serious damage, while a short exposure may cause none. The detailed characteristics of sub-micrometer lunar dust are only poorly known, and this is the size range of particles that are of greatest concern. We have developed a method for extracting respirable dust (<2.5 micron) from Apollo lunar soils. This method meets stringent requirements that the soil must be kept dry, exposed only to pure nitrogen, and must conserve and recover the maximum amount of both respirable dust and coarser soil. In addition, we have developed a method for grinding coarser lunar soil to produce sufficient respirable soil for animal toxicity testing while preserving the freshly exposed grain surfaces in a pristine state.

  18. Pulmonary Toxicity Studies of Lunar Dust in Rodents

    Science.gov (United States)

    Lam, Chiu-Wing; James, John T.

    2012-01-01

    NASA has been contemplating returning astronauts to the moon for long-duration habitation and research and using it as a stepping-stone to Mars. Other spacefaring nations are planning to send humans to the moon for the first time. The surface of the moon is covered by a layer of fine dust. Fine terrestrial dusts, if inhaled, are known to pose a health risk to humans. Some Apollo crews briefly exposed to moon dust that adhered to spacesuits and became airborne in the Lunar Module reported eye and throat irritation. The habitable area of any lunar landing vehicle or outpost would inevitably become contaminated with lunar dust. To assess the health risks of exposure of humans to airborne lunar dust, we evaluated the toxicity of Apollo 14 moon dust in animal lungs. Studies of the pulmonary toxicity of a dust are generally first done by intratracheal instillation (ITI) of aqueous suspensions of the test dust into the lungs of rodents. If a test dust is irritating or cytotoxic to the lungs, the alveolar macrophages, after phagocytizing the dust particles, will release cellular messengers to recruit white blood cells (WBCs) and to induce dilation of blood capillary walls to make them porous, allowing the WBCs to gain access to the alveolar space. The dilation of capillary walls also allows serum proteins and water entering the lung. Besides altering capillary integrity, a toxic dust can also directly kill the cells that come into contact with it or ingest it, after which the dead cells would release their contents, including lactate dehydrogenase (a common enzyme marker of cell death or tissue damage). In the treated animals, we lavaged the lungs 1 and 4 weeks after the dust instillation and measured the concentrations of these biomarkers of toxicity in the bronchioalveolar lavage fluids to determine the toxicity of the dust. To assess whether the inflammation and cellular injury observed in the biomarker study would lead to persistent or progressive histopathological

  19. A celestial assisted INS initialization method for lunar explorers.

    Science.gov (United States)

    Ning, Xiaolin; Wang, Longhua; Wu, Weiren; Fang, Jiancheng

    2011-01-01

    The second and third phases of the Chinese Lunar Exploration Program (CLEP) are planning to achieve Moon landing, surface exploration and automated sample return. In these missions, the inertial navigation system (INS) and celestial navigation system (CNS) are two indispensable autonomous navigation systems which can compensate for limitations in the ground based navigation system. The accurate initialization of the INS and the precise calibration of the CNS are needed in order to achieve high navigation accuracy. Neither the INS nor the CNS can solve the above problems using the ground controllers or by themselves on the lunar surface. However, since they are complementary to each other, these problems can be solved by combining them together. A new celestial assisted INS initialization method is presented, in which the initial position and attitude of the explorer as well as the inertial sensors' biases are estimated by aiding the INS with celestial measurements. Furthermore, the systematic error of the CNS is also corrected by the help of INS measurements. Simulations show that the maximum error in position is 300 m and in attitude 40″, which demonstrates this method is a promising and attractive scheme for explorers on the lunar surface.

  20. A Celestial Assisted INS Initialization Method for Lunar Explorers

    Directory of Open Access Journals (Sweden)

    Jiancheng Fang

    2011-07-01

    Full Text Available The second and third phases of the Chinese Lunar Exploration Program (CLEP are planning to achieve Moon landing, surface exploration and automated sample return. In these missions, the inertial navigation system (INS and celestial navigation system (CNS are two indispensable autonomous navigation systems which can compensate for limitations in the ground based navigation system. The accurate initialization of the INS and the precise calibration of the CNS are needed in order to achieve high navigation accuracy. Neither the INS nor the CNS can solve the above problems using the ground controllers or by themselves on the lunar surface. However, since they are complementary to each other, these problems can be solved by combining them together. A new celestial assisted INS initialization method is presented, in which the initial position and attitude of the explorer as well as the inertial sensors’ biases are estimated by aiding the INS with celestial measurements. Furthermore, the systematic error of the CNS is also corrected by the help of INS measurements. Simulations show that the maximum error in position is 300 m and in attitude 40″, which demonstrates this method is a promising and attractive scheme for explorers on the lunar surface.

  1. Multivariate statistical analysis - an application to lunar materials

    International Nuclear Information System (INIS)

    Deb, M.

    1978-01-01

    The compositional characteristics of clinopyroxenes and spinels - two minerals considered to be very useful in deciphering lunar history, have been studied using the multivariate statistical method of principal component analysis. The mineral-chemical data used are from certain lunar rocks and fines collected by Apollo 11, 12, 14 and 15 and Luna 16 and 20 missions, representing mainly the mare basalts and also non-mare basalts, breccia and rock fragments from the highland regions, in which a large number of these minerals have been analyzed. The correlations noted in the mineral compositions, indicating substitutional relationships, have been interpreted on the basis of available crystal-chemical and petrological informations. Compositional trends for individual specimens have been delineated and compared by producing ''principal latent vector diagrams''. The percent variance of the principal components denoted by the eigenvalues, have been evaluated in terms of the crystallization history of the samples. Some of the major petrogenetic implications of this study concern the role of early formed cumulate phases in the near-surface fractionation of mare basalts, mixing of mineral compositions in the highland regolith and the subsolidus reduction trends in lunar spinels. (auth.)

  2. Construction material processed using lunar simulant in various environments

    Science.gov (United States)

    Chase, Stan; Ocallaghan-Hay, Bridget; Housman, Ralph; Kindig, Michael; King, John; Montegrande, Kevin; Norris, Raymond; Vanscotter, Ryan; Willenborg, Jonathan; Staubs, Harry

    1995-01-01

    The manufacture of construction materials from locally available resources in space is an important first step in the establishment of lunar and planetary bases. The objective of the CoMPULSIVE (Construction Material Processed Using Lunar Simulant In Various Environments) experiment is to develop a procedure to produce construction materials by sintering or melting Johnson Space Center Simulant 1 (JSC-1) lunar soil simulant in both earth-based (1-g) and microgravity (approximately 0-g) environments. The characteristics of the resultant materials will be tested to determine its physical and mechanical properties. The physical characteristics include: crystalline, thermal, and electrical properties. The mechanical properties include: compressive tensile, and flexural strengths. The simulant, placed in a sealed graphite crucible, will be heated using a high temperature furnace. The crucible will then be cooled by radiative and forced convective means. The core furnace element consists of space qualified quartz-halogen incandescent lamps with focusing mirrors. Sample temperatures of up to 2200 C are attainable using this heating method.

  3. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  4. Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.

    2012-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at http://www.lpi.usra.edu/nlsi/education/.

  5. The Lunar Transit Telescope (LTT) - An early lunar-based science and engineering mission

    Science.gov (United States)

    Mcgraw, John T.

    1992-01-01

    The Sentinel, the soft-landed lunar telescope of the LTT project, is described. The Sentinel is a two-meter telescope with virtually no moving parts which accomplishes an imaging survey of the sky over almost five octaves of the electromagnetic spectrum from the ultraviolet into the infrared, with an angular resolution better than 0.1 arsec/pixel. The Sentinel will incorporate innovative techniques of interest for future lunar-based telescopes and will return significant engineering data which can be incorporated into future lunar missions. The discussion covers thermal mapping of the Sentinel, measurement of the cosmic ray flux, lunar dust, micrometeoroid flux, the lunar atmosphere, and lunar regolith stability and seismic activity.

  6. Respiratory Toxicity of Lunar Highland Dust

    Science.gov (United States)

    James, John T.; Lam, Chiu-wing; Wallace, William T.

    2009-01-01

    Lunar dust exposures occurred during the Apollo missions while the crew was on the lunar surface and especially when microgravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes and in some cases respiratory symptoms were elicited. NASA s vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust need to be assessed. NASA has performed this assessment with a series of in vitro and in vivo tests on authentic lunar dust. Our approach is to "calibrate" the intrinsic toxicity of lunar dust by comparison to a nontoxic dust (TiO2) and a highly toxic dust (quartz) using intratrachael instillation of the dusts in mice. A battery of indices of toxicity is assessed at various time points after the instillations. Cultures of selected cells are exposed to test dusts to assess the adverse effects on the cells. Finally, chemical systems are used to assess the nature of the reactivity of various dusts and to determine the persistence of reactivity under various environmental conditions that are relevant to a space habitat. Similar systems are used to assess the dissolution of the dust. From these studies we will be able to set a defensible inhalation exposure standard for aged dust and predict whether we need a separate standard for reactive dust. Presently-available data suggest that aged lunar highland dust is slightly toxic, that it can adversely affect cultured cells, and that the surface reactivity induced by grinding the dust persists for a few hours after activation.

  7. Lunar terrain mapping and relative-roughness analysis

    Science.gov (United States)

    Rowan, Lawrence C.; McCauley, John F.; Holm, Esther A.

    1971-01-01

    Terrain maps of the equatorial zone (long 70° E.-70° W. and lat 10° N-10° S.) were prepared at scales of 1:2,000,000 and 1:1,000,000 to classify lunar terrain with respect to roughness and to provide a basis for selecting sites for Surveyor and Apollo landings as well as for Ranger and Lunar Orbiter photographs. The techniques that were developed as a result of this effort can be applied to future planetary exploration. By using the best available earth-based observational data and photographs 1:1,000,000-scale and U.S. Geological Survey lunar geologic maps and U.S. Air Force Aeronautical Chart and Information Center LAC charts, lunar terrain was described by qualitative and quantitative methods and divided into four fundamental classes: maria, terrae, craters, and linear features. Some 35 subdivisions were defined and mapped throughout the equatorial zone, and, in addition, most of the map units were illustrated by photographs. The terrain types were analyzed quantitatively to characterize and order their relative-roughness characteristics. Approximately 150,000 east-west slope measurements made by a photometric technique (photoclinometry) in 51 sample areas indicate that algebraic slope-frequency distributions are Gaussian, and so arithmetic means and standard deviations accurately describe the distribution functions. The algebraic slope-component frequency distributions are particularly useful for rapidly determining relative roughness of terrain. The statistical parameters that best describe relative roughness are the absolute arithmetic mean, the algebraic standard deviation, and the percentage of slope reversal. Statistically derived relative-relief parameters are desirable supplementary measures of relative roughness in the terrae. Extrapolation of relative roughness for the maria was demonstrated using Ranger VII slope-component data and regional maria slope data, as well as the data reported here. It appears that, for some morphologically homogeneous

  8. Estimation of Apollo lunar dust transport using optical extinction measurements

    OpenAIRE

    Lane, John E.; Metzger, Philip T.

    2015-01-01

    A technique to estimate mass erosion rate of surface soil during landing of the Apollo Lunar Module (LM) and total mass ejected due to the rocket plume interaction is proposed and tested. The erosion rate is proportional to the product of the second moment of the lofted particle size distribution N(D), and third moment of the normalized soil size distribution S(D), divided by the integral of S(D)D^2/v(D), where D is particle diameter and v(D) is the vertical component of particle velocity. Th...

  9. Lunar Impact Flash Locations from NASA's Lunar Impact Monitoring Program

    Science.gov (United States)

    Moser, D. E.; Suggs, R. M.; Kupferschmidt, L.; Feldman, J.

    2015-01-01

    Meteoroids are small, natural bodies traveling through space, fragments from comets, asteroids, and impact debris from planets. Unlike the Earth, which has an atmosphere that slows, ablates, and disintegrates most meteoroids before they reach the ground, the Moon has little-to-no atmosphere to prevent meteoroids from impacting the lunar surface. Upon impact, the meteoroid's kinetic energy is partitioned into crater excavation, seismic wave production, and the generation of a debris plume. A flash of light associated with the plume is detectable by instruments on Earth. Following the initial observation of a probable Taurid impact flash on the Moon in November 2005,1 the NASA Meteoroid Environment Office (MEO) began a routine monitoring program to observe the Moon for meteoroid impact flashes in early 2006, resulting in the observation of over 330 impacts to date. The main objective of the MEO is to characterize the meteoroid environment for application to spacecraft engineering and operations. The Lunar Impact Monitoring Program provides information about the meteoroid flux in near-Earth space in a size range-tens of grams to a few kilograms-difficult to measure with statistical significance by other means. A bright impact flash detected by the program in March 2013 brought into focus the importance of determining the impact flash location. Prior to this time, the location was estimated to the nearest half-degree by visually comparing the impact imagery to maps of the Moon. Better accuracy was not needed because meteoroid flux calculations did not require high-accuracy impact locations. But such a bright event was thought to have produced a fresh crater detectable from lunar orbit by the NASA spacecraft Lunar Reconnaissance Orbiter (LRO). The idea of linking the observation of an impact flash with its crater was an appealing one, as it would validate NASA photometric calculations and crater scaling laws developed from hypervelocity gun testing. This idea was

  10. Zinnia Germination and Lunar Soil Amendment

    Science.gov (United States)

    Reese, Laura

    2017-01-01

    Germination testing was performed to determine the best method for germinating zinnias. This method will be used to attempt to germinate the zinnia seeds produced in space. It was found that seed shape may be critically important in determining whether a seed will germinate or not. The ability of compost and worm castings to remediate lunar regolith simulant for plant growth was tested. It was found that neither treatment effectively improves plant growth in lunar regolith simulant. A potential method of improving lunar regolith simulant by mixing it with arcillite was discovered.

  11. Polar lunar power ring: Propulsion energy resource

    Science.gov (United States)

    Galloway, Graham Scott

    1990-01-01

    A ring shaped grid of photovoltaic solar collectors encircling a lunar pole at 80 to 85 degrees latitude is proposed as the primary research, development, and construction goal for an initial lunar base. The polar Lunar Power Ring (LPR) is designed to provide continuous electrical power in ever increasing amounts as collectors are added to the ring grid. The LPR can provide electricity for any purpose indefinitely, barring a meteor strike. The associated rail infrastructure and inherently expandable power levels place the LPR as an ideal tool to power an innovative propulsion research facility or a trans-Jovian fleet. The proposed initial output range is 90 Mw to 90 Gw.

  12. The new lunar ephemeris INPOP17a and its application to fundamental physics

    Science.gov (United States)

    Viswanathan, V.; Fienga, A.; Minazzoli, O.; Bernus, L.; Laskar, J.; Gastineau, M.

    2018-05-01

    We present here the new INPOP lunar ephemeris, INPOP17a. This ephemeris is obtained through the numerical integration of the equations of motion and of rotation of the Moon, fitted over 48 yr of lunar laser ranging (LLR) data. We also include the 2 yr of infrared LLR data acquired at the Grasse station between 2015 and 2017. Tests of the universality of free-fall are performed. We find no violation of the principle of equivalence at the (-3.8 ± 7.1) × 10-14 level. A new interpretation in the frame of dilaton theories is also proposed.

  13. Germinating the 2050 Cis-Lunar Econosphere

    Science.gov (United States)

    Scott, David W.; Tinker, Michael L.; Nall, Mark E.; Wright, Gregory M.

    2015-01-01

    In early 2013, the Marshall Space Flight Center (MSFC) Director and MSFC's Office of Strategic Analysis and Communications (OSAC) chartered a diverse team for a six-week "sprint" to speculate (in a disciplined manner) and paint (with broad brush strokes) a picture of how earth, space, and public/private entities might be operating and relating to each other...in the year 2100. Two 12-person groups of civil servants, one with members having 15 years or less of NASA experience and the other with more senior members, worked independently and then compared and integrated their conclusions. In 2014, the "Space 2100" team, with some new team members and different group boundaries, ran a longer sprint to a) develop more detailed estimates of the operations and economics of space activities in the vicinity of the Earth and Moon in the 2050 time frame, b) identify evolutionary steps and viable paths needed to make that a reality, and c) recommend actions to enable and invigorate those steps. This paper explores Space 2100's first two sprints and their projections of NASA's role in what will likely be a highly networked international space industry and cis-lunar infrastructure.

  14. Lunar occultation observations of the Crab Nebula

    International Nuclear Information System (INIS)

    Maloney, F.P.

    1977-01-01

    Three lunar of occultations of the Crab Nebula were observed, two at 114 MHz and one at 26.3 MHz, during the 1974 series of events. The higher frequency observations were deconvolved of diffraction effects to yield four strip integrated brightness profiles of the Nebula, with an effective resolution of 30 arc-seconds. These four profiles were Fourier inverted and cleaned of sidelobe structure to synthesize a two-dimensional map of the Nebula. At 114 MHz, the Nebula is composed of a broad envelope of emission which contains several smaller sources. The attenuation of the low radio frequency radiation by the thermal hydrogen in the filaments is considered as a possible mechanism to explain these new data. The 26.3 MHz observations indicate the presence of a bright, localized source containing greater than 80% of the flux of the Nebula. The position of the source is confined by the data to a narrow strip centered at the pulsar position. Both sets of data are compared with past occultation observations

  15. Integration of continuous-flow sampling with microchip electrophoresis using poly(dimethylsiloxane)-based valves in a reversibly sealed device.

    Science.gov (United States)

    Li, Michelle W; Martin, R Scott

    2007-07-01

    Here we describe a reversibly sealed microchip device that incorporates poly(dimethylsiloxane) (PDMS)-based valves for the rapid injection of analytes from a continuously flowing stream into a channel network for analysis with microchip electrophoresis. The microchip was reversibly sealed to a PDMS-coated glass substrate and microbore tubing was used for the introduction of gas and fluids to the microchip device. Two pneumatic valves were incorporated into the design and actuated on the order of hundreds of milliseconds, allowing analyte from a continuously flowing sampling stream to be injected into an electrophoresis separation channel. The device was characterized in terms of the valve actuation time and pushback voltage. It was also found that the addition of sodium dodecyl sulfate (SDS) to the buffer system greatly increased the reproducibility of the injection scheme and enabled the analysis of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide. Results from continuous injections of a 0.39 nL fluorescein plug into the optimized system showed that the injection process was reproducible (RSD of 0.7%, n = 10). Studies also showed that the device was capable of monitoring off-chip changes in concentration with a device lag time of 90 s. Finally, the ability of the device to rapidly monitor on-chip concentration changes was demonstrated by continually sampling from an analyte plug that was derivatized upstream from the electrophoresis/continuous flow interface. A reversibly sealed device of this type will be useful for the continuous monitoring and analysis of processes that occur either off-chip (such as microdialysis sampling) or on-chip from other integrated functions.

  16. RESOLVE: Bridge between early lunar ISRU and science objectives

    Science.gov (United States)

    Taylor, G.; Sanders, G.; Larson, W.; Johnson, K.

    2007-08-01

    and make direct measurements. With this in mind, NASA initiated development of a payload named RESOLVE (Regolith & Environment Science and Oxygen & Lunar Volatile Extraction) that could be flown to the lunar poles and answer the questions surrounding the hydrogen: what's its form? how much is there? how deep or distributed is it? To do this, RESOLVE will use a drill to take a 1-2 meter core sample, crush and heat sample segments of the core in an oven and monitor the amount and type of volatile gases that evolve with a gas chromatograph (GC). RESOLVE will also selectively capture both hydrogen gas and water as a secondary method of quantification. A specialized camera that is coupled with a Raman spectrometer will allow core samples to be microscopically examined while also determining its mineral composition and possible water content before heating. Because RESOLVE is aimed at demonstrating capabilities and techniques that might be later used for ISRU, a multi-use oven is utilized with the ability to produce oxygen using the hydrogen reduction method. SCIENCE BENEFITS: In the process of answering the hydrogen question, the RESOLVE instrument suite will provide data that can address a number of other scientific questions and debate issues, especially the sources of volatiles and reactions that might take place in cold traps. It should be noted that the original instrument suite for RESOLVE was selected to accomplish the largest number of ISRU and science objectives as possible within the limited funding available. Complementary instruments are noted when additional science objectives can be accomplished. Incorporation of these new instruments into RESOLVE and potential partnerships is an area of near-term interest. Sources of Volatiles: The main proposed sources are episodic comet impacts, moreor- less continuous micrometeorite (both comet and asteroidal) impacts, solar wind bombardment, occasional volcanic emissions from the interior, and episodic delivery of

  17. Characterization and Distribution of Lunar Mare Basalt Types Using Remote Sensing Techniques. Ph.D. Thesis

    Science.gov (United States)

    Pieters, C.

    1977-01-01

    The types of basal to be found on the moon were identified using reflectance spectra from a variety of lunar mare surfaces and craters as well as geochemical interpretations of laboratory measurements of reflectance from lunar, terrestrial, and meteoritic samples. Findings indicate that major basaltic units are not represented in lunar sample collections. The existence of late stage high titanium basalts is confirmed. All maria contain lateral variations of compositionally heterogenous basalts; some are vertically inhomogenous with distinctly different subsurface composition. Some basalt types are spectrally gradational, suggesting minor variations in composition. Mineral components of unsampled units can be defined if spectra are obtained with sufficient spectral coverage (.3 to 2.5 micron m) and spatial resolution (approximating .5 km).

  18. Burn Delay Analysis of the Lunar Orbit Insertion for Korea Pathfinder Lunar Orbiter

    Science.gov (United States)

    Bae, Jonghee; Song, Young-Joo; Kim, Young-Rok; Kim, Bangyeop

    2017-12-01

    The first Korea lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO), has been in development since 2016. After launch, the KPLO will execute several maneuvers to enter into the lunar mission orbit, and will then perform lunar science missions for one year. Among these maneuvers, the lunar orbit insertion (LOI) is the most critical maneuver because the KPLO will experience an extreme velocity change in the presence of the Moon’s gravitational pull. However, the lunar orbiter may have a delayed LOI burn during operation due to hardware limitations and telemetry delays. This delayed burn could occur in different captured lunar orbits; in the worst case, the KPLO could fly away from the Moon. Therefore, in this study, the burn delay for the first LOI maneuver is analyzed to successfully enter the desired lunar orbit. Numerical simulations are performed to evaluate the difference between the desired and delayed lunar orbits due to a burn delay in the LOI maneuver. Based on this analysis, critical factors in the LOI maneuver, the periselene altitude and orbit period, are significantly changed and an additional delta-V in the second LOI maneuver is required as the delay burn interval increases to 10 min from the planned maneuver epoch.

  19. Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Industrialization

    Science.gov (United States)

    Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Loucks, Mike; Carrico, John; Policastri, Daniel

    2017-01-01

    A new concept study was initiated to examine the architecture needed to gradually develop an economical, evolvable and sustainable lunar infrastructure using a public/private partnerships approach. This approach would establish partnership agreements between NASA and industry teams to develop a lunar infrastructure system that would be mutually beneficial. This approach would also require NASA and its industry partners to share costs in the development phase and then transfer operation of these infrastructure services back to its industry owners in the execution phase. These infrastructure services may include but are not limited to the following: lunar cargo transportation, power stations, communication towers and satellites, autonomous rover operations, landing pads and resource extraction operations. The public/private partnerships approach used in this study leveraged best practices from NASA's Commercial Orbital Transportation Services (COTS) program which introduced an innovative and economical approach for partnering with industry to develop commercial cargo services to the International Space Station. This program was planned together with the ISS Commercial Resupply Services (CRS) contracts which was responsible for initiating commercial cargo delivery services to the ISS for the first time. The public/private partnerships approach undertaken in the COTS program proved to be very successful in dramatically reducing development costs for these ISS cargo delivery services as well as substantially reducing operational costs. To continue on this successful path towards installing economical infrastructure services for LEO and beyond, this new study, named Lunar COTS (Commercial Operations and Transport Services), was conducted to examine extending the NASA COTS model to cis-lunar space and the lunar surface. The goals of the Lunar COTS concept are to: 1) develop and demonstrate affordable and commercial cis-lunar and surface capabilities, such as lunar cargo

  20. Real-Time Science Operations to Support a Lunar Polar Volatiles Rover Mission

    Science.gov (United States)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.; hide

    2014-01-01

    Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the approx. 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field

  1. LRO-LAMP Observations of the Lunar Exosphere Coordinated with LADEE

    Science.gov (United States)

    Grava, C.; Retherford, K. D.; Greathouse, T. K.; Gladstone, R.; Hurley, D.; Cook, J. C.; Stern, S. A.; Feldman, P. D.; Kaufmann, D. E.; Miles, P. F.; Pryor, W. R.; Halekas, J. S.

    2014-12-01

    The polar orbiting Lunar Reconnaissance Orbiter's (LRO) Lyman Alpha Mapping Project (LAMP) carried out an atmospheric campaign during the month of December 2013, at the same time the Lunar Atmospheric and Dust Environment Explorer (LADEE) mission was sampling the lunar exosphere in a retrograde equatorial orbit. Observations of the lunar exosphere were performed by LAMP during a solar "beta-90" geometry, i.e. riding along the lunar terminator. During this geometry, the LAMP nadir-pointed line of sight to the nightside surface also includes illuminated columns of foreground emissions from exospheric species, which is invaluable in the study of the tenuous lunar exosphere. Other types of maneuvers to probe the lunar exosphere were also performed by LAMP/LRO during this campaign. During backward pitch slews, the LRO spacecraft was pitched to look opposite its direction of motion to a point just inside the limb in the nightside region around the polar terminator. Forward pitch slews were also obtained, and the angles of 63 deg or 77 deg from nadir were set depending on the polar region observed. Finally, during lateral roll slews, LRO rotated by ~60 deg towards the nightside limb, maximizing the amount of illuminated atmosphere in the foreground probed by the LAMP field of view. We extract day to day density variations on helium and/or upper limits for numerous other species that were accessible to both LAMP and LADEE (e.g., Ar, Ne, O, and H2). Moreover, constraints on helium density will complement measurements of solar wind alpha particles (He++) from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon's Interaction with the Sun) mission. This comparison will provide a comprehensive picture of composition, abundance, and spatial and temporal variations of volatiles of the lunar exosphere, combining equatorial (LADEE) and polar (LAMP) measurements for the first time. Volatiles in the lunar exosphere, especially water, are of paramount

  2. A Virtual Simulation Environment for Lunar Rover: Framework and Key Technologies

    Directory of Open Access Journals (Sweden)

    Yan-chun Yang

    2008-06-01

    Full Text Available Lunar rover development involves a large amount of validation works in realistic operational conditions, including its mechanical subsystem and on-board software. Real tests require equipped rover platform and a realistic terrain. It is very time consuming and high cost. To improve the development efficiency, a rover simulation environment called RSVE that affords real time capabilities with high fidelity has been developed. It uses fractional Brown motion (fBm technique and statistical properties to generate lunar surface. Thus, various terrain models for simulation can be generated through changing several parameters. To simulate lunar rover evolving on natural and unstructured surface with high realism, the whole dynamics of the multi-body systems and complex interactions with soft ground is integrated in this environment. An example for path planning algorithm and controlling algorithm testing in this environment is tested. This simulation environment runs on PC or Silicon Graphics.

  3. A Virtual Simulation Environment for Lunar Rover: Framework and Key Technologies

    Directory of Open Access Journals (Sweden)

    Yan-chun Yang

    2008-11-01

    Full Text Available Lunar rover development involves a large amount of validation works in realistic operational conditions, including its mechanical subsystem and on-board software. Real tests require equipped rover platform and a realistic terrain. It is very time consuming and high cost. To improve the development efficiency, a rover simulation environment called RSVE that affords real time capabilities with high fidelity has been developed. It uses fractional Brown motion (fBm technique and statistical properties to generate lunar surface. Thus, various terrain models for simulation can be generated through changing several parameters. To simulate lunar rover evolving on natural and unstructured surface with high realism, the whole dynamics of the multi-body systems and complex interactions with soft ground is integrated in this environment. An example for path planning algorithm and controlling algorithm testing in this environment is tested. This simulation environment runs on PC or Silicon Graphics.