WorldWideScience

Sample records for luminous spiral galaxies

  1. GHASP: an Hα kinematical survey of spiral galaxies - XI. Distribution of luminous and dark matter in spiral and irregular nearby galaxies using WISE photometry.

    Science.gov (United States)

    Korsaga, M.; Carignan, C.; Amram, P.; Epinat, B.; Jarrett, T. H.

    2018-04-01

    We present the mass distribution of a sample of 121 nearby galaxies with high quality optical velocity fields and available infra-red WISE 3.4 μm data. Contrary to previous studies, this sample covers all morphological types and is not biased toward late-type galaxies. These galaxies are part of the Fabry-Perot kinematical GHASP survey of spirals and irregular nearby galaxies. Combining the kinematical data to the WISE surface brightness data probing the emission from the old stellar population, we derive mass models allowing us to compare the luminous to the dark matter halo mass distribution in the optical regions of those galaxies. Dark matter (DM) models are constructed using the isothermal core profile and the Navarro-Frenk-White cuspy profile. We allow the M/L of the baryonic disc to vary or we keep it fixed, constrained by stellar evolutionary models (WISE W1-W2 color) and we carry out best fit (BFM) and pseudo-isothermal maximum disc (MDM) models. We found that the MDM provides M/L values four times higher than the BFM, suggesting that disc components, on average, tend to be maximal. The main results are: (i) the rotation curves of most galaxies are better fitted with core rather than cuspy profiles; (ii) the relation between the parameters of the DM and of the luminous matter components mostly depends on morphological types. More precisely, the distribution of the DM inside galaxies depends on whether or not the galaxy has a bulge.

  2. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, T.P.K.; Verheijen, M.; Westfall, K.; Bershady, M.; Andersen, D.; Swaters, R.

    2013-01-01

    We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass

  3. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.

    We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass

  4. The DiskMass Survey : VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.

    We present dynamically- determined rotation- curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum- disk hypothesis and to quantify properties of their dark- matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical

  5. Rebuilding Spiral Galaxies

    Science.gov (United States)

    2005-01-01

    Major Observing Programme Leads to New Theory of Galaxy Formation Summary Most present-day large galaxies are spirals, presenting a disc surrounding a central bulge. Famous examples are our own Milky Way or the Andromeda Galaxy. When and how did these spiral galaxies form? Why do a great majority of them present a massive central bulge? An international team of astronomers [1] presents new convincing answers to these fundamental questions. For this, they rely on an extensive dataset of observations of galaxies taken with several space- and ground-based telescopes. In particular, they used over a two-year period, several instruments on ESO's Very Large Telescope. Among others, their observations reveal that roughly half of the present-day stars were formed in the period between 8,000 million and 4,000 million years ago, mostly in episodic burst of intense star formation occurring in Luminous Infrared Galaxies. From this and other evidence, the astronomers devised an innovative scenario, dubbed the "spiral rebuilding". They claim that most present-day spiral galaxies are the results of one or several merger events. If confirmed, this new scenario could revolutionise the way astronomers think galaxies formed. PR Photo 02a/05: Luminosity - Oxygen Abundance Relation for Galaxies (VLT) PR Photo 02b/05: The Spiral Rebuilding Scenario A fleet of instruments How and when did galaxies form? How and when did stars form in these island universes? These questions are still posing a considerable challenge to present-day astronomers. Front-line observational results obtained with a fleet of ground- and space-based telescopes by an international team of astronomers [1] provide new insights into these fundamental issues. For this, they embarked on an ambitious long-term study at various wavelengths of 195 galaxies with a redshift [2] greater than 0.4, i.e. located more than 4000 million light-years away. These galaxies were studied using ESO's Very Large Telescope, as well as the

  6. Colours and morphology of spiral galaxies

    International Nuclear Information System (INIS)

    Wyse, R.F.G.

    1981-01-01

    Tinsley has proposed that late-type spirals have relatively more non-luminous material than early-type spirals. A re-examination of the data indicates that this proposal is equally consistent with dark matter being more dominant in barred galaxies than in unbarred galaxies. Neither conclusion can be firm, since the dataset is far from ideal. (author)

  7. PTF 10fqs: A LUMINOUS RED NOVA IN THE SPIRAL GALAXY MESSIER 99

    International Nuclear Information System (INIS)

    Kasliwal, Mansi M.; Kulkarni, Shri R.; Quimby, Robert M.; Ofek, Eran O.; Arcavi, Iair; Gal-Yam, Avishay; Green, Yoav; Yaron, Ofer; Nugent, Peter; Jacobsen, Janet; Poznanski, Dovi; Fox, Derek B.; Howell, Jacob L.; Bradley Cenko, S.; Kleiser, Io; Bloom, Joshua S.; Miller, Adam; Li Weidong; Filippenko, Alexei V.; Starr, Dan

    2011-01-01

    The Palomar Transient Factory (PTF) is systematically charting the optical transient and variable sky. A primary science driver of PTF is building a complete inventory of transients in the local universe (distance less than 200 Mpc). Here, we report the discovery of PTF 10fqs, a transient in the luminosity 'gap' between novae and supernovae. Located on a spiral arm of Messier 99, PTF 10fqs has a peak luminosity of M r = -12.3, red color (g - r = 1.0), and is slowly evolving (decayed by 1 mag in 68 days). It has a spectrum dominated by intermediate-width Hα (∼930 km s -1 ) and narrow calcium emission lines. The explosion signature (the light curve and spectra) is overall similar to that of M85 OT2006-1, SN 2008S, and NGC 300 OT. The origin of these events is shrouded in mystery and controversy (and in some cases, in dust). PTF 10fqs shows some evidence of a broad feature (around 8600 A) that may suggest very large velocities (∼10,000 km s -1 ) in this explosion. Ongoing surveys can be expected to find a few such events per year. Sensitive spectroscopy, infrared monitoring, and statistics (e.g., disk versus bulge) will eventually make it possible for astronomers to unravel the nature of these mysterious explosions.

  8. Galaxy Zoo: dust in spiral galaxies

    Science.gov (United States)

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anže; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-05-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4mag for the ugri passbands (estimating 0.3mag of extinction in z band). We split the sample into `bulgy' (early-type) and `discy' (late-type) spirals using the SDSS fracdeV (or fDeV) parameter and show that the average face-on colour of `bulgy' spirals is redder than the average edge-on colour of `discy' spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disc ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with discy spirals at Mr ~ -21.5mag having the most reddening - more than twice as much as both the lowest luminosity and most massive, bulge-dominated spirals. An increase in dust content is well known for more luminous galaxies, but the decrease of the trend for the most luminous has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. This could be an inadequacy in the Milky Way extinction law (when applied to external galaxies), but more likely indicates the need for a wider range of dust-star geometries. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering. This publication has been made possible by the participation of more than

  9. Are spiral galaxies heavy smokers?

    International Nuclear Information System (INIS)

    Davies, J.; Disney, M.; Phillipps, S

    1990-01-01

    The dustiness of spiral galaxies is discussed. Starburst galaxies and the shortage of truly bright spiral galaxies is cited as evidence that spiral galaxies are far dustier than has been thought. The possibility is considered that the dust may be hiding missing mass

  10. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Albada, T.S. van; Sancisi, R.

    1986-01-01

    Mass models of spiral galaxies based on the observed light distribution, assuming constant M/L for bulge and disc, are able to reproduce the observed rotation curves in the inner regions, but fail to do so increasingly towards and beyond the edge of the visible material. The discrepancy in the outer region can be accounted for by invoking dark matter; some galaxies require at least four times as much dark matter as luminous matter. There is no evidence for a dependence on galaxy luminosity or morphological type. Various arguments support the idea that a distribution of visible matter with constant M/L is responsible for the circular velocity in the inner region, i.e. inside approximately 2.5 disc scalelengths. Luminous matter and dark matter seem to 'conspire' to produce the flat observed rotation curves in the outer region. It seems unlikely that this coupling between disc and halo results from the large-scale gravitational interaction between the two components. Attempts to determine the shape of dark halos have not yet produced convincing results. (author)

  11. Lopsided spiral galaxies

    International Nuclear Information System (INIS)

    Jog, Chanda J.; Combes, Francoise

    2009-01-01

    The light distribution in the disks of many galaxies is 'lopsided' with a spatial extent much larger along one half of a galaxy than the other, as seen in M101. Recent observations show that the stellar disk in a typical spiral galaxy is significantly lopsided, indicating asymmetry in the disk mass distribution. The mean amplitude of lopsidedness is 0.1, measured as the Fourier amplitude of the m=1 component normalized to the average value. Thus, lopsidedness is common, and hence it is important to understand its origin and dynamics. This is a new and exciting area in galactic structure and dynamics, in contrast to the topic of bars and two-armed spirals (m=2) which has been extensively studied in the literature. Lopsidedness is ubiquitous and occurs in a variety of settings and tracers. It is seen in both stars and gas, in the outer disk and the central region, in the field and the group galaxies. The lopsided amplitude is higher by a factor of two for galaxies in a group. The lopsidedness has a strong impact on the dynamics of the galaxy, its evolution, the star formation in it, and on the growth of the central black hole and on the nuclear fuelling. We present here an overview of the observations that measure the lopsided distribution, as well as the theoretical progress made so far to understand its origin and properties. The physical mechanisms studied for its origin include tidal encounters, gas accretion and a global gravitational instability. The related open, challenging problems in this emerging area are discussed

  12. Nature of galaxy spiral arms

    International Nuclear Information System (INIS)

    Efremov, Yu.N.

    1984-01-01

    The nature of galaxy spiral arms is discussed in a popular form. Two approaches in the theory of spiral arms are considered; they are related to the problem of differential galaxy rotation and the spiral structure wave theory. The example of Galaxy M31 is considered to compare the structural peculiarity of its spiral arms with the wave theory predictions. The situation in the central and south-eastern part of arm S4 in Galaxy M31 noted to be completely explained by the wave theory and modern concepts on the origin of massive stars

  13. Barred spiral structure of galaxies

    International Nuclear Information System (INIS)

    Chen, Z.; Weng, s.; Xu, M.

    1982-01-01

    Observational data indicate the grand design of spiral or barred spiral structure in disk galaxies. The problem of spiral structure has been thoroughly investigated by C. C. Lin and his collaborators, but yet the problem of barred spiral structure has not been investigated systematically, although much work has been done, such as in Ref. 3--7. Using the gasdynamic model for galaxies and a method of integral transform presented in Ref. 1, we investigated the barred spiral structure and obtained an analytical solution. It gives the large-scale pattern of barred-spirals, which is in fairly good agreement with observational data

  14. Accretion Disk Spectra of the Ultra-Luminous X-Ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T

    2003-12-11

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M{sub solar}). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  15. Global extinction in spiral galaxies

    NARCIS (Netherlands)

    Tully, RB; Pierce, MJ; Saunders, W; Verheijen, MAW; Witchalls, PL

    Magnitude-limited samples of spiral galaxies drawn from the Ursa Major and Pisces Clusters are used to determine their extinction properties as a function of inclination. Imaging photometry is available for 87 spirals in the B, R, I, and K' bands. Extinction causes systematic scatter in

  16. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Persic, M.; Salucci, P.

    1990-01-01

    The Tully-Fisher relation is used to probe dark matter (DM) in the optical regions of spiral galaxies. By establishing it at several different isophotal radii in an appropriate sample of 58 galaxies with good B-band photometry and rotation curves, it is shown that some of its attributes (such as scatter, residuals, nonlinearity, and bias) dramatically decrease moving from the disk edge inward. This behavior challenges any mass model which assumes no DM or a luminosity-independent DM mass fraction interior to the optical radius of spiral galaxies. 58 refs

  17. Model for the local spiral structure of the galaxy

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1976-01-01

    The spatial distribution of the most luminous stars, associations, clusters, and H II regions in the region l = 270 0 to 30 0 reveal a major spiral arm, Sagittarius-Carina, which can be observed to 9 or 10 kpc from the sun in the direction l = 290 0 to 305 0 . Evidence is also presented for a spur at l = 305 0 to 310 0 on the inner side of the Saggitarius-Carina arm. The noncircular motions observed in the Carina and Sagittarius spiral features agree in both magnitude and direction and support the suggestion that Sagittarius-Carina is a major spiral arm. A model is presented for the local spiral structure with wide, massive, spiral arms which show fragmentation in our region of the Galaxy. On the basis of the optical spiral structure, the Milky Way is an Sc type spiral galaxy, perhaps of the M 101 type

  18. Low surface brightness spiral galaxies

    International Nuclear Information System (INIS)

    Romanishin, W.

    1980-01-01

    This dissertation presents an observational overview of a sample of low surface brightness (LSB) spiral galaxies. The sample galaxies were chosen to have low surface brightness disks and indications of spiral structure visible on the Palomar Sky Survey. They are of sufficient angular size (diameter > 2.5 arcmin), to allow detailed surface photometry using Mayall 4-m prime focus plates. The major findings of this dissertation are: (1) The average disk central surface brightness of the LSB galaxies is 22.88 magnitude/arcsec 2 in the B passband. (2) From broadband color measurements of the old stellar population, we infer a low average stellar metallicity, on the order of 1/5 solar. (3) The spectra and optical colors of the HII regions in the LSB galaxies indicate a lack of hot ionizing stars compared to HII regions in other late-type galaxies. (4) The average surface mass density, measured within the radius containing half the total mass, is less than half that of a sample of normal late-type spirals. (5) The average LSB galaxy neutral hydrogen mass to blue luminosity ratio is about 0.6, significantly higher than in a sample of normal late-type galaxies. (6) We find no conclusive evidence of an abnormal mass-to-light ratio in the LSB galaxies. (7) Some of the LSB galaxies exhibit well-developed density wave patterns. (8) A very crude calculation shows the lower metallicity of the LSB galaxies compared with normal late-type spirals might be explained simply by the deficiency of massive stars in the LSB galaxies

  19. Polarization study of spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Ward-Thompson, D

    1987-01-01

    Optical polarimetry results are presented for four spiral galaxies: NGC 5194 (M51), NGC 1068, NGC 4565 and NGC 4594 (M104). M51 and NGC 1068 show spiral polarization patterns interpreted as indicating a spiral magnetic field in each case. NGC 4565 and M104 show polarizations in their dust lanes which are parallel to their galactic planes, and which are interpreted in terms of a magnetic field in the plane of each. It is hypothesized that the observed magnetic fields may be linked to galactic shocks. A discussion of the origin of galactic magnetic fields concludes that there is not evidence that necessitates a primordial magnetic field.

  20. A study of spiral galaxies

    International Nuclear Information System (INIS)

    Wevers, B.M.H.R.

    1984-01-01

    Attempts have been made to look for possible correlations between integral properties of spiral galaxies as a function of morphological type. To investigate this problem, one needs the detailed distribution of both the gaseous and the stellar components for a well-defined sample of spiral galaxies. A sample of about 20 spiral galaxies was therefore defined; these galaxies were observed in the 21 cm neutral hydrogen line with the Westerbork Synthesis Radio Telescope and in three broad-band optical colours with the 48-inch Palomar Smidt Telescope. First, an atlas of the combined radio and optical observations of 16 nearby northern-hemisphere spiral galaxies is presented. Luminosity profiles are discussed and the scale lengths of the exponential disks and extrapolated central surface brightnesses are derived, as well as radial color distributions; azimuthal surface brightness distributions and rotation curves. Possible correlations with optical features are investigated. It is found that 20 to 50 per cent of the total mass is in the disk. (Auth.)

  1. Galaxy Zoo: dust in spiral galaxies star

    OpenAIRE

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anze; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-01-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24 276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 mag for the ugri passbands (estimating 0.3 mag of extinction in z band). We split the sample into ‘bulgy’ (early-type) and ‘discy’ (late-typ...

  2. TESTING THEORIES IN BARRED-SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Martínez-García, Eric E.

    2012-01-01

    According to one version of the recently proposed 'manifold' theory that explains the origin of spirals and rings in relation to chaotic orbits, galaxies with stronger bars should have a higher spiral arms pitch angle when compared to galaxies with weaker bars. A subsample of barred-spiral galaxies in the Ohio State University Bright Galaxy Survey was used to analyze the spiral arms pitch angle. These were compared with bar strengths taken from the literature. It was found that the galaxies in which the spiral arms maintain a logarithmic shape for more than 70° seem to corroborate the predicted trend.

  3. The rotation of spiral galaxies.

    Science.gov (United States)

    Rubin, V C

    1983-06-24

    There is accumulating evidence that as much as 90 percent of the mass of the universe is nonluminous and is clumped, halo-like, around individual galaxies. The gravitational force of this dark matter is presumed to be responsible for the high rotational velocities of stars and gas in the disks of spiral galaxie. At present, the form of the dark matter is unknown. Possible candidates span a range in mass of 10(70), from non-zero-mass neutrinos to massive black holes.

  4. Multiple mechanisms quench passive spiral galaxies

    Science.gov (United States)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  5. Mass of the spirals galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Maupome, L; Pismis, P; Aguilar, L [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1981-01-01

    In an earlier paper we have found that the total mass of galaxies-especially of the spirals-based on values published until 1975, decreased as the Hubble type varied from Sa through Sc and Irregulars. It was also pointed out that masses determined from the hydrogen 21-cm line were higher than the optically determined masses. To investigate the cause of these tendencies we have estimated the masses using an analytic rotation curve of Brandt adjusted to the optical observations in order to include all the mass of a galaxy up to the last observed point. Although the masses computed in this manner were found to be larger, as expected, the decrease of mass with Hubble type found earlier is confirmed. However, there is a discrepancy in the earlier types (Sa, Sab) in that their radio-masses are smaller than the optically determined ones. At present, the cause of this is not clear.

  6. ANGULAR-MOMENTUM IN BINARY SPIRAL GALAXIES

    NARCIS (Netherlands)

    OOSTERLOO, T

    In order to investigate the relative orientations of spiral galaxies in pairs, the distribution of the angle between the spin-vectors for a new sample of 40 binary spiral galaxies is determined. From this distribution it is found, contrary to an earlier result obtained by Helou (1984), that there is

  7. Simple theory of how spiral galaxies acquire their principal global properties

    International Nuclear Information System (INIS)

    Burstein, D.; Sarazin, C.L.

    1983-01-01

    The strongest correlations among the global properties of spiral galaxies are the power law correlations between luminosity and rotation velocity (the Tully-Fisher relation) and between luminosity and luminous radius. Both of these relations are derived from a single density-radius power-law relation for spiral galaxies, assuming that the total mass-to-luminosity ratio is fixed by the Hubble type of the spiral, and that spirals gain their angular momentum through tidal interactions. The predictions of this simple theory are consistent with the observed luminosity and mass properties of the Hubble type-restricted samples of spiral galaxies studied by Rubin et al. This model suggests that many of the physical properties of spiral galaxies, and of the Hubble sequence, originate before or during the formation of galaxies

  8. Statistical analysis of metallicity in spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Galeotti, P [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale)

    1981-04-01

    A principal component analysis of metallicity and other integral properties of 33 spiral galaxies is presented; the involved parameters are: morphological type, diameter, luminosity and metallicity. From the statistical analysis it is concluded that the sample has only two significant dimensions and additonal tests, involving different parameters, show similar results. Thus it seems that only type and luminosity are independent variables, being the other integral properties of spiral galaxies correlated with them.

  9. EVOLUTION OF THE MOST LUMINOUS DUSTY GALAXIES

    International Nuclear Information System (INIS)

    Weedman, Daniel W.; Houck, James R.

    2009-01-01

    A summary of mid-infrared continuum luminosities arising from dust is given for very luminous galaxies, L IR > 10 12 L sun , with 0.005 0.7 in the 9.7 μm silicate absorption feature (i.e., half of the continuum is absorbed) and having equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon feature ν (8 μm) for the most luminous obscured AGNs is found to scale as (1+z) 2.6 to z = 2.8. For unobscured AGNs, the scaling with redshift is similar, but luminosities νL ν (8 μm) are approximately three times greater for the most luminous sources. Using both obscured and unobscured AGNs having total infrared fluxes from the Infrared Astronomical Satellite, empirical relations are found between νL ν (8 μm) and L IR . Combining these relations with the redshift scaling of luminosity, we conclude that the total infrared luminosities for the most luminous obscured AGNs, L IR (AGN obscured ) in L sun , scale as log L IR (AGN obscured ) = 12.3 ± 0.25 + 2.6(±0.3)log(1+z), and for the most luminous unobscured AGNs, scale as log L IR (AGN1) = 12.6(±0.15) + 2.6(±0.3)log(1+z). We previously determined that the most luminous starbursts scale as log L IR (SB) = 11.8 ± 0.3 + 2.5(±0.3)log(1+z), indicating that the most luminous AGNs are about 10 times more luminous than the most luminous starbursts. Results are consistent with obscured and unobscured AGNs having the same total luminosities with differences arising only from orientation, such that the obscured AGNs are observed through very dusty clouds which extinct about 50% of the intrinsic luminosity at 8 μm. Extrapolations of observable f ν (24 μm) to z = 6 are made using evolution results for these luminous sources. Both obscured and unobscured AGNs should be detected to z ∼ 6 by Spitzer surveys with f ν (24 μm) > 0.3 mJy, even without luminosity evolution for z > 2.5. By contrast, the most luminous starbursts cannot be detected for z > 3, even if luminosity evolution continues beyond z = 2.5.

  10. Analysis of spiral components in 16 galaxies

    International Nuclear Information System (INIS)

    Considere, S.; Athanassoula, E.

    1988-01-01

    A Fourier analysis of the intensity distributions in the plane of 16 spiral galaxies of morphological types from 1 to 7 is performed. The galaxies processed are NGC 300,598,628,2403,2841,3031,3198,3344,5033,5055,5194,5247,6946,7096,7217, and 7331. The method, mathematically based upon a decomposition of a distribution into a superposition of individual logarithmic spiral components, is first used to determine for each galaxy the position angle PA and the inclination ω of the galaxy plane onto the sky plane. Our results, in good agreement with those issued from different usual methods in the literature, are discussed. The decomposition of the deprojected galaxies into individual spiral components reveals that the two-armed component is everywhere dominant. Our pitch angles are then compared to the previously published ones and their quality is checked by drawing each individual logarithmic spiral on the actual deprojected galaxy images. Finally, the surface intensities for angular periodicities of interest are calculated. A choice of a few of the most important ones is used to elaborate a composite image well representing the main spiral features observed in the deprojected galaxies

  11. Infrared emission and tidal interactions of spiral galaxies

    International Nuclear Information System (INIS)

    Byrd, G.G.

    1987-01-01

    Computer simulations of tidal interactions of spiral galaxies are used to attempt to understand recent discoveries about infrared (IR) emitting galaxies. It is found that the stronger tidal perturbation by a companion the more disk gas clouds are thrown into nucleus crossing orbits and the greater the velocity jumps crossing spiral arms. Both these tidally created characteristics would create more IR emission by high speed cloud collisions and more IR via effects of recently formed stars. This expectation at greater tidal perturbation matches the observation of greater IR emission for spiral galaxies with closer and/or more massive companions. The greater collision velocities found at stronger perturbations on the models will also result in higher dust temperature in the colliding clouds. In the IR pairs examined, most have only one member, the larger, detected and when both are detected, the larger is always the more luminous. In simulations and in a simple analytic description of the strong distance dependence of the tidal force, it is found that the big galaxy of a pair is more strongly affected than the small

  12. The present-day galaxy population in spiral galaxies

    NARCIS (Netherlands)

    Peletier, Reynier; Antonelli, LA; Limongi, M; Menci, N; Tornambe, A; Brocato, E; Raimondo, G

    2009-01-01

    Although there are many more stellar population studies of elliptical and lenticular galaxies, studies of spiral galaxies are catching up, due to higher signal to noise data on one hand, and better analysis methods on the other. Here I start by discussing some modern methods of analyzing integrated

  13. Spherically symmetric relativistic model for spiral galaxies and dense stars

    International Nuclear Information System (INIS)

    Hojman, R.; Rodrigues, L.M.C.; Sasse, F.D.

    1990-01-01

    The behaviour of the pressure and the density as well as the gravitational field of a dense star are studied in some detail. For such a purpose and to take into account relativistic effects, we find a family of exact solutions of the Tolman-Oppenheimer-Volkov equation, which contains as a particular case solutions corresponding to a γ-law equation of state. The mentioned family can also be used to model the (luminous or dark) matter content of spiral galaxies, as it fits the observed data for their orbital velocities profiles. (author)

  14. THE MOST LUMINOUS GALAXIES DISCOVERED BY WISE

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chao-Wei; Eisenhardt, Peter R. M.; Stern, Daniel; Moustakas, Leonidas A. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Wu, Jingwen; Wright, Edward L. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Assef, Roberto J. [Núcleo de Astronomía de la Facultad deIngeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Blain, Andrew W. [Department of Physics and Astronomy, University of Leicester, 1 University Road, Leicester, LE1 7RH (United Kingdom); Bridge, Carrie R.; Sayers, Jack [Division of Physics, Math, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Benford, Dominic J.; Leisawitz, David T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Cutri, Roc M.; Masci, Frank J.; Yan, Lin [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Griffith, Roger L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Jarrett, Thomas H. [Astronomy Department, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Lonsdale, Carol J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Petty, Sara M. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Stanford, S. Adam, E-mail: Chao-Wei.Tsai@jpl.nasa.gov [Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616 (United States); and others

    2015-06-01

    We present 20 Wide-field Infrared Survey Explorer (WISE)-selected galaxies with bolometric luminosities L{sub bol} > 10{sup 14} L{sub ☉}, including five with infrared luminosities L{sub IR} ≡ L{sub (rest} {sub 8–1000} {sub μm)} > 10{sup 14} L{sub ☉}. These “extremely luminous infrared galaxies,” or ELIRGs, were discovered using the “W1W2-dropout” selection criteria which requires marginal or non-detections at 3.4 and 4.6 μm (W1 and W2, respectively) but strong detections at 12 and 22 μm in the WISE survey. Their spectral energy distributions are dominated by emission at rest-frame 4–10 μm, suggesting that hot dust with T{sub d} ∼ 450 K is responsible for the high luminosities. These galaxies are likely powered by highly obscured active galactic nuclei (AGNs), and there is no evidence suggesting these systems are beamed or lensed. We compare this WISE-selected sample with 116 optically selected quasars that reach the same L{sub bol} level, corresponding to the most luminous unobscured quasars in the literature. We find that the rest-frame 5.8 and 7.8 μm luminosities of the WISE-selected ELIRGs can be 30%–80% higher than that of the unobscured quasars. The existence of AGNs with L{sub bol} > 10{sup 14} L{sub ☉} at z > 3 suggests that these supermassive black holes are born with large mass, or have very rapid mass assembly. For black hole seed masses ∼10{sup 3} M{sub ☉}, either sustained super-Eddington accretion is needed, or the radiative efficiency must be <15%, implying a black hole with slow spin, possibly due to chaotic accretion.

  15. WARM MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Lu, N.; Zhao, Y.; Xu, C. K.; Mazzarella, J. M.; Howell, J.; Appleton, P.; Lord, S.; Schulz, B. [Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125 (United States); Gao, Y. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Armus, L.; Díaz-Santos, T.; Surace, J. [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Isaak, K. G. [ESA Astrophysics Missions Division, ESTEC, P.O. Box 299, 2200-AG Noordwijk (Netherlands); Petric, A. O. [Gemini Observatory, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); Charmandaris, V. [Department of Physics, University of Crete, GR-71003 Heraklion (Greece); Evans, A. S. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Inami, H. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Iwasawa, K. [ICREA and Institut de Ciències del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, E-08028 Barcelona (Spain); Leech, J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Sanders, D. B., E-mail: lu@ipac.caltech.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); and others

    2014-06-01

    We present our initial results on the CO rotational spectral line energy distribution (SLED) of the J to J–1 transitions from J = 4 up to 13 from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey. The observed SLEDs change on average from one peaking at J ≤ 4 to a broad distribution peaking around J ∼ 6 to 7 as the IRAS 60-to-100 μm color, C(60/100), increases. However, the ratios of a CO line luminosity to the total infrared luminosity, L {sub IR}, show the smallest variation for J around 6 or 7. This suggests that, for most LIRGs, ongoing star formation (SF) is also responsible for a warm gas component that emits CO lines primarily in the mid-J regime (5 ≲ J ≲ 10). As a result, the logarithmic ratios of the CO line luminosity summed over CO (5–4), (6–5), (7–6), (8–7) and (10–9) transitions to L {sub IR}, log R {sub midCO}, remain largely independent of C(60/100), and show a mean value of –4.13 (≡log R{sub midCO}{sup SF}) and a sample standard deviation of only 0.10 for the SF-dominated galaxies. Including additional galaxies from the literature, we show, albeit with a small number of cases, the possibility that galaxies, which bear powerful interstellar shocks unrelated to the current SF, and galaxies, in which an energetic active galactic nucleus contributes significantly to the bolometric luminosity, have their R {sub midCO} higher and lower than R{sub midCO}{sup SF}, respectively.

  16. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1983-01-01

    It is proposed that Freeman's discovery that the extrapolated central surface brightness of spiral galaxies is approximately constant can be simply explained if the galaxies contain a spheroidal component which dominates the light in their outer isophotes. Calculations of an effective central surface brightness indicate a wide spread of values. This requires either a wide spread in disc properties or significant spheroidal components or, most probably, both. (author)

  17. Nobeyama CO Atlas of Nearby Spiral Galaxies

    Science.gov (United States)

    Kuno, N.; Nakai, N.; Sorai, K.; Sato, N..; Yamauchi, A.; Tosaki, T.; Shioya, Y.; Vila-Vilaró, B.; Nishiyama, K.; Ishihara, Y.; Cepa, J.

    BEARS is a 25-beam focal plane array receiver mounted on the Nobeyama 45-m telescope. The combination of the large dish size of the telescope with the excellent performance of this receiver makes it an ideal tool for mapping observations of extended regions of the sky. We present here one of its current applications in a CO mapping survey of nearby spiral galaxies.

  18. Magnetic spiral arms in galaxy haloes

    Science.gov (United States)

    Henriksen, R. N.

    2017-08-01

    We seek the conditions for a steady mean field galactic dynamo. The parameter set is reduced to those appearing in the α2 and α/ω dynamo, namely velocity amplitudes, and the ratio of sub-scale helicity to diffusivity. The parameters can be allowed to vary on conical spirals. We analyse the mean field dynamo equations in terms of scale invariant logarithmic spiral modes and special exact solutions. Compatible scale invariant gravitational spiral arms are introduced and illustrated in an appendix, but the detailed dynamical interaction with the magnetic field is left for another work. As a result of planar magnetic spirals `lifting' into the halo, multiple sign changes in average rotation measures forming a regular pattern on each side of the galactic minor axis, are predicted. Such changes have recently been detected in the Continuum Halos in Nearby Galaxies-an EVLA Survey (CHANG-ES) survey.

  19. Dynamical models of spiral galaxies

    International Nuclear Information System (INIS)

    Grosbol, P.

    1990-01-01

    The effects of changing the basic parameters of rotation curve steepness, amount of bulge, and pitch angle of the imposed spiral pattern in the galactic model of Contoupolos and Grosbel (1986) are investigated. The general conclusions of the model are confirmed and shown to be insensitive to the specific choice of parameters for the galactic potential. The exact amplitude at which the nonlinear effects at the 4:1 resonance become important do, however, depend on the model

  20. The dynamics of the spiral galaxy M81

    International Nuclear Information System (INIS)

    Visser, H.C.D.

    1978-01-01

    A detailed comparison of the observations of the spiral galaxy M81 with the density-wave theory for tightly-wound spirals is presented. In particular, hydrogen-line observations are compared with the nonlinear density-wave theory for the gas with the aim of constructing a density-wave model for the spiral galaxy M81

  1. Model for Spiral Galaxys Rotation Curves

    Science.gov (United States)

    Hodge, John

    2003-11-01

    A model of spiral galaxy dynamics is proposed. An expression describing the rotation velocity of particles v in a galaxy as a function of the distance from the center r (RC) is developed. The resulting, intrinsic RC of a galaxy is Keplerian in the inner bulge and rising in the disk region without modifying the Newtonian gravitational potential (MOND) and without unknown dark matter. The v^2 is linearly related to r of the galaxy in part of the rapidly rising region of the HI RC (RRRC) and to r^2 in another part of the RRRC. The r to discontinuities in the surface brightness versus r curve is related to the 21 cm line width, the measured mass of the central supermassive black hole (SBH), and the maximum v^2 in the RRRC. The distance to spiral galaxies can be calculated from these relationships that tightly correlates with the distance calculated using Cepheid variables. Differing results in measuring the mass of the SBH from differing measurement procedures are explained. This model is consistent with previously unexplained data, has predicted new relationships, and suggests a new model of the universe. Full text: http://web.infoave.net/ ˜scjh.

  2. The cold interstellar medium - An HI view of spiral galaxies

    NARCIS (Netherlands)

    Sancisi, R; Bender, R; Davies, RL

    1996-01-01

    An HI view of spiral galaxies is presented. In the first part the standard picture of isolated, normal spiral galaxies is briefly reviewed. In the second part attention is drawn to all those phenomena, such as tidal interactions, accretion and mergers, that depend on the galaxy environment and seem

  3. Calibrating photometric redshifts of luminous red galaxies

    International Nuclear Information System (INIS)

    Padmanabhan, Nikhil; Budavari, Tamas; Schlegel, David J.; Bridges, Terry; Brinkmann, Jonathan

    2005-01-01

    We discuss the construction of a photometric redshift catalogue of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, and (iii) estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS–2dF (Two Degree Field) spectroscopic surveys, we find that the photometric redshift accuracy is σ~ 0.03 for redshifts less than 0.55 and worsens at higher redshift (~ 0.06 for z < 0.7). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves and photometric zero-points. We also parametrize the photometric redshift error distribution with a sum of Gaussians and use this model to deconvolve the errors from the measured photometric redshift distribution to estimate the true redshift distribution. We pay special attention to the stability of this deconvolution, regularizing the method with a prior on the smoothness of the true redshift distribution. The methods that we develop are applicable to general photometric redshift surveys.

  4. Young and Old X-ray Binary and IXO Populations in Spiral and Elliptical Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Ptak, A.; Strickland, D.; Weaver, K.

    2003-03-01

    We have analyzed Chandra ACIS observations of 32 nearby spiral and elliptical galaxies and present the results of 1441 X-ray point sources, which are presumed to be mostly X-ray binaries (XRBs) and Intermediate-luminosity X-ray Objects (IXOs, a.k.a. ULXs). The X-ray luminosity functions (XLFs) of the point sources show that the slope of the elliptical galaxy XLFs are significantly steeper than the spiral galaxy XLFs, indicating grossly different types of point sources, or different stages in their evolution. Since the spiral galaxy XLF is so shallow, the most luminous points sources (usually the IXOs) dominate the total X-ray point source luminosity LXP. We show that the galaxy total B-band and K-band light (proxies for the stellar mass) are well correlated with LXP for both spirals and ellipticals, but the FIR and UV emission is only correlated for the spirals. We deconvolve LXP into two components, one that is proportional to the galaxy stellar mass (pop II), and another that is proportional to the galaxy SFR (pop I). We also note that IXOs (and nearly all of the other point sources) in both spirals and ellipticals have X-ray colors that are most consistent with power-law slopes of Gamma ˜ 1.5--3.0, which is inconsistent with high-mass XRBS (HMXBs). Thus, HMXBs are not important contributors to LXP. We have also found that IXOs in spiral galaxies may have a slightly harder X-ray spectrum than those in elliptical galaxies. The implications of these findings will be discussed.

  5. Flocculent and grand design spiral arm structure in cluster galaxies

    International Nuclear Information System (INIS)

    Elmegreen, D.M.

    1982-01-01

    A total of 829 spiral galaxies in 22 clusters having redshifts between z = 0.02 and 0.06 were classified according to the appearance of their spiral arm structures. The fraction of galaxies that have a grand design spiral structure was found to be higher among barred galaxies than among non-barred galaxies (at z = 0.02, 95 per cent of strongly barred galaxies have a grand design, compared with 67 per cent of non-barred or weakly barred galaxies). Cluster galaxies and distant non-cluster galaxies have the same fraction of grand design galaxies when resolution effects are considered. The grand design fraction among cluster galaxies is also similar to the fraction observed among nearby galaxies in binary systems and in groups. (author)

  6. A Unified Scaling Law in Spiral Galaxies.

    Science.gov (United States)

    Koda; Sofue; Wada

    2000-03-01

    We investigate the origin of a unified scaling relation in spiral galaxies. Observed spiral galaxies are spread on a plane in the three-dimensional logarithmic space of luminosity L, radius R, and rotation velocity V. The plane is expressed as L~&parl0;VR&parr0;alpha in the I passband, where alpha is a constant. On the plane, observed galaxies are distributed in an elongated region which looks like the shape of a surfboard. The well-known scaling relations L-V (Tully-Fisher [TF] relation), V-R (also the TF relation), and R-L (Freeman's law) can be understood as oblique projections of the surfboard-like plane into two-dimensional spaces. This unified interpretation of the known scaling relations should be a clue to understand the physical origin of all the relations consistently. Furthermore, this interpretation can also explain why previous studies could not find any correlation between TF residuals and radius. In order to clarify the origin of this plane, we simulate formation and evolution of spiral galaxies with the N-body/smoothed particle hydrodynamics method, including cooling, star formation, and stellar feedback. Initial conditions are set to 14 isolated spheres with two free parameters, such as mass and angular momentum. The cold dark matter (h=0.5, Omega0=1) cosmology is considered as a test case. The simulations provide the following two conclusions: (1) The slope of the plane is well reproduced but the zero point is not. This zero-point discrepancy could be solved in a low-density (Omega00.5) cosmology. (2) The surfboard-shaped plane can be explained by the control of galactic mass and angular momentum.

  7. Balance of dark and luminous mass in rotating galaxies.

    Science.gov (United States)

    McGaugh, Stacy S

    2005-10-21

    A fine balance between dark and baryonic mass is observed in spiral galaxies. As the contribution of the baryons to the total rotation velocity increases, the contribution of the dark matter decreases by a compensating amount. This poses a fine-tuning problem for galaxy formation models, and may point to new physics for dark matter particles or even a modification of gravity.

  8. Rarefied, rotational gas flows in spiral galaxies

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Hausman, M.A.

    1983-01-01

    We develop a computational model of a rotating, rarefied gas in which the individual molecules collide inelastically and are subject to circularly asymmetric external forces and internal heating sources. This model is applied to the interstellar medium (ISM) of spiral galaxies, in which most of the matter is confined to discrete gas clouds separated by a tenuous intercloud medium. We identify inelastically-colliding gas molecules with interstellar clouds which orbit ballistically in the galactic gravitational field and are perturbed by expanding shells surrounding supernovae. When a small, spiral perturbation is added to the gravitational force to mimic a spiral galaxy, the cloud distribution responds with a strong, global shock. In the model, stars are formed from the gas when clouds collide or are perturbed by supernovae; these stars are the internal heating sources for the gas cloud system. We determine the morphologies (evolution, distribution) of the two components, gas and stars, in the model as functions of varying input physics. Variation of the cloud system's collisional mean free path (over physically-realistic ranges) has remarkably little influence on the computed shock structure

  9. A COMPARATIVE STUDY OF KNOTS OF STAR FORMATION IN INTERACTING VERSUS SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Beverly J.; Olmsted, Susan; Jones, Keith [Department of Physics and Astronomy, East Tennessee State University, Johnson City TN 37614 (United States); Zaragoza-Cardiel, Javier [Instituto de Astrofisica de Canarias, La Laguna, Tenerife (Spain); Struck, Curtis, E-mail: smithbj@etsu.edu [Department of Physics and Astronomy, Iowa State University, Ames IA 50011 (United States)

    2016-03-15

    Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is “clumpier” on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.

  10. Density wave theory and the classification of spiral galaxies

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Roberts, M.S.; Shu, F.H.

    1975-01-01

    Axisymmetric models of disk galaxies taken together with the density wave theory allow us to distinguish and categorize spiral galaxies by means of two fundamental galactic parameters: the total mass of the galaxy, divided by a characteristic dimension; and the degree of concentration of mass toward the galactic center. These two parameters govern the strength of the galactic shocks in the interstellar gas and the geometry of the spiral wave pattern. In turn, the shock strength and the theoretical pitch angle of the spiral arms play a major role in determining the degree of development of spiral structure in a galaxy and its Hubble type. The application of these results to 24 external galaxies demonstrates that the categorization of galaxies according to this theoretical framework correlates well with the accepted classification of these galaxies within the observed sequences of luminosity class and Hubble type

  11. A Fundamental Plane of Spiral Structure in Disk Galaxies

    NARCIS (Netherlands)

    Davis, Benjamin L.; Kennefick, Daniel; Kennefick, Julia; Westfall, Kyle B.; Shields, Douglas W.; Flatman, Russell; Hartley, Matthew T.; Berrier, Joel C.; Martinsson, Thomas P. K.; Swaters, Rob A.

    Spiral structure is the most distinctive feature of disk galaxies and yet debate persists about which theory of spiral structure is correct. Many versions of the density wave theory demand that the pitch angle be uniquely determined by the distribution of mass in the bulge and disk of the galaxy. We

  12. Star formation and the surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1985-01-01

    The (blue) surface brightness of spiral galaxies is significantly correlated with their Hα linewidth. This can be most plausibly interpreted as a correlation of surface brightness with star formation rate. There is also a significant difference in surface brightness between galaxies forming stars in a grand design spiral pattern and those with floc star formation regions. (author)

  13. On the nature of the ramified spiral structure of galaxies

    International Nuclear Information System (INIS)

    Mishurov, Yu.N.; Suchkov, A.A.

    1976-01-01

    The nature of large-scale branching of spiral arms observed in a number of galaxies has been explained in the framework of the density wave theory. The solutions of the dispersion equation of spiral waves of density relative to the wave number k(r) in the models of galaxies in the form of two discs rotating with different angular velocities have been shown to be branching functions of the parameter r (r is the galacto-centric distance) under definite conditions; it corresponds to the branching of spiral arms. Hydrodynamic and kinetic considerations are also presented. The last one makes possible the understanding several other structural properties of spiral galaxies

  14. A FUNDAMENTAL PLANE OF SPIRAL STRUCTURE IN DISK GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin L.; Kennefick, Daniel; Kennefick, Julia; Shields, Douglas W. [Arkansas Center for Space and Planetary Sciences, University of Arkansas, 346 1/2 North Arkansas Avenue, Fayetteville, AR 72701 (United States); Westfall, Kyle B. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, NL-9700 AV Groningen (Netherlands); Flatman, Russell [School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332 (United States); Hartley, Matthew T. [Department of Physics, University of Arkansas, 226 Physics Building, 835 West Dickson Street, Fayetteville, AR 72701 (United States); Berrier, Joel C. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Martinsson, Thomas P. K. [Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Swaters, Rob A., E-mail: bld002@email.uark.edu [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-03-20

    Spiral structure is the most distinctive feature of disk galaxies and yet debate persists about which theory of spiral structure is correct. Many versions of the density wave theory demand that the pitch angle be uniquely determined by the distribution of mass in the bulge and disk of the galaxy. We present evidence that the tangent of the pitch angle of logarithmic spiral arms in disk galaxies correlates strongly with the density of neutral atomic hydrogen in the disk and with the central stellar bulge mass of the galaxy. These three quantities, when plotted against each other, form a planar relationship that we argue should be fundamental to our understanding of spiral structure in disk galaxies. We further argue that any successful theory of spiral structure must be able to explain this relationship.

  15. Stellar complexes in spiral arms of galaxies

    Science.gov (United States)

    Efremov, Yu. N.

    The history of the introduction and development of the star complexes conception is briefly described. These large groups of stars were picked out and named as such ones in our Galaxy with argumentation and evidence for their physical unity (using the Cepheid variables the distances and ages of which are easy determined from their periods); anyway earlier the complexes were noted along the spiral arms of the Andromeda galaxy, but were not recognized as a new kind of star group. The chains of complexes along the spiral arms are observed quite rarely; their origin is explained by magneto- gravitational or purely gravitational instability developing along the arm. It is not clear why these chains are quite a rare phenomenon - and more so why sometimes the regular chain of complexes are observed in one arm only. Probably intergalactic magnetic field participated in formation of such chains. Apart from the complexes located along the arms, there are isolated giant complexes known (up to 700 pc in diameter) which look like super-gigantic but rather rarefied globular clusters. Until now only two of these formations are studied, in NGC 6946 and M51.

  16. Observational effects of explosions in the nuclei of spiral galaxies

    International Nuclear Information System (INIS)

    Sanders, R.H.; Bania, T.M.

    1976-01-01

    We conclude that an explosive event will produce a distinct observational signature evidenced by an inner ringlike structure of the principal spiral tracers, conspicuous dips in the gas rotation curve at the locus of this ring, and a ringlike or double radio structure in the plane of the galaxy. Evidence is presented supporting the suggestion that one particular spiral galaxy, NGC 4736, exhibits this characteristic signature and therefore is a galaxy which may have undergone a recent explosive event in its nucleus

  17. Smooth-arm spiral galaxies: their properties and significance to cluster-galaxy evolution

    International Nuclear Information System (INIS)

    Wilkerson, M.S.

    1979-01-01

    In this dissertation a number of galaxies with optical appearances between those of normal, actively-star-forming spirals and SO galaxies have been examined. These so-called smooth-arm spiral galaxies exhibit spiral arms without any of the spiral tracers - H II regions, O-B star associations, dust - indicative of current star formation. Tests were made to find if, perhaps, these smooth-arm spirals could have, at one time, been normal, actively-star-forming spirals whose gas had been somehow removed; and that are currently transforming into SO galaxies. This scenario proceeds as (1) removal of gas, (2) gradual dying of disk density wave, (3) emergence of SO galaxy. If the dominant method of gas removal is ram-pressure stripping by a hot, intracluster medium, then smooth-arm spirals should occur primarily in x-ray clusters. Some major findings of this dissertation are as follows: (1) Smooth-arm spirals are redder than normal spirals of the same morphological type. Most smooth-arm spirals cannot be distinguished by color from SO galaxies. (2) A weak trend exists for smooth-arm spirals with stronger arms to be bluer than those with weaker arms; thus implying that the interval since gas removal has been shorter for the galaxies with stronger arms. (3) Smooth-arm spirals are deficient in neutral hydrogen - sometimes by an order of magnitude or, possibly, more

  18. Galaxy Zoo: constraining the origin of spiral arms

    Science.gov (United States)

    Hart, Ross E.; Bamford, Steven P.; Keel, William C.; Kruk, Sandor J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2018-05-01

    Since the discovery that the majority of low-redshift galaxies exhibit some level of spiral structure, a number of theories have been proposed as to why these patterns exist. A popular explanation is a process known as swing amplification, yet there is no observational evidence to prove that such a mechanism is at play. By using a number of measured properties of galaxies, and scaling relations where there are no direct measurements, we model samples of SDSS and S4G spiral galaxies in terms of their relative halo, bulge and disc mass and size. Using these models, we test predictions of swing amplification theory with respect to directly measured spiral arm numbers from Galaxy Zoo 2. We find that neither a universal cored or cuspy inner dark matter profile can correctly predict observed numbers of arms in galaxies. However, by invoking a halo contraction/expansion model, a clear bimodality in the spiral galaxy population emerges. Approximately 40 per cent of unbarred spiral galaxies at z ≲ 0.1 and M* ≳ 1010M⊙ have spiral arms that can be modelled by swing amplification. This population display a significant correlation between predicted and observed spiral arm numbers, evidence that they are swing amplified modes. The remainder are dominated by two-arm systems for which the model predicts significantly higher arm numbers. These are likely driven by tidal interactions or other mechanisms.

  19. Orientation of spiral galaxies in the local supercluster

    International Nuclear Information System (INIS)

    Jaaniste, J.A.; Saar, E.M.

    1977-01-01

    Two alternative models for the spatial orientation of galaxies - parallelism and perpendicularity of the planes of galaxies with respect to the supergalactic plane - are compared with the observed orientations of spiral galaxies within the volume of the radius of 50 Mpc. The first model does not agree with experimental data whereas the second one-perpendicularity of the planes - describes the above data well

  20. In Pursuit of the Least Luminous Galaxies

    Directory of Open Access Journals (Sweden)

    Beth Willman

    2010-01-01

    Full Text Available The dwarf galaxy companions to the Milky Way are unique cosmological laboratories. With luminosities as low as 10−7LMW, they inhabit the lowest mass dark matter halos known to host stars and are presently the most direct tracers of the distribution, mass spectrum, and clustering scale of dark matter. Their resolved stellar populations also facilitate detailed studies of their history and mass content. To fully exploit this potential requires a well-defined census of virtually invisible galaxies to the faintest possible limits and to the largest possible distances. I review the past and present impacts of survey astronomy on the census of Milky Way dwarf galaxy companions and discuss the future of finding ultra-faint dwarf galaxies around the Milky Way and beyond in wide-field survey data.

  1. A model of the formation of spiral galaxies

    International Nuclear Information System (INIS)

    Brown, W.K.; Gritzo, L.A.

    1980-01-01

    It has been verified that the analytical results in a previous article for elliptical galaxies may also be used to describe spiral galaxies. Exploration of the model for small values of the principal parameter THETA yields surface mass density distributions as functions of radius which, while always displaying the exponential disk, describe both of the subcategories of spiral galaxies. Within the constraints of the model, the two main questions concerning spirals posed some years ago by Freeman appear to be successfully addressed. An intrinsic model mechanism has been identified that could account for the extended state of elliptical galaxies, as opposed to the flat disks of spirals. In general, the model correctly describes the relative sizes of the various types of galaxies. (orig.)

  2. Mechanical feedback in the molecular ISM of luminous IR galaxies

    NARCIS (Netherlands)

    Loenen, A. F.; Spaans, M.; Baan, W. A.; Meijerink, R.

    Aims. Molecular emission lines originating in the nuclei of luminous infra-red galaxies are used to determine the physical properties of the nuclear ISM in these systems. Methods. A large observational database of molecular emission lines is compared with model predictions that include heating by UV

  3. Tilted-ring models of the prolate spiral galaxies NGC 5033 and 5055

    Science.gov (United States)

    Christodoulou, Dimitris M.; Tohline, Joel E.; Steiman-Cameron, Thomas Y.

    1988-01-01

    Observations of the kinematics of H I in the disks of spiral galaxies have shown that isovelocity contours often exhibit a twisted pattern. The shape of a galaxy's gravitational potential well (whether due to luminous matter or dark matter) can be determined from the direction of the twist. If this twist is a manifestation of the precession of a nonsteady-state disk, it is shown that the twists of NGC 5033 and 5055 imply an overall prolate shape, with the major axis of the potential well aligned along the rotation axis of the disk. Therefore, the luminous disks of these galaxies must be embedded in dark halos that are prolate spheroids or prolatelike triaxial figures.

  4. Comments on H. Arp 'The persistent problem of spiral galaxies'

    International Nuclear Information System (INIS)

    Alfven, H.

    1987-04-01

    In his paper 'The persistent problem of Spiral Galaxies' H. Arp criticises the standard theory of spiral galaxies and demonstrates that introduction of plasma theory is necessary in order to understand the structure of spiral galaxies. In the present paper arguments are given in support of Arp's theory and suggestions are made how Arp's ideas should be developed. An important result of Arp's new approach is that there is no convincing argument for the belief that there is a 'missing mass'. This is important from a cosmological point of view. (author)

  5. Luminous arcs in clusters of galaxies

    International Nuclear Information System (INIS)

    Lynds, R.; Petrosian, V.

    1989-01-01

    Observations are reported of what appears to be a new class of spatially coherent extragalactic features having, in the two most compelling known examples, the following joint properties: location in clusters of galaxies, narrow arclike shape, enormous apparent length, and situation of center of curvature toward both a cD galaxy and the apparent center of gravity of the cluster. The principal available facts concerning the arcs are presented and a variety of interpretations are briefly discussed. The weight of evidence seems to favor the interpretation that these features are images of more distant objects produced by the gravitational field of the intervening clusters. 24 references

  6. Clustering of very luminous infrared galaxies and their environment

    Science.gov (United States)

    Gao, YU

    1993-01-01

    The IRAS survey reveals a class of ultraluminous infrared (IR) galaxies (ULIRG's) with IR luminosities comparable to the bolometric luminosities of quasars. The nature, origin, and evolution of ULIRG's are attracting more and more attention recently. Since galaxy morphology is certainly a function of environment, morphological observations show that ULIRG's are interacting/merging galaxies, and some ULIRG's might be the dust-enshrouded quasars (S88) or giant ellipticals, the study of ULIRG's environment and large scale clustering effects should be worthwhile. ULIRG's and very luminous IR galaxies have been selected from the 2Jy IRAS redshift survey. Meanwhile, a catalog of IRAS groups of galaxies has been constructed using a percolation-like algorithm. Therefore, whether ULIRG's and/or VLIRG's have a group environment can be checked immediately. Other aspects of the survey are discussed.

  7. Optical and theoretical studies of giant clouds in spiral galaxies

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Elmegreen, D.M.

    1980-01-01

    An optical study of four spiral galaxies, combined with radiative transfer models for transmitted and scattered light, has led to a determination of the opacities and masses of numerous dark patches and dust lanes that outline spiral structure. The observed compression factors for the spiral-like dust lanes are in accord with expectations from the theory of gas flow in spiral density waves. Several low density (10 2 cm -3 ) clouds containing 10 6 to 10 7 solar masses were also studied. These results are discussed in terms of recent theoretical models of cloud and star formation in spiral galaxies. The long-term evolution of giant molecular clouds is shown to have important consequences for the positions and ages of star formation sites in spiral arms. (Auth.)

  8. Why are classical bulges more common in S0 galaxies than in spiral galaxies?

    Science.gov (United States)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2018-05-01

    In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudobulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudobulge hosting spirals. By studying the star formation properties of our galaxies in the NUV - r color-mass diagram, we find that the pseudobulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.

  9. A SEARCH FOR SPIRAL GALAXIES WITH EXTENDED HI DISKS

    NARCIS (Netherlands)

    BROEILS, AH; VANWOERDEN, H

    1994-01-01

    We present short 21-cm line observations of about 50 spiral galaxies, made with the Westerbork Synthesis Radio Telescope. They form the first stage of a two-stage project to study the relation between the shape of extended rotation curves and galaxy properties, such as luminosity and morphological

  10. Structure analysis of edge-on spiral galaxies

    NARCIS (Netherlands)

    deGrijs, R; vanderKruit, PC

    The stellar distribution of a small sample of edge-on spiral galaxies is examined in B, V, R, and I by fitting model distributions to the light profiles, both perpendicular to the galaxy planes and along the major axes. We have developed a method to compare the fits for the models obtained for

  11. TURBULENCE AND STAR FORMATION IN A SAMPLE OF SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Erin; Chien, Li-Hsin [Department of Physics and Astronomy, Northern Arizona University 527 S Beaver Street, Flagstaff, AZ 86011 (United States); Hunter, Deidre A., E-mail: erin-maier@uiowa.edu, E-mail: Lisa.Chien@nau.edu, E-mail: dah@lowell.edu [Lowell Observatory 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-11-01

    We investigate turbulent gas motions in spiral galaxies and their importance to star formation in far outer disks, where the column density is typically far below the critical value for spontaneous gravitational collapse. Following the methods of Burkhart et al. on the Small Magellanic Cloud, we use the third and fourth statistical moments, as indicators of structures caused by turbulence, to examine the neutral hydrogen (H i) column density of a sample of spiral galaxies selected from The H i Nearby Galaxy Survey. We apply the statistical moments in three different methods—the galaxy as a whole, divided into a function of radii and then into grids. We create individual grid maps of kurtosis for each galaxy. To investigate the relation between these moments and star formation, we compare these maps with their far-ultraviolet images taken by the Galaxy Evolution Explorer satellite.We find that the moments are largely uniform across the galaxies, in which the variation does not appear to trace any star-forming regions. This may, however, be due to the spatial resolution of our analysis, which could potentially limit the scale of turbulent motions that we are sensitive to greater than ∼700 pc. From comparison between the moments themselves, we find that the gas motions in our sampled galaxies are largely supersonic. This analysis also shows that the Burkhart et al. methods may be applied not just to dwarf galaxies but also to normal spiral galaxies.

  12. Enigmatic sub-luminous accreting neutron stars in our Galaxy

    NARCIS (Netherlands)

    Wijnands, R.

    2008-01-01

    During the last few years a class of enigmatic sub-luminous accreting neutron stars has been found in our Galaxy. They have peak X-ray luminosities (2-10 keV) of a few times 10(34) erg s(−1) to a few times 10(35) erg s(−1), and both persistent and transient sources have been found. I present a short

  13. CHARACTERISTICS OF SPIRAL ARMS IN LATE-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Honig, Z. N.; Reid, M. J.

    2015-01-01

    We have measured the positions of large numbers of H II regions in four nearly face-on, late-type, spiral galaxies: NGC 628 (M74), NGC 1232, NGC 3184, and NGC 5194 (M51). Fitting log-periodic spiral models to segments of each arm yields local estimates of spiral pitch angle and arm width. While pitch angles vary considerably along individual arms, among arms within a galaxy, and among galaxies, we find no systematic trend with galactocentric distance. We estimate the widths of the arm segments from the scatter in the distances of the H II regions from the spiral model. All major arms in these galaxies show spiral arm width increasing with distance from the galactic center, similar to the trend seen in the Milky Way. However, in the outermost parts of the galaxies, where massive star formation declines, some arms reverse this trend and narrow. We find that spiral arms often appear to be composed of segments of ∼5 kpc length, which join to form kinks and abrupt changes in pitch angle and arm width; these characteristics are consistent with properties seen in the large N-body simulations of D'Onghia et al. and others

  14. 21 centimeter study of spiral galaxies in the Coma supercluster

    International Nuclear Information System (INIS)

    Gavazzi, G.

    1987-01-01

    High-sensitivity, 21 cm line observations of 130 galaxies in the Coma/A1367 Supercluster region are presented and used to study the large-scale distribution of galaxies in the direction of the Coma Supercluster and the H I content in spiral galaxies as a function of the local galaxy density. Groups of galaxies are found to form a quasi-continuous structure that connects the Local Supercluster to the Coma Supercluster. This structure is composed of real filaments only in the vicinity of the Coma Cluster. Spiral galaxies in the surveyed groups and multiple systems have H I content not dissimilar from that of isolated galaxies. Galaxies within about 1 Abell radius from the Coma Cluster contain about three times less hydrogen on average than isolated galaxies. There is a strong tendency for galaxies that are more severely H I-depleted to be redder and of earlier Hubble type. In the Coma Cluster a considerable fraction of late-type, blue galaxies have large deficiency parameters. 51 references

  15. Can cluster environment modify the dynamical evolution of spiral galaxies?

    Science.gov (United States)

    Amram, P.; Balkowski, C.; Cayatte, V.; Marcelin, M.; Sullivan, W. T., III

    1993-01-01

    Over the past decade many effects of the cluster environment on member galaxies have been established. These effects are manifest in the amount and distribution of gas in cluster spirals, the luminosity and light distributions within galaxies, and the segregation of morphological types. All these effects could indicate a specific dynamical evolution for galaxies in clusters. Nevertheless, a more direct evidence, such as a different mass distribution for spiral galaxies in clusters and in the field, is not yet clearly established. Indeed, Rubin, Whitmore, and Ford (1988) and Whitmore, Forbes, and Rubin (1988) (referred to as RWF) presented evidence that inner cluster spirals have falling rotation curves, unlike those of outer cluster spirals or the great majority of field spirals. If falling rotation curves exist in centers of clusters, as argued by RWF, it would suggest that dark matter halos were absent from cluster spirals, either because the halos had become stripped by interactions with other galaxies or with an intracluster medium, or because the halos had never formed in the first place. Even if they didn't disagree with RWF, other researchers pointed out that the behaviour of the slope of the rotation curves of spiral galaxies (in Virgo) is not so clear. Amram, using a different sample of spiral galaxies in clusters, found only 10% of declining rotation curves (2 declining vs 17 flat or rising) in opposition to RWF who find about 40% of declining rotation curves in their sample (6 declining vs 10 flat or rising), we will hereafter briefly discuss the Amram data paper and compare it to the results of RWF. We have measured the rotation curves for a sample of 21 spiral galaxies in 5 nearby clusters. These rotation curves have been constructed from detailed two-dimensional maps of each galaxy's velocity field as traced by emission from the Ha line. This complete mapping, combined with the sensitivity of our CFHT 3.60 m. + Perot-Fabry + CCD observations, allows

  16. Profiles of the stochastic star formation process in spiral galaxies

    International Nuclear Information System (INIS)

    Comins, N.

    1981-01-01

    The formation of spiral arms in disc galaxies is generally attributed to the effects of spiral density waves. These relatively small (i.e. 5 per cent) non-axisymmetric perturbations of the interstellar medium cause spiral arms highlighted by O and B type stars to be created. In this paper another mechanism for spiral arm formation, the stochastic self-propagating star formation (SSPSF) process is examined. The SSPSF process combines the theory that shock waves from supernovae will compress the interstellar medium to create new stars, some of which will be massive enough to also supernova, with a disc galaxy's differential rotation to create spiral arms. The present work extends this process to the case where the probability of star formation from supernova shocks decreases with galactic radius. Where this work and previous investigations overlap (namely the uniform probability case), the agreement is very good, pretty spirals with various numbers of arms are generated. The decreasing probability cases, taken to vary as rsup(-j), still form spiral arms for 0 1.5 the spiral structure is essentially non-existent. (author)

  17. Cosmological information in the intrinsic alignments of luminous red galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Chisari, Nora Elisa [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Dvorkin, Cora, E-mail: nchisari@astro.princeton.edu, E-mail: cdvorkin@ias.edu [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States)

    2013-12-01

    The intrinsic alignments of galaxies are usually regarded as a contaminant to weak gravitational lensing observables. The alignment of Luminous Red Galaxies, detected unambiguously in observations from the Sloan Digital Sky Survey, can be reproduced by the linear tidal alignment model of Catelan, Kamionkowski and Blandford (2001) on large scales. In this work, we explore the cosmological information encoded in the intrinsic alignments of red galaxies. We make forecasts for the ability of current and future spectroscopic surveys to constrain local primordial non-Gaussianity and Baryon Acoustic Oscillations (BAO) in the cross-correlation function of intrinsic alignments and the galaxy density field. For the Baryon Oscillation Spectroscopic Survey, we find that the BAO signal in the intrinsic alignments is marginally significant with a signal-to-noise ratio of 1.8 and 2.2 with the current LOWZ and CMASS samples of galaxies, respectively, and increasing to 2.3 and 2.7 once the survey is completed. For the Dark Energy Spectroscopic Instrument and for a spectroscopic survey following the EUCLID redshift selection function, we find signal-to-noise ratios of 12 and 15, respectively. Local type primordial non-Gaussianity, parametrized by f{sub NL} = 10, is only marginally significant in the intrinsic alignments signal with signal-to-noise ratios < 2 for the three surveys considered.

  18. The Weak Lensing Masses of Filaments between Luminous Red Galaxies

    Science.gov (United States)

    Epps, Seth D.; Hudson, Michael J.

    2017-07-01

    In the standard model of non-linear structure formation, a cosmic web of dark-matter-dominated filaments connects dark matter haloes. In this paper, we stack the weak lensing signal of an ensemble of filaments between groups and clusters of galaxies. Specifically, we detect the weak lensing signal, using CFHTLenS galaxy ellipticities, from stacked filaments between Sloan Digital Sky Survey (SDSS)-III/Baryon Oscillation Spectroscopic Survey luminous red galaxies (LRGs). As a control, we compare the physical LRG pairs with projected LRG pairs that are more widely separated in redshift space. We detect the excess filament mass density in the projected pairs at the 5σ level, finding a mass of (1.6 ± 0.3) × 1013 M⊙ for a stacked filament region 7.1 h-1 Mpc long and 2.5 h-1 Mpc wide. This filament signal is compared with a model based on the three-point galaxy-galaxy-convergence correlation function, as developed in Clampitt et al., yielding reasonable agreement.

  19. STAR FORMATION IN PARTIALLY GAS-DEPLETED SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Rose, James A.; Miner, Jesse; Levy, Lorenza; Robertson, Paul

    2010-01-01

    Broadband B and R and Hα images have been obtained with the 4.1 m SOAR telescope atop Cerro Pachon, Chile, for 29 spiral galaxies in the Pegasus I galaxy cluster and for 18 spirals in non-cluster environments. Pegasus I is a spiral-rich cluster with a low-density intracluster medium and a low galaxy velocity dispersion. When combined with neutral hydrogen (H I) data obtained with the Arecibo 305 m radio telescope, acquired by Levy et al. (2007) and by Springob et al. (2005b), we study the star formation rates in disk galaxies as a function of their H I deficiency. To quantify H I deficiency, we use the usual logarithmic deficiency parameter, DEF. The specific star formation rate (SSFR) is quantified by the logarithmic flux ratio of Hα flux to R-band flux, and thus roughly characterizes the logarithmic SFR per unit stellar mass. We find a clear correlation between the global SFR per unit stellar mass and DEF, such that the SFR is lower in more H I-deficient galaxies. This correlation appears to extend from the most gas-rich to the most gas-poor galaxies. We also find a correlation between the central SFR per unit mass relative to the global values, in the sense that the more H I-deficient galaxies have a higher central SFR per unit mass relative to their global SFR values than do gas-rich galaxies. In fact, approximately half of the H I-depleted galaxies have highly elevated SSFRs in their central regions, indicative of a transient evolutionary state. In addition, we find a correlation between gas depletion and the size of the Hα disk (relative to the R-band disk); H I-poor galaxies have truncated disks. Moreover, aside from the elevated central SSFR in many gas-poor spirals, the SSFR is otherwise lower in the Hα disks of gas-poor galaxies than in gas-rich spirals. Thus, both disk truncation and lowered SSFR levels within the star-forming part of the disks (aside from the enhanced nuclear SSFR) correlate with H I deficiency, and both phenomena are found to

  20. Nuclear starburst activity induced by elongated bulges in spiral galaxies

    Science.gov (United States)

    Kim, Eunbin; Kim, Sungsoo S.; Choi, Yun-Young; Lee, Gwang-Ho; de Grijs, Richard; Lee, Myung Gyoon; Hwang, Ho Seong

    2018-06-01

    We study the effects of bulge elongation on the star formation activity in the centres of spiral galaxies using the data from the Sloan Digital Sky Survey Data Release 7. We construct a volume-limited sample of face-on spiral galaxies with Mr nuclear starbursts using the fibre specific star formation rates derived from the SDSS spectra. We find a statistically significant correlation between bulge elongation and nuclear starbursts in the sense that the fraction of nuclear starbursts increases with bulge elongation. This correlation is more prominent for fainter and redder galaxies, which exhibit higher ratios of elongated bulges. We find no significant environmental dependence of the correlation between bulge elongation and nuclear starbursts. These results suggest that non-axisymmetric bulges can efficiently feed the gas into the centre of galaxies to trigger nuclear starburst activity.

  1. LLAMA: normal star formation efficiencies of molecular gas in the centres of luminous Seyfert galaxies

    Science.gov (United States)

    Rosario, D. J.; Burtscher, L.; Davies, R. I.; Koss, M.; Ricci, C.; Lutz, D.; Riffel, R.; Alexander, D. M.; Genzel, R.; Hicks, E. H.; Lin, M.-Y.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Riffel, R. A.; Schartmann, M.; Schawinski, K.; Schnorr-Müller, A.; Saintonge, A.; Shimizu, T.; Sternberg, A.; Storchi-Bergmann, T.; Sturm, E.; Tacconi, L.; Treister, E.; Veilleux, S.

    2018-02-01

    Using new Atacama Pathfinder Experiment and James Clerk Maxwell Telescope spectroscopy of the CO 2→1 line, we undertake a controlled study of cold molecular gas in moderately luminous (Lbol = 1043-44.5 erg s-1) active galactic nuclei (AGN) and inactive galaxies from the Luminous Local AGN with Matched Analogs (LLAMA) survey. We use spatially resolved infrared photometry of the LLAMA galaxies from 2MASS, the Wide-field Infrared Survey Explorer the Infrared Astronomical Satellite and the Herschel Space Observatory (Herschel), corrected for nuclear emission using multicomponent spectral energy distribution fits, to examine the dust-reprocessed star formation rates, molecular gas fractions and star formation efficiencies (SFEs) over their central 1-3 kpc. We find that the gas fractions and central SFEs of both active and inactive galaxies are similar when controlling for host stellar mass and morphology (Hubble type). The equivalent central molecular gas depletion times are consistent with the discs of normal spiral galaxies in the local Universe. Despite energetic arguments that the AGN in LLAMA should be capable of disrupting the observable cold molecular gas in their central environments, our results indicate that nuclear radiation only couples weakly with this phase. We find a mild preference for obscured AGN to contain higher amounts of central molecular gas, which suggests connection between AGN obscuration and the gaseous environment of the nucleus. Systems with depressed SFEs are not found among the LLAMA AGN. We speculate that the processes that sustain the collapse of molecular gas into dense pre-stellar cores may also be a prerequisite for the inflow of material on to AGN accretion discs.

  2. ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-12-10

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlation between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.

  3. On wave dark matter in spiral and barred galaxies

    International Nuclear Information System (INIS)

    Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L.

    2015-01-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter

  4. Chemical enrichment in isolated barred spiral galaxies.

    Science.gov (United States)

    Martel, Hugo; Carles, Christian; Robichaud, Fidéle; Ellison, Sara L.; Williamson, David J.

    2018-04-01

    To investigate the role of bars in the chemical evolution of isolated disc galaxies, we performed a series of 39 gas dynamical simulations of isolated barred and unbarred galaxies with various masses, initial gas fractions, and AGN feedback models. The presence of a bar drives a substantial amount of gas toward the central region of the galaxy. In the most massive galaxies, this results in a violent starburst, followed by a drop in star formation resulting from gas exhaustion. The time delay between Type Ia and Type II supernovae explosions means that barred galaxies experience a rapid increase in [O/H] in the central region, and a much more gradual increase in [Fe/H]. In unbarred galaxies, star formation proceeds at a slow and steady rate, and oxygen and iron are produced at steady rates which are similar except for a time offset. Comparing the abundance ratios in barred and unbarred galaxies with the same central stellar mass M*, we find in barred galaxies an enhancement of 0.07 dex in [O/H], 0.05 dex in [Fe/H], and 0.05 dex in [O/Fe]. The [O/H] enhancement is in excellent agreement with observations from the SDSS. The initial gas fraction has very little effect on the abundance ratios in barred and unbarred galaxies, unless the galaxies experience a starburst. We considered AGN-host galaxies located near the bottom of the AGN regime, M* ≳ 3 × 1010M⊙, where AGN feedback dominates over supernovae feedback. We found that the impact of AGN feedback on the central abundances is marginal.

  5. THE ROLE OF STARBURST-ACTIVE GALACTIC NUCLEUS COMPOSITES IN LUMINOUS INFRARED GALAXY MERGERS: INSIGHTS FROM THE NEW OPTICAL CLASSIFICATION SCHEME

    International Nuclear Information System (INIS)

    Yuan, T.-T.; Kewley, L. J.; Sanders, D. B.

    2010-01-01

    We investigate the fraction of starbursts, starburst-active galactic nucleus (AGN) composites, Seyferts, and low-ionization narrow emission-line region galaxies (LINERs) as a function of infrared luminosity (L IR ) and merger progress for ∼500 infrared (IR)-selected galaxies. Using the new optical classifications afforded by the extremely large data set of the Sloan Digital Sky Survey, we find that the fraction of LINERs in IR-selected samples is rare ( IR > 10 12 L sun ), starburst-AGN composite galaxies dominate at early-intermediate stages of the merger, and AGN galaxies dominate during the final merger stages. Our results are consistent with models for IR-luminous galaxies where mergers of gas-rich spirals fuel both starburst and AGN, and where the AGN becomes increasingly dominant during the final merger stages of the most luminous IR objects.

  6. The thickness of the HI gas layer in spiral galaxies

    NARCIS (Netherlands)

    Sicking, Floris Jan

    1997-01-01

    In the present study, in two inclined spiral galaxies, NGC 3198 and NGC 2403, the HI random velocity dispersion and layer thickness will be measured simultaneously. This will be done from the HI velocity dispersion field (the distribution on the sky of the observed HI line of sight velocity

  7. Dark matter and rotation curves of spiral galaxies

    Czech Academy of Sciences Publication Activity Database

    Křížek, Michal; Křížek, Filip; Somer, L.

    2016-01-01

    Roč. 25, April (2016), s. 64-77 ISSN 1313-2709 R&D Projects: GA MŠk(CZ) LG15052 Institutional support: RVO:67985840 ; RVO:61389005 Keywords : red dwarf * dark matter * spiral galaxy Subject RIV: BA - General Mathematics http://www.astro.bas.bg/AIJ/issues/n25/MKrizek.pdf

  8. Kinematical and dynamical models for barred spiral galaxies

    International Nuclear Information System (INIS)

    Davoust, E.

    1983-01-01

    This is a review of published works on the kinematics and dynamics of stellar bars and barred spiral galaxies. The periodic orbits of stars are elongated along the bar and enhance it out to a certain distance from the center. The important role of the interstellar gas is pointed out by the models of gas clouds and flows: the trajectories are also along the bar, but shock waves arise in front of the bar and transient spiral structures appear at its ends. These models reproduce the observed velocity fields fairly well. The investigations of the stability of axisymmetric galactic disks show that they are very unstable with respect to bar shaped perturbations and might explain why two thirds of the known spiral galaxies are barred [fr

  9. New Portraits of Spiral Galaxies NGC 613, NGC 1792 and NGC 3627

    Science.gov (United States)

    2003-12-01

    of this photo retains the original pixels. Note the many arms and the pronounced dust bands. North is up and East is left. NGC 613 is a beautiful barred spiral galaxy in the southern constellation Sculptor. This galaxy is inclined by 32 degrees and, contrary to most barred spirals, has many arms that give it a tentacular appearance. Prominent dust lanes are visible along the large-scale bar. Extensive star-formation occurs in this area, at the ends of the bar, and also in the nuclear regions of the galaxy. The gas at the centre, as well as the radio properties are indicative of the presence of a massive black hole in the centre of NGC 613. NGC 1792 ESO PR Photo 33b/03 ESO PR Photo 33b/03 [Preview - JPEG: 473 x 400 pix - 26k] [Normal - JPEG: 946 x 800 pix - 376k] [Full Res - JPEG: 2716 x 2297 pix - 3.2M] PR Photo 33b/03 shows the starburst spiral galaxy NGC 1792 . Note the numerous background galaxies in this sky field. North is up and East is to the left. NGC 1792 is located in the southern constellation Columba (The Dove) - almost on the border with the constellation Caelum (The Graving Tool) - and is a so-called starburst spiral galaxy. Its optical appearance is quite chaotic, due to the patchy distribution of dust throughout the disc of this galaxy. It is very rich in neutral hydrogen gas - fuel for the formation of new stars - and is indeed rapidly forming such stars. The galaxy is characterized by unusually luminous far-infrared radiation; this is due to dust heated by young stars. M 66 (NGC 3627) ESO PR Photo 33c/03 ESO PR Photo 33c/03 [Preview - JPEG: 469 x 400 pix - 24k] [Normal - JPEG: 938 x 800 pix - 383k] [Full Res - JPEG: 2698 x 2300 pix - 3.0M] PR Photo 33c/03 of the spiral galaxy M 66 (or NGC 3627). North towards upper left, West towards upper right. The third galaxy is NGC 3627 , also known as Messier 66, i.e. it is the 66th object in the famous catalogue of nebulae by French astronomer Charles Messier (1730 - 1817). It is located in the constellation

  10. Selection effects in the bivariate brightness distribution for spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1986-01-01

    The joint distribution of total luminosity and characteristic surface brightness (the bivariate brightness distribution) is investigated for a complete sample of spiral galaxies in the Virgo cluster. The influence of selection and physical limits of various kinds on the apparent distribution are detailed. While the distribution of surface brightness for bright galaxies may be genuinely fairly narrow, faint galaxies exist right across the (quite small) range of accessible surface brightnesses so no statement can be made about the true extent of the distribution. The lack of high surface brightness bright galaxies in the Virgo sample relative to an overall RC2 sample (mostly field galaxies) supports the contention that the star-formation rate is reduced in the inner region of the cluster for environmental reasons. (author)

  11. The HR diagram for luminous stars in nearby galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1978-01-01

    Due to the extreme faintness of stars in other galaxies it is only possible to sample the brightest stars in the nearest galaxies. The observations must then be compared with comparable data for the brightest stars, the supergiants and O-type stars, in the Milky Way. The data for the luminous stars are most complete for the Milky Way and the Large Magellanic Cloud. The luminosities for the stars in our Galaxy are based on their membership in associations and clusters, and consequently are representative of Population I within approximately 3kpc of the Sun. The data for the stars in the LMC with spectral types O to G8 come from published observations, and the M supergiants are from the author's recent observations of red stars in the LMC. This is the first time that the M supergiants have been included in an HR diagram of the Large Cloud. The presence of the red stars is important for any discussion of the evolution of the massive stars. (Auth.)

  12. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Disney, M.; Phillipps, S.

    1985-01-01

    The intrinsic surface brightness Ssub(e) of 500 disc galaxies (0<=T<=9) drawn from the Second Reference Catalogue is computed and it is shown that Ssub(e) does not correlate significantly with Msub(B), (B-V) or type. This is consistent with the notion that there is a heavy selection bias in favour of disc galaxies with that particular surface brightness which allows inclusion in the catalogue over the largest volume of space. (author)

  13. Rediscovering the Giant Low Surface Brightness Spiral Galaxy Malin 1

    Science.gov (United States)

    Galaz, Gaspar

    2018-01-01

    I summarize the latest discoveries regarding this ramarkable diffuse and giant galaxy, the largest single spiral in the universe so far. I describe how the latest discoveries could have been done easily 20 years ago, but an incredible summation of facts and some astronomical sociology, keeped many of them undisclosed. I present the most conspicuous features of the giant spiral arms of Malin 1, including stellar density, colors, stellar populations and some modeling describing their past evolution to the current state. I conclude with pending issues regarding stellar formation in Malin 1, and the efforts to detect its elusive molecular gas.

  14. Multiarm spirals on the periphery of disc galaxies

    Science.gov (United States)

    Lubov, Spiegel; Evgeny, Polyachenko

    2018-04-01

    Spiral patterns in some disc galaxies have two arms in the centre, and three or more arms on the periphery. The same result is also obtained in numerical simulations of stellar and gaseous discs.We argue that such patterns may occur due to fast cooling of the gas, resulting in formation of giant molecular clouds. The timescale of this process is 50 Myr, the factor of 10 shorter than of ordinary secular instability. The giant molecular clouds give rise to multiarm spirals through the mechanism of swing amplification.

  15. The color gradient in spiral galaxies: application to M 81

    International Nuclear Information System (INIS)

    Segalovitz, A.

    1975-01-01

    The calculated development of the color of a star cluster is used to predict the expected color evolution, as a function of radius, in a spiral galaxy. It is assumed that the fraction of gas which is converted into stars during a spiral arm passage is a function of radius only. Applying this model to M 81, it is shown that the observed color and mass distributions can be explained by an initial disk-like gas distribution proportional to the inverse square of the radius and a consumption fraction which is an increasing function of radius. (orig.) [de

  16. Collisionless relaxation in spiral galaxy models

    Science.gov (United States)

    Hohl, F.

    1974-01-01

    The increase in random kinetic energy of stars by rapidly fluctuating gravitational fields (collisionless or violent relaxation) in disk galaxy models is investigated for three interaction potentials of the stars corresponding to (1) point stars, (2) rod stars of length 2 kpc, and (3) uniform density spherical stars of radius 2 kpc. To stabilize the galaxy against the large scale bar forming instability, a fixed field corresponding to a central core or halo component of stars was added with the stars containing at most 20 percent of the total mass of the galaxy. Considerable heating occurred for both the point stars and the rod stars, whereas the use of spherical stars resulted in a very low heating rate. The use of spherical stars with the resulting low heating rate will be desirable for the study of large scale galactic stability or density wave propagation, since collective heating effects will no longer mask the phenomena under study.

  17. Evolution of Gas Across Spiral Arms in the Whirlpool Galaxy

    Science.gov (United States)

    Louie, Melissa Nicole

    To investigate the dynamic evolution of gas across spiral arms, we conducted a detailed study of the gas and star formation along the spiral arms in the Whirlpool Galaxy, M51. This nearby, face-on spiral galaxy provides a unique laboratory to study the relationship between gas dynamics and star formation. The textbook picture of interstellar medium (ISM) evolution is rapidly changing. Molecular gas was once believed to form along spiral arms from the diffuse atomic gas in the inter-arm regions. Star formation occurs within giant molecular clouds during spiral arm passage. Lastly, the molecular gas is photo-dissociated back into atomic gas by massive stars on the downstream side of the spiral arm. Recent evidence, however, is revealing a new picture of the interstellar medium and the process of star formation. We seek development of a new picture by studying the development and evolution of molecular gas and the role of large scale galactic dynamics in organizing the interstellar medium. This thesis begins by presenting work measuring the geometrical offsets between interstellar gas and recent star formation. Interstellar gas is traced by atomic hydrogen and carbon monoxide (CO). Star formation is traced by ionized hydrogen recombination lines and infrared emission from dust warmed by young bright stars. Measuring these offsets can help determine the underlying large scale galactic dynamics. Along the spiral arms in M51, offsets between CO and the star formation tracers suggest that gas is flowing through the spiral arms, but the offsets do not show the expected signature of a single pattern speed and imply a more complicated pattern. This thesis also examines the intermediate stages of gas evolution, by studying a denser component of the ISM closer to which stars will form. Only a small percent of the bulk molecular gas will become dense enough to form stars. HCN and HCO+ probe densities ˜104 cm-3, where as the bulk gas is 500 cm-3. This thesis looks at HCN and

  18. Influence of baryonic physics in simulations of spiral galaxies

    International Nuclear Information System (INIS)

    Halle, A.

    2013-01-01

    The modelling of baryonic physics in numerical simulations of disc galaxies allows us to study the evolution of the different components, the physical state of the gas and the star formation. The present work aims at investigating in particular the role of the cold and dense molecular phase, which could play a role of gas reservoir in the outer galaxy discs, with low star formation efficiency. After a presentation of galaxies with a focus on spiral galaxies, their interstellar medium and dynamical evolution, we review the current state of hydrodynamical numerical simulations and the implementation of baryonic physics. We then present the simulations we performed. These include the cooling to low temperatures, and a molecular hydrogen component. The cooling functions we use include cooling by metals, for temperatures as low as 100 K, and cooling by H 2 due to collisions with H, He and other H 2 molecules. We use a TreeSPH type code that considers the stellar and gaseous components and black matter as particles. We especially test the impact of the presence of molecular hydrogen in simulations with several feedback efficiencies, and find that the molecular hydrogen allows in all cases some slow stellar formation to occur in the outer disc, with an effect on the vertical structure of the disc that is sensitive to the feedback efficiency. Molecular hydrogen is therefore able to play the role of gas reservoir in external parts of spiral galaxies, which accrete gas from cosmic filaments all along their lives

  19. X-rays from spiral and starburst galaxies

    International Nuclear Information System (INIS)

    Fabbiano, G.

    1990-01-01

    The study of the X-ray properties of normal galaxies as a class was made possible by the launch of the Einstein Observatory in November 1978. The Einstein X-ray observations of well over 100 galaxies have been reported in the literature to date, and data on a similar number can still be found in the Einstein data bank. To mention some of the unexpected results, these observations have led to the discovery of plumes of hot gas ejected by starburst nuclei, and to the study of small active nuclei. Hot X-ray halos have been discovered in early-type galaxies, and provide a potentially very powerful means for measuring their mass. The implications of these results range from new insights on the composition and evolution of X-ray emitting sources in spiral galaxies, and their relationship with star formation activity and cosmic ray production, to the formation of the intracluster medium and the origin of the X-ray background. This paper concentrates on the results of the Einstein observations of spiral and starburst galaxies. (author)

  20. New developments in the theory of spiral galaxies

    International Nuclear Information System (INIS)

    Thielheim, K.O.

    1982-01-01

    About 30% of all galaxies exhibit spiral forms, 60% are elliptical and 10% irregular. It is the objective of galactic dynamics to explain these structural features. A first generation of self-consistent N-body simulations indicates that ellipticals are equilibrium configurations of gravitationally interacting multi-particle systems for which unfortunately a theory does not yet exist. Recent progress has been made on the modal analysis of Freeman disks. In a second generation of N-body simulations spiral density waves have been reproduced in disk configurations. As an alternative to the Lin-Shu conjecture based on the QSSS-hypothesis the author considers a mechanism by which spiral density waves are produced in the surrounding disk as a consequence of the slow increase of the quadrupole moment of a central oval shaped equilibrium configuration immersed in the disk. (Auth.)

  1. Spiral arms and disc stability in the Andromeda galaxy

    Science.gov (United States)

    Tenjes, P.; Tuvikene, T.; Tamm, A.; Kipper, R.; Tempel, E.

    2017-04-01

    Aims: Density waves are often considered as the triggering mechanism of star formation in spiral galaxies. Our aim is to study relations between different star formation tracers (stellar UV and near-IR radiation and emission from H I, CO, and cold dust) in the spiral arms of M 31, to calculate stability conditions in the galaxy disc, and to draw conclusions about possible star formation triggering mechanisms. Methods: We selected fourteen spiral arm segments from the de-projected data maps and compared emission distributions along the cross sections of the segments in different datasets to each other, in order to detect spatial offsets between young stellar populations and the star-forming medium. By using the disc stability condition as a function of perturbation wavelength and distance from the galaxy centre, we calculated the effective disc stability parameters and the least stable wavelengths at different distances. For this we used a mass distribution model of M 31 with four disc components (old and young stellar discs, cold and warm gaseous discs) embedded within the external potential of the bulge, the stellar halo, and the dark matter halo. Each component is considered to have a realistic finite thickness. Results: No systematic offsets between the observed UV and CO/far-IR emission across the spiral segments are detected. The calculated effective stability parameter has a lowest value of Qeff ≃ 1.8 at galactocentric distances of 12-13 kpc. The least stable wavelengths are rather long, with the lowest values starting from ≃ 3 kpc at distances R > 11 kpc. Conclusions: The classical density wave theory is not a realistic explanation for the spiral structure of M 31. Instead, external causes should be considered, such as interactions with massive gas clouds or dwarf companions of M 31.

  2. A generating mechanism of spiral structure in barred galaxies

    International Nuclear Information System (INIS)

    Thielheim, K.O.; Wolff, H.

    1982-01-01

    The time-dependent response of non-interacting stars to growing oval distortions in disc galaxies is calculated by following their motion numerically and Fourier-analysing their positions. Long-lived spiral density waves are found for fast-growing perturbations as well as in cases in which the perturbation evolves only slowly, compared with a characteristic internal rotation period of the disc. This mechanism of driving a spiral structure in non-self-gravitating stellar discs provides an explanation for the long-lived global spiral patterns, observed in N-body experiments showing an evolving central bar, that is not based on the self-gravitation in the disc. In conjunction with the theory of Lynden-Bell according to which angular momentum transfer in the disc leads to a slow increase of the oval distortion, this effect provides a general mechanism for the generation of spiral structure in barred galaxies. In addition to stellar discs with velocity dispersion, cold discs, with the stars initially in circular motion, which bear great similarity to gaseous discs, are investigated. The linear epicyclic approximation is used to develop an analytical description of the generating mechanism. (author)

  3. On the apparent coupling of neutral hydrogen and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Hoekstra, H; van Albada, TS; Sancisi, R

    2001-01-01

    We have studied a mass model for spiral galaxies in which the dark matter surface density is a scaled version of the observed H I surface density. Applying this mass model to a sample of 24 spiral galaxies with reliable rotation curves, one obtains good fits for most galaxies. The scaling factors

  4. The Ultraviolet Attenuation Law in Backlit Spiral Galaxies

    Science.gov (United States)

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.; Lintott, Chris J.; Schawinski, Kevin

    2014-02-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly "gray" law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that widespread

  5. Infrared and CCD photometric study of spiral galaxies

    International Nuclear Information System (INIS)

    Manousoyannaki, I.

    1986-01-01

    Infrared J (1.2 μm), H (1.6 μm), and K (2.2 μm) photometry is presented for a subsample of galaxies with morphological types of Sc and Sb of the sample types Sc and Sb of the sample by Rubin et al. and one edge-on spiral galaxy. After an overview of the science of infrared photometry, accurate photometric magnitudes are derived via curves of growth that have been computed using a compiled catalogue of galaxies observed in the infrared. The catalogue is presented in Appendix I. The photometric data are used to derive mass to light ratio distribution and the colors for each galaxy. Several correlations of photometric and dynamical quantities are examined and discussed as integral properties of the two morphological types. The main result of this analysis is that the mass to H-light ratio is independent of radius and of H-luminosity and is a good measure of the stellar component of the galaxy. Emphasis is placed on the Tully-Fisher, absolute magnitude vs log (rotational velocity), relation and its application to derive distances of galaxies. The data are used to derive surface brightness distribution profiles and decompose the profiles to spheroidal and disk components. The radial distribution of color in these galaxies is also discussed

  6. Spiral model of the Galaxy from observations of the interstellar light attenuation

    International Nuclear Information System (INIS)

    Urasin, L.A.

    1987-01-01

    The model of two arms spiral structure of the Galaxy is made from the observations of space distribution of the interstellar dust matter. This model is the logarithmic spiral with characteristic angle (pith) 6.5 deg

  7. Flocculent and grand design spiral galaxies in groups: time scales for the persistence of grand design spiral structures

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Elmegreen, D.M.

    1983-01-01

    Spiral arm classifications were made for 261 low-inclination galaxies in groups listed by Huchra and Geller. The fractional occurrence of grand design spiral structure in nonbarred galaxies was found to increase from approx.0.1 to approx.0.6 and then level off as the group crossing rate or galaxy collision rate in a group increases. A simple model is discussed where the random encounters between galaxies of any type and flocculent galaxies induce transient grand design spirals in the flocculent galaxies. If this grand-design stimulation occurs for binary collisions with impact parameters less than αR 25 , were R 25 is the galactic radius at 25 mag arcsec - 2 , and if the induced grand design spirals persist for an average time equal to #betta# galactic rotations, then the quantity α 2 #betta# equals approximately 3 x 10 4 . If binary collisions are responsible for grand design spirals, then this result implies either that the induced spirals last for many galactic rotations (#betta#>15), or that they can be stimulated by very remote encounters (α>45.) Alternatively, grand design spirals may be stimulated by multiple galaxy encounters, which would be the case for such large α, or by interactions with the potential well of the associated group, rather than by simple binary encounters. Weak correlations between the grand design fraction and the galaxy size, or between this fraction and the total number of galaxies in a group, were also found. Spiral structures of barred galaxies show no correlations with group environment

  8. Propagating star formation and irregular structure in spiral galaxies

    International Nuclear Information System (INIS)

    Mueller, M.W.; Arnett, W.D.

    1976-01-01

    A simple model is proposed which describes the irregular optical appearance often seen in late-type spiral galaxies. If high-mass stars produce spherical shock waves which induce star formation, new high-mass stars will be born which, in turn, produce new shock waves. When this process operates in a differentially rotating disk, our numerical model shows that large-scale spiral-shaped regions of star formation are built up. The structure is seen to be most sensitive to a parameter which governs how often a region of the interstellar medium can undergo star formation. For a proper choice of this parameter, large-scale features disappear before differential rotation winds them up. New spiral features continuously form, so some spiral structure is seen indefinitely. The structure is not the classical two-armed symmetric spiral pattern which the density-wave theory attempts to explain, but it is asymmetric and disorderly.The mechanism of propagating star formation used in our model is consistent with observations which connect young OB associations with expanding shells of gas. We discuss the possible interaction of this mechanism with density waves

  9. The ultraviolet attenuation law in backlit spiral galaxies

    International Nuclear Information System (INIS)

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.; Lintott, Chris J.; Schawinski, Kevin

    2014-01-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that

  10. The ultraviolet attenuation law in backlit spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Keel, William C. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Manning, Anna M. [Stennis Space Center, MS 39522 (United States); Holwerda, Benne W. [ESA-ESTEC, Keplerlaan 1, 2201-AZ Noordwijk (Netherlands); Lintott, Chris J. [Astrophysics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Schawinski, Kevin, E-mail: wkeel@ua.edu, E-mail: ammanning@bama.ua.edu, E-mail: bholwerd@rssd.esa.int, E-mail: Twitter@BenneHolwerda, E-mail: cjl@astro.ox.ac.uk, E-mail: Twitter@chrislintott, E-mail: kevin.schawinski@phys.ethz.ch, E-mail: Twitter@kevinschawinski [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)

    2014-02-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that

  11. Optical analysis of dust complexes in spiral galaxies

    International Nuclear Information System (INIS)

    Elmegreen, D.A.M.

    1979-01-01

    A method for quantitatively investigating properties of dust regions in external galaxies is presented. The technique involves matching radiative transfer models (with absorption plus scattering) to multicolor photographic and photometric observations. Dust features in each galaxy are modeled with two configurations; one is rectangular with a Gaussian distribution perpendicular to the plane of the galaxy, and the other is a uniform oblate spheroid with an arbitrary height from the midplane. It is found that it is possible to determine the intrinsic opacities in the clouds and in the nearby comparison regions, and that differention between high opacity low-lying clouds and low opacity clouds that are above the midplane can be made. This technique was used to study dust complexes in the late-type spiral galaxies NGC 628 (M74), NGC 5194 (M51), NGC 5457 (M101), and NGC 7793. Most of the features in the prominent dust lanes were found to have internal visual extinctions corresponding to 10 to 15 mag kpc -1 , while the adjacent comparison regions typically contained 4 mag kpc -1 . Thus the opacity through a dust lane is about 1.5 mag greater than the 0.5 to 1.0 mag of extinction through a comparison region. A noticeable deviation from this result was found for all of the dust lanes that occurred on the inner edges of the spiral arm branches. These features had internal densities that were approx. 10 times larger than in their comparison regions, in contrast to the normal dust lanes which had density enhancements of a factor of approx. 3. Dust features which were on the outer sides of spiral arms appeared to be no different than main inner dust lane features

  12. Luminous quasars do not live in the most overdense regions of galaxies at z ˜ 4

    Science.gov (United States)

    Uchiyama, Hisakazu; Toshikawa, Jun; Kashikawa, Nobunari; Overzier, Roderik; Chiang, Yi-Kuan; Marinello, Murilo; Tanaka, Masayuki; Niino, Yuu; Ishikawa, Shogo; Onoue, Masafusa; Ichikawa, Kohei; Akiyama, Masayuki; Coupon, Jean; Harikane, Yuichi; Imanishi, Masatoshi; Kodama, Tadayuki; Komiyama, Yutaka; Lee, Chien-Hsiu; Lin, Yen-Ting; Miyazaki, Satoshi; Nagao, Tohru; Nishizawa, Atsushi J.; Ono, Yoshiaki; Ouchi, Masami; Wang, Shiang-Yu

    2018-01-01

    We present the cross-correlation between 151 luminous quasars (MUV 4 σ. The distributions of the distances between quasars and the nearest protoclusters and the significance of the overdensity at the positions of quasars are statistically identical to those found for g-dropout galaxies, suggesting that quasars tend to reside in almost the same environment as star-forming galaxies at this redshift. Using stacking analysis, we find that the average density of g-dropout galaxies around quasars is slightly higher than that around g-dropout galaxies on 1.0-2.5 pMpc scales, while at anti-correlated with overdensity. These findings are consistent with a scenario in which luminous quasars at z ˜ 4 reside in structures that are less massive than those expected for the progenitors of today's rich clusters of galaxies, and possibly that luminous quasars may be suppressing star formation in their close vicinity.

  13. Mass models for disk and halo components in spiral galaxies

    International Nuclear Information System (INIS)

    Athanassoula, E.; Bosma, A.

    1987-01-01

    The mass distribution in spiral galaxies is investigated by means of numerical simulations, summarizing the results reported by Athanassoula et al. (1986). Details of the modeling technique employed are given, including bulge-disk decomposition; computation of bulge and disk rotation curves (assuming constant mass/light ratios for each); and determination (for spherical symmetry) of the total halo mass out to the optical radius, the concentration indices, the halo-density power law, the core radius, the central density, and the velocity dispersion. Also discussed are the procedures for incorporating galactic gas and checking the spiral structure extent. It is found that structural constraints limit disk mass/light ratios to a range of 0.3 dex, and that the most likely models are maximum-disk models with m = 1 disturbances inhibited. 19 references

  14. Problem of spiral galaxies and satellite radio sources

    International Nuclear Information System (INIS)

    Arp, H.; Carpenter, R.; Gulkis, S.; Klein, M.

    1976-01-01

    A detailed comparison is made between the results of this program and the results of previous investigators. In particular, attention is called to the potentially important implications of an investigation by Tovmasyan, who searched a large number of spirals and found evidence that a small percentage of them apparently have radio satellites located up to 20' from the central galaxy. 15 sources were measured selected from Tovmasyan's list of 43 satellite sources. Results confirm his positions and relative flux densities for each of the sources

  15. The cored distribution of dark matter in spiral galaxies

    OpenAIRE

    Gentile, G.; Salucci, P.; Klein, U.; Vergani, D.; Kalberla, P.

    2004-01-01

    We present the HI data for 5 spiral galaxies that, along with their Halpha rotation curves, are used to derive the distribution of dark matter within these objects. A new method for extracting rotation curves from HI data cubes is presented; this takes into account the existence of a warp and minimises projection effects. The rotation curves obtained are tested by taking them as input to construct model data cubes that are compared to the observed ones: the agreement is excellent. On the cont...

  16. The First Hyper-Luminous Infrared Galaxy Discovered by WISE

    Science.gov (United States)

    Eisenhardt, Peter R.; Wu, Jingwen; Tsai, Chao-Wei; Assef, Roberto; Benford, Dominic; Blain, Andrew; Bridge, Carrie; Condon, J. J.; Cushing, Michael C.; Cutri, Roc; hide

    2012-01-01

    We report the discovery by the Wide-field Infrared Survey Explorer of the z = 2.452 source WISEJ181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of approximately 1000 extremely luminous "W1W2-dropouts" (sources faint or undetected by WISE at 3.4 and 4.6 micrometers and well detected at 12 or 22 micrometers). The WISE data and a 350 micrometers detection give a minimum bolometric luminosity of 3.7 x 10(exp 13) solar luminosity, with approximately 10(exp 14) solar luminosity plausible. Followup images reveal four nearby sources: a QSO and two Lyman Break Galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate approximately 300 solar mass yr(exp -1), accounting for less than or equal to 10 percent of the bolometric luminosity. Strong 22 micrometer emission relative to 350 micrometer implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is approximately 10? above the far-infrared/radio correlation, indicating an active galactic nucleus is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local MBH-bulge mass relation, the implied Eddington ratio is approximately greater than 4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation.

  17. Unusual Objects in the Spiral Galaxy NGC 6946

    Directory of Open Access Journals (Sweden)

    Efremov Yu. N.

    2016-12-01

    Full Text Available Several strange objects in the spiral galaxy NGC 6946 are described. One of these objects is the giant stellar complex noted long ago; we suggested that its sharp semicircular western edge is a result of the ram pressure, arising owing to motion of this complex through the HI halo of NGC 6946. We found another enigmatic object, proposing for it the name Red Ellipse; it is located within the isolated Northern arm of the galaxy. The enormous size of this Ellipse, and especially the spectroscopic data obtained recently with the 6-m reflector of the Special Astrophysical Observatory, made us to conclude that this object could not be a supernova remnant. The excellent image of NGC 6946 obtained with the Subaru 8-m telescope also shows a strange region with several regular crossed dark lanes, connected with a black spot.

  18. Searching gravitational microlensing events in the galaxy spiral arms by EROS II

    International Nuclear Information System (INIS)

    Derue, Frederic

    1999-01-01

    The EROS II experiment is searching for microlensing events due to compact massive objects passing through the line-of-sight of luminous stars. These objects are candidates to explain the baryonic component of Dark Matter in our Galaxy. EROS II was dedicated to different lines-of-sight: Small and Large Magellanic Clouds, Galactic Centre and 4 directions towards the Spiral Arms of the Galaxy. This thesis presents the first search for microlensing towards these last lines-of-sight (about 9 million stars). Simple criteria based on the search for significant fluctuations allowed one to discover a low noise sample of 7 candidates to the microlensing effect, with an average timescale of 50 days. A detailed analysis of the light curve of one candidate allows us to give a confidence interval on its mass 2.7 x 10 -3 0 0 = 50 ± 3 days. To improve the knowledge of the distance of the target stars, we have combined observations of EROS II with bibliographic sources on associations of stars linked with the spiral arm features, and we have developed a program to find variable stars. Ten cepheids have thus been found. Distances obtained with different methods are in rough agreement with each other. The average optical depth measured towards the four directions is τ-bar = 0.45 0.11 +0.23 x 10 -6 . It is compatible with expectations from simple galactic models. The long duration of most events favours interpretation of lensing by objects belonging to the disk instead of the halo. It also seems that some events due to bulge lenses have influenced measurements towards the line-of-sight which is closest to the Galactic Centre. Observation continue towards spiral arms. More accurate measurements should be obtained with increase of statistics, allowing one to estimate the disk contribution to the optical depth towards the bulge and the Magellanic Clouds. (author)

  19. Comparison of M33 and NGC7793: stochastic models of spiral galaxies modulated by density waves

    International Nuclear Information System (INIS)

    Smith, G.; Elmegreen, B.G.; Elmegreen, D.M.

    1984-01-01

    Two late-type spiral galaxies with similar kinematic and photometric properties but different spiral arm structures, M33 and NGC7793, are compared to model galaxies with stochastic self-propagating star formation. The spontaneous probability, Psub(sp), representing the rate of primary star formation, is modulated by a smooth, density wave-like spiral pattern in the models of M33. When propagating star formation is included, these models show no age gradients in the underlying spiral arms. Models which have no imposed spiral modulation to Psub(sp) resemble the observed structure of NGC7793. (author)

  20. Two-component gravitational instability in spiral galaxies

    Science.gov (United States)

    Marchuk, A. A.; Sotnikova, N. Y.

    2018-04-01

    We applied a criterion of gravitational instability, valid for two-component and infinitesimally thin discs, to observational data along the major axis for seven spiral galaxies of early types. Unlike most papers, the dispersion equation corresponding to the criterion was solved directly without using any approximation. The velocity dispersion of stars in the radial direction σR was limited by the range of possible values instead of a fixed value. For all galaxies, the outer regions of the disc were analysed up to R ≤ 130 arcsec. The maximal and sub-maximal disc models were used to translate surface brightness into surface density. The largest destabilizing disturbance stars can exert on a gaseous disc was estimated. It was shown that the two-component criterion differs a little from the one-fluid criterion for galaxies with a large surface gas density, but it allows to explain large-scale star formation in those regions where the gaseous disc is stable. In the galaxy NGC 1167 star formation is entirely driven by the self-gravity of the stars. A comparison is made with the conventional approximations which also include the thickness effect and with models for different sound speed cg. It is shown that values of the effective Toomre parameter correspond to the instability criterion of a two-component disc Qeff < 1.5-2.5. This result is consistent with previous theoretical and observational studies.

  1. Composition gradients across spiral galaxies II. The stellar mass limit

    International Nuclear Information System (INIS)

    Shields, G.A.; Tinsley, B.M.

    1976-01-01

    The equivalent width of the Hβ emission from H ii regions in spiral galaxies increases with distance from the nucleus. This W (Hβ) gradient is interpreted in terms of a radial gradient in the temperature of the hottest exciting stars. (T/subu/). From Searle's observations of M101, an increase Δ log T/subu/=0.02--0.13 from the intermediate to outermost spiral arms of M101 is inferred. There is also a radial decrease in the metal abundance (Z) across M101, and the T/subu/ gradient is consistent with the prediction of Kahn's recent theory that the upper mass limit for star formation should be smaller in regions of high Z. It is noted also that, even in the absence of changes in the upper mass limit, a T/subu/ gradient is expected because metal-rich stars of given mass have smaller effective temperatures. Several observational and theoretical improvements are needed before firm conclusions can be drawn, but it is clear that the presence of a T/subu/ gradient may lead to several important systematic changes in the interpretation of gradients in the properties of H ii regions across galaxies. A T/subu/ gradient reduces the Z gradient that is inferred from emission-line ratios, and it may help to explain why O ii is strong in the innermost regions where O iii is weak. A T/subu/ gradient may also partly camouflage a helium abundance gradient

  2. ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2015-12-01

    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, there is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.

  3. Formation des etoiles massives dans les galaxies spirales

    Science.gov (United States)

    Lelievre, Mario

    Le but de cette thèse est de décrire la formation des étoiles massives dans les galaxies spirales appartenant à divers types morphologiques. L'imagerie Hα profonde combinée à une robuste méthode d'identification des régions HII ont permis de détecter et de mesurer les propriétés (position, taille, luminosité, taux de formation d'étoiles) de plusieurs régions HII situées dans le disque interne (R influencer de façon significative la stabilité des nuages moléculaires face à l'effondrement gravitationnel. D'une part, l'étendue du disque de régions HII pour cinq galaxies de l'échantillon coïncide avec celle de l'hydrogène atomique. D'autre part, en analysant la stabilité des disques galactiques, on conclue qu'en incluant la densité des étoiles vieilles présentes, on arrive à mieux contraindre le rayon à partir duquel aucune formation d'étoiles ne devrait se produire dans les galaxies.

  4. Very Luminous X-ray Point Sources in Starburst Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Ptak, A.; Weaver, K. A.; Strickland, D.

    Extranuclear X-ray point sources in external galaxies with luminosities above 1039.0 erg/s are quite common in elliptical, disk and dwarf galaxies, with an average of ~ 0.5 and dwarf galaxies, with an average of ~0.5 sources per galaxy. These objects may be a new class of object, perhaps accreting intermediate-mass black holes, or beamed stellar mass black hole binaries. Starburst galaxies tend to have a larger number of these intermediate-luminosity X-ray objects (IXOs), as well as a large number of lower-luminosity (1037 - 1039 erg/s) point sources. These point sources dominate the total hard X-ray emission in starburst galaxies. We present a review of both types of objects and discuss possible schemes for their formation.

  5. Velocity dispersions in the bulges of spiral and SO galaxies. II. Further observations and a simple three-component model for spiral galaxies

    International Nuclear Information System (INIS)

    Whitmore, B.C.; Kirshner, R.P.

    1981-01-01

    We have obtained velocity dispersions for 24 galaxies in the Virgo cluster to supplement our earlier results. A 2000 channel intensified Reticon scanner has again been used on the 1.3 m telescope of McGraw-Hill Observatory, and a Fourier quotient technique has been employed to yield dispersions. We have confirmed our earlier result that spiral bulges exhibit a relation between total luminosity and velocity dispersion with the form L proportional sigma 4 , but with velocity dispersions that are 17 +- 8% smaller than elliptical galaxies at the same absolute magnitude. However, possible systematic errors may still affect the reality of this gap. The scatter in the L proportional sigma 4 relationship is substantially larger for the spiral bulges than for the elliptical galaxies. This larger scatter probably indicates that spiral bulges comprise a more heterogeneous sample than do elliptical galaxies. we also find that the bulge components of SO galaxies follow a L proportional sigma 4 relation with no gap with the ellipticals. The similarity in this relation for the spheroidal components of spiral, SO, and elliptical galaxies indicates that the systems are dynamically similar

  6. The Westerbork HI survey of spiral and irregular galaxies - I. HI imaging of late-type dwarf galaxies

    NARCIS (Netherlands)

    Swaters, RA; Van Albada, TS; van der Hulst, JM; Sancisi, R

    Neutral hydrogen observations with the Westerbork Synthesis Radio Telescope are presented for a sample of 73 late-type dwarf galaxies. These observations are part of the WHISP project (Westerbork Hi Survey of Spiral and Irregular Galaxies). Here we present Hi maps, velocity fields, global profiles

  7. The origin of nitrogen and the chemical evolution of spiral galaxies

    OpenAIRE

    Díaz, Angeles I.; Tosi, M.

    1986-01-01

    This is an electronic version of an article published in Astronomy and Astrophysics. Diaz, A.I. and M. Tosi. The origin of nitrogen and the chemical evolution of spiral galaxies. Astronomy and Astrophysics 158 (1986): 60-66

  8. SpArcFiRe: Scalable automated detection of spiral galaxy arm segments

    International Nuclear Information System (INIS)

    Davis, Darren R.; Hayes, Wayne B.

    2014-01-01

    Given an approximately centered image of a spiral galaxy, we describe an entirely automated method that finds, centers, and sizes the galaxy (possibly masking nearby stars and other objects if necessary in order to isolate the galaxy itself) and then automatically extracts structural information about the spiral arms. For each arm segment found, we list the pixels in that segment, allowing image analysis on a per-arm-segment basis. We also perform a least-squares fit of a logarithmic spiral arc to the pixels in that segment, giving per-arc parameters, such as the pitch angle, arm segment length, location, etc. The algorithm takes about one minute per galaxies, and can easily be scaled using parallelism. We have run it on all ∼644,000 Sloan objects that are larger than 40 pixels across and classified as 'galaxies'. We find a very good correlation between our quantitative description of a spiral structure and the qualitative description provided by Galaxy Zoo humans. Our objective, quantitative measures of structure demonstrate the difficulty in defining exactly what constitutes a spiral 'arm', leading us to prefer the term 'arm segment'. We find that pitch angle often varies significantly segment-to-segment in a single spiral galaxy, making it difficult to define the pitch angle for a single galaxy. We demonstrate how our new database of arm segments can be queried to find galaxies satisfying specific quantitative visual criteria. For example, even though our code does not explicitly find rings, a good surrogate is to look for galaxies having one long, low-pitch-angle arm—which is how our code views ring galaxies. SpArcFiRe is available at http://sparcfire.ics.uci.edu.

  9. The Hubble law and the spiral structures of galaxies from equations of motion in general relativity

    International Nuclear Information System (INIS)

    Sachs, M.

    1975-01-01

    Fully exploiting the Lie group that characterizes the underlying symmetry of general relativity theory, Einstein's tensor formalism factorizes, yielding a generalized (16-component) quaternion field formalism. The associated generalized geodesic equation, taken as the equation of motion of a star, predicts the Hubble law from one approximation for the generally covariant equations of motion, and the spiral structure of galaxies from another approximation. These results depend on the imposition of appropriate boundary conditions. The Hubble law follows when the boundary conditions derive from the oscillating model cosmology, and not from the other cosmological models. The spiral structures of the galaxies follow from the same boundary conditions, but with a different time scale than for the whole universe. The solutions that imply the spiral motion are Fresnel integrals. These predict the star's motion to be along the 'Cornu Spiral'. The part of this spiral in the first quadrant is the imploding phase of the galaxy, corresponding to a motion with continually decreasing radii, approaching the galactic center as time increases. The part of the Cornu Spiral' in the third quadrant is the exploding phase, corresponding to continually increasing radii, as the star moves out from the hub. The spatial origin in the coordinate system of this curve is the inflection point, where the explosion changes to implosion. The two- (or many-) armed spiral galaxies are explained here in terms of two (or many) distinct explosions occurring at displaced times, in the domain of the rotating, planar galaxy. (author)

  10. : Nuclear Spirals and Mass Accretion to Supermassive Black Holes in Weakly-Barred Galaxies

    Science.gov (United States)

    Kim, Woong-Tae; Elmegreen, Bruce

    2018-01-01

    Disk galaxies, especially barred-spiral galaxies, abound with rings and spirals in their nuclear regions. Nuclear spirals existing even in weakly barred galaxies are thought to channel gas inflows to supermassive black holes residing at the centers. We use high-resolution hydrodynamic simulations to study the properties of nuclear gas spirals driven by weak bar-like or oval potentials. The amplitude of the spirals increases toward the center by a geometric effect, readily developing into shocks at small radii even for very weak potentials. The shape of the spirals and shocks depends rather sensitively on the background shear. When shear is low, the nuclear spirals are loosely wound and the shocks are almost straight, resulting in large mass inflows toward the center. When shear is high, on the other hand, the spirals are tightly wound and the shocks are oblique, forming a circumnuclear disk through which gas flows inward at a relatively lower rate. The induced mass inflow rates are enough to power black hole accretion in various types of Seyfert galaxies.

  11. Galaxy masses in large surveys: Connecting luminous and dark matter with weak lensing and kinematics

    Science.gov (United States)

    Reyes, Reinabelle

    2011-01-01

    Galaxy masses are difficult to determine because light traces stars and gas in a non-trivial way, and does not trace dark matter, which extends well beyond the luminous regions of galaxies. In this thesis, I use the most direct probes of dark matter available---weak gravitational lensing and galaxy kinematics---to trace the total mass in galaxies (and galaxy clusters) in large surveys. In particular, I use the large, homogeneous dataset from the Sloan Digital Sky Survey (SDSS), which provides spectroscopic redshifts for a large sample of galaxies at z ≲ 0.2 and imaging data to a depth of r < 22. By combining complementary probes, I am able to obtain robust observational constraints that cannot be obtained from any single technique alone. First, I use weak lensing of galaxy clusters to derive an optimal optical tracer of cluster mass, which was found to be a combination of cluster richness and the luminosity of the brightest cluster galaxy. Next, I combine weak lensing of luminous red galaxies with redshift distortions and clustering measurements to derive a robust probe of gravity on cosmological scales. Finally, I combine weak lensing with the kinematics of disk galaxies to constrain the total mass profile over several orders of magnitude. I derive a minimal-scatter relation between disk velocity and stellar mass (also known as the Tully-Fisher relation) that can be used, by construction, on a similarly-selected lens sample. Then, I combine this relation with halo mass measurements from weak lensing to place constraints on the ratio of the optical to virial velocities, as well as the ratio of halo to stellar masses, both as a function of stellar mass. These results will serve as inputs to and constraints on disk galaxy formation models, which will be explored in future work.

  12. The different star formation histories of blue and red spiral and elliptical galaxies

    Science.gov (United States)

    Tojeiro, Rita; Masters, Karen L.; Richards, Joshua; Percival, Will J.; Bamford, Steven P.; Maraston, Claudia; Nichol, Robert C.; Skibba, Ramin; Thomas, Daniel

    2013-06-01

    We study the spectral properties of intermediate mass galaxies (M* ˜ 1010.7 M⊙) as a function of colour and morphology. We use Galaxy Zoo to define three morphological classes of galaxies, namely early types (ellipticals), late-type (disc-dominated) face-on spirals and early-type (bulge-dominated) face-on spirals. We classify these galaxies as blue or red according to their Sloan Digital Sky Survey (SDSS) g - r colour and use the spectral fitting code Versatile Spectral Analyses to calculate time-resolved star formation histories, metallicity and total starlight dust extinction from their SDSS fibre spectra. We find that red late-type spirals show less star formation in the last 500 Myr than blue late-type spirals by up to a factor of 3, but share similar star formation histories at earlier times. This decline in recent star formation explains their redder colour: their chemical and dust content are the same. We postulate that red late-type spirals are recent descendants of blue late-type spirals, with their star formation curtailed in the last 500 Myr. The red late-type spirals are however still forming stars ≃17 times faster than red ellipticals over the same period. Red early-type spirals lie between red late-type spirals and red ellipticals in terms of recent-to-intermediate star formation and dust content. Therefore, it is plausible that these galaxies represent an evolutionary link between these two populations. They are more likely to evolve directly into red ellipticals than red late-type spirals, which show star formation histories and dust content closer to blue late-type spirals. Blue ellipticals show similar star formation histories as blue spirals (regardless of type), except that they have formed less stars in the last 100 Myr. However, blue ellipticals have different dust content, which peaks at lower extinction values than all spiral galaxies. Therefore, many blue ellipticals are unlikely to be descendants of blue spirals, suggesting there may

  13. Spiral Galaxy Central Bulge Tangential Speed of Revolution Curves

    Science.gov (United States)

    Taff, Laurence

    2013-03-01

    The objective was to, for the first time in a century, scientifically analyze the ``rotation curves'' (sic) of the central bulges of scores of spiral galaxies. I commenced with a methodological, rational, geometrical, arithmetic, and statistical examination--none of them carried through before--of the radial velocity data. The requirement for such a thorough treatment is the paucity of data typically available for the central bulge: fewer than 10 observations and frequently only five. The most must be made of these. A consequence of this logical handling is the discovery of a unique model for the central bulge volume mass density resting on the positive slope, linear, rise of its tangential speed of revolution curve and hence--for the first time--a reliable mass estimate. The deduction comes from a known physics-based, mathematically valid, derivation (not assertion). It rests on the full (not partial) equations of motion plus Poisson's equation. Following that is a prediction for the gravitational potential energy and thence the gravitational force. From this comes a forecast for the tangential speed of revolution curve. It was analyzed in a fashion identical to that of the data thereby closing the circle and demonstrating internal self-consistency. This is a hallmark of a scientific method-informed approach to an experimental problem. Multiple plots of the relevant quantities and measures of goodness of fit will be shown. Astronomy related

  14. Untangling the magnetic fields in spiral galaxy NGC 6946 with wide-band polarimetry

    NARCIS (Netherlands)

    Williams, Anna; Heald, George; Wilcots, Eric M.; Gould Zweibel, Ellen

    We present 13 cm polarization observations of nearby spiral galaxy NGC 6946. These data provide a new perspective into the magnetic field structure of this galaxy. Previous observations show strong depolarization between 6 cm and 22 cm, and we show that the morphology of the 13 cm polarization

  15. MOND rotation curves for spiral galaxies with Cepheid-based distances

    NARCIS (Netherlands)

    Bottema, R; Pestana, JLG; Rothberg, B; Sanders, RH

    2002-01-01

    Rotation curves for four spiral galaxies with recently determined Cepheid-based distances are reconsidered in terms of modified Newtonian dynamics (MOND). For two of the objects, NGC 2403 and NGC 7331, the rotation curves predicted by MOND are compatible with the observed curves when these galaxies

  16. Stellar disc truncations and extended haloes in face-on spiral galaxies

    NARCIS (Netherlands)

    Peters, S. P. C.; van der Kruit, P. C.; Knapen, J. H.; Trujillo, I.; Fliri, J.; Cisternas, M.; Kelvin, L. S.

    2017-01-01

    We use data from the IAC Stripe82 Legacy Project to study the surface photometry of 22 nearby, face-on to moderately inclined spiral galaxies. The reprocessed and combined Stripe 82 g',r' and I' images allow us to probe the galaxy down to 29-30 r'-magnitudes arcsec-2 and thus reach into the very

  17. CO mapping of spiral galaxies in the Ursa Major cluster: An atlas

    NARCIS (Netherlands)

    Rhee, M. H.; Chung, A.; Verheijen, M.; Yun, M. S.

    2001-01-01

    The properties of molecular gas in spiral galaxies is the subject of a wide field of research and much has been done on the global scale of galaxies. The advent and maturity of the On-The-Fly (OTF) mapping technique at the NRAO 12m radio telescope now affords us with a way to address many issues on

  18. Synthetic Observations of the HI Line in SPH-Simulated Spiral Galaxies

    NARCIS (Netherlands)

    Douglas, Kevin A.; Acreman, David; Dobbs, Clare; Brunt, Chris

    2009-01-01

    Using the radiative transfer code Torus, we produce spectral-line cubes of the predicted HI profile from global SPH simulations of spiral galaxies. Torus grids the SPH galaxy using Adaptive Mesh Refinement, then applies a ray-tracing method to infer the HI profile along the line(s) of sight. The

  19. The line-of-sight warp of the spiral galaxy ESO 123-G23

    NARCIS (Netherlands)

    Gentile, G; Fraternali, F; Klein, U; Salucci, P

    We present 3-D modelling of the distribution and kinematics of the neutral hydrogen in the spiral galaxy ESO 123- G23. The optical appearance of this galaxy is an almost perfectly edge-on disk, while the neutral hydrogen is found to extend vertically out to about 15 kpc on either side of the

  20. LUMINOUS SATELLITES OF EARLY-TYPE GALAXIES. I. SPATIAL DISTRIBUTION

    International Nuclear Information System (INIS)

    Nierenberg, A. M.; Auger, M. W.; Treu, T.; Marshall, P. J.; Fassnacht, C. D.

    2011-01-01

    We study the spatial distribution of faint satellites of intermediate redshift (0.1 s = 1.7 +0.9 -0.8 ) that is comparable to the number of Milky Way satellites with similar host-satellite contrast. The average projected radial profile of the satellite distribution is isothermal (γ p = -1.0 +0.3 -0.4 ), which is consistent with the observed central mass density profile of massive early-type galaxies. Furthermore, the satellite distribution is highly anisotropic (isotropy is ruled out at a >99.99% confidence level). Defining φ to be the offset between the major axis of the satellite spatial distribution and the major axis of the host light profile, we find a maximum posterior probability of φ = 0 and |φ| less than 42 0 at the 68% confidence level. The alignment of the satellite distribution with the light of the host is consistent with simulations, assuming that light traces mass for the host galaxy as observed for lens galaxies. The anisotropy of the satellite population enhances its ability to produce the flux ratio anomalies observed in gravitationally lensed quasars.

  1. Unusual broad-line Mg II emitters among luminous galaxies in the baryon oscillation spectroscopic survey

    International Nuclear Information System (INIS)

    Roig, Benjamin; Blanton, Michael R.; Ross, Nicholas P.

    2014-01-01

    Many classes of active galactic nuclei (AGNs) have been observed and recorded since the discovery of Seyfert galaxies. In this paper, we examine the sample of luminous galaxies in the Baryon Oscillation Spectroscopic Survey. We find a potentially new observational class of AGNs, one with strong and broad Mg II λ2799 line emission, but very weak emission in other normal indicators of AGN activity, such as the broad-line Hα, Hβ, and the near-ultraviolet AGN continuum, leading to an extreme ratio of broad Hα/Mg II flux relative to normal quasars. Meanwhile, these objects' narrow-line flux ratios reveal AGN narrow-line regions with levels of activity consistent with the Mg II fluxes and in agreement with that of normal quasars. These AGN may represent an extreme case of the Baldwin effect, with very low continuum and high equivalent width relative to typical quasars, but their ratio of broad Mg II to broad Balmer emission remains very unusual. They may also be representative of a class of AGN where the central engine is observed indirectly with scattered light. These galaxies represent a small fraction of the total population of luminous galaxies (≅ 0.1%), but are more likely (about 3.5 times) to have AGN-like nuclear line emission properties than other luminous galaxies. Because Mg II is usually inaccessible for the population of nearby galaxies, there may exist a related population of broad-line Mg II emitters in the local universe which is currently classified as narrow-line emitters (Seyfert 2 galaxies) or low ionization nuclear emission-line regions.

  2. H-alpha observations of spiral galaxies in Cancer, A1367, and Coma

    International Nuclear Information System (INIS)

    Kennicutt, R.C.; Bothun, G.D.; Schommer, R.A.

    1984-01-01

    We have used large aperture Hα photometry of 65 spiral galaxies in the Cancer, Coma, and Abell 1367 clusters to compare the ionized-gas contents and star-formation rates in cluster and field spirals. Overall, we do not observe any significant deficiency of Hα emission in the cluster members. Emission strength correlates strongly with integrated galaxy colors, but only weakly with H I content. All three clusters contain several galaxies with unusually strong Hα emission, including several H I-poor objects in Coma and A1367. Thus, spirals which appear ''anemic'' in their morphology or exhibit weak Hα emission are not necessarily H I poor; conversely, H I poor spirals can show strong Hα emission, indicating relatively high current star-formation rates. Gas depletion time scales for some objects in the core of Coma are significantly shorter than the field, indicating rapid stellar and gaseous evolution

  3. A Variation of the Present Star Formation Activity of Spiral Galaxies

    OpenAIRE

    Tomita, Akihiko; Tomita, Yoshio; Saito, Mamoru

    1996-01-01

    The star formation rate in spiral galaxies is considered to be decreasing continuously with time in a time scale of $10^{9}$ yr. The present star formation activity, on the other hand, shows various degrees among galaxies. We make a new data set of 1681 nearby spiral galaxies from available databases and study the statistics of the present star formation activity. We analyze far-infrared and optical B-band surface brightnesses of the H II regions and the non-H II regions in M~31 and show that...

  4. DISCOVERY OF TWO SUPERNOVAE IN THE NUCLEAR REGIONS OF THE LUMINOUS INFRARED GALAXY IC 883

    Energy Technology Data Exchange (ETDEWEB)

    Kankare, E.; Mattila, S.; Takalo, A. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Ryder, S. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Vaeisaenen, P. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Alberdi, A.; Perez-Torres, M.-A.; Romero-Canizales, C. [Instituto de Astrofsica de Andalucia, IAA-CSIC, Apartado 3004, 18080 Granada (Spain); Alonso-Herrero, A.; Colina, L. [Departamento de Astrofisica, Centro de Astrobiologia, CSIC/INTA, Carretera de Torrejon a Ajalvir, km 4, 28850, Torrejon de Ardoz, Madrid (Spain); Efstathiou, A. [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Kotilainen, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Melinder, J., E-mail: erkki.kankare@utu.fi [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, 106 91 Stockholm (Sweden)

    2012-01-10

    We report the discovery of two consecutive supernovae (SNe), 2010cu and 2011hi, located at 0.''37 (180 pc) and 0.''79 (380 pc) projected distance, respectively, from the center of the K-band nucleus of the luminous infrared galaxy (LIRG) IC 883. The SNe were discovered in an ongoing near-infrared K-band search for core-collapse SNe in such galaxies using the ALTAIR/NIRI adaptive optics system with laser guide star at the Gemini-North Telescope. These are thus the closest SNe yet discovered to an LIRG nucleus in optical or near-infrared wavelengths. The near-infrared light curves and colors of both SNe are consistent with core-collapse events. Both SNe seem to suffer from relatively low host galaxy extinction suggesting that regardless of their low projected galactocentric distances, they are not deeply buried in the nuclear regions of the host galaxy.

  5. THE WHIQII SURVEY: METALLICITIES AND SPECTROSCOPIC PROPERTIES OF LUMINOUS COMPACT BLUE GALAXIES

    International Nuclear Information System (INIS)

    Tollerud, Erik J.; Barton, Elizabeth J.; Cooke, Jeff; Van Zee, Liese

    2010-01-01

    As part of the WIYN High Image Quality Indiana-Irvine (WHIQII) survey, we present 123 spectra of faint emission-line galaxies, selected to focus on intermediate redshift (0.4 ∼ 23 -O 32 plane that differs from luminous local galaxies and is more consistent with dwarf irregulars at the present epoch, suggesting that cosmic 'downsizing' is observable in even the most fundamental parameters that describe star formation. These properties for our sample are also generally consistent with lying between local galaxies and those at high redshift, as expected by this scenario. Surprisingly, our sample exhibits no detectable correlation between compactness and metallicity, strongly suggesting that at these epochs of rapid star formation, the morphology of compact star-forming galaxies is largely transient.

  6. Angular momentum redistribution by spiral waves in computer models of disc galaxies

    International Nuclear Information System (INIS)

    Sellwood, J.A.; James, R.A.

    1979-01-01

    It is shown that the spiral patterns which develop spontaneously in computer models of galaxies are generated through angular momentum transfer. By adjusting the distribution of mass in the rigid halo components of the models it is possible to alter radically the rotation curve of the disc component. Either trailing or leading spiral arms develop in the models, dependent only on the sense of the differential shear; no spirals are seen in models where the disc rotates uniformly. It is found that the distribution of angular momentum in the disc is altered by the spiral evolution. Although some spiral structure can be seen for a long period, the life of each pattern is very short. It is shown that resonances are of major importance even for these transient patterns. All spiral wave patterns which have been seen possess both an inner Lindblad resonance and a co-rotation resonance. (author)

  7. Near-infrared mapping of spiral barred galaxies

    International Nuclear Information System (INIS)

    Gallais, P.; Rouan, D.; Lacombe, F.

    1990-01-01

    The results presented were obtained with a 32 x 32 InSb charge injection device (CID) array cooled at 4K, at the f/36 cassegrain focus of the 3m60 Canada-France-Hawaii telescope with a spatial resolution of 0.5 inches per pixel. The objects presented are spiral barred galaxies mapped at J(1.25 microns), H(1.65 microns) and K(2.2 microns). The non-axisymetric potential due to the presence of a bar induces dynamical processes leading to the confinement of matter and peculiar morphologies. Infrared imaging is used to study the link between various components. Correlations with other wavelengths ranges and 2-colors diagrams ((J-H), (H-K)) lead to the identification of star forming regions, nucleus. Maps show structures connected to the central core. The question is, are they flowing away or toward the nucleus. Observations of M83 lead to several conclusions. The star forming region, detected in the visible and the infrared cannot be very compact and must extend to the edge of the matter concentration. The general shape of the near-infrared emission and the location of radio and 10 micron peaks suggest the confinement of matter between the inner Linblad resonances localized from CO measurements about 100 and 400 pc. The distribution of color indices in the arc from southern part to the star forming region suggests an increasing amount of gas and a time evolution eventually triggered by supernova explosions. Close to the direction of the bar, a bridge-like structure connects the arc to the nucleus with peculiar color indices

  8. HI-deficient spiral galaxies in the Coma cluster and Abell 1367

    International Nuclear Information System (INIS)

    Sullivan, W.T. III; Johnson, P.E.

    1978-01-01

    A sample of 11 spiral galaxies in each of the clusters Abell 1367 and Coma (Abell 1656) was observed in the 21-cm H I line with the Arecibo 305-m radio telescope. Nine galaxies are detected in Al367 and three in Coma. Comparison of the quantity log M/sub H/L/sub pg/ for each galaxy with the mean value for its Hubble type from the standard samples of nearby spirals compiled by Balkowski and by Roberts indicates that the A1367 and Coma spirals have lower values of log M/sub H/L/sub pg/ than field spirals by a factor of at least 4, with the Coma values probably more extreme. It is argued that little of this effect (perhaps a factor approx. 1.5) can be attributed to the bias toward high luminosities in the sample, and thus that these spirals are deficient in H I by factors of at least 3 to 5 in comparison with the standard samples. For the present limited sample, several mechanisms seem adequate to account qualitatively for stripping of H I from the Coma cluster spirals, but the case of the A1367 spirals is puzzling. 2 figures

  9. A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy

    Science.gov (United States)

    Junqueira, T. C.; Lépine, J. R. D.; Braga, C. A. S.; Barros, D. A.

    2013-02-01

    Aims: We propose a new, more realistic description of the perturbed gravitational potential of spiral galaxies, with spiral arms having Gaussian-shaped groove profiles. The aim is to reach a self-consistent description of the spiral structure, that is, one in which an initial potential perturbation generates, by means of the stellar orbits, spiral arms with a profile similar to that of the imposed perturbation. Self-consistency is a condition for having long-lived structures. Methods: Using the new perturbed potential, we investigate the stable stellar orbits in galactic disks for galaxies with no bar or with only a weak bar. The model is applied to our Galaxy by making use of the axisymmetric component of the potential computed from the Galactic rotation curve, in addition to other input parameters similar to those of our Galaxy. The influence of the bulge mass on the stellar orbits in the inner regions of a disk is also investigated. Results: The new description offers the advantage of easy control of the parameters of the Gaussian profile of its potential. We compute the density contrast between arm and inter-arm regions. We find a range of values for the perturbation amplitude from 400 to 800 km2 s-2 kpc-1, which implies an approximate maximum ratio of the tangential force to the axisymmetric force between 3% and 6%. Good self-consistency of arm shapes is obtained between the Inner Lindblad resonance (ILR) and the 4:1 resonance. Near the 4:1 resonance the response density starts to deviate from the imposed logarithmic spiral form. This creates bifurcations that appear as short arms. Therefore the deviation from a perfect logarithmic spiral in galaxies can be understood as a natural effect of the 4:1 resonance. Beyond the 4:1 resonance we find closed orbits that have similarities with the arms observed in our Galaxy. In regions near the center, elongated stellar orbits appear naturally, in the presence of a massive bulge, without imposing any bar

  10. GREEN PEA GALAXIES AND COHORTS: LUMINOUS COMPACT EMISSION-LINE GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Izotov, Yuri I.; Guseva, Natalia G.; Thuan, Trinh X.

    2011-01-01

    We present a large sample of 803 star-forming luminous compact galaxies (LCGs) in the redshift range z = 0.02-0.63, selected from Data Release 7 of the Sloan Digital Sky Survey (SDSS). The global properties of these galaxies are similar to those of the so-called green pea star-forming galaxies in the redshift range z = 0.112-0.360 and selected from the SDSS on the basis of their green color and compact structure. In contrast to green pea galaxies, our LCGs are selected on the basis of both their spectroscopic and photometric properties, resulting in a ∼10 times larger sample, with galaxies spanning a redshift range ∼>2 times larger. We find that the oxygen abundances and the heavy element abundance ratios in LCGs do not differ from those of nearby low-metallicity blue compact dwarf galaxies. The median stellar mass of LCGs is ∼10 9 M sun . However, for galaxies with high EW(Hβ), ≥ 100 A, it is only ∼7 x 10 8 M sun . The star formation rate in LCGs varies in the large range of 0.7-60 M sun yr -1 , with a median value of ∼4 M sun yr -1 , a factor of ∼3 lower than in high-redshift star-forming galaxies at z ∼> 3. The specific star formation rates in LCGs are extremely high and vary in the range ∼10 -9 -10 -7 yr -1 , comparable to those derived in high-redshift galaxies.

  11. Mapping the gas-to-dust ratio in the edge-on spiral galaxy IC2531

    Science.gov (United States)

    Baes, Maarten; Gentile, Gianfranco; Allaert, Flor; Kuno, Nario; Verstappen, Joris

    2012-04-01

    The gas-to-dust ratio is an important diagnostic of the chemical evolution of galaxies, but unfortunately, there are only a few unbiased studies of the gas-to-dust ratio within galaxies and among different galaxies. We want to take advantage of the revolutionary capabilities of the Herschel Space Observatory and the special geometry of edge-on spiral galaxies to derive accurate gas and dust mass profiles in the edge-on spiral galaxy IC2531, the only southern galaxy from a sample of large edge-on spirals observed with Herschel. We already have a wealth of ancillary data and detailed radiative transfer modelling at our disposal for this galaxy, and now request CO observations to map the molecular gas distribution. With our combined dataset, we will investigate the radial behaviour of the gas-to-dust ratio, compare it with the properties of the stellar population and the dark matter distribution, and test the possibility to use the far-infrared emission from dust to determine the total ISM mass in galaxies.

  12. Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qing-Wen; Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing, 210093 (China); Thomas Tam, Pak-Hin, E-mail: xywang@nju.edu.cn, E-mail: phtam@phys.nthu.edu.tw [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-10-10

    Recent detections of high-energy gamma-ray emission from starburst galaxies M82 and NGC 253 suggest that starburst galaxies are huge reservoirs of cosmic rays and these cosmic rays convert a significant fraction of their energy into gamma-rays by colliding with the dense interstellar medium. In this paper, we report the search for high-energy gamma-ray emission from several nearby star-forming and starburst galaxies using the 68 month data obtained with the Fermi Large Area Telescope. We found a ∼5.5σ detection of gamma-ray emission above 200 MeV from a source spatially coincident with the location of the luminous infrared galaxy NGC 2146. Also taking into account the temporal and spectral properties of the gamma-ray emission, we suggest that the gamma-ray source is likely to be the counterpart of NGC 2146. The gamma-ray luminosity suggests that cosmic rays in NGC 2146 convert most of their energy into secondary pions, so NGC 2146 is a 'proton calorimeter'. It is also found that NGC 2146 obeys the quasi-linear scaling relation between gamma-ray luminosity and total infrared luminosity for star-forming galaxies, strengthening the connection between massive star formation and gamma-ray emission of star-forming galaxies. Possible TeV emission from NGC 2146 is predicted and the implications for high-energy neutrino emission from starburst galaxies are discussed.

  13. Type Ia supernovae in elliptical and spiral galaxies - Possible differences in photometric homogeneity

    International Nuclear Information System (INIS)

    Filippenko, A.V.

    1989-01-01

    It is shown that beta, the initial postmaximum rate of SN brightness decline (in the B band) defined by Pskovskii (1977), may have a smaller dispersion among SNe Ia in elliptical galaxies than in all other types of galaxies. Contamination of the sample by SNe Ib is unlikely to be the primary cause of this difference. Although the number of objects is very small, it is also possible that the velocity of SN Ia ejecta in elliptical galaxies is lower than in spiral galaxies. If correct, these observations provide the first direct evidence for physical differences among SNe Ia in different environments; reddening variations due to gas and dust are unlikely to produce most of the observed dispersion in beta among spirals. One obvious possibility is that the SNe Ia in spiral galaxies come from intermediate-mass stars, and that differences in the metallicities, accretion rates, or other properties account for the observations. A more extreme, improbable explanation is that not all SNe Ia in spiral galaxies result from carbon deflagrations of carbon-oxygen white dwarfs. 43 refs

  14. Total molecular gas masses of Planck - Herschel selected strongly lensed hyper luminous infrared galaxies

    Science.gov (United States)

    Harrington, K. C.; Yun, M. S.; Magnelli, B.; Frayer, D. T.; Karim, A.; Weiß, A.; Riechers, D.; Jiménez-Andrade, E. F.; Berman, D.; Lowenthal, J.; Bertoldi, F.

    2018-03-01

    We report the detection of CO(1-0) line emission from seven Planck and Herschel selected hyper luminous ({L_{IR (8-1000{μ m})} > 10^{13} L_{⊙}) infrared galaxies with the Green Bank Telescope (GBT). CO(1-0) measurements are a vital tool to trace the bulk molecular gas mass across all redshifts. Our results place tight constraints on the total gas content of these most apparently luminous high-z star-forming galaxies (apparent IR luminosities of LIR > 1013 - 14 L⊙), while we confirm their predetermined redshifts measured using the Large Millimeter Telescope, LMT (zCO = 1.33-3.26). The CO(1-0) lines show similar profiles as compared to Jup = 2-4 transitions previously observed with the LMT. We report enhanced infrared to CO line luminosity ratios of = 110 ± 22 L_{⊙} (K km s^{-1} pc^{-2})^{-1} compared to normal star-forming galaxies, yet similar to those of well-studied IR-luminous galaxies at high-z. We find average brightness temperature ratios of 〈 r21〉 = 0.93 (2 sources), 〈 r31〉 = 0.34 (5 sources), and 〈 r41〉 = 0.18 (1 source). The r31 and r41 values are roughly half the average values for SMGs. We estimate the total gas mass content as {μ M_{H2} = (0.9-27.2) × 10^{11} (α _CO/0.8) M_{⊙}, where μ is the magnification factor and αCO is the CO line luminosity to molecular hydrogen gas mass conversion factor. The rapid gas depletion times, = 80} Myr, reveal vigorous starburst activity, and contrast the Gyr depletion time-scales observed in local, normal star-forming galaxies.

  15. EXTENDED [C II] EMISSION IN LOCAL LUMINOUS INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Díaz-Santos, T.; Armus, L.; Surace, J. A.; Charmandaris, V.; Stacey, G.; Murphy, E. J.; Haan, S.; Stierwalt, S.; Evans, A. S.; Malhotra, S.; Appleton, P.; Inami, H.; Magdis, G. E.; Elbaz, D.; Mazzarella, J. M.; Xu, C. K.; Lu, N.; Howell, J. H.; Van der Werf, P. P.; Meijerink, R.

    2014-01-01

    We present Herschel/PACS observations of extended [C II] 157.7 μm line emission detected on ∼1-10 kpc scales in 60 local luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey. We find that most of the extra-nuclear emission show [C II]/FIR ratios ≥4 × 10 –3 , larger than the mean ratio seen in the nuclei, and similar to those found in the extended disks of normal star-forming galaxies and the diffuse interstellar medium of our Galaxy. The [C II] ''deficits'' found in the most luminous local LIRGs are therefore restricted to their nuclei. There is a trend for LIRGs with warmer nuclei to show larger differences between their nuclear and extra-nuclear [C II]/FIR ratios. We find an anti-correlation between [C II]/FIR and the luminosity surface density, Σ IR , for the extended emission in the spatially resolved galaxies. However, there is an offset between this trend and that found for the LIRG nuclei. We use this offset to derive a beam filling-factor for the star-forming regions within the LIRG disks of ∼6% relative to their nuclei. We confront the observed trend to photo-dissociation region models and find that the slope of the correlation is much shallower than the model predictions. Finally, we compare the correlation found between [C II]/FIR and Σ IR with measurements of high-redshift starbursting IR-luminous galaxies

  16. Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?

    Science.gov (United States)

    de Souza, R. S.; Dantas, M. L. L.; Krone-Martins, A.; Cameron, E.; Coelho, P.; Hattab, M. W.; de Val-Borro, M.; Hilbe, J. M.; Elliott, J.; Hagen, A.; COIN Collaboration

    2016-09-01

    We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g. whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, I.e. as a binary variable. Furthermore, we demonstrate how an HBM can incorporate information of each particular galaxy morphological type in an unified framework. In elliptical galaxies our analysis indicates a strong correlation of Seyfert-AGN activity with r/r200, and a weaker correlation with the mass of the host cluster. In spiral galaxies these trends do not appear, suggesting that the link between Seyfert activity and the properties of spiral galaxies are independent of the environment.

  17. Galaxy And Mass Assembly (GAMA): Gas Fueling of Spiral Galaxies in the Local Universe. I. The Effect of the Group Environment on Star Formation in Spiral Galaxies

    Science.gov (United States)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Norberg, P.; Robotham, A. S. G.; Liske, J.; Andrae, E.; Baldry, I. K.; Gunawardhana, M.; Kelvin, L. S.; Madore, B. F.; Seibert, M.; Taylor, E. N.; Alpaslan, M.; Brown, M. J. I.; Cluver, M. E.; Driver, S. P.; Bland-Hawthorn, J.; Holwerda, B. W.; Hopkins, A. M.; Lopez-Sanchez, A. R.; Loveday, J.; Rushton, M.

    2017-03-01

    We quantify the effect of the galaxy group environment (for group masses of 1012.5-1014.0 M ⊙) on the current star formation rate (SFR) of a pure, morphologically selected sample of disk-dominated (I.e., late-type spiral) galaxies with redshift ≤0.13. The sample embraces a full representation of quiescent and star-forming disks with stellar mass M * ≥ 109.5 M ⊙. We focus on the effects on SFR of interactions between grouped galaxies and the putative intrahalo medium (IHM) of their host group dark matter halos, isolating these effects from those induced through galaxy-galaxy interactions, and utilizing a radiation transfer analysis to remove the inclination dependence of derived SFRs. The dependence of SFR on M * is controlled for by measuring offsets Δlog(ψ *) of grouped galaxies about a single power-law relation in specific SFR, {\\psi }* \\propto {M}* -0.45+/- 0.01, exhibited by non-grouped “field” galaxies in the sample. While a small minority of the group satellites are strongly quenched, the group centrals and a large majority of satellites exhibit levels of ψ * statistically indistinguishable from their field counterparts, for all M *, albeit with a higher scatter of 0.44 dex about the field reference relation (versus 0.27 dex for the field). Modeling the distributions in Δlog(ψ *), we find that (I) after infall into groups, disk-dominated galaxies continue to be characterized by a similar rapid cycling of gas into and out of their interstellar medium shown prior to infall, with inflows and outflows of ˜1.5-5 x SFR and ˜1-4 x SFR, respectively; and (II) the independence of the continuity of these gas flow cycles on M * appears inconsistent with the required fueling being sourced from gas in the circumgalactic medium on scales of ˜100 kpc. Instead, our data favor ongoing fueling of satellites from the IHM of the host group halo on ˜Mpc scales, I.e., from gas not initially associated with the galaxies upon infall. Consequently, the color

  18. AXIAL RATIO OF EDGE-ON SPIRAL GALAXIES AS A TEST FOR BRIGHT RADIO HALOS

    International Nuclear Information System (INIS)

    Singal, J.; Jones, E.; Dunlap, H.; Kogut, A.

    2015-01-01

    We use surface brightness contour maps of nearby edge-on spiral galaxies to determine whether extended bright radio halos are common. In particular, we test a recent model of the spatial structure of the diffuse radio continuum by Subrahmanyan and Cowsik which posits that a substantial fraction of the observed high-latitude surface brightness originates from an extended Galactic halo of uniform emissivity. Measurements of the axial ratio of emission contours within a sample of normal spiral galaxies at 1500 MHz and below show no evidence for such a bright, extended radio halo. Either the Galaxy is atypical compared to nearby quiescent spirals or the bulk of the observed high-latitude emission does not originate from this type of extended halo. (letters)

  19. Nonuniqueness of self-propagating spiral galaxy models

    International Nuclear Information System (INIS)

    Freedman, W.L.; Madore, B.F.

    1984-01-01

    We demonstrate the nonuniqueness of the basic assumptions leading to spiral structure in self-propagating star formation models. Even in the case where star formation occurs purely spontaneously and does not propagate, we have generated spiral structure by adopting the radically different assumption where star formation is systematically inhibited

  20. SpArcFiRe: morphological selection effects due to reduced visibility of tightly winding arms in distant spiral galaxies

    Science.gov (United States)

    Peng, Tianrui Rae; Edward English, John; Silva, Pedro; Davis, Darren R.; Hayes, Wayne B.

    2018-03-01

    The Galaxy Zoo project has provided a plethora of valuable morphological data on a large number of galaxies from various surveys, and their team have identified and/or corrected for many biases. Here we study a new bias related to spiral arm pitch angles, which first requires selecting a sample of spiral galaxies that show observable structure. One obvious way is to select galaxies using a threshold in spirality, which we define as the fraction of Galaxy Zoo humans who have reported seeing spiral structure. Using such a threshold, we use the automated tool SpArcFiRe (SPiral ARC FInder and REporter) to measure spiral arm pitch angles. We observe that the mean pitch angle of spiral arms increases linearly with redshift for 0.05 data to provide a spirality for each artificially degraded image. We find that SpARcFiRe's ability to accurately measure pitch angles decreases as the image degrades, but that spirality decreases more quickly in galaxies with tightly wound arms, leading to the selection effect. This new bias means one must be careful in selecting a sample on which to measure spiral structure. Finally, we also include a sensitivity analysis of SpArcFiRe's internal parameters.

  1. Extraplanar H II Regions in Spiral Galaxies. I. Low-metallicity Gas Accreting through the Disk-halo Interface of NGC 4013

    Science.gov (United States)

    Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.

    2018-04-01

    The interstellar thick disks of galaxies serve as the interface between the thin star-forming disk, where feedback-driven outflows originate, and the distant halo, the repository for accreted gas. We present optical emission line spectroscopy of a luminous, thick disk H II region located at z = 860 pc above the plane of the spiral galaxy NGC 4013 taken with the Multi-Object Double Spectrograph on the Large Binocular Telescope. This nebula, with an Hα luminosity ∼4–7 times that of the Orion nebula, surrounds a luminous cluster of young, hot stars that ionize the surrounding interstellar gas of the thick disk, providing a measure of the properties of that gas. We demonstrate that strong emission line methods can provide accurate measures of relative abundances between pairs of H II regions. From our emission line spectroscopy, we show that the metal content of the thick disk H II region is a factor of ≈2 lower than gas in H II regions at the midplane of this galaxy (with the relative abundance of O in the thick disk lower by ‑0.32 ± 0.09 dex). This implies incomplete mixing of material in the thick disk on small scales (hundreds of parsecs) and that there is accretion of low-metallicity gas through the thick disks of spirals. The inclusion of low-metallicity gas this close to the plane of NGC 4013 is reminiscent of the recently proposed “fountain-driven” accretion models.

  2. The opacity of spiral galaxy disks. IV. Radial extinction profiles from counts of distant galaxies seen through foreground disks

    NARCIS (Netherlands)

    Holwerda, BW; Gonzalez, RA; Allen, RJ; van der Kruit, PC

    Dust extinction can be determined from the number of distant field galaxies seen through a spiral disk. To calibrate this number for the crowding and confusion introduced by the foreground image, Gonzalez et al. and Holwerda et al. developed the Synthetic Field Method (SFM), which analyzes synthetic

  3. Galaxy evolution. Black hole feedback in the luminous quasar PDS 456.

    Science.gov (United States)

    Nardini, E; Reeves, J N; Gofford, J; Harrison, F A; Risaliti, G; Braito, V; Costa, M T; Matzeu, G A; Walton, D J; Behar, E; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Matt, G; Miller, J M; O'Brien, P T; Stern, D; Turner, T J; Ward, M J

    2015-02-20

    The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband x-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow's kinetic power larger than 10(46) ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution. Copyright © 2015, American Association for the Advancement of Science.

  4. A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    Science.gov (United States)

    McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; hide

    2012-01-01

    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.

  5. The transformation of Spirals into S0 galaxies in the cluster environment

    Directory of Open Access Journals (Sweden)

    Mauro eD'onofrio

    2015-08-01

    Full Text Available We discuss the observational evidences of the morphological transformation of Spirals into S0 galaxies in the cluster environment exploiting two big databases of galaxy clusters: WINGS (0.04galaxies in clusters is almost a factor of ∼ 3 − 4 larger today than at redshift z ∼ 1; 2 the fraction of S0’s to Spirals increases on average by a factor ∼ 2 every Gyr; 3 the average rate of transformation for Spirals (not considering the infall of new galaxies from the cosmic web is: ∼ 5 Sp→S0’s per Gyr and ∼ 2 Sp→E’s per Gyr; 4 there are evidences that the interstellar gas of Spirals is stripped by an hot intergalactic medium; 5 there are also indirect hints that major/minor merging events have played a role in the transformation of Spiral galaxies. In particular, we show that: 1 the ratio between the number of S0’s and Spirals (NS0/NSp in the WINGS clusters is correlated with their X-ray luminosity LX ; 2 that the brightest and massive S0’s are always close to the cluster center; 3 that the mean Se ́rsic index of S0’s is always larger than that of Spirals (and lower than E’s for galaxy stellar masses above 10^9.5M⊙; 4 that the number of E’s in clusters cannot be constant; 5 that the largest difference between the mean mass of S0’s and E’s with respect to Spirals is observed in clusters with low velocity dispersion.Finally, by comparing the properties of the various morphological types for galaxies in clusters and in the field, we find that the most significant effect of the environment is the stripping of the outer galaxy regions, resulting in a systematic difference in effective radius and Se ́rsic index.

  6. The transformation of Spirals into S0 galaxies in the cluster environment

    International Nuclear Information System (INIS)

    D'Onofrio, Mauro; Marziani, Paola; Buson, Lucio

    2015-01-01

    We discuss the observational evidences of the morphological transformation of Spirals into S0 galaxies in the cluster environment exploiting two big databases of galaxy clusters: WINGS (0.04 < z < 0.07) and EDisCS (0.4 < z < 0.8). The most important results are: (1) the average number of S0 galaxies in clusters is almost a factor of ~ 3 − 4 larger today than at redshift z ~ 1; (2) the fraction of S0's to Spirals increases on average by a factor ~ 2 every Gyr; (3) the average rate of transformation for Spirals (not considering the infall of new galaxies from the cosmic web) is: ~ 5 Sp → S0's per Gyr and ~ 2 Sp → E's per Gyr; (4) there are evidences that the interstellar gas of Spirals is stripped by an hot intergalactic medium; (5) there are also indirect hints that major/minor merging events have played a role in the transformation of Spiral galaxies. In particular, we show that: (1) the ratio between the number of S0's and Spirals (N S0 ∕N Sp ) in the WINGS clusters is correlated with their X-ray luminosity L X ; (2) that the brightest and massive S0's are always close to the cluster center; (3) that the mean Sérsic index of S0's is always larger than that of Spirals (and lower than E's) for galaxy stellar masses above 10 9.5 M ⊙ (4) that the number of E's in clusters cannot be constant; (5) that the largest difference between the mean mass of S0's and E's with respect to Spirals is observed in clusters with low velocity dispersion. Finally, by comparing the properties of the various morphological types for galaxies in clusters and in the field, we find that the most significant effect of the environment is the stripping of the outer galaxy regions, resulting in a systematic difference in effective radius and Sérsic index.

  7. A Dynamical Model for the Extra-planar Gas in Spiral Galaxies

    OpenAIRE

    Fraternali, Filippo; Binney, James

    2005-01-01

    Recent HI observations reveal that the discs of spiral galaxies are surrounded by extended gaseous haloes. This extra-planar gas reaches large distances (several kpc) from the disc and shows peculiar kinematics (low rotation and inflow). We have modelled the extra-planar gas as a continuous flow of material from the disc of a spiral galaxy into its halo region. The output of our models are pseudo-data cubes that can be directly compared to the HI data. We have applied these models to two spir...

  8. WISE Discovery of Hyper Luminous Galaxies at z=2-4 and Their Implications for Galaxy and AGN Evolution

    Science.gov (United States)

    Tsai, Chao Wei; Eisenhardt, Peter; Wu, Jingwen; Bridge, Carrie; Assef, Roberto; Benford, Dominic; Blain, Andrew; Cutri, Roc; Griffith, Robert L.; Jarrett, Thomas; hide

    2014-01-01

    On behalf of the WISE Science team, we present the discovery of a class of distant dust-enshrouded galaxies with extremely high luminosity. These galaxies are selected to have extreme red colors in the mid-IR using NASA's Wide-field Infrared Survey Explorer (WISE). They are faint in the optical and near-IR, predominantly at zeta = 2-4, and with IR luminosity > 10(exp 13) Solar Luminosity, making them Hyper-Luminous Infrared Galaxies (HyLIRGs). SEDs incorporating the WISE, Spitzer, and Herschel PACS and SPIRE photometry indicate hot dust dominates the bolometric luminosity, presumably powered by AGN. Preliminary multi-wavelength follow-up suggests that they are different from normal populations in the local M-sigma relation. Their low source density implies that these objects are either intrinsically rare, or a short-lived phase in a more numerous population. If the latter is the case, these hot, dust-enshrouded galaxies may be an early stage in the interplay between AGN and galaxies.

  9. The Role of the Most Luminous Obscured AGNs in Galaxy Assembly at z ∼ 2

    Energy Technology Data Exchange (ETDEWEB)

    Farrah, Duncan [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Petty, Sara [Green Science Policy Institute, Berkeley, CA 94709 (United States); Connolly, Brian [Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Efstathiou, Andreas [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Lacy, Mark [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Stern, Daniel; Bridge, Carrie; Eisenhardt, Peter; Moustakas, Leonidas [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lake, Sean; Tsai, Chao-Wei [Physics and Astronomy Department, University of California, Los Angeles, CA 90095 (United States); Jarrett, Tom [Department of Astronomy, University of Cape Town, 7700 Rondebosch, Capetown 7700 (South Africa); Benford, Dominic [Observational Cosmology Lab., Code 665, NASA at Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jones, Suzy [Department of Space, Earth, and Environment, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Assef, Roberto [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Wu, Jingwen [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012 (China)

    2017-08-01

    We present Hubble Space Telescope WFC3 F160W imaging and infrared spectral energy distributions for 12 extremely luminous, obscured active galactic nuclei (AGNs) at 1.8 < z < 2.7 selected via “hot, dust-obscured” mid-infrared colors. Their infrared luminosities span (2–15) × 10{sup 13} L {sub ⊙}, making them among the most luminous objects in the universe at z ∼ 2. In all cases, the infrared emission is consistent with arising at least for the most part from AGN activity. The AGN fractional luminosities are higher than those in either submillimeter galaxies or AGNs selected via other mid-infrared criteria. Adopting the G , M {sub 20}, and A morphological parameters, together with traditional classification boundaries, infers that three-quarters of the sample are mergers. Our sample does not, however, show any correlation between the considered morphological parameters and either infrared luminosity or AGN fractional luminosity. Moreover, the asymmetries and effective radii of our sample are distributed identically to those of massive galaxies at z ∼ 2. We conclude that our sample is not preferentially associated with mergers, though a significant merger fraction is still plausible. Instead, we propose that our sample includes examples of the massive galaxy population at z ∼ 2 that harbor a briefly luminous, “flickering” AGN and in which the G and M {sub 20} values have been perturbed due to either the AGN and/or the earliest formation stages of a bulge in an inside-out manner. Furthermore, we find that the mass assembly of the central black holes in our sample leads the mass assembly of any bulge component. Finally, we speculate that our sample represents a small fraction of the immediate antecedents of compact star-forming galaxies at z ∼ 2.

  10. The luminosity distributions of edge-on spiral galaxies: Pt. 1

    International Nuclear Information System (INIS)

    Shaw, M.A.; Gilmore, G.

    1989-01-01

    An objective, non-linear, least-squares algorithm is presented for modelling the observed two-dimensional luminosity distributions in edge-on spiral and lenticular galaxies. The technique has three particular advantages: the entire projected 2D luminosity distribution is fitted; a wide range of combinations of luminosity components can be tested, and an objective criterion is provided which allows one to specify the adequacy of the imposed parametric representation. One may therefore discriminate between the efficacy of different luminosity profiles as a valid representation of an observed galaxy, thereby addressing such questions as whether spiral bulges are adequately described by an r 1/4 law, as well as testing the need for multicomponent modelling of galaxies. We find that the Sbc galaxy NGC 891 is adequately described by a simple two-component model. For NGC 4565, a three-component combination is required. (author)

  11. A CANDIDATE FOR THE MOST LUMINOUS OB ASSOCIATION IN THE GALAXY

    International Nuclear Information System (INIS)

    Rahman, Mubdi; Matzner, Christopher; Moon, Dae-Sik

    2011-01-01

    The Milky Way harbors giant H II regions, which may be powered by star complexes more luminous than any known Galactic OB association. Being across the disk of the Galaxy, however, these brightest associations are severely extinguished and confused. We present a search for one such association toward the most luminous H II region in the recent catalog by Murray and Rahman, which, at ∼9.7 kpc, has a recombination rate of ∼7 x 10 51 s -1 . Prior searches have identified only small-scale clustering around the rim of this shell-like region, but the primary association has not previously been identified. We apply a near-infrared color selection and find an overdensity of point sources toward its southern central part. The colors and magnitudes of these excess sources are consistent with O- and early B-type stars at extinctions 0.96 K < 1.2, and they are sufficiently numerous (406 ± 102 after subtraction of field sources) to ionize the surrounding H II region, making this a candidate for the most luminous OB association in the Galaxy. We reject an alternate theory, in which the apparent excess is caused by localized extinction, as inconsistent with source demographics.

  12. LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS

    International Nuclear Information System (INIS)

    Reid, Beth A.; Spergel, David N.; Bode, Paul

    2009-01-01

    The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a ∼10% correction in the underlying power spectrum at k = 0.1 h Mpc -1 and ∼40% correction at k = 0.2 h Mpc -1 in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the ≤1% level for k ≤ 0.1 h Mpc -1 and ≤4% at k = 0.2 h Mpc -1 . The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter β induced by the FOG smearing of the linear redshift space distortions.

  13. Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging

    Science.gov (United States)

    Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.

  14. A Radio Study of the Ultra-luminous FIR Galaxy NGC 6240

    Science.gov (United States)

    Colbert, E.; Wilson, A. S.; Bland-Hawthorn, J.

    1993-05-01

    A number of galaxies observed in the IRAS mission are noted to emit ~ 99% of their bolometric flux in the FIR, with FIR luminosities in excess of 10(11) Lsun. The interacting galaxy NGC 6240 has often been referred to as the ``proto-typical'' ultra-luminous (L_FIR >~ 10(12) Lsun) FIR galaxy. The origin of the FIR excess remains a disputed subject in the literature. New observations of NGC 6240 were taken with the VLA at 20cm in the B-configuration, and at 3.6cm in the A-configuration. No significant radio emission was detected from or near the possible ultra-massive ``dark core'' hypothesized by Bland-Hawthorn et. al. (1991); however, approximately 30% of Seyfert galaxies have 20 cm radio luminosities weaker than the upper limit derived from the radio maps. The non-thermal radio emission from luminous FIR galaxies is tightly correlated with the FIR emission. Previous radio observations of NGC 6240 revealed two compact, steep-spectrum nuclear sources, nearly coincident with the two nuclear sources seen in optical images. The 2 images from the new VLA observations and 5 images from previous VLA observations are used to identify the morphological and spectral features of the strong, compact components in the nuclear regions (~ 3 kpc) from the nucleus. Feasible explanations for the radio emission are discussed. The models that have been proposed in the literature for the FIR excess of NGC 6240 are evaluated for consistency with the observed radio emission.

  15. What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?

    Science.gov (United States)

    Wirth, Gregory D.; Bershady, Matthew A.; Crawford, Steven M.; Hunt, Lucas; Pisano, Daniel J.; Randriamampandry, Solohery M.

    2018-06-01

    Low-mass dwarf ellipticals are the most numerous members of present-day galaxy clusters, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies (LCBGs), common in intermediate-redshift clusters but virtually extinct today. Recent cosmological simulations suggest that present-day dwarf galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We are undertaking a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we are combining optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we are exploiting a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we aim to test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.

  16. Alma observations of nearby luminous infrared galaxies with various agn energetic contributions using dense gas tracers

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Nakanishi, Kouichiro, E-mail: masa.imanishi@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-07-01

    We present the results of our ALMA Cycle 0 observations, using HCN/HCO{sup +}/HNC J = 4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO{sup +} J = 4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J = 1-0 transition, while there is no clear difference in the HCN-to-HNC J = 4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO{sup +} J = 4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J = 4-3 emission relative to HCO{sup +} J = 4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.

  17. CO Spectral Line Energy Distributions of Infrared-Luminous Galaxies and Active Galactic Nuclei

    Science.gov (United States)

    Papadopoulos, Padeli P.; van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M.

    2010-06-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L IR(8-1000 μm) >~ 1011 L sun), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L IR>1012 L sun), and two powerful local active galactic nuclei (AGNs)—the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293—using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C+ line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these high-redshift starbursts, with genuinely low

  18. CO SPECTRAL LINE ENERGY DISTRIBUTIONS OF INFRARED-LUMINOUS GALAXIES AND ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Papadopoulos, Padeli P.; Van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M.

    2010-01-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L IR (8-1000 μm) ∼> 10 11 L sun ), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L IR >10 12 L sun ), and two powerful local active galactic nuclei (AGNs)-the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293-using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C + line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these high-redshift starbursts, with genuinely low

  19. Bars and spirals in tidal interactions with an ensemble of galaxy mass models

    Science.gov (United States)

    Pettitt, Alex R.; Wadsley, J. W.

    2018-03-01

    We present simulations of the gaseous and stellar material in several different galaxy mass models under the influence of different tidal fly-bys to assess the changes in their bar and spiral morphology. Five different mass models are chosen to represent the variety of rotation curves seen in nature. We find a multitude of different spiral and bar structures can be created, with their properties dependent on the strength of the interaction. We calculate pattern speeds, spiral wind-up rates, bar lengths, and angular momentum exchange to quantify the changes in disc morphology in each scenario. The wind-up rates of the tidal spirals follow the 2:1 resonance very closely for the flat and dark matter-dominated rotation curves, whereas the more baryon-dominated curves tend to wind-up faster, influenced by their inner bars. Clear spurs are seen in most of the tidal spirals, most noticeable in the flat rotation curve models. Bars formed both in isolation and interactions agree well with those seen in real galaxies, with a mixture of `fast' and `slow' rotators. We find no strong correlation between bar length or pattern speed and the interaction strength. Bar formation is, however, accelerated/induced in four out of five of our models. We close by briefly comparing the morphology of our models to real galaxies, easily finding analogues for nearly all simulations presenter here, showing passages of small companions can easily reproduce an ensemble of observed morphologies.

  20. The Ursa Major Cluster of galaxies : Tully-Fisher relations and dark matter in spirals.

    NARCIS (Netherlands)

    Verheijen, MAW; Persic, M; Salucci, P

    1997-01-01

    A brief overview is presented of some results from ongoing research on the properties of a complete sample of spiral galaxies in the Ursa Major cluster. Optical and near infrared photometric imaging is combined with HI 21cm-line synthesis mapping. These observations allow to study in great detail

  1. Absorption-line strengths of 18 late-type spiral galaxies observed with SAURON

    NARCIS (Netherlands)

    Ganda, Katia; Peletier, Reynier F.; McDermid, Richard M.; Falcon-Barroso, Jesus; de Zeeuw, P. T.; Bacon, Roland; Cappellari, Michele; Davies, Roger L.; Emsellem, Eric; Krajnovic, Davor; Kuntschner, Harald; Sarzi, Marc; van de Ven, Glenn

    2007-01-01

    We present absorption line strength maps for a sample of 18 Sb-Sd galaxies observed using the integral-field spectrograph SAURON operating at the William Herschel Telescope on La Palma, as part of a project devoted to the investigation of the kinematics and stellar populations of late-type spirals,

  2. Flattening and truncation of stellar discs in edge-on spiral galaxies

    NARCIS (Netherlands)

    Kregel, M; van der Kruit, PC; de Grijs, R

    We analyse the global structure of the old stellar discs in 34 edge-on spiral galaxies. The radial and vertical exponential scale parameters of the discs are obtained by applying an improved two-dimensional decomposition technique to our I -band photometry. We find a clear increase in the disc

  3. On the age and metallicity estimation of spiral galaxies using optical and near-infrared photometry

    NARCIS (Netherlands)

    Lee, Hyun-Chul; Worthey, Guy; Trager, Scott C.; Faber, S. M.

    2007-01-01

    In integrated light, some color-color diagrams that use optical and near-infrared photometry show surprisingly orthogonal grids as age and metallicity are varied, and they are coming into common usage for estimating the average age and metallicity of spiral galaxies. In this paper we reconstruct

  4. The opacity of spiral galaxy disks. VIII. Structure of the cold ISM

    NARCIS (Netherlands)

    Holwerda, B. W.; Draine, B.; Gordon, K. D.; Gonzalez, R. A.; Calzetti, D.; Thornley, M.; Buckalew, B.; Allen, Ronald J.; van der Kruit, P. C.

    2007-01-01

    The quantity of dust in a spiral disk can be estimated using the dust's typical emission or the extinction of a known source. In this paper we compare two techniques, one based on emission and one on absorption, applied to sections of 14 disk galaxies. The two measurements reflect, respectively, the

  5. Stellar metallicity variations across spiral arms in disk galaxies with multiple populations

    Science.gov (United States)

    Khoperskov, S.; Di Matteo, P.; Haywood, M.; Combes, F.

    2018-03-01

    This Letter studies the formation of azimuthal metallicity variations in the disks of spiral galaxies in the absence of initial radial metallicity gradients. Using high-resolution N-body simulations, we model composite stellar discs, made of kinematically cold and hot stellar populations, and study their response to spiral arm perturbations. We find that, as expected, disk populations with different kinematics respond differently to a spiral perturbation, with the tendency for dynamically cooler populations to show a larger fractional contribution to spiral arms than dynamically hotter populations. By assuming a relation between kinematics and metallicity, namely the hotter the population, the more metal-poor it is, this differential response to the spiral arm perturbations naturally leads to azimuthal variations in the mean metallicity of stars in the simulated disk. Thus, azimuthal variations in the mean metallicity of stars across a spiral galaxy are not necessarily a consequence of the reshaping, by radial migration, of an initial radial metallicity gradient. They indeed arise naturally also in stellar disks which have initially only a negative vertical metallicity gradient.

  6. Extended maximum likelihood analysis of apparent flattenings of S0 and spiral galaxies

    International Nuclear Information System (INIS)

    Okamura, Sadanori; Takase, Bunshiro; Hamabe, Masaru; Nakada, Yoshikazu; Kodaira, Keiichi.

    1981-01-01

    Apparent flattenings of S0 and spiral galaxies compiled by Sandage et al. (1970) and van den Bergh (1977), and those listed in the Second Reference Catalogue (RC2) are analyzed by means of the extended maximum likelihood method which was recently developed in the information theory for statistical model identification. Emphasis is put on the possible difference in the distribution of intrinsic flattenings between S0's and spirals as a group, and on the apparent disagreements present in the previous results. The present analysis shows that (1) One cannot conclude on the basis of the data in the Reference Catalogue of Bright Galaxies (RCBG) that the distribution of intrinsic flattenings of spirals is almost identical to that of S0's; spirals have wider dispersion than S0's, and there are more round systems in spirals than in S0's. (2) The distribution of intrinsic flattenings of S0's and spirals derived from the data in RC2 again indicates a significant difference from each other. (3) The distribution of intrinsic flattenings of S0's exhibits different characteristics depending upon the surface-brightness level; the distribution with one component is obtained from the data at RCBG level (--23.5 mag arcsec -2 ) and that with two components at RC2 level (25 mag arcsec -2 ). (author)

  7. MEASUREMENTS OF DUST EXTINCTION IN HIGHLY INCLINED SPIRAL GALAXIES

    NARCIS (Netherlands)

    JANSEN, RA; KNAPEN, JH; BECKMAN, JE; PELETIER, RF; HES, R

    1994-01-01

    We study the extinction properties of dust in the well-defined dust lanes of four highly inclined galaxies, using U-, B-, V-, R- and I-band CCD and J- and K'-band near-infrared array images. For three of these galaxies, we could use the symmetry of the underlying light profile to obtain absolute

  8. The Westerbork HI Survey of Irregular and Spiral Galaxies, WHISP

    NARCIS (Netherlands)

    van der Hulst, JM; van Albada, TS; Sancisi, R; Hibbard, JE; Rupen, MP; VanGorkom, JH

    2001-01-01

    This paper briefly describes WHISP, an ongoing project to image the H(I) in a large sample of nearby galaxies with the Westerbork Synthesis Radio Telescope (WSRT). The goal of the survey is to investigate the H(I) density distributions and velocity fields of galaxies as a function of Hubble type,

  9. The Westerbork HI survey of irregular and spiral galaxies, WHISP

    NARCIS (Netherlands)

    van der Hulst, JM; Taylor, AR; Landecker, TL; Willis, AG

    2002-01-01

    This paper briefly describes WHISP, an ongoing project to image the HI in a large sample of nearby galaxies with the Westerbork Synthesis Radio Telescope (WSRT). The goal of the survey is to investigate the HI density distributions and velocity fields of galaxies as a function of Hubble type,

  10. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    Science.gov (United States)

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution. © 2011 Macmillan Publishers Limited. All rights

  11. The dynamics of the spiral structure in galaxies

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1979-01-01

    The basic ideas and current problems of the linear and non-linear theory of spiral structure are reviewed. Some recent work on the response density and possible self-consistent solutions of bars with an Inner Lindblad Resonance are described. (Auth.)

  12. The surface brightness of spiral galaxies: Pt. 4

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.; Ohio State Univ., Columbus

    1988-01-01

    Using measurements from IRAS correlations are found between optical surface brightness and both infrared-to-optical flux ratio and infrared colour temperature, in the sense that galaxies with high surface brightness have higher FIR emission and higher temperatures. (author)

  13. Dusty Dwarfs Galaxies Occulting A Bright Background Spiral

    Science.gov (United States)

    Holwerda, Benne

    2017-08-01

    The role of dust in shaping the spectral energy distributions of low mass disk galaxies remains poorly understood. Recent results from the Herschel Space Observatory imply that dwarf galaxies contain large amounts of cool (T 20K) dust, coupled with very modest optical extinctions. These seemingly contradictory conclusions may be resolved if dwarfs harbor a variety of dust geometries, e.g., dust at larger galactocentric radii or in quiescent dark clumps. We propose HST observations of six truly occulting dwarf galaxies drawn from the Galaxy Zoo catalog of silhouetted galaxy pairs. Confirmed, true occulting dwarfs are rare as most low-mass disks in overlap are either close satellites or do not have a confirmed redshift. Dwarf occulters are the key to determining the spatial extent of dust, the small scale structure introduced by turbulence, and the prevailing dust attenuation law. The recent spectroscopic confirmation of bona-fide low mass occulting dwarfs offers an opportunity to map dust in these with HST. What is the role of dust in the SED of these dwarf disk galaxies? With shorter feedback scales, how does star-formation affect their morphology and dust composition, as revealed from their attenuation curve? The resolution of HST allows us to map the dust disks down to the fine scale structure of molecular clouds and multi-wavelength imaging maps the attenuation curve and hence dust composition in these disks. We therefore ask for 2 orbits on each of 6 dwarf galaxies in F275W, F475W, F606W, F814W and F125W to map dust from UV to NIR to constrain the attenuation curve.

  14. Gas Clouds in Whirlpool Galaxy Yield Important Clues Supporting Theory on Spiral Arms

    Science.gov (United States)

    2004-06-01

    Astronomers studying gas clouds in the famous Whirlpool Galaxy have found important clues supporting a theory that seeks to explain how the spectacular spiral arms of galaxies can persist for billions of years. The astronomers applied techniques used to study similar gas clouds in our own Milky Way to those in the spiral arms of a neighbor galaxy for the first time, and their results bolster a theory first proposed in 1964. M51 The spiral galaxy M51: Left, as seen with the Hubble Space Telescope; Right, radio image showing location of Carbon Monoxide gas. CREDIT: STScI, OVRO, IRAM (Click on image for larger version) Image Files Optical and Radio (CO) Views (above image) HST Optical Image with CO Contours Overlaid Radio/Optical Composite Image of M51 VLA/Effelsberg Radio Image of M51, With Panel Showing Magnetic Field Lines The Whirlpool Galaxy, about 31 million light-years distant, is a beautiful spiral in the constellation Canes Venatici. Also known as M51, it is seen nearly face-on from Earth and is familiar to amateur astronomers and has been featured in countless posters, books and magazine articles. "This galaxy made a great target for our study of spiral arms and how star formation works along them," said Eva Schinnerer, of the National Radio Astronomy Observatory in Socorro, NM. "It was ideal for us because it's one of the closest face-on spirals in the sky," she added. Schinnerer worked with Axel Weiss of the Institute for Millimeter Radio Astronomy (IRAM) in Spain, Susanne Aalto of the Onsala Space Observatory in Sweden, and Nick Scoville of Caltech. The astronomers presented their findings to the American Astronomical Society's meeting in Denver, Colorado. The scientists analyzed radio emission from Carbon Monoxide (CO) molecules in giant gas clouds along M51's spiral arms. Using telescopes at Caltech's Owens Valley Radio Observatory and the 30-meter radio telescope of IRAM, they were able to determine the temperatures and amounts of turbulence within the

  15. The distribution of mass for spiral galaxies in clusters and in the field

    International Nuclear Information System (INIS)

    Forbes, D.A.; Whitmore, B.C.

    1989-01-01

    A comparison is made between the mass distributions of spiral galaxies in clusters and in the field using Burstein's mass-type methodology. Both the H-alpha emission-line rotation curves and more extended H I rotation curves are used. The fitting technique for determining mass types used by Burstein and coworkers has been replaced by an objective chi-sq method. Mass types are shown to be a function of both the Hubble type and luminosity, contrary to earlier results. The present data show a difference in the distribution of mass types for spiral galaxies in the field and in clusters, in the sense that mass type I galaxies, where the inner and outer velocity gradients are similar, are generally found in the field rather than in clusters. This can be understood in terms of the results of Whitmore, Forbes, and Rubin (1988), who find that the rotation curves of galaxies in the central region of clusters are generally failing, while the outer galaxies in a cluster and field galaxies tend to have flat or rising rotation curves. 15 refs

  16. The Study of Nebular Emission on Nearby Spiral Galaxies in the IFU Era

    Directory of Open Access Journals (Sweden)

    Fernando Fabián Rosales-Ortega

    2013-01-01

    Full Text Available A new generation of wide-field emission-line surveys based on integral field units (IFU is allowing us to obtain spatially resolved information of the gas-phase emission in nearby late-type galaxies, based on large samples of HII regions and full two-dimensional coverage. These observations are allowing us to discover and characterise abundance differentials between galactic substructures and new scaling relations with global physical properties. Here I review some highlights of our current studies employing this technique: (1 the case study of NGC 628, the largest galaxy ever sampled with an IFU; (2 a statistical approach to the abundance gradients of spiral galaxies, which indicates a universal radial gradient for oxygen abundance; and (3 the discovery of a new scaling relation of HII regions in spiral galaxies, the local mass-metallicity relation of star-forming galaxies. The observational properties and constrains found in local galaxies using this new technique will allow us to interpret the gas-phase abundance of analogue high-z systems.

  17. EFFECT OF CENTRAL MASS CONCENTRATION ON THE FORMATION OF NUCLEAR SPIRALS IN BARRED GALAXIES

    International Nuclear Information System (INIS)

    Thakur, Parijat; Jiang, I.-G.; Ann, H. B.

    2009-01-01

    We have performed smoothed particle hydrodynamics simulations to study the response of the central kiloparsec region of a gaseous disk to the imposition of nonaxisymmetric bar potentials. The model galaxies are composed of three axisymmetric components (halo, disk, and bulge) and a nonaxisymmetric bar. These components are assumed to be invariant in time in the frame corotating with the bar. The potential of spherical γ-models of Dehnen is adopted for the bulge component whose density varies as r -γ near the center and r -4 at larger radii and, hence, possesses a central density core for γ = 0 and cusps for γ>0. Since the central mass concentration of the model galaxies increases with the cusp parameter γ, we have examined here the effect of the central mass concentration by varying the cusp parameter γ on the mechanism responsible for the formation of the symmetric two-armed nuclear spirals in barred galaxies. Our simulations show that the symmetric two-armed nuclear spirals are formed by hydrodynamic spiral shocks driven by the gravitational torque of the bar for the models with γ = 0 and 0.5. On the other hand, the symmetric two-armed nuclear spirals in the models with γ = 1 and 1.5 are explained by gas density waves. Thus, we conclude that the mechanism responsible for the formation of symmetric two-armed nuclear spirals in barred galaxies changes from hydrodynamic shocks to gas density waves as the central mass concentration increases from γ = 0 to 1.5.

  18. Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disc morphology

    Science.gov (United States)

    Willett, Kyle W.; Schawinski, Kevin; Simmons, Brooke D.; Masters, Karen L.; Skibba, Ramin A.; Kaviraj, Sugata; Melvin, Thomas; Wong, O. Ivy; Nichol, Robert C.; Cheung, Edmond; Lintott, Chris J.; Fortson, Lucy

    2015-05-01

    We measure the stellar mass-star formation rate (SFR) relation in star-forming disc galaxies at z ≤ 0.085, using Galaxy Zoo morphologies to examine different populations of spirals as classified by their kiloparsec-scale structure. We examine the number of spiral arms, their relative pitch angle, and the presence of a galactic bar in the disc, and show that both the slope and dispersion of the M⋆-SFR relation is constant when varying all the above parameters. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by ˜0.3 dex; this is significantly smaller than the increase seen in merging systems at z > 1. Of the galaxies lying significantly above the M⋆-SFR relation in the local Universe, more than 50 per cent are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.

  19. Iron abundance evolution in spiral and elliptical galaxies

    International Nuclear Information System (INIS)

    Matteucci, F.

    1987-01-01

    Chemical evolution models for the Galaxy and ellipticals, which take into account the most recent developments on theories of nucleosynthesis and supernova progenitors, are presented. The evolution of the abundance of iron in these systems, under the assumption that this element is mainly produced by type I SNe, originating from white dwarfs in binary systems, has been computed and the results have been compared with the observations. Overabundances of O, Si, Ne and Mg with respect to iron have been predicted for halo stars in their Galaxy. The existence of an Fe - total mass relation with a slope steeper than the corresponding relations for Mg and O has been predicted for ellipticals. The masses of Fe ejected by ellipticals of various masses into the intergalactic medium have also been computed in detail. The general agreement obtained between these theoretical models and the observations for galaxies of different morphological type supports the assumptions made about the origin of iron

  20. GAMA/H-ATLAS: THE DUST OPACITY-STELLAR MASS SURFACE DENSITY RELATION FOR SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Grootes, M. W.; Tuffs, R. J.; Andrae, E. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Popescu, C. C.; Pastrav, B. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gunawardhana, M.; Taylor, E. N. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 206 (Australia); Kelvin, L. S.; Driver, S. P. [Scottish Universities' Physics Alliance (SUPA), School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom); Liske, J. [European Southern Observatory, Karl-Schwarzschild Str. 2, D-85748 Garching (Germany); Seibert, M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Graham, Alister W. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Baldry, I. K. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Bourne, N. [Centre for Astronomy and Particle Theory, The School of Physics and Astronomy, Nottingham University, University Park Campus, Nottingham NG7 2RD (United Kingdom); Brough, S. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dariush, A. [Physics Department, Imperial College, Prince Consort Road, London SW7 2AZ (United Kingdom); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L., E-mail: meiert.grootes@mpi-hd.mpg.de [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); and others

    2013-03-20

    We report the discovery of a well-defined correlation between B-band face-on central optical depth due to dust, {tau}{sup f}{sub B}, and the stellar mass surface density, {mu}{sub *}, of nearby (z {<=} 0.13) spiral galaxies. This relation was derived from a sample of spiral galaxies taken from the Galaxy and Mass Assembly (GAMA) survey, which were detected in the FIR/submillimeter (submm) in the Herschel-ATLAS science demonstration phase field. Using a quantitative analysis of the NUV attenuation-inclination relation for complete samples of GAMA spirals categorized according to stellar mass surface density, we demonstrate that this correlation can be used to statistically correct for dust attenuation purely on the basis of optical photometry and Sersic-profile morphological fits. Considered together with previously established empirical relationships of stellar mass to metallicity and gas mass, the near linearity and high constant of proportionality of the {tau}{sub B}{sup f} - {mu}{sub *} relation disfavors a stellar origin for the bulk of refractory grains in spiral galaxies, instead being consistent with the existence of a ubiquitous and very rapid mechanism for the growth of dust in the interstellar medium. We use the {tau}{sub B}{sup f} - {mu}{sub *} relation in conjunction with the radiation transfer model for spiral galaxies of Popescu and Tuffs to derive intrinsic scaling relations between specific star formation rate (SFR), stellar mass, and stellar surface density, in which attenuation of the UV light used for the measurement of SFR is corrected on an object-to-object basis. A marked reduction in scatter in these relations is achieved which we demonstrate is due to correction of both the inclination-dependent and face-on components of attenuation. Our results are consistent with a general picture of spiral galaxies in which most of the submm emission originates from grains residing in translucent structures, exposed to UV in the diffuse interstellar

  1. Spiral arm amplitude variations and pattern speeds in the grand design galaxies M51, M81, and M100

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Seiden, P.E.; Elmegreen, D.M.

    1989-01-01

    In the modal theory of galactic spiral structure, the amplitude of a prominent two-arm spiral pattern should oscillate slightly with galactocentric distance because of an interference between the outward and inward propagating waves. In the stellar dynamical theory, the spiral arm amplitudes should oscillate because of differential crowding near and between wave-orbit resonances. Two and three cycles of such oscillations have been found in computer-enhanced images at B and I passbands of the grand design galaxies M81 and M100, respectively, and what is probably one cycle of such an amplitude variation in M51. These three galaxies are the most symmetric and global of the two-arm spirals in the near-IR survey of Elmegreen (1981), so the occurrence of such spiral amplitude oscillations could be common among galaxies of this type. The positions of the features discussed are used to suggest possible arm pattern speeds. 23 refs

  2. A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    International Nuclear Information System (INIS)

    Magdis, Georgios E.; Rigopoulou, D.; Hopwood, R.; Clements, D.; Huang, J.-S.; Farrah, D.; Pearson, C.; Alonso-Herrero, Almudena; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Perez Fournon, I.; Riechers, D.; Swinyard, B. M.; Thatte, N.; Scott, D.; Valtchanov, I.; Vaccari, M.

    2014-01-01

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ≤ z ≤ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L IR > 10 11.5 L ☉ ). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L C II /L FIR ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L C II –L FIR relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L C II /L FIR ratio and the far-IR color L 60 /L 100 observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L C II /L FIR at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L C II /L FIR ratios, the moderate star formation efficiencies (L IR /L CO ′ or L IR /M H 2 ), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the present day and z > 1 is already significant by z ∼ 0.3.

  3. POST-STARBURST TIDAL TAILS IN THE ARCHETYPICAL ULTRA LUMINOUS INFRARED GALAXY Arp 220

    International Nuclear Information System (INIS)

    Taniguchi, Y.; Matsubayashi, K.; Kajisawa, M.; Shioya, Y.; Ideue, Y.; Ohyama, Y.; Nagao, T.; Murayama, T.; Koda, J.

    2012-01-01

    We present our new deep optical imaging and long-slit spectroscopy for Arp 220, the archetypical ultra luminous infrared galaxy in the local universe. Our sensitive Hα imaging has newly revealed large-scale Hα absorption, i.e., post-starburst regions in this merger. One is found in the eastern superbubble and the other is in the two tidal tails that are clearly revealed in our deep optical imaging. The size of the Hα absorption region in the eastern bubble is 5 kpc × 7.5 kpc, and the observed Hα equivalent widths are ∼2 Å ± 0.2 Å. The sizes of the northern and southern Hα-absorption tidal tails are ∼5 kpc × 10 kpc and ∼6 kpc × 20 kpc, respectively. The observed Hα equivalent widths range from 4 Å to 7 Å. In order to explain the presence of the two post-starburst tails, we suggest a possible multiple-merger scenario for Arp 220 in which two post-starburst disk-like structures merged into one, causing the two tails. This favors Arp 220 as a multiple merging system composed of four or more galaxies arising from a compact group of galaxies. Taking our new results into account, we discuss a star formation history in the last 1 Gyr in Arp 220.

  4. The Most Ancient Spiral Galaxy: A 2.6-Gyr-old Disk with a Tranquil Velocity Field

    Science.gov (United States)

    Yuan, Tiantian; Richard, Johan; Gupta, Anshu; Federrath, Christoph; Sharma, Soniya; Groves, Brent A.; Kewley, Lisa J.; Cen, Renyue; Birnboim, Yuval; Fisher, David B.

    2017-11-01

    We report an integral-field spectroscopic (IFS) observation of a gravitationally lensed spiral galaxy A1689B11 at redshift z = 2.54. It is the most ancient spiral galaxy discovered to date and the second kinematically confirmed spiral at z≳ 2. Thanks to gravitational lensing, this is also by far the deepest IFS observation with the highest spatial resolution (˜400 pc) on a spiral galaxy at a cosmic time when the Hubble sequence is about to emerge. After correcting for a lensing magnification of 7.2 ± 0.8, this primitive spiral disk has an intrinsic star formation rate of 22 ± 2 M ⊙ yr-1, a stellar mass of {10}9.8+/- 0.3 M ⊙, and a half-light radius of {r}1/2=2.6+/- 0.7 {kpc}, typical of a main-sequence star-forming galaxy at z˜ 2. However, the Hα kinematics show a surprisingly tranquil velocity field with an ordered rotation ({V}{{c}}=200+/- 12 km s-1) and uniformly small velocity dispersions ({V}σ ,{mean}=23 +/- 4 km s-1 and {V}σ ,{outer - {disk}}=15+/- 2 km s-1). The low gas velocity dispersion is similar to local spiral galaxies and is consistent with the classic density wave theory where spiral arms form in dynamically cold and thin disks. We speculate that A1689B11 belongs to a population of rare spiral galaxies at z≳ 2 that mark the formation epoch of thin disks. Future observations with the James Webb Space Telescope will greatly increase the sample of these rare galaxies and unveil the earliest onset of spiral arms.

  5. Milgrom Relation Models for Spiral Galaxies from Two-Dimensional Velocity Maps

    OpenAIRE

    Barnes, Eric I.; Kosowsky, Arthur; Sellwood, Jerry A.

    2007-01-01

    Using two-dimensional velocity maps and I-band photometry, we have created mass models of 40 spiral galaxies using the Milgrom relation (the basis of modified Newtonian dynamics, or MOND) to complement previous work. A Bayesian technique is employed to compare several different dark matter halo models to Milgrom and Newtonian models. Pseudo-isothermal dark matter halos provide the best statistical fits to the data in a majority of cases, while the Milgrom relation generally provides good fits...

  6. Broad Paschen-alpha emission in two extremely infrared luminous Seyfert 2 galaxies

    International Nuclear Information System (INIS)

    Hines, D.C.

    1991-01-01

    The Paschen-alpha emission line in the extremely luminous IRAS-selected galaxies IRAS 20460 + 1925 and IRAS 23060 + 0505 is observed. The observed width of H-α of Pa-α in IRAS 20460 + 1925 is 3300 km/s, with a possible broader component of about 3860 km/s, while the observed width of H-α of Pa-α in IRAS 23060 + 0505 is 3270 km/s, with a possible broader component of about 4780 km/s. Considering these results as well as their bolometric luminosities, IRAS 20460 + 1925 and IRAS 23060 + 0505 are proposed to be classified as QSO's. It is suggested that there is a population of obscured QSO's, and that they can be selected by their warmth infrared energy distributions and QSO-like luminosities. 17 refs

  7. S0 galaxies are faded spirals: clues from their angular momentum content

    Science.gov (United States)

    Rizzo, Francesca; Fraternali, Filippo; Iorio, Giuliano

    2018-05-01

    The distribution of galaxies in the stellar specific angular momentum versus stellar mass plane (j⋆ - M⋆) provides key insights into their formation mechanisms. In this paper, we determine the location in this plane of a sample of 10 field/group unbarred lenticular (S0) galaxies from the Calar Alto Legacy Integral Field Area survey. We performed a bulge-disc decomposition both photometrically and kinematically to study the stellar specific angular momentum of the disc components alone and understand the evolutionary links between S0s and other Hubble types. We found that eight of our S0 discs have a distribution in the j⋆ - M⋆ plane that is fully compatible with that of spiral discs, while only two have values of j⋆ lower than the spirals. These two outliers show signs of recent merging. Our results suggest that merger and interaction processes are not the dominant mechanisms in S0 formation in low-density environments. Instead, S0s appear to be the result of secular processes and the fading of spiral galaxies after the shutdown of star formation.

  8. Heavy X-ray obscuration in the most luminous galaxies discovered by WISE

    Science.gov (United States)

    Vito, F.; Brandt, W. N.; Stern, D.; Assef, R. J.; Chen, C.-T. J.; Brightman, M.; Comastri, A.; Eisenhardt, P.; Garmire, G. P.; Hickox, R.; Lansbury, G.; Tsai, C.-W.; Walton, D. J.; Wu, J. W.

    2018-03-01

    Hot dust-obscured galaxies (DOGs) are hyperluminous (L8-1000 μm > 1013 L⊙) infrared galaxies with extremely high (up to hundreds of K) dust temperatures. The sources powering both their extremely high luminosities and dust temperatures are thought to be deeply buried and rapidly accreting supermassive black holes (SMBHs). Hot DOGs could therefore represent a key evolutionary phase in which the SMBH growth peaks. X-ray observations can be used to study their obscuration levels and luminosities. In this work, we present the X-ray properties of the 20 most luminous (Lbol ≳ 1014 L⊙) known hot DOGs at z = 2-4.6. Five of them are covered by long-exposure (10-70 ks) Chandra and XMM-Newton observations, with three being X-ray detected, and we study their individual properties. One of these sources (W0116-0505) is a Compton-thick candidate, with column density NH = (1.0-1.5) × 1024 cm-2 derived from X-ray spectral fitting. The remaining 15 hot DOGs have been targeted by a Chandra snapshot (3.1 ks) survey. None of these 15 are individually detected; therefore, we applied a stacking analysis to investigate their average emission. From hardness ratio analysis, we constrained the average obscuring column density and intrinsic luminosity to be log NH (cm-2) > 23.5 and LX ≳ 1044 erg s-1, which are consistent with results for individually detected sources. We also investigated the LX-L6 μm and LX-Lbol relations, finding hints that hot DOGs are typically X-ray weaker than expected, although larger samples of luminous obscured quasi-stellar objects are needed to derive solid conclusions.

  9. A comparison of UV surface brightness and HI surface densities for spiral galaxies

    International Nuclear Information System (INIS)

    Federman, S.R.; Strom, C.

    1990-01-01

    Shaya and Federman (1987) suggested that the ambient ultraviolet flux at 1000 A permeating a spiral galaxy controls the neutral hydrogen (HI) surface density in the galaxy. They found that the atomic envelopes surrounding small molecular clouds, because of their great number, provide the major contribution to the HI surface density over the stellar disk. The increase in HI surface density with later Hubble types was ascribed to the stronger UV fields from more high-mass stars in later Hubble types. These hypotheses are based on the observations of nearby diffuse interstellar clouds, which show a sharp atomic-to-molecular transition (Savage et al. 1977), and on the theoretical framework introduced by Federman, Glassgold, and Kwan (1979). Atomic envelopes around interstellar clouds in the solar neighborhood arise when a steady state is reached between photodissociation of H2 and the formation of H2 on grains. The photodissociation process involves photons with wavelengths between 912 A and 1108 A. Shaya and Federman used H-alpha flux as an approximate measure for the far UV flux and made their comparisons based on averages over Hubble type. Here, researchers compare, on an individual basis, UV data obtained with space-borne and balloon-borne instruments for galaxies with measurements of HI surface density (Warmels 1988a, b). The comparisons substantiate the conclusion of Shaya and Federman that the far UV field controls the HI content of spiral galaxies

  10. On fitting the full spectrum of luminous red galaxies by using ULySS and STARLIGHT

    International Nuclear Information System (INIS)

    Liu Gao-Chao; Lu You-Jun; Chen Xue-Lei; Du Wei; Zhao Yong-Heng

    2013-01-01

    We select a sample of quiescent luminous red galaxies (LRGs) from the Sloan Digital Sky Survey Data Release 7 with a high signal-to-noise ratio (S/N) to study the consistency of fitting the full spectrum by using different packages, mainly, ULySS and STARLIGHT. The spectrum of each galaxy in the sample is fitted by the full spectrum fitting packages ULySS and STARLIGHT. We find: (1) for spectra with higher S/Ns, the ages of stellar populations obtained from ULySS are slightly older than those from STARLIGHT, and metallicities derived from ULySS are slightly richer than those from STARLIGHT. In general, both packages can give roughly consistent fitting results. (2) For low S/N spectra, it is possible that the fitting by ULySS can become trapped at some local minimum in the parameter space during execution and thus may give unreliable results, but STARLIGHT can still give reliable results. Based on the fitting results of LRGs, we further analyze their star formation history and the relation between their age and velocity dispersion, and find that they agree well with conclusions from previous works

  11. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOUS RED GALAXY TARGET SELECTION

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; Rao, Sandhya M. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ross, Ashley J. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Dawson, Kyle S.; Bautista, Julian E.; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Kneib, Jean-Paul [Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne Observatoire de Sauverny, 1290 Versoix (Switzerland); Percival, Will J. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Comparat, Johan [Instituto de Física Teórica, (UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Tinker, Jeremy L. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Tojeiro, Rita [School of Physics and Astronomy, St Andrews, KY16 9SS (United Kingdom); Ho, Shirley; Lang, Dustin [Bruce and Astrid McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); McBride, Cameron K. [Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Zhu, Guangtun Ben, E-mail: abp15@pitt.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); and others

    2016-06-01

    We describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer . LRG targets are required to meet a set of color selection criteria and have z -band and i -band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ∼89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.

  12. Cold Molecular Gas Along the Merger Sequence in Local Luminous Infrared Galaxies

    Science.gov (United States)

    Yamashita, Takuji; Komugi, Shinya; Matsuhara, Hideo; Armus, Lee; Inami, Hanae; Ueda, Junko; Iono, Daisuke; Kohno, Kotaro; Evans, Aaron S.; Arimatsu, Ko

    2017-08-01

    We present an initial result from the 12CO (J = 1-0) survey of 79 galaxies in 62 local luminous and ultraluminous infrared galaxy (LIRG and ULIRG) systems obtained using the 45 m telescope at the Nobeyama Radio Observatory. This is a systematic 12CO (J = 1-0) survey of the Great Observatories All-sky LIRGs Survey (GOALS) sample. The molecular gas mass of the sample is in the range 2.2× {10}8{--}7.0× {10}9 {M}⊙ within the central several kiloparsecs subtended by the 15\\prime\\prime beam. A method to estimate the size of a CO gas distribution is introduced, which is combined with the total CO flux in the literature. This method is applied to part of our sample, and we find that the median CO radius is 1-4 kpc. From the early stage to the late stage of mergers, we find that the CO size decreases while the median value of the molecular gas mass in the central several-kiloparsec region is constant. Our results statistically support a scenario where molecular gas inflows toward the central region from the outer disk to replenish gas consumed by starburst, and that such a process is common in merging LIRGs.

  13. Can the large-scale magnetic field lines cross the spiral arms in our Milky Way galaxy?

    International Nuclear Information System (INIS)

    Vallee, J.P.

    1988-01-01

    For the Sgr, Ori, and Per spiral arms, the pitch angle (i.e., deviation from a tangent parallel to a circular orbit around the center of the Galaxy) of the magnetic-field lines differs from the pitch angle of the spiral arms. For the spiral arms, the pitch angle of the magnetic-field lines can be measured independently from both quasars and galaxies as well as from pulsars, yielding a small (-6 deg) pitch angle, as predicted in the roughly circular oval gas streamline model of the density-wave theory. Meanwhile, the pitch angle of the spiral arms can be measured independently from both the O type stars and from the H II regions, yielding a large (-18 deg) pitch angle, also as predicted in the density-wave theory. Thus for these arms, the magnetic-field lines cross the spiral arms, to leave them outwardly at a sizable mean angle (+12 deg). 19 references

  14. Understanding the nature of luminous red galaxies (LRGs): connecting LRGs to central and satellite subhaloes

    Science.gov (United States)

    Masaki, Shogo; Hikage, Chiaki; Takada, Masahiro; Spergel, David N.; Sugiyama, Naoshi

    2013-08-01

    We develop a novel abundance matching method to construct a mock catalogue of luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS), using catalogues of haloes and subhaloes in N-body simulations for a Λ-dominated cold dark matter model. Motivated by observations suggesting that LRGs are passively evolving, massive early-type galaxies with a typical age ≳5 Gyr, we assume that simulated haloes at z = 2 (z2-halo) are progenitors for LRG-host subhaloes observed today, and we label the most tightly bound particles in each progenitor z2-halo as LRG `stars'. We then identify the subhaloes containing these stars to z = 0.3 (SDSS redshift) in descending order of the masses of z2-haloes until the comoving number density of the matched subhaloes becomes comparable to the measured number density of SDSS LRGs, bar{n}_LRG=10^{-4} h^3 Mpc^{-3}. Once the above prescription is determined, our only free parameter is the number density of haloes identified at z = 2 and this parameter is fixed to match the observed number density at z = 0.3. By tracing subsequent merging and assembly histories of each progenitor z2-halo, we can directly compute, from the mock catalogue, the distributions of central and satellite LRGs and their internal motions in each host halo at z = 0.3. While the SDSS LRGs are galaxies selected by the magnitude and colour cuts from the SDSS images and are not necessarily a stellar-mass-selected sample, our mock catalogue reproduces a host of SDSS measurements: the halo occupation distribution for central and satellite LRGs, the projected autocorrelation function of LRGs, the cross-correlation of LRGs with shapes of background galaxies (LRG-galaxy weak lensing) and the non-linear redshift-space distortion effect, the Finger-of-God effect, in the angle-averaged redshift-space power spectrum. The mock catalogue generated based on our method can be used for removing or calibrating systematic errors in the cosmological interpretation of LRG clustering

  15. NEW NEUTRINO MASS BOUNDS FROM SDSS-III DATA RELEASE 8 PHOTOMETRIC LUMINOUS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    De Putter, Roland [ICC, University of Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain); Mena, Olga; Giusarma, Elena [Instituto de Fisica Corpuscular, University of Valencia-CSIC (Spain); Ho, Shirley; Seo, Hee-Jong; White, Martin; Ross, Nicholas P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Cuesta, Antonio [Yale University, New Haven, CT (United States); Ross, Ashley J.; Percival, Will J. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Pan, Kaike; Shelden, Alaina; Simmons, Audrey [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Kirkby, David [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2012-12-10

    We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release 8. The galaxies have photometric redshifts between z = 0.45 and z = 0.65 and cover 10,000 deg{sup 2}, thus probing a volume of 3 h {sup -3} Gpc{sup 3} and enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses {Sigma}m{sub {nu}} < 0.27 eV, at the 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call ''CMASS'', with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year cosmic microwave background data and the most recent measurement of the Hubble parameter from the Hubble Space Telescope (HST). This constraint is obtained with a conservative multipole range of 30 < l < 200 in order to minimize nonlinearities, and a free bias parameter in each of the four redshift bins. We study the impact of assuming this linear galaxy bias model using mock catalogs and find that this model causes a small ({approx}1{sigma}-1.5{sigma}) bias in {Omega}{sub DM} h {sup 2}. For this reason, we also quote neutrino bounds based on a conservative galaxy bias model containing additional, shot-noise-like free parameters. In this conservative case, the bounds are significantly weakened, e.g., {Sigma}m{sub {nu}} < 0.38 eV (95% CL) for WMAP+HST+CMASS (l{sub max} = 200). We also study the dependence of the neutrino bound on the multipole range (l{sub max} = 150 versus l{sub max} = 200) and on which combination of data sets is included as a prior. The addition of supernova and/or baryon acoustic oscillation data does not significantly improve the neutrino mass bound once the HST prior is included. A companion paper describes the construction of the angular power spectra in detail and derives constraints on a general cosmological model, including the dark energy equation of state w and the spatial

  16. LOCAL LUMINOUS INFRARED GALAXIES. II. ACTIVE GALACTIC NUCLEUS ACTIVITY FROM SPITZER/INFRARED SPECTROGRAPH SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel [Centro de Astrobiologia, INTA-CSIC, E-28850 Torrejon de Ardoz, Madrid (Spain); Rieke, George H. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Rigopoulou, Dimitra [Astrophysics Department, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2012-01-01

    We quantify the active galactic nucleus (AGN) contribution to the mid-infrared (mid-IR) and the total infrared (IR, 8-1000 {mu}m) emission in a complete volume-limited sample of 53 local luminous infrared galaxies (LIRGs, L{sub IR} = 10{sup 11}-10{sup 12} L{sub Sun }). We decompose the Spitzer Infrared Spectrograph low-resolution 5-38 {mu}m spectra of the LIRGs into AGN and starburst components using clumpy torus models and star-forming galaxy templates, respectively. We find that 50% (25/50) of local LIRGs have an AGN component detected with this method. There is good agreement between these AGN detections through mid-IR spectral decomposition and other AGN indicators, such as the optical spectral class, mid-IR spectral features, and X-ray properties. Taking all the AGN indicators together, the AGN detection rate in the individual nuclei of LIRGs is {approx}62%. The derived AGN bolometric luminosities are in the range L{sub bol}(AGN) = (0.4-50) Multiplication-Sign 10{sup 43} erg s{sup -1}. The AGN bolometric contribution to the IR luminosities of the galaxies is generally small, with 70% of LIRGs having L{sub bol}[AGN]/L{sub IR} {<=} 0.05. Only {approx_equal} 8% of local LIRGs have a significant AGN bolometric contribution L{sub bol}[AGN]/L{sub IR} > 0.25. From the comparison of our results with literature results of ultraluminous infrared galaxies (L{sub IR} = 10{sup 12}-10{sup 13} L{sub Sun }), we confirm that in the local universe the AGN bolometric contribution to the IR luminosity increases with the IR luminosity of the galaxy/system. If we add up the AGN bolometric luminosities we find that AGNs only account for 5%{sub -3%}{sup +8%} of the total IR luminosity produced by local LIRGs (with and without AGN detections). This proves that the bulk of the IR luminosity of local LIRGs is due to star formation activity. Taking the newly determined IR luminosity density of LIRGs in the local universe, we then estimate an AGN IR luminosity density of {Omega}{sup AGN

  17. TOPOLOGY OF LUMINOUS RED GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Choi, Yun-Young; Kim, Juhan; Rossi, Graziano; Kim, Sungsoo S.; Lee, Jeong-Eun

    2013-01-01

    We present measurements of the genus topology of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) Data Release 7 catalog, with unprecedented statistical significance. To estimate the uncertainties in the measured genus, we construct 81 mock SDSS LRG surveys along the past light cone from Horizon Run 3, one of the largest N-body simulations to date, which evolved 7210 3 particles in a 10,815 h –1  Mpc box. After carefully modeling and removing all known systematic effects due to finite pixel size, survey boundary, radial and angular selection functions, shot noise, and galaxy biasing, we find that the observed genus amplitude reaches 272 at a 22 h –1  Mpc smoothing scale, with an uncertainty of 4.2%; the estimated error fully incorporates cosmic variance. This is the most accurate constraint on the genus amplitude to date and significantly improves on our previous results. In particular, the shape of the genus curve agrees very well with the mean topology of the SDSS LRG mock surveys in a Λ cold dark matter universe. However, comparison with simulations also shows small deviations of the observed genus curve from the theoretical expectation for Gaussian initial conditions. While these discrepancies are mainly driven by known systematic effects such as shot noise and redshift-space distortions, they do contain important cosmological information on the physical effects connected with galaxy formation, gravitational evolution, and primordial non-Gaussianity. We address the key role played by systematics on the genus curve and show how to accurately correct for their effects to recover the topology of the underlying matter. A future work will provide an interpretation of these deviations in the context of the local model of non-Gaussianity

  18. ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hee-Jong [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Ho, Shirley; White, Martin; Reid, Beth; Schlegel, David J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Cuesta, Antonio J.; Padmanabhan, Nikhil [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Ross, Ashley J.; Percival, Will J.; Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Saito, Shun [Department of Astronomy, 601 Campbell Hall, University of California at Berkeley, Berkeley, CA 94720 (United States); De Putter, Roland [Instituto de Fisica Corpuscular, Valencia (Spain); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Xu Xiaoying; Skibba, Ramin [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Schneider, Donald P. [Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802 (United States); Verde, Licia [Institucio Catalana de Recerca i Estudis Avancats, Barcelona (Spain); Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J. [Apache Point Observatory, 2001 Apache Point Road, Sunspot, NM 88349 (United States); and others

    2012-12-10

    We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over {approx}10,000 deg{sup 2} between 0.45 < z < 0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, to derive the location of Baryon acoustic oscillations (BAOs) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale D{sub A} (z)/r{sub s} = 9.212{sup +0.416}{sub -{sub 0.404}} at z = 0.54, and therefore D{sub A} (z) = 1411 {+-} 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D{sub A} (z) is 1.4{sigma} higher than what is expected for the concordance {Lambda}CDM, in accordance to the trend of other spectroscopic BAO measurements for z {approx}> 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum.

  19. {sup 13}CO/C{sup 18}O Gradients across the Disks of Nearby Spiral Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Leroy, Adam K.; Gallagher, Molly [Department of Astronomy, The Ohio State University, 140 W 18th St, Columbus, OH 43210 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Usero, Antonio [Observatorio Astronómico Nacional, Alfonso XII 3, E-28014, Madrid (Spain); Hughes, Annie [CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Kramer, Carsten [Instituto de Astrofísica de Andalucía IAA-CSIC, Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Meier, David [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Pl, Soccoro, NM 87801 (United States); Murphy, Eric [National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903 (United States); Pety, Jérôme; Schuster, Karl [Institut de Radioastronomie Millimétrique (IRAM), 300 Rue de la Piscine, F-38406 Saint Martin d’Hères (France); Schinnerer, Eva; Sliwa, Kazimierz; Tomicic, Neven [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Schruba, Andreas, E-mail: m.jimenez@zah.uni-heidelberg.de [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany)

    2017-02-20

    We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure {sup 13}CO(1-0)/C{sup 18}O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of {sup 12}CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved {sup 13}CO/C{sup 18}O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean {sup 13}CO/C{sup 18}O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the {sup 13}CO/C{sup 18}O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.

  20. Dust Temperatures in the Infrared Space Observatory Atlas of Bright Spiral Galaxies

    CERN Document Server

    Bendo, G J; Wells, M; Gallais, P; Haas, M; Heras, A M; Klaas, U; Laureijs, R J; Leech, K; Lemke, D; Metcalfe, L; Rowan-Robinson, M; Schulz, B; Telesco, C M; Bendo, George J.; Joseph, Robert D.; Wells, Martyn; Gallais, Pascal; Haas, Martin; Heras, Ana M.; Klaas, Ulrich; Laureijs, Rene J.; Leech, Kieron; Lemke, Dietrich; Metcalfe, Leo; Rowan-Robinson, Michael; Schulz, Bernhard; Telesco, Charles

    2003-01-01

    We examine far-infrared and submillimeter spectral energy distributions for galaxies in the Infrared Space Observatory Atlas of Bright Spiral Galaxies. For the 71 galaxies where we had complete 60-180 micron data, we fit blackbodies with lambda^-1 emissivities and average temperatures of 31 K or lambda^-2 emissivities and average temperatures of 22 K. Except for high temperatures determined in some early-type galaxies, the temperatures show no dependence on any galaxy characteristic. For the 60-850 micron range in eight galaxies, we fit blackbodies with lambda^-1, lambda-2, and lambda^-beta (with beta variable) emissivities to the data. The best results were with the lambda^-beta emissivities, where the temperatures were ~30 K and the emissivity coefficient beta ranged from 0.9 to 1.9. These results produced gas to dust ratios that ranged from 150 to 580, which were consistent with the ratio for the Milky Way and which exhibited relatively little dispersion compared to fits with fixed emissivities.

  1. STAR Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

    Science.gov (United States)

    Eufrasio, Rafael T.; Dwek, E.; Arendt, RIchard G.; deMello, Duilia F.; Gadotti, DImitri A.; Urrutia-Viscarra, Fernanda; deOliveira, CLaudia Mendes; Benford, Dominic J.

    2014-01-01

    NGC6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micrometer) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  2. ASSOCIATIONS OF HIGH-REDSHIFT QUASI-STELLAR OBJECTS WITH ACTIVE, LOW-REDSHIFT SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Burbidge, G.; Napier, W. M.

    2009-01-01

    Following the discovery in the 1960s of radio and optical QSOs it was found that some of them lie very close to low-redshift (z ≤ 0.01) spiral galaxies with separations of ∼<2 arcmin. These were discovered both serendipitously by many observers, and systematically by Arp. They are some of the brightest QSOs in radio and optical wavelengths and are very rare. We have carried out a new statistical analysis of most of those galaxy-QSO pairs and find that the configurations have high statistical significance. We show that gravitational microlensing due to stars or other dark objects in the halos of the galaxies apparently cannot account for the excess. Sampling or identification bias likewise seems unable to explain it. Following this up we selected all ∼4000 QSOs with g ≤ 18 from a catalog of confirmed QSOs in the Sloan Digital Sky Survey, and compared them with various subsets of galaxies from the RC 3 galaxy catalog. In contrast to the earlier results, no significant excess of such QSOs was found around these galaxies. Possible reasons for the discrepancy are discussed.

  3. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    Science.gov (United States)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J. M.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-06-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST), infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D 25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX > 5 × 1039 erg s-1) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (Γ ~ 1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 × 1038 erg s-1. This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  4. THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE 56Ni PRODUCTION

    International Nuclear Information System (INIS)

    Chen, Ting-Wan; Smartt, Stephen J.; Kotak, Rubina; McCrum, Matt; Fraser, Morgan; Bresolin, Fabio; Kudritzki, Rolf-Peter; Pastorello, Andrea; Valenti, Stefano

    2013-01-01

    Super-luminous supernovae have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. While these extremely luminous explosions have been observed from z = 0.1 to 1.55, the closest explosions allow more detailed investigations of their host galaxies. We present a detailed analysis of the host galaxy of SN 2010gx (z = 0.23), one of the best studied super-luminous type Ic supernovae. The host is a dwarf galaxy (M g = –17.42 ± 0.17) with a high specific star formation rate. It has a remarkably low metallicity of 12 + log (O/H) = 7.5 ± 0.1 dex as determined from the detection of the [O III] λ4363 line. This is the first reliable metallicity determination of a super-luminous stripped-envelope supernova host. We collected deep multi-epoch imaging with Gemini + GMOS between 240 and 560 days after explosion to search for any sign of radioactive 56 Ni, which might provide further insights on the explosion mechanism and the progenitor's nature. We reach griz magnitudes of m AB ∼ 26, but do not detect SN 2010gx at these epochs. The limit implies that any 56 Ni production was similar to or below that of SN 1998bw (a luminous type Ic SN that produced around 0.4 M ☉ of 56 Ni). The low volumetric rates of these supernovae (∼10 –4 of the core-collapse population) could be qualitatively matched if the explosion mechanism requires a combination of low-metallicity (below 0.2 Z ☉ ), high progenitor mass (>60 M ☉ ) and high rotation rate (fastest 10% of rotators).

  5. Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling

    Science.gov (United States)

    Pogge, Richard W.; Martini, Paul

    2002-01-01

    We present archival Hubble Space Telescope (HST) images of the nuclear regions of 43 of the 46 Seyfert galaxies found in the volume limited,spectroscopically complete CfA Redshift Survey sample. Using an improved method of image contrast enhancement, we created detailed high-quality " structure maps " that allow us to study the distributions of dust, star clusters, and emission-line gas in the circumnuclear regions (100-1000 pc scales) and in the associated host galaxy. Essentially all of these Seyfert galaxies have circumnuclear dust structures with morphologies ranging from grand-design two-armed spirals to chaotic dusty disks. In most Seyfert galaxies there is a clear physical connection between the nuclear dust spirals on hundreds of parsec scales and large-scale bars and spiral arms in the host galaxies proper. These connections are particularly striking in the interacting and barred galaxies. Such structures are predicted by numerical simulations of gas flows in barred and interacting galaxies and may be related to the fueling of active galactic nuclei by matter inflow from the host galaxy disks. We see no significant differences in the circumnuclear dust morphologies of Seyfert 1s and 2s, and very few Seyfert 2 nuclei are obscured by large-scale dust structures in the host galaxies. If Sevfert 2s are obscured Sevfert Is, then the obscuration must occur on smaller scales than those probed by HST.

  6. Spectroscopy of Luminous z > 7 Galaxy Candidates and Sources of Contamination in z > 7 Galaxy Searches

    Science.gov (United States)

    Capak, P.; Mobasher, B.; Scoville, N. Z.; McCracken, H.; Ilbert, O.; Salvato, M.; Menéndez-Delmestre, K.; Aussel, H.; Carilli, C.; Civano, F.; Elvis, M.; Giavalisco, M.; Jullo, E.; Kartaltepe, J.; Leauthaud, A.; Koekemoer, A. M.; Kneib, J.-P.; LeFloch, E.; Sanders, D. B.; Schinnerer, E.; Shioya, Y.; Shopbell, P.; Tanaguchi, Y.; Thompson, D.; Willott, C. J.

    2011-04-01

    We present three bright z +-dropout candidates selected from deep near-infrared (NIR) imaging of the COSMOS 2 deg2 field. All three objects match the 0.8-8 μm colors of other published z > 7 candidates but are 3 mag brighter, facilitating further study. Deep spectroscopy of two of the candidates covering 0.64-1.02 μm with Keck-DEIMOS and all three covering 0.94-1.10 μm and 1.52-1.80 μm with Keck-NIRSPEC detects weak spectral features tentatively identified as Lyα at z = 6.95 and z = 7.69 in two of the objects. The third object is placed at z ~ 1.6 based on a 24 μm and weak optical detection. A comparison with the spectral energy distributions of known z 1 μm properties of all three objects can be matched to optically detected sources with photometric redshifts at z ~ 1.8, so the non-detection in the i + and z + bands is the primary factor which favors a z > 7 solution. If any of these objects are at z ~ 7, the bright end of the luminosity function is significantly higher at z > 7 than suggested by previous studies, but consistent within the statistical uncertainty and the dark matter halo distribution. If these objects are at low redshift, the Lyman break selection must be contaminated by a previously unknown population of low-redshift objects with very strong breaks in their broadband spectral energy distributions and blue NIR colors. The implications of this result on luminosity function evolution at high redshift are discussed. We show that the primary limitation of z > 7 galaxy searches with broad filters is the depth of the available optical data. Based on observations with the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration and made possible by the generous financial support of the W. M. Keck Foundation; the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California

  7. The Dynamics and Cold Gas Content of Luminous Infrared Galaxy Mergers in the Local Universe

    Science.gov (United States)

    Privon, G. C.

    2014-08-01

    Luminous Infrared Galaxies (LIRGs; 10^11 ≤ L_IR [8 - 1000 μm]/L_sun systems in the local universe, both in terms of their absolute star formation rates—ten to several hundred times that of ``normal'' galaxies—and their star formation rate densities. Many U/LIRGs are interacting or merging disk galaxies undergoing enhanced star formation and/or nuclear activity, likely triggered as the objects transform into massive S0 and elliptical merger remnants. The LIRG population also contains a significant number of apparently isolated disk galaxies which are undergoing enhanced star formation, providing a window on secular galaxy evolution. This work examines nearby U/LIRGs chosen from the Great Observatories All-sky LIRG Survey (GOALS), an infrared flux and luminosity selected sample. The proximity of these systems enables high spatial resolution study of active galactic nuclei (AGN) and extreme star formation in these objects. New maps of the neutral hydrogen (HI) emission are presented for systems morphologically classified in the optical and mid-infrared as non-merging or pre-merger systems. The results of this study suggests that some infrared-selected galaxies may be minor mergers or interactions which are being viewed so soon after first pass that the stellar disk has not yet been significantly disturbed. Galaxy mergers appear to drive much of the enhanced activity observed in U/LIRGs; understanding the merger state of these systems provides a context for observations of star formation and AGN properties. In order to constrain the merger stage, dynamical models for a sample of nine systems were matched to the observed kinematics and morphology as obtained from optical imaging and interferometric HI maps. The resulting models are used not only to constrain the merger stage, but also the encounter geometry of the precursor. Based on these dynamical models a new merger stage classification is presented, which re-scales objects to a common timeline is used to

  8. Properties in the middle and far infrared radiation of spiral and irregular galaxies

    International Nuclear Information System (INIS)

    Contursi, Alessandra

    1998-01-01

    In the first part of this research thesis, the author reports the study in the middle infrared of H II regions belonging to Magellanic clouds. For this purpose, he presents different aspects of infrared emission by the interstellar medium: origin and evolution of interstellar grains, dust studied by astrophysical observations, dust models, infrared observations made by COBE and IRAS satellites, exploitation of the ISO satellite. He also presents the Small and Large Magellanic clouds, and reports the study of the H II N4 region of the large one, imagery and spectroscopy of the H II N66 region of the small one, and the study of silicate emission in the central region of N66. The second part reports the study of cluster normal spiral galaxies in the middle and far infrared. For this purpose, the author discusses the colours in the middle infrared of Virgo's and Coma's galaxies, discusses the properties in the infrared of spiral galaxies (Coma and A1367), based on observations made by ISO [fr

  9. Interferometric follow-up of WISE hyper-luminous hot, dust-obscured galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jingwen; Wright, Edward L. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Bussmann, R. Shane [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS78, Cambridge, MA 02138 (United States); Tsai, Chao-Wei; Eisenhardt, Peter R. M.; Stern, Daniel; Moustakas, Leonidas [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Petric, Andreea [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822-1839 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom); Bridge, Carrie R. [Division of Physics, Math, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Benford, Dominic J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Assef, Roberto J. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av., Santiago, Ejército Libertador 441 (Chile); Gelino, Christopher R., E-mail: jingwen@astro.ucla.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-09-20

    The Wide-field Infrared Survey Explorer (WISE) has discovered an extraordinary population of hyper-luminous dusty galaxies that are faint in the two bluer passbands (3.4 μm and 4.6 μm) but are bright in the two redder passbands of WISE (12 μm and 22 μm). We report on initial follow-up observations of three of these hot, dust-obscured galaxies, or Hot DOGs, using the Combined Array for Research in Millimeter-wave Astronomy and the Submillimeter Array interferometer arrays at submillimeter/millimeter wavelengths. We report continuum detections at ∼1.3 mm of two sources (WISE J014946.17+235014.5 and WISE J223810.20+265319.7, hereafter W0149+2350 and W2238+2653, respectively), and upper limits to CO line emission at 3 mm in the observed frame for two sources (W0149+2350 and WISE J181417.29+341224.8, hereafter W1814+3412). The 1.3 mm continuum images have a resolution of 1''-2'' and are consistent with single point sources. We estimate the masses of cold dust are 2.0 × 10{sup 8} M {sub ☉} for W0149+2350 and 3.9 × 10{sup 8} M {sub ☉} for W2238+2653, comparable to cold dust masses of luminous quasars. We obtain 2σ upper limits to the molecular gas masses traced by CO, which are 3.3 × 10{sup 10} M {sub ☉} and 2.3 × 10{sup 10} M {sub ☉} for W0149+2350 and W1814+3412, respectively. We also present high-resolution, near-IR imaging with the WFC3 on the Hubble Space Telescope for W0149+2653 and with NIRC2 on Keck for W2238+2653. The near-IR images show morphological structure dominated by a single, centrally condensed source with effective radius less than 4 kpc. No signs of gravitational lensing are evident.

  10. SDSS-IV MaNGA: Variation of the Stellar Initial Mass Function in Spiral and Early-type Galaxies

    Science.gov (United States)

    Li, Hongyu; Ge, Junqiang; Mao, Shude; Cappellari, Michele; Long, R. J.; Li, Ran; Emsellem, Eric; Dutton, Aaron A.; Li, Cheng; Bundy, Kevin; Thomas, Daniel; Drory, Niv; Lopes, Alexandre Roman

    2017-04-01

    We perform Jeans anisotropic modeling (JAM) on elliptical and spiral galaxies from the MaNGA DR13 sample. By comparing the stellar mass-to-light ratios estimated from stellar population synthesis and from JAM, we find a systematic variation of the initial mass function (IMF) similar to that in the earlier {{ATLAS}}3{{D}} results. Early-type galaxies (elliptical and lenticular) with lower velocity dispersions within one effective radius are consistent with a Chabrier-like IMF, while galaxies with higher velocity dispersions are consistent with a more bottom-heavy IMF such as the Salpeter IMF. Spiral galaxies have similar systematic IMF variations, but with slightly different slopes and larger scatters, due to the uncertainties caused by the higher gas fractions and extinctions for these galaxies. Furthermore, we examine the effects of stellar mass-to-light ratio gradients on our JAM modeling, and we find that the trends become stronger after considering the gradients.

  11. Broadband X-Ray Spectral Analysis of the Double-nucleus Luminous Infrared Galaxy Mrk 463

    Science.gov (United States)

    Yamada, Satoshi; Ueda, Yoshihiro; Oda, Saeko; Tanimoto, Atsushi; Imanishi, Masatoshi; Terashima, Yuichi; Ricci, Claudio

    2018-05-01

    We present a broadband (0.4–70 keV) X-ray spectral analysis of the luminous infrared galaxy (LIRG) system Mrk 463 observed with Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton, which contains double active galactic nuclei (AGNs; Mrk 463E and Mrk 463W) with a separation of ∼3.8 kpc. Detecting their transmitted hard X-ray >10 keV continua with NuSTAR, we confirm that Mrk 463E and Mrk 463W have AGNs with intrinsic luminosities of (1.6–2.2) × 1043 and (0.5–0.6) × 1043 erg s‑1 (2–10 keV) obscured by hydrogen column densities of 8 × 1023 and 3 × 1023 cm‑2, respectively. Both nuclei show strong reflection components from cold matter. The luminosity ratio between X-ray (2–10 keV) and [O IV] 25.89 μm of Mrk 463E is ∼5 times smaller than those of normal Seyfert galaxies, suggesting that the intrinsic SED is X-ray weak relative to the UV luminosity. In fact, the bolometric AGN luminosity of Mrk 463E estimated from L‧-band (3.8 μm), [O IV] 25.89 μm, and [Ne V] 14.32 μm lines indicate a large bolometric-to-X-ray luminosity ratio, κ 2–10 keV ≈ 110–410, and a high Eddington ratio, λ Edd ∼ 0.4–0.8. We suggest that the merger triggered a rapid growth of the black hole in Mrk 463E, which is not yet deeply “buried” by circumnuclear dust. By contrast, the L‧-band luminosity of Mrk 463W is unusually small relative to the X-ray luminosity, suggesting that the Eddington ratio is low (activity.

  12. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    International Nuclear Information System (INIS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-01-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10 5 M ⊙ . The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M I (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H 0  = 77.9 ± 3.6 km s −1 Mpc −1 . We estimate the GC specific frequency of NGC 4921 to be S N  = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s

  13. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A; Perez-Torres, M A [Instituto de Astrofisica de Andalucia (IAA, CSIC), PO Box 3004, 18080-Granada (Spain); Colina, L [Instituto de Estructura de la Materia - IEM, CSIC, C, Serrano 115, 28005 Madrid (Spain); Torrelles, J M [Instituto de Ciencias del Espacio (ICE, CSIC) and IEEC, Gran Capita 2-4, 08034 Barcelona (Spain)], E-mail: antxon@iaa.es, E-mail: torres@iaa.es, E-mail: colina@damir.iem.csic.es, E-mail: torrelle@ieec.fcr.es

    2008-10-15

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  14. redMaGiC: selecting luminous red galaxies from the DES Science Verification data

    Energy Technology Data Exchange (ETDEWEB)

    Rozo, E. [Univ. of Arizona, Tucson, AZ (United States). et al.

    2016-05-30

    We introduce redMaGiC, an automated algorithm for selecting Luminous Red Galaxies (LRGs). The algorithm was developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the color-cuts necessary to produce a luminosity-thresholded LRG sam- ple of constant comoving density. Additionally, we demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine-learning based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalog sampling the redshift range z ϵ [0.2,0.8]. Our fiducial sample has a comoving space density of 10-3 (h-1Mpc)-3, and a median photo-z bias (zspec zphoto) and scatter (σz=(1 + z)) of 0.005 and 0.017 respectively.The corresponding 5σ outlier fraction is 1.4%. We also test our algorithm with Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8) and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1% level.

  15. CATALOG OF OBSERVED TANGENTS TO THE SPIRAL ARMS IN THE MILKY WAY GALAXY

    International Nuclear Information System (INIS)

    Vallée, Jacques P.

    2014-01-01

    From the Sun's location in the Galactic disk, one can use different arm tracers (CO, H I, thermal or ionized or relativistic electrons, masers, cold and hot dust, etc.) to locate a tangent to each spiral arm in the disk of the Milky Way. We present a master catalog of the astronomically observed tangents to the Galaxy's spiral arms, using different arm tracers from the literature. Some arm tracers can have slightly divergent results from several papers, so a mean value is taken—see the Appendix for CO, H II, and masers. The catalog of means currently consists of 63 mean tracer entries, spread over many arms (Carina, Crux-Centaurus, Norma, Perseus origin, near 3 kpc, Scutum, Sagittarius), stemming from 107 original arm tracer entries. Additionally, we updated and revised a previous statistical analysis of the angular offset and linear separation from the mid-arm for each different mean arm tracer. Given enough arm tracers, and summing and averaging over all four spiral arms, one could determine if arm tracers have separate and parallel lanes in the Milky Way. This statistical analysis allows a cross-cut of a Galactic spiral arm to be made, confirming a recent discovery of a linear separation between arm tracers. Here, from the mid-arm's CO to the inner edge's hot dust, the arm halfwidth is about 340 pc; doubling would yield a full arm width of 680 pc. We briefly compare these observations with the predictions of many spiral arm theories, notably the density wave theory

  16. CATALOG OF OBSERVED TANGENTS TO THE SPIRAL ARMS IN THE MILKY WAY GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Vallée, Jacques P., E-mail: jacques.vallee@nrc-cnrc.gc.ca [Herzberg Astrophysics, National Research Council Canada, National Science Infrastructure portfolio, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada)

    2014-11-01

    From the Sun's location in the Galactic disk, one can use different arm tracers (CO, H I, thermal or ionized or relativistic electrons, masers, cold and hot dust, etc.) to locate a tangent to each spiral arm in the disk of the Milky Way. We present a master catalog of the astronomically observed tangents to the Galaxy's spiral arms, using different arm tracers from the literature. Some arm tracers can have slightly divergent results from several papers, so a mean value is taken—see the Appendix for CO, H II, and masers. The catalog of means currently consists of 63 mean tracer entries, spread over many arms (Carina, Crux-Centaurus, Norma, Perseus origin, near 3 kpc, Scutum, Sagittarius), stemming from 107 original arm tracer entries. Additionally, we updated and revised a previous statistical analysis of the angular offset and linear separation from the mid-arm for each different mean arm tracer. Given enough arm tracers, and summing and averaging over all four spiral arms, one could determine if arm tracers have separate and parallel lanes in the Milky Way. This statistical analysis allows a cross-cut of a Galactic spiral arm to be made, confirming a recent discovery of a linear separation between arm tracers. Here, from the mid-arm's CO to the inner edge's hot dust, the arm halfwidth is about 340 pc; doubling would yield a full arm width of 680 pc. We briefly compare these observations with the predictions of many spiral arm theories, notably the density wave theory.

  17. The spiral-compact galaxy pair AM 2208-251: Computer simulations versus observations

    International Nuclear Information System (INIS)

    Klaric, M.; Byrd, G.G.

    1990-01-01

    The system AM2208-251 is a roughly edge-on spiral extending east-west with a smaller round compact E system about 60 arcsec east of the spiral nucleus along the major axis of the spiral. Spectroscopic observations may indicate a tidal interaction in the system. In order to learn more about such pairs, the authors simulated the interaction using the computer model developed by Miller (1976 a,b, 1978) and modified by the authors (Byrd 1986, 1987, 1988). To do the simulation they need an idea of the mutual orbits of the two galaxies. Their computer model is a two-dimensional polar N-body program. It consists of a self-gravitating disk of particles, within an inert axially symmetric stabilizing halo potential. The particles are distributed in a 24(radial) by 36(azimuthal) polar grid. Self consistent calculations can be done only within the grid area. The disk is modeled with a finite Mestel disk, where all the particles initially move in circular orbits with constant tangential velocities (Mestel 1963), resulting in a flat rotation curve. The gas particles in the spiral's disk, which make up 30 percent of its mass, collide in the following manner. The number of particles in each bin of the polar grid is counted every time step. If it is greater than a given critical density, all the particles in the bin collide, obtaining in the result the same velocities, equal to the average for the bin. This process produces clumps of gas particles-the star formation sites. The authors suppress the collision in the inner part of the disk (within the circle r = 6) to represent the hole seen in the gas in the nuclear bulge of spirals. They thus avoid spurious effects due to collisions in that region

  18. Nuclear, disk-focused wind and the bipolar structure of the spiral galaxy NGC 3079

    International Nuclear Information System (INIS)

    Duric, N.; Seaquist, E.R.

    1988-01-01

    A high-resolution, radio continuum study of the spiral galaxy NGC 3079 is presented which reveals the presence of a figure eight morphology along the minor axis, centered on the nucleus. The nucleus itself dominates the emission from the galaxy. It has an inverted spectrum and is a possible VLBI source. The morphology is successfully modeled as the interaction between a nuclear wind and interstellar gas in the disk and halo. In this model, the wind plows up interstellar material as it propagates away from the nucleus. The disk focuses the wind along the minor axis, thereby creating the observed features. The restricted volume of space where the wind originates and the high energies associated with the wind point to a compact object such as a black hole or an unusually compact and massive star cluster as the source of the wind. 24 references

  19. A multiwavelength and multiscale study of Luminous and Ultraluminous Infrared Galaxies in the local Universe

    Science.gov (United States)

    Herrero-Illana, Rubén

    2014-10-01

    This dissertation deals with the multiwavelength study of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs, respectively) in the local Universe under different spatial scales. The work is focused on the properties of massive starbursts, the contribution of active galactic nuclei (AGN) and the interplay between both phenomena. The study of local (U)LIRGs is the best scenario where to understand the properties of these objects at cosmological distances, where their luminosity contribution dominates the cosmic infrared background. Our first approach to the study of (U)LIRGs consisted of a spectral line study in the millimeter range, obtained with the IRAM 30m radio-telescope in Pico Veleta, Granada of a subsample of 56 (U)LIRGs from the GOALS project sample. We observed and analyzed spectra of several molecular features, focusing in the study of carbon monoxide (CO), a well-known tracer of cold molecular gas. We explored the relation between them as well as the properties of molecular gas. Besides of the sample characterization, we confirmed the increase of the isotopic ratio 12CO/13CO with the dust temperature, explained by the 12CO optical depth decreasing with temperature. We have also studied the kinematics and gas distribution using the spectral profiles of several molecular transitions. In a second part of this thesis, we analyzed the central kiloparsec region of a sample of 12 LIRGs, stressing the importance of the multiwavelength approach, aimed at deriving the star formation processes of these galaxies, as well as to study the contribution of the putative AGN to the bolometric luminosity in our sample. For one of these LIRGs, NGC1614, we performed a deep multiwavelength study, including data from radio, infrared, optical and X-rays. These data allowed us to establish that the the IR emission in the circumnuclear region is completely dominated by a powerful starburst and, in case it hosts an AGN, its contribution is irrelevant. We also performed

  20. Luminous Infrared Galaxies. III. Multiple Merger, Extended Massive Star Formation, Galactic Wind, and Nuclear Inflow in NGC 3256

    Science.gov (United States)

    Lípari, S.; Díaz, R.; Taniguchi, Y.; Terlevich, R.; Dottori, H.; Carranza, G.

    2000-08-01

    We report detailed evidence for multiple merger, extended massive star formation, galactic wind, and circular/noncircular motions in the luminous infrared galaxy NGC 3256, based on observations of high-resolution imaging (Hubble Space Telescope, ESO NTT), and extensive spectroscopic data (more than 1000 spectra, collected at Estación Astrofísica de Bosque Alegre, Complejo Astronómico el Leoncito, Cerro Tololo InterAmerican Observatory, and IUE observatories). We find in a detailed morphological study (resolution ~15 pc) that the extended massive star formation process detected previously in NGC 3256 shows extended triple asymmetrical spiral arms (r~5 kpc), emanating from three different nuclei. The main optical nucleus shows a small spiral disk (r~500 pc), which is a continuation of the external one and reaches the very nucleus. The core shows blue elongated structure (50 pc×25 pc) and harbors a blue stellar cluster candidate (r~8 pc). We discuss this complex morphology in the framework of an extended massive star formation driven by a multiple merger process (models of Hernquist et al. and Taniguchi et al.). We study the kinematics of this system and present a detailed Hα velocity field for the central region (40''×40'' rmax~30''~5 kpc), with a spatial resolution of 1" and errors of +/-15 km s-1. The color and isovelocity maps show mainly (1) a kinematic center of circular motion with ``spider'' shape, located between the main optical nucleus and the close (5") mid-IR nucleus and (2) noncircular motions in the external parts. We obtained three ``sinusoidal rotation curves'' (from the Hα velocity field) around position angle (P.A.) ~55°, ~90°, and ~130°. In the main optical nucleus we found a clear ``outflow component'' associated with galactic winds plus an ``inflow radial motion.'' The outflow component was also detected in the central and external regions (rstandard models of photoionization, shocks, and starbursts). We present four detailed emission

  1. Origins of galactic spiral structures

    International Nuclear Information System (INIS)

    Piddington, J.H.

    1978-01-01

    Theories of galactic structure are reviewed briefly before comparing them with recent observations. Also reviewed is the evidence for an intergalactic magnetic field and its possible effects on gas concentrations and patterns of star creation, including spiral arms. It is then shown that normal spiral galaxies may be divided into the M51-type and others. The rare M51-type have H I gas arms coincident with unusually filamentary and luminous optical arms; they also have a companion galaxy. The remaining great majority of spirals have no well-defined gas arms and their optical arms are irregular, broader and less luminous; they have no companion galaxy. It appears that without exception the half-dozen or so galaxies whose structures appear to support the density-wave theory show one or more of the characteristics of the rare type of spiral, and that 'the three principal confirmations of the spiral-wave idea' (M51, M81, M101) have companions which may account for their arms. Toomre has rejected this idea on the grounds that his models do not agree with the observed structures. It is shown that these models are inadequate in two major respects, and when replaced by magneto-tidal models using non-uniform gas disks one might expect agreement. The original hydromagnetic model of spiral arms is now reserved for non-interacting galaxies, of which M33 might be taken as a prototype. The model predicts broad or 'massive' optical arms and no corresponding arms of neutral hydrogen, as observed. (Auth.)

  2. The structure and evolution of galacto-detonation waves - Some analytic results in sequential star formation models of spiral galaxies

    Science.gov (United States)

    Cowie, L. L.; Rybicki, G. B.

    1982-01-01

    Waves of star formation in a uniform, differentially rotating disk galaxy are treated analytically as a propagating detonation wave front. It is shown, that if single solitary waves could be excited, they would evolve asymptotically to one of two stable spiral forms, each of which rotates with a fixed pattern speed. Simple numerical solutions confirm these results. However, the pattern of waves that develop naturally from an initially localized disturbance is more complex and dies out within a few rotation periods. These results suggest a conclusive observational test for deciding whether sequential star formation is an important determinant of spiral structure in some class of galaxies.

  3. HALOGAS: H I OBSERVATIONS AND MODELING OF THE NEARBY EDGE-ON SPIRAL GALAXY NGC 4565

    Energy Technology Data Exchange (ETDEWEB)

    Zschaechner, Laura K.; Rand, Richard J. [Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Boulevard NE, Albuquerque, NM 87131-1156 (United States); Heald, George H.; Jozsa, Gyula [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, NL-7990 AA Dwingeloo (Netherlands); Gentile, Gianfranco, E-mail: zschaech@unm.edu, E-mail: rjr@phys.unm.edu, E-mail: heald@astron.nl, E-mail: jozsa@astron.nl, E-mail: gianfranco.gentile@ugent.be [Sterrenkundig Observatorium, Ghent University, Krijgslaan 281 S9, B-9000 Ghent (Belgium)

    2012-11-20

    We present 21 cm observations and models of the neutral hydrogen in NGC 4565, a nearby, edge-on spiral galaxy, as part of the Westerbork Hydrogen Accretion in LOcal GAlaxieS survey. These models provide insight concerning both the morphology and kinematics of H I above, as well as within, the disk. NGC 4565 exhibits a distinctly warped and asymmetric disk with a flaring layer. Our modeling provides no evidence for a massive, extended H I halo. We see evidence for a bar and associated radial motions. Additionally, there are indications of radial motions within the disk, possibly associated with a ring of higher density. We see a substantial decrease in rotational velocity with height above the plane of the disk (a lag) of -40{sup +5} {sub -20} km s{sup -1} kpc{sup -1} and -30{sup +5} {sub -30} km s{sup -1} kpc{sup -1} in the approaching and receding halves, respectively. This lag is only seen within the inner {approx}4.'75 (14.9 kpc) on the approaching half and {approx}4.'25 (13.4 kpc) on the receding half, making this a radially shallowing lag, which is now seen in the H I layers of several galaxies. When comparing results for NGC 4565 and those for other galaxies, there are tentative indications of high star formation rate per unit area being associated with the presence of a halo. Finally, H I is found in two companion galaxies, one of which is clearly interacting with NGC 4565.

  4. Radial distributions of surface mass density and mass-to-luminosity ratio in spiral galaxies

    Science.gov (United States)

    Sofue, Yoshiaki

    2018-03-01

    We present radial profiles of the surface mass density (SMD) in spiral galaxies directly calculated using rotation curves of two approximations of flat-disk (SMD-F) and spherical mass distribution (SMD-S). The SMDs are combined with surface brightness using photometric data to derive radial variations of the mass-to-luminosity ratio (ML). It is found that the ML generally has a central peak or a plateau, and decreases to a local minimum at R ˜ 0.1-0.2 h, where R is the radius and h is the scale radius of optical disk. The ML, then, increases rapidly until ˜0.5 h, and is followed by gradual rise till ˜2 h, remaining at around ˜2 [M_{⊙} L^{-1}_{⊙}] in the w1 band (infrared λ3.4 μm) and ˜ 10 [M_⊙ L_⊙ ^{-1}] in the r band (λ6200-7500 Å). Beyond this radius, the ML increases steeply with approaching the observed edges at R ˜ 5 h, attaining to as high values as ˜20 in w1 and ˜ 10^2 [M_⊙ L_⊙ ^{-1}] in the r band, which are indicative of dominant dark matter. The general properties of the ML distributions will be useful for constraining cosmological formation models of spiral galaxies.

  5. PLANETARY NEBULAE IN FACE-ON SPIRAL GALAXIES. II. PLANETARY NEBULA SPECTROSCOPY

    International Nuclear Information System (INIS)

    Herrmann, Kimberly A.; Ciardullo, Robin

    2009-01-01

    As the second step in our investigation of the mass-to-light ratio of spiral disks, we present the results of a spectroscopic survey of planetary nebulae (PNe) in five nearby, low-inclination galaxies: IC 342, M74 (NGC 628), M83 (NGC 5236), M94 (NGC 4736), and M101 (NGC 5457). Using 50 setups of the WIYN/Hydra and Blanco/Hydra spectrographs, and 25 observations with the Hobby-Eberly Telescope's Medium Resolution Spectrograph, we determine the radial velocities of 99, 102, 162, 127, and 48 PNe, respectively, to a precision better than 15 km s -1 . Although the main purpose of this data set is to facilitate dynamical mass measurements throughout the inner and outer disks of large spiral galaxies, our spectroscopy has other uses as well. Here, we co-add these spectra to show that, to first order, the [O III] and Balmer line ratios of PNe vary little over the top ∼1.5 mag of the PN luminosity function. The only obvious spectral change occurs with [N II], which increases in strength as one proceeds down the luminosity function. We also show that typical [O III]-bright planetaries have E(B - V) ∼ 0.2 of circumstellar extinction, and that this value is virtually independent of [O III] luminosity. We discuss the implications this has for understanding the population of PN progenitors.

  6. The 60 micron to 20 centimeter infrared-to-radio ratio within spiral galaxies

    Science.gov (United States)

    Bicay, M. D.; Helou, G.

    1990-01-01

    A detailed comparison is presented of the distribution of 60 micron IR and 20 cm radio continuum emission within 25 galaxies, mostly disk spirals. Local maxima in the thermal IR and nonthermal radio emission are found to be spatially coincident on scales of less than about 0.4 kpc in the nearest sample galaxies. The IR-red disk in normal spirals appears to be characterized by a shorter scale length than that of the radio continuum disk, suggesting that the IR-to-radio ratio should decrease as a function of radius. A model that successfully accounts for the observations is introduced which is based on the assumptions of steady-state star formation activity within the disk on kpc scales and a tight coupling between the origins of the dust-heating radiation and the radio-emitting cosmic-ray electrons. The underlying source is described as an exponential disk. The results also suggest that a random walk process cannot by itself describe the temporal evolution of cosmic rays.

  7. History of gas in sprial galaxies

    International Nuclear Information System (INIS)

    Maloney, P.

    1987-01-01

    The general association of luminous young stars with spiral arms in galaxies has led to widespread acceptance of the idea that the formation of massive stars, at least, is somehow triggered by the interaction of interstellar gas clouds with a spiral density wave. A very simple model for the gas in a spiral galaxy, with a specified initial surface density and angular velocity is examined. Typical results from this simple model, with parameters appropriate to NGC 6946, are shown. The accuracy of the presumption that the molecular gas distributions in galaxies is based upon observations of CO J = 1-0 emission, is discussed

  8. CLUSTERING OF SLOAN DIGITAL SKY SURVEY III PHOTOMETRIC LUMINOUS GALAXIES: THE MEASUREMENT, SYSTEMATICS, AND COSMOLOGICAL IMPLICATIONS

    International Nuclear Information System (INIS)

    Ho, Shirley; White, Martin; Schlegel, David J.; Seljak, Uros; Reid, Beth; Cuesta, Antonio; Padmanabhan, Nikhil; Seo, Hee-Jong; De Putter, Roland; Ross, Ashley J.; Percival, Will J.; Saito, Shun; Schlafly, Eddie; Hernández-Monteagudo, Carlos; Sánchez, Ariel G.; Blanton, Michael; Skibba, Ramin; Schneider, Don; Mena, Olga; Viel, Matteo

    2012-01-01

    The Sloan Digital Sky Survey (SDSS) surveyed 14,555 deg 2 , and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between z = 0.45 and z = 0.65, constructed from the SDSS using methods described in Ross et al. This data set spans 11,000 deg 2 and probes a volume of 3 h –3 Gpc 3 , making it the largest volume ever used for galaxy clustering measurements. We describe in detail the construction of the survey window function and various systematics affecting our measurement. With such a large volume, high-precision cosmological constraints can be obtained given careful control and understanding of the observational systematics. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at four redshift slices with an accuracy of ∼15%, with a bin size of δ l = 10 on scales of the baryon acoustic oscillations (BAOs; at l ∼ 40-400). We also apply corrections to the power spectra due to systematics and derive cosmological constraints using the full shape of the power spectra. For a flat ΛCDM model, when combined with cosmic microwave background Wilkinson Microwave Anisotropy Probe 7 (WMAP7) and H 0 constraints from using 600 Cepheids observed by Wide Field Camera 3 (WFC3; HST), we find Ω Λ = 0.73 ± 0.019 and H 0 to be 70.5 ± 1.6 s –1 Mpc –1 km. For an open ΛCDM model, when combined with WMAP7 + HST, we find Ω K = 0.0035 ± 0.0054, improved over WMAP7+HST alone by 40%. For a wCDM model, when combined with WMAP7+HST+SN, we find w = –1.071 ± 0.078, and H 0 to be 71.3 ± 1.7 s –1 Mpc –1 km, which is competitive with the latest large-scale structure constraints from large spectroscopic surveys such as the SDSS Data Release 7 (DR7) and WiggleZ. We also find that systematic-corrected power

  9. CLUSTERING OF SLOAN DIGITAL SKY SURVEY III PHOTOMETRIC LUMINOUS GALAXIES: THE MEASUREMENT, SYSTEMATICS, AND COSMOLOGICAL IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Shirley; White, Martin; Schlegel, David J.; Seljak, Uros; Reid, Beth [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, MS 50R-5045, Berkeley, CA 94720 (United States); Cuesta, Antonio; Padmanabhan, Nikhil [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Seo, Hee-Jong [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); De Putter, Roland [ICC, University of Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain); Ross, Ashley J.; Percival, Will J. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Saito, Shun [Department of Astronomy, University of California Berkeley, CA (United States); Schlafly, Eddie [Department of Astronomy, Harvard University, 60 Garden St. MS 20, Cambridge, MA 02138 (United States); Hernandez-Monteagudo, Carlos [Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA), Plaza de San Juan 1, planta 2, E-44001 Teruel (Spain); Sanchez, Ariel G. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Blanton, Michael [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Skibba, Ramin [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Schneider, Don [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Mena, Olga [Instituto de Fisica Corpuscular, Universidad de Valencia-CSIC (Spain); Viel, Matteo, E-mail: cwho@lbl.gov [INAF-Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34131 Trieste (Italy); and others

    2012-12-10

    The Sloan Digital Sky Survey (SDSS) surveyed 14,555 deg{sup 2}, and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between z = 0.45 and z = 0.65, constructed from the SDSS using methods described in Ross et al. This data set spans 11,000 deg{sup 2} and probes a volume of 3 h {sup -3} Gpc{sup 3}, making it the largest volume ever used for galaxy clustering measurements. We describe in detail the construction of the survey window function and various systematics affecting our measurement. With such a large volume, high-precision cosmological constraints can be obtained given careful control and understanding of the observational systematics. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at four redshift slices with an accuracy of {approx}15%, with a bin size of {delta}{sub l} = 10 on scales of the baryon acoustic oscillations (BAOs; at l {approx} 40-400). We also apply corrections to the power spectra due to systematics and derive cosmological constraints using the full shape of the power spectra. For a flat {Lambda}CDM model, when combined with cosmic microwave background Wilkinson Microwave Anisotropy Probe 7 (WMAP7) and H{sub 0} constraints from using 600 Cepheids observed by Wide Field Camera 3 (WFC3; HST), we find {Omega}{sub {Lambda}} = 0.73 {+-} 0.019 and H{sub 0} to be 70.5 {+-} 1.6 s{sup -1} Mpc{sup -1} km. For an open {Lambda}CDM model, when combined with WMAP7 + HST, we find {Omega}{sub K} = 0.0035 {+-} 0.0054, improved over WMAP7+HST alone by 40%. For a wCDM model, when combined with WMAP7+HST+SN, we find w = -1.071 {+-} 0.078, and H{sub 0} to be 71.3 {+-} 1.7 s{sup -1} Mpc{sup -1} km, which is competitive with the latest large-scale structure constraints from large spectroscopic

  10. Version of the galaxy spiral structure model with opposite-directed arms and inter-arm links

    Energy Technology Data Exchange (ETDEWEB)

    Dolidze, M V [AN Gruzinskoj SSR, Abastumani. Abastumanskaya Astrofizicheskaya Observatoriya

    1963-05-01

    An attempt is made to explain some peculiarities of the local spiral structure and large-scale distribution of HII regions in the Galaxy by coexistence of the trailing and leading arm systems of different power and development. The existence of opposite-directed arms and inter-arm links in the circular zone (5-15 kpc) is analysed from the point of view of different Galaxy models.

  11. A study of the H I and optical properties of Low Surface Brightness galaxies: spirals, dwarfs, and irregulars

    Science.gov (United States)

    Honey, M.; van Driel, W.; Das, M.; Martin, J.-M.

    2018-06-01

    We present a study of the H I and optical properties of nearby (z ≤ 0.1) Low Surface Brightness galaxies (LSBGs). We started with a literature sample of ˜900 LSBGs and divided them into three morphological classes: spirals, irregulars, and dwarfs. Of these, we could use ˜490 LSBGs to study their H I and stellar masses, colours, and colour-magnitude diagrams, and local environment, compare them with normal, High Surface Brightness (HSB) galaxies and determine the differences between the three morphological classes. We found that LSB and HSB galaxies span a similar range in H I and stellar masses, and have a similar M_{H I}/M⋆-M⋆ relationship. Among the LSBGs, as expected, the spirals have the highest average H I and stellar masses, both of about 109.8 M⊙. The LSGBs' (g - r) integrated colour is nearly constant as function of H I mass for all classes. In the colour-magnitude diagram, the spirals are spread over the red and blue regions whereas the irregulars and dwarfs are confined to the blue region. The spirals also exhibit a steeper slope in the M_{H I}/M⋆-M⋆ plane. Within their local environment, we confirmed that LSBGs are more isolated than HSB galaxies, and LSB spirals more isolated than irregulars and dwarfs. Kolmogorov-Smirnov statistical tests on the H I mass, stellar mass, and number of neighbours indicate that the spirals are a statistically different population from the dwarfs and irregulars. This suggests that the spirals may have different formation and H I evolution than the dwarfs and irregulars.

  12. LUMINOUS BURIED ACTIVE GALACTIC NUCLEI AS A FUNCTION OF GALAXY INFRARED LUMINOSITY REVEALED THROUGH SPITZER LOW-RESOLUTION INFRARED SPECTROSCOPY

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi

    2009-01-01

    We present the results of Spitzer Infrared Spectrograph 5-35 μm low-resolution spectroscopic energy diagnostics of ultraluminous infrared galaxies (ULIRGs) at z> 0.15, classified optically as non-Seyferts. Based on the equivalent widths of polycyclic aromatic hydrocarbon emission and the optical depths of silicate dust absorption features, we searched for signatures of intrinsically luminous, but optically elusive, buried active galactic nuclei (AGNs) in these optically non-Seyfert ULIRGs. We then combined the results with those of non-Seyfert ULIRGs at z IR 12 L sun . We found that the energetic importance of buried AGNs clearly increases with galaxy infrared luminosity, becoming suddenly discernible in ULIRGs with L IR > 10 12 L sun . For ULIRGs with buried AGN signatures, a significant fraction of infrared luminosities can be accounted for by the detected buried AGN and modestly obscured (A V < 20 mag) starburst activity. The implied masses of spheroidal stellar components in galaxies for which buried AGNs become important roughly correspond to the value separating red massive and blue less-massive galaxies in the local universe. Our results may support the widely proposed AGN-feedback scenario as the origin of galaxy downsizing phenomena, where galaxies with currently larger stellar masses previously had higher AGN energetic contributions and star formation originating infrared luminosities, and have finished their major star formation more quickly, due to stronger AGN feedback.

  13. The FUR to near-IR morphologies of luminous infrared galaxies in the goals sample

    International Nuclear Information System (INIS)

    Petty, S. M.; Armus, L.; Díaz-Santos, T.; Howell, J. H.; Surace, J. A.; Charmandaris, V.; Psychogyios, A.; Evans, A. S.; Stierwalt, S.; Floc’h, E. Le; Bridge, C.; Inami, H.

    2014-01-01

    We compare the morphologies of a sample of 20 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS) in the FUV, B, I, and H bands, using the Gini (G) and M 20 parameters to quantitatively estimate the distribution and concentration of flux as a function of wavelength. Hubble Space Telescope (HST) images provide an average spatial resolution of ∼80 pc. While our LIRGs can be reliably classified as mergers across the entire range of wavelengths studied here, there is a clear shift toward more negative M 20 (more bulge-dominated) and a less significant decrease in G values at longer wavelengths. We find no correlation between the derived FUV G-M 20 parameters and the global measures of the IR to FUV flux ratio (IRX). Given the fine resolution in our HST data, this suggests either that the UV morphology and IRX are correlated on very small scales, or that the regions emitting the bulk of the IR emission emit almost no FUV light. We use our multi-wavelength data to simulate how merging LIRGs would appear from z∼0.5–3 in deep optical and near-infrared images such as the Hubble Ultra-Deep Field, and use these simulations to measure the G-M 20 at these redshifts. Our simulations indicate a noticeable decrease in G, which flattens at z⩾2 by as much as 40%, resulting in mis-classifying our LIRGs as disk-like, even in the rest-frame FUV. The higher redshift values of M 20 for the GOALS sources do not appear to change more than about 10% from the values at z∼0. The change in G-M 20 is caused by the surface brightness dimming of extended tidal features and asymmetries, and also the decreased spatial resolution which reduced the number of individual clumps identified. This effect, seen as early as z∼0.5, could easily lead to an underestimate of the number of merging galaxies at high-redshift in the rest-frame FUV.

  14. The FUV to Near-IR Morphologies of Luminous Infrared Galaxies in the Goals Sample

    Science.gov (United States)

    Petty, S. M.; Armus, L.; Charmandaris, V.; Evans, A. S.; Le Floc'h, E.; Bridge, C.; Díaz-Santos, T.; Howell, J. H.; Inami, H.; Psychogyios, A.; Stierwalt, S.; Surace, J. A.

    2014-12-01

    We compare the morphologies of a sample of 20 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS) in the FUV, B, I, and H bands, using the Gini (G) and M20 parameters to quantitatively estimate the distribution and concentration of flux as a function of wavelength. Hubble Space Telescope (HST) images provide an average spatial resolution of ˜ 80 pc. While our LIRGs can be reliably classified as mergers across the entire range of wavelengths studied here, there is a clear shift toward more negative M20 (more bulge-dominated) and a less significant decrease in G values at longer wavelengths. We find no correlation between the derived FUV G-M20 parameters and the global measures of the IR to FUV flux ratio (IRX). Given the fine resolution in our HST data, this suggests either that the UV morphology and IRX are correlated on very small scales, or that the regions emitting the bulk of the IR emission emit almost no FUV light. We use our multi-wavelength data to simulate how merging LIRGs would appear from z˜ 0.5-3 in deep optical and near-infrared images such as the Hubble Ultra-Deep Field, and use these simulations to measure the G-M20 at these redshifts. Our simulations indicate a noticeable decrease in G, which flattens at z≥slant 2 by as much as 40%, resulting in mis-classifying our LIRGs as disk-like, even in the rest-frame FUV. The higher redshift values of M20 for the GOALS sources do not appear to change more than about 10% from the values at z˜ 0. The change in G-M20 is caused by the surface brightness dimming of extended tidal features and asymmetries, and also the decreased spatial resolution which reduced the number of individual clumps identified. This effect, seen as early as z˜ 0.5, could easily lead to an underestimate of the number of merging galaxies at high-redshift in the rest-frame FUV.

  15. The Spiral Arm Segments of the Galaxy within 3 kpc from the Sun: A Statistical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Griv, Evgeny [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Jiang, Ing-Guey [Department of Physics, National Tsing-Hua University, Kuang-Fu Road 101, Hsin-Chu 30013, Taiwan (China); Hou, Li-Gang, E-mail: griv@bgu.ac.il [National Astronomical Observatories, Chinese Academy of Sciences, Jia-20, Beijing 100012 (China)

    2017-08-01

    As can be reasonably expected, upcoming large-scale APOGEE, GAIA, GALAH, LAMOST, and WEAVE stellar spectroscopic surveys will yield rather noisy Galactic distributions of stars. In view of the possibility of employing these surveys, our aim is to present a statistical method to extract information about the spiral structure of the Galaxy from currently available data, and to demonstrate the effectiveness of this method. The model differs from previous works studying how objects are distributed in space in its calculation of the statistical significance of the hypothesis that some of the objects are actually concentrated in a spiral. A statistical analysis of the distribution of cold dust clumps within molecular clouds, H ii regions, Cepheid stars, and open clusters in the nearby Galactic disk within 3 kpc from the Sun is carried out. As an application of the method, we obtain distances between the Sun and the centers of the neighboring Sagittarius arm segment, the Orion arm segment in which the Sun is located, and the Perseus arm segment. Pitch angles of the logarithmic spiral segments and their widths are also estimated. The hypothesis that the collected objects accidentally form spirals is refuted with almost 100% statistical confidence. We show that these four independent distributions of young objects lead to essentially the same results. We also demonstrate that our newly deduced values of the mean distances and pitch angles for the segments are not too far from those found recently by Reid et al. using VLBI-based trigonometric parallaxes of massive star-forming regions.

  16. The Spiral Arm Segments of the Galaxy within 3 kpc from the Sun: A Statistical Approach

    International Nuclear Information System (INIS)

    Griv, Evgeny; Jiang, Ing-Guey; Hou, Li-Gang

    2017-01-01

    As can be reasonably expected, upcoming large-scale APOGEE, GAIA, GALAH, LAMOST, and WEAVE stellar spectroscopic surveys will yield rather noisy Galactic distributions of stars. In view of the possibility of employing these surveys, our aim is to present a statistical method to extract information about the spiral structure of the Galaxy from currently available data, and to demonstrate the effectiveness of this method. The model differs from previous works studying how objects are distributed in space in its calculation of the statistical significance of the hypothesis that some of the objects are actually concentrated in a spiral. A statistical analysis of the distribution of cold dust clumps within molecular clouds, H ii regions, Cepheid stars, and open clusters in the nearby Galactic disk within 3 kpc from the Sun is carried out. As an application of the method, we obtain distances between the Sun and the centers of the neighboring Sagittarius arm segment, the Orion arm segment in which the Sun is located, and the Perseus arm segment. Pitch angles of the logarithmic spiral segments and their widths are also estimated. The hypothesis that the collected objects accidentally form spirals is refuted with almost 100% statistical confidence. We show that these four independent distributions of young objects lead to essentially the same results. We also demonstrate that our newly deduced values of the mean distances and pitch angles for the segments are not too far from those found recently by Reid et al. using VLBI-based trigonometric parallaxes of massive star-forming regions.

  17. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NARCIS (Netherlands)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-01-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern

  18. Global enhancement and structure formation of the magnetic field in spiral galaxies

    Science.gov (United States)

    Khoperskov, Sergey A.; Khrapov, Sergey S.

    2018-01-01

    In this paper we study numerically large-scale magnetic field evolution and its enhancement in gaseous disks of spiral galaxies. We consider a set of models with the various spiral pattern parameters and the initial magnetic field strength with taking into account gas self-gravity and cooling and heating processes. In agreement with previous studies we find out that galactic magnetic field is mostly aligned with gaseous structures, however small-scale gaseous structures (spurs and clumps) are more chaotic than the magnetic field structure. In spiral arms magnetic field often coexists with the gas distribution, in the inter-arm region we see filamentary magnetic field structure. These filaments connect several isolated gaseous clumps. Simulations reveal the presence of the small-scale irregularities of the magnetic field as well as the reversal of magnetic field at the outer edge of the large-scale spurs. We provide evidences that the magnetic field in the spiral arms has a stronger mean-field component, and there is a clear inverse correlation between gas density and plasma-beta parameter, compared to the rest of the disk with a more turbulent component of the field and an absence of correlation between gas density and plasma-beta. We show the mean field growth up to >3-10 μG in the cold gas during several rotation periods (>500-800 Myr), whereas ratio between azimuthal and radial field is equal to >4/1. We find an enhancement of random and ordered components of the magnetic field. Mean field strength increases by a factor of >1.5-2.5 for models with various spiral pattern parameters. Random magnetic field component can reach up to 25% from the total strength. By making an analysis of the time-dependent evolution of the radial Poynting flux, we point out that the magnetic field strength is enhanced more strongly at the galactic outskirts which is due to the radial transfer of magnetic energy by the spiral arms pushing the magnetic field outward. Our results also

  19. Comparison between two scalar field models using rotation curves of spiral galaxies

    Science.gov (United States)

    Fernández-Hernández, Lizbeth M.; Rodríguez-Meza, Mario A.; Matos, Tonatiuh

    2018-04-01

    Scalar fields have been used as candidates for dark matter in the universe, from axions with masses ∼ 10-5eV until ultra-light scalar fields with masses ∼ Axions behave as cold dark matter while the ultra-light scalar fields galaxies are Bose-Einstein condensate drops. The ultra-light scalar fields are also called scalar field dark matter model. In this work we study rotation curves for low surface brightness spiral galaxies using two scalar field models: the Gross-Pitaevskii Bose-Einstein condensate in the Thomas-Fermi approximation and a scalar field solution of the Klein-Gordon equation. We also used the zero disk approximation galaxy model where photometric data is not considered, only the scalar field dark matter model contribution to rotation curve is taken into account. From the best-fitting analysis of the galaxy catalog we use, we found the range of values of the fitting parameters: the length scale and the central density. The worst fitting results (values of χ red2 much greater than 1, on the average) were for the Thomas-Fermi models, i.e., the scalar field dark matter is better than the Thomas- Fermi approximation model to fit the rotation curves of the analysed galaxies. To complete our analysis we compute from the fitting parameters the mass of the scalar field models and two astrophysical quantities of interest, the dynamical dark matter mass within 300 pc and the characteristic central surface density of the dark matter models. We found that the value of the central mass within 300 pc is in agreement with previous reported results, that this mass is ≈ 107 M ⊙/pc2, independent of the dark matter model. And, on the contrary, the value of the characteristic central surface density do depend on the dark matter model.

  20. Extended H I regions around spiral galaxies: a probe for galactic structure and the intergalactic medium

    International Nuclear Information System (INIS)

    Bergeron, J.

    1977-01-01

    The H I disks observed at large radii around nearby spiral galaxies provide sensitive probes for the mass distributions in these galaxies and of their environments. We show, for a few well-observed systems, that there is an unseen component which dominates the mass at large radii. This additional matter cannot be gas, either neutral or ionized. The data do not distinguish strongly between flat and spherical spatial distributions for this mass, though they suggest that the distribution is spherical. An observational test is proposed to differentiate the two. We investigate the thermal interaction between a hot intergalactic medium near the closure density and these extended H I regions in the assumption of magnetic field lines extended outward into the intergalactic medium (IGM). We show that, with plausible initial conditions, the intergalactic temperature at present cannot exceed 1 x 10 7 K if the H I is to have survived until now. Consideration of conditions in the past places even more stringent limits on the temperature and density of the IGM. Survival of the H I disk also implies that these galaxies cannot have persistent hot, dense halos. The X-ray observations of M31, in particular, cannot be interpreted in terms of a thermal bremsstrahlung halo model, unless this halo is younger than about 10 7 yr

  1. Normal Spiral Galaxies Really Do Have Hot Gas in Their Halos: Chandra Observations of NGC 4013 and NGC 4217.

    Science.gov (United States)

    Strickland, D. K.; Colbert, E. J. M.; Heckman, T. M.; Hoopes, C. G.; Howk, J. C.; Rand, R. J.

    2004-08-01

    Although soft X-ray emission from million degree plasma has long been observed in the halos of starburst galaxies known to have supernova-driven galactic superwinds, X-ray observations have generally failed to detect hot halos around normal spiral galaxies. Indeed, the Milky Way and NGC 891 have historically been the only genuinely "normal" spiral galaxies with unambiguous X-ray halo detections, until now. Here we report on deep observations of NGC 4013 and NGC 4217, two Milky-Way-mass spiral galaxies with star formation rates per unit area similar to the Milky Way and NGC 891, using the Chandra X-ray observatory. Preliminary investigation of the observations clearly show extra-planar diffuse X-ray emission extending several kpc into the halo of NGC 4013. We will present the results of these observations, compare them to the non-detections of hot gas around normal spirals, and relate them to galactic fountain and IGM accretion based models for hot halos. DKS acknowledges funding from NASA through the Smithsonian Astrophysical Observatory. grant G045095X.

  2. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Gyoon; Jang, In Sung, E-mail: mglee@astro.snu.ac.kr, E-mail: isjang@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10{sup 5} M{sub ⊙}. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M{sub I} (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H{sub 0} = 77.9 ± 3.6 km s{sup −1} Mpc{sup −1}. We estimate the GC specific frequency of NGC 4921 to be S{sub N} = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  3. Test of Gravity on Large Scales with Weak Gravitational Lensing and Clustering Measurements of SDSS Luminous Red Galaxies

    Science.gov (United States)

    Reyes, Reinabelle; Mandelbaum, R.; Seljak, U.; Gunn, J.; Lombriser, L.

    2009-01-01

    We perform a test of gravity on large scales (5-50 Mpc/h) using 70,000 luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) DR7 with redshifts 0.16galaxy peculiar velocities, and galaxy clustering-- that can discriminate between different theories of gravity and is largely independent of galaxy bias and sigma_8. In particular, E_G is sensitive to the relation between the spatial and temporal scalar perturbations in the space-time metric. While these two potentials are equivalent in concordance cosmology (GR+LCDM) in the absence of anisotropic stress, they are not equivalent in alternative theories of gravity in general, so that different models make different predictions for E_G. We find E_G=0.37±0.05 averaged over scales 5galaxy surveys such as LSST, for which a very high signal-to-noise measurement will be possible.

  4. Baryon Budget of the Hot Circumgalactic Medium of Massive Spiral Galaxies

    Science.gov (United States)

    Li, Jiang-Tao; Bregman, Joel N.; Wang, Q. Daniel; Crain, Robert A.; Anderson, Michael E.

    2018-03-01

    The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these “missing baryons” may be stored in a hot tenuous circumgalactic medium (CGM) around massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev–Zel’dovich (SZ) signals claimed that ∼(1–50)% of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%–20% of the virial radius). Here, we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of ≈200 kpc (or ≈130 kpc above the 1σ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for (8 ± 4)% of the baryonic mass expected for the halos. Including the stars, the baryon fraction is (27 ± 16)%, or (39 ± 20)% by assuming a flattened density profile at r ≳ 130 kpc. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the “missing baryons.”

  5. New insights into the X-ray properties of nearby barred spiral galaxy NGC 1672

    Science.gov (United States)

    Jenkins, L. P.; Brnadt, W. N.; Colbert, E. J. M.; Levan, A. J.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2008-02-01

    We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.

  6. The Atacama Cosmology Telescope: Detection or Sunyaev-Zel'Dovich Decrement in Groups and Clusters Associated with Luminous Red Galaxies

    Science.gov (United States)

    Hand, Nick; Appel, John William; Battaglia, Nick; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; hide

    2010-01-01

    We present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the Luminous Red Galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope (ACT). The LRG sample is divided by luminosity into four bins, and estimates for the central Sunyaev-Zel'dovich temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y(sub 200) and clustering properties to relate the galaxy luminosity bins to mass. We also use a relation between BCG luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be in the range approx.10(exp 13) - 10(exp 14)/h Stellar Mass, a lower range than has been previously probed.

  7. Galaxy interactions and star formation: Results of a survey of global H-alpha emission in spiral galaxies in 8 clusters

    Science.gov (United States)

    Moss, C.

    1990-01-01

    Kennicutt and Kent (1983) have shown that the global H alpha emission from a spiral galaxy is an indicator of the formation rate of massive stars. Moss, Whittle and Irwin (1988) have surveyed two clusters (Abell 347 and 1367) for galaxies with H alpha emission using a high dispersion objective prism technique. The purpose of the survey is to investigate environmental effects on star formation in spiral galaxies, and in particular to ascertain whether star formation is enhanced in cluster spirals. Approximately 20 percent of CGCG galaxies were detected in emission. Two plates of excellent quality were obtained for each of the two clusters, and galaxies were only identified to have emission if this was detected on both plates of a plate pair. In this way, plate flaws and other spurious identifications of emission could be rejected, and weak emission confirmed. The results of this survey have been discussed by Moss (1987). The detected galaxies are of types SO-a and later. The frequency with which galaxies are detected in emission increases towards later morphological type as expected (cf. Kennicutt and Kent 1983). There is no evidence of any dependence of the frequency of detected emission on the absolute magnitude of the galaxy (cf. Moss and Whittle 1990), but there is a strong correlation between a disturbed morphological appearance of the galaxy and the detection of emission. Furthermore it is found that the emission is more centrally concentrated in those galaxies which show a disturbed morphology. It may be noted that the objective prism plate gives a spectrum of a 400 A region around rest wavelength H alpha, but superposed on this is the H alpha emission from the galaxy which, because the light is essentially monochromatic, results in a true two-dimensional image of the H alpha distribution. The visual appearance of the emission on the prism plates was classified according to its diffuseness on a 5 point scale (very diffuse, diffuse, intermediate, compact, and

  8. Observations of barred spirals

    International Nuclear Information System (INIS)

    Elmegreen, D.M.

    1990-01-01

    Observations of barred spiral galaxies are discussed which show that the presence of a bar increases the likelihood for grand design spiral structure only in early Hubble types. This result is contrary to the more common notion that grand design spiral structure generally accompanies bars in galaxies. Enhanced deprojected color images are shown which reveal that a secondary set of spiral arms commonly occurs in barred galaxies and also occasionally in ovally distorted galaxies. 6 refs

  9. Constraining dark matter halo profiles and galaxy formation models using spiral arm morphology. II. Dark and stellar mass concentrations for 13 nearby face-on galaxies

    International Nuclear Information System (INIS)

    Seigar, Marc S.; Davis, Benjamin L.; Berrier, Joel; Kennefick, Daniel

    2014-01-01

    We investigate the use of spiral arm pitch angles as a probe of disk galaxy mass profiles. We confirm our previous result that spiral arm pitch angles (P) are well correlated with the rate of shear (S) in disk galaxy rotation curves. We use this correlation to argue that imaging data alone can provide a powerful probe of galactic mass distributions out to large look-back times. We then use a sample of 13 galaxies, with Spitzer 3.6 μm imaging data and observed Hα rotation curves, to demonstrate how an inferred shear rate coupled with a bulge-disk decomposition model and a Tully-Fisher-derived velocity normalization can be used to place constraints on a galaxy's baryon fraction and dark matter halo profile. Finally, we show that there appears to be a trend (albeit a weak correlation) between spiral arm pitch angle and halo concentration. We discuss implications for the suggested link between supermassive black hole (SMBH) mass and dark halo concentration, using pitch angle as a proxy for SMBH mass.

  10. Chandra X-ray observations of the hyper-luminous infrared galaxy IRAS F15307+3252

    Science.gov (United States)

    Hlavacek-Larrondo, J.; Gandhi, P.; Hogan, M. T.; Gendron-Marsolais, M.-L.; Edge, A. C.; Fabian, A. C.; Russell, H. R.; Iwasawa, K.; Mezcua, M.

    2017-01-01

    Hyper-luminous infrared galaxies (HyLIRGs) lie at the extreme luminosity end of the IR galaxy population with LIR > 1013 L⊙. They are thought to be closer counterparts of the more distant sub-millimeter galaxies, and should therefore be optimal targets to study the most massive systems in formation. We present deep Chandra observations of IRAS F15307+3252 (100 ks), a classical HyLIRG located at z = 0.93 and hosting a radio-loud AGN (L1.4 GHz ˜ 3.5 × 1025 W Hz-1). The Chandra images reveal the presence of extended (r = 160 kpc), asymmetric X-ray emission in the soft 0.3-2.0 keV band that has no radio counterpart. We therefore argue that the emission is of thermal origin originating from a hot intragroup or intracluster medium virializing in the potential. We find that the temperature (˜2 keV) and bolometric X-ray luminosity (˜3 × 1043 erg s-1) of the gas follow the expected LX-ray-T correlation for groups and clusters, and that the gas has a remarkably short cooling time of 1.2 Gyr. In addition, VLA radio observations reveal that the galaxy hosts an unresolved compact steep-spectrum (CSS) source, most likely indicating the presence of a young radio source similar to 3C186. We also confirm that the nucleus is dominated by a redshifted 6.4 keV Fe Kα line, strongly suggesting that the AGN is Compton-thick. Finally, Hubble images reveal an overdensity of galaxies and sub-structure in the galaxy that correlates with soft X-ray emission. This could be a snapshot view of on-going groupings expected in a growing cluster environment. IRAS F15307+3252 might therefore be a rare example of a group in the process of transforming into a cluster.

  11. The origin of the mass, disk-to-halo mass ratio, and L-V relation of spiral galaxies

    International Nuclear Information System (INIS)

    Ashman, K.M.

    1990-01-01

    A model is presented in which spiral galaxies only form when t(c) is roughly equal to t(f) in a hot component of the protogalactic gas. This assumption, along with a disk stability criterion, predicts a range of spiral galaxy masses roughly consistent with observation. The nature of the cooling function for a primordial plasma implies that in less massive galaxies, more gas must fragment in the halo to preserve t(c) roughly equal to t(f). Consequently, less gas survives to form the disk, so that the disk-to-halo mass ratio increases with disk mass and hence galaxy luminosity. The canonical L proportional to V exp 4 relation can be reproduced by the model, and the apparent change in the slope of this relation also arises naturally. In the hierarchical clustering scenario, the model requires that all spirals formed at about the same epoch. These results support earlier claims that much of the dark matter observed in the universe is baryonic and probably formed during protogalactic collapse. 38 refs

  12. Eight luminous early-type galaxies in nearby pairs and sparse groups. I. Stellar populations spatially analysed

    Science.gov (United States)

    Rosa, D. A.; Milone, A. C.; Krabbe, A. C.; Rodrigues, I.

    2018-06-01

    We present a detailed spatial analysis of stellar populations based on long-slit optical spectra in a sample of eight luminous early-type galaxies selected from nearby sparse groups and pairs, three of them may have interaction with another galaxy of similar mass. We have spatially measured luminosity-weighted averages of age, [M/H], [Fe/H], and [α /Fe] in the sample galaxies to add empirical data relative to the influence of galaxy mass, environment, interaction, and AGN feedback in their formation and evolution. The stellar population of the individual galaxies were determined through the well-established stellar population synthesis code starlight using semi-empirical simple stellar population models. Radial variations of luminosity- weighted means of age, [M/H], [Fe/H], and [α /Fe] were quantified up to half of the effective radius of each galaxy. We found trends between representative values of age, [M/H], [α /Fe], and the nuclear stellar velocity dispersion. There are also relations between the metallicity/age gradients and the velocity dispersion. Contributions of 1-4 Gyr old stellar populations were quantified in IC 5328 and NGC 6758 as well as 4-8 Gyr old ones in NGC 5812. Extended gas is present in IC 5328, NGC 1052, NGC 1209, and NGC 6758, and the presence of a LINER is identified in all these galaxies. The regions up to one effective radius of all galaxies are basically dominated by α -enhanced metal-rich old stellar populations likely due to rapid star formation episodes that induced efficient chemical enrichment. On average, the age and [α /Fe] gradients are null and the [M/H] gradients are negative, although discordant cases were found. We found no correlation between the stellar population properties and the LINER presence as well as between the stellar properties and environment or gravitational interaction, suggesting that the influence of progenitor mass cannot be discarded in the formation and evolution of early-type galaxies.

  13. Energetics of the molecular gas in the H2 luminous radio galaxy 3C 326: Evidence for negative AGN feedback

    Science.gov (United States)

    Nesvadba, N. P. H.; Boulanger, F.; Salomé, P.; Guillard, P.; Lehnert, M. D.; Ogle, P.; Appleton, P.; Falgarone, E.; Pineau Des Forets, G.

    2010-10-01

    We present a detailed analysis of the gas conditions in the H2 luminous radio galaxy 3C 326 N at z ~ 0.1, which has a low star-formation rate (SFR ~ 0.07 M⊙ yr-1) in spite of a gas surface density similar to those in starburst galaxies. Its star-formation efficiency is likely a factor ~10-50 lower than those of ordinary star-forming galaxies. Combining new IRAM CO emission-line interferometry with existing Spitzer mid-infrared spectroscopy, we find that the luminosity ratio of CO and pure rotational H2 line emission is factors 10-100 lower than what is usually found. This suggests that most of the molecular gas is warm. The Na D absorption-line profile of 3C 326 N in the optical suggests an outflow with a terminal velocity of ~-1800 km s-1 and a mass outflow rate of 30-40 M⊙ yr-1, which cannot be explained by star formation. The mechanical power implied by the wind, of order 1043 erg s-1, is comparable to the bolometric luminosity of the emission lines of ionized and molecular gas. To explain these observations, we propose a scenario where a small fraction of the mechanical energy of the radio jet is deposited in the interstellar medium of 3C 326 N, which powers the outflow, and the line emission through a mass, momentum and energy exchange between the different gas phases of the ISM. Dissipation times are of order 107-8 yrs, similar or greater than the typical jet lifetime. Small ratios of CO and PAH surface brightnesses in another 7 H2 luminous radio galaxies suggest that a similar form of AGN feedback could be lowering star-formation efficiencies in these galaxies in a similar way. The local demographics of radio-loud AGN suggests that secular gas cooling in massive early-type galaxies of ≥1011 M⊙ could generally be regulated through a fundamentally similar form of “maintenance-phase” AGN feedback. Based on observations carried out with the IRAM Plateau de Bure Interferometer.

  14. The hard X–ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    DEFF Research Database (Denmark)

    Puccetti, S.; Comastri, A.; Bauer, F. E.

    2016-01-01

    We present a broad–band (∼0.3–70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC6240, combined with archival Chandra, XMM–Newton and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger statewith two distinct nuclei separated by ∼1′.′5. P...

  15. A CHANDRA PERSPECTIVE ON GALAXY-WIDE X-RAY BINARY EMISSION AND ITS CORRELATION WITH STAR FORMATION RATE AND STELLAR MASS: NEW RESULTS FROM LUMINOUS INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Lehmer, B. D.; Jenkins, L. P.; Alexander, D. M.; Goulding, A. D.; Roberts, T. P.; Bauer, F. E.; Brandt, W. N.; Ptak, A.

    2010-01-01

    We present new Chandra observations that complete a sample of seventeen (17) luminous infrared galaxies (LIRGs) with D H ∼ 20 cm -2 . The LIRGs in our sample have total infrared (8-1000 μm) luminosities in the range of L IR ∼ (1-8) x 10 11 L sun . The high-resolution imaging and X-ray spectral information from our Chandra observations allow us to measure separately X-ray contributions from active galactic nuclei and normal galaxy processes (e.g., X-ray binaries and hot gas). We utilized total infrared plus UV luminosities to estimate star formation rates (SFRs) and K-band luminosities and optical colors to estimate stellar masses (M * ) for the sample. Under the assumption that the galaxy-wide 2-10 keV luminosity (L gal HX ) traces the combined emission from high-mass X-ray binaries (HMXBs) and low-mass X-ray binaries, and that the power output from these components is linearly correlated with SFR and M * , respectively, we constrain the relation L gal HX = αM * + βSFR. To achieve this, we construct a Chandra-based data set composed of our new LIRG sample combined with additional samples of less actively star-forming normal galaxies and more powerful LIRGs and ultraluminous infrared galaxies (ULIRGs) from the literature. Using these data, we measure best-fit values of α = (9.05 ± 0.37) x 10 28 erg s -1 M -1 sun and β = (1.62 ± 0.22) x 10 39 erg s -1 (M sun yr -1 ) -1 . This scaling provides a more physically meaningful estimate of L gal HX , with ∼0.1-0.2 dex less scatter, than a direct linear scaling with SFR. Our results suggest that HMXBs dominate the galaxy-wide X-ray emission for galaxies with SFR/M * ∼>5.9 x 10 -11 yr -1 , a factor of ∼2.9 times lower than previous estimates. We find that several of the most powerful LIRGs and ULIRGs, with SFR/M * ∼> 10 -9 yr -1 , appear to be X-ray underluminous with respect to our best-fit relation. We argue that these galaxies are likely to contain X-ray binaries residing in compact star-forming regions

  16. A new model of spiral galaxies based on propagating star formation

    Science.gov (United States)

    Sleath, John

    1996-01-01

    -lived two-armed grand-design spirals, which have not resulted from any of the previous propagating star formation models. The spiral density wave orders the star formation, but does not simply result in the star formation tracing directly the potential minima - it is found that the pitch angles of the imposed and observed spiral patterns differ significantly. Moreover, the pitch angle of the observed pattern exhibits a maximum value equal to the maximum pitch angle observed in late-type spirals. To compare the results of this, and other, models of galactic structure with observed galaxies, we require some way of classifying the appearance of the data sets. There already exist a number of schemes, but they are all somewhat subjective, and a reliable, quantitative approach would form a valuable addition. I have investigated a number of schemes, namely Fourier transforms, minimal spanning tree edge-length spectra and multifractal dimensions, and considered their application to both simulated and observed data. The results of the analysis are encouraging, particularly for the multifractals, although it is not as yet possible to calculate a single, unique number which fully characterises the morphology.

  17. Physical Parameters of Late Type Spiral Galaxies I-Mass and Luminosity of NGC 6946

    Directory of Open Access Journals (Sweden)

    Sug-Whan Kim

    1985-12-01

    Full Text Available Using Brandt model the mass distribution of the late type spiral galaxy NGC 6946 was derived, and the total mass was reestimated to understand the M/L ratio of this galaxy. Two kinds of the rotation curve with shape parameter n = 1 and 3.3 were examined. The followings are the main results; (1 The total masses of NGC 6946 are 3.1 x 10^11*M (n=1 and 2.8 x 10^11*M (n=3.3 respectively, and the corresponding M/L are about 17 and 16 for both cases. (2 The optical image in the blue light, whose radius is 9.6 kpc, has 8 x 10^10*Msolar and 1.4 x 10^11*Msolar. These give the value of M/L about 5 and 8 respectively. (3 The masses and M/L of the nuclear region within 1.2 kpc are 4.0 x 10^9*Msolar, 4.7 x 10^9*Msolar and 3, 4 for both cases. Those of the disk from 1.2 kpc to 9.6 kpc are 7.6 x 10^10*Msolar, 1.4 x 10^11*Msolar, and 5, 8. (4 The masses of the outer halo extended to few hundreds kiloparsecs are 2.3 x 10^11*Msolar and 1.4 x 10^11*Msolar. The corresponding M/L are about 62 and 37.

  18. Gemini Spectra of Star Clusters in the Spiral Galaxy M101

    Science.gov (United States)

    Simanton-Coogan, Lesley A.; Chandar, Rupali; Miller, Bryan; Whitmore, Bradley C.

    2017-12-01

    We present low resolution, visible light spectra of 41 star clusters in the spiral galaxy M101, taken with the Gemini/GMOS instrument. We measure Lick indices for each cluster and compare with BaSTI models to estimate their ages and metallicities. We also measure the line-of-sight velocities. We find that 25 of the clusters are fairly young massive clusters (YMCs) with ages of hundreds of millions of years, and 16 appear to be older, globular clusters (GCs). There are at least four GCs with best-fit ages of ≈1–3 Gyr and eight with best-fit ages of ≈5–10 Gyr. The mean metallicity of the YMCs is [Fe/H] ≈ ‑0.1 and for the GCs is [Fe/H] ≈ ‑0.9. We find a near-continuous spread in both age and metallicity for our sample, which may indicate that M101 had a more-or-less continuous history of cluster and star formation. From the kinematics, we find that the YMCs rotate with the H I gas fairly well, while the GCs do not. We cannot definitively say whether the GCs sampled here lie in an inner halo, thick disk, or bulge/psuedobulge component, although given the very small bulge in M101, the last seems unlikely. The kinematics and ages of the YMCs suggest that M101 may have undergone heating of its disk or possibly a continuous merger/accretion history for the galaxy.

  19. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    Energy Technology Data Exchange (ETDEWEB)

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro; Takahashi, Hidenori; Kato, Natsuko Mitani; Kitagawa, Yutaro; Todo, Soya; Toshikawa, Koji; Sako, Shigeyuki; Uchimoto, Yuka K.; Ohsawa, Ryou; Asano, Kentaro; Kamizuka, Takafumi; Nakamura, Tomohiko; Okada, Kazushi [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ita, Yoshifusa [Astronomical Institute, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Komugi, Shinya [Division of Liberal Arts, Kogakuin University, 2665-1, Hachioji, Tokyo 192-0015 (Japan); Koshida, Shintaro [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Manabe, Sho [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Nakashima, Asami, E-mail: tateuchi@ioa.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); and others

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with those from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.

  20. Constraints on cold dark matter theories from observations of massive x-ray-luminous clusters of galaxies at high redshift

    Science.gov (United States)

    Luppino, G. A.; Gioia, I. M.

    1995-01-01

    During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.

  1. INFRARED SPECTROGRAPH SPECTROSCOPY AND MULTI-WAVELENGTH STUDY OF LUMINOUS STAR-FORMING GALAXIES AT z ≅ 1.9

    International Nuclear Information System (INIS)

    Huang, J.-S.; Lai, K.; Younger, J. D.; Fazio, G. G.; Faber, S. M.; Koo, D.; Daddi, E.; Laird, E. S.; Omont, A.; Wu, Y.; Bundy, K.; Cattaneo, A.; Chapman, S. C.; Conselice, C. J.; Dickinson, M.; Egami, E.; Im, M.; Le Floc'h, E.; Papovich, C.; Rigopoulou, D.

    2009-01-01

    We analyze a sample of galaxies chosen to have F 24μm > 0.5 mJy and satisfy a certain IRAC color criterion. Infrared Spectrograph (IRS) spectra yield redshifts, spectral types, and polycyclic aromatic hydrocarbons (PAH) luminosities, to which we add broadband photometry from optical through IRAC wavelengths, MIPS from 24-160 μm, 1.1 mm, and radio at 1.4 GHz. Stellar population modeling and IRS spectra together demonstrate that the double criteria used to select this sample have efficiently isolated massive star-forming galaxies at z ∼ 1.9. This is the first starburst (SB)-dominated ultraluminous infrared galaxies (ULIRG) sample at high redshift with total infrared luminosity measured directly from FIR and millimeter photometry, and as such gives us the first accurate view of broadband spectral energy distributions for SB galaxies at extremely high luminosity and at all wavelengths. Similar broadband data are assembled for three other galaxy samples-local SB galaxies, local active galactic nucleus (AGN)/ULIRGs, and a second 24 μm-luminous z ∼ 2 sample dominated by AGN. L PAH /L IR for the new z ∼ 2 SB sample is the highest ever seen, some three times higher than in local SBs, whereas in AGNs this ratio is depressed below the SB trend, often severely. Several pieces of evidence imply that AGNs exist in this SB-dominated sample, except two of which even host very strong AGN, while they still have very strong PAH emission. The Advanced Camera for Surveys images show that most objects have very extended morphologies in the rest-frame ultraviolet band, thus extended distribution of PAH molecules. Such an extended distribution prevents further destruction PAH molecules by central AGNs. We conclude that objects in this sample are ULIRGs powered mainly by SB; and the total infrared luminosity density contributed by this type of objects is 0.9-2.6 x 10 7 L sun Mpc -3 .

  2. Searching gravitational microlensing events in the galaxy spiral arms by EROS II; Recherche d'evenements de microlentille gravitationnelle dans les bras spiraux de la galaxie avec EROS II

    Energy Technology Data Exchange (ETDEWEB)

    Derue, Frederic [Paris-11 Univ., 91 Orsay (France)

    1999-04-15

    The EROS II experiment is searching for microlensing events due to compact massive objects passing through the line-of-sight of luminous stars. These objects are candidates to explain the baryonic component of Dark Matter in our Galaxy. EROS II was dedicated to different lines-of-sight: Small and Large Magellanic Clouds, Galactic Centre and 4 directions towards the Spiral Arms of the Galaxy. This thesis presents the first search for microlensing towards these last lines-of-sight (about 9 million stars). Simple criteria based on the search for significant fluctuations allowed one to discover a low noise sample of 7 candidates to the microlensing effect, with an average timescale of 50 days. A detailed analysis of the light curve of one candidate allows us to give a confidence interval on its mass 2.7 x 10{sup -3} < M/M{sub 0} < 0.84 at 95% CL. The amplification curve of another candidate shows a modulation which can be interpreted as a microlensing effect acting on a binary source, with an orbital period of P{sub 0} = 50 {+-} 3 days. To improve the knowledge of the distance of the target stars, we have combined observations of EROS II with bibliographic sources on associations of stars linked with the spiral arm features, and we have developed a program to find variable stars. Ten cepheids have thus been found. Distances obtained with different methods are in rough agreement with each other. The average optical depth measured towards the four directions is {tau}-bar = 0.45{sub 0.11}{sup +0.23} x 10{sup -6}. It is compatible with expectations from simple galactic models. The long duration of most events favours interpretation of lensing by objects belonging to the disk instead of the halo. It also seems that some events due to bulge lenses have influenced measurements towards the line-of-sight which is closest to the Galactic Centre. Observation continue towards spiral arms. More accurate measurements should be obtained with increase of statistics, allowing one to

  3. Testing the dark matter origin of the WMAP-Planck haze with radio observations of spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Eric; Linden, Tim; Profumo, Stefano [Department of Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064 (United States); Hooper, Dan, E-mail: erccarls@ucsc.edu, E-mail: dhooper@fnal.gov, E-mail: tlinden@ucsc.edu, E-mail: profumo@ucsc.edu [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2013-07-01

    If the Galactic WMAP radio haze, as recently confirmed by Planck, is produced by dark matter annihilation or decay, similar diffuse radio halos should exist around other galaxies with physical properties comparable to the Milky Way. If instead the haze is due to an astrophysical mechanism peculiar to the Milky Way or to a transient event, a similar halo need not exist around all Milky Way ''twins''. We use radio observations of 66 spiral galaxies to test the dark matter origin of the haze. We select galaxies based on morphological type and maximal rotational velocity, and obtain their luminosities from a 1.49 GHz catalog and additional radio observations at other frequencies. We find many instances of galaxies with radio emission that is less than 5% as bright as naively expected from dark matter models that could produce the Milky Way haze, and at least 3 galaxies that are less than 1% as bright as expected, assuming dark matter distributions, magnetic fields, and cosmic ray propagation parameters equal to those of the Milky Way. For reasonable ranges for the variation of these parameters, we estimate the fraction of galaxies that should be expected to be significantly less bright in radio, and argue that this is marginally compatible with the observed distribution. While our findings therefore cannot rule out a dark matter origin for the radio haze at this time, we find numerous examples (including the Andromeda Galaxy) where, if dark matter is indeed the origin of the Milky Way haze, some mechanism must be in place to suppress the corresponding haze of the external galaxy. We point out that Planck data will offer opportunities to improve this type of constraint in a highly relevant frequency range and for a potentially larger set of candidate galaxies.

  4. Accurate Distances to Important Spiral Galaxies: M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W. [University of Texas at Austin, McDonald Observatory, 2515 Speedway, Stop C1400 Austin, TX 78712 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Berg, Danielle [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Kennicutt, Robert, E-mail: kmcquinn@astro.as.utexas.edu [Institute for Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2017-08-01

    Accurate distances are fundamental for interpreting various measured properties of galaxies. Surprisingly, many of the best-studied spiral galaxies in the Local Volume have distance uncertainties that are much larger than can be achieved with modern observation techniques. Using Hubble Space Telescope optical imaging, we use the tip of the red giant branch method to measure the distances to six galaxies that are included in the Spitzer Infrared Nearby Galaxies Survey program and its offspring surveys. The sample includes M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398. We compare our results with distances reported to these galaxies based on a variety of methods. Depending on the technique, there can be a wide range in published distances, particularly from the Tully–Fisher relation. In addition, differences between the planetary nebular luminosity function and surface brightness fluctuation techniques can vary between galaxies, suggesting inaccuracies that cannot be explained by systematics in the calibrations. Our distances improve upon previous results, as we use a well-calibrated, stable distance indicator, precision photometry in an optimally selected field of view, and a Bayesian maximum likelihood technique that reduces measurement uncertainties.

  5. "1"3CO/C"1"8O Gradients across the Disks of Nearby Spiral Galaxies

    International Nuclear Information System (INIS)

    Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank; Leroy, Adam K.; Gallagher, Molly; Krumholz, Mark R.; Usero, Antonio; Hughes, Annie; Kramer, Carsten; Meier, David; Murphy, Eric; Pety, Jérôme; Schuster, Karl; Schinnerer, Eva; Sliwa, Kazimierz; Tomicic, Neven; Schruba, Andreas

    2017-01-01

    We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure "1"3CO(1-0)/C"1"8O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of "1"2CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved "1"3CO/C"1"8O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean "1"3CO/C"1"8O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the "1"3CO/C"1"8O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.

  6. Kinematics of the SN Refsdal host revealed by MUSE: a regularly rotating spiral galaxy at z ≃ 1.5

    Science.gov (United States)

    Di Teodoro, E. M.; Grillo, C.; Fraternali, F.; Gobat, R.; Karman, W.; Mercurio, A.; Rosati, P.; Balestra, I.; Caminha, G. B.; Caputi, K. I.; Lombardi, M.; Suyu, S. H.; Treu, T.; Vanzella, E.

    2018-05-01

    We use Multi Unit Spectroscopic Explorer (MUSE) observations of the galaxy cluster MACS J1149.5+2223 to explore the kinematics of the grand-design spiral galaxy (Sp1149) hosting the supernova `Refsdal'. Sp1149 lies at z ≃ 1.49, has a stellar mass M* ≃ 5 × 109 M⊙, has a star formation rate (SFR) ˜eq 1-6 M_{⊙} yr^{-1}, and represents a likely progenitor of a Milky Way-like galaxy. All the four multiple images of Sp1149 in our data show strong [O II}-line emissions pointing to a clear rotation pattern. We take advantage of the gravitational lensing magnification effect (≃4×) on the [O II} emission of the least distorted image to fit three-dimensional kinematic models to the MUSE data cube and derive the rotation curve and the velocity dispersion profile of Sp1149. We find that the rotation curve steeply rises, peaks at R ≃ 1 kpc, and then (initially) declines and flattens to an average {V_flat}= 128^{+29}_{-19} km s-1. The shape of the rotation curve is well determined, but the actual value of Vflat is quite uncertain because of the nearly face-on configuration of the galaxy. The intrinsic velocity dispersion due to gas turbulence is almost constant across the entire disc with an average of 27 ± 5 km s-1. This value is consistent with z = 0 measurements in the ionized gas component and a factor of 2-4 lower than other estimates in different galaxies at similar redshifts. The average stellar-to-total mass fraction is of the order of one-fifth. Our kinematic analysis returns the picture of a regular star-forming, mildly turbulent, rotation-dominated (V/σ ≃ 5) spiral galaxy in a 4-Gyr-old Universe.

  7. Angular ellipticity correlations in a composite alignment model for elliptical and spiral galaxies and inference from weak lensing

    Science.gov (United States)

    Tugendhat, Tim M.; Schäfer, Björn Malte

    2018-05-01

    We investigate a physical, composite alignment model for both spiral and elliptical galaxies and its impact on cosmological parameter estimation from weak lensing for a tomographic survey. Ellipticity correlation functions and angular ellipticity spectra for spiral and elliptical galaxies are derived on the basis of tidal interactions with the cosmic large-scale structure and compared to the tomographic weak-lensing signal. We find that elliptical galaxies cause a contribution to the weak-lensing dominated ellipticity correlation on intermediate angular scales between ℓ ≃ 40 and ℓ ≃ 400 before that of spiral galaxies dominates on higher multipoles. The predominant term on intermediate scales is the negative cross-correlation between intrinsic alignments and weak gravitational lensing (GI-alignment). We simulate parameter inference from weak gravitational lensing with intrinsic alignments unaccounted; the bias induced by ignoring intrinsic alignments in a survey like Euclid is shown to be several times larger than the statistical error and can lead to faulty conclusions when comparing to other observations. The biases generally point into different directions in parameter space, such that in some cases one can observe a partial cancellation effect. Furthermore, it is shown that the biases increase with the number of tomographic bins used for the parameter estimation process. We quantify this parameter estimation bias in units of the statistical error and compute the loss of Bayesian evidence for a model due to the presence of systematic errors as well as the Kullback-Leibler divergence to quantify the distance between the true model and the wrongly inferred one.

  8. VizieR Online Data Catalog: Radio image of Luminous Infrared Galaxies (Vardoulaki+, 2015)

    Science.gov (United States)

    Vardoulaki, E.; Charmandaris, V.; Murphy, E. J.; Diaz-Santos, T.; Armus, L.; Evans, A.; Mazzarella, J. M.; Privon, G. C.; Stierwalt, S.; Barcos-Munoz, L.

    2014-09-01

    VLA images at 1.49GHz (name_A2000.fits) and at 8.44GHz (name_X2000.fits). All images are in J2000 coordinates. Some maps contain both interacting galaxies of the system, while others are separated and marked accordingly. (2 data files).

  9. Spectroscopy of Luminous Compact Blue Galaxies in Distant Clusters. I. Spectroscopic Data

    Science.gov (United States)

    Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A.; Hon, Kimo

    2011-11-01

    We used the DEIMOS spectrograph on the Keck II Telescope to obtain spectra of galaxies in the fields of five distant, rich galaxy clusters over the redshift range 0.5 reported in the literature, except for 11 targets which we believe were previously in error. Within our sample, we confirm the presence of 53 LCBGs in the five galaxy clusters. The clusters all stand out as distinct peaks in the redshift distribution of LCBGs with the average number density of LCBGs ranging from 1.65 ± 0.25 Mpc-3 at z = 0.55 to 3.13 ± 0.65 Mpc-3 at z = 0.8. The number density of LCBGs in clusters exceeds the field density by a factor of 749 ± 116 at z = 0.55; at z = 0.8, the corresponding ratio is E = 416 ± 95. At z = 0.55, this enhancement is well above that seen for blue galaxies or the overall cluster population, indicating that LCBGs are preferentially triggered in high-density environments at intermediate redshifts. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  10. NEAR-INFRARED ADAPTIVE OPTICS IMAGING OF INFRARED LUMINOUS GALAXIES: THE BRIGHTEST CLUSTER MAGNITUDE-STAR FORMATION RATE RELATION

    International Nuclear Information System (INIS)

    Randriamanakoto, Z.; Väisänen, P.; Escala, A.; Kankare, E.; Kotilainen, J.; Mattila, S.; Ryder, S.

    2013-01-01

    We have established a relation between the brightest super star cluster (SSC) magnitude in a galaxy and the host star formation rate (SFR) for the first time in the near-infrared (NIR). The data come from a statistical sample of ∼40 luminous IR galaxies (LIRGs) and starbursts utilizing K-band adaptive optics imaging. While expanding the observed relation to longer wavelengths, less affected by extinction effects, it also pushes to higher SFRs. The relation we find, M K ∼ –2.6log SFR, is similar to that derived previously in the optical and at lower SFRs. It does not, however, fit the optical relation with a single optical to NIR color conversion, suggesting systematic extinction and/or age effects. While the relation is broadly consistent with a size-of-sample explanation, we argue physical reasons for the relation are likely as well. In particular, the scatter in the relation is smaller than expected from pure random sampling strongly suggesting physical constraints. We also derive a quantifiable relation tying together cluster-internal effects and host SFR properties to possibly explain the observed brightest SSC magnitude versus SFR dependency

  11. THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. III. IMPLICATIONS FOR GALAXY CLUSTERS AND THE FORMATION OF DWARF GALAXIES

    International Nuclear Information System (INIS)

    Pfrommer, Christoph; Chang, Philip; Broderick, Avery E.

    2012-01-01

    A subset of blazars are powerful TeV emitters, dominating the extragalactic component of the very high energy gamma-ray universe (E ∼> 100 GeV). These TeV gamma rays generate ultrarelativistic electron-positron pairs via pair production with the extragalactic background light. While it has generally been assumed that the kinetic energy of these pairs cascades to GeV gamma rays via inverse Compton scattering, we have argued in Broderick et al. (Paper I in this series) that plasma beam instabilities are capable of dissipating the pairs' energy locally on timescales short in comparison to the inverse Compton cooling time, heating the intergalactic medium (IGM) with a rate that is independent of density. This dramatically increases the entropy of the IGM after redshift z ∼ 2, with a number of important implications for structure formation: (1) this suggests a scenario for the origin of the cool core (CC)/non-cool core (NCC) bimodality in galaxy clusters and groups. Early-forming galaxy groups are unaffected because they can efficiently radiate the additional entropy, developing a CC. However, late-forming groups do not have sufficient time to cool before the entropy is gravitationally reprocessed through successive mergers—counteracting cooling and potentially raising the core entropy further. This may result in a population of X-ray dim groups/clusters, consistent with X-ray stacking analyses of optically selected samples. Hence, blazar heating works differently than feedback by active galactic nuclei, which we show can balance radiative cooling but is unable to transform CC into NCC clusters on the buoyancy timescale due to the weak coupling between the mechanical energy to the cluster gas. (2) We predict a suppression of the Sunyaev-Zel'dovich (SZ) power spectrum template on angular scales smaller than 5' due to the globally reduced central pressure of groups and clusters forming after z ∼ 1. This allows for a larger rms amplitude of the density power

  12. Rise of the Titans: A Dusty, Hyper-luminous “870 μm Riser” Galaxy at z ˜ 6

    Science.gov (United States)

    Riechers, Dominik A.; Leung, T. K. Daisy; Ivison, Rob J.; Pérez-Fournon, Ismael; Lewis, Alexander J. R.; Marques-Chaves, Rui; Oteo, Iván; Clements, Dave L.; Cooray, Asantha; Greenslade, Josh; Martínez-Navajas, Paloma; Oliver, Seb; Rigopoulou, Dimitra; Scott, Douglas; Weiss, Axel

    2017-11-01

    We report the detection of ADFS-27, a dusty, starbursting major merger at a redshift of z = 5.655, using the Atacama Large Millimeter/submillimeter Array (ALMA). ADFS-27 was selected from Herschel/Spectral and Photometric Imaging Receiver (SPIRE) and APEX/LABOCA data as an extremely red “870 μm riser” (I.e., {S}250μ {{m}}< {S}350μ {{m}}< {S}500μ {{m}}< {S}870μ {{m}}), demonstrating the utility of this technique to identify some of the highest-redshift dusty galaxies. A scan of the 3 mm atmospheric window with ALMA yields detections of CO(J = 5 → 4) and CO(J = 6 → 5) emission, and a tentative detection of H2O(211 → 202) emission, which provides an unambiguous redshift measurement. The strength of the CO lines implies a large molecular gas reservoir with a mass of M gas = 2.5 × 1011 ({α }{CO}/0.8)(0.39/{r}51) M ⊙, sufficient to maintain its ˜2400 M ⊙ yr-1 starburst for at least ˜100 Myr. The 870 μm dust continuum emission is resolved into two components, 1.8 and 2.1 kpc in diameter, separated by 9.0 kpc, with comparable dust luminosities, suggesting an ongoing major merger. The infrared luminosity of L IR ≃ 2.4 × 1013 L ⊙ implies that this system represents a binary hyper-luminous infrared galaxy, the most distant of its kind presently known. This also implies star formation rate surface densities of {{{Σ }}}{SFR}=730 and 750 M ⊙ yr-1 kpc2, consistent with a binary “maximum starburst.” The discovery of this rare system is consistent with a significantly higher space density than previously thought for the most luminous dusty starbursts within the first billion years of cosmic time, easing tensions regarding the space densities of z ˜ 6 quasars and massive quiescent galaxies at z ≳ 3.

  13. Revealing the Heart of the Galaxy : The Milky Way and its Black Hole

    NARCIS (Netherlands)

    Sanders, Robert H.

    2014-01-01

    1. Introduction: the luminous pathway; 2. The discovery of the Milky Way Galaxy; 3. The new physics; 4. Parting the veil with radio astronomy; 5. The violent Universe; 6. New windows on the Galactic Center; 7. The Milky Way as a barred spiral galaxy; 8. The evolving view of active galactic nuclei;

  14. A multi-wavelength view of the central kiloparsec region in the luminous infrared galaxy NGC 1614

    Energy Technology Data Exchange (ETDEWEB)

    Herrero-Illana, Rubén; Pérez-Torres, Miguel Á.; Alberdi, Antxon; Hernández-García, Lorena [Instituto de Astrofísica de Andalucía-CSIC, P.O. Box 3004, E-18008 Granada (Spain); Alonso-Herrero, Almudena [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander (Spain); Colina, Luis [Centro de Astrobiología (INTA-CSIC), Ctra. de Torrejón a Ajalvir, km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Efstathiou, Andreas [School of Sciencies, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Miralles-Caballero, Daniel [Instituto de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Väisänen, Petri [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 Cape Town (South Africa); Packham, Christopher C. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Rajpaul, Vinesh [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Zijlstra, Albert A. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-05-10

    The Luminous Infrared Galaxy NGC 1614 hosts a prominent circumnuclear ring of star formation. However, the nature of the dominant emitting mechanism in its central ∼100 pc is still under debate. We present sub-arcsecond angular resolution radio, mid-infrared, Paα, optical, and X-ray observations of NGC 1614, aimed at studying in detail both the circumnuclear ring and the nuclear region. The 8.4 GHz continuum emission traced by the Very Large Array and the Gemini/T-ReCS 8.7 μm emission, as well as the Paα line emission, show remarkable morphological similarities within the star-forming ring, suggesting that the underlying emission mechanisms are tightly related. We used a Hubble Space Telescope/NICMOS Paα map of similar resolution to our radio maps to disentangle the thermal free-free and non-thermal synchrotron radio emission, from which we obtained the intrinsic synchrotron power law for each individual region within the central kiloparsec of NGC 1614. The radio ring surrounds a relatively faint, steep-spectrum source at the very center of the galaxy, suggesting that the central source is not powered by an active galactic nucleus (AGN), but rather by a compact (r ≲ 90 pc) starburst (SB). Chandra X-ray data also show that the central kiloparsec region is dominated by SB activity, without requiring the existence of an AGN. We also used publicly available infrared data to model-fit the spectral energy distribution of both the SB ring and a putative AGN in NGC 1614. In summary, we conclude that there is no need to invoke an AGN to explain the observed bolometric properties of the galaxy.

  15. The Stellar Populations Inside Expanding HI Shells in the Spiral Galaxy M33

    Science.gov (United States)

    Walterbos, Rene

    1997-07-01

    Because of its vigorous star formation activity, favorable inclination, and relative proximity, M33 is an ideal laboratory for the study of expanding HI shells in spiral galaxies. Theoretical models show that the energy deposited into the ISM by high mass stars in OB associations is capable of creating HI superbubbles. However, sparse observational evidence exists to test these models in detail. One essential ingredient of such a test is an improved census of stellar populations inside expanding HI shells. Using multi-color archival HST images of M33, we will {1} verify that association ages are consistent with dynamical ages of related shells and with ages from model predictions for bubbles of matching size and kinematics; {2} Constrain the IMF for each association by combining integrated ground-based HAlpha fluxes with the population age, present day mass function, and luminosity function derived from WFPC2 data; {3} Use this information to infer which fraction of the integrated stellar mechanical luminosity is transferred to a shell over its lifetime. Ground-based observations of associations inside expanding shells lack the UV-sensitivity and spatial resolution to adequately address these issues. Our sample of expanding neutral shells in M33 was selected using a new automated method for analysis of HI datacubes. From this robust catalog we have identified more than 30 HI supershells in M33 already imaged with WFPC2 in suitable broadband filters {F160BW, F170W, F336W, F439W, F555W, and F814W}.

  16. M/L, Hα Rotation Curves, and H I Gas Measurements for 329 Nearby Cluster and Field Spirals. III. Evolution in Fundamental Galaxy Parameters

    Science.gov (United States)

    Vogt, Nicole P.; Haynes, Martha P.; Giovanelli, Riccardo; Herter, Terry

    2004-06-01

    We have conducted a study of optical and H I properties of spiral galaxies (size, luminosity, Hα flux distribution, circular velocity, H I gas mass) to investigate causes (e.g., nature vs. nurture) for variation within the cluster environment. We find H I-deficient cluster galaxies to be offset in fundamental plane space, with disk scale lengths decreased by a factor of 25%. This may be a relic of early galaxy formation, caused by the disk coalescing out of a smaller, denser halo (e.g., higher concentration index) or by truncation of the hot gas envelope due to the enhanced local density of neighbors, although we cannot completely rule out the effect of the gas stripping process. The spatial extent of Hα flux and the B-band radius also decreases, but only in early-type spirals, suggesting that gas removal is less efficient within steeper potential wells (or that stripped late-type spirals are quickly rendered unrecognizable). We find no significant trend in stellar mass-to-light ratios or circular velocities with H I gas content, morphological type, or clustercentric radius, for star-forming spiral galaxies throughout the clusters. These data support the findings of a companion paper that gas stripping promotes a rapid truncation of star formation across the disk and could be interpreted as weak support for dark matter domination over baryons in the inner regions of spiral galaxies.

  17. SDSS-IV MaNGA: global stellar population and gradients for about 2000 early-type and spiral galaxies on the mass-size plane

    Science.gov (United States)

    Li, Hongyu; Mao, Shude; Cappellari, Michele; Ge, Junqiang; Long, R. J.; Li, Ran; Mo, H. J.; Li, Cheng; Zheng, Zheng; Bundy, Kevin; Thomas, Daniel; Brownstein, Joel R.; Roman Lopes, Alexandre; Law, David R.; Drory, Niv

    2018-05-01

    We perform full spectrum fitting stellar population analysis and Jeans Anisotropic modelling of the stellar kinematics for about 2000 early-type galaxies (ETGs) and spiral galaxies from the MaNGA DR14 sample. Galaxies with different morphologies are found to be located on a remarkably tight mass plane which is close to the prediction of the virial theorem, extending previous results for ETGs. By examining an inclined projection (`the mass-size' plane), we find that spiral and early-type galaxies occupy different regions on the plane, and their stellar population properties (i.e. age, metallicity, and stellar mass-to-light ratio) vary systematically along roughly the direction of velocity dispersion, which is a proxy for the bulge fraction. Galaxies with higher velocity dispersions have typically older ages, larger stellar mass-to-light ratios and are more metal rich, which indicates that galaxies increase their bulge fractions as their stellar populations age and become enriched chemically. The age and stellar mass-to-light ratio gradients for low-mass galaxies in our sample tend to be positive (centre Spiral galaxies with large mass and size have the steepest gradients, while the most massive ETGs, especially above the critical mass Mcrit ≳ 2 × 1011 M⊙, where slow rotator ETGs start dominating, have much flatter gradients. This may be due to differences in their evolution histories, e.g. mergers.

  18. Spiral symmetry

    CERN Document Server

    Hargittai, Istvan

    1992-01-01

    From the tiny twisted biological molecules to the gargantuan curling arms of many galaxies, the physical world contains a startling repetition of spiral patterns. Today, researchers have a keen interest in identifying, measuring, and defining these patterns in scientific terms. Spirals play an important role in the growth processes of many biological forms and organisms. Also, through time, humans have imitated spiral motifs in their art forms, and invented new and unusual spirals which have no counterparts in the natural world. Therefore, one goal of this multiauthored book is to stress the c

  19. Imaging and spectroscopic observations of a strange elliptical bubble in the northern arm of the spiral galaxy NGC 6946

    OpenAIRE

    Efremov, Yuri N.; Moiseev, Alexei V.

    2016-01-01

    NGC 6946, known as the Fireworks galaxy because of its high supernova rate and high star formation, is embedded in a very extended HI halo. Its northern spiral arm is well detached from the galactic main body. We found that this arm contains a large (~300 pc in size) Red Ellipse, named according to a strong contamination of the H-alpha emission line on its optical images. The ellipse is accompanied by a short parallel arc and a few others still smaller and less regular; a bright star cluster ...

  20. Constraints on Modified Gravity from the Abundance of X-ray Luminous Galaxy Clusters

    DEFF Research Database (Denmark)

    Rapetti Serra, David Angelo

    2011-01-01

    n December 2010, the XXL survey, an XMM-Newton Very Large Programme, has been granted time to map two extragalactic regions of 25 deg2, at a depth of ~5×10-15 erg/cm2/s (using 10 ks observations). While the main goal of the project is to constrain the Dark Energy equation of state using clusters...... of galaxies (cf. http://arxiv.org/abs/1009.3182), it will also have lasting legacy value for cluster scaling laws and studies of AGNs and XRB. The project is open to any scientist belonging to the international astronomical community, and interested in actively contributing to the general legacy effort...

  1. Correlations of both the densities and the masses of spiral galaxies

    CERN Document Server

    Nagornaya, V S

    2002-01-01

    The correlation of densities, masses and scales of galaxies have been researched. The results can be interpreted basing on the hypothesis of rotation origin of galaxies during the proto-clusters collapse epoch. (author)

  2. Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    Science.gov (United States)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Baloković, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1.̋5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (τ ≃ 1.2, NH ~ 1.5 × 1024 cm-2). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH ≤ 2 × 1023 cm-2 over long (~3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  3. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P.

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ R . An evaluation of the galaxies in the λ R ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects

  4. Ultraviolet Extinction in Backlit Galaxies - from Galaxy Zoo to GALEX

    Science.gov (United States)

    Keel, William C.; Manning, A.; Holwerda, B. W.; Lintott, C.; Schawinski, K.; Galaxy Zoo Team

    2012-01-01

    We examine the ultraviolet extinction of galaxies on large scales, combining optical and GALEX UV data on backlit galaxies (most found in the Galaxy Zoo citizen-science project). We analyze the images in matching ways, modelling both foreground and background galaxies by symmetry or elliptical isophote families as appropriate, and using the non-overlapping regions of the galaxies to estimate errors in the derived transmission T=e-κ. Spirals appear less symmetric in the UV, as star-forming regions become more dominant, so that our most reliable results are mean values across multiple regions and multiple galaxies. Our mean effective extinction curve is dominated by the contribution of luminous spirals,and shows a fairly flat gray" extinction law into the ultraviolet. For example, the median of κNUV/κB in spiral arms is only 1.3. Along with previous high-resolution HST studies of a few nearby backlit galaxies, this suggests that on kpc scales the effective extinction is dominated by the dust clumping rather than the intrinsic reddening law. This implies that extrapolation of local properties to short wavelengths, a step toward the history of dust in galaxies through comparison of local properties with a similar analysis in deep HST fields, can be done without introducing much additional error. This work was supported by NASA Astrophysics Data Analysis Program grant NNX10AD54G.

  5. Simulating the UV escape fractions from molecular cloud populations in star-forming dwarf and spiral galaxies

    Science.gov (United States)

    Howard, Corey S.; Pudritz, Ralph E.; Harris, William E.; Klessen, Ralf S.

    2018-04-01

    The escape of ultraviolet photons from the densest regions of the interstellar medium (ISM) - giant molecular clouds (GMCs) - is a poorly constrained parameter which is vital to understanding the ionization of the ISM and the intergalactic medium. We characterize the escape fraction, fesc,GMC, from a suite of individual GMC simulations with masses in the range 104-6 M⊙ using the adaptive-mesh refinement code FLASH. We find significantly different fesc,GMC depending on the GMC mass that can reach >90 per cent in the evolution of 5 × 104 and 105 M⊙ clouds or remain low at ˜5 per cent for most of the lifetime of more massive GMCs. All clouds show fluctuations over short, sub-Myr time-scales produced by flickering H II regions. We combine our results to calculate the total escape fraction (fesc,tot) from GMC populations in dwarf starburst and spiral galaxies by randomly drawing clouds from a GMC mass distribution (dN/dM ∝ Mα, where α is either -1.5 or -2.5) over fixed time intervals. We find typical fesc,tot values of 8 per cent for both the dwarf and spiral models. The fluctuations of fesc,tot, however, are much larger for the dwarf models with values as high as 90 per cent. The photons escaping from the 5 × 104 and 105 M⊙ GMCs are the dominant contributors to fesc,tot in all cases. We also show that the accompanying star formation rates (SFRs) of our model (˜2 × 10-2 and 0.73 M⊙yr-1) are consistent with observations of SFRs in dwarf starburst and spiral galaxies, respectively.

  6. ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES

    International Nuclear Information System (INIS)

    Seo, Hee-Jong; Ho, Shirley; White, Martin; Reid, Beth; Schlegel, David J.; Cuesta, Antonio J.; Padmanabhan, Nikhil; Ross, Ashley J.; Percival, Will J.; Nichol, Robert C.; Saito, Shun; De Putter, Roland; Eisenstein, Daniel J.; Xu Xiaoying; Skibba, Ramin; Schneider, Donald P.; Verde, Licia; Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J.

    2012-01-01

    We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over ∼10,000 deg 2 between 0.45 A (z)/r s = 9.212 +0.416 – 0 .404 at z = 0.54, and therefore D A (z) = 1411 ± 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D A (z) is 1.4σ higher than what is expected for the concordance ΛCDM, in accordance to the trend of other spectroscopic BAO measurements for z ∼> 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum.

  7. VizieR Online Data Catalog: Spectroscopy of luminous compact blue galaxies (Crawford+, 2016)

    Science.gov (United States)

    Crawford, S. M.; Wirth, G. D.; Bershady, M. A.; Randriamampandry, S. M.

    2017-10-01

    Deep imaging data in UBRIz and two narrow bands were obtained with the Mini-Mosaic camera from the WIYN 3.5 m telescope for all five clusters between 1999 October and 2004 June. We obtained spectroscopic observations for a sample of cluster star-forming galaxies with the DEIMOS, Faber et al. 2003 on the Keck II Telescope during 2005 October and 2007 April. The narrow-band filters were specifically designed to detect [OII] λ3727 at the redshift of each cluster. All of the clusters have been the target of extensive observations with the HST, primarily using either WFPC2 or the Advanced Camera for Surveys (ACS). For all measurements, we have attempted to select data taken in a filter closest to the rest-frame B band. We have employed ACS imaging data whenever possible and substituted WFPC2 images only when required. For clusters observed in the far-infrared regime by the Spitzer Space Telescope, we extracted MIPS 24μm flux densities, S24, from images obtained through the Enhanced Imaging Products archive. (2 data files).

  8. Far-infrared luminosities of Markarian starburst galaxies

    International Nuclear Information System (INIS)

    Deutsch, L.K.; Willner, S.P.

    1986-01-01

    Total far-infrared luminosities have been calculated from measured IRAS fluxes for a sample of optically selected galaxies and for a comparison sample of spiral galaxies. The starburst galaxies are notably more luminous in the far-infrared and have higher dust color temperatures than the comparison galaxies. The far-infrared light dominates the total luminosity of the starburst galaxies, and a significant amount of dust must be present. The far-infrared emission correlates well with total blue luminosity, nuclear blue luminosity, and nuclear H-alpha luminosity. The dust that produces the far-infrared light is probably heated predominantly by B rather than by O stars. 30 references

  9. Correlations Between Central Massive Objects And Their Host Galaxies: From Bulgeless Spirals to Ellipticals

    OpenAIRE

    Li, Yuexing; Haiman, Zoltán; Mac Low, Mordecai-Mark

    2006-01-01

    Recent observations by Ferrarese et al. (2006) and Wehner et al. (2006) reveal that a majority of galaxies contain a central massive object (CMO), either a supermassive black hole (SMBH) or a compact stellar nucleus, regardless of the galaxy mass or morphological type, and that there is a tight relation between the masses of CMOs and those of the host galaxies. Several recent studies show that feedback from black holes can successfully explain the $\\msigma$ correlation in massive elliptical g...

  10. HUBBLE SPACE TELESCOPE ACS IMAGING OF THE GOALS SAMPLE: QUANTITATIVE STRUCTURAL PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES WITH L{sub IR} > 10{sup 11.4} L{sub Sun}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.-C.; Evans, A. S.; Privon, G. C., E-mail: dkim@nrao.edu, E-mail: aevans@virginia.edu, E-mail: gcp8y@virginia.edu [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); and others

    2013-05-10

    A Hubble Space Telescope/Advanced Camera for Surveys study of the structural properties of 85 luminous and ultraluminous (L{sub IR} > 10{sup 11.4} L{sub Sun }) infrared galaxies (LIRGs and ULIRGs) in the Great Observatories All-sky LIRG Survey (GOALS) sample is presented. Two-dimensional GALFIT analysis has been performed on F814W ''I-band'' images to decompose each galaxy, as appropriate, into bulge, disk, central point-spread function (PSF) and stellar bar components. The fraction of bulge-less disk systems is observed to be higher in LIRGs (35%) than in ULIRGs (20%), with the disk+bulge systems making up the dominant fraction of both LIRGs (55%) and ULIRGs (45%). Further, bulge+disk systems are the dominant late-stage merger galaxy type and are the dominant type for LIRGs and ULIRGs at almost every stage of galaxy-galaxy nuclear separation. The mean I-band host absolute magnitude of the GOALS galaxies is -22.64 {+-} 0.62 mag (1.8{sup +1.4}{sub -0.4} L{sup *}{sub I}), and the mean bulge absolute magnitude in GOALS galaxies is about 1.1 mag fainter than the mean host magnitude. Almost all ULIRGs have bulge magnitudes at the high end (-20.6 to -23.5 mag) of the GOALS bulge magnitude range. Mass ratios in the GOALS binary systems are consistent with most of the galaxies being the result of major mergers, and an examination of the residual-to-host intensity ratios in GOALS binary systems suggests that smaller companions suffer more tidal distortion than the larger companions. We find approximately twice as many bars in GOALS disk+bulge systems (32.8%) than in pure-disk mergers (15.9%) but most of the disk+bulge systems that contain bars are disk-dominated with small bulges. The bar-to-host intensity ratio, bar half-light radius, and bar ellipticity in GOALS galaxies are similar to those found in nearby spiral galaxies. The fraction of stellar bars decreases toward later merger stages and smaller nuclear separations, indicating that bars are

  11. The SWELLS survey - III. Disfavouring 'heavy' initial mass functions for spiral lens galaxies

    NARCIS (Netherlands)

    Brewer, Brendon J.; Dutton, Aaron A.; Treu, Tommaso; Auger, Matthew W.; Marshall, Philip J.; Barnabè, Matteo; Bolton, Adam S.; Koo, David C.; Koopmans, Léon V. E.

    We present gravitational lens models for 20 strong gravitational lens systems observed as part of the Sloan WFC Edge-on Late-type Lens Survey (SWELLS) project. 15 of the lenses are taken from Paper I, while five are newly discovered systems. The systems are galaxy-galaxy lenses where the foreground

  12. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Weaver, K.; Strickland, D.

    2002-01-01

    The hard-X-ray luminosity of non-active galaxies has been known to be fairly well correlated with the total blue luminosity since the days of the Einstein satellite. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Chandra images of normal, elliptical and starburst galaxies now show that a significant amount of the total hard X-ray emission comes from individual point sources. We present here spatial and spectral analyses of the point sources in a small sample of Chandra obervations of starburst galaxies, and compare with Chandra point source analyses from comparison galaxies (elliptical, Seyfert and normal galaxies). We discuss possible relationships between the number and total hard luminosity of the X-ray point sources and various measures of the galaxy star formation rate, and discuss possible options for the numerous compact sources that are observed.

  13. Absorption-line detections of 105-106 K gas in spiral-rich groups of galaxies

    International Nuclear Information System (INIS)

    Stocke, John T.; Keeney, Brian A.; Danforth, Charles W.; Syphers, David; Yamamoto, H.; Shull, J. Michael; Green, James C.; Froning, Cynthia; Savage, Blair D.; Wakker, Bart; Kim, Tae-Sun; Ryan-Weber, Emma V.; Kacprzak, Glenn G.

    2014-01-01

    Using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, the COS Science Team has conducted a high signal-to-noise survey of 14 bright QSOs. In a previous paper, these far-UV spectra were used to discover 14 'warm' (T ≥ 10 5 K) absorbers using a combination of broad Lyα and broad O VI absorptions. A reanalysis of a few of this new class of absorbers using slightly relaxed fitting criteria finds as many as 20 warm absorbers could be present in this sample. A shallow, wide spectroscopic galaxy redshift survey has been conducted around these sight lines to investigate the warm absorber environment, which is found to be spiral-rich groups or cluster outskirts with radial velocity dispersions σ = 250-750 km s –1 . While 2σ evidence is presented favoring the hypothesis that these absorptions are associated with the galaxy groups and not with the individual, nearest galaxies, this evidence has considerable systematic uncertainties and is based on a small sample size so it is not entirely conclusive. If the associations are with galaxy groups, the observed frequency of warm absorbers (dN/dz = 3.5-5 per unit redshift) requires them to be very extended as an ensemble on the sky (∼1 Mpc in radius at high covering factor). Most likely these warm absorbers are interface gas clouds whose presence implies the existence of a hotter (T ∼ 10 6.5 K), diffuse, and probably very massive (>10 11 M ☉ ) intra-group medium which has yet to be detected directly.

  14. Unveiling the sources of disk heating in spiral galaxies with the CALIFA survey

    NARCIS (Netherlands)

    Pinna, F.; Falcón-Barroso, J.; Martig, M.; van de Ven, G.; Lyubenova, M.; Leaman, R.

    The stellar velocity ellipsoid (SVE) quantifies the amount of velocity dispersion in the vertical, radial and azimuthal directions. Since different disk heating mechanisms (e.g. spiral arms, giant molecular clouds, mergers, etc) affect these components differently, the SVE can constrain the sources

  15. Dark matter and galaxy formation

    International Nuclear Information System (INIS)

    Umemura, Masayuki

    1987-01-01

    We propose a hybrid model of universe for galaxy formation, that is, an Einstein- de Sitter universe dominated by two-component dark matter: massive neutrinos and cold dark matter. In this hybrid model, the first luminous objects are dwarf galaxies. The neutrino density fluctuations produce large-scale high density and low density regions, which consequently evolve to superclusters of galaxies and voids, respectively. Dwarf galaxies are formed preferentially in supercluster regions. In voids, the formation of dwarf galaxies is fairly suppressed by diffuse UV flux from QSOs, and instead a number of expanding clouds are born, which produce Lyα forest as seen in QSO spectra. Ordinary galaxies are expected to form as aggregations of dwarf galaxies. In this model, some galaxies are born also in voids, and they tend to evolve to spiral galaxies. Additionally, if the same number of globular clusters are formed in a dwarf, the specific globular cluster frequencies are expected to be much larger in ellipticals than in spirals. (author)

  16. ALMA DETECTION OF THE VIBRATIONALLY EXCITED HCN J = 4-3 EMISSION LINE IN THE AGN-HOSTING LUMINOUS INFRARED GALAXY IRAS 20551–4250

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A' ohoku Place, Hilo, Hawaii, 96720 (United States); Nakanishi, Kouichiro, E-mail: masa.imanishi@nao.ac.jp [Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago de Chile (Chile)

    2013-10-01

    We present results from our ALMA Cycle 0 observations, at the frequencies around the HCN, HCO{sup +}, and HNC J = 4-3 transition lines, of the luminous infrared galaxy IRAS 20551–4250 at z = 0.043, which is known to host an energetically important obscured active galactic nucleus (AGN). In addition to the targeted HCN, HCO{sup +}, and HNC J = 4-3 emission lines, two additional strong emission lines are seen, which we attribute to H{sub 2}S and CH{sub 3}CN(+CCH). The HCN-to-HCO{sup +} J = 4-3 flux ratio (∼0.7) is higher than in the other starburst-dominated galaxy (∼0.2) observed in our ALMA Cycle 0 program. We tentatively (∼5σ) detected the vibrationally excited (v {sub 2} = 1) HCN J = 4-3 (l = 1f) emission line, which is important for testing an infrared radiative pumping scenario for HCN. This is the second detection of this molecular transition in external galaxies. The most likely reason for this detection is not only the high flux of this emission line, but also the small molecular line widths observed in this galaxy, suggesting that vibrational excitation of HCN may be relatively common in AGN-hosting galaxies.

  17. SN 2010ay IS A LUMINOUS AND BROAD-LINED TYPE Ic SUPERNOVA WITHIN A LOW-METALLICITY HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, N. E.; Soderberg, A. M.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Valenti, S.; Smartt, S.; Botticella, M. T. [Astrophysics Research Centre, School of Maths and Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Hurley, K. [Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Barthelmy, S. D.; Gehrels, N.; Cline, T. [NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States); Levesque, E. M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Narayan, G. [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Briggs, M. S.; Connaughton, V. [CSPAR, University of Alabama in Huntsville, Huntsville, AL (United States); Terada, Y. [Department of Physics, Saitama University, Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570 (Japan); Golenetskii, S.; Mazets, E., E-mail: nsanders@cfa.harvard.edu [Ioffe Physico-Technical Institute, Laboratory for Experimental Astrophysics, 26 Polytekhnicheskaya, St. Petersburg 194021 (Russian Federation); and others

    2012-09-10

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3{pi} survey just {approx}4 days after explosion. The supernova (SN) had a peak luminosity, M{sub R} Almost-Equal-To -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v{sub Si} Almost-Equal-To 19 Multiplication-Sign 10{sup 3} km s{sup -1} at {approx}40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines {approx}2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of {sup 56}Ni, M{sub Ni} = 0.9 M{sub Sun }. Applying scaling relations to the light curve, we estimate a total ejecta mass, M{sub ej} Almost-Equal-To 4.7 M{sub Sun }, and total kinetic energy, E{sub K} Almost-Equal-To 11 Multiplication-Sign 10{sup 51} erg. The ratio of M{sub Ni} to M{sub ej} is {approx}2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log (O/H){sub PP04} + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and {approx}0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E{sub {gamma}} {approx}< 6 Multiplication-Sign 10{sup 48} erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E {approx}> 10{sup 48} erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less

  18. HUBBLE SPACE TELESCOPE PIXEL ANALYSIS OF THE INTERACTING FACE-ON SPIRAL GALAXY NGC 5194 (M51A)

    International Nuclear Information System (INIS)

    Lee, Joon Hyeop; Kim, Sang Chul; Park, Hong Soo; Ree, Chang Hee; Kyeong, Jaemann; Chung, Jiwon

    2011-01-01

    A pixel analysis is carried out on the interacting face-on spiral galaxy NGC 5194 (M51A), using the Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) images in the F435W, F555W, and F814W (BVI) bands. After 4 x 4 binning of the HST/ACS images to secure a sufficient signal-to-noise ratio for each pixel, we derive several quantities describing the pixel color-magnitude diagram (pCMD) of NGC 5194: blue/red color cut, red pixel sequence parameters, blue pixel sequence parameters, and blue-to-red pixel ratio. The red sequence pixels are mostly older than 1 Gyr, while the blue sequence pixels are mostly younger than 1 Gyr, in their luminosity-weighted mean stellar ages. The color variation in the red pixel sequence from V = 20 mag arcsec -2 to V = 17 mag arcsec -2 corresponds to a metallicity variation of Δ[Fe/H] ∼2 or an optical depth variation of Δτ V ∼ 4 by dust, but the actual sequence is thought to originate from the combination of those two effects. At V -2 , the color variation in the blue pixel sequence corresponds to an age variation from 5 Myr to 300 Myr under the assumption of solar metallicity and τ V = 1. To investigate the spatial distributions of stellar populations, we divide pixel stellar populations using the pixel color-color diagram and population synthesis models. As a result, we find that the pixel population distributions across the spiral arms agree with a compressing process by spiral density waves: dense dust → newly formed stars. The tidal interaction between NGC 5194 and NGC 5195 appears to enhance the star formation at the tidal bridge connecting the two galaxies. We find that the pixels corresponding to the central active galactic nucleus (AGN) area of NGC 5194 show a tight sequence at the bright-end of the pCMD, which are in the region of R ∼ 100 pc and may be a photometric indicator of AGN properties.

  19. Non-parametric cell-based photometric proxies for galaxy morphology: methodology and application to the morphologically defined star formation-stellar mass relation of spiral galaxies in the local universe

    Science.gov (United States)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Seibert, M.; Kelvin, L. S.

    2014-02-01

    We present a non-parametric cell-based method of selecting highly pure and largely complete samples of spiral galaxies using photometric and structural parameters as provided by standard photometric pipelines and simple shape fitting algorithms. The performance of the method is quantified for different parameter combinations, using purely human-based classifications as a benchmark. The discretization of the parameter space allows a markedly superior selection than commonly used proxies relying on a fixed curve or surface of separation. Moreover, we find structural parameters derived using passbands longwards of the g band and linked to older stellar populations, especially the stellar mass surface density μ* and the r-band effective radius re, to perform at least equally well as parameters more traditionally linked to the identification of spirals by means of their young stellar populations, e.g. UV/optical colours. In particular, the distinct bimodality in the parameter μ*, consistent with expectations of different evolutionary paths for spirals and ellipticals, represents an often overlooked yet powerful parameter in differentiating between spiral and non-spiral/elliptical galaxies. We use the cell-based method for the optical parameter set including re in combination with the Sérsic index n and the i-band magnitude to investigate the intrinsic specific star formation rate-stellar mass relation (ψ*-M*) for a morphologically defined volume-limited sample of local Universe spiral galaxies. The relation is found to be well described by ψ _* ∝ M_*^{-0.5} over the range of 109.5 ≤ M* ≤ 1011 M⊙ with a mean interquartile range of 0.4 dex. This is somewhat steeper than previous determinations based on colour-selected samples of star-forming galaxies, primarily due to the inclusion in the sample of red quiescent discs.

  20. NEAR-INFRARED POLARIMETRY OF A NORMAL SPIRAL GALAXY VIEWED THROUGH THE TAURUS MOLECULAR CLOUD COMPLEX

    International Nuclear Information System (INIS)

    Clemens, Dan P.; Cashman, L. R.; Pavel, M. D.

    2013-01-01

    Few normal galaxies have been probed using near-infrared polarimetry, even though it reveals magnetic fields in the cool interstellar medium better than either optical or radio polarimetry. Deep H-band (1.6 μm) linear imaging polarimetry toward Taurus serendipitously included the galaxy 2MASX J04412715+2433110 with adequate sensitivity and resolution to map polarization across nearly its full extent. The observations revealed the galaxy to be a steeply inclined (∼75°) disk type with a diameter, encompassing 90% of the Petrosian flux, of 4.2 kpc at a distance of 53 Mpc. Because the sight line passes through the Taurus Molecular Cloud complex, the foreground polarization needed to be measured and removed. The foreground extinction A V of 2.00 ± 0.10 mag and reddening E(H – K) of 0.125 ± 0.009 mag were also assessed and removed, based on analysis of Two Micron All Sky Survey, UKIRT Infrared Deep Sky Survey, Spitzer, and Wide-field Infrared Survey Explorer photometry using the Near-Infrared Color Excess, NICE-Revisited, and Rayleigh-Jeans Color Excess methods. Corrected for the polarized foreground, the galaxy polarization values range from 0% to 3%. The polarizations are dominated by a disk-parallel magnetic field geometry, especially to the northeast, while either a vertical field or single scattering of bulge light produces disk-normal polarizations to the southwest. The multi-kiloparsec coherence of the magnetic field revealed by the infrared polarimetry is in close agreement with short-wavelength radio synchrotron observations of edge-on galaxies, indicating that both cool and warm interstellar media of disk galaxies may be threaded by common magnetic fields.

  1. Revealing the nature of the ULX and X-ray population of the spiral galaxy NGC 4088

    Energy Technology Data Exchange (ETDEWEB)

    Mezcua, M. [Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Fabbiano, G. [Harvard-Smithsonian Center for Astrophysics (CfA), 60 Garden Street, Cambridge, MA 02138 (United States); Gladstone, J. C. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Farrell, S. A. [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Soria, R., E-mail: mmezcua@iac.es [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)

    2014-04-20

    We present the first Chandra and Swift X-ray study of the spiral galaxy NGC 4088 and its ultraluminous X-ray source (ULX N4088-X1). We also report very long baseline interferometry (VLBI) observations at 1.6 and 5 GHz performed quasi-simultaneously with the Swift and Chandra observations, respectively. Fifteen X-ray sources are detected by Chandra within the D25 ellipse of NGC 4088, from which we derive the X-ray luminosity function (XLF) of this galaxy. We find the XLF is very similar to those of star-forming galaxies and estimate a star-formation rate of 4.5 M {sub ☉} yr{sup –1}. The Chandra detection of the ULX yields its most accurate X-ray position, which is spatially coincident with compact radio emission at 1.6 GHz. The ULX Chandra X-ray luminosity, L {sub 0.2-10.0} {sub keV} = 3.4 × 10{sup 39} erg s{sup –1}, indicates that N4088-X1 could be located at the high-luminosity end of the high-mass X-ray binary (HMXB) population of NGC 4088. The estimates of the black hole (BH) mass and ratio of radio to X-ray luminosity of N4088-X1 rule out a supermassive BH nature. The Swift X-ray spectrum of N4088-X1 is best described by a thermal Comptonization model and presents a statistically significant high-energy cutoff. We conclude that N4088-X1 is most likely a stellar remnant BH in an HMXB, probably fed by Roche lobe overflow, residing in a super-Eddington ultraluminous state. The 1.6 GHz VLBI source is consistent with radio emission from possible ballistic jet ejections in this state.

  2. LACERTA I AND CASSIOPEIA III. TWO LUMINOUS AND DISTANT ANDROMEDA SATELLITE DWARF GALAXIES FOUND IN THE 3π PAN-STARRS1 SURVEY

    International Nuclear Information System (INIS)

    Martin, Nicolas F.; Laevens, Benjamin P. M.; Slater, Colin T.; Bell, Eric F.; Schlafly, Edward F.; Morganson, Eric; Rix, Hans-Walter; Bernard, Edouard J.; Ferguson, Annette M. N.; Finkbeiner, Douglas P.; Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Tonry, John L.; Wainscoat, Richard J.; Price, Paul A.

    2013-01-01

    We report the discovery of two new dwarf galaxies, Lacerta I/Andromeda XXXI (Lac I/And XXXI) and Cassiopeia III/Andromeda XXXII (Cas III/And XXXII), in stacked Pan-STARRS1 r P1 - and i P1 -band imaging data. Both are luminous systems (M V ∼ –12) located at projected distances of 20.°3 and 10.°5 from M31. Lac I and Cas III are likely satellites of the Andromeda galaxy with heliocentric distances of 756 +44 -28 kpc and 772 +61 -56 kpc, respectively, and corresponding M31-centric distances of 275 ± 7 kpc and 144 +6 -4 kpc. The brightest of recent Local Group member discoveries, these two new dwarf galaxies owe their late discovery to their large sizes (r h = 4.2 +0.4 -0.5 arcmin or 912 +124 -93 pc for Lac I; r h = 6.5 +1.2 -1.0 arcmin or 1456 ± 267 pc for Cas III) and consequently low surface brightness (μ 0 ∼ 26.0 mag arcsec –2 ), as well as to the lack of a systematic survey of regions at large radii from M31, close to the Galactic plane. This latter limitation is now alleviated by the 3π Pan-STARRS1 survey, which could lead to the discovery of other distant Andromeda satellite dwarf galaxies.

  3. The most luminous heavily obscured quasars have a high merger fraction: morphological study of wise -selected hot dust-obscured galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Lulu; Gao, Ying; Zhang, Dandan; Jiang, Xiaoming; Wu, Qiaoqian; Yang, Jun; Li, Zhao [Shandong Provincial Key Lab of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Science, Shandong University, Weihai 264209 (China); Han, Yunkun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Fang, Guanwen, E-mail: llfan@sdu.edu.cn, E-mail: hanyk@ynao.ac.cn [Institute for Astronomy and History of Science and Technology, Dali University, Dali 671003 (China)

    2016-05-10

    Previous studies have shown that Wide-field Infrared Survey Explorer -selected hyperluminous, hot dust-obscured galaxies (Hot DOGs) are powered by highly dust-obscured, possibly Compton-thick active galactic nuclei (AGNs). High obscuration provides us a good chance to study the host morphology of the most luminous AGNs directly. We analyze the host morphology of 18 Hot DOGs at z ∼ 3 using Hubble Space Telescope /WFC3 imaging. We find that Hot DOGs have a high merger fraction (62 ± 14%). By fitting the surface brightness profiles, we find that the distribution of Sérsic indices in our Hot DOG sample peaks around 2, which suggests that most Hot DOGs have transforming morphologies. We also derive the AGN bolometric luminosity (∼10{sup 14} L {sub ⊙}) of our Hot DOG sample by using IR spectral energy distributions decomposition. The derived merger fraction and AGN bolometric luminosity relation is well consistent with the variability-based model prediction. Both the high merger fraction in an IR-luminous AGN sample and relatively low merger fraction in a UV/optical-selected, unobscured AGN sample can be expected in the merger-driven evolutionary model. Finally, we conclude that Hot DOGs are merger-driven and may represent a transit phase during the evolution of massive galaxies, transforming from the dusty starburst-dominated phase to the unobscured QSO phase.

  4. Determination of the spiral Galaxy structure parameters based on neutral hydrogen radiowave radiation in 21 cm line. 2. Nonlinear theory. 30 deg <= |l| <= 60 deg

    International Nuclear Information System (INIS)

    Berman, V.G.; Mishurov, Yu.N.

    1980-01-01

    Gas flow and its density distribution in the Galaxy spiral arm gravitational potential is calculated by means of the nonlinear theory. Line profile of H I emission in 21 cm based on the Galaxy spiral structure models proposed by Lin and Marochnik are constructed for the galactic coordinates 30 deg < or approximately |l| < or approximately 60 deg. It is shown that the conclusion about the possibility of agreement of the Marochnik model with observations made by means of the linear theory is confirmed in the nonlinear theory. In the Marochnik model distributions with R H II regions, CO-clouds, γ-radiation, supernova remnants and so on may also be understood connecting them with variation of gas compression in galactic shock with H radius

  5. Constraints on radial migration in spiral galaxies - II. Angular momentum distribution and preferential migration

    Science.gov (United States)

    Daniel, Kathryne J.; Wyse, Rosemary F. G.

    2018-05-01

    The orbital angular momentum of individual stars in galactic discs can be permanently changed through torques from transient spiral patterns. Interactions at the corotation resonance dominate these changes and have the further property of conserving orbital circularity. We derived in an earlier paper an analytic criterion that an unperturbed stellar orbit must satisfy in order for such an interaction to occur, i.e. for it to be in a trapped orbit around corotation. We here use this criterion in an investigation of how the efficiency of induced radial migration for a population of disc stars varies with the angular momentum distribution of that population. We frame our results in terms of the velocity dispersion of the population, this being an easier observable than is the angular momentum distribution. Specifically, we investigate how the fraction of stars in trapped orbits at corotation varies with the velocity dispersion of the population, for a system with an assumed flat rotation curve. Our analytic results agree with the finding from simulations that radial migration is less effective in populations with `hotter' kinematics. We further quantify the dependence of this trapped fraction on the strength of the spiral pattern, finding a higher trapped fraction for higher amplitude perturbations.

  6. Spatially Extended and High-Velocity Dispersion Molecular Component in Spiral Galaxies: Single-Dish Versus Interferometric Observations

    Science.gov (United States)

    Caldú-Primo, Anahi; Schruba, Andreas; Walter, Fabian; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart

    2015-02-01

    Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%-74% for NGC 4736 and 81%-92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ˜(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(˜1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (˜3″ or ˜100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.

  7. Spatially extended and high-velocity dispersion molecular component in spiral galaxies: Single-dish versus interferometric observations

    International Nuclear Information System (INIS)

    Caldú-Primo, Anahi; Walter, Fabian; Schruba, Andreas; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart

    2015-01-01

    Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%–74% for NGC 4736 and 81%–92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ∼(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(∼1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (∼3″ or ∼100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.

  8. Exploring the luminosity evolution and stellar mass assembly of 2SLAQ luminous red galaxies between redshifts 0.4 and 0.8

    Science.gov (United States)

    Banerji, Manda; Ferreras, Ignacio; Abdalla, Filipe B.; Hewett, Paul; Lahav, Ofer

    2010-03-01

    We present an analysis of the evolution of 8625 luminous red galaxies (LRGs) between z = 0.4 and 0.8 in the 2dF and Sloan Digital Sky Survey LRG and QSO (2SLAQ) survey. The LRGs are split into redshift bins and the evolution of both the luminosity and stellar mass function with redshift is considered and compared to the assumptions of a passive evolution scenario. We draw attention to several sources of systematic error that could bias the evolutionary predictions made in this paper. While the inferred evolution is found to be relatively unaffected by the exact choice of spectral evolution model used to compute K + e corrections, we conclude that photometric errors could be a source of significant bias in colour-selected samples such as this, in particular when using parametric maximum likelihood based estimators. We find that the evolution of the most massive LRGs is consistent with the assumptions of passive evolution and that the stellar mass assembly of the LRGs is largely complete by z ~ 0.8. Our findings suggest that massive galaxies with stellar masses above 1011Msolar must have undergone merging and star formation processes at a very early stage (z >~ 1). This supports the emerging picture of downsizing in both the star formation as well as the mass assembly of early-type galaxies. Given that our spectroscopic sample covers an unprecedentedly large volume and probes the most massive end of the galaxy mass function, we find that these observational results present a significant challenge for many current models of galaxy formation.

  9. LUMINOUS AND HIGH STELLAR MASS CANDIDATE GALAXIES AT z ≈ 8 DISCOVERED IN THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    International Nuclear Information System (INIS)

    Yan Haojing; Finkelstein, Steven L.; Huang, Kuang-Han; Ryan, Russell E.; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A.; Dickinson, Mark; Newman, Jeffrey A.; Somerville, Rachel S.; Davé, Romeel; Faber, S. M.; Papovich, Casey; Guo Yicheng; Giavalisco, Mauro; Lee, Kyoung-soo; Reddy, Naveen; Siana, Brian D.; Cooray, Asantha R.; Hathi, Nimish P.

    2012-01-01

    One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z ≈ 8. Its two-tiered ''wide and deep'' strategy bridges significant gaps in existing near-infrared surveys. Here we report on z ≈ 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 arcmin 2 to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J 1 mag brighter than any previously known F105W-dropouts. We derive constraints on the bright end of the rest-frame ultraviolet luminosity function of galaxies at z ≈ 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z ≈ 8. Their derived stellar masses are on the order of a few × 10 9 M ☉ , from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z ≈ 8. The high number density of very luminous and very massive galaxies at z ≈ 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.

  10. Photoionization Modeling of Infrared Fine-Structure Lines in Luminous Galaxies with Central Dust-Bounded Nebulae

    National Research Council Canada - National Science Library

    Fischer, Jacqueline; Allen, Robert; Dudley, C. C; Satyapal, Shobita; Luhman, Michael L; Wolfire, Mark G; Smith, Howard A

    2001-01-01

    Far-infrared spectroscopy of a small sample of IR-bright galaxies taken with the Infrared Space Observatory Long Wavelength Spectrometer has revealed a dramatic progression extending from strong fine...

  11. Boundary layer circulation in disk-halo galaxies. III. The dispersion relation for local disturbances and large-scale spiral waves

    International Nuclear Information System (INIS)

    Waxman, A.M.

    1980-01-01

    This paper concerns the geometry and physical properties of waves which arise from a shear-flow (i.e. inflection point) instability of the galactic boundary layer circulation. This circulation was shown to exist in the meridional plane of a model galaxy containing a gaseous disk embedded in a rotating gaseous halo. Previously derived equations describe the local effects of Boussinesq perturbations, in the form of spiral waves with aribitrary pitch angle, on the model disk-halo system. The equations are solved asymptotically for large values of the local Reynolds number. In passing to the limit of inviscid waves, it is possible to derive a locally valid dispersion relation. A perturbation technique is developed whereby the inviscid wave eigenvalues can be corrected for the effects of small but finite viscosity. In this way the roles of the buoyancy force, Coriolis acceleration, viscous stresses, and their interactions can be studied. It is found that, locally, the most unstable inviscid waves are leading and open with large azimuthal wavenumbers. However, these waves display little or no coherence over the face of the disk and so would not emerge as modes in a global analysis.The geometry of the dominant inviscid waves is found to be leading, tightly wound spirals. Viscous corrections shift the dominant wave form to trailing, tightly wound spirals with small azimuthal wavenumbers. These waves grow on a time scale of about 10 7 years. It is suggested that these waves can initiate spiral structure in galaxies during disk formation and that a subsequent transition to a self-gravitating acoustical mode with the same spiral geometry may occur. This transition becomes possible once the contrast in gas densities between the disk and surrounding halo becomes sufficiently large

  12. The x-ray luminous galaxy cluster population at 0.9 < z ≲ 1.6 as revealed by the XMM-Newton Distant Cluster Project

    International Nuclear Information System (INIS)

    Fassbender, R; Böhringer, H; Nastasi, A; Šuhada, R; Mühlegger, M; Mohr, J J; Pierini, D; De Hoon, A; Kohnert, J; Lamer, G; Schwope, A D; Pratt, G W; Quintana, H; Rosati, P; Santos, J S

    2011-01-01

    We present the largest sample to date of spectroscopically confirmed x-ray luminous high-redshift galaxy clusters comprising 22 systems in the range 0.9 2 of non-contiguous deep archival XMM-Newton coverage, of which 49.4 deg 2 are part of the core survey with a quantifiable selection function and 17.7 deg 2 are classified as ‘gold’ coverage as the starting point for upcoming cosmological applications. Distant cluster candidates were followed up with moderately deep optical and near-infrared imaging in at least two bands to photometrically identify the cluster galaxy populations and obtain redshift estimates based on the colors of simple stellar population models. We test and calibrate the most promising redshift estimation techniques based on the R-z and z-H colors for efficient distant cluster identifications and find a good redshift accuracy performance of the z-H color out to at least z ∼ 1.5, while the redshift evolution of the R-z color leads to increasingly large uncertainties at z ≳ 0.9. Photometrically identified high-z systems are spectroscopically confirmed with VLT/FORS 2 with a minimum of three concordant cluster member redshifts. We present first details of two newly identified clusters, XDCP J0338.5+0029 at z = 0.916 and XDCP J0027.2+1714 at z = 0.959, and investigate the x-ray properties of SpARCS J003550-431224 at z = 1.335, which shows evidence for ongoing major merger activity along the line-of-sight. We provide x-ray properties and luminosity-based total mass estimates for the full sample of 22 high-z clusters, of which 17 are at z ⩾ 1.0 and seven populate the highest redshift bin at z > 1.3. The median system mass of the sample is M 200 ≃ 2 × 10 14 M ⊙ , while the probed mass range for the distant clusters spans approximately (0.7-7) × 10 14 M ⊙ . The majority (>70%) of the x-ray selected clusters show rather regular x-ray morphologies, albeit in most cases with a discernible elongation along one axis. In contrast to

  13. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations

    Science.gov (United States)

    Krause, Marita; Irwin, Judith; Wiegert, Theresa; Miskolczi, Arpad; Damas-Segovia, Ancor; Beck, Rainer; Li, Jiang-Tao; Heald, George; Müller, Peter; Stein, Yelena; Rand, Richard J.; Heesen, Volker; Walterbos, Rene A. M.; Dettmar, Ralf-Jürgen; Vargas, Carlos J.; English, Jayanne; Murphy, Eric J.

    2018-03-01

    Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution. Methods: We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands. Results: The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density. Conclusions: The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.

  14. INTEGRAL FIELD SPECTROSCOPY AND MULTI-WAVELENGTH IMAGING OF THE NEARBY SPIRAL GALAXY NGC 5668 : AN UNUSUAL FLATTENING IN METALLICITY GRADIENT

    Energy Technology Data Exchange (ETDEWEB)

    Marino, R. A.; Gil de Paz, A.; Castillo-Morales, A.; Perez-Gonzalez, P. G.; Gallego, J.; Zamorano, J. [CEI Campus Moncloa, UCM-UPM, Departamento de Astrofisica y CC. de la Atmosfera, Facultad de CC. Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Munoz-Mateos, J. C. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Sanchez, S. F. [Centro Astronomico Hispano Aleman, Calar Alto (CSIC-MPG), C/Jesus Durban Remon 2-2, E-04004 Almeria (Spain); Alonso-Herrero, A. [Instituto de Fisica de Cantabria, CSIC-UC, Avenida de los Castros s/n, 39005 Santander (Spain); Boissier, S., E-mail: ramarino@fis.ucm.es [Laboratoire dAstrophysique de Marseille, OAMP, Universite Aix-Marseille and CNRS UMR 6110, 38 rue Frederic Joliot-Curie, 13388 Marseille cedex 13 (France)

    2012-07-20

    We present an analysis of the full bidimensional optical spectral cube of the nearby spiral galaxy NGC 5668, observed with the Pmas fiber PAcK Integral Field Unit (IFU) at the Calar Alto observatory 3.5 m telescope. We make use of broadband imaging to provide further constraints on the evolutionary history of the galaxy. This data set will allow us to improve our understanding of the mechanisms that drive the evolution of disks. We investigated the properties of 62 H II regions and concentric rings in NGC 5668 and derived maps in ionized-gas attenuation and chemical (oxygen) abundances. We find that while inward of r {approx}36'' {approx} 4.4 kpc {approx} 0.36 (D{sub 25}/2) the derived O/H ratio follows the radial gradient typical of spiral galaxies, the abundance gradient beyond r {approx} 36'' flattens out. The analysis of the multi-wavelength surface brightness profiles of NGC 5668 is performed by fitting these profiles with those predicted by chemo-spectrophotometric evolutionary models of galaxy disks. From this, we infer a spin and circular velocity of {lambda} = 0.053 and v{sub c} = 167 km s{sup -1}, respectively. The metallicity gradient and rotation curve predicted by this best-fitting galaxy model nicely match the values derived from the IFU observations, especially within r {approx}36''. The same is true for the colors despite some small offsets and a reddening in the bluest colors beyond that radius. On the other hand, deviations of some of these properties in the outer disk indicate that a secondary mechanism, possibly gas transfer induced by the presence of a young bar, must have played a role in shaping the recent chemical and star formation histories of NGC 5668.

  15. INTEGRAL FIELD SPECTROSCOPY AND MULTI-WAVELENGTH IMAGING OF THE NEARBY SPIRAL GALAXY NGC 5668 : AN UNUSUAL FLATTENING IN METALLICITY GRADIENT

    International Nuclear Information System (INIS)

    Marino, R. A.; Gil de Paz, A.; Castillo-Morales, A.; Pérez-González, P. G.; Gallego, J.; Zamorano, J.; Muñoz-Mateos, J. C.; Sánchez, S. F.; Alonso-Herrero, A.; Boissier, S.

    2012-01-01

    We present an analysis of the full bidimensional optical spectral cube of the nearby spiral galaxy NGC 5668, observed with the Pmas fiber PAcK Integral Field Unit (IFU) at the Calar Alto observatory 3.5 m telescope. We make use of broadband imaging to provide further constraints on the evolutionary history of the galaxy. This data set will allow us to improve our understanding of the mechanisms that drive the evolution of disks. We investigated the properties of 62 H II regions and concentric rings in NGC 5668 and derived maps in ionized-gas attenuation and chemical (oxygen) abundances. We find that while inward of r ∼36'' ∼ 4.4 kpc ∼ 0.36 (D 25 /2) the derived O/H ratio follows the radial gradient typical of spiral galaxies, the abundance gradient beyond r ∼ 36'' flattens out. The analysis of the multi-wavelength surface brightness profiles of NGC 5668 is performed by fitting these profiles with those predicted by chemo-spectrophotometric evolutionary models of galaxy disks. From this, we infer a spin and circular velocity of λ = 0.053 and v c = 167 km s –1 , respectively. The metallicity gradient and rotation curve predicted by this best-fitting galaxy model nicely match the values derived from the IFU observations, especially within r ∼36''. The same is true for the colors despite some small offsets and a reddening in the bluest colors beyond that radius. On the other hand, deviations of some of these properties in the outer disk indicate that a secondary mechanism, possibly gas transfer induced by the presence of a young bar, must have played a role in shaping the recent chemical and star formation histories of NGC 5668.

  16. A CFH12k lensing survey of X-ray luminous galaxy clusters - II. Weak lensing analysis and global correlations

    NARCIS (Netherlands)

    Bardeau, S.; Soucail, G.; Kneib, J.-P.; Czoske, O.; Ebeling, H.; Hudelot, P.; Smail, I.; Smith, G. P.

    Aims. We present a wide-field multi-color survey of a homogeneous sample of eleven clusters of galaxies for which we measure total masses and mass distributions from weak lensing. This sample, spanning a small range in both X-ray luminosity and redshift, is ideally suited to determining the

  17. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmic flows and cosmic web from luminous red galaxies

    Science.gov (United States)

    Ata, Metin; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Angulo, Raul E.; Ferraro, Simone; Gil-Marín, Hector; McDonald, Patrick; Hernández Monteagudo, Carlos; Müller, Volker; Yepes, Gustavo; Autefage, Mathieu; Baumgarten, Falk; Beutler, Florian; Brownstein, Joel R.; Burden, Angela; Eisenstein, Daniel J.; Guo, Hong; Ho, Shirley; McBride, Cameron; Neyrinck, Mark; Olmstead, Matthew D.; Padmanabhan, Nikhil; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G.; Schlegel, David; Schneider, Donald P.; Seo, Hee-Jong; Streblyanska, Alina; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana

    2017-06-01

    We present a Bayesian phase-space reconstruction of the cosmic large-scale matter density and velocity fields from the Sloan Digital Sky Survey-III Baryon Oscillations Spectroscopic Survey Data Release 12 CMASS galaxy clustering catalogue. We rely on a given Λ cold dark matter cosmology, a mesh resolution in the range of 6-10 h-1 Mpc, and a lognormal-Poisson model with a redshift-dependent non-linear bias. The bias parameters are derived from the data and a general renormalized perturbation theory approach. We use combined Gibbs and Hamiltonian sampling, implemented in the argo code, to iteratively reconstruct the dark matter density field and the coherent peculiar velocities of individual galaxies, correcting hereby for coherent redshift space distortions. Our tests relying on accurate N-body-based mock galaxy catalogues show unbiased real space power spectra of the non-linear density field up to k ˜ 0.2 h Mpc-1, and vanishing quadrupoles down to r ˜ 20 h-1 Mpc. We also demonstrate that the non-linear cosmic web can be obtained from the tidal field tensor based on the Gaussian component of the reconstructed density field. We find that the reconstructed velocities have a statistical correlation coefficient compared to the true velocities of each individual light-cone mock galaxy of r ˜ 0.68 including about 10 per cent of satellite galaxies with virial motions (about r = 0.75 without satellites). The power spectra of the velocity divergence agree well with theoretical predictions up to k ˜ 0.2 h Mpc-1. This work will be especially useful to improve, for example, baryon acoustic oscillation reconstructions, kinematic Sunyaev-Zeldovich, integrated Sachs-Wolfe measurements or environmental studies.

  18. Star Formation in Irregular Galaxies.

    Science.gov (United States)

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  19. Galaxy collisions

    International Nuclear Information System (INIS)

    Combes, F.

    1987-01-01

    Galaxies are not isolated systems of stars and gas, ''independent universes'' as believed by astronomers about ten years ago, but galaxies are formed and evolve by interaction with their environment, and in particular with their nearest neighbors. Gravitational interactions produce enormous tides in the disk of spiral galaxies, generate spiral arms and trigger bursts of star formation. Around elliptical galaxies, the collision with a small companion produces a series of waves, or shells. A galaxy interaction leads, in most cases, to the coalescence of the two coliders; therefore all galaxies are not formed just after the Big-Bang, when matter recombines: second generation galaxies are still forming now by galaxy mergers, essentially elliptical galaxies, but also compact dwarfs. Collisions between galaxies could also trigger activity in nuclei for radiogalaxies and quasars [fr

  20. Coma cluster of galaxies

    Science.gov (United States)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  1. The host of the Type I SLSN 2017egm. A young, sub-solar metallicity environment in a massive spiral galaxy

    Science.gov (United States)

    Izzo, L.; Thöne, C. C.; García-Benito, R.; de Ugarte Postigo, A.; Cano, Z.; Kann, D. A.; Bensch, K.; Della Valle, M.; Galadí-Enríquez, D.; Hedrosa, R. P.

    2018-02-01

    Context. Type I superluminous supernova (SLSN) host galaxies are predominantly low-metallicity, highly star-forming (SF) dwarfs. One of the current key questions is whether Type I SLSNe can only occur in such environments and hosts. Aims: Here we present an integral-field study of the massive, high-metallicity spiral NGC 3191, the host of SN 2017egm, the closest Type I SLSN known to date. We use data from PMAS/CAHA and the public MaNGA survey to shed light on the properties of the SLSN site and the origin of star formation in this non-starburst spiral galaxy. Methods: We map the physical properties of different H II regions throughout the galaxy and characterise their stellar populations using the STARLIGHT fitting code. Kinematical information allows us to study a possible interaction with its neighbouring galaxy as the origin of recent star formation activity which could have caused the SLSN. Results: NGC 3191 shows intense star formation in the western part with three large SF regions of low metallicity. Taking only the properties of emitting gas, the central regions of the host have a higher metallicity, a lower specific star formation rate, and lower ionisation. Modelling the stellar populations gives a different picture: the SLSN region has two dominant stellar populations with different ages, the younger one with an age of 2-10 Myr and lower metallicity, likely the population from which the SN progenitor originated. Emission line kinematics of NGC 3191 show indications of interaction with its neighbour MCG+08-19-017 at 45 kpc, which might be responsible for the recent starburst. In fact, this galaxy pair has hosted a total of four SNe, 1988B (Type Ia), SN 2003ds (Type Ic in MCG+08-19-017), PTF10bgl (Type II), and 2017egm, underlying the enhanced SF in both galaxies due to interaction. Conclusions: Our study shows that care should be taken when interpreting global host and even gas properties without looking at the stellar population history of the region

  2. Galaxies

    International Nuclear Information System (INIS)

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  3. Rotating shallow water modeling of planetary,astrophysical and plasma vortical structures (plasma transport across a magnetic field,model of the jupiter's GRS, prediction of existence of giant vortices in spiral galaxies

    Directory of Open Access Journals (Sweden)

    M. V. Nezlin

    1999-01-01

    Full Text Available Three kinds of results have been described in this paper. Firstly, an experimental study of the Rossby vortex meridional drift on the rotating shallow water has been carried out. Owing to the stringent physical analogy between the Rossby vortices and drift vortices in the magnetized plasma, the results obtained have allowed one to make a conclusion that the transport rate of the plasma, trapped by the drift vortices, across the magnetic field is equivalent to the “gyro-Bohm” diffusion coefficient. Secondly, a model of big vortices of the type of the Great Red Spot of Jupiter, dominating in the atmospheres of the outer planets, has been produced. Thirdly, the rotating shallow water modeling has been carried out of the hydrodynamical generation mechanism of spiral structures in galaxies. Trailing spiral waves of various azimuthal modes, generated by a shear flow between fast rotating “nucleus” and slow rotating periphery, were produced. The spirals are similar to those existing in the real galaxies. The hydrodynamical concept of the spiral structure formation in galaxies has been substantiated. Strong anticyclonic vortices between the spiral arms of the structures under study have been discovered for the first time. The existence of analogous vortices in real galaxies has been predicted. (This prediction has been reliably confirmed recently in special astronomical observations, carried out on the basis of the mentioned laboratory modeling and the prediction made – see the paper by A. Fridman et al. (Astrophysics and Space Science, 1997, 252, 115.

  4. The evolution of and starburst-agn connection in luminous and ultraluminous infrared galaxies and their link to globular cluster formation

    Science.gov (United States)

    Fiorenza, Stephanie Lynn

    The evolutionary connection between nuclear starbursts and active galactic nuclei (AGN) in luminous infrared galaxies (LIRGs; 1011 diagrams. I show that for the U/LIRGs in my sample the properties that describe their nuclear starbursts and AGN (e.g. star formation rate (SFR), L[O III], optical D parameter, D4000, and EW(Hdelta)) are independent of one another, ensuring that no biases affect correlations between these properties and objects' locations on the BPT diagrams. I then derive evolutionary paths on the BPT diagram involving [N II]/Halpha that are based on how these properties vary between two U/LIRGs positioned at the end-points. The paths involve U/LIRGs that decrease in SFR and increase in AGN activity. Paths with U/LIRGs that evolve into high luminosity AGN likely do so due to recent, strong starbursts. Second, to study how the properties of the IR power sources in U/LIRGs vary, I use a combination of photometric data points that I carefully measure (using photometry from SDSS, 2MASS, WISE, and Spitzer) and that I retrieve from catalogues (IRAS, AKARI, and ISO) to perform UV to FIR SED-fitting with CIGALE (Code Investigating GALaxy Emission) for 34 U/LIRGs from the IRAS 2 Jy Redshift Survey with 0.01 statistical analysis, and fit an exponential curve to the data to describe the expected amount of decrease in SFR seen for a U/LIRG in my sample over a given change in starburst age. Finally, I find evidence that the stellar mass and starburst mass fractions influence whether a U/LIRG in my sample will have a strong AGN and SFR, respectively. I compare the SFR-Mstar relationship seen in my sample with those predicted by models and found from previous observations. I find that the U/LIRGs with older starbursts (>125 Myr) agree with previous results, while those with younger starbursts show a large dispersion in Mstar. I conclude that this is supporting evidence that the star formation histories and timescales at which the IR power sources in U/LIRGs evolve

  5. A Luminous Lyα-emitting Galaxy at Redshift z = 6.535: Discovery and Spectroscopic Confirmation

    Science.gov (United States)

    Rhoads, James E.; Xu, Chun; Dawson, Steve; Dey, Arjun; Malhotra, Sangeeta; Wang, JunXian; Jannuzi, Buell T.; Spinrad, Hyron; Stern, Daniel

    2004-08-01

    We present a redshift z=6.535 galaxy discovered by its Lyα emission in a 9180 Å narrowband image from the Large Area Lyman Alpha survey. The Lyα line luminosity (1.1×1043 ergs s-1) is among the largest known for star-forming galaxies at z~6.5. The line shows the distinct asymmetry that is characteristic of high-redshift Lyα. The 2 σ lower bound on the observer-frame equivalent width is greater than 530 Å. This is hard to reconcile with a neutral intergalactic medium (IGM) unless the Lyα line is intrinsically strong and is emitted from its host galaxy with an intrinsic Doppler shift of several hundred km s-1. If the IGM is ionized, it corresponds to a rest-frame equivalent width greater than 40 Å after correcting for Lyα forest absorption. We also present a complete spectroscopic follow-up of the remaining candidates with line flux greater than 2×10-17 ergs cm-2 s-1 in our 1200 arcmin2 narrowband image. These include another galaxy with a strong emission line at 9136 Å and no detected continuum flux, which, however, is most likely an [O III] λ5007 source at z=0.824, on the basis of a weak detection of the [O III] λ4959 line. The data presented in this paper were obtained at the Kitt Peak National Observatory, the Gemini Observatory, and the W. M. Keck Observatory. Kitt Peak National Observatory, National Optical Astronomy Observatory, is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation (NSF). The Gemini Observatory is operated by AURA under a cooperative agreement with the NSF on behalf of the Gemini partnership: the NSF (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council, CNPq (Brazil), and CONICET (Argentina). The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the

  6. THE SL2S GALAXY-SCALE LENS SAMPLE. II. COSMIC EVOLUTION OF DARK AND LUMINOUS MASS IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Ruff, Andrea J.; Marshall, Philip J.; Treu, Tommaso; Auger, Matthew W.; Gavazzi, Raphael; Brault, Florence

    2011-01-01

    We present a joint gravitational lensing and stellar-dynamical analysis of 11 early-type galaxies (median deflector redshift z d = 0.5) from Strong Lenses in the Legacy Survey (SL2S). Using newly measured redshifts and stellar velocity dispersions from Keck spectroscopy with lens models from Paper I, we derive the total mass-density slope inside the Einstein radius for each of the 11 lenses. The average total density slope is found to be (γ') = 2.16 +0.09 -0.09 (ρ tot ∝r -γ ' ), with an intrinsic scatter of 0.25 +0.10 -0.07 . We also determine the dark matter fraction for each lens within half the effective radius, R eff /2, and find the average-projected dark matter mass fraction to be 0.42 +0.08 -0.08 with a scatter of 0.20 +0.09 -0.07 for a Salpeter initial mass function. By combining the SL2S results with those from the Sloan Lens ACS Survey (median z d = 0.2) and the Lenses Structure and Dynamics Survey (median z d = 0.8), we investigate cosmic evolution of γ' and find a mild trend ∂(γ')/∂z d = -0.25 +0.10 -0.12 . This suggests that the total density profile of massive galaxies has become slightly steeper over cosmic time. If this result is confirmed by larger samples, it would indicate that dissipative processes played some role in the growth of massive galaxies since z ∼ 1.

  7. Galaxy dynamics and the mass density of the universe.

    Science.gov (United States)

    Rubin, V C

    1993-06-01

    Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density.

  8. THE GRAVITATIONAL SHEAR-INTRINSIC ELLIPTICITY CORRELATION FUNCTIONS OF LUMINOUS RED GALAXIES IN OBSERVATION AND IN THE ΛCDM MODEL

    International Nuclear Information System (INIS)

    Okumura, Teppei; Jing, Y. P.

    2009-01-01

    We examine whether the gravitational shear-intrinsic ellipticity (GI) correlation function of the luminous red galaxies (LRGs) can be modeled with the distribution function of a misalignment angle advocated recently by Okumura et al. For this purpose, we have accurately measured the GI correlation for the LRGs in the Data Release 6 (DR6) of the Sloan Digital Sky Survey (SDSS), which confirms the results of Hirata et al. who used the DR4 data. By comparing the GI correlation functions in the simulation and in the observation, we find that the GI correlation can be modeled in the current ΛCDM model if the misalignment follows a Gaussian distribution with a zero mean and a typical misalignment angle σ θ = 34.9 +1.9 -2.1 degrees. We also find a correlation between the axis ratios and intrinsic alignments of LRGs. This effect should be taken into account in theoretical modeling of the GI and intrinsic ellipticity-ellipticity correlations for weak lensing surveys.

  9. The Westerbork HI survey of spiral and irregular galaxies - II. R-band surface photometry of late-type dwarf galaxies

    NARCIS (Netherlands)

    Swaters, RA; Balcells, M

    R-band surface photometry is presented for 171 late-type dwarf and irregular galaxies. For a subsample of 46 galaxies B-band photometry is presented as well. We present surface brightness profiles as well as isophotal and photometric parameters including magnitudes, diameters and central surface

  10. Using CO as a Physical Probe of the SF Activity in the Planck-Herschel Selected Hyper Luminous Infrared Galaxies

    Science.gov (United States)

    Harrington, Kevin

    2018-01-01

    Multi-J CO line studies are essential for quantifying the physical properties of the star-forming ISM, yet it is observationally expensive to detect those faint CO emission lines at high redshift. Our eight Planck-Herschel selected galaxies, with apparent LIR > 1013‑14 L⊙, serve as the best laboratories to conduct such a CO spectral line energy distribution analysis at high-z. Using our GBT and LMT (Jup = 1-3) measurements, we trace the bulk molecular gas mass, finding relatively large star formation efficiencies (as traced by the LIR-to-L’CO(1‑0) ratio) consistent with a starburst mode of activity. With our mid-J (Jup = 4-8) CO line measurements, obtained with the IRAM 30m telescope, we find gas excitation conditions ranging from sub-thermal SMGs to highly excited local starbursts out to Jup = 5-8. The consistently high velocity-integrated line intensities at Jup = 5-8 indicates the presence a warm/dense component responsible for exciting the higher-J CO lines, therefore we use coupled non-LTE large velocity gradient and dust radiative transfer models to begin characterising the two-component molecular ISM in these strongly lensed systems.

  11. Galaxy formation

    International Nuclear Information System (INIS)

    Gribbin, J.

    1979-01-01

    The current debate on the origin and evolution of galaxies is reviewed and evidence to support the so-called 'isothermal' and 'adiabatic' fluctuation models considered. It is shown that new theories have to explain the formation of both spiral and elliptical galaxies and the reason for their differences. It is stated that of the most recent models the best indicates that rotating spiral galaxies are formed naturally when gas concentrates in the centre of a great halo and forms stars while ellipticals are explained by later interactions between spiral galaxies and merging, which can cancel out the rotation while producing an elliptical galaxy in which the stars, coming from two original galaxies, follow very elliptical, anisotropic orbits. (UK)

  12. Absorption-line detections of 10{sup 5}-10{sup 6} K gas in spiral-rich groups of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Stocke, John T.; Keeney, Brian A.; Danforth, Charles W.; Syphers, David; Yamamoto, H.; Shull, J. Michael; Green, James C.; Froning, Cynthia [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Savage, Blair D.; Wakker, Bart; Kim, Tae-Sun [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Ryan-Weber, Emma V.; Kacprzak, Glenn G., E-mail: john.stocke@colorado.edu [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, VIC 3122 (Australia)

    2014-08-20

    Using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, the COS Science Team has conducted a high signal-to-noise survey of 14 bright QSOs. In a previous paper, these far-UV spectra were used to discover 14 'warm' (T ≥ 10{sup 5} K) absorbers using a combination of broad Lyα and broad O VI absorptions. A reanalysis of a few of this new class of absorbers using slightly relaxed fitting criteria finds as many as 20 warm absorbers could be present in this sample. A shallow, wide spectroscopic galaxy redshift survey has been conducted around these sight lines to investigate the warm absorber environment, which is found to be spiral-rich groups or cluster outskirts with radial velocity dispersions σ = 250-750 km s{sup –1}. While 2σ evidence is presented favoring the hypothesis that these absorptions are associated with the galaxy groups and not with the individual, nearest galaxies, this evidence has considerable systematic uncertainties and is based on a small sample size so it is not entirely conclusive. If the associations are with galaxy groups, the observed frequency of warm absorbers (dN/dz = 3.5-5 per unit redshift) requires them to be very extended as an ensemble on the sky (∼1 Mpc in radius at high covering factor). Most likely these warm absorbers are interface gas clouds whose presence implies the existence of a hotter (T ∼ 10{sup 6.5} K), diffuse, and probably very massive (>10{sup 11} M {sub ☉}) intra-group medium which has yet to be detected directly.

  13. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  14. Galaxies

    International Nuclear Information System (INIS)

    1987-01-01

    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  15. Spiral branches and star formation

    International Nuclear Information System (INIS)

    Zasov, A.V.

    1974-01-01

    Origin of spiral branches of galaxies and formation of stars in them are considered from the point of view of the theory of the gravitational gas condensation, one of comparatively young theories. Arguments are presented in favour of the stellar condensation theory. The concept of the star formation of gas is no longer a speculative hypothesis. This is a theory which assumes quantitative verification and explains qualitatively many facts observed. And still our knowledge on the nature of spiral branches is very poor. It still remains vague what processes give origin to spiral branches, why some galaxies have spirals and others have none. And shapes of spiral branches are diverse. Some cases are known when spiral branches spread outside boundaries of galaxies themselves. Such spirals arise exclusively in the region where there are two or some interacting galaxies. Only first steps have been made in the explanation of the galaxy spiral branches, and it is necessary to carry out new observations and new theoretical calculations

  16. THE UVJ SELECTION OF QUIESCENT AND STAR-FORMING GALAXIES: SEPARATING EARLY- AND LATE-TYPE GALAXIES AND ISOLATING EDGE-ON SPIRALS

    International Nuclear Information System (INIS)

    Patel, Shannon G.; Franx, Marijn; Holden, Bradford P.; Illingworth, Garth D.; Kelson, Daniel D.; Van der Wel, Arjen

    2012-01-01

    We utilize for the first time Hubble Space Telescope Advanced Camera for Surveys imaging to examine the structural properties of galaxies in the rest-frame U – V versus V – J diagram (i.e., the UVJ diagram) using a sample at 0.6 ☉ >10.25). The use of the UVJ diagram as a tool to distinguish quiescent galaxies from star-forming galaxies (SFGs) is becoming more common due to its ability to separate red quiescent galaxies from reddened SFGs. Quiescent galaxies occupy a small and distinct region of UVJ color space and we find most of them to have concentrated profiles with high Sérsic indices (n > 2.5) and smooth structure characteristic of early-type systems. SFGs populate a broad but well-defined sequence of UVJ colors and are comprised of objects with a mix of Sérsic indices. Interestingly, most UVJ-selected SFGs with high Sérsic indices also display structure due to dust and star formation typical of the n < 2.5 SFGs and late-type systems. Finally, we find that the position of an SFG on the sequence of UVJ colors is determined to a large degree by the mass of the galaxy and its inclination. Systems that are closer to edge-on generally display redder colors and lower [O II]λ3727 luminosity per unit mass as a consequence of the reddening due to dust within the disks. We conclude that the two main features seen in UVJ color space correspond closely to the traditional morphological classes of early- and late-type galaxies.

  17. FIRST RESULTS FROM THE DRAGONFLY TELEPHOTO ARRAY: THE APPARENT LACK OF A STELLAR HALO IN THE MASSIVE SPIRAL GALAXY M101

    Energy Technology Data Exchange (ETDEWEB)

    Van Dokkum, Pieter G.; Merritt, Allison [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Abraham, Roberto [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2014-02-20

    We use a new telescope concept, the Dragonfly Telephoto Array, to study the low surface brightness outskirts of the spiral galaxy M101. The radial surface brightness profile is measured down to μ {sub g} ∼ 32 mag arcsec{sup –2}, a depth that approaches the sensitivity of star count studies in the Local Group. We convert surface brightness to surface mass density using the radial g – r color profile. The mass density profile shows no significant upturn at large radius and is well-approximated by a simple bulge + disk model out to R = 70 kpc, corresponding to 18 disk scale lengths. Fitting a bulge + disk + halo model we find that the best-fitting halo mass M{sub halo}=1.7{sub −1.7}{sup +3.4}×10{sup 8} M {sub ☉}. The total stellar mass of M101 is M{sub tot,∗}=5.3{sub −1.3}{sup +1.7}×10{sup 10} M {sub ☉}, and we infer that the halo mass fraction f{sub halo}=M{sub halo}/M{sub tot,∗}=0.003{sub −0.003}{sup +0.006}. This mass fraction is lower than that of the Milky Way (f {sub halo} ∼ 0.02) and M31 (f {sub halo} ∼ 0.04). All three galaxies fall below the f {sub halo}-M {sub tot,} {sub *} relation predicted by recent cosmological simulations that trace the light of disrupted satellites, with M101's halo mass a factor of ∼10 below the median expectation. However, the predicted scatter in this relation is large, and more galaxies are needed to better quantify this possible tension with galaxy formation models. Dragonfly is well suited for this project: as integrated-light surface brightness is independent of distance, large numbers of galaxies can be studied in a uniform way.

  18. The most luminous z ∼ 9-10 galaxy candidates yet found: The luminosity function, cosmic star-formation rate, and the first mass density estimate at 500 Myr

    International Nuclear Information System (INIS)

    Oesch, P. A.; Illingworth, G. D.; Magee, D.; Bouwens, R. J.; Labbé, I.; Smit, R.; Franx, M.; Van Dokkum, P. G.; Momcheva, I.; Ashby, M. L. N.; Fazio, G. G.; Huang, J.-S.; Willner, S. P.; Gonzalez, V.; Trenti, M.; Brammer, G. B.; Skelton, R. E.; Spitler, L. R.

    2014-01-01

    We present the discovery of four surprisingly bright (H 160 ∼ 26-27 mag AB) galaxy candidates at z ∼ 9-10 in the complete HST CANDELS WFC3/IR GOODS-N imaging data, doubling the number of z ∼ 10 galaxy candidates that are known, just ∼500 Myr after the big bang. Two similarly bright sources are also detected in a reanalysis of the GOODS-S data set. Three of the four galaxies in GOODS-N are significantly detected at 4.5σ-6.2σ in the very deep Spitzer/IRAC 4.5 μm data, as is one of the GOODS-S candidates. Furthermore, the brightest of our candidates (at z = 10.2 ± 0.4) is robustly detected also at 3.6 μm (6.9σ), revealing a flat UV spectral energy distribution with a slope β = –2.0 ± 0.2, consistent with demonstrated trends with luminosity at high redshift. Thorough testing and use of grism data excludes known low-redshift contamination at high significance, including single emission-line sources, but as-yet unknown low redshift sources could provide an alternative solution given the surprising luminosity of these candidates. Finding such bright galaxies at z ∼ 9-10 suggests that the luminosity function for luminous galaxies might evolve in a complex way at z > 8. The cosmic star formation rate density still shows, however, an order-of-magnitude increase from z ∼ 10 to z ∼ 8 since the dominant contribution comes from low-luminosity sources. Based on the IRAC detections, we derive galaxy stellar masses at z ∼ 10, finding that these luminous objects are typically 10 9 M ☉ . This allows for a first estimate of the cosmic stellar mass density at z ∼ 10 resulting in log 10  ρ ∗ =4.7 −0.8 +0.5 M ☉ Mpc –3 for galaxies brighter than M UV ∼ –18. The remarkable brightness, and hence luminosity, of these z ∼ 9-10 candidates will enable deep spectroscopy to determine their redshift and nature, and highlights the opportunity for the James Webb Space Telescope to map the buildup of galaxies at redshifts much earlier than z ∼ 10.

  19. SPITZER OBSERVATIONS OF PASSIVE AND STAR-FORMING EARLY-TYPE GALAXIES: AN INFRARED COLOR-COLOR SEQUENCE

    International Nuclear Information System (INIS)

    Temi, Pasquale; Brighenti, Fabrizio; Mathews, William G.

    2009-01-01

    We describe the infrared properties of a large sample of early-type galaxies, comparing data from the Spitzer archive with Ks-band emission from the Two Micron All Sky Survey. While most representations of this data result in correlations with large scatter, we find a remarkably tight relation among colors formed by ratios of luminosities in Spitzer-Multiband Imaging Photometer bands (24, 70, and 160 μm) and the Ks band. Remarkably, this correlation among E and S0 galaxies follows that of nearby normal galaxies of all morphological types. In particular, the tight infrared color-color correlation for S0 galaxies alone follows that of the entire Hubble sequence of normal galaxies, roughly in order of galaxy type from ellipticals to spirals to irregulars. The specific star formation rate (SFR) of S0 galaxies estimated from the 24 μm luminosity increases with decreasing K-band luminosity (or stellar mass) from essentially zero, as with most massive ellipticals, to rates typical of irregular galaxies. Moreover, the luminosities of the many infrared-luminous S0 galaxies can significantly exceed those of the most luminous (presumably post-merger) E galaxies. SFRs in the most infrared-luminous S0 galaxies approach 1-10 solar masses per year. Consistently, with this picture we find that while most early-type galaxies populate an infrared red sequence, about 24% of the objects (mostly S0s) are in an infrared blue cloud together with late-type galaxies. For those early-type galaxies also observed at radio frequencies, we find that the far-infrared luminosities correlate with the mass of neutral and molecular hydrogen, but the scatter is large. This scatter suggests that the star formation may be intermittent or that similar S0 galaxies with cold gaseous disks of nearly equal mass can have varying radial column density distributions that alter the local and global SFRs.

  20. A general relativistic hydrostatic model for a galaxy

    International Nuclear Information System (INIS)

    Hojman, R.; Pena, L.; Zamorano, N.

    1991-08-01

    The existence of huge amounts of mass laying at the center of some galaxies has been inferred by data gathered at different wavelengths. It seems reasonable then, to incorporate general relativity in the study of these objects. A general relativistic hydrostatic model for a galaxy is studied. We assume that the galaxy is dominated by the dark mass except at the nucleus, where the luminous matter prevails. It considers four different concentric spherically symmetric regions, properly matched and with a specific equation of state for each of them. It yields a slowly raising orbital velocity for a test particle moving in the background gravitational field of the dark matter region. In this sense we think of this model as representing a spiral galaxy. The dependence of the mass on the radius in cluster and field spiral galaxies published recently, can be used to fix the size of the inner luminous core. A vanishing pressure at the edge of the galaxy and the assumption of hydrostatic equilibrium everywhere generates a jump in the density and the orbital velocity at the shell enclosing the galaxy. This is a prediction of this model. The ratio between the size core and the shells introduced here are proportional to their densities. In this sense the model is scale invariant. It can be used to reproduce a galaxy or the central region of a galaxy. We have also compared our results with those obtained with the Newtonian isothermal sphere. The luminosity is not included in our model as an extra variable in the determination of the orbital velocity. (author). 29 refs, 10 figs

  1. The SWELLS survey - IV. Precision measurements of the stellar and dark matter distributions in a spiral lens galaxy

    NARCIS (Netherlands)

    Barnabè, Matteo; Dutton, Aaron A.; Marshall, Philip J.; Auger, Matthew W.; Brewer, Brendon J.; Treu, Tommaso; Bolton, Adam S.; Koo, David C.; Koopmans, Léon V. E.

    We construct a fully self-consistent mass model for the lens galaxy SDSS J2141 at redshift 0.14, and use it to improve on previous studies by modelling its gravitational lensing effect, gas rotation curve and stellar kinematics simultaneously. We adopt a very flexible axisymmetric mass model

  2. Superclusters and galaxy formation

    International Nuclear Information System (INIS)

    Einasto, J.; Joeveer, M.; Saar, E.

    1979-01-01

    The spatial distribution of Galaxies and Galaxy congestions in the southern galactic hemisphere is studied. The rich galaxy congestions, containing many elliptic Galaxies and radiogalaxies, are linked with each other by chains of scanty congestions with moderate content of elliptic Galaxies and radiogalaxies. The flat formation, linking the density pikes and the intermediate chains, can reasonably be called supercongestion. In the central region of supercongestions there is a thin layer of Galaxies consisting of only spiral Galaxies. The neighbouring supercongestions touch each other, while the intersupercongestion space contains no Galaxy congestions and almost no Galaxies. It is shown that such a structure was, apparently, formed before the formation of Galaxies

  3. MID-INFRARED ATOMIC FINE-STRUCTURE EMISSION-LINE SPECTRA OF LUMINOUS INFRARED GALAXIES: SPITZER/IRS SPECTRA OF THE GOALS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Inami, H. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Armus, L.; Stierwalt, S.; Díaz-Santos, T.; Surace, J.; Howell, J.; Marshall, J. [Spitzer Science Center, California Institute of Technology, CA 91125 (United States); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Groves, B. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kewley, L. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Petric, A. [Department of Astronomy, California Institute of Technology, MS 320-47, Pasadena, CA 91125 (United States); Rich, J. [The Observatories, Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Haan, S. [CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Evans, A. S. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Mazzarella, J.; Lord, S. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Appleton, P. [NASA Herschel Science Center, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Spoon, H. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Frayer, D. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Matsuhara, H., E-mail: inami@noao.edu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (Japan); and others

    2013-11-10

    We present the data and our analysis of mid-infrared atomic fine-structure emission lines detected in Spitzer/Infrared Spectrograph high-resolution spectra of 202 local Luminous Infrared Galaxies (LIRGs) observed as part of the Great Observatories All-sky LIRG Survey (GOALS). We readily detect emission lines of [S IV], [Ne II], [Ne V], [Ne III], [S III]{sub 18.7{sub μm}}, [O IV], [Fe II], [S III]{sub 33.5{sub μm}}, and [Si II]. More than 75% of these galaxies are classified as starburst-dominated sources in the mid-infrared, based on the [Ne V]/[Ne II] line flux ratios and equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon feature. We compare ratios of the emission-line fluxes to those predicted from stellar photo-ionization and shock-ionization models to constrain the physical and chemical properties of the gas in the starburst LIRG nuclei. Comparing the [S IV]/[Ne II] and [Ne III]/[Ne II] line ratios to the Starburst99-Mappings III models with an instantaneous burst history, the emission-line ratios suggest that the nuclear starbursts in our LIRGs have ages of 1-4.5 Myr, metallicities of 1-2 Z{sub ☉}, and ionization parameters of 2-8 × 10{sup 7} cm s{sup –1}. Based on the [S III]{sub 33.5{sub μm}}/[S III]{sub 18.7{sub μm}} ratios, the electron density in LIRG nuclei is typically one to a few hundred cm{sup –3}, with a median electron density of ∼300 cm{sup –3}, for those sources above the low density limit for these lines. We also find that strong shocks are likely present in 10 starburst-dominated sources of our sample. A significant fraction of the GOALS sources (80) have resolved neon emission-line profiles (FWHM ≥600 km s{sup –1}) and five show clear differences in the velocities of the [Ne III] or [Ne V] emission lines, relative to [Ne II], of more than 200 km s{sup –1}. Furthermore, six starburst and five active galactic nucleus dominated LIRGs show a clear trend of increasing line width with ionization potential

  4. THE SLOAN GREAT WALL. MORPHOLOGY AND GALAXY CONTENT

    International Nuclear Information System (INIS)

    Einasto, M.; Liivamaegi, L. J.; Tempel, E.; Saar, E.; Tago, E.; Einasto, P.; Enkvist, I.; Einasto, J.; MartInez, V. J.; Heinaemaeki, P.; Nurmi, P.

    2011-01-01

    We present the results of a study of the morphology and galaxy content of the Sloan Great Wall (SGW), the richest galaxy system in the nearby universe. We use the luminosity density field to determine superclusters in the SGW, and the fourth Minkowski functional V 3 and the morphological signature (the K 1 -K 2 shapefinder curve) to show the different morphologies of the SGW, from a single filament to a multibranching, clumpy planar system. We show that the richest supercluster in the SGW, SCl 126, and especially its core, resembles a very rich filament, while another rich supercluster in the SGW, SCl 111, resembles a 'multispider'-an assembly of high-density regions connected by chains of galaxies. We study the substructure of individual galaxy populations determined by their color in these superclusters using Minkowski functionals and find that in the high-density core of the SGW the clumpiness of red and blue galaxies is similar, but in the outskirts of superclusters the distribution of red galaxies is clumpier than that of blue galaxies. At intermediate densities, the systems of blue galaxies have tunnels through them. We assess the statistical significance of our results using the halo model and smoothed bootstrap. We study the galaxy content and the properties of groups of galaxies in the two richest superclusters of the SGW, paying special attention to bright red galaxies (BRGs) and the first ranked (the most luminous) galaxies in SGW groups. The BRGs are the nearby luminous red galaxies; they are mostly bright and red and typically reside in groups (several groups host five or more BRGs). About one-third of the BRGs are spirals. The scatter of colors of elliptical BRGs is smaller than that of spiral BRGs. About half of the BRGs and of first ranked galaxies in groups have large peculiar velocities. Groups with elliptical BRGs as their first ranked galaxies populate superclusters more uniformly than the groups that have a spiral BRG as their first ranked

  5. Galaxy angular momentum

    International Nuclear Information System (INIS)

    Thompson, L.A.

    1974-01-01

    In order to test the theories which purport to explain the origin of galaxy angular momentum, this study presents new data for about 1000 individual galaxies in eight rich clusters. The clusters which are studied include Virgo, A 119, A 400, A 1656 (Coma), A 2147, A 2151 (Hercules), A 2197, and A 2199. Selected samples of these data are used to investigate systematic alignment effects in clusters of galaxies and to investigate the intrinsic ellipticities of E, SO, and spiral galaxies. The following new results are reported: Galaxies in the cluster A 2197 show a significant alignment effect (chi 2 probability less than 0.0002), and the preferential direction of alignment corresponds approximately to the major axis of the overall cluster elongation. None of the other seven clusters show any significant alignment trends. The spiral galaxy samples in four clusters (Virgo, A 1656, A 2151, and A 2197) were large enough to analyze the number distributions of forward and reverse winding spirals. Large and small spiral galaxies have identical ellipticity distributions. Large E and SO galaxies tend to be more spherical, and small E and SO galaxies more flattened. The intrinsic ellipticities of E, SO, and spiral galaxies are the same for galaxies in the ''field'' and for galaxies in rich clusters. Six models of galaxy formation are reviewed, and the major []mphasis is placed on how each model explains the origin of galaxy angular momentum. (Diss. Abstr. Int., B)

  6. The gas content in starburst galaxies

    International Nuclear Information System (INIS)

    Mirabel, I.F.; Sanders, D.B.

    1987-01-01

    The results from two large and homogeneous surveys, one in HI, the other in CO, are used for a statistical review of the gaseous properties of bright infrared galaxies. A constant ratio between the thermal far-infrared radiation and non-thermal radio emission is a universal property of star formation in spiral galaxies. The current rate of star formation in starburst galaxies is found to be 3-20 times larger than in the Milky Way. Galaxies with the higher far-infrared luminosities and warmer dust, have the larger mass fractions of molecular to atomic interstellar gas, and in some instances, striking deficiencies of neutral hydrogen are found. A statistical blueshift of the optical systemic velocities relative to the radio systemic velocities, may be due to an outward motion of the optical line-emitting gas. From the high rates of star formation, and from the short times required for the depletion of the interstellar gas, we conclude that the most luminous infrared galaxies represent a brief but important phase in the evolution of some galaxies, when two galaxies merge changing substantially their overall properties

  7. ESO 113-IG45 galaxy and/or quasar?

    CERN Document Server

    West, R M; Danks, A C

    1978-01-01

    Spectroscopy, UBV photometry and photography have been obtained of the extraordinary 13th magnitude object ESO 113-IG45 identified as a Seyfert galaxy by Fairall (1977); R.A.=01/sup h/ 21/sup m/.9; Decl .=-59 degrees 04' (1950). V/sub 0/=13630+or-50 km s/sup -1/; M/sub V /=-24/sup m/.0; largest diameter 75 kpc or more (with H/sub 0/=55 km s /sup -1/ Mpc/sup -1/). The nucleus is stellar-like and several times more luminous than the surrounding envelope which has a well-developed lane-structure. It is the intrinsically most luminous Seyfert nuclear yet known, and may be described as a 'quasar in the center of a (spiral) galaxy'. It is probably associated with the X-ray source 2A0120-591. (14 refs).

  8. Dark matter halo properties from galaxy-galaxy lensing

    International Nuclear Information System (INIS)

    Brimioulle, Fabrice

    2013-01-01

    The scientific results over the past years have shown that the Universe is by far not only composed of baryonic matter. In fact the major energy content of 72% of the Universe appears to be represented by so-called dark energy, while even from the remaining components only about one fifth is of baryonic origin, whereas 80% have to be attributed to dark matter. Originally appearing in observations of spiral galaxy rotation curves, the need for dark matter has also been verified investigating elliptical galaxies and galaxy clusters. In fact, it appears that dark matter played a major role during structure formation in the early Universe. Shortly after the Big Bang, when the matter distribution was almost homogeneous, initially very small inhomogeneities in the matter distribution formed the seeds for the gravitational collapse of the matter structures. Numerical n-body simulations, for instance, clearly indicate that the presently observable evolutionary state and complexity of the matter structure in the Universe would not have been possible without dark matter, which significantly accelerated the structure collapse due to its gravitational interaction. As dark matter does not interact electromagnetically and therefore is non-luminous but only interacts gravitationally, the gravitational lens effect provides an excellent opportunity for its detection and estimation of its amount. Weak gravitational lensing is a technique that makes use of the random orientation of the intrinsic galaxy ellipticities and thus their uniform distribution. Gravitational tidal forces introduce a coherent distortion of the background object shapes, leading to a deviation from the uniform distribution which depends on the lens galaxy properties and therefore can be used to study them. This thesis describes the galaxy-galaxy lensing analysis of 89deg 2 of optical data, observed within the CFHTLS-WIDE survey. In the framework of this thesis the data were used in order to create photometric

  9. The Nature of Accreting Black Holes in Nearby Galaxy Nuclei

    Science.gov (United States)

    Colbert, E. J. M.; Mushotzky, R. F.

    1999-05-01

    We have found compact X-ray sources in the center of 21 (54%) of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 - 2.4 keV) of these compact X-ray sources are ~ 10(37) -10(40) erg s(-1) (with a mean of 3 x 10(39) erg s(-1) ). The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ~ 390 pc. The fact that compact nuclear sources were found in nearly all (five of six) galaxies with previous evidence for a black hole or an AGN indicates that at least some of the X-ray sources are accreting supermassive black holes. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Gamma ~ 2.5) spectral slope. A multicolor disk blackbody model fits the data from the spiral galaxies well, suggesting that the X-ray object in these galaxies may be similar to a Black Hole Candidate in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ~ 0.7 keV) gas dominates the emission. The fact that (for both spiral and elliptical galaxies) the spectral slope is steeper than in normal type 1 AGNs and that relatively low absorbing columns (N_H ~ 10(21) cm(-2) ) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral and elliptical galaxies may be black hole X-ray binaries, low-luminosity AGNs, or possibly young X-ray luminous supernovae. Assuming the sources in the spiral galaxies are accreting black holes in their soft state, we estimate black hole masses ~ 10(2) -10(4) M_sun.

  10. Spiral Survey Expedition: A proposal to organize for the Survey, exploration and eventual colonization of the Milky Way Galaxy

    Science.gov (United States)

    Galloway, Scott

    1993-12-01

    This paper details a plan to explore the galaxy. Areas of interest to an era of cyberspace include the Tech-Index information system for the expedition and the role cyberspace has in increasing expedition productivity and increasing the capabilities of cyberspace by expanding the goals and data set. The paper offers lists of projects for the cybermarket pool. The expedition is described also as a developers tool for cyberspace to acknowledge the scope of the human mind far surpasses present engineering yet guides our direction of energies and materials. Maintaining the biological capability to reproduce the Terran biosphere via Evolution park conservation areas is discussed. The ecological repair of Spaceship Earth and the build up of an interstellar industrial base from simple recyling and educational programs is meshed with a proposed 'reverse engineering cyberspace' plan. A set of constructive contests are proposed with 3 new currencies offered as prizes. The Planet, The Solar System, The Galaxy are 3 areas of focus. Each of these areas are considered in a cyberspectrum of (1) Sentience; (2) Biological diversity; and (3) Energy/Matter resources.

  11. Spiral Survey Expedition: A proposal to organize for the Survey, exploration and eventual colonization of the Milky Way Galaxy

    Science.gov (United States)

    Galloway, Scott

    1993-01-01

    This paper details a plan to explore the galaxy. Areas of interest to an era of cyberspace include the Tech-Index information system for the expedition and the role cyberspace has in increasing expedition productivity and increasing the capabilities of cyberspace by expanding the goals and data set. The paper offers lists of projects for the cybermarket pool. The expedition is described also as a developers tool for cyberspace to acknowledge the scope of the human mind far surpasses present engineering yet guides our direction of energies and materials. Maintaining the biological capability to reproduce the Terran biosphere via Evolution park conservation areas is discussed. The ecological repair of Spaceship Earth and the build up of an interstellar industrial base from simple recyling and educational programs is meshed with a proposed 'reverse engineering cyberspace' plan. A set of constructive contests are proposed with 3 new currencies offered as prizes. The Planet, The Solar System, The Galaxy are 3 areas of focus. Each of these areas are considered in a cyberspectrum of (1) Sentience; (2) Biological diversity; and (3) Energy/Matter resources.

  12. The outskirts of spiral galaxies: touching stellar halos at z˜0 and z˜1

    Science.gov (United States)

    Bakos, J.; Trujillo, I.

    Taking advantage of ultra-deep imaging of SDSS Stripe82 and the Hubble Ultra Deep Field by HST, we explore the properties of stellar halos at two relevant epochs of cosmic history. At z˜0 we find that the radial surface brightness profiles of disks have a smooth continuation into the stellar halo that starts to affect the surface brightness profiles at mu r'˜28 {mag arcsec-2}, and at a radial distance of gtrsim 4-10 inner scale-lengths. The light contribution of the stellar halo to the total galaxy light varies from ˜1% to ˜5%, but in case of ongoing mergers, the halo light fraction can be as high as ˜10%. The integrated (g'-r') color of the stellar halo of our galaxies range from ˜0.4 to ˜1.2. By confronting these colors with model predictions, these halos can be attributed to moderately aged and metal-poor populations, however the extreme red colors (˜1) cannot be explained by populations of conventional IMFs. Very red halo colors can be attributed to stellar populations dominated by very low mass stars of low to intermediate metallicity produced by bottom-heavy IMFs. At z˜1 stellar halos appear to be ˜2 magnitudes brighter than their local counterparts, meanwhile they exhibit bluer colors ((g'-r')≲0.3 mag), as well. The stellar populations corresponding to these colors are compatible with having ages ≲1 Gyr. This latter observation strongly suggests the possibility that these halos were formed between z˜1 and z˜2. This result matches very well the theoretical predictions that locate most of the formation of the stellar halos at those early epochs. A pure passive evolutionary scenario, where the stellar populations of our high-z haloes simply fade to match the stellar halo properties found in the local universe, is consistent with our data.

  13. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Vigroux, Laurent

    1979-01-01

    This research thesis addresses theories on the chemical evolution of galaxies which aim at explaining abundances of different elements in galaxies, and more particularly aims at improving the model by modifying hypotheses. After a description of the simple model and of its uncertainties, the author shows how it is possible to understand the evolution of the main elements. Predictions obtained with this model are then compared with the present knowledge on galaxies by considering them according to an increasing complexity: Sun's neighbourhood, our galaxy, other spiral galaxies, elliptical galaxies, and finally galaxy clusters. A specific attention is given to irregular galaxies which are the simplest systems [fr

  14. SPATIALLY RESOLVED [Fe II] 1.64 μm EMISSION IN NGC 5135: CLUES FOR UNDERSTANDING THE ORIGIN OF THE HARD X-RAYS IN LUMINOUS INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Colina, L.; Pereira-Santaella, M.; Alonso-Herrero, A.; Arribas, S.; Bedregal, A. G.

    2012-01-01

    Spatially resolved near-IR and X-ray imaging of the central region of the luminous infrared galaxy (LIRG) NGC 5135 is presented. The kinematical signatures of strong outflows are detected in the [Fe II] 1.64 μm emission line in a compact region at 0.9 kpc from the nucleus. The derived mechanical energy release is consistent with a supernova rate of 0.05-0.1 yr –1 . The apex of the outflowing gas spatially coincides with the strongest [Fe II] emission peak and with the dominant component of the extranuclear hard X-ray emission. All these features provide evidence for a plausible direct physical link between supernova-driven outflows and the hard X-ray emitting gas in an LIRG. This result is consistent with model predictions of starbursts concentrated in small volumes and with high thermalization efficiencies. A single high-mass X-ray binary (HMXB) as the major source of the hard X-ray emission, although not favored, cannot be ruled out. Outside the active galactic nucleus, the hard X-ray emission in NGC 5135 appears to be dominated by the hot interstellar medium produced by supernova explosions in a compact star-forming region, and not by the emission due to HMXBs. If this scenario is common to (ultra)luminous infrared galaxies, the hard X-rays would only trace the most compact (≤100 pc) regions with high supernova and star formation densities, therefore a lower limit to their integrated star formation. The star formation rate derived in NGC 5135 based on its hard X-ray luminosity is a factor of two and four lower than the values obtained from the 24 μm and soft X-ray luminosities, respectively.

  15. Radial distributions of arm-gas offsets as an observational test of spiral theories

    OpenAIRE

    Baba, Junichi; Morokuma-Matsui, Kana; Egusa, Fumi

    2015-01-01

    Theories of stellar spiral arms in disk galaxies can be grouped into two classes based on the longevity of a spiral arm. Although the quasi-stationary density wave theory supposes that spirals are rigidly-rotating, long-lived patterns, the dynamic spiral theory predicts that spirals are differentially-rotating, transient, recurrent patterns. In order to distinguish between the two spiral models from observations, we performed hydrodynamic simulations with steady and dynamic spiral models. Hyd...

  16. Logarithmic Spiral

    Indian Academy of Sciences (India)

    Switzerland) even today can see the. Archimedian spiral and the inscription under it on the tombstone of Jacob Bernoulli 1. Logarithmic Spiral in Nature. Apart from logarithmic spiral no other curve seems to have attracted the attention of scientists, ...

  17. The VIMOS Public Extragalactic Redshift Survey (VIPERS). An unbiased estimate of the growth rate of structure at ⟨z⟩ = 0.85 using the clustering of luminous blue galaxies

    Science.gov (United States)

    Mohammad, F. G.; Granett, B. R.; Guzzo, L.; Bel, J.; Branchini, E.; de la Torre, S.; Moscardini, L.; Peacock, J. A.; Bolzonella, M.; Garilli, B.; Scodeggio, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Coupon, J.; De Lucia, G.; Ilbert, O.; Moutard, T.

    2018-02-01

    We used the VIMOS Public Extragalactic Redshift Survey (VIPERS) final data release (PDR-2) to investigate the performance of colour-selected populations of galaxies as tracers of linear large-scale motions. We empirically selected volume-limited samples of blue and red galaxies as to minimise the systematic error on the estimate of the growth rate of structure fσ8 from the anisotropy of the two-point correlation function. To this end, rather than rigidly splitting the sample into two colour classes we defined the red or blue fractional contribution of each object through a weight based on the (U - V ) colour distribution. Using mock surveys that are designed to reproduce the observed properties of VIPERS galaxies, we find the systematic error in recovering the fiducial value of fσ8 to be minimised when using a volume-limited sample of luminous blue galaxies. We modelled non-linear corrections via the Scoccimarro extension of the Kaiser model (with updated fitting formulae for the velocity power spectra), finding systematic errors on fσ8 of below 1-2%, using scales as small as 5 h-1 Mpc. We interpret this result as indicating that selection of luminous blue galaxies maximises the fraction that are central objects in their dark matter haloes; this in turn minimises the contribution to the measured ξ(rp,π) from the 1-halo term, which is dominated by non-linear motions. The gain is inferior if one uses the full magnitude-limited sample of blue objects, consistent with the presence of a significant fraction of blue, fainter satellites dominated by non-streaming, orbital velocities. We measured a value of fσ8 = 0.45 ± 0.11 over the single redshift range 0.6 ≤ z ≤ 1.0, corresponding to an effective redshift for the blue galaxies ⟨z⟩=0.85. Including in the likelihood the potential extra information contained in the blue-red galaxy cross-correlation function does not lead to an appreciable improvement in the error bars, while it increases the systematic error

  18. Galaxy And Mass Assembly (GAMA): gas fuelling of spiral galaxies in the local Universe II. - direct measurement of the dependencies on redshift and host halo mass of stellar mass growth in central disc galaxies

    Science.gov (United States)

    Grootes, M. W.; Dvornik, A.; Laureijs, R. J.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Liske, J.; Brown, M. J. I.; Holwerda, B. W.; Wang, L.

    2018-06-01

    We present a detailed analysis of the specific star formation rate-stellar mass (sSFR-M*) of z ≤ 0.13 disc central galaxies using a morphologically selected mass-complete sample (M* ≥ 109.5 M⊙). Considering samples of grouped and ungrouped galaxies, we find the sSFR-M* relations of disc-dominated central galaxies to have no detectable dependence on host dark-matter halo (DMH) mass, even where weak-lensing measurements indicate a difference in halo mass of a factor ≳ 5. We further detect a gradual evolution of the sSFR-M* relation of non-grouped (field) central disc galaxies with redshift, even over a Δz ≈ 0.04 (≈5 × 108 yr) interval, while the scatter remains constant. This evolution is consistent with extrapolation of the `main sequence of star-forming-galaxies' from previous literature that uses larger redshift baselines and coarser sampling. Taken together, our results present new constraints on the paradigm under which the SFR of galaxies is determined by a self-regulated balance between gas inflows and outflows, and consumption of gas by star formation in discs, with the inflow being determined by the product of the cosmological accretion rate and a fuelling efficiency - \\dot{M}_{b,halo}ζ. In particular, maintaining the paradigm requires \\dot{M}_{b,halo}ζ to be independent of the mass Mhalo of the host DMH. Furthermore, it requires the fuelling efficiency ζ to have a strong redshift dependence (∝(1 + z)2.7 for M* = 1010.3 M⊙ over z = 0-0.13), even though no morphological transformation to spheroids can be invoked to explain this in our disc-dominated sample. The physical mechanisms capable of giving rise to such dependencies of ζ on Mhalo and z for discs are unclear.

  19. HerMES: The rest-frame UV emission and a lensing model for the z = 6.34 luminous dusty starburst galaxy HFLS3

    International Nuclear Information System (INIS)

    Cooray, Asantha; Calanog, Jae; Casey, C. M.; Ma, Brian; Osage, W. A.; Wardlow, Julie L.; Bock, J.; Bridge, C.; Burgarella, D.; Bussmann, R. S.; Clements, D.; Conley, A.; Farrah, D.; Fu, H.; Gavazzi, R.; Ivison, R. J.; La Porte, N.; Lo Faro, B.; Magdis, G.; Oliver, S. J.

    2014-01-01

    We discuss the rest-frame ultraviolet emission from the starbursting galaxy HFLS3 at a redshift of 6.34. The galaxy was discovered in Herschel/SPIRE data due to its red color in the submillimeter wavelengths from 250 to 500 μm. Keck/NIRC2 K s -band adaptive optics imaging data showed two potential near-IR counterparts near HFLS3. Previously, the northern galaxy was taken to be in the foreground at z = 2.1, while the southern galaxy was assumed to be HFLS3's near-IR counterpart. The recently acquired Hubble/WFC3 and Advanced Camera for Surveys (ACS) imaging data show conclusively that both optically bright galaxies are in the foreground at z < 6. A new lensing model based on the Hubble imaging data and the millimeter-wave continuum emission yields a magnification factor of 2.2 ± 0.3, with a 95% confidence upper limit on the magnification of 3.5. When corrected for lensing, the instantaneous star formation rate is 1320 M ☉ yr –1 , with the 95% confidence lower limit around 830 M ☉ yr –1 . The dust and stellar masses of HFLS3 from the same spectral energy distribution (SED) models are at the level of 3 × 10 8 M ☉ and ∼5 × 10 10 M ☉ , respectively, with large systematic uncertainties on assumptions related to the SED model. With Hubble/WFC3 images, we also find diffuse near-IR emission about 0.5 arcsec (∼3 kpc) to the southwest of HFLS3 that remains undetected in the ACS imaging data. The emission has a photometric redshift consistent with either z ∼ 6 or a dusty galaxy template at z ∼ 2.

  20. Abundances in galaxies

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1991-01-01

    Standard (or mildly inhomogeneous) Big Bang nucleosynthesis theory is well confirmed by abundance measurements of light elements up to 7 Li and the resulting upper limit to the number of neutrino families confirmed in accelerator experiments. Extreme inhomogeneous models with a closure density in form of baryons seem to be ruled out and there is no evidence for a cosmic 'floor' to 9 Be or heavier elements predicted in some versions of those models. Galaxies show a correlation between luminous mass and abundance of carbon and heavier elements, usually attributed to escape of hot gas from shallow potential wells. Uncertainties include the role of dark matter and biparametric behaviour of ellipticals. Spirals have radial gradients which may arise from a variety of causes. In our own Galaxy one can distinguish three stellar populations - disk, halo and bulge - characterised by differing metallicity distribution functions. Differential abundance effects are found among different elements in stars as a function of metallicity and presumably age, notably in the ratio of oxygen and α-particle elements to iron. These may eventually be exploitable to set a time scale for the formation of the halo, bulge and disk. (orig.)

  1. The perfect shape spiral stories

    CERN Document Server

    Hammer, Øyvind

    2016-01-01

    This book uses the spiral shape as a key to a multitude of strange and seemingly disparate stories about art, nature, science, mathematics, and the human endeavour. In a way, the book is itself organized as a spiral, with almost disconnected chapters circling around and closing in on the common theme. A particular strength of the book is its extremely cross-disciplinary nature - everything is fun, and everything is connected! At the same time, the author puts great emphasis on mathematical and scientific correctness, in contrast, perhaps, with some earlier books on spirals. Subjects include the mathematical properties of spirals, sea shells, sun flowers, Greek architecture, air ships, the history of mathematics, spiral galaxies, the anatomy of the human hand, the art of prehistoric Europe, Alfred Hitchcock, and spider webs, to name a few.

  2. Star Formation in the Central Regions of Galaxies

    Science.gov (United States)

    Tsai, Mengchun

    2015-08-01

    The galactic central region connects the galactic nucleus to the host galaxy. If the central black hole co-evolved with the host galaxies, there should be some evidence left in the central region. We use the environmental properties in the central regions such as star-forming activity, stellar population and molecular abundance to figure out a possible scenario of the evolution of galaxies. In this thesis at first we investigated the properties of the central regions in the host galaxies of active and normal galaxies. We used radio emission around the nuclei of the host galaxies to represent activity of active galactic nuclei (AGNs), and used infrared ray (IR) emission to represent the star-forming activity and stellar population of the host galaxies. We determined that active galaxies have higher stellar masses (SMs) within the central kiloparsec radius than normal galaxies do independent of the Hubble types of the host galaxies; but both active and normal galaxies exhibit similar specific star formation rates (SSFRs). We also discovered that certain AGNs exhibit substantial inner stellar structures in the IR images; most of the AGNs with inner structures are Seyferts, whereas only a few LINERs exhibit inner structures. We note that the AGNs with inner structures show a positive correlation between the radio activity of the AGNs and the SFRs of the host galaxies, but the sources without inner structures show a negative correlation between the radio power and the SFRs. These results might be explained with a scenario of starburst-AGN evolution. In this scenario, AGN activities are triggered following a nuclear starburst; during the evolution, AGN activities are accompanied by SF activity in the inner regions of the host galaxies; at the final stage of the evolution, the AGNs might transform into LINERs, exhibiting weak SF activity in the central regions of the host galaxies. For further investigation about the inner structure, we choose the most nearby and luminous

  3. XMM-Newton X-ray and HST weak gravitational lensing study of the extremely X-ray luminous galaxy cluster Cl J120958.9+495352 (z = 0.902)

    Science.gov (United States)

    Thölken, Sophia; Schrabback, Tim; Reiprich, Thomas H.; Lovisari, Lorenzo; Allen, Steven W.; Hoekstra, Henk; Applegate, Douglas; Buddendiek, Axel; Hicks, Amalia

    2018-03-01

    Context. Observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased. Aims: We study the very luminous, high redshift (z = 0.902) galaxy cluster Cl J120958.9+495352 using XMM-Newton data. We measure global cluster properties and study the temperature profile and the cooling time to investigate the dynamical status with respect to the presence of a cool core. We use Hubble Space Telescope (HST) weak lensing data to estimate its total mass and determine the gas mass fraction. Methods: We perform a spectral analysis using an XMM-Newton observation of 15 ks cleaned exposure time. As the treatment of the background is crucial, we use two different approaches to account for the background emission to verify our results. We account for point spread function effects and deproject our results to estimate the gas mass fraction of the cluster. We measure weak lensing galaxy shapes from mosaic HST imaging and select background galaxies photometrically in combination with imaging data from the William Herschel Telescope. Results: The X-ray luminosity of Cl J120958.9+495352 in the 0.1-2.4 keV band estimated from our XMM-Newton data is LX = (13.4+1.2-1.0) × 1044 erg/s and thus it is one of the most X-ray luminous clusters known at similarly high redshift. We find clear indications for the presence of a cool core from the temperature profile and the central cooling time, which is very rare at such high redshifts. Based

  4. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    Science.gov (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  5. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-Dimensional Fast Fourier Transform Decomposition

    OpenAIRE

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quanti...

  6. Dark Galaxies and Lost Baryons (IAU S244)

    Science.gov (United States)

    Davies, Jonathan I.; Disney, Michael J.

    2008-05-01

    Preface; Conference prelims; The HI that barked in the night M. J. Disney; The detection of dark galaxies in blind HI surveys J. I. Davies; Red haloes of galaxies - reservoirs of baryonic dark matter? E. Zackrisson, N. Bergvall, C. Flynn, G. Ostlin, G. Micheva and B. Baldwell; Constraints on dark and visible mass in galaxies from strong gravitational lensing S. Dye and S. Warren; Lost baryons at low redshift S. Mathur, F. Nicastro and R. Williams; Observed properties of dark matter on small spatial scales R. Wyse and G. Gilmore; The mass distribution in spiral galaxies P. Salucci; Connecting lost baryons and dark galaxies via QSO absorption lines T. Tripp; ALFALFA: HI cosmology in the local universe R. Giovanelli; The ALFALFA search for (almost) dark galaxies across the HI mass function M. Haynes; HI clouds detected towards Virgo with the Arecibo Legacy Fast ALFA Survey B. Kent; Cosmic variance in the HI mass function S. Schneider; The Arecibo Galaxy Environments Survey - potential for finding dark galaxies and results so far R. Minchin et al.; Free-floating HI clouds in the M81 group E. Brinks, F. Walter and E. Skillman; Where are the stars in dark galaxies J. Rosenberg, J. Salzer and J. Cannon; The halo by halo missing baryon problem S. McGaugh; The local void is really empty R. Tully; Voids in the local volume: a limit on appearance of a galaxy in a dark matter halo A. Tikhonov and A. Klypin; Dim baryons in the cosmic web C. Impey; A census of baryons in galaxy clusters and groups A. Gonzalez, D. Zaritsky and A. Zabludo; Statistical properties of the intercluster light from SDSS image stacking S. Zibetti; QSO strong gravitational lensing and the detection of dark halos A. Maccio; Strong gravitational lensing: bright galaxies and lost dark-matter L. Koopmans; Mapping the distribution of luminous and dark matter in strong lensing galaxies I. Ferreras, P. Saha, L. Williams and S. Burles; Tidal debris posing as dark galaxies P. Duc, F. Bournaud and E. Brinks

  7. Size matters: abundance matching, galaxy sizes, and the Tully-Fisher relation in EAGLE

    Science.gov (United States)

    Ferrero, Ismael; Navarro, Julio F.; Abadi, Mario G.; Sales, Laura V.; Bower, Richard G.; Crain, Robert A.; Frenk, Carlos S.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2017-02-01

    The Tully-Fisher relation (TFR) links the stellar mass of a disc galaxy, Mstr, to its rotation speed: it is well approximated by a power law, shows little scatter, and evolves weakly with redshift. The relation has been interpreted as reflecting the mass-velocity scaling (M ∝ V3) of dark matter haloes, but this interpretation has been called into question by abundance-matching (AM) models, which predict the galaxy-halo mass relation to deviate substantially from a single power law and to evolve rapidly with redshift. We study the TFR of luminous spirals and its relation to AM using the EAGLE set of Λ cold dark matter (ΛCDM) cosmological simulations. Matching both relations requires disc sizes to satisfy constraints given by the concentration of haloes and their response to galaxy assembly. EAGLE galaxies approximately match these constraints and show a tight mass-velocity scaling that compares favourably with the observed TFR. The TFR is degenerate to changes in galaxy formation efficiency and the mass-size relation; simulations that fail to match the galaxy stellar mass function may fit the observed TFR if galaxies follow a different mass-size relation. The small scatter in the simulated TFR results because, at fixed halo mass, galaxy mass and rotation speed correlate strongly, scattering galaxies along the main relation. EAGLE galaxies evolve with lookback time following approximately the prescriptions of AM models and the observed mass-size relation of bright spirals, leading to a weak TFR evolution consistent with observation out to z = 1. ΛCDM models that match both the abundance and size of galaxies as a function of stellar mass have no difficulty reproducing the observed TFR and its evolution.

  8. THE NUMBER OF TIDAL DWARF SATELLITE GALAXIES IN DEPENDENCE OF BULGE INDEX

    International Nuclear Information System (INIS)

    López-Corredoira, Martín; Kroupa, Pavel

    2016-01-01

    We show that a significant correlation (up to 5σ) emerges between the bulge index, defined to be larger for a larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of the Sloan Digital Sky Survey and the number of tidal-dwarf galaxies in the catalog by Kaviraj et al. In the standard cold or warm dark matter cosmological models, the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized gravity models without cold or warm dark matter, such a correlation does not exist, because host galaxies cannot capture infalling dwarf galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models, a correlation is expected to exist between the bulge mass and the number of satellite galaxies because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher bulge/disk ratios do not imply higher dark/luminous ratios. Hence, our correlation reproduces the prediction of scenarios without dark matter, whereas an explanation is not found readily from the a priori predictions of the standard scenario with dark matter. Further research is needed to explore whether some application of the standard theory may explain this correlation

  9. High molecular gas fractions in normal massive star-forming galaxies in the young Universe.

    Science.gov (United States)

    Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B

    2010-02-11

    Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.

  10. Origin, structure and evolution of galaxies

    International Nuclear Information System (INIS)

    Zhi, F.L.

    1988-01-01

    Recent developments of the origin, structure and evolution of galaxies have been reviewed. The contents of this book are: Inflationary Universe; Cosmic String; Active Galaxies; Intergalactic Medium; Waves in Disk Galaxies; Dark Matter; Gas Dynamics in Disk Galaxies; Equilibrium and Stability of Spiral Galaxies

  11. NEAR-INFRARED SURVEY OF THE GOODS-NORTH FIELD: SEARCH FOR LUMINOUS GALAXY CANDIDATES AT z ∼> 6.5 ,

    International Nuclear Information System (INIS)

    Hathi, Nimish P.; Mobasher, Bahram; Capak, Peter; Wang, Wei-Hao; Ferguson, Henry C.

    2012-01-01

    We present near-infrared (NIR; J and K s ) survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field. The publicly available imaging data were obtained using the MOIRCS instrument on the 8.2 m Subaru and the WIRCam instrument on the 3.6 m Canada-France-Hawaii Telescope (CFHT). These observations fulfill a serious wavelength gap in the GOODS-N data, i.e., lack of deep NIR observations. We combine the Subaru/MOIRCS and CFHT/WIRCam archival data to generate deep J- and K s -band images, covering the full GOODS-N field (∼169 arcmin 2 ) to an AB magnitude limit of ∼25 mag (3σ). We applied z 850 -band dropout color selection criteria, using the NIR data generated here. We have identified two possible Lyman break galaxy (LBG) candidates at z ∼> 6.5 with J ∼ 850 -dropout objects, if confirmed, are among the brightest such candidates found so far. At z ∼> 6.5, their star formation rate is estimated as 100-200 M ☉ yr –1 . If they continue to form stars at this rate, they assemble a stellar mass of ∼5 × 10 10 M ☉ after about 400 million years, becoming the progenitors of massive galaxies observed at z ≅ 5. We study the implication of the z 850 -band dropout candidates discovered here, in constraining the bright end of the luminosity function and understanding the nature of high-redshift galaxies.

  12. Secular Evolution of Spiral Galaxies

    Science.gov (United States)

    2003-01-01

    recombination (z=1000). Furthermore, the BigBang nucleosynthesis model also requires a signi cantamount of non- baryonic dark matter (Primack 1999) ifthe universe...momentum (as well as energy) outward. Associ-ated with this outward angular momentum transport isan expected secular redistribution of disk matter , co...mode, a secular transfer of energy andangular momentum between the disk matter and thedensity wave. The existence of the phase shift betweenthe

  13. ALMA HCN AND HCO{sup +} J  = 3 − 2 OBSERVATIONS OF OPTICAL SEYFERT AND LUMINOUS INFRARED GALAXIES: CONFIRMATION OF ELEVATED HCN-TO-HCO{sup +} FLUX RATIOS IN AGNS

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi; Nakanishi, Kouichiro [National Astronomical Observatory of Japan, National Institutes of Natural Sciences (NINS), 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2016-12-01

    We present the results of our ALMA observations of three active galactic nucleus (AGN)-dominated nuclei in optical Seyfert 1 galaxies (NGC 7469, I Zw 1, and IC 4329 A) and eleven luminous infrared galaxies (LIRGs) with various levels of infrared estimated energetic contributions by AGNs at the HCN and HCO{sup +} J  = 3 − 2 emission lines. The HCN and HCO{sup +} J  = 3 − 2 emission lines are clearly detected at the main nuclei of all sources, except for IC 4329 A. The vibrationally excited ( v {sub 2} = 1f) HCN J  = 3 − 2 and HCO{sup +} J  = 3 − 2 emission lines are simultaneously covered, and HCN v {sub 2} = 1f J  = 3 − 2 emission line signatures are seen in the main nuclei of two LIRGs, IRAS 12112+0305 and IRAS 22491–1808, neither of which shows clear buried AGN signatures in the infrared. If the vibrational excitation is dominated by infrared radiative pumping, through the absorption of infrared 14 μ m photons, primarily originating from AGN-heated hot dust emission, then these two LIRGs may contain infrared-elusive, but (sub)millimeter-detectable, extremely deeply buried AGNs. These vibrationally excited emission lines are not detected in the three AGN-dominated optical Seyfert 1 nuclei. However, the observed HCN v {sub 2} = 1f to v  = 0 flux ratios in these optical Seyferts are still consistent with the intrinsic flux ratios in LIRGs with detectable HCN v {sub 2} = 1f emission lines. The observed HCN-to-HCO{sup +} J  = 3 − 2 flux ratios tend to be higher in galactic nuclei with luminous AGN signatures compared with starburst-dominated regions, as previously seen at J  = 1 − 0 and J  = 4 − 3.

  14. Models of galaxies - The modal approach

    International Nuclear Information System (INIS)

    Lin, C.C.; Lowe, S.A.

    1990-01-01

    The general viability of the modal approach to the spiral structure in normal spirals and the barlike structure in certain barred spirals is discussed. The usefulness of the modal approach in the construction of models of such galaxies is examined, emphasizing the adoption of a model appropriate to observational data for both the spiral structure of a galaxy and its basic mass distribution. 44 refs

  15. NEAR-INFRARED SURVEY OF THE GOODS-NORTH FIELD: SEARCH FOR LUMINOUS GALAXY CANDIDATES AT z {approx}> 6.5 {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Hathi, Nimish P. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Capak, Peter [Department of Astronomy, 249-17 Caltech, 1201 East California Boulevard, Pasadena, CA 91125 (United States); Wang, Wei-Hao [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Ferguson, Henry C., E-mail: nhathi@obs.carnegiescience.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-09-20

    We present near-infrared (NIR; J and K{sub s}) survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field. The publicly available imaging data were obtained using the MOIRCS instrument on the 8.2 m Subaru and the WIRCam instrument on the 3.6 m Canada-France-Hawaii Telescope (CFHT). These observations fulfill a serious wavelength gap in the GOODS-N data, i.e., lack of deep NIR observations. We combine the Subaru/MOIRCS and CFHT/WIRCam archival data to generate deep J- and K{sub s}-band images, covering the full GOODS-N field ({approx}169 arcmin{sup 2}) to an AB magnitude limit of {approx}25 mag (3{sigma}). We applied z{sub 850}-band dropout color selection criteria, using the NIR data generated here. We have identified two possible Lyman break galaxy (LBG) candidates at z {approx}> 6.5 with J {approx}< 24.5. The first candidate is a likely LBG at z {approx_equal} 6.5 based on a weak spectral feature tentatively identified as Ly{alpha} line in the deep Keck/DEIMOS spectrum, while the second candidate is a possible LBG at z {approx_equal} 7 based on its photometric redshift. These z{sub 850}-dropout objects, if confirmed, are among the brightest such candidates found so far. At z {approx}> 6.5, their star formation rate is estimated as 100-200 M{sub Sun} yr{sup -1}. If they continue to form stars at this rate, they assemble a stellar mass of {approx}5 Multiplication-Sign 10{sup 10} M{sub Sun} after about 400 million years, becoming the progenitors of massive galaxies observed at z {approx_equal} 5. We study the implication of the z{sub 850}-band dropout candidates discovered here, in constraining the bright end of the luminosity function and understanding the nature of high-redshift galaxies.

  16. Theory of spiral structure

    International Nuclear Information System (INIS)

    Lin, C.C.

    1977-01-01

    The density wave theory of galactic spirals has now developed into a form suitable for consideration by experts in Applied Mechanics. On the one hand, comparison of theoretical deductions with observational data has convinced astrophysicists of the validity of the basic physical picture and the calculated results. On the other hand, the dynamical problems of a stellar system, such as those concerning the origin of spiral structure in galaxies, have not been completely solved. This paper reviews the current status of such developments, including a brief summary of comparison with observations. A particularly important mechanism, currently called the mechanism of energy exchange, is described in some detail. The mathematical problems and the physical processes involved are similar to those occurring in certain instability mechanisms in the 'magnetic bottle' designed for plasma containment. Speculations are given on the future developments of the theory and on observational programs. (Auth.)

  17. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    International Nuclear Information System (INIS)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  18. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-dimensional Fast Fourier Transform Decomposition

    Science.gov (United States)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  19. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S. [Arkansas Center for Space and Planetary Sciences, 202 Field House, University of Arkansas, Fayetteville, AR 72701 (United States); Puerari, Ivanio [Instituto Nacional de Astrofisica, Optica y Electronica, Calle Luis Enrique Erro 1, 72840 Santa Maria Tonantzintla, Puebla (Mexico)

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  20. Frequency spirals

    International Nuclear Information System (INIS)

    Ottino-Löffler, Bertrand; Strogatz, Steven H.

    2016-01-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  1. Frequency spirals

    Energy Technology Data Exchange (ETDEWEB)

    Ottino-Löffler, Bertrand; Strogatz, Steven H., E-mail: strogatz@cornell.edu [Center for Applied Mathematics, Cornell University, Ithaca, New York 14853 (United States)

    2016-09-15

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  2. Mergers in galaxy groups. I. Structure and properties of elliptical remnants

    International Nuclear Information System (INIS)

    Taranu, Dan S.; Dubinski, John; Yee, H. K. C.

    2013-01-01

    We present collisionless simulations of dry mergers in groups of 3 to 25 galaxies to test the hypothesis that elliptical galaxies form at the centers of such groups. Mock observations of the central remnants confirm their similarity to ellipticals, despite having no dissipational component. We vary the profile of the original spiral's bulge and find that ellipticals formed from spirals with exponential bulges have too low Sersic indices. Mergers of spirals with de Vaucouleurs (classical) bulges produce remnants with larger Sersic indices correlated with luminosity, as with Sloan Digital Sky Survey ellipticals. Exponential bulge mergers are better fits to faint ellipticals, whereas classical bulge mergers better match luminous ellipticals. Similarly, luminous ellipticals are better reproduced by remnants undergoing many (>5) mergers, and fainter ellipticals by those with fewer mergers. The remnants follow tight size-luminosity and velocity dispersion-luminosity (Faber-Jackson) relations (<0.12 dex scatter), demonstrating that stochastic merging can produce tight scaling relations if the merging galaxies also follow tight scaling relations. The slopes of the size-luminosity and Faber-Jackson relations are close to observations but slightly shallower in the former case. Both relations' intercepts are offset—remnants are too large but have too low dispersions at fixed luminosity. Some remnants show substantial (v/σ > 0.1) rotational support, although most are slow rotators and few are very fast rotators (v/σ > 0.5). These findings contrast with previous studies concluding that dissipation is necessary to produce ellipticals from binary mergers of spirals. Multiple, mostly minor and dry mergers can produce bright ellipticals, whereas significant dissipation could be required to produce faint, rapidly rotating ellipticals.

  3. Our aging galaxy

    International Nuclear Information System (INIS)

    Lyngaa, G.

    1980-01-01

    The origin and evolution of the galaxies is described, according to the presently prevailing theories. The various types of galaxy and their structures are described, and also the formation of stars from the gas clouds. The spiral structure and the evolution of the disc are discussed. Finally the future development on the time scale of thousands of millions of years is briefly discussed. (JIW)

  4. Massive Star Clusters in Ongoing Galaxy Interactions: Clues to Cluster Formation

    Science.gov (United States)

    Keel, William C.; Borne, Kirk D.

    2003-09-01

    We present HST WFPC2 observations, supplemented by ground-based Hα data, of the star-cluster populations in two pairs of interacting galaxies selected for being in very different kinds of encounters seen at different stages. Dynamical information and n-body simulations provide the details of encounter geometry, mass ratio, and timing. In NGC 5752/4 we are seeing a weak encounter, well past closest approach, after about 2.5×108 yr. The large spiral NGC 5754 has a normal population of disk clusters, while the fainter companion NGC 5752 exhibits a rich population of luminous clusters with a flatter luminosity function. The strong, ongoing encounter in NGC 6621/2, seen about 1.0×108 yr past closest approach between roughly equal-mass galaxies, has produced an extensive population of luminous clusters, particularly young and luminous in a small region between the two nuclei. This region is dynamically interesting, with such a strong perturbation in the velocity field that the rotation curve reverses sign. From these results, in comparison with other strongly interacting systems discussed in the literature, cluster formation requires a threshold level of perturbation, with stage of the interaction a less important factor. The location of the most active star formation in NGC 6621/2 draws attention to a possible role for the Toomre stability threshold in shaping star formation in interacting galaxies. The rich cluster populations in NGC 5752 and NGC 6621 show that direct contact between gas-rich galaxy disks is not a requirement to form luminous clusters and that they can be triggered by processes happening within a single galaxy disk (albeit triggered by external perturbations). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  5. Creating lenticular galaxies with mergers

    NARCIS (Netherlands)

    Querejeta, Miguel; Eliche-Moral, M. Carmen; Tapia, Trinidad; Borlaff, Alejandro; van de Ven, Glenn; Lyubenova, Mariya; Martig, Marie; Falcón-Barroso, Jesús; Méndez-Abreu, Jairo; Zamorano, Jaime; Gallego, Jesús

    Lenticular galaxies (S0s) represent the majority of early-type galaxies in the local Universe, but their formation channels are still poorly understood. While galaxy mergers are obvious pathways to suppress star formation and increase bulge sizes, the marked parallelism between spiral and lenticular

  6. SURFACE BRIGHTNESS PROFILES OF DWARF GALAXIES. I. PROFILES AND STATISTICS

    International Nuclear Information System (INIS)

    Herrmann, Kimberly A.; Hunter, Deidre A.; Elmegreen, Bruce G.

    2013-01-01

    Radial surface brightness profiles of spiral galaxies are classified into three types: (I) single exponential, or the light falls off with one exponential to a break before falling off (II) more steeply, or (III) less steeply. Profile breaks are also found in dwarf disks, but some dwarf Type IIs are flat or increasing out to a break before falling off. Here we re-examine the stellar disk profiles of 141 dwarfs: 96 dwarf irregulars (dIms), 26 Blue Compact Dwarfs (BCDs), and 19 Magellanic-type spirals (Sms). We fit single, double, or even triple exponential profiles in up to 11 passbands: GALEX FUV and NUV, ground-based UBVJHK and Hα, and Spitzer 3.6 and 4.5 μm. We find that more luminous galaxies have brighter centers, larger inner and outer scale lengths, and breaks at larger radii; dwarf trends with M B extend to spirals. However, the V-band break surface brightness is independent of break type, M B , and Hubble type. Dwarf Type II and III profiles fall off similarly beyond the breaks but have different interiors and IIs break ∼twice as far as IIIs. Outer Type II and III scale lengths may have weak trends with wavelength, but pure Type II inner scale lengths clearly decrease from the FUV to visible bands whereas Type III inner scale lengths increase with redder bands. This suggests the influence of different star formation histories on profile type, but nonetheless the break location is approximately the same in all passbands. Dwarfs continue trends between profile and Hubble types such that later-type galaxies have more Type II but fewer Type I and III profiles than early-type spirals. BCDs and Sms are over-represented as Types III and II, respectively, compared to dIms

  7. A NEW SCALING RELATION FOR H II REGIONS IN SPIRAL GALAXIES: UNVEILING THE TRUE NATURE OF THE MASS-METALLICITY RELATION

    International Nuclear Information System (INIS)

    Rosales-Ortega, F. F.; Díaz, A. I.; Sánchez, S. F.; Iglesias-Páramo, J.; Vílchez, J. M.; Mast, D.; Bland-Hawthorn, J.; Husemann, B.

    2012-01-01

    We demonstrate the existence of a local mass, metallicity, star formation relation using spatially resolved optical spectroscopy of H II regions in the local universe. One of the projections of this distribution—the local mass-metallicity relation—extends over a wide range in this parameter space: three orders of magnitude in mass and a factor of eight in metallicity. We explain the new relation as the combined effect of the differential distributions of mass and metallicity in the disks of galaxies, and a selective star formation efficiency. We use this local relation to reproduce—with a noticeable agreement—the mass-metallicity relation seen in galaxies, and conclude that the latter is a scale-up integrated effect of a local relation, supporting the inside-out growth and downsizing scenarios of galaxy evolution.

  8. A NEW SCALING RELATION FOR H II REGIONS IN SPIRAL GALAXIES: UNVEILING THE TRUE NATURE OF THE MASS-METALLICITY RELATION

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Ortega, F. F.; Diaz, A. I. [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Sanchez, S. F.; Iglesias-Paramo, J.; Vilchez, J. M.; Mast, D. [Instituto de Astrofisica de Andalucia (CSIC), Camino Bajo de Huetor s/n, Aptdo. 3004, E-18080 Granada (Spain); Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); Husemann, B., E-mail: frosales@cantab.net [Leibniz-Institut fuer Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2012-09-10

    We demonstrate the existence of a local mass, metallicity, star formation relation using spatially resolved optical spectroscopy of H II regions in the local universe. One of the projections of this distribution-the local mass-metallicity relation-extends over a wide range in this parameter space: three orders of magnitude in mass and a factor of eight in metallicity. We explain the new relation as the combined effect of the differential distributions of mass and metallicity in the disks of galaxies, and a selective star formation efficiency. We use this local relation to reproduce-with a noticeable agreement-the mass-metallicity relation seen in galaxies, and conclude that the latter is a scale-up integrated effect of a local relation, supporting the inside-out growth and downsizing scenarios of galaxy evolution.

  9. Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy

    Science.gov (United States)

    Bose, Subhash; Dong, Subo; Pastorello, A.; Filippenko, Alexei V.; Kochanek, C. S.; Mauerhan, Jon; Romero-Cañizales, C.; Brink, Thomas G.; Chen, Ping; Prieto, J. L.; Post, R.; Ashall, Christopher; Grupe, Dirk; Tomasella, L.; Benetti, Stefano; Shappee, B. J.; Stanek, K. Z.; Cai, Zheng; Falco, E.; Lundqvist, Peter; Mattila, Seppo; Mutel, Robert; Ochner, Paolo; Pooley, David; Stritzinger, M. D.; Villanueva, S., Jr.; Zheng, WeiKang; Beswick, R. J.; Brown, Peter J.; Cappellaro, E.; Davis, Scott; Fraser, Morgan; de Jaeger, Thomas; Elias-Rosa, N.; Gall, C.; Gaudi, B. Scott; Herczeg, Gregory J.; Hestenes, Julia; Holoien, T. W.-S.; Hosseinzadeh, Griffin; Hsiao, E. Y.; Hu, Shaoming; Jaejin, Shin; Jeffers, Ben; Koff, R. A.; Kumar, Sahana; Kurtenkov, Alexander; Lau, Marie Wingyee; Prentice, Simon; Reynolds, T.; Rudy, Richard J.; Shahbandeh, Melissa; Somero, Auni; Stassun, Keivan G.; Thompson, Todd A.; Valenti, Stefano; Woo, Jong-Hak; Yunus, Sameen

    2018-01-01

    Hydrogen-poor superluminous supernovae (SLSNe-I) have been predominantly found in low-metallicity, star-forming dwarf galaxies. Here we identify Gaia17biu/SN 2017egm as an SLSN-I occurring in a “normal” spiral galaxy (NGC 3191) in terms of stellar mass (several times 1010 M⊙) and metallicity (roughly solar). At redshift z = 0.031, Gaia17biu is also the lowest-redshift SLSN-I to date, and the absence of a larger population of SLSNe-I in dwarf galaxies of similar redshift suggests that metallicity is likely less important to the production of SLSNe-I than previously believed. With the smallest distance and highest apparent brightness for an SLSN-I, we are able to study Gaia17biu in unprecedented detail. Its pre-peak near-ultraviolet to optical color is similar to that of Gaia16apd and among the bluest observed for an SLSN-I, while its peak luminosity (Mg = ‑21 mag) is substantially lower than that of Gaia16apd. Thanks to the high signal-to-noise ratios of our spectra, we identify several new spectroscopic features that may help to probe the properties of these enigmatic explosions. We detect polarization at the ∼0.5% level that is not strongly dependent on wavelength, suggesting a modest, global departure from spherical symmetry. In addition, we put the tightest upper limit yet on the radio luminosity of an SLSN-I with early stage in the evolution of an SLSN-I. This limit largely rules out an association of this SLSN-I with known populations of gamma-ray-burst-like central engines.

  10. GALAXY ZOO MORPHOLOGY AND PHOTOMETRIC REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Way, M. J.

    2011-01-01

    It has recently been demonstrated that one can accurately derive galaxy morphology from particular primary and secondary isophotal shape estimates in the Sloan Digital Sky Survey (SDSS) imaging catalog. This was accomplished by applying Machine Learning techniques to the Galaxy Zoo morphology catalog. Using the broad bandpass photometry of the SDSS in combination with precise knowledge of galaxy morphology should help in estimating more accurate photometric redshifts for galaxies. Using the Galaxy Zoo separation for spirals and ellipticals in combination with SDSS photometry we attempt to calculate photometric redshifts. In the best case we find that the root-mean-square error for luminous red galaxies classified as ellipticals is as low as 0.0118. Given these promising results we believe better photometric redshift estimates for all galaxies in the SDSS (∼350 million) will be feasible if researchers can also leverage their derived morphologies via Machine Learning. These initial results look to be promising for those interested in estimating weak lensing, baryonic acoustic oscillation, and other fields dependent upon accurate photometric redshifts.

  11. The formation of spiral galaxies: adiabatic compression with Young's algorithm and the relation of dark matter haloes to their primordial antecedents

    NARCIS (Netherlands)

    Katz, Harley; McGaugh, Stacy S.; Sellwood, J. A.; de Blok, W. J. G.

    We utilize Young's algorithm to model the adiabatic compression of the dark matter haloes of galaxies in the THINGS survey to determine the relationship between the halo fit to the rotation curve and the corresponding primordial halo prior to compression. Young's algorithm conserves radial action

  12. Clusters of Galaxies

    Science.gov (United States)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  13. Galactic models with variable spiral structure

    International Nuclear Information System (INIS)

    James, R.A.; Sellwood, J.A.

    1978-01-01

    A series of three-dimensional computer simulations of disc galaxies has been run in which the self-consistent potential of the disc stars is supplemented by that arising from a small uniform Population II sphere. The models show variable spiral structure, which is more pronounced for thin discs. In addition, the thin discs form weak bars. In one case variable spiral structure associated with this bar has been seen. The relaxed discs are cool outside resonance regions. (author)

  14. Asymmetric mass models of disk galaxies. I. Messier 99

    Science.gov (United States)

    Chemin, Laurent; Huré, Jean-Marc; Soubiran, Caroline; Zibetti, Stefano; Charlot, Stéphane; Kawata, Daisuke

    2016-04-01

    Mass models of galactic disks traditionally rely on axisymmetric density and rotation curves, paradoxically acting as if their most remarkable asymmetric features, such as lopsidedness or spiral arms, were not important. In this article, we relax the axisymmetry approximation and introduce a methodology that derives 3D gravitational potentials of disk-like objects and robustly estimates the impacts of asymmetries on circular velocities in the disk midplane. Mass distribution models can then be directly fitted to asymmetric line-of-sight velocity fields. Applied to the grand-design spiral M 99, the new strategy shows that circular velocities are highly nonuniform, particularly in the inner disk of the galaxy, as a natural response to the perturbed gravitational potential of luminous matter. A cuspy inner density profile of dark matter is found in M 99, in the usual case where luminous and dark matter share the same center. The impact of the velocity nonuniformity is to make the inner profile less steep, although the density remains cuspy. On another hand, a model where the halo is core dominated and shifted by 2.2-2.5 kpc from the luminous mass center is more appropriate to explain most of the kinematical lopsidedness evidenced in the velocity field of M 99. However, the gravitational potential of luminous baryons is not asymmetric enough to explain the kinematical lopsidedness of the innermost regions, irrespective of the density shape of dark matter. This discrepancy points out the necessity of an additional dynamical process in these regions: possibly a lopsided distribution of dark matter.

  15. Forming Spirals From Shadows

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    and right sides of the disks here). [Montesinos et al. 2016]Observations of Shadow SpiralsIn the authors models, two shadowed regions result in the formation of two spiral arms. The arms that develop start at a pitch angle of 1522, and gradually evolve to a shallower 1114 pitch at distances of ~65150 AU.The more luminous the central star, the more quickly the spiral arms form, due to the greater contrast between illuminated and shadowed disk regions: for a 0.25 solar-mass disk illuminated by a 1 solar-luminosity star, arms start to form after about 2500 orbits. If we increasethe stars brightness to 100 solar luminosities, the arms form after only 150 orbits.Montesinos and collaborators conclude by testing whether or not such spiral structures would be observable. They use a 3D radiative transfer code to produce scattered-light predictions of what the disk would look like to direct-imaging telescopes. They find that these shadow-induced spirals should be detectable.This first study clearly demonstrates that large-scale spiral density waves can form in protoplanetary disks without the presence of planets. The authors now plan to add more detailed physics to their models to better understand what we might observe when looking at systems that were shapedin this way.Density evolution in two shadowed disks. Top row: disk illuminated by a 100 L star, at 150, 250, and 500 orbits (from left to right). Bottom row: disk illuminated by a 1 L star, at 2500, 3500, and 4000 orbits. The rightmost top and bottom panels show control simulations (no shadows were present on the disk) after 1000 and 6000 orbits. (A different type of spiral starts to develop in the bottom control simulation as a result of a gravitational instability, but it never extends to the edges of the disk.) [Montesinos et al. 2016]CitationMatas Montesinos et al 2016 ApJ 823 L8. doi:10.3847/2041-8205/823/1/L8

  16. Compression of interstellar clouds in spiral density-wave shocks

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1979-01-01

    A mechanism of triggering star formation by galactic shocks is discussed. The possibilty that shocks may form along spiral arms in the gaseous component of a galactic disk is by now a familiar feature of spiral wave theory. It was suggested by Roberts (1969) that these shocks could trigger star formation in narrow bands forming a coherent spiral pattern over most of the disk of a galaxy. Some results of computer simulations of such a triggering process for star formation are reported. (Auth.)

  17. Chemical evolution of galaxies

    CERN Document Server

    Matteucci, Francesca

    2012-01-01

    The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of ...

  18. Interactions between intergalactic medium and galaxies

    International Nuclear Information System (INIS)

    Einasto, J.; Saar, E.

    1977-01-01

    The interaction of galaxies with the environmental gas both in clusters and in small groups of galaxies is investigated. Interaction between galaxies and the ambient medium can be considered simply as final touches in the process of galaxy formation. Large relative velocities of galaxies in their clusters and of the intercluster gas result in a loss of the intergalactic gas, that in its turn affects the morphology of cluster galaxies. Interaction between the coronal clouds and the gas in the disk of spiral galaxies may result in regular patterns of star formation and in the bending of planes of galaxies

  19. The spiral

    DEFF Research Database (Denmark)

    Bibace, Roger; Kharlamov, Nikita

    2013-01-01

    ’s work with Bernard Kaplan on symbol formation is a primer on this idea. This paper examines the idea of spirality and develops the notion of dynamic coexistence that can clarify the issue of directionality of development; that is, what is the general trajectory or ground plan that development assumes...... and the environment. The idea of dynamic coexistence is developed on this foundation. In the context of Werner and Kaplan’s work, dynamic coexistence represents the syncretic nature of processes and levels of organization: they are neither innately fused nor organized. Instead, the antithesis between fusion...

  20. Massive stars in galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1987-01-01

    The relationship between the morphologic type of a galaxy and the evolution of its massive stars is explored, reviewing observational results for nearby galaxies. The data are presented in diagrams, and it is found that the massive-star populations of most Sc spiral galaxies and irregular galaxies are similar, while those of Sb spirals such as M 31 and M 81 may be affected by morphology (via differences in the initial mass function or star-formation rate). Consideration is also given to the stability-related upper luminosity limit in the H-R diagram of hypergiant stars (attributed to radiation pressure in hot stars and turbulence in cool stars) and the goals of future observation campaigns. 88 references

  1. Spiral-arm instability: giant clump formation via fragmentation of a galactic spiral arm

    Science.gov (United States)

    Inoue, Shigeki; Yoshida, Naoki

    2018-03-01

    Fragmentation of a spiral arm is thought to drive the formation of giant clumps in galaxies. Using linear perturbation analysis for self-gravitating spiral arms, we derive an instability parameter and define the conditions for clump formation. We extend our analysis to multicomponent systems that consist of gas and stars in an external potential. We then perform numerical simulations of isolated disc galaxies with isothermal gas, and compare the results with the prediction of our analytic model. Our model describes accurately the evolution of the spiral arms in our simulations, even when spiral arms dynamically interact with one another. We show that most of the giant clumps formed in the simulated disc galaxies satisfy the instability condition. The clump masses predicted by our model are in agreement with the simulation results, but the growth time-scale of unstable perturbations is overestimated by a factor of a few. We also apply our instability analysis to derive scaling relations of clump properties. The expected scaling relation between the clump size, velocity dispersion, and circular velocity is slightly different from that given by the Toomre instability analyses, but neither is inconsistent with currently available observations. We argue that the spiral-arm instability is a viable formation mechanism of giant clumps in gas-rich disc galaxies.

  2. Mass distributions in disk galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas; Verheijen, Marc; Bershady, Matthew; Westfall, Kyle; Andersen, David; Swaters, Rob

    We present results on luminous and dark matter mass distributions in disk galaxies from the DiskMass Survey. As expected for normal disk galaxies, stars dominate the baryonic mass budget in the inner region of the disk; however, at about four optical scale lengths (hR ) the atomic gas starts to

  3. Considerations of an oscillating spiral universe cosmology

    International Nuclear Information System (INIS)

    Sachs, M.

    1989-01-01

    It is proposed that if the spiral configuration of galaxies is explicable in terms of the equations of motion of its constituent stars, as an expression of global laws of nature, then the universe as a whole may be similarly described in terms of the motions of its constituent galaxies with a similar spiral dynamics. With the functional form of the spiral paths in terms of Fresnel integrals, taken from solutions of equations in general relativity (from previous analyses of galactic configurations) the density of the universe at the big bang stage is determined. It is found to depend, numerically, on the neutron lifetime and the period of oscillation of the universe as a whole. There is some concluding discussion of the implications of this analysis of the matter of the universe at the big bang stage vis a vis the black hole state of matter

  4. Molecular clouds and galactic spiral structure

    International Nuclear Information System (INIS)

    Dame, T.M.

    1984-02-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide

  5. X-RAY HIGH-RESOLUTION SPECTROSCOPY REVEALS FEEDBACK IN A SEYFERT GALAXY FROM AN ULTRA-FAST WIND WITH COMPLEX IONIZATION AND VELOCITY STRUCTURE

    International Nuclear Information System (INIS)

    Longinotti, A. L.; Krongold, Y.; Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P.; Giroletti, M.; Panessa, F.; Costantini, E.

    2015-01-01

    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s −1 , detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase

  6. X-RAY HIGH-RESOLUTION SPECTROSCOPY REVEALS FEEDBACK IN A SEYFERT GALAXY FROM AN ULTRA-FAST WIND WITH COMPLEX IONIZATION AND VELOCITY STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Longinotti, A. L. [Catedrática CONACYT—Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, Tonantzintla, Puebla, C.P. 72840, México (Mexico); Krongold, Y. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70264, 04510 Mexico D.F. (Mexico); Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P. [ESAC, P.O. Box, 78 E-28691 Villanueva de la Cañada, Madrid (Spain); Giroletti, M. [INAF Osservatorio di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Panessa, F. [INAF—Istituto di Astrofisica e Planetologia Spaziali di Roma (IAPS), Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Costantini, E. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands)

    2015-11-10

    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s{sup −1}, detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase.

  7. The Intrinsic Shape of Galaxies in SDSS/Galaxy Zoo

    OpenAIRE

    Rodríguez, Silvio; Padilla, Nelson D.

    2013-01-01

    By modelling the axis ratio distribution of SDSS DR8 galaxies we find the intrinsic 3D shapes of spirals and ellipticals. We use morphological information from the Galaxy Zoo project and assume a non-parametric distribution intrinsic of shapes, while taking into account dust extinction. We measure the dust extinction of the full sample of spiral galaxies and find a smaller value than previous estimations, with an edge-on extinction of $E_0 = 0.284^{+0.015}_{-0.026}$ in the SDSS r band. We als...

  8. Simulations of the flocculent spiral M33: what drives the spiral structure?

    Science.gov (United States)

    Dobbs, C. L.; Pettitt, A. R.; Corbelli, E.; Pringle, J. E.

    2018-05-01

    We perform simulations of isolated galaxies in order to investigate the likely origin of the spiral structure in M33. In our models, we find that gravitational instabilities in the stars and gas are able to reproduce the observed spiral pattern and velocity field of M33, as seen in HI, and no interaction is required. We also find that the optimum models have high levels of stellar feedback which create large holes similar to those observed in M33, whilst lower levels of feedback tend to produce a large amount of small scale structure, and undisturbed long filaments of high surface density gas, hardly detected in the M33 disc. The gas component appears to have a significant role in producing the structure, so if there is little feedback, both the gas and stars organise into clear spiral arms, likely due to a lower combined Q (using gas and stars), and the ready ability of cold gas to undergo spiral shocks. By contrast models with higher feedback have weaker spiral structure, especially in the stellar component, compared to grand design galaxies. We did not see a large difference in the behaviour of Qstars with most of these models, however, because Qstars stayed relatively constant unless the disc was more strongly unstable. Our models suggest that although the stars produce some underlying spiral structure, this is relatively weak, and the gas physics has a considerable role in producing the large scale structure of the ISM in flocculent spirals.

  9. Planck early results. XXVI. Detection with Planck and confirmation by XMM-Newton of PLCK G266.6-27.3, an exceptionally X-ray luminous and massive galaxy cluster at z ~ 1

    DEFF Research Database (Denmark)

    Lähteenmäki, A.; Poutanen, T.; Natoli, P.

    2011-01-01

    We present first results on PLCKG266.6-27.3, a galaxy cluster candidate detected at a signal-to-noise ratio of 5 in the Planck All Sky survey. An XMM-Newton validation observation has allowed us to confirm that the candidate isa bona fide galaxy cluster. With these X-ray data we measure an accurate...

  10. Galaxy formation and evolution

    CERN Document Server

    Mo, Houjun; White, Simon

    2010-01-01

    The rapidly expanding field of galaxy formation lies at the interface between astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies.

  11. Spiral tectonics

    Science.gov (United States)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  12. Visibility of galaxies

    International Nuclear Information System (INIS)

    Disney, M.J.

    1976-01-01

    It is stated that counts of galaxies could be seriously biased by selection effects, largely influenced by the brightness of the night sky. To illustrate this suppose the Earth were situated near the center of a giant elliptical galaxy. The mean surface brightness of the sky would then appear some 8 to 9 mag. brighter than is observed from our position in the Galaxy. Extragalactic space would then appear to be empty void; spiral and irregular galaxies would be invisible, and all that could be easily detected would be the core regions of galaxy ellipticals very similar to our own. Much of the Universe would be blinded by the surface brightness of the parent galaxy. This blinding, however, is a relative matter and the question arises as to what extent we are blinded by the spiral galaxy in which we exist. Strong indirect evidence exists that our knowledge of galaxies is heavily biased by the sky background, and the true population of extragalactic space may be very different from that seen. Other relevant work is also discussed, and further investigational work is indicated. (U.K.)

  13. Might dark matter not be concentric with luminous matter

    International Nuclear Information System (INIS)

    Xu Chongming; Lu Tan.

    1986-12-01

    In this paper, an idea on dark matter nonconcentric with luminous matter is proposed. This case could influence the rotation curve of galaxy differently in its different direction. Recently, Rubin and Ford's observation on rotation curve of Hickson 88a has been explained by means of the idea. Some possible observational predictions have also been given. (author)

  14. Six Decades of Spiral Density Wave Theory

    Science.gov (United States)

    Shu, Frank H.

    2016-09-01

    The theory of spiral density waves had its origin approximately six decades ago in an attempt to reconcile the winding dilemma of material spiral arms in flattened disk galaxies. We begin with the earliest calculations of linear and nonlinear spiral density waves in disk galaxies, in which the hypothesis of quasi-stationary spiral structure (QSSS) plays a central role. The earliest success was the prediction of the nonlinear compression of the interstellar medium and its embedded magnetic field; the earliest failure, seemingly, was not detecting color gradients associated with the migration of OB stars whose formation is triggered downstream from the spiral shock front. We give the reasons for this apparent failure with an update on the current status of the problem of OB star formation, including its relationship to the feathering substructure of galactic spiral arms. Infrared images can show two-armed, grand design spirals, even when the optical and UV images show flocculent structures. We suggest how the nonlinear response of the interstellar gas, coupled with overlapping subharmonic resonances, might introduce chaotic behavior in the dynamics of the interstellar medium and Population I objects, even though the underlying forces to which they are subject are regular. We then move to a discussion of resonantly forced spiral density waves in a planetary ring and their relationship to the ideas of disk truncation, and the shepherding of narrow rings by satellites orbiting nearby. The back reaction of the rings on the satellites led to the prediction of planet migration in protoplanetary disks, which has had widespread application in the exploding data sets concerning hot Jupiters and extrasolar planetary systems. We then return to the issue of global normal modes in the stellar disk of spiral galaxies and its relationship to the QSSS hypothesis, where the central theoretical concepts involve waves with negative and positive surface densities of energy and angular

  15. The intrinsic shape of galaxies in SDSS/Galaxy Zoo

    Science.gov (United States)

    Rodríguez, Silvio; Padilla, Nelson D.

    2013-09-01

    By modelling the axis ratio distribution of Sloan Digital Sky Survey (SDSS) Data Release 8 galaxies, we find the intrinsic 3D shapes of spirals and ellipticals. We use morphological information from the Galaxy Zoo project and assume a non-parametric distribution intrinsic of shapes, while taking into account dust extinction. We measure the dust extinction of the full sample of spiral galaxies and find a smaller value than previous estimations, with an edge-on extinction of E_0 = 0.284^{+0.015}_{-0.026} in the SDSS r band. We also find that the distribution of minor to major axis ratio has a mean value of 0.267 ± 0.009, slightly larger than previous estimates mainly due to the lower extinction used; the same affects the circularity of galactic discs, which are found to be less round in shape than in previous studies, with a mean ellipticity of 0.215 ± 0.013. For elliptical galaxies, we find that the minor to major axis ratio, with a mean value of 0.584 ± 0.006, is larger than previous estimations due to the removal of spiral interlopers present in samples with morphological information from photometric profiles. These interlopers are removed when selecting ellipticals using Galaxy Zoo data. We find that the intrinsic shapes of galaxies and their dust extinction vary with absolute magnitude, colour and physical size. We find that bright elliptical galaxies are more spherical than faint ones, a trend that is also present with galaxy size, and that there is no dependence of elliptical galaxy shape with colour. For spiral galaxies, we find that the reddest ones have higher dust extinction as expected, due to the fact that this reddening is mainly due to dust. We also find that the thickness of discs increases with luminosity and size, and that brighter, smaller and redder galaxies have less round discs.

  16. Cosmic rings from colliding galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Mitton, S

    1976-11-18

    Research on two ring galaxies has led to the proposal of an interaction model to account for the rings. It is envisaged that this class of galaxy is created when a compact galaxy crashes through the disc of a spiral galaxy. The results of a spectroscopic investigation of the galaxy known as the Cartwheel and of another ring galaxy 11 NZ 4 are discussed. The general picture of ring galaxies which emerges from these studies of a massive starry nucleus with a necklace of emitting gas and some spokes and along the spin axis of the wheel a small companion galaxy that is devoid of interstellar gas. An explanation of these properties is considered.

  17. Disk Model with Central Bulge for Galaxy M94

    International Nuclear Information System (INIS)

    Jalocha, J.; Bratek, L.; Kutschera, M.

    2010-01-01

    A global disk model for spiral galaxies is modified by adding a spherical component to the galactic center to account for the presence of a central spherical bulge. It is verified whether such modification could be substantial for predictions of total mass and of its distribution in spiral galaxy M94. (authors)

  18. Inclination effects on the recognition of Seyfert galaxies

    International Nuclear Information System (INIS)

    Keel, W.C.

    1980-01-01

    Axial ratios have been measured from images of 91 Seyfert galaxies thought to be disk systems, and their distribution as a function of axial ratio compared to that of field spirals similarly distributed in distance. There is a deficiency of nearly edge-on Seyfert 1 galaxies relative to the comparison sample. Examination of the visibility of nuclei in a sample of nearby spirals indicates that the effect is too large to be caused by absorption in the disks of normal spiral galaxies, while no absorption other than that expected from such disks is found in non-Seyfert Markarian spirals with bright, condensed nuclei

  19. Molecular clouds and galactic spiral structure

    International Nuclear Information System (INIS)

    Dame, T.M.

    1983-01-01

    Galactic CO line emission at 115 GHz has been surveyed in the region 12 0 less than or equal to l less than or equal to 60 0 and -1 0 less than or equal to b less than or equal to 1 0 in order to study the distribution of molecular clouds in the inner galaxy; an inner strip 0 0 .5 wide has been sampled every beamwidth (0 0 .125), the rest every two beamwidths. Comparison of the survey with similar HI data reveals a detailed correlation with the most intense 21-cm features, implying that the CO and HI trace the same galactic features and have the same large-scale kinematics. To each of the classical 21-cm (HI) spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is developed in which all of the CO emission from the inner galaxy arises from spiral arms. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide. A variety of methods are employed to estimate distances and masses for the largest clouds detected by the inner-galaxy survey and a catalogue is compiled. The catalogued clouds, the largest of which have masses of several 10 6 M/sub sunmass/ and linear dimensions in excess of 100 pc, are found to be excellent spiral-arm tracers. One of the nearest of the clouds, that associated with the supernova remnant W44, is fully mapped in both CO and 13 CO and is discussed in detail

  20. 2XMM ultraluminous X-ray source candidates in nearby galaxies

    Science.gov (United States)

    Walton, D. J.; Roberts, T. P.; Mateos, S.; Heard, V.

    2011-09-01

    Ultraluminous X-ray sources (ULXs) are some of the most enigmatic X-ray bright sources known to date. It is generally accepted that they cannot host black holes as large as those associated with active galaxies, but they appear to be significantly more luminous than their better understood Galactic X-ray binary (XRB) cousins, while displaying an intriguing combination of differences and similarities with them. Through studying large, representative samples of these sources we may hope to enhance our understanding of them. To this end, we derive a large catalogue of 650 X-ray detections of 470 ULX candidates, located in 238 nearby galaxies, by cross-correlating the 2XMM Serendipitous Survey with the Third Reference Catalogue of Bright Galaxies. The presented dedicated catalogue offers a significant improvement over those previously published in terms of both the number and the contribution of background contaminants, e.g. distant quasars, which we estimate to be at most 24 per cent, but more likely ˜17 per cent. To undertake population studies, we define a 'complete' sub-sample of sources compiled from observations of galaxies with sensitivity limits below 1039 erg s-1. The luminosity function of this sample is consistent with a simple power law of form N(>LX) ∝ L-0.96 ± 0.11X. Although we do not find any statistical requirement for a cut-off luminosity of Lc˜ 1040 erg s-1, as has been reported previously, we are not able to rule out its presence. Also, we find that the number of ULXs per unit galaxy mass, Su, decreases with increasing galaxy mass for ULXs associated with spiral galaxies, and is well modelled with a power law of form Su ∝ M-0.64 ± 0.07. This is in broad agreement with previous results, and is likely to be a consequence of the decrease in specific star formation and increase in metallicity with increasing spiral galaxy mass. Su is consistent with being constant with galaxy mass for sources associated with elliptical galaxies, implying this

  1. HUBBLE SPACE TELESCOPE WFC3 GRISM SPECTROSCOPY AND IMAGING OF A GROWING COMPACT GALAXY AT z = 1.9

    International Nuclear Information System (INIS)

    Van Dokkum, Pieter G.; Brammer, Gabriel

    2010-01-01

    We present HST/WFC3 grism near-IR spectroscopy of the brightest galaxy at z > 1.5 in the GOODS-South WFC3 ERS grism pointing. The spectrum is of remarkable quality and shows the redshifted Balmer lines Hβ, Hγ, and Hδ in absorption at z = 1.902 ± 0.002. The absorption lines can be produced by a post-starburst stellar population with a luminosity-weighted age of ∼0.5 Gyr. The mass-to-light ratio inferred from the spectrum implies a stellar mass of (4 ± 1) x 10 11 M sun . We determine the morphology of the galaxy from a deep WFC3 H 160 image. Similar to other massive galaxies at z ∼ 2 the galaxy is compact, with an effective radius of 2.1 ± 0.3 kpc. Although most of the light is in a compact core, the galaxy has two red, smooth spiral arms that appear to be tidally induced. The spatially resolved spectroscopy demonstrates that the center of the galaxy is quiescent whereas the surrounding disk is forming stars, as it shows Hβ in emission. The galaxy interacts with a companion at a projected distance of 18 kpc, which also shows prominent tidal features. The companion is a factor of ∼10 fainter than the primary galaxy and may have a lower metallicity. It is tempting to interpret these observations as evidence for the growth of compact, quiescent high-redshift galaxies through minor mergers, which has been proposed by several recent observational and theoretical studies. Interestingly both objects host luminous active galactic nuclei, which implies that these mergers can be accompanied by significant black hole growth.

  2. Listening to Shells: Galaxy Masses from Disrupted Satellites

    Science.gov (United States)

    Westfall, Kyle; Sanderson, R.

    2014-01-01

    Our ability to measure the dynamical mass of an individual galaxy is limited by the radial extent of the luminous tracers of its potential. For elliptical galaxies, it is difficult to go much beyond two effective radii using integrated light. Appealing to particle tracers like globular clusters has allowed for mass measurements out to ten effective radii. The extended atomic-gas disks of spiral galaxies allow one to measure rotation curves well beyond the optical disk to a few effective radii; however, such mass measurements are limited to a single plane and can often be confused by warps. As surface-brightness limits have pushed ever deeper, the revealed abundance of disrupted satellites in galaxy halos may present a unique opportunity for determining the enclosed mass at very large radii (more than five effective radii), provided our technology is up to the challenge. Here, we discuss the prospect of using integrated light spectroscopy of tidal shells to measure the masses of individual galaxies at redshifts of up to 0.1. Our study considers the limitations of current and projected instrumentation on 4-, 10-, and 30-meter class telescopes. The observational constraints are indeed very stringent, requiring both high sensitivity (with V-band surface brightness limits below 25 mag per square arsecond) and high spectral resolution (R>10k), whereas spatial resolution is effectively irrelevant. Bigger is not necessarily better for our application because of the limited field-of-view (FOV) of large telescopes, which dramatically limits their total grasp. We find the two most-promising setups are (1) a large FOV (1 square arcminute) integral-field unit (IFU) on a 4-meter class telescope and (2) a multiplexed suite of small FOV (10 square arcseconds) IFUs on a 10- or 30-meter class telescope. Two prospective instruments that may meet these requirements are WEAVE, an instrument currently planned for the William Herschel Telescope at La Palma, and an OPTIMOS

  3. Hot Gas Halos in Galaxies

    Science.gov (United States)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  4. Gravitational instability, evolution of galaxies and star formation

    International Nuclear Information System (INIS)

    Palous, J.

    1979-01-01

    The gravitational collapse is the key to the theories of galaxy and star formation. The observations, showing intrinsic differences between elliptical and spiral galaxies, guide our fundamental conceptions on the formation and evolution of systems in question. Stars in elliptical galaxies and in spherical components of spiral galaxies were formed in a short period of time during early phases of protogalactic collapse, at a time of violent star formation. The disc-like components of spiral galaxies, however, were built gradually in the course of galactic evolution. Star formation in elliptical galaxies is described by the collision model of interstellar clouds, while star formation in discs is characterised by several processes: the expansion of HII regions, the expansion of supernovae remnants and the shock wave related to the presence of the spiral structure. (author)

  5. Orientations of galaxies in the Local Supercluster

    International Nuclear Information System (INIS)

    MacGillivray, H.T.; Dodd, R.J.; McNally, B.V.; Corwin, H.G. Jr.

    1982-01-01

    The distribution of position angles and ellipticities for a sample of 727 spiral and irregular galaxies, selected on the basis of brightness and radial velocity from the Second Reference Catalogue of Bright Galaxies, is analysed for non-random effects. A marginally significant tendency is found for galaxies to be aligned along the plane of the Local Supercluster. This preferential alignment effect is found to exist mainly for galaxies at high supergalactic latitude and for galaxies which are seen nearly edge-on. The results are interpreted as supporting the view that superclusters formed prior to the formation of the constituent galaxies and clusters. (author)

  6. Evolution of disk galaxies and the origin of SO galaxies

    International Nuclear Information System (INIS)

    Larson, R.B.; Tinsley, B.M.; Caldwell, C.N.

    1980-01-01

    We reconsider the relation between spiral and SO galaxies in the light of recent data on the colors and morphology of disk systems, and on the content of clusters at different redshifts. Star formation will strongly deplete the gas in most spirals in a fraction of the Hubble time, so we suggest that the gas in spirals has been replenished by infall from residual envelopes, probably including gas-rich companions and tidal debris. SO's may then be disk systems that lost their gas-rich envelopes at an early stage and consumed their remaining gas by star formation. This picture is consistent with the color of SO's if most of their star formation stopped at least a few gigayears ago, and it is consistent with their small disk-to-bulge ratios relative to spirals, since this is a direct result of the early truncation of star formation. Numerical simulations show that the gas envelopes of disk galaxies in clusters are largely stripped away when the clusters collapse, but star formation can continue in the spirals for several gigayears while their remaining disk gas is consumed. These results can explain the blue galaxies observed by Butcher and Oemler in two condensed clusters at zapprox.0.4: these clusters are seen just before most of their galaxies run out of gas, so that star formation is still occurring in them but will soon die out, causing the spirals to evolve into SO's with normal present colors. A rapid evolution of the galaxy content of condensed clusters is predicted at moderate redshifts, ranging from a large fraction of blue galaxies at zapprox.0.4 to very few at zapprox.0

  7. Giant Low Surface Brightness Galaxies

    Science.gov (United States)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  8. Spiral arms, comets and terrestrial catastrophism

    International Nuclear Information System (INIS)

    Clube, S.V.M.; Napier, W.M.

    1982-01-01

    A review is presented of an hypothesis of terrestrial catastrophism in which comets grow in molecular clouds and are captured by the Sun as it passes through the spiral arms of the Galaxy. Assuming that comets are a major supplier of the Earth-crossing (Appollo) asteroid population, the latter fluctuates correspondingly and leads to episodes of terrestrial bombardment. Changes in the rotational momentum of core and mantle, generated by impacts, lead to episodes of magnetic field reversal and tectonic activity, while surface phenomena lead to ice-ages and mass extinctions. An episodic geophysical history with an interstellar connection is thus implied. If comets in spiral arms are necessary intermediaries in the process of star formation, the theory also has implications relating to early solar system history and galactic chemistry. These aspects are briefly discussed with special reference to the nature of spiral arms. (author)

  9. Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs

    Science.gov (United States)

    Forgan, D. H.; Ramón-Fox, F. G.; Bonnell, I. A.

    2018-05-01

    We demonstrate numerical techniques for automatic identification of individual spiral arms in hydrodynamic simulations of astrophysical discs. Building on our earlier work, which used tensor classification to identify regions that were `spiral-like', we can now obtain fits to spirals for individual arm elements. We show this process can even detect spirals in relatively flocculent spiral patterns, but the resulting fits to logarithmic `grand-design' spirals are less robust. Our methods not only permit the estimation of pitch angles, but also direct measurements of the spiral arm width and pattern speed. In principle, our techniques will allow the tracking of material as it passes through an arm. Our demonstration uses smoothed particle hydrodynamics simulations, but we stress that the method is suitable for any finite-element hydrodynamics system. We anticipate our techniques will be essential to studies of star formation in disc galaxies, and attempts to find the origin of recently observed spiral structure in protostellar discs.

  10. Neutral hydrogen and spiral structure in M33

    International Nuclear Information System (INIS)

    Newton, K.

    1980-01-01

    Observations of neutral hydrogen (H I) in the galaxy M33 are presented which have sufficient angular resolution (47 x 93 arcsec) to distinguish detailed H I spiral structure for the first time. H I spiral features extend over the entire disc; the pattern is broken and multi-armed with the best-defined arms lying at radii outside the brightest optical features. Several very narrow spiral 'filaments' are unresolved by the beam, implying true widths -1 , is perturbed near the inner spiral arms. These perturbations agree with the predictions of density-wave theory but may simply arise from the self-gravity of massive arms whether or not they are a quasi-stationary wave phenomenon. If the outer spiral features form a rigidly rotating density-wave pattern, the absence of large radial streaming motions along the features implies a small pattern speed ( -1 kpc -1 ), with corotation in the outer parts of the disc. (author)

  11. GMRT HI Observations of the Eridanus Group of Galaxies A. Omar ...

    Indian Academy of Sciences (India)

    The Fornax cluster having the highest galaxy density has the lowest spiral fraction, ... The present GMRT HI observations offer several advantages over studies carried ..... with coarser velocity resolutions for a model galaxy, and determined the ...

  12. The galaxy builders

    Science.gov (United States)

    Cho, Adrian

    2018-06-01

    Philip Hopkins, a theoretical astrophysicist at the California Institute of Technology in Pasadena, likes to prank his colleagues. An expert in simulating the formation of galaxies, Hopkins sometimes begins his talks by projecting images of his creations next to photos of real galaxies and defying his audience to tell them apart. "We can even trick astronomers," Hopkins says. For decades, scientists have tried to simulate how the trillions of galaxies in the observable universe arose from clouds of gas after the big bang. But only in the past few years have the simulations begun to reproduce both the details of individual galaxies and their distribution of masses and shapes. As the fake universes improve, their role is also changing. Previously, information flowed one way: from the astronomers studying real galaxies to the modelers trying to simulate them. Now, insight is flowing the other way, too, with the models helping guide astronomers and astrophysicists. The models suggest that the earliest galaxies were oddly pickle-shaped, that wafer-thin spiral galaxies are surprisingly rugged in the face of collisions, and, perhaps most important, that galaxies must form stars far more slowly than astrophysicists expected. Progress is coming so fast, says Tiziana Di Matteo, a numerical cosmologist at Carnegie Mellon University in Pittsburgh, Pennsylvania, that "the whole thing has reached this little golden age."

  13. Interpretation of galaxy counts

    International Nuclear Information System (INIS)

    Tinsely, B.M.

    1980-01-01

    New models are presented for the interpretation of recent counts of galaxies to 24th magnitude, and predictions are shown to 28th magnitude for future comparison with data from the Space Telescope. The results supersede earlier, more schematic models by the author. Tyson and Jarvis found in their counts a ''local'' density enhancement at 17th magnitude, on comparison with the earlier models; the excess is no longer significant when a more realistic mixture of galaxy colors is used. Bruzual and Kron's conclusion that Kron's counts show evidence for evolution at faint magnitudes is confirmed, and it is predicted that some 23d magnitude galaxies have redshifts greater than unity. These may include spheroidal systems, elliptical galaxies, and the bulges of early-type spirals and S0's, seen during their primeval rapid star formation

  14. VizieR Online Data Catalog: Inner/outer HII regions: galaxy sample (Rodriguez-Baras+, 2018)

    Science.gov (United States)

    Rodriguez-Baras, M.; Diaz, A. I.; Rosales-Ortega, F. F.; Sanchez, S. F.

    2017-11-01

    Physical properties for 263 isolated spiral galaxies, observed by the CALIFA survey, are presented. These galaxies compose this work galaxy sample. For each galaxy redshift, morphological type, inclination, distance, effective radius, g and r SDSS magnitudes, absolute B magnitude and total number of HII regions extracted in the galaxy are given. (1 data file).

  15. Paul Callaghan luminous moments

    CERN Document Server

    Callaghan, Paul

    2013-01-01

    Acknowledged internationally for his ground-breaking scientific research in the field of magnetic resonance, Sir Paul Callaghan was a scientist and visionary with a rare gift for promoting science to a wide audience. He was named New Zealander of the Year in 2011. His death in early 2012 robbed New Zealand of an inspirational leader. Paul Callaghan: Luminous Moments brings together some of his most significant writing. Whether he describes his childhood in Wanganui, reflects on discovering the beauty of science, sets out New Zealand's future potential or discusses the experience of fa

  16. Star clusters in the Whirlpool Galaxy

    NARCIS (Netherlands)

    Scheepmaker, R.A.

    2009-01-01

    This thesis presents the results of observational studies of the star cluster population in the interacting spiral galaxy M51, also known as the Whirlpool galaxy. Observations taken by the Hubble Space Telescope in the optical and the near-UV are used to determine fundamental properties of the star

  17. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    Science.gov (United States)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  18. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Peng, Chien Y. [Giant Magellan Telescope Corporation, 251 S. Lake Ave., Suite 300, Pasadena, CA 91101 (United States); Barth, Aaron J. [Department of Physics and Astronomy, University of California at Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697-4575 (United States); Im, Myungshin, E-mail: mkim@kasi.re.kr, E-mail: lho.pku@gmail.com, E-mail: peng@gmto.org, E-mail: barth@uci.edu, E-mail: mim@astro.snu.ac.kr [Department of Physics and Astronomy, Frontier Physics Research Division (FPRD), Seoul National University, Seoul (Korea, Republic of)

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift ( z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope . The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (H β FWHM ≤ 2000 km s{sup −1}) Type 1 AGNs, in contrast to their broad-line (H β FWHM > 2000 km s{sup −1}) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population.

  19. The Secret Lives of Galaxies

    Science.gov (United States)

    2001-01-01

    The ground-based image in visible light locates the hub imaged with the Hubble Space Telescope. This barred galaxy feeds material into its hub, igniting star birth. The Hubble NICMOS instrument penetrates beneath the dust to reveal clusters of young stars. Footage shows ground-based, WFPC2, and NICMOS images of NGS 1365. An animation of a large spiral galaxy zooms from the edge to the galactic bulge.

  20. Detection of CO emission in Hydra 1 cluster galaxies

    International Nuclear Information System (INIS)

    Huchtmeier, W.K.

    1990-01-01

    A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster, NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies

  1. SPIRAL STRUCTURE OF M51 - DISTRIBUTION AND KINEMATICS OF THE ATOMIC AND IONIZED HYDROGEN

    NARCIS (Netherlands)

    TILANUS, RPJ; ALLEN, RJ

    The atomic hydrogen (H I) and the H-alpha emission lines in the grand-design spiral galaxy M51 have been observed with the Westerbork Synthesis Radio Telescope and the TAURUS Fabry-Perot imaging spectrometer, respectively. Across the inner spiral arms significant tangential and radial velocity

  2. Electromechanics of graphene spirals

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, Topi; Koskinen, Pekka, E-mail: pekka.koskinen@iki.fi [NanoScience Center, Department of Physics, University of Jyväskylä, 40014 Jyväskylä (Finland)

    2014-12-15

    Among the most fascinating nanostructure morphologies are spirals, hybrids of somewhat obscure topology and dimensionality with technologically attractive properties. Here, we investigate mechanical and electromechanical properties of graphene spirals upon elongation by using density-functional tight-binding, continuum elasticity theory, and classical force field molecular dynamics. It turns out that electronic properties are governed by interlayer interactions as opposed to strain effects. The structural behavior is governed by van der Waals interaction: in its absence spirals unfold with equidistant layer spacings, ripple formation at spiral perimeter, and steadily increasing axial force; in its presence, on the contrary, spirals unfold via smooth local peeling, complex geometries, and nearly constant axial force. These electromechanical trends ought to provide useful guidelines not only for additional theoretical investigations but also for forthcoming experiments on graphene spirals.

  3. Astronomy. ASASSN-15lh: A highly super-luminous supernova.

    Science.gov (United States)

    Dong, Subo; Shappee, B J; Prieto, J L; Jha, S W; Stanek, K Z; Holoien, T W-S; Kochanek, C S; Thompson, T A; Morrell, N; Thompson, I B; Basu, U; Beacom, J F; Bersier, D; Brimacombe, J; Brown, J S; Bufano, F; Chen, Ping; Conseil, E; Danilet, A B; Falco, E; Grupe, D; Kiyota, S; Masi, G; Nicholls, B; Olivares E, F; Pignata, G; Pojmanski, G; Simonian, G V; Szczygiel, D M; Woźniak, P R

    2016-01-15

    We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of Mu ,AB = -23.5 ± 0.1 and bolometric luminosity Lbol = (2.2 ± 0.2) × 10(45) ergs s(-1), which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (MK ≈ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1 ± 0.2) × 10(52) ergs, challenging the magnetar model for its engine. Copyright © 2016, American Association for the Advancement of Science.

  4. Supernova rates, galaxy emission, and Hubble type

    International Nuclear Information System (INIS)

    Van Den Bergh, S.

    1991-01-01

    Supernova discovery frequency is found to correlate with emission-line (H-alpha + forbidden N II line) equivalent width, except for the most active galaxies in which some supernovae might be hidden by dust. SNII occur preferentially in active galaxies with emission-line EW not less than 20 A, whereas SNIa favor less active galaxies with EW less than 20 A. The intrinsic frequency of supernovae is found to be an order of magnitude higher in Sc galaxies than it is in early type spirals. The relatively high frequency of SNIa in late-type galaxies suggests that not all such objects have old progenitors. 13 refs

  5. Structure of the Galaxy and its subsystems

    International Nuclear Information System (INIS)

    Ruprecht, J.

    1979-01-01

    Current knowledge is summed up of the structure of our galaxy consisting of more than 100 thousand million stars of an overal mass of 10 44 g, and of interstellar dust and gas. The galaxy comprises several subsystems, the oldest of which being of a spherical shape while the younger ones are more-or-less oblate rotational ellipsoids. It is considered on the basis of visual and radio observations that the galaxy has a spiral structure with many arms, similar to other galaxies. The structure of the galaxy nucleus has not yet been fully explained. (Ha)

  6. Star formation histories of irregular galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.; Tutukov, A.V.

    1984-01-01

    We explore the star formation histories of a selection of irregular and spiral galaxies by using three parameters that sample the star formation rate (SFR) at different epochs: (1) the mass of a galaxy in the form of stars measures the SFR integrated over a galaxy's lifetime; (2) the blue luminosity is dominated primarily by stars formed over the past few billion years; and (3) Lyman continuum photon fluxes derived from Hα luminosities give the current ( 8 yr) SFR

  7. DWARF GALAXY STARBURST STATISTICS IN THE LOCAL VOLUME

    International Nuclear Information System (INIS)

    Lee, Janice C.; Kennicutt, Robert C.; Akiyama, Sanae; Funes, S. J. Jose G.; Sakai, Shoko

    2009-01-01

    An unresolved question in galaxy evolution is whether the star formation histories (SFHs) of low-mass systems are preferentially dominated by starbursts or modes that are more quiescent and continuous. Here, we quantify the prevalence of global starbursts in dwarf galaxies at the present epoch and infer their characteristic durations and amplitudes. The analysis is based on the Hα component of the 11 Mpc Hα UV Galaxy Survey (11HUGS), which provides Hα and Galaxy Evolution Explorer UV imaging for an approximately volume-limited sample of ∼ 300 star-forming galaxies within 11 Mpc. We first examine the completeness properties of the sample, and then directly tally the number of bursting dwarfs and compute the fraction of star formation that is concentrated in such systems. To identify starbursting dwarfs, we use an integrated Hα equivalent width (EW) threshold of 100 A, which corresponds to a stellar birthrate of ∼ 2.5, and also explore the use of empirical starburst definitions based on σ thresholds of the observed logarithmic EW distributions. Our results are robust to the exact choice of the threshold, and are consistent with a picture where dwarfs that are currently experiencing massive global bursts are just the ∼ 6% tip of a low-mass galaxy iceberg. Moreover, bursts are only responsible for about a quarter of the total star formation in the overall dwarf population, so the majority of stars in low-mass systems are not formed in this mode today. Spirals and irregulars devoid of Hα emission are rare, indicating that the complete cessation of star formation generally does not occur in such galaxies and is not characteristic of the interburst state, at least for the more luminous systems with M B < -15. The starburst statistics presented here directly constrain the duty cycle and the average burst amplitude under the simplest assumptions where all dwarf irregulars share a common SFH and undergo similar burst cycles with equal probability. Uncertainties

  8. The galaxy ancestor problem

    Science.gov (United States)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  9. Chandra Finds Surprising Black Hole Activity In Galaxy Cluster

    Science.gov (United States)

    2002-09-01

    Scientists at the Carnegie Observatories in Pasadena, California, have uncovered six times the expected number of active, supermassive black holes in a single viewing of a cluster of galaxies, a finding that has profound implications for theories as to how old galaxies fuel the growth of their central black holes. The finding suggests that voracious, central black holes might be as common in old, red galaxies as they are in younger, blue galaxies, a surprise to many astronomers. The team made this discovery with NASA'S Chandra X-ray Observatory. They also used Carnegie's 6.5-meter Walter Baade Telescope at the Las Campanas Observatory in Chile for follow-up optical observations. "This changes our view of galaxy clusters as the retirement homes for old and quiet black holes," said Dr. Paul Martini, lead author on a paper describing the results that appears in the September 10 issue of The Astrophysical Journal Letters. "The question now is, how do these black holes produce bright X-ray sources, similar to what we see from much younger galaxies?" Typical of the black hole phenomenon, the cores of these active galaxies are luminous in X-ray radiation. Yet, they are obscured, and thus essentially undetectable in the radio, infrared and optical wavebands. "X rays can penetrate obscuring gas and dust as easily as they penetrate the soft tissue of the human body to look for broken bones," said co-author Dr. Dan Kelson. "So, with Chandra, we can peer through the dust and we have found that even ancient galaxies with 10-billion-year-old stars can have central black holes still actively pulling in copious amounts of interstellar gas. This activity has simply been hidden from us all this time. This means these galaxies aren't over the hill after all and our theories need to be revised." Scientists say that supermassive black holes -- having the mass of millions to billions of suns squeezed into a region about the size of our Solar System -- are the engines in the cores of

  10. Opaque spiral disks - Some empirical facts and consequences

    NARCIS (Netherlands)

    Valentijn, Edwin A.

    1990-01-01

    Results for the Sb and Sc galaxies, as obtained from the analysis of the optical ESO-LV data, are reviewed, and the implied constraints for the properties of the absorbing components in spiral disks are discussed. An alternative interpretation of flat rotation curves and a revised extinction model

  11. Triangular spiral tilings

    International Nuclear Information System (INIS)

    Sushida, Takamichi; Hizume, Akio; Yamagishi, Yoshikazu

    2012-01-01

    The topology of spiral tilings is intimately related to phyllotaxis theory and continued fractions. A quadrilateral spiral tiling is determined by a suitable chosen triple (ζ, m, n), where ζ element of D/R, and m and n are relatively prime integers. We give a simple characterization when (ζ, m, n) produce a triangular spiral tiling. When m and n are fixed, the admissible generators ζ form a curve in the unit disk. The family of triangular spiral tilings with opposed parastichy pairs (m, n) is parameterized by the divergence angle arg (ζ), while triangular spiral tilings with non-opposed parastichy pairs are parameterized by the plastochrone ratio 1/|ζ|. The generators for triangular spiral tilings with opposed parastichy pairs are not dense in the complex parameter space, while those with non-opposed parastichy pairs are dense. The proofs will be given in a general setting of spiral multiple tilings. We present paper-folding (origami) sheets that build spiral towers whose top-down views are triangular tilings. (paper)

  12. The colours of Hubble Sc galaxy nuclei

    International Nuclear Information System (INIS)

    Iskudaryan, S.G.

    1975-01-01

    The colorimetric data on the nuclei of the Sc galaxies are given. Comparison of the following parameters: color of a nucleus, integral color of a galaxy, Byurakan class, and spectral type of normal spirals gives the possibility to conclude: (1) The colors of the nuclei of the Sc galaxies have a high dispersion in its values. In all Byurakan classes the galaxies with intensely red and blue nuclei occur; (2) Some Sc galaxies exhibit a discrepancy between the spectral and morphological types. The results of colorimetry of nuclei indicate that almost all such Sc galaxies have intensely red nuclei which, naturally, provide for these late spectral types. It can be assumed that the intensely red color of the nuclei of such Sc galaxies is a result of a new type of activity of these nuclei; and (3) some Sc galaxies show the characteristics of the Markarian objects

  13. Cosmic strings and galaxy formation: Current status

    International Nuclear Information System (INIS)

    Stebbins, A.

    1987-04-01

    Successes and remaining problems with cosmic string theories of galaxy formation are outlined. Successes of the theory include predictions for the correct amplitude of initial inhomogeneities leading to galaxy formation, the distribution of observed inhomogeneities, the observed correlation function of clusters, and the density profiles of dark matter halos. Potentially serious problems which have been raised are the biased galaxy production (why do galaxies occur in clusters?), the core radius problem (density profiles of galactic halos do not match predictions), the maximal rotation velocity problem (why is there a sharp cutoff in observed rotational velocity of galaxies?), the small galaxy problem (why are all the galaxies relatively small structures?), the angular momentum problem (where do baryons acquire their angular momentum in order to form spirals), and the large-scale structure problem (why do most galaxies appear to lie on surfaces surrounding voids?). Possible approaches to each of these problems are suggested and the future of cosmic string theory is discussed. 25 refs

  14. THE MASSIVE STAR POPULATION IN M101. I. THE IDENTIFICATION AND SPATIAL DISTRIBUTION OF THE VISUALLY LUMINOUS STARS

    International Nuclear Information System (INIS)

    Grammer, Skyler; Humphreys, Roberta M.

    2013-01-01

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. But very little is known about the origin of these giant eruptions and their progenitors, many of which are presumably very massive, evolved stars. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the evolved massive star populations in nearby galaxies. The nearby, nearly face-on, giant spiral M101 is an excellent laboratory for studying a large population of very massive stars. In this paper, we present BVI photometry obtained from archival HST/ACS Wide Field Camera images of M101. We have produced a catalog of luminous stars with photometric errors <10% for V < 24.5 and 50% completeness down to V ∼ 26.5 even in regions of high stellar crowding. Using color and luminosity criteria, we have identified candidate luminous OB-type stars and blue supergiants, yellow supergiants, and red supergiants for future observation. We examine their spatial distributions across the face of M101 and find that the ratio of blue to red supergiants decreases by two orders of magnitude over the radial extent of M101 corresponding to 0.5 dex in metallicity. We discuss the resolved stellar content in the giant star-forming complexes NGC 5458, 5453, 5461, 5451, 5462, and 5449 and discuss their color-magnitude diagrams in conjunction with the spatial distribution of the stars to determine their spatio-temporal formation histories

  15. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    Science.gov (United States)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the nigh