WorldWideScience

Sample records for luminescent host-guest crystals

  1. Study on luminescence characteristics of blue OLED with phosphor-doped host-guest structure

    Science.gov (United States)

    Wang, Zhen; Liu, Fei; Zheng, Xin; Chen, Ai; Xie, Jia-feng; Zhang, Wen-xia

    2018-05-01

    In this study, we design and fabricate phosphor-doped host-guest structure organic light-emitting diodes (OLEDs), where the blue-ray iridium complex electrophosphorescent material FIrpic acts as object material. Properties of the device can be accommodated by changing the host materials, dopant concentration and thickness of the light-emitting layer. The study shows that the host material N,N'-dicarbazolyl-3,5-benzene (mCP) has a higher triplet excited state energy level, which can effectively prevent FIrpic triplet excited state energy backtracking to host material, thus the luminous efficiency is improved. When mCP is selected as the host material, the thickness of the light-emitting layer is 30 nm and the dopant concentration is 8 wt%, the excitons can be effectively confined in the light-emitting region. As a result, the maximum current efficiency and the maximum brightness of the blue device can reach 15.5 cd/A and 7 196.3 cd/m2, respectively.

  2. Three-Dimensional Energy Transport in Highly Luminescent Host-Guest Crystals: A Quantitative Experimental and Theoretical Study

    DEFF Research Database (Denmark)

    Poulsen, Lars; Jazdzyk, M; Communal, J.-E.

    2007-01-01

    process is modeled by a Monte Carlo approach including homo and hetero transfer steps with multi-acceptor distribution. In this dense system, the classical Förster point-dipole approach for energy transfer breaks down, and the hopping rates are therefore calculated on the basis of a quantum...

  3. Switchable host-guest systems on surfaces.

    Science.gov (United States)

    Yang, Ying-Wei; Sun, Yu-Long; Song, Nan

    2014-07-15

    CONSPECTUS: For device miniaturization, nanotechnology follows either the "top-down" approach scaling down existing larger-scale devices or the "bottom-up' approach assembling the smallest possible building blocks to functional nanoscale entities. For synthetic nanodevices, self-assembly on surfaces is a superb method to achieve useful functions and enable their interactions with the surrounding world. Consequently, adaptability and responsiveness to external stimuli are other prerequisites for their successful operation. Mechanically interlocked molecules such as rotaxanes and catenanes, and their precursors, that is, molecular switches and supramolecular switches including pseudorotaxanes, are molecular machines or prototypes of machines capable of mechanical motion induced by chemical signals, biological inputs, light or redox processes as the external stimuli. Switching of these functional host-guest systems on surfaces becomes a fundamental requirement for artificial molecular machines to work, mimicking the molecular machines in nature, such as proteins and their assemblies operating at dynamic interfaces such as the surfaces of cell membranes. Current research endeavors in material science and technology are focused on developing either a new class of materials or materials with novel/multiple functionalities by shifting host-guest chemistry from solution phase to surfaces. In this Account, we present our most recent attempts of building monolayers of rotaxanes/pseudorotaxanes on surfaces, providing stimuli-induced macroscopic effects and further understanding on the switchable host-guest systems at interfaces. Biocompatible versions of molecular machines based on synthetic macrocycles, such as cucurbiturils, pillararenes, calixarenes, and cyclodextrins, have been employed to form self-assembled monolayers of gates on the surfaces of mesoporous silica nanoparticles to regulate the controlled release of cargo/drug molecules under a range of external stimuli

  4. Defined Host-Guest Chemistry on Nanocarbon for Sustained Inhibition of Cancer.

    Science.gov (United States)

    Ostadhossein, Fatemeh; Misra, Santosh K; Mukherjee, Prabuddha; Ostadhossein, Alireza; Daza, Enrique; Tiwari, Saumya; Mittal, Shachi; Gryka, Mark C; Bhargava, Rohit; Pan, Dipanjan

    2016-08-22

    Signal transducer and activator of transcription factor 3 (STAT-3) is known to be overexpressed in cancer stem cells. Poor solubility and variable drug absorption are linked to low bioavailability and decreased efficacy. Many of the drugs regulating STAT-3 expression lack aqueous solubility; hence hindering efficient bioavailability. A theranostics nanoplatform based on luminescent carbon particles decorated with cucurbit[6]uril is introduced for enhancing the solubility of niclosamide, a STAT-3 inhibitor. The host-guest chemistry between cucurbit[6]uril and niclosamide makes the delivery of the hydrophobic drug feasible while carbon nanoparticles enhance cellular internalization. Extensive physicochemical characterizations confirm successful synthesis. Subsequently, the host-guest chemistry of niclosamide and cucurbit[6]uril is studied experimentally and computationally. In vitro assessments in human breast cancer cells indicate approximately twofold enhancement in IC 50 of drug. Fourier transform infrared and fluorescence imaging demonstrate efficient cellular internalization. Furthermore, the catalytic biodegradation of the nanoplatforms occur upon exposure to human myeloperoxidase in short time. In vivo studies on athymic mice with MCF-7 xenograft indicate the size of tumor in the treatment group is half of the controls after 40 d. Immunohistochemistry corroborates the downregulation of STAT-3 phosphorylation. Overall, the host-guest chemistry on nanocarbon acts as a novel arsenal for STAT-3 inhibition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Incommensurate host-guest structures in compressed elements: Hume—Rothery effects as origin

    International Nuclear Information System (INIS)

    Degtyareva, V F

    2015-01-01

    Discovery of the incommensurate structure in the element Ba under pressure 15 years ago was followed by findings of a series of similar structures in other compressed elements. Incommensurately modulated structures of the host-guest type consist of a tetragonal host structure and a guest structure. The guest structure forms chains of atoms embedded in the channels of host atoms so that the axial ratio of these subcells along the c axis is not rational. Two types of the host-guest structures have been found so far: with the host cells containing 8 atoms and 16 atoms; in these both types the guest cells contain 2 atoms. These crystal structures contain a non-integer number of atoms in their unit cell: tI11* in Bi, Sb, As, Ba, Sr, Sc and tI19* in Na, K, Rb. We consider here a close structural relationship of these host-guest structures with the binary alloy phase Au 3 Cd 5 -tI32. This phase is related to the family of the Hume-Rothery phases that is stabilized by the Fermi sphere-Brillouin zone interaction. From similar considerations for alkali and alkaline-earth elements a necessary condition for structural stability emerges in which the valence electrons band overlaps with the upper core electrons and the valence electron count increases under compression. (paper)

  6. Thermally stimulated luminescence of KDP activated crystals

    International Nuclear Information System (INIS)

    Tagaeva, B.S.

    2005-01-01

    The aim of this work is the study of recombination luminescence pure and doped by the ions Tl, Se, Pb and Cu of crystals double potassium phosphates (KDP) at irradiation by X-rays. It is established that in the given crystals mechanisms for under-threshold defect formation are realize. The impurity ions results the basic crystal light sum redistribution in the TL peaks. Explanations for some phenomena are given. (author)

  7. Hydrogen bonding assemblies in host guest complexes with 18-crown-6

    Science.gov (United States)

    Fonari, M. S.; Simonov, Yu. A.; Kravtsov, V. Ch.; Lipkowski, J.; Ganin, E. V.; Yavolovskii, A. A.

    2003-02-01

    Recent X-ray crystal structural data for two novel 1:2 host-guest complexes of 18-crown-6 with neutral organic molecules, thiaamide hydrazide of 2-aminobenzoic acid and thiaamide hydrazide of 4-amino-1,2,5-thiadiazole-3-carbonic acid are reported. The supramolecular structures of these two and five relative complexes are discussed from the point of view of participation of donor groups in coordination with the crown ether, and donor and acceptor groups in the self-assembly of the guest molecules. Guest molecules have incorporated amine and hydrazine moieties as proton donors and carbonyl oxygen and sulfur (in thiadiazole and in thiaamine moieties) as proton acceptors. The guest-guest interactions appeared to be crucial in the final architecture.

  8. Mechanism of host-guest complexation by cucurbituril.

    Science.gov (United States)

    Márquez, César; Hudgins, Robert R; Nau, Werner M

    2004-05-12

    The factors affecting host-guest complexation between the molecular container compound cucurbit[6]uril (CB6) and various guests in aqueous solution are studied, and a detailed complexation mechanism in the presence of cations is derived. The formation of the supramolecular complex is studied in detail for cyclohexylmethylammonium ion as guest. The kinetics and thermodynamics of complexation is monitored by NMR as a function of temperature, salt concentration, and cation size. The binding constants and the ingression rate constants decrease with increasing salt concentration and cation-binding constant, in agreement with a competitive binding of the ammonium site of the guest and the metal cation with the ureido carbonyl portals of CB6. Studies as a function of guest size indicate that the effective container volume of the CB6 cavity is approximately 105 A(3). It is suggested that larger guests are excluded for two reasons: a high activation barrier for ingression imposed by the tight CB6 portals and a destabilization of the complex due to steric repulsion inside. For example, in the case of the nearly spherical azoalkane homologues 2,3-diazabicyclo[2.2.1]hept-2-ene (DBH, volume ca. 96 A(3)) and 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO, volume ca. 110 A(3)), the former forms the CB6 complex promptly with a sizable binding constant (1300 M(-1)), while the latter does not form a complex even after several months at optimized complexation conditions. Molecular mechanics calculations are performed for several CB6/guest complexes. A qualitative agreement is found between experimental and calculated activation energies for ingression as a function of both guest size and state of protonation. The potential role of constrictive binding by CB6 is discussed.

  9. Separation of radionuclides using host-guest materials

    International Nuclear Information System (INIS)

    Drabova, V.

    2014-01-01

    This thesis is focused on the development of complex procedure with using commercially available sorbents to separate anthropogenic actinides 237 Np, 241 Am, 238 Pu and 239 , 240 Pu and their determination in the liquid radioactive wastes by using alpha spectrometry. Abilities of using commercially available sorbent AnaLig(R)Pu-02 gel from IBC Advanced Technologies, Inc. were tested, this product belongs to host-guest materials based on molecular recognition technology. This material is capable of selectively capturing actinides in oxidation state IV. To adjust the oxidation state of 238 Pu and 239 , 240 Pu was used NaNO 2 . Pu(IV) forms in the medium of nitric acid complexes, [Np(NO 3 ) 6 ] - , which are captured on the column. For the second monitored radionuclide, neptunium is typical valence V, Np(V) in the concentrated nitric acid produces strong complexes, [Np(NO 3 ) 6 ] - , which are capable of the sorption on the column of AnaLig(R)Pu-02 gel. The most common state of americium in aqueous solutions is III. Whereas in this oxidation state, americium do not form complexes in 8 mol·dm -3 nitric acid is the result of the flow-through. On the base of experimental obtained results, solution of 0.1 mol·dm -3 NH 4 I in 9 mol·dm -3 HCl was selected for elution of plutonium. Neptunium was eluted from the column using 9 mol·dm -3 of HCl with addition of 0.5 cm 3 TiCl 3 . Optimizing conditions for the separation procedure was performed by using model solution of radioactive waste which was prepared according to the chemical composition of radioactive concentrate from NPP Mochovce and NPP Bohunice. The effect of the concentration of Fe 3+ , the effect of the concentration of the HCl, the effect of the concentration of the solution of NH 4 I and the effect of the volume of this solution to the yields of 238 Pu were studied. And also was studied the effect of 9 mol·dm -3 of HCl and the effect of volume of 15 % TiCl 3 to the yields of 237 Np. Sorbent DGA(R) Resin from

  10. Controlling the Host-Guest Interaction Mode through a Redox Stimulus.

    Science.gov (United States)

    Szalóki, György; Croué, Vincent; Carré, Vincent; Aubriet, Frédéric; Alévêque, Olivier; Levillain, Eric; Allain, Magali; Aragó, Juan; Ortí, Enrique; Goeb, Sébastien; Sallé, Marc

    2017-12-18

    A proof-of-concept related to the redox-control of the binding/releasing process in a host-guest system is achieved by designing a neutral and robust Pt-based redox-active metallacage involving two extended-tetrathiafulvalene (exTTF) ligands. When neutral, the cage is able to bind a planar polyaromatic guest (coronene). Remarkably, the chemical or electrochemical oxidation of the host-guest complex leads to the reversible expulsion of the guest outside the cavity, which is assigned to a drastic change of the host-guest interaction mode, illustrating the key role of counteranions along the exchange process. The reversible process is supported by various experimental data ( 1 H NMR spectroscopy, ESI-FTICR, and spectroelectrochemistry) as well as by in-depth theoretical calculations performed at the density functional theory (DFT) level. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces.

    Science.gov (United States)

    Yang, Hui; Yuan, Bin; Zhang, Xi; Scherman, Oren A

    2014-07-15

    CONSPECTUS: Host-guest chemistry can greatly improve the selectivity of biomolecule-ligand binding on account of recognition-directed interactions. In addition, functional structures and the actuation of supramolecular assemblies in molecular systems can be controlled efficiently through various host-guest chemistry. Together, these highly selective, strong yet dynamic interactions can be exploited as an alternative methodology for applications in the field of programmable and controllable engineering of supramolecular soft materials through the reversible binding between complementary components. Many processes in living systems such as biotransformation, transportation of matter, and energy transduction begin with interfacial molecular recognition, which is greatly influenced by various external stimuli at biointerfaces. Detailed investigations about the molecular recognition at interfaces can result in a better understanding of life science, and further guide us in developing new biomaterials and medicines. In order to mimic complicated molecular-recognition systems observed in nature that adapt to changes in their environment, combining host-guest chemistry and surface science is critical for fabricating the next generation of multifunctional biointerfaces with efficient stimuli-responsiveness and good biocompatibility. In this Account, we will summarize some recent progress on multifunctional stimuli-responsive biointerfaces and biosurfaces fabricated by cyclodextrin- or cucurbituril-based host-guest chemistry and highlight their potential applications including drug delivery, bioelectrocatalysis, and reversible adsorption and resistance of peptides, proteins, and cells. In addition, these biointerfaces and biosurfaces demonstrate efficient response toward various external stimuli, such as UV light, pH, redox chemistry, and competitive guests. All of these external stimuli can aid in mimicking the biological stimuli evident in complex biological environments

  12. Field-induced detrapping in disordered organic semiconducting host-guest systems

    NARCIS (Netherlands)

    Cottaar, J.; Coehoorn, R.; Bobbert, P.A.

    2010-01-01

    In a disordered organic semiconducting host-guest material, containing a relatively small concentration of guest molecules acting as traps, the charge transport may be viewed as resulting from carriers that are detrapped from the guest to the host. Commonly used theories include only detrapping due

  13. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications.

    Science.gov (United States)

    Hu, Jinming; Liu, Shiyong

    2014-07-15

    CONSPECTUS: All living organisms and soft matter are intrinsically responsive and adaptive to external stimuli. Inspired by this fact, tremendous effort aiming to emulate subtle responsive features exhibited by nature has spurred the invention of a diverse range of responsive polymeric materials. Conventional stimuli-responsive polymers are constructed via covalent bonds and can undergo reversible or irreversible changes in chemical structures, physicochemical properties, or both in response to a variety of external stimuli. They have been imparted with a variety of emerging applications including drug and gene delivery, optical sensing and imaging, diagnostics and therapies, smart coatings and textiles, and tissue engineering. On the other hand, in comparison with molecular chemistry held by covalent bonds, supramolecular chemistry built on weak and reversible noncovalent interactions has emerged as a powerful and versatile strategy for materials fabrication due to its facile accessibility, extraordinary reversibility and adaptivity, and potent applications in diverse fields. Typically involving more than one type of noncovalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic association, electrostatic interactions, van der Waals forces, and π-π stacking), host-guest recognition refers to the formation of supramolecular inclusion complexes between two or more entities connected together in a highly controlled and cooperative manner. The inherently reversible and adaptive nature of host-guest molecular recognition chemistry, stemming from multiple noncovalent interactions, has opened up a new platform to construct novel types of stimuli-responsive materials. The introduction of host-guest chemistry not only enriches the realm of responsive materials but also confers them with promising new applications. Most intriguingly, the integration of responsive polymer building blocks with host-guest recognition motifs will endow the former with

  14. Bistable luminescence of trivalent rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Sole, Jose Garcia; Ramirez O, Maria de la; Rodenas, Airan; Jaque, Daniel; Bausa, Luisa; Bettinelli, Marco; Speghini, Adolfo; Cavalli, Enrico; Ivleva, Lioudmila

    2006-01-01

    In this work, we have examined three new bistable systems based on the luminescence of three different crystals activated with trivalent rare earth ions. We have focussed our attention on Yb 3+ ions activators, for which the most relevant results are obtained. The first crystal, Sr 0.6 Ba 0.4 Nb 2 O 6 , is a ferroelectric material with a relatively low phase transition temperature (∼370 K), which provides bistability in the luminescence of Yb 3+ ions due to the thermal hysteresis associated with phase transition. The second crystal, LiNbO 3 , provides an intrinsic bistability in the luminescence of Yb 3+ ions, which is driven by changes in the excitation intensity. In the third crystal, NdPO 4 , a new mechanism of excitation intensity driven bistability is obtained when activated with Yb 3+ ions, due to a interplay between the Nd 3+ ↔Yb 3+ energy transfer and back transfer processes

  15. Luminescence and photosensitivity of PbI2 crystals

    International Nuclear Information System (INIS)

    Novosad, S.S.; Novosad, I.S.; Matviishin, I.M.

    2002-01-01

    One studied effect of temperature treatment and storage conditions on spectra features of PbI 2 crystals grown by the Bridgman-Stockbarger method from salt additionally purified by directed crystallization. Spectra of X-ray luminescence, photoluminescence and thermostimulated luminescence were investigated within 85-295 K temperature range under stationary X-ray excitation and emission of N 2 -laser. One studied photoelectret properties of those crystals under 85 K. Luminescence of PbI 2 crystals with maximum within 595 nm region observed following their thermal annealing under 475-495 K temperature and typical for near-the-surface section of specimens may be caused by oxygen-containing centres [ru

  16. Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare.

    Science.gov (United States)

    Wu, Zilong; Song, Nan; Menz, Ryan; Pingali, Bharadwaj; Yang, Ying-Wei; Zheng, Yuebing

    2015-05-01

    Synthetic macrocyclic host compounds can interact with suitable guest molecules via noncovalent interactions to form functional supramolecular systems. With the synergistic integration of the response of molecules and the unique properties at the nanoscale, nanoparticles functionalized with the host-guest supramolecular systems have shown great potentials for a broad range of applications in the fields of nanoscience and nanotechnology. In this review article, we focus on the applications of the nanoparticles functionalized with supramolecular host-guest systems in nanomedicine and healthcare, including therapeutic delivery, imaging, sensing and removal of harmful substances. A large number of examples are included to elucidate the working mechanisms, advantages, limitations and future developments of the nanoparticle-supramolecule systems in these applications.

  17. Carbohydrate-Based Host-Guest Complexation of Hydrophobic Antibiotics for the Enhancement of Antibacterial Activity.

    Science.gov (United States)

    Jeong, Daham; Joo, Sang-Woo; Shinde, Vijay Vilas; Cho, Eunae; Jung, Seunho

    2017-08-08

    Host-guest complexation with various hydrophobic drugs has been used to enhance the solubility, permeability, and stability of guest drugs. Physical changes in hydrophobic drugs by complexation have been related to corresponding increases in the bioavailability of these drugs. Carbohydrates, including various derivatives of cyclodextrins, cyclosophoraoses, and some linear oligosaccharides, are generally used as host complexation agents in drug delivery systems. Many antibiotics with low bioavailability have some limitations to their clinical use due to their intrinsically poor aqueous solubility. Bioavailability enhancement is therefore an important step to achieve the desired concentration of antibiotics in the treatment of bacterial infections. Antibiotics encapsulated in a complexation-based drug delivery system will display improved antibacterial activity making it possible to reduce dosages and overcome the serious global problem of antibiotic resistance. Here, we review the present research trends in carbohydrate-based host-guest complexation of various hydrophobic antibiotics as an efficient delivery system to improve solubility, permeability, stability, and controlled release.

  18. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    Science.gov (United States)

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  19. Synthesis, crystal structure, theoretical study and luminescence ...

    Indian Academy of Sciences (India)

    and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China. cChina-Australia Joint ... School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China e-mail: ..... The title complex is luminescent.

  20. Porphyrinic supramolecular daisy chains incorporating pillar[5]arene-viologen host-guest interactions

    KAUST Repository

    Fathalla, Maher; Strutt, Nathan; Srinivasan, Sampath; Katsiev, Khabiboulakh; Hartlieb, Karel J.; Bakr, Osman; Stoddart, J. Fraser

    2015-01-01

    A porphyrin functionalised with pillar[5]arene and a viologen at its 5- and 15-meso positions assembles in a head-to-tail manner, producing linear supramolecular daisy chains in dichloromethane. At high concentrations, it forms an organogel which has been investigated by electron microscopy and rheological measurements, paving the way for the preparation of other functional supramolecular assemblies which harness viologen"⊂" pillararene host-guest interactions.

  1. Porphyrinic supramolecular daisy chains incorporating pillar[5]arene-viologen host-guest interactions

    KAUST Repository

    Fathalla, Maher

    2015-05-18

    A porphyrin functionalised with pillar[5]arene and a viologen at its 5- and 15-meso positions assembles in a head-to-tail manner, producing linear supramolecular daisy chains in dichloromethane. At high concentrations, it forms an organogel which has been investigated by electron microscopy and rheological measurements, paving the way for the preparation of other functional supramolecular assemblies which harness viologen"⊂" pillararene host-guest interactions.

  2. Excitonic surface polaritons in luminescence from ZnTe crystals

    International Nuclear Information System (INIS)

    Brodin, M.S.; Bandura, V.M.; Matsko, M.G.

    1984-01-01

    The form and structure of reflection and exciton-polariton luminescence spectra of ZnTe crystals are studied in the region of the ground (n = 1) exciton state. The longitudinal-transverse splitting magnitude ΔE/sub LT/ is determined from the shape of the reflection spectra. A detected doublet structure of an emission band from the lower polariton branch is associated with the k-linear term. The evolution of bulk and surface polariton luminescence spectra versus temperature and wavelength of the exciting light is investigated. (author)

  3. Excitonic surface polaritons in luminescence from ZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, M.S.; Bandura, V.M.; Matsko, M.G. (AN Ukrainskoj SSR, Kiev. Inst. Fiziki)

    1984-10-01

    The form and structure of reflection and exciton-polariton luminescence spectra of ZnTe crystals are studied in the region of the ground (n = 1) exciton state. The longitudinal-transverse splitting magnitude ..delta..E/sub LT/ is determined from the shape of the reflection spectra. A detected doublet structure of an emission band from the lower polariton branch is associated with the k-linear term. The evolution of bulk and surface polariton luminescence spectra versus temperature and wavelength of the exciting light is investigated.

  4. Host-guest complexes between cucurbit[n]urils and acetanilides having aminopropyl units.

    Science.gov (United States)

    Buaki-Sogo, Mireia; Montes-Navajas, Pedro; Alvaro, Mercedes; Garcia, Hermenegildo

    2013-06-01

    2-(Propylamino)acetamide of aniline (1a), and bis-2-(propylamino)acetamide of ortho- (1b) and para-(1c) phenylenediamine form host-guest complexes with CB[6], CB[7] and CB[8] as evidenced by the variations in the (1)H NMR spectroscopy chemical shifts and observation in MALDI-TOF-MS and ESI-MS of ions at the corresponding mass. Binding constants for the 1:1 complexes were estimated from fluorescence titrations and were in the range 10(5)-10(6)M(-1). Models based on molecular mechanics for these supramolecular complexes are provided. In spite of the different geometries arising from the ortho- or para-substitution, phenylenediamides form complexes of similar strength in which the hydrophobic alkyl chains are accommodated inside the host cavity. Formation of these host-guest complexes in the solid state was also achieved by modifying an aminopropyl silica with chloroacetanilides and preparing three silica having analogues of compounds 1a-c anchored to the solid particles. Titrations showed, however, that these solids can adsorb a large percentage of CBs by unselective interactions that are not related to the formation of inclusion complexes. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Paramagnetic NMR investigation of dendrimer-based host-guest interactions.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available In this study, the host-guest behavior of poly(amidoamine (PAMAM dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the ¹H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE was observed between TEMPO-NH₂, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and ¹H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems.

  6. Energy-cascade organic photovoltaic devices incorporating a host-guest architecture.

    Science.gov (United States)

    Menke, S Matthew; Holmes, Russell J

    2015-02-04

    In planar heterojunction organic photovoltaic devices (OPVs), broad spectral coverage can be realized by incorporating multiple molecular absorbers in an energy-cascade architecture. Here, this approach is combined with a host-guest donor layer architecture previously shown to optimize exciton transport for the fluorescent organic semiconductor boron subphthalocyanine chloride (SubPc) when diluted in an optically transparent host. In order to maximize the absorption efficiency, energy-cascade OPVs that utilize both photoactive host and guest donor materials are examined using the pairing of SubPc and boron subnaphthalocyanine chloride (SubNc), respectively. In a planar heterojunction architecture, excitons generated on the SubPc host rapidly energy transfer to the SubNc guest, where they may migrate toward the dissociating, donor-acceptor interface. Overall, the incorporation of a photoactive host leads to a 13% enhancement in the short-circuit current density and a 20% enhancement in the power conversion efficiency relative to an optimized host-guest OPV combining SubNc with a nonabsorbing host. This work underscores the potential for further design refinements in planar heterojunction OPVs and demonstrates progress toward the effective separation of functionality between constituent OPV materials.

  7. A host-guest-recognition-based electrochemical aptasensor for thrombin detection.

    Science.gov (United States)

    Fan, Hao; Li, Hui; Wang, Qingjiang; He, Pingang; Fang, Yuzhi

    2012-05-15

    A sensitive electrochemical aptasensor for thrombin detection is presented based on the host-guest recognition technique. In this sensing protocol, a 15 based thrombin aptamer (ab. TBA) was dually labeled with a thiol at its 3' end and a 4-((4-(dimethylamino)phenyl)azo) benzoic acid (dabcyl) at its 5' end, respectively, which was previously immobilized on one Au electrode surface by AuS bond and used as the thrombin probe during the protein sensing procedure. One special electrochemical marker was prepared by modifying CdS nanoparticle with β-cyclodextrins (ab. CdS-CDs), which employed as electrochemical signal provider and would conjunct with the thrombin probe modified electrode through the host-guest recognition of CDs to dabcyl. In the absence of thrombin, the probe adopted linear structure to conjunct with CdS-CDs. In present of thrombin, the TBA bond with thrombin and transformed into its special G-quarter structure, which forced CdS-CDs into the solution. Therefore, the target-TBA binding event can be sensitively transduced via detecting the electrochemical oxidation current signal of Cd of CdS nanoparticles in the solution. Using this method, as low as 4.6 pM thrombin had been detected. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Hydrothermal synthesis, crystal structure and luminescence property ...

    Indian Academy of Sciences (India)

    The design and construction of ... dination polymers. It is difficult to design coordination .... The first endotherm at about 180 ... graphic data for coordination polymer 1. ... Sheldrick G M 1997 SHELXS-97: Program for solution of crystal structures ...

  9. Vibrational spectroscopic and quantum theoretical study of host-guest interactions in clathrates: I. Hofmann type clathrates

    Directory of Open Access Journals (Sweden)

    VLADIMIR M. PETRUSEVSKI

    2000-06-01

    Full Text Available Hofmann type clatharates are host-guest compounds with the general formula M(NH32M'(CN4·2G, in which M(NH32M'(CN4 is the host lattice and G is benzene, the guest molecule. In previous studies, host-guest interactions have been investigated by analyzing the RT and LNT vibrational (infrared, far infrared and Raman spectra of these clathrates. All the observed changes in the vibrational spectra of these clathrates are referred to a host-guest interaction originating from weak hydrogen bonding between the ammonia hydrogen atoms from the host lattice and the p electron cloud of the guest (benzene molecules. In order to obtain an insight into the relative importance of the local crystalline field vs. the anharmonicity effects on the spectroscopic properties of the guest species upon enclathration, as well as to explain the observed band shifts and splittings, several quantum theoretical approaches are proposed.

  10. luminescence in coloured alkali halide crystals

    Indian Academy of Sciences (India)

    have studied the effect of annealing in chlorine gas on the ML of X-rayed KCl crystals. ..... high temperature because of the thermal bleaching of the coloration in alkali halide ..... [31] J Hawkins, Ph.D. Thesis (University of Reading, 1976).

  11. Driving Forces Controlling Host-Guest Recognition in Supercritical Carbon Dioxide Solvent.

    Science.gov (United States)

    Ingrosso, Francesca; Altarsha, Muhannad; Dumarçay, Florence; Kevern, Gwendal; Barth, Danielle; Marsura, Alain; Ruiz-López, Manuel F

    2016-02-24

    The formation of supramolecular host-guest complexes is a very useful and widely employed tool in chemistry. However, supramolecular chemistry in non-conventional solvents such as supercritical carbon dioxide (scCO2 ), one of the most promising sustainable solvents, is still in its infancy. In this work, we explored a successful route to the development of green processes in supercritical CO2 by combining a theoretical approach with experiments. We were able to synthesize and characterize an inclusion complex between a polar aromatic molecule (benzoic acid) and peracetylated-β-cyclodextrin, which is soluble in the supercritical medium. This finding opens the way to wide, environmental friendly, applications of scCO2 in many areas of chemistry, including supramolecular synthesis, reactivity and catalysis, micro and nano-particle formation, molecular recognition, as well as enhanced extraction processes with increased selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Rational Design of Multifunctional Gold Nanoparticles via Host-Guest Interaction for Cancer-Targeted Therapy.

    Science.gov (United States)

    Chen, Wei-Hai; Lei, Qi; Luo, Guo-Feng; Jia, Hui-Zhen; Hong, Sheng; Liu, Yu-Xin; Cheng, Yin-Jia; Zhang, Xian-Zheng

    2015-08-12

    A versatile gold nanoparticle-based multifunctional nanocomposite AuNP@CD-AD-DOX/RGD was constructed flexibly via host-guest interaction for targeted cancer chemotherapy. The pH-sensitive anticancer prodrug AD-Hyd-DOX and the cancer-targeted peptide AD-PEG8-GRGDS were modified on the surface of AuNP@CD simultaneously, which endowed the resultant nanocomposite with the capability to selectively eliminate cancer cells. In vitro studies indicated that the AuNP@CD-AD-DOX/RGD nanocomposite was preferentially uptaken by cancer cells via receptor-mediated endocytosis. Subsequently, anticancer drug DOX was released rapidly upon the intracellular trigger of the acid microenvirenment of endo/lysosomes, inducing apoptosis in cancer cells. As the ideal drug nanocarrier, the multifunctional gold nanoparticles with the active targeting and controllable intracellular release ability hold the great potential in cancer therapy.

  13. The luminescence of CaWO4: Bi single crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Pashkovsky, M.; Voloshinovskii, A.; Kuklinski, B.; Grinberg, M.

    2006-01-01

    Influence of doping with Bi 3+ ions and Bi 3+ -Na + or Bi 3+ -Li + ions pairs on luminescence, emission kinetics and light yield of CaWO 4 crystals has been investigated. It has been shown that under excitation in the A-band at 272 and 287nm, related to the Bi 3+ ions absorption, the luminescence peaked at 468nm decaying with time τ=0.41μs is observed. For bismuth concentration 50-500ppm and the equimolar concentrations of the Bi 3+ ions accompanied by Na + or Li + ions compensators the significant suppression of the phosphorescence peaked at 520nm, related to the defect WO 3 -V O complex, and an improvement of scintillation characteristics of the CaWO 4 are noticed. Energy transfer from the defect WO 3 -V O and regular WO 4 2- oxy-anions to Bi 3+ ions have been observed at room temperatures and discussed

  14. Host-guest interaction of styrene and ethylbenzene in MIL-53 studied by solid-state NMR.

    Science.gov (United States)

    Li, Shenhui; Li, Jing; Tang, Jing; Deng, Feng

    Solid-state NMR was utilized to explore the host-guest interaction between adsorbate and adsorbent at atomic level to understand the separation mechanism of styrene (St) and ethylbenzene (EB) in MIL-53(Al). 13 C- 27 Al double-resonance NMR experiments revealed that the host-guest interaction between St and MIL-53 was much stronger than that of EB adsorption. In addition, 13 C DIPSHIFT experiments suggested that the adsorbed St was less mobile than EB confined inside the MIL-53 pore. Furthermore, the host-guest interaction model between St, EB and MIL-53 was established on the basis of the spatial proximities information extracted from 2D 1 H- 1 H homo-nuclear correlation NMR experiments. According to the experimental observation from solid-state NMR, it was found that the presence of π-π interaction between St and MIL-53 resulted in the stronger host-guest interaction and less mobility of St. This work provides direct experimental evidence for understanding the separation mechanism of St and EB using MIL-53 as an adsorbent. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. High temperature luminescence of ZnSe:Yb crystals

    Directory of Open Access Journals (Sweden)

    Makhniy V. P.

    2016-05-01

    Full Text Available The problem of obtaining of effective edge luminescence with high temperature stability in the zinc selenide crystals is discussed. This task is solved by using as the dopant rare-earth element yttrium, which is introduced into the undoped ZnSe crystal by diffusion method. Doping was carried out in an evacuated to 10 -4 Torr. and a sealed quartz ampoule, in the opposite ends of which is a sample and a mixture of the crushed Yb and Se. It has been found that the diffusion coefficient of yttrium at a temperature of 1400 K is about 5⋅10 -7 cm 2/sec. It is shown that in the luminescence spectra of ZnSe:Yb samples in the temperature range 295-470 K only blue band is observed. Dependencies of parameters of this band from the excitation level are typical for the annihilation of excitons at their inelastic scattering by free carriers. The efficacy of blue radiation at 300 K is about 30% and does not fall more than twice with increasing temperature up to 470 K, indicating its high thermal stability.

  16. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure

    Science.gov (United States)

    Spaulding, Dylan K.; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-12-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis.

  17. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  18. Thermosensitive Triterpenoid-Appended Polymers with Broad Temperature Tunability Regulated by Host-Guest Chemistry.

    Science.gov (United States)

    Hao, Jie; Gao, Yuxia; Li, Ying; Yan, Qiang; Hu, Jun; Ju, Yong

    2017-09-05

    Thermoresponsive water-soluble polymers are of great importance since they typically show a lower critical solution temperature (LCST) in aqueous media. In this research, the LCST change in broad temperature ranges of copolymers composed of natural glycyrrhetinic acid (GA)-based methacrylate and N,N'-dimethylacrylamides (DMAs) was investigated as a function of the concentration and the content of GA pendants. By complexation of GA pendants with β-cyclodextrin (β-CD), a side-chain polypseudorotaxane was obtained, which exhibited a significant increase in the LCST of copolymers. Moreover, the precisely reversible control of the LCST behavior was realized through adding a competing guest molecule, sodium 1-admantylcarboxylate. This work illustrates a simple and effective approach to endow water-soluble polymers with broad temperature tunability and helps us further understand the effect of a biocompatible host-guest complementary β-CD/GA pair on the thermoresponsive process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Luminescence spectra of lead tungstate, spodumene and topaz crystals

    International Nuclear Information System (INIS)

    Ramachandran, Vasuki

    2002-01-01

    A detailed set of thermoluminescence, cathodoluminescence and radioluminescence (TL, CLTL and RLTL) data of lead tungstate, Spodumene and Topaz have been reported for the first time over a wide temperature range from 25 to 500K. Lead tungstate (PbWO 4 ), a widely known scintillating material, gives TL glow peaks which are related to complex defect centres. Doping of this crystal with trivalent rare earth ions (La 3+ , Y 3+ ) reduces the slow component of the emission thereby making it more suitable for its applications. The pentavalent dopants on the other hand, enhance the green emission and quench the blue emission at temperatures 100K. The origin and the irradiation temperature definitely have an effect on the spectrum. No strong relationship could be derived from the dose dependence data. Two less studied minerals, Spodumene and Topaz have also been investigated with the luminescence techniques. The glow peak near 250degC is thought to have originated from Mn 2+ centres. As there are no ESR data available, the assignment of defect centres is rather difficult. Cr + acts as the quencher in green spodumene. Topaz had the same treatment as the other two sets of samples and the defect centre characterisation looks complex as each coloured sample gave different patterns of glow peaks. Cathodoluminescence whilst heating (CLTL) of all these samples showed some unusual features in the form of a luminescence intensity step which is believed to have originated from the presence of ice. Water, in nanoparticle size quantities, is present as a contaminant in the lattice and undergoes a phase transition at 170K from hexagonal to cubic structures. This phase change influences the luminescence efficiency of the host material and is reflected in the spectrum as a discontinuity in intensity. (author)

  20. Host-Guest Interaction of Cucurbit[8]uril with N-(3-Aminopropyl)cyclohexylamine: Cyclohexyl Encapsulation Triggered Ternary Complex.

    Science.gov (United States)

    Xia, Yu; Wang, Chuan-Zeng; Tian, Mengkui; Tao, Zhu; Ni, Xin-Long; Prior, Timothy J; Redshaw, Carl

    2018-01-15

    The host-guest interaction of a series of cyclohexyl-appended guests with cucurbit[8]uril (Q[8]) was studied by ¹H NMR spectroscopy, isothermal titration calorimetry (ITC), and X-ray crystallography. The X-ray structure revealed that two cycloalkane moieties can be simultaneously encapsulated in the hydrophobic cavity of the Q[8] host to form a ternary complex for the first time.

  1. Host-Guest Interaction of Cucurbit[8]uril with N-(3-Aminopropylcyclohexylamine: Cyclohexyl Encapsulation Triggered Ternary Complex

    Directory of Open Access Journals (Sweden)

    Yu Xia

    2018-01-01

    Full Text Available The host-guest interaction of a series of cyclohexyl-appended guests with cucurbit[8]uril (Q[8] was studied by 1H NMR spectroscopy, isothermal titration calorimetry (ITC, and X-ray crystallography. The X-ray structure revealed that two cycloalkane moieties can be simultaneously encapsulated in the hydrophobic cavity of the Q[8] host to form a ternary complex for the first time.

  2. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    Science.gov (United States)

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  3. The synthesis and host-guest applications of synthetic receptor molecules

    Science.gov (United States)

    Osner, Zachary R.

    2011-12-01

    Host-guest chemistry involves the complimentary binding between two molecules. Host molecules have been synthesized to bind negative, positive, and neutral molecules such as proteins and enzymes, and have been used as optical sensors, electrochemical sensors, supramolecular catalysts, and in the pharmaceutical industry as anti-cancer agents.1 The field of nanoscience has exploited guest-host interactions to create optical sensors with colloidal gold and Dip-Pen nanolithography technologies. Gold nanoparticles, have been functionalized with DNA, and have been developed as a selective colorimetric detection system, that upon binding turns the solution from a red to blue in color.2 Cyclotriveratrylene (CTV) 1 is a common supramolecular scaffold that has been previously employed in guest-host chemistry, and the construction of CTV involves the cyclic trimerization of veratryl alcohol via the veratryl cation.3 Due to the rigid bowl shaped structure of CTV, CTV has been shown to act as a host molecule for fullerene-C60.4 Lectin binding receptor proteins are a specific class of proteins found in bacteria, viruses, plants, and animals that can bind to complimentary carbohydrates. It is these lectins that are believed to be responsible for cell-cell interactions and the formation of biofilms in pathenogenic bacteria.5 P. aeruginosa is a pathenogenic bacterium, shown to have a high resistance to many antibiotics, which can form biofilms in human lung tissue, causing respiratory tract infections in patients with compromised immune systems. 5 I will exploit guest-host interactions to create synthetic supramolecular and carbohydrate receptor molecules to that will be of use as biological sensing devices via self-assembled monolayers on solid surfaces and nanoparticle technologies. *Please refer to dissertation for references/footnotes.

  4. K2SO4 and LiKSO4 crystals luminescence

    International Nuclear Information System (INIS)

    Charapiev, B.; Nurakhmetov, T.N.

    2002-01-01

    In the paper a nature of X-ray and tunnel luminescence in LiKSO 4 and Li 2 SO 4 ·H 2 O crystals are discussed. It is shown, that X-ray luminescence and Li 2 SO 4 ·H 2 O and LiKSO 4 appeals in the result of electrons recombination with auto-localized holes (SO 4 - ), and tunnel luminescence appeals at electrons transfer from ground state of electron center into hole center capture ground state. Under heating of irradiated crystal de-localized holes at recombination moment with electron capture centers are forming auto-localized excitons, which are disintegrating with photon emitting, and so X-ray luminescence spectrum and thermally induces luminescence peaks are coinciding. Nature of radiation appealing in LiKSO 4 at ultraviolet excitation is discussing

  5. Thermally stimulated luminescence in ZnMoO{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Degoda, V.Ya.; Kogut, Ya.P.; Moroz, I.M. [Kyiv National Taras Shevchenko University, MSP 03680 Kyiv (Ukraine); Danevich, F.A. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine)

    2017-03-15

    Thermally stimulated luminescence in ZnMoO{sub 4} crystals after X-ray irradiation at temperatures 8 K, 85 K and 295 K was studied. A theoretical model of crystal phosphor with three types of traps (shallow, phosphorescent and deep) is proposed. Simple analytic solutions of the kinetic equations system describing localized electrons on the traps and holes on recombination centres were obtained by using approximations accepted in the classic theories of crystal phosphors. Analytical curves describing thermally stimulated luminescence were obtained. A substantial effect of the different traps concentrations ratios on the thermally stimulated luminescence and conductivity peaks shapes is shown. A good agreement of the theoretical curves with the experimental data for the thermally stimulated luminescence peak at 114 K is obtained.

  6. Synthesis, crystal structures and luminescence properties of two metal carboxyphosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chaonan; Feng, Pingjing; Li, Jintang, E-mail: leejt@xmu.edu.cn; Luo, Xuetao

    2017-05-15

    Two metal carboxyphosphonates, [Co{sub 2}(OOCC{sub 5}H{sub 3}NPO{sub 3}){sub 2·}(H{sub 2}O){sub 3}] (Compound1) and Zn{sub 3}[OOCC{sub 6}H{sub 3}CH(OH)PO{sub 3}]{sub 2·}2H{sub 2}O (Compound2) were successfully synthesized under the hydrothermal reactions. In compound 1, two (Co1-NO{sub 5}) octahedra link the (CPO{sub 3}) by sharing the corner, which link the two (Co2-O{sub 6}) octahedra. From a-axis the six clusters form the layer. Each layer is linked through hydrogen bond. In compound 2, the (Zn-O{sub 4}) tetrahedron and (CPO{sub 3}) tetrahedron are corner-shared, which arrange in line. From a-axis, each line forms the columnar. The thermal and luminescence properties of these compounds were investigated. - Graphical abstract: The synthesis conditions of the two compounds and the crystal morphology. Compound 1 shows the layer and the compound 2 shows the pillared-layer. - Highlights: • Two new carboxyphosphonate ligands have been prepared. • Using the two ligands, two metal carboxyphosphonates have been synthesized. • The two MOFs may be candidates for fluorescent materials.

  7. Efficient green luminescence of terbium oxalate crystals: A case study with Judd-Ofelt theory and single crystal structure analysis and the effect of dehydration on luminescence

    Science.gov (United States)

    Alexander, Dinu; Joy, Monu; Thomas, Kukku; Sisira, S.; Biju, P. R.; Unnikrishnan, N. V.; Sudarsanakumar, C.; Ittyachen, M. A.; Joseph, Cyriac

    2018-06-01

    Design and synthesis of Lanthanide based metal organic framework is a frontier area of research owing to their structural diversity enabling specific applications. The luminescence properties of rare earths, tuned by the structural features of Ln-MOFs are investigated extensively. Rare earth oxalates which can be synthesized in a facile method, ensuring the structural features of MOFs with excellent photoluminescence characteristics deserves much attention. This work is the first time report on the single crystal structure and Judd-Ofelt (JO) theoretical analysis - their correlation with the intense and sharp green luminescence of Terbium oxalate crystals. The intense green luminescence observed for Terbium oxalate crystals for a wide range of excitation from DUV to visible region despite the luminescence limiting factors are discussed. The absence of concentration quenching and lifting up of forbidden nature of f-f transitions, allowing direct excitation of Terbium ions is analysed with the help of JO theory and single crystal structure analysis. The JO analysis predicted the asymmetry of Terbium sites, allowing the electric dipole transitions and from the JO intensity parameters, promising spectroscopic parameters - emission cross section, branching ratio, gain band width and gain coefficient of the material were calculated. The single crystal structure analysis revealed the asymmetry of Tb sites and structure of Terbium oxalate is formed by the hydrogen bonded stacking of overlapped six Terbium membered rings connected by the oxalate ligands. The molecularly thick layers thus formed on the crystal surface are imaged by the atomic force microscopy. The presence of water channels in the structure and the effect of lattice water molecules on the luminescence intensity are also investigated.

  8. Vibrational spectroscopic and gravimetric study of some Hofmann-CBA-Type Host and host-guest compounds

    International Nuclear Information System (INIS)

    Aytekin, M.A.

    2005-01-01

    In this study, similar to Hofmann type M(C 4 H 7 NH 2 ) 2 Ni(CN) 4 (M=Ni or Co) host and M(C 4 H 7 NH 2 ) 2 Ni(CN) 4 .nG (M=Ni or Co; G=benzene, 1,2-, 1,3-dichlorobenzene; n=the number of guest) hostguest compounds were obtained chemically. The infrared spectra of these compounds were recorded with FT-IR spectrometer in the spectroscopic region of 4000cm-1-400cm-1. From these spectra the vibrational wave numbers of ligand molecule, Ni(CN) 4 2 - ion and guest molecules were determined. The absorption and the liberation processes of the guest molecules in the host compounds were examined at room temperature by gravimetric method. Otherwise, it was seen that the molecular structure was supported by making instrumental analysis of host and some host-guest compounds. By analysing the structures of host and host-guest compounds were found to be similar to those of Hofmann type compounds, ligand molecule cyclobutylamine were coordinated to M metal atom from cyclobutylamine's nitrogen atom, the guest molecules were imprisoned in the structural cavities between the sheets

  9. Supramolecular Host-Guest System as Ratiometric Fe3+ Ion Sensor Based on Water-Soluble Pillar[5]arene.

    Science.gov (United States)

    Yao, Qianfang; Lü, Baozhong; Ji, Chendong; Cai, Yang; Yin, Meizhen

    2017-10-18

    Developing a specific, ratiometric, and reversible detection method for metal ions is significant to guard against the threat of metal-caused environmental pollution and organisms poisoning. Here a supramolecular host-guest system (WP5⊃G) based on water-soluble pillar[5]arene (WP5) and water-soluble quaternized perylene diimide derivative (G) was constructed. Morphological transformation was achieved during the process of adding WP5 into G aqueous solution, and a fluorescence "turn-off" phenomenon was observed which was caused by supramolecular photoinduced electron transfer (PET). Meanwhile, hydrophobic effect and electrostatic interaction played important roles in this supramolecular process, which was confirmed by isothermal titration calorimeter (ITC) and ζ potential experiments. Furthermore, the supramolecular host-guest system could be a "turn-on" fluorescent probe for Fe 3+ ion detection through the process of interdicting supramolecular PET. Moreover, the Fe 3+ ion detection showed specific, ratiometric, and reversible performances with a detection limit of 2.13 × 10 -7 M, which might have great potentials in biological and environmental monitoring.

  10. Smart protein biogate as a mediator to regulate competitive host-guest interaction for sensitive ratiometric electrochemical assay of prion

    Science.gov (United States)

    Yu, Peng; Zhang, Xiaohua; Zhou, Jiawan; Xiong, Erhu; Li, Xiaoyu; Chen, Jinhua

    2015-11-01

    A novel competitive host-guest strategy regulated by protein biogate was developed for sensitive and selective analysis of prion protein. The methylene blue (MB)-tagged prion aptamer (MB-Apt) was introduced to the multiwalled carbon nanotubes-β-cyclodextrins (MWCNTs-β-CD) composites-modified glassy carbon (GC) electrode through the host-guest interaction between β-CD and MB. In the absence of prion, MB-Apt could be displaced by ferrocenecarboxylic acid (FCA) due to its stronger binding affinity to β-CD, resulting in a large oxidation peak of FCA. However, in the presence of prion, the specific prion-aptamer interaction drove the formation of protein biogate to seal the cavity of β-CD, which hindered the guest displacement of MB by FCA and resulted in the oxidation peak current of MB (IMB) increased and that of FCA (IFCA) decreased. The developed aptasensor showed good response towards the target (prion protein) with a low detection limit of 160 fM. By changing the specific aptamers, this strategy could be easily extended to detect other proteins, showing promising potential for extensive applications in bioanalysis.

  11. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging.

    Science.gov (United States)

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-04-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane-modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Host-Guest Interaction between Corona[n]arene and Bisquaternary Ammonium Derivatives for Fabricating Supra-Amphiphile.

    Science.gov (United States)

    Zeng, Lingda; Guo, Qing-Hui; Feng, Yuanning; Xu, Jiang-Fei; Wei, Yuhan; Li, Zhibo; Wang, Mei-Xiang; Zhang, Xi

    2017-06-13

    The interactions between a host, water-soluble corona[n]arene (S6-CAP), and a series of guests, bisquaternary ammonium derivatives (CnDAs), in water, were investigated. The host and guest can form 1:1 host-guest complex. Their binding constants decrease as the alkyl length of CnDAs increases, which can be tunable ranging from 10 3 to 10 6 M -1 . The binding processes are mainly entropy-driven, while the enthalpy changes also play an important role in enhancing the host-guest interactions. In addition, a supra-amphiphile was fabricated with S6-CAP and a normal surfactant bearing bisquaternary ammonium (C4R). The S6-CAP·C4R complex forms micellar aggregates in water, and the system possesses better assembling activity and dilution stability than its building block C4R. This study enriches the families of supra-amphiphiles with a new architecture, and employing such a supra-amphiphile in biofunctional materials is highly anticipated.

  13. Time-resolved luminescence of Eu2+-aggregate centers in CsBr crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.V.; Turchak, R.M.; Voznjak, T.I.; Stryganjuk, G.B.

    2005-01-01

    The luminescence of Eu 2+ -V Cs dipole centers and CsEuBr 3 aggregate centers, as well as the features of the energy transfer to these centers by excitons have been studied in CsBr:Eu crystals by means of investigation of the time-resolved emission spectra and luminescence decay kinetics under excitation by synchrotron radiation at RT. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Origin of green luminescence in hydrothermally grown ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Čížek, J., E-mail: jakub.cizek@mff.cuni.cz; Hruška, P.; Melikhova, O.; Procházka, I. [Department of Low-Temperature Physics, Charles University in Prague, V Holešovičkách 2, CZ-180 00, Prague 8 (Czech Republic); Valenta, J. [Department of Chemical Physics and Optics, Charles University in Prague, Ke Karlovu 3, CZ-121 16, Prague 2 (Czech Republic); Novotný, M.; Bulíř, J. [Academy of Science of the Czech Republic, Institute of Physics, Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic)

    2015-06-22

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration.

  15. Origin of green luminescence in hydrothermally grown ZnO single crystals

    International Nuclear Information System (INIS)

    Čížek, J.; Hruška, P.; Melikhova, O.; Procházka, I.; Valenta, J.; Novotný, M.; Bulíř, J.

    2015-01-01

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration

  16. Origin of green luminescence in hydrothermally grown ZnO single crystals

    Science.gov (United States)

    Čížek, J.; Valenta, J.; Hruška, P.; Melikhova, O.; Procházka, I.; Novotný, M.; Bulíř, J.

    2015-06-01

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration.

  17. Luminescence properties of KCl:Ag{sup -} crystals excited near the fundamental absorption edge

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Taketoshi, E-mail: buri@p.s.osakafu-u.ac.jp [Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531 (Japan); Hirai, Takeshi [Department of Physical Science, Faculty of Science and Engineering, Ritsumeikan University, Noji Higashi 1-1-1, Kusatsu, Shiga 525-8577 (Japan)

    2012-02-15

    Luminescence properties of KCl single crystals doped with Ag{sup -} centers have been investigated under various excitation energies around the fundamental absorption edge at low temperatures. Under the excitation at 6.89 eV, which is lower than the intrinsic exciton energy by 0.87 eV, the A Prime luminescence band due to the intraionic transition in the Ag{sup -} ion is dominantly observed at 2.91 eV. On the other hand, the excitation at 6.66 eV induces a broad luminescence band at 2.60 eV in addition to the A Prime luminescence band. From the comparison with the localized excitons in KCl:I crystals, the 2.60 eV luminescence band is attributed to the two-center type localized exciton related with the Ag{sup -} ion. The adiabatic potential energy surfaces of the excited states in the Ag{sup -} center and the localized exciton in KCl:Ag{sup -} are discussed. - Highlights: Black-Right-Pointing-Pointer We study the luminescence properties of KCl single crystals doped with Ag{sup -} ions. Black-Right-Pointing-Pointer The excitation around the absorption edge induces a broad luminescence at 2.60 eV. Black-Right-Pointing-Pointer The 2.60 eV luminescence is attributed to the exciton localized at the Ag{sup -} ion. Black-Right-Pointing-Pointer The localized exciton has the two-center type configuration of the relaxed exciton.

  18. Mechanism of band-edge luminescence in cuprous iodide single crystals

    International Nuclear Information System (INIS)

    Gao, Pan; Gu, Mu; Liu, Xi; Liu, Bo; Zheng, Yan-Qing; Shi, Er-Wei; Shi, Jun-Yan; Zhang, Guo-bin

    2014-01-01

    Highlights: • The luminescence properties of CuI crystals are influenced by the quality of the as-grown crystals. • The emission peaks of free-exciton and bound-exciton are observed in the CuI single crystals. • The ultrafast component luminescence is warranted to the donor-acceptor pair recombination. • The exciton absorption and electron excitation multiplication processes were observed in CuI. - Abstract: The photoluminescence spectra of CuI crystals using synchrotron radiation as an excitation light source were obtained at 60 K. The emission peaks at 405, 415, 420 and 443 nm were observed. The possible origins of these peaks were discussed by the temperature dependence of luminescence spectra for CuI material. Meanwhile, the photoluminescence spectra of CuI powder with different excitation intensity were measured and the ultrafast luminescence component of CuI crystals was warranted to be attributed to the recombination of donor acceptor pair. Furthermore, the excitation process was studied by measuring the photoluminescence excitation spectra of CuI crystals and powder

  19. Host-Guest Engineering of Layered Double Hydroxides towards Efficient Oxygen Evolution Reaction: Recent Advances and Perspectives

    Directory of Open Access Journals (Sweden)

    Jianming Li

    2018-05-01

    Full Text Available Electrochemical water splitting has great potential in the storage of intermittent energy from the sun, wind, or other renewable sources for sustainable clean energy applications. However, the anodic oxygen evolution reaction (OER usually determines the efficiency of practical water electrolysis due to its sluggish four-electron process. Layered double hydroxides (LDHs have attracted increasing attention as one of the ideal and promising electrocatalysts for water oxidation due to their excellent activity, high stability in basic conditions, as well as their earth-abundant compositions. In this review, we discuss the recent progress on LDH-based OER electrocatalysts in terms of active sites, host-guest engineering, and catalytic performances. Moreover, further developments and challenges in developing promising electrocatalysts based on LDHs are discussed from the viewpoint of molecular design and engineering.

  20. Self-assembly behavior of a linear-star supramolecular amphiphile based on host-guest complexation.

    Science.gov (United States)

    Wang, Juan; Wang, Xing; Yang, Fei; Shen, Hong; You, Yezi; Wu, Decheng

    2014-11-04

    A star polymer, β-cyclodextrin-poly(l-lactide) (β-CD-PLLA), and a linear polymer, azobenzene-poly(ethylene glycol) (Azo-PEG), could self-assemble into a supramolecular amphiphilic copolymer (β-CD-PLLA@Azo-PEG) based on the host-guest interaction between β-CD and azobenzene moieties. This linear-star supramolecular amphiphilic copolymer further self-assembled into a variety of morphologies, including sphere-like micelle, carambola-like micelle, naan-like micelle, shuttle-like lamellae, tube-like fiber, and random curled-up lamellae, by tuning the length of hydrophilic or hydrophobic chains. The variation of morphology was closely related to the topological structure and block ratio of the supramolecular amphiphiles. These self-assembly structures could disassemble upon an ultraviolet (UV) light irradiation.

  1. Organic light-emitting diodes for lighting: High color quality by controlling energy transfer processes in host-guest-systems

    Science.gov (United States)

    Weichsel, Caroline; Reineke, Sebastian; Furno, Mauro; Lüssem, Björn; Leo, Karl

    2012-02-01

    Exciton generation and transfer processes in a multilayer organic light-emitting diode (OLED) are studied in order to realize OLEDs with warm white color coordinates and high color-rendering index (CRI). We investigate a host-guest-system containing four phosphorescent emitters and two matrix materials with different transport properties. We show, by time-resolved spectroscopy, that an energy back-transfer from the blue emitter to the matrix materials occurs, which can be used to transport excitons to the other emitter molecules. Furthermore, we investigate the excitonic and electronic transfer processes by designing suitable emission layer stacks. As a result, we obtain an OLED with Commission Internationale de lÉclairage (CIE) coordinates of (0.444;0.409), a CRI of 82, and a spectrum independent of the applied current. The OLED shows an external quantum efficiency of 10% and a luminous efficacy of 17.4 lm/W at 1000 cd/m2.

  2. Selectivity and stoichiometry boosting of beta-cyclodextrin in cationic/anionic surfactant systems: when host-guest equilibrium meets biased aggregation equilibrium.

    Science.gov (United States)

    Jiang, Lingxiang; Yu, Caifang; Deng, Manli; Jin, Changwen; Wang, Yilin; Yan, Yun; Huang, Jianbin

    2010-02-18

    Cationic surfactant/anionic surfactant/beta-CD ternary aqueous systems provide a platform for the coexistence of the host-guest (beta-CD/surfactant) equilibrium and the biased aggregation (monomeric/aggregated surfactants) equilibrium. We report here that the interplay between the two equilibria dominates the systems as follows. (1) The biased aggregation equilibrium imposes an apparent selectivity on the host-guest equilibrium, namely, beta-CD has to always selectively bind the major surfactant (molar fraction > 0.5) even if binding constants of beta-CD to the pair of surfactants are quite similar. (2) In return, the host-guest equilibrium amplifies the bias of the aggregation equilibrium, that is, the selective binding partly removes the major surfactant from the aggregates and leaves the aggregate composition approaching the electroneutral mixing stoichiometry. (3) This composition variation enhances electrostatic attractions between oppositely charged surfactant head groups, thus resulting in less-curved aggregates. In particular, the present apparent host-guest selectivity is of remarkably high values, and the selectivity stems from the bias of the aggregation equilibrium rather than the difference in binding constants. Moreover, beta-CD is defined as a "stoichiometry booster" for the whole class of cationic/anionic surfactant systems, which provides an additional degree of freedom to directly adjust aggregate compositions of the systems. The stoichiometry boosting of the compositions can in turn affect or even determine microstructures and macroproperties of the systems.

  3. Deciphering the perturbation effect of urea on the supramolecular host-guest interaction of biologically active hydrophobic molecule inside the nanocavity of cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    Maity, Banibrata; Chatterjee, Aninda; Ahmed, Sayeed Ashique; Seth, Debabrata, E-mail: debabrata@iitp.ac.in

    2017-03-15

    The present work articulates the supramolecular interaction and the formation of host-guest complex between the biologically active hydrophobic coumarin derivative and cyclodextrins by using several spectroscopic, calorimetric and microscopic techniques. All the studies clearly revealed that in presence of cyclodextrins (CDs), coumarin forms 1:1 stoichiometric complex. From all the study, we have found that with gradual increasing the cavity diameter of the hosts, the binding efficiency of the complexes gradually increases. The small population of the non emissive twisted intramolecular charge transfer (TICT) state of coumarin molecule turns into highly emissive in presence of γ-CD owing to its greater cavity diameter. The emissive TICT band is not found in β-CD complex due to its comparative small hydrophilic exterior and less polar environment. The present finding also interpret the perturbation effect of urea on host-guest complexes. In the presence of urea, the TICT emissive band of γ-CD is completely diminished. From, {sup 1}H NMR study it was observed that –NEt{sub 2} moiety of 7-DCCAE molecule is deeply buried inside the hydrophobic cavity of the CDs and forms host-guest complexes. Isothermal titration calorimetry measurement also indicates the formation of 1:1 host-guest complexes.

  4. Luminescence detection of phase transitions in crystals and nanoparticle inclusions

    International Nuclear Information System (INIS)

    Townsend, P. D.; Yang, B.; Wang, Y.

    2008-01-01

    Luminescence measurements are extremely sensitive to variations in structural environment and thus have the potential to probe distortions of fluorescence sites. Changes can be monitored via luminescence efficiency, emission spectra or excited state lifetimes and these factors are influenced by the local neighbourhood around the emission site, and therefore by structure, composition, pressure and temperature. A rarely exploited approach for condensed matter has been to use the changes in luminescence responses during heating or cooling of a material to provide a rapid survey to detect the presence of phase transitions. One can often differentiate between bulk and surface effects by contrasting results from radioluminescence for bulk responses, and cathodoluminescence or photoluminescence for surface effects. One expects that discontinuous changes in optical parameters occur during temperature changes through phase transitions of insulating materials. In practice, optical signals also exist from surface states of fullerenes and high temperature superconductors etc which identify the presence of structural or superconducting transitions. Numerous examples are cited which match standard documented transitions. Interestingly many examples show the host signals are strongly sensitive to impurity phase transitions from inclusions such as nanoparticles of water, N 2 , O 2 or CO 2 . Recent luminescence data reveal many examples of new transitions, hysteresis and irreversible changes. The signals equally respond to relaxations of a structure and surprisingly indicate that in some materials, such as SrTiO 3 or ZnO, ion implantation of the surface triggers relaxations and phase changes throughout the bulk of the material. Luminescence routes to detect phase transitions are powerful tools but have a tiny literature and so the subject is ideal for rapid exploitation and development. (Author)

  5. Angular dependences of the luminescence and density of photon states in a chiral liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Umanskii, B A; Blinov, L M; Palto, S P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation)

    2013-11-30

    Luminescence spectra of a laser dye-doped chiral liquid crystal have been studied in a wide range of angles (up to 60°) to the axis of its helical structure using a semicylindrical quartz prism, which made it possible to observe the shift and evolution of the photonic band gap in response to changes in angle. Using measured spectra and numerical simulation, we calculated the spectral distributions of the density of photon states in such a cholesteric crystal for polarised and unpolarised light, which characterise its structure as that of a chiral one-dimensional photonic crystal. (optics of liquid crystals)

  6. Luminescence-induced noise in single photon sources based on BBO crystals

    Czech Academy of Sciences Publication Activity Database

    Machulka, R.; Lemr, Karel; Haderka, Ondřej; Lamperti, M.; Allevi, A.; Bondani, M.

    2014-01-01

    Roč. 47, č. 21 (2014), s. 215501 ISSN 0953-4075 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : luminescence * BBO crystal * photon source * noise * streak camera Subject RIV: BH - Optics , Masers, Lasers Impact factor: 1.975, year: 2014

  7. Luminescent and structural properties of Zn_xMg_1_-_xWO_4 mixed crystals

    International Nuclear Information System (INIS)

    Krutyak, N.; Nagirnyi, V.; Spassky, D.; Tupitsyna, I.; Dubovik, A.; Belsky, A.

    2016-01-01

    The structural and luminescent properties of perspective scintillating Zn_xMg_1_-_xWO_4 mixed crystals were studied. The following characteristics were found to depend linearly on x value: the energy of several vibrational modes detected by Raman spectroscopy, the bandgap width deduced from the shift of the excitation spectrum onset of a self-trapped exciton (STE) emission, the position of thermally stimulated luminescence peaks. It is also shown that the thermal stability of the STE luminescence decreases gradually when x decreases. These data indicate that each Zn_xMg_1_-_xWO_4 mixed crystal is not a mixture of two constituents, but possesses its original crystalline structure, as well as optical and luminescent properties. - Highlights: • The structural and luminescent properties of Zn_xMg_1_-_xWO_4 were studied. • The energy of Raman modes, the bandgap width, TSL peak position linearly depend on x. • Each Zn_xMg_1_-_xWO_4 possesses its original crystalline structure.

  8. Uniaxial negative thermal expansion facilitated by weak host-guest interactions.

    Science.gov (United States)

    Engel, Emile R; Smith, Vincent J; Bezuidenhout, Charl X; Barbour, Leonard J

    2014-04-25

    A nitromethane solvate of 18-crown-6 was investigated by means of variable-temperature single-crystal X-ray diffraction in response to a report of abnormal unit cell contraction. Exceptionally large positive thermal expansion in two axial directions and negative thermal expansion along the third was confirmed. The underlying mechanism relies exclusively on weak electrostatic interactions to yield a linear thermal expansion coefficient of -129 × 10(-6) K(-1), the largest negative value yet observed for an organic inclusion compound.

  9. Time-resolved luminescent spectroscopy of YAG:Ce single crystal and single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Vozniak, T.; Puzikov, V.; Danko, A.; Nizhankovski, S.

    2010-01-01

    The peculiarities of the luminescence and energy transfer from YAG host to the emission centers formed by the Y Al antisite defects and Ce 3+ ions have been studied in YAG:Ce single crystals, grown from the melt by modified Bridgman method in Ar and CO 2 + H 2 atmospheres, and YAG:Ce single crystalline film, grown by liquid phase epitaxy method, using the comparative time-resolved luminescent spectroscopy under excitation by synchrotron radiation in the range of fundamental adsorption of this garnet.

  10. Luminescence spectroscopy of Rb2KTiOF5 oxyfluoride single crystals

    Science.gov (United States)

    Kozlov, A. V.; Pustovarov, V. A.; Sarychev, M. N.; Isaenko, L. I.

    2017-09-01

    Spectra of photoluminescence (PL) and X-ray excited luminescence (XRL) in region of 1.5-5.5 eV, PL excitation spectra using synchrotron radiation (3.7-22 eV), time-resolved impulse cathode-luminescence (ICL) spectra, the temperature depending of the XRL, decay kinetics as well as thermoluminescence curves were measured for single crystals Rb2KTiOF5, a promising nonlinear optical material. Single crystals are transparent in microwave, visible and near UV range, inter-band transition energy is Eg = 4.2 eV. Crystalline structure has two disordered mixed position O/F, phase transition in the region of 215 K. All the obtained results indicate that in luminescence spectra nonelementary band 2.2 eV is connected to the emission of self-trapped excitons. Nonelementary band 2.2 eV associated with the presence local distortion in the octahedron TiOF5. It is observed that at interband excitation in VUV region at energies more than 3.5 Eg the effect of multiplication of electronic excitations appears. That determines the high output of XRL and ICL. Luminescence methods of quality control of grown crystals are proposed.

  11. Luminescent properties of Y3Al5−xGaxO12:Ce crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Zorenko, T.; Malinowski, P.; Sidletskiy, O.; Neicheva, S.

    2014-01-01

    Absorption, luminescent and scintillation properties of Ce 3+ doped Y 3 Al 5−x Ga x O 12 crystals with Ga content in the x=1–5 range were investigated in this work and compared with the properties of YAG:Ce crystals. Apart from the traditional spectral methods (absorption, cathodoluminescence and light yield measurements), the intrinsic and Ce 3+ related luminescence of Y 3 Al 5−x Ga x O 12 :Ce solid-solution were also investigated using the luminescent spectroscopy under excitation by synchrotron radiation in the 3.7–25 eV range. We show that the optical properties Y 3 Al 5−x Ga x O 12 :Ce garnets monotonically change with increasing the Ga content in the x=0–3 range due to preferable localization of Ga ions in the tetrahedral position of the garnet lattice. At the highest Ga concentration (x>3) the deviation of the optical properties of Y 3 Al 5−x Ga x O 12 :Ce garnets is observed from the respective properties of these crystals with Ga content in the x=0–3 range due to occupation by Ga ions of the octahedral position in the garnet host. - Highlights: • Different dependence of optical properties of Y 3 Al 5−x Ga x O 12 :Ce crystals on Ga content in x=0–3 and 3–5 ranges. • Elimination of the luminescence of Y Al antisite defects in Y 3 Al 5−x Ga x O 12 :Ce crystals at x>2. • Significant improvement of the scintillation properties of Y 3 Al 5−x Ga x O 12 :Ce crystals at x=2 and 3 in comparison with YAG:Ce

  12. Investigation of the host-guest complexation between 4-sulfocalix[4]arene and nedaplatin for potential use in drug delivery

    Science.gov (United States)

    Fahmy, Sherif Ashraf; Ponte, Fortuna; Abd El-Rahman, Mohamed K.; Russo, Nino; Sicilia, Emilia; Shoeib, Tamer

    2018-03-01

    Macromolecules including macrocyclic species have been reported to have the potential to encapsulate biologically active compounds such as drugs through host-guest complexation to increase their solubility, stability and bioavailability. In this paper the first experimental and theoretical investigation of the complexation between nedaplatin, a second generation antineoplastic drug, and p-4-sulfocalix[4]arene, a macromolecule possessing a bipolar amphiphilic structure with good biocompatibility and relatively low haemolytic toxicity for potential use as a drug delivery system is presented. Data from 1H NMR, UV, Job's plot analysis, HPLC and DFT calculations are detailed and suggest the formation of a 1:1 complex. The stability constant of the complex was experimentally estimated to be 3.6 × 104 M- 1 and 2.1 × 104 M- 1 which correspond to values of - 6.2 and - 5.9 kcal mol- 1, respectively for the free energy of complexation while the interaction free energy is calculated to be - 4.9 kcal mol- 1. The formed species is shown to be stabilised in solution through hydrogen bonding between the host and the guest which may allow for this strategy to be effective for potential use in drug delivery.

  13. Supra-dendron Gelator Based on Azobenzene-Cyclodextrin Host-Guest Interactions: Photoswitched Optical and Chiroptical Reversibility.

    Science.gov (United States)

    Xie, Fan; Ouyang, Guanghui; Qin, Long; Liu, Minghua

    2016-12-12

    A novel amphiphilic dendron (AZOC 8 GAc) with three l-glutamic acid units and an azobenzene moiety covalently linked by an alkyl spacer has been designed. The compound formed hydrogels with water at very low concentration and self-assembled into chiral-twist structures. The gel showed a reversible macroscopic volume phase transition in response to pH variations and photo-irradiation. During the photo-triggered changes, although the gel showed complete reversibility in its optical absorptions, only an incomplete chiroptical property change was achieved. On the other hand, the dendron could form a 1:1 inclusion complex through a host-guest interaction with α-cyclodextrin (α-CD), designated as supra-dendron gelator AZOC 8 GAc/α-CD. The supra-dendron showed similar gelation behavior to that of AZOC 8 GAc, but with enhanced photoisomerization-transition efficiency and chiroptical switching capacity, which was completely reversible in terms of both optical and chiroptical performances. The self-assembly of the supra-dendron is a hierarchical or multi-supramolecular self-assembling process. This work has clearly illustrated that the hierarchical and multi-supramolecular self-assembling system endows the supramolecular nanostructures or materials with superior reversible optical and chiroptical switching. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Spatial, Hysteretic, and Adaptive Host-Guest Chemistry in a Metal-Organic Framework with Open Watson-Crick Sites.

    Science.gov (United States)

    Cai, Hong; Li, Mian; Lin, Xiao-Rong; Chen, Wei; Chen, Guang-Hui; Huang, Xiao-Chun; Li, Dan

    2015-09-01

    Biological and artificial molecules and assemblies capable of supramolecular recognition, especially those with nucleobase pairing, usually rely on autonomous or collective binding to function. Advanced site-specific recognition takes advantage of cooperative spatial effects, as in local folding in protein-DNA binding. Herein, we report a new nucleobase-tagged metal-organic framework (MOF), namely ZnBTCA (BTC=benzene-1,3,5-tricarboxyl, A=adenine), in which the exposed Watson-Crick faces of adenine residues are immobilized periodically on the interior crystalline surface. Systematic control experiments demonstrated the cooperation of the open Watson-Crick sites and spatial effects within the nanopores, and thermodynamic and kinetic studies revealed a hysteretic host-guest interaction attributed to mild chemisorption. We further exploited this behavior for adenine-thymine binding within the constrained pores, and a globally adaptive response of the MOF host was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Through-Space Paramagnetic NMR Effects in Host-Guest Complexes: Potential Ruthenium(III) Metallodrugs with Macrocyclic Carriers.

    Science.gov (United States)

    Chyba, Jan; Novák, Martin; Munzarová, Petra; Novotný, Jan; Marek, Radek

    2018-04-05

    The potential of paramagnetic ruthenium(III) compounds for use as anticancer metallodrugs has been investigated extensively during the past several decades. However, the means by which these ruthenium compounds are transported and distributed in living bodies remain relatively unexplored. In this work, we prepared several novel ruthenium(III) compounds with the general structure Na + [ trans-Ru III Cl 4 (DMSO)(L)] - (DMSO = dimethyl sulfoxide), where L stands for pyridine or imidazole linked with adamantane, a hydrophobic chemophore. The supramolecular interactions of these compounds with macrocyclic carriers of the cyclodextrin (CD) and cucurbit[ n]uril (CB) families were investigated by NMR spectroscopy, X-ray diffraction analysis, isothermal titration calorimetry, and relativistic DFT methods. The long-range hyperfine NMR effects of the paramagnetic guest on the host macrocycle are related to the distance between them and their relative orientation in the host-guest complex. The CD and CB macrocyclic carriers being studied in this account can be attached to a vector that attracts the drug-carrier system to a specific biological target and our investigation thus introduces a new possibility in the field of targeted delivery of anticancer metallodrugs based on ruthenium(III) compounds.

  16. Luminescence of the SrCl2:Pr crystals under high-energy excitation

    International Nuclear Information System (INIS)

    Antonyak, O.T.; Voloshinovskii, A.S.; Vistovskyy, V.V.; Stryganyuk, G.B.; Kregel, O.P.

    2014-01-01

    The present research was carried out in order to elucidate the mechanisms of energy transfer from the crystal lattice to Pr 3+ ions in SrCl 2 . The luminescence excitation and emission spectra as well as luminescence kinetics of the SrCl 2 :Pr single crystals containing 0.2 mol% Pr were investigated at 300 and 10 K using the vacuum ultraviolet (VUV) synchrotron radiation. The X-ray excited luminescence spectra of the SrCl 2 :Pr (C Pr =0.2 and 0.5 mol%) and SrCl 2 :Pr, K (C Pr =1.5 mol%; C K =1.5 mol%) crystals were studied at 294 and 80 K. Under optical excitation of the samples in the Pr 3+ absorption bands, there were observed five fast ultraviolet emissions assigned to the 4f 1 5d→4f 2 transitions, and two long-wave bands corresponding to the f–f transitions. Furthermore, the intrinsic emission bands of SrCl 2 were observed at 10 K. The X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal containing 0.2 mol% Pr, besides intrinsic emission band near 400 nm, has got a long-wave band at about 490 nm of the Pr 3+ centers. There were not observed any emission bands of the Pr 3+ centers corresponding to the 4f 1 5d–4f 2 transitions in the X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal. The possible mechanisms of energy transfer from the SrCl 2 matrix to the Pr 3+ centers are discussed. -- Highlights: • Spectral-luminescent properties of SrCl 2 :Pr have been investigated. • The identification of emission 4f–4f and 5d–4f bands of Pr 3+ ions was performed. • Adding of potassium prevents clustering of the Pr 3+ centers in the SrCl 2 :Pr, K crystals. • Under X-ray excitation at 80–300 K only Pr 3+ 4f–4f and intrinsic emission is observed

  17. Comparison of the luminescent properties of Lu3Al5O12:Pr crystals and films under synchrotron radiation excitation

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Zorenko, T.; Voznyak, T.; Nizankovskiy, S.

    2016-01-01

    The work is dedicated to comparative investigation of the luminescent properties of Lu 3 Al 5 O 12 :Pr(LuAG:Pr) single crystals and single crystalline films using excitation by synchrotron radiation with an energy of 3.7–25 eV in the exciton range of LuAG host. We have found that the differences in the excitation spectra and luminescence decay kinetics of LuAG:Pr crystals and films are caused by involving the LuAl antisite defects and oxygen vacancies in the crystals and Pb 2+ flux related dopants in the films in the excitation processes of the Pr 3+ luminescence. Taking into account these differences, we have determined the energy structure of the Pr 3+ ions in LuAG host and estimated the differences in the energies of creation of excitons bound with the isolated Pr 3+ ions in LuAG:Pr films and the dipole Pr–LuAl antisite defect centers in the crystal counterpart. - Highlights: • Comparison of the luminescent properties of LuAG:Pr single crystals and films. • Superposition of the Pr 3+ and defect centers luminescence of LuAG:Pr crystal. • Different creation energies of an excitons bound with the Pr 3+ in LuAG:Pr crystals and films. • More faster decay kinetics of the Pr 3+ luminescence in LuAG:Pr films. • Low content of slow emission component in LuAG:Pr films.

  18. Molecular recognition: Comparative study of a tunable host-guest system by using a fluorescent model system and collision-induced dissociation mass spectrometry on dendrimers

    DEFF Research Database (Denmark)

    Pittelkow, M.; Nielsen, C.B.; Broeren, A.C.

    2005-01-01

    Host-guest interactions between the periphery of adamantylurea-functionalized dendrimers (host) and ureido acetic acid derivatives (guest) were shown to be specific, strong and spatially well-defined. The binding becomes stronger when using phosphonic or sulfonic acid derivatives. In the present...... work we have quantified the binding constants for the host-guest interactions between two different host motifs and six different guest molecules. The host molecules, which resemble the periphery of a poly(propylene imine) dendrimer, have been fitted with an anthracene-based fluorescent probe. The two...... host motifs differ in terms of the length of the spacer between a tertiary amine and two ureido functionalities. The guest molecules all contain an acidic moiety (either a carboxylic acid, a phosphonic acid, or a sulfonic acid) and three of them also contain an ureido moiety capable of forming multiple...

  19. A supramolecular photosensitizer system based on the host-guest complexation between water-soluble pillar[6]arene and methylene blue for durable photodynamic therapy.

    Science.gov (United States)

    Yang, Kui; Wen, Jia; Chao, Shuang; Liu, Jing; Yang, Ke; Pei, Yuxin; Pei, Zhichao

    2018-06-05

    A supramolecular photosensitizer system WP6-MB was synthesized based on water-soluble pillar[6]arene and the photosensitizer methylene blue (MB) via host-guest interaction. MB can complex with WP6 directly with a high complex constant without further modification. In particular, WP6-MB can reduce the dark toxicity of MB remarkably. Furthermore, it can efficiently overcome photobleaching and extend the time for singlet oxygen production of MB upon light irradiation, which is significant for durable photodynamic therapy.

  20. Host-guest complexes of 2-hydroxypropyl-β-cyclodextrin/β-cyclodextrin and nifedipine: 1H NMR, molecular modeling, and dissolution studies

    Science.gov (United States)

    de Araújo, Márcia Valéria Gaspar; Vieira, João Victor Francisco; da Silva, Caroline W. P.; Barison, Andersson; Andrade, George Ricardo Santana; da Costa, Nivan Bezerra; Barboza, Fernanda Malaquias; Nadal, Jessica Mendes; Novatski, Andressa; Farago, Paulo Vitor; Zawadzki, Sônia Faria

    2017-12-01

    Nifedipine (NIF) is a hydrophobic drug widely used for treating cardiovascular diseases. This calcium channel blocker can present a higher apparent solubility by its inclusion into different cyclodextrins (CDs) as host-guest complexes. This paper focused on the structural investigation and dissolution behavior of inclusion complexes prepared with 2-hydroxypropyl-β-cyclodextrin (HPβCD) or β-cyclodextrin (βCD) and NIF. Drug amorphization was observed for HPβCD/NIF and βCD/NIF inclusion complexes by X-ray diffractometry (XRD). The sharp endothermic peak of NIF was not observed for these both host-guest complexes by differential scanning calorimetry (DSC). These results of XRD and DSC provide evidences of complexation between drug and the investigated CDs. 1H and saturation transfer difference nuclear magnetic resonance studies revealed the enhancement in the signal at 2.27 ppm for HPβCD/NIF and βCD/NIF inclusion complexes that corresponded to the methyl groups of NIF from the non-aromatic ring. This result suggested that non-aromatic ring of NIF was inserted into HPβCD and βCD cavities. Considering the mathematical simulations, it was observed that the inclusion process can occur in the both NH-in or NH-out forms. However, since it was used aqueous medium, it is possible to indicate that the obtained host-guest complexes HPβCD/NIF and βCD/NIF are in NH-in form which corresponded to the previous results obtained by 1H NMR experiments. Dissolution assays demonstrated that NIF inclusion complexes improved the drug release nevertheless without changing its biexponential release behavior. These host-guest complexes can be further used as feasible NIF carriers in solid dosage forms.

  1. Host-guest chemistry of dendrimer-drug complexes. 2. Effects of molecular properties of guests and surface functionalities of dendrimers.

    Science.gov (United States)

    Hu, Jingjing; Cheng, Yiyun; Wu, Qinglin; Zhao, Libo; Xu, Tongwen

    2009-08-06

    The host-guest chemistry of dendrimer-drug complexes is investigated by NMR techniques, including (1)H NMR and 2D-NOESY studies. The effects of molecular properties of drug molecules (protonation ability and spatial steric hindrance of charged groups) and surface functionalities of dendrimers (positively charged amine groups and negatively charged carboxylate groups) on the host-guest interactions are discussed. Different interaction mechanisms between dendrimers and drug molecules are proposed on the basis of NMR results. Primary amine- and secondary amine-containing drugs preferentially bind to negatively charged dendrimers by strong electrostatic interactions, whereas tertiary amine and quaternary ammonium-containing drugs have weak binding ability with dendrimers due to relatively low protonation ability of the tertiary amine group and serious steric hindrance of the quaternary ammonium group. Positively charged drugs locate only on the surface of negatively charged dendrimers, whereas negatively charged drugs locate both on the surface and in the interior cavities of positively charged dendrimers. The host-guest chemistry of dendrimer-drug complexes is promising for the development of new drug delivery systems.

  2. Growth and luminescent properties of Li2B4O7 single crystal doped with Cu

    International Nuclear Information System (INIS)

    Bui The Huy; Bui Minh Ly; Vu Xuan Quang; Huynh Ky Hanh; Doan Phan Thao Tien; Vinh Hao; Tran Ngoc

    2009-01-01

    The authors have primarily succeeded in the study of the technology for growing single crystal Li 2 B 4 O 7 doped with Cu ions by Bridgman technique. The TL-3D spectra show peaks at around 375 nm (3d 9 4s → 3d 10 radiative excitation transition). This success opened up an opportunity in the radiotherapy to manufacture scintillators for neutron detection. The kinetic parameters of thermal stimulation luminescence were investigated by the three point method.

  3. Hybrid silica luminescent materials based on lanthanide-containing lyotropic liquid crystal with polarized emission

    Energy Technology Data Exchange (ETDEWEB)

    Selivanova, N.M., E-mail: natsel@mail.ru [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation); Vandyukov, A.E.; Gubaidullin, A.T. [A.E. Arbuzov Institute of Organic and Physical Chemistry of the Kazan Scientific Center of the Russian Academy of Sciences, 8 Acad. Arbuzov Str., Kazan 420088 (Russian Federation); Galyametdinov, Y.G. [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation)

    2014-11-14

    This paper represents the template method for synthesis of hybrid silica films based on Ln-containing lyotropic liquid crystal and characterized by efficient luminescence. Luminescence films were prepared in situ by the sol–gel processes. Lyotropic liquid crystal (LLC) mesophases C{sub 12}H{sub 25}O(CH{sub 2}CH{sub 2}O){sub 10}H/Ln(NO{sub 3}){sub 3}·6H{sub 2}O/H{sub 2}O containing Ln (III) ions (Dy, Tb, Eu) were used as template. Polarized optical microscopy, X-ray powder diffraction, and FT-IR-spectroscopy were used for characterization of liquid crystal mesophases and hybrid films. The morphology of composite films was studied by the atomic force microscopy method (AFM). The optical properties of the resulting materials were evaluated. It was found that hybrid silica films demonstrate significant increase of their lifetime in comparison with an LLC system. New effects of linearly polarized emission revealed for Ln-containing hybrid silica films. Polarization in lanthanide-containing hybrid composites indicates that silica precursor causes orientation of emitting ions. - Highlights: • We suggest a new simple approach for creating luminescence hybrid silica films. • Ln-containing hybrid silica films demonstrate yellow, green and red emissions. • Tb(III)-containing hybrid film have a high lifetime. • We report effects of linearly polarized emission in hybrid film.

  4. A concept for the removal of microplastics from the marine environment with innovative host-guest relationships.

    Science.gov (United States)

    Herbort, Adrian Frank; Schuhen, Katrin

    2017-04-01

    Environmental pollution caused by inert anthropogenic stressors such as microplastics in aquatic media is constantly increasing. Through the proliferating use of plastic products in daily life, more and more plastic particles enter waters as primary microplastics. Even though large scale plastic items such as plastic bottles and bags represent the highest percentage of plastic waste, their degeneration also generates microparticles and nanoparticles (secondary microplastics). Modern sewage treatment plants require innovative ideas in order to deal with this man-made problem. State-of-the-art technology offers approaches to minimise the amount of microplastics in aquatic systems. These technologies, however, are either insufficient or very costly, as well as time-consuming in both cases. The conceptual idea presented here is to apply innovative inorganic-organic hybrid silica gels which provide a cost-effective and straightforward approach. Currently, the synthesis of preorganised bioinspired compounds is advancing in order to produce functionalised hybrid silica gels in a further step. These gels have the ability to remove stressors such as microplastics from waste water. By means of the sol-gel process, bioinspired silane compounds are currently being permuted to macromolecules and examined with respect to their properties as fixation and filter material in order to remove the hydrophobic anthropogenic stressors sustainably. Here, the reproduction of biological systems plays a significant role. In particular in material sciences, this approach is becoming increasingly important. Among other concepts, new biomimetic molecules form the basis for the investigation of innovative host-guest relationships for anthropogenic stressors in the environment and their implementation in technical processes.

  5. Magnetic and luminescent properties of vanadium-doped ZnSe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Radevici, Ivan, E-mail: ivarad@utu.fi [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Nedeoglo, Natalia; Sushkevich, Konstantin [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Huhtinen, Hannu [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Nedeoglo, Dmitrii [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Paturi, Petriina [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2016-12-15

    Magnetic and photoluminescence properties of vanadium-doped ZnSe crystals with impurity concentrations varied by changing the V amount in the source material from 0.03 to 0.30 at% are studied in 5–300 K temperature range. Investigation of magnetic properties shows that the studied concentrations of vanadium impurity that should not disturb crystal lattice are insignificant for observing ferromagnetic behaviour even at low temperatures. The contribution of V impurity to edge emission and its influence on infra-red emission are discussed. Similarities of magnetic and luminescent properties induced by vanadium and other transition metal impurities are discussed.

  6. Recombination luminescence of Cu and/or Ag doped lithium tetraborate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Romet, I. [Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50411 Tartu (Estonia); Aleksanyan, E. [Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50411 Tartu (Estonia); A. Alikhanyan National Science Laboratory, 2 Br. Alikhanyan Str., 0036 Yerevan (Armenia); Brik, M.G. [Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50411 Tartu (Estonia); College of Sciences, Chongqing University of Posts and Telecommunications, 400065 Chongqing (China); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland); Corradi, G. [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary); Kotlov, A. [Photon Science at DESY, Notkestrasse 85, 22607 Hamburg (Germany); Nagirnyi, V., E-mail: vitali.nagirnoi@ut.ee [Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50411 Tartu (Estonia); Polgár, K. [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary)

    2016-09-15

    Complex investigations of thermostimulated luminescence (TSL) and radioluminescence properties of Li{sub 2}B{sub 4}O{sub 7} (LTB), LTB:Cu, LTB:Ag and LTB:Cu, Ag crystals suitable for tissue equivalent dosimeters were carried out in the temperature range 4.2–700 K. TSL, cathodoluminescence and X-ray excited luminescence spectra are compared to those measured under photoexcitation. The emission band at 4.6 eV in LTB:Ag is reliably related to Ag{sup +} ions based on the comparison of the results of optical spectroscopy studies and first principle calculations. Energy transfer from the relaxed exited state of the Ag{sup +} ion to the Cu{sup +} ion in double-doped LTB:Cu, Ag crystals is demonstrated. Thermostimulated recombination of charge carriers in irradiated crystals is seen to take place mainly at oxygen sites at low temperatures and at impurity sites at high temperatures. For the first time, the appearance of the low-temperature TSL peak at 90 K is assigned to ionic processes in LTB crystals. The appearance of pyroelectric flashes due to the lattice relaxation in the temperature region 90–240 K is demonstrated and their surface-related nature clarified. In accordance with EPR studies the dosimetric TSL peaks in copper and silver doped LTB crystals are attributed to thermally released electrons recombining with Cu{sup 2+} and Ag{sup 2+} centres.

  7. Growth and luminescent properties of Yb3+--doped oxide single crystals for scintillator application

    International Nuclear Information System (INIS)

    Yoshikawa, A.; Ogino, H.; Shim, J.B.; Nikl, M.; Solovieva, N.; Fukuda, T.

    2004-01-01

    Rod-shaped (Lu 1-x Yb x ) 3 Al 5 O 12 with x=0.05, 0.15, 0.30 and (Y 1-x Yb x )AlO 3 with x=0.05, 0.10, 0.30 single crystals were grown by the micro-pulling-down method. Edge-defined film-fed growth method was used to prepare (Y 0.9 Yb 0.1 )VO 4 crystal, while Ca 8 (La 1.98 Yb 0.02 )(PO 4 ) 6 O 2 crystal was grown by the Czochralski method. Luminescence of these crystals was studied with main attention paid to the charge transfer emission of Yb 3+ . Temperature tuned decay times in the time scale of units--tens of nanosecond was measured as a feature possibly interesting for an application in scintillation detectors in positron emission tomography

  8. Luminescence of color centers in MgF2 crystals

    International Nuclear Information System (INIS)

    Vakhidov, Sh.A.; Nuritdinov, I.; Musaeva, M.A.

    1999-01-01

    The photoluminescence characteristics of the proper radiation color centers of the MgF 2 crystals are studied. The samples were irradiated by the 60 Co source γ-rays up to the dose 10 7 Gy. The bands with the maxima in the area of 420, 460, 550 and 620 nm were identified, which are excited correspondingly in the bands with the maxima of 370, 320, 410 and 480 nm

  9. A luminescence-optical spectroscopy study of Rb2KTiOF5 single crystals

    Science.gov (United States)

    Pustovarov, V. A.; Ogorodnikov, I. N.; Kozlov, A. V.; Isaenko, L. I.

    2018-06-01

    Large single crystals of Rb2KTiOF5 (RKTF), grown by slow solidification method, were studied (7-400 K) for various types of optical and radiation effects. The optical absorption spectra, the parameters of the Urbach rule at 293 K (σ = 0.24 and EU = 105 meV), the low-temperature reflection spectra (T = 7 K, E = 3.7-22 eV) were determined. The luminescence spectra (1.2-6.2 eV) and luminescence decay kinetics are studied upon excitation by a nanosecond electron beam (PCL), ultraviolet and vacuum ultraviolet light (PL), or X-rays radiation (XRL). PL excitation spectra under selective photoexcitation by synchrotron radiation (E = 3.7-22 eV, T = 7 K), temperature dependences of the intensity of steady-state XRL in different emission bands, as well as thermoluminescence (7-400 K) are studied. In the visible spectral region, we detected three luminescence bands that were attributed to radiative annihilation of intrinsic excitons (2.25 eV), recombination-type luminescence (2.1 eV) and luminescence of higher TiOF5 complexes (1.9 eV). The exponential component with lifetime of about 19 μs was revealed in the PCL decay kinetics at 2.25 eV. The low-energy onset of the intrinsic host absorption Ec = 3.55 eV was determined on the basis of the experimental data obtained. Spectra of optical constants were calculated by the Kramers-Krönig method, the energy of the onset of the interband transitions Eg = 4.2 eV was determined, and the main peaks of the optical spectra were identified.

  10. Filament-induced luminescence and supercontinuum generation in undoped, Yb-doped, and Nd-doped YAG crystals

    Science.gov (United States)

    Kudarauskas, D.; Tamošauskas, G.; Vengris, M.; Dubietis, A.

    2018-01-01

    We present a comparative spectral study of filament-induced luminescence and supercontinuum generation in undoped, Yb-doped, and Nd-doped YAG crystals. We show that supercontinuum spectra generated by femtosecond filamentation in undoped and doped YAG crystals are essentially identical in terms of spectral extent. On the other hand, undoped and doped YAG crystals exhibit remarkably different filament-induced luminescence spectra whose qualitative features are independent of the excitation wavelength and provide information on the energy deposition to embedded dopants, impurities, and the crystal lattice itself. Our findings suggest that filament-induced luminescence may serve as a simple and non-destructive tool for spectroscopic studies in various transparent dielectric media.

  11. The effect of crystal size on tunneling phenomena in luminescent nanodosimetric materials

    Science.gov (United States)

    Pagonis, Vasilis; Bernier, Shannon; Vieira, Francisco Marques dos Santos; Steele, Shane

    2017-12-01

    The study of luminescence signals from nanodosimetric materials is an active research area, due to the many possible practical applications of such materials. In several of these materials it has been shown that quantum tunneling is a dominant mechanism for recombination processes associated with luminescence phenomena. This paper examines the effect of crystal size on quantum tunneling phenomena in nanocrystals, based on the assumption of a random distribution of electrons and positive ions. The behavior of such random distributions is determined by three characteristic lengths: the radius of the crystal R, the tunneling length a, and the initial average distance 〈d〉 between electrons and positive ions (which is directly related to the density of charges in the material). Two different cases are examined, depending on the relative concentrations of electrons and ions. In the first case the concentration of electrons is assumed to be much smaller than the concentration of positive ions. Examination of a previously derived analytical equation demonstrates two different types of crystal size effects. When the tunneling length a is much smaller than both R and 〈d〉, the analytical equations show that smaller crystals exhibit a faster tunneling recombination rate. However, when the tunneling length a is of the same order of magnitude as both R and 〈d〉, the opposite effect is observed, with smaller crystals exhibiting a slower tunneling recombination rate. As the crystal size increases, the rate of tunneling in both cases reaches the limit expected for bulk materials. In the second case we examine the situation where the concentrations of electrons and positive ions are equal at all times. In this situation there is no analytical equation available to describe the process, and the crystal size effects are simulated by using Monte Carlo (MC) techniques. The two opposite behaviors as a function of the crystal size are also observed in these MC simulations. The

  12. Electron paramagnetic resonance and luminescence of chromium in calcium germanate crystals

    CERN Document Server

    Gorshkov, O N; Tyurin, S A; Chigineva, A B; Chigirinskij, Y I

    2002-01-01

    One observed luminescence of Cr sup 4 sup + :Ca sub 2 GeO sub 4 single crystals near 1.3 mu m wave length at excitation by a semiconducting laser up to 573 K. At T < 110 K one detected the EPR spectrum identified as one belonging to Cr sup 4 sup + ions substituting for germanium. One determined the components of g-tensor and its basic axes. In calcium germanate this impurity centre slightly violates crystal symmetry. Detected deviation from the Curie law in EPR temperature dependence is explained by transition into the excited state with activation low energy. The giant efficient multiplicity of degeneration of the excited state is explained by induction of soft phonon modes of crystal at excitation of a defect

  13. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics

    CERN Document Server

    Mihóková, E; Mareš, J A; Beitlerová, A; Vedda, A; Nejezchleb, K; Blažek, K; D’Ambrosio, C

    2007-01-01

    We use various techniques to study optical and scintillation properties of Ce-doped yttrium aluminum garnet, Y3Al5O12 (YAG:Ce), in the form of a high-quality industrial single crystal. This was compared to optical ceramics prepared from YAG:Ce nanopowders. We present experimental data in the areas of optical absorption, radioluminescence, scintillation decay, photoelectron yield, thermally stimulated luminescence and radiation-induced absorption. The results point to an interesting feature—the absence of antisite (YAl, i.e. Y at the Al site) defects in optical ceramics. The scintillation decay of the ceramics is faster than that of the single crystal, but its photoelectron yield (measured with 1 μs integration time) is about 30–40% lower. Apart from the photoelectron yield value the YAG:Ce optical ceramic is fully comparable to a high quality industrial YAG:Ce single crystal and can become a competitive scintillator material.

  14. Luminescence of Ga2O3 Crystals Excited with a Runaway Electron Beam

    Science.gov (United States)

    Burachenko, A. G.; Beloplotov, D. V.; Prudaev, I. A.; Sorokin, D. A.; Tarasenko, V. F.; Tolbanov, O. P.

    2017-12-01

    The spectra and amplitude-time characteristics of the radiation of studied Sn and Fe-doped Ga2O3 crystals excited with a runaway electron beam and an excilamp with a wavelength of 222 nm were investigated. The main contribution to the luminescence of samples in the region of 280-900 nm under excitation with a beam was shown to be made by cathodoluminescence. In the Fe-doped crystal, a new cathodeand photoluminescence band was detected within a wavelength range of 650-850 nm. In the Sn-doped crystal, Vavilov-Cherenkov radiation was detected in the region of 280-300 nm using a monochromator and a photomultiplier.

  15. Analysis of thermal treatment effects upon optico-luminescent and scintillation characteristics of oxide and chalcogenide crystals

    International Nuclear Information System (INIS)

    Ryzhikov, Vladimir D.; Grinyov, Boris V.; Pirogov, Evgeniy N.; Galkin, Sergey N.; Nagornaya, Lyudmila L.; Bondar, Vladimir G.; Babiychuk, Inna P.; Krivoshein, Vadim I.; Silin, Vitaliy I.; Lalayants, Alexandr I.; Voronkin, Evgeniy F.; Katrunov, Konstantin A.; Onishchenko, Gennadiy M.; Vostretsov, Yuriy Ya.; Malyi, Pavel Yu.; Lisetskaya, Elena K.; Lisetskii, Longin N.

    2005-01-01

    This work has been aimed at analyzing the effects of various thermal treatment factors upon optical-luminescent, scintillation and other functional characteristics of complex oxide and chalcogenide crystals. The crystals considered in this work are scintillators with intrinsic (PWO, CWO, BGO), activator (GSO:Ce) or complex-defect ZnSe(Te) type of luminescence. Important factors of thermal treatment are not only the temperature and its variation with time, but also the chemical composition of the annealing medium, its oxidation-reduction properties

  16. Luminescence and scintillation properties of Rb2HfCl6 crystals

    International Nuclear Information System (INIS)

    Saeki, Keiichiro; Wakai, Yuki; Fujimoto, Yutaka; Koshimizu, Masanori; Asai, Keisuke; Yanagida, Takayuki; Nakauchi, Daisuke

    2016-01-01

    We developed a scintillator based on a Rb 2 HfCl 6 crystal as a ternary halide crystal with intrinsic luminescence. In the photoluminescence spectra, two emission bands are observed at 383 and 434 nm. The 434 nm emission band for Rb 2 HfCl 6 may be attributed to [HfCl 6 ] 2- complex ion or [ZrCl 6 ] 2- impurity, since the Rb 2 HfCl 6 contained Zr as impurity at 0.62 mol %. The radioluminescence band is observed at 420 nm and can be attributed to the same origin as the photoluminescence band at 434 nm. The scintillation decay-time constants were 0.84 and 5.4 μs. The light yield was estimated to be 24,100 photons/MeV. (author)

  17. Host-guest chemistry of dendrimer-drug complexes: 7. Formation of stable inclusions between acetylated dendrimers and drugs bearing multiple charges.

    Science.gov (United States)

    Fang, Min; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen; Cheng, Yiyun

    2012-03-15

    Drug molecules bearing multiple charges usually form precipitates with cationic dendrimers, which presents a challenge during the preparation of dendrimer inclusions for these drugs. In the present study, fully acetylated polyamidoamine (PAMAM) dendrimers were proposed as stable vehicles for drug molecules bearing two negative charges such as Congo red and indocyanine green. NMR techniques including (1)H NMR and (1)H-(1)H NOESY were used to characterize the host-guest chemistry of acetylated dendrimer and these guest molecules. The cationic PAMAM dendrimer was found to form a precipitate with Congo red and indocyanine green, but the acetylated one avoided the formation of cross-linking structures in aqueous solutions. NOESY studies revealed the encapsulation of Congo red and indocyanine green within the interior cavities of PAMAM dendrimers at mild acidic conditions and acetylated dendrimers show much stronger ability to encapsulate the guest molecules than cationic ones. Also, UV-vis-NIR studies suggest that acetylated dendrimers significantly improve the photostability of indocyanine green and prevent the formation of indocyanine green J-aggregates in aqueous solutions. The present study provides a new insight into dendrimer-based host-guest systems, especially for those guest molecules bearing multiple charges. © 2012 American Chemical Society

  18. Host-guest chemistry of dendrimer-drug complexes. 4. An in-depth look into the binding/encapsulation of guanosine monophosphate by dendrimers.

    Science.gov (United States)

    Hu, Jingjing; Fang, Min; Cheng, Yiyun; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen

    2010-06-03

    In the present study, we investigated the host-guest chemistry of dendrimer/guanosine monophosphate (GMP) and present an in-depth look into the binding/encapsulation of GMP by dendrimers using NMR studies. (1)H NMR spectra showed a significant downfield shift of methylene protons in the outmost layer of the G5 dendrimer, indicating the formation of ion pairs between cationic amine groups of dendrimer and anionic phosphate groups of GMP. Chemical shift titration results showed that the binding constant between G5 dendrimer and GMP is 17,400 M(-1) and each G5 dendrimer has 107 binding sites. The binding of GMP to dendrimers prevents its aggregation in aqueous solutions and thereby enhances its stability. Nuclear Overhauser effect measurements indicated that a GMP binding and encapsulation balance occurs on the surface and in the interior of dendrimer. The binding/encapsulation transitions can be easily tailored by altering the surface and interior charge densities of the dendrimer. All these findings provide a new insight into the host-guest chemistry of dendrimer/guest complexes and may play important roles in the study of dendrimer/DNA aggregates by a "bottom-up" strategy.

  19. Host-Guest Complexes of Cyclodextrins and Nanodiamonds as a Strong Non-Covalent Binding Motif for Self-Assembled Nanomaterials.

    Science.gov (United States)

    Schibilla, Frauke; Voskuhl, Jens; Fokina, Natalie A; Dahl, Jeremy E P; Schreiner, Peter R; Ravoo, Bart Jan

    2017-11-13

    We report the inclusion of carboxy- and amine-substituted molecular nanodiamonds (NDs) adamantane, diamantane, and triamantane by β-cyclodextrin and γ-cyclodextrin (β-CD and γ-CD), which have particularly well-suited hydrophobicity and symmetry for an optimal fit of the host and guest molecules. We studied the host-guest interactions in detail and generally observed 1:1 association of the NDs with the larger γ-CD cavity, but observed 1:2 association for the largest ND in the series (triamantane) with β-CD. We found higher binding affinities for carboxy-substituted NDs than for amine-substituted NDs. Additionally, cyclodextrin vesicles (CDVs) were decorated with d-mannose by using adamantane, diamantane, and triamantane as non-covalent anchors, and the resulting vesicles were compared with the lectin concanavalin A in agglutination experiments. Agglutination was directly correlated to the host-guest association: adamantane showed lower agglutination than di- or triamantane with β-CDV and almost no agglutination with γ-CDV, whereas high agglutination was observed for di- and triamantane with γ-CDV. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Poly-N-Heterocyclic Carbene Ligands with Polyaromatic Linkers. Self-Assembly and Host-Guest Chemistry

    OpenAIRE

    Mejuto Nieblas, Carmen

    2017-01-01

    In summary, a series of polytopic ligands based on NHC and MIC ligands have been synthesized in this Doctoral Thesis by means of different synthetic routes that gave rise to systems with very sophisticated architectures. A large variety of metal complexes have been formed based on these salt precursors that allowed the preparation of homo and heteroleptic mono-, di- and tri-metal complexes with different geometries. The luminescence properties of various imidazolium salts, the catalytic activ...

  1. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II–VI semiconductor phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P., E-mail: bpchandra4@yahoo.co.in [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chattisgarh (India); Jha, Piyush [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chattisgarh (India)

    2015-04-15

    Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II–VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II–VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices.

  2. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II–VI semiconductor phosphors

    International Nuclear Information System (INIS)

    Chandra, B.P.; Chandra, V.K.; Jha, Piyush

    2015-01-01

    Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II–VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II–VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices

  3. Supramolecular assembly of borate with quaternary ammonium: Crystal structure and tunable luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jie; Wang, Yong-gang [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Wang, Ying-xia, E-mail: wangyx@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Liao, Fu-hui [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Lin, Jian-hua, E-mail: jhlin@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2013-04-15

    A new borate [C{sub 6}H{sub 16}N][B{sub 5}O{sub 6}(OH){sub 4}] (1) is synthesized hydrothermally by the reaction of isopropyltrimethylammonium hydroxide with boric acid. It crystallizes in the triclinic space group P-1 with the parameters a=9.1578(10) Å, b=9.372(9) Å, c=9.9812(10) Å, α=66.508(2)°, β=74.751(2)°, γ=81.893(2)°. The [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions are interlinked via hydrogen bonding forming a 3D supramolecular network containing large cavities, where reside the (CH{sub 3}){sub 3}(i-C{sub 3}H{sub 7}) N{sup +} cations. This borate shows tunable luminescent properties with temperature, heating-treatment, exciting-light, and solvents. The fluorescent intensity of 1 enhances 6-fold with decreasing the temperature from 25 K to 78 K. By treatment under different temperatures, the luminescence of 1 shifted from blue to white and the sample treated at 230 °C emits bright white light to naked eyes. The hybrid borate can disperse in different solvents, and shows a red-shifted and intense emission in polar solvents. - Graphical abstract: The new quaternary ammonium borate [C{sub 6}H{sub 17}N][B{sub 5}O{sub 6}(OH){sub 4}] contains a 3D supramolecular network formed by hydrogen bond linked [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions and shows tunable luminescent properties with temperature, excitation light, and solvents. Highlights: ► A novel quaternary ammonium borate was synthesized. ► It possesses a supramolecular network fomed by H-bonded [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions. ► This borate shows tunable luminescent properties with temperature, heating treatment, excitation light, and solvents.

  4. Effect of temperature on the luminescence of Sm{sup 3+} ions in YAM crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczkan, M. [Institute of Microelectronics and Optoelectronics PW, ul. Koszykowa 75, 00-662 Warsaw (Poland); Boruc, Z., E-mail: z.boruc@stud.elka.pw.edu.pl [Institute of Microelectronics and Optoelectronics PW, ul. Koszykowa 75, 00-662 Warsaw (Poland); Turczyński, S. [Institute of Electronic Materials Technology, ul. Wólczyńska 133, 01-919 Warsaw (Poland); Malinowski, M. [Institute of Microelectronics and Optoelectronics PW, ul. Koszykowa 75, 00-662 Warsaw (Poland)

    2014-11-05

    Highlights: • Different concentration Sm{sup 3+}-doped Y{sub 4}Al{sub 2}O{sub 9} crystals are fabricated by μ-pulling down method. • Thermally activated {sup 4}F{sub 3/2} → {sup 6}H{sub 5/2} emission of Sm{sup 3+} in YAM is studied. • Temperature dependent quenching mechanism of the {sup 4}G{sub 5/2} luminescence is proposed. - Abstract: The spectroscopic features of samarium Sm{sup 3+} activated Y{sub 4}Al{sub 2}O{sub 9} (YAM) crystals are presented and discussed. Temperature sensing properties of Sm{sup 3+}:YAM phosphor was demonstrated over the 300–1200 K range. Temperature dependent luminescence spectra and decay curves for the {sup 4}G{sub 5/2} level of Sm{sup 3+} in YAM were measured. Ratio of the fluorescence intensities arising from the two close lying {sup 4}F{sub 3/2} and {sup 4}G{sub 5/2} levels (with energy separation of ΔE ∼ 1000 cm{sup −1}) followed a straight line pattern, which confirms the Boltzmann distribution of the population, and can be used to measure temperature. The lifetime for the {sup 4}G{sub 5/2} level in 1% Sm doped sample decreases from 1.65 to 0.08 ms with heating from room temperature to 1200 K. This behavior of decays is discussed in terms of radiative and multiphonon decays as well as cross-relaxation dependence on temperature.

  5. Luminescence and energy transfer mechanisms in CaWO{sub 4} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Spassky, D., E-mail: deris2002@mail.ru [Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Vorob' evy Gory, 119991 Moscow (Russian Federation); Mikhailin, V. [Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Vorob' evy Gory, 119991 Moscow (Russian Federation); Nazarov, M. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Institute of Applied Physics, Academiei Street 5, Chisinau MD-2028 (Moldova, Republic of); Ahmad-Fauzi, M.N. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Zhbanov, A. [Department of Medical System Engineering, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2012-10-15

    The processes of the excitation energy transfer to the emission centers have been investigated for calcium tungstate crystals taking into account features of the electronic structure of valence band and conduction band. The calculations of the electronic structure of host lattice CaWO{sub 4} were performed in the framework of density functional theory. The underestimation of the bandgap value in the calculations has been corrected according to the experimental data. Luminescence of two samples grown using Czochralski (cz) and hydrothermal (ht) techniques were studied. Intrinsic emission band related to excitons, self-trapped on WO{sub 4} complexes has been observed for the both samples while the additional low-energy emission band related to the defects of crystal structure has been observed only for (ht) sample indicating the enhanced concentration of the defects in the sample. It was shown that the features of the conduction band electronic structure are reproduced in the excitation spectrum of intrinsic luminescence only for the (ht) sample while for (cz) sample the correlation is absent. The enhanced role of the competitive channels in the process of excitation energy transfer to intrinsic emission centers in (ht) sample is responsible for the observed difference. - Highlights: Black-Right-Pointing-Pointer The band structure of CaWO{sub 4} was calculated in the framework of DFT LAPW method. Black-Right-Pointing-Pointer Calculation results were validated via joint analysis with experimental data. Black-Right-Pointing-Pointer The bandgap E{sub g} of CaWO{sub 4} was determined as 4.90{+-}0.15 eV. Black-Right-Pointing-Pointer The correlation between the band structure and excitation spectrum is demonstrated. Black-Right-Pointing-Pointer Influence of competitive relaxation channel on energy transfer to STE is shown.

  6. Green luminescence from Cu-diffused LiGaO2 crystals

    International Nuclear Information System (INIS)

    Holston, M.S.; Ferguson, I.P.; Giles, N.C.; McClory, J.W.; Winarski, D.J.; Ji, Jianfeng; Selim, F.A.; Halliburton, L.E.

    2016-01-01

    An intense green luminescence is observed from single crystals of LiGaO 2 doped with copper. Czochralski-grown undoped crystals are wrapped in thin copper foil and then held at 900 °C for 1 h in a flowing nitrogen atmosphere. Large concentrations of Cu + ions enter the crystals during this process and occupy Li + sites. These copper-diffused crystals are characterized with optical absorption, photoluminescence (PL), photoluminescence excitation (PLE), thermoluminescence (TL), and electron paramagnetic resonance (EPR). An optical absorption band peaking near 350 nm is assigned to the Cu + ions at Li + sites and represents an excitation from a 3d 10 ground state to a 3d 9 4s 1 excited state. A broad PL emission from these excited Cu + ions has a peak near 523 nm and the related PLE band has a peak near 356 nm (this PLE band links the emission to the optical absorption band). Illuminating a Cu-diffused crystal at room temperature with 325 nm laser light converts a portion of the Cu + ions to Cu 2+ ions. EPR spectra from these 3d 9 ions are easily seen at low temperatures and their angular dependence is used to determine the g matrix and the 63 Cu hyperfine matrix. Subsequent heating produces a TL peak near 122 °C with a maximum in its spectral dependence near 535 nm. Correlated EPR measurements show that this TL peak occurs when trapped electrons are thermally released from unintentionally present transition-metal ions (most likely Fe) and recombine with holes at the Cu 2+ ions.

  7. Green luminescence from Cu-diffused LiGaO{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Holston, M.S.; Ferguson, I.P.; Giles, N.C.; McClory, J.W. [Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433 (United States); Winarski, D.J.; Ji, Jianfeng; Selim, F.A. [Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403 (United States); Halliburton, L.E., E-mail: Larry.Halliburton@mail.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States)

    2016-02-15

    An intense green luminescence is observed from single crystals of LiGaO{sub 2} doped with copper. Czochralski-grown undoped crystals are wrapped in thin copper foil and then held at 900 °C for 1 h in a flowing nitrogen atmosphere. Large concentrations of Cu{sup +} ions enter the crystals during this process and occupy Li{sup +} sites. These copper-diffused crystals are characterized with optical absorption, photoluminescence (PL), photoluminescence excitation (PLE), thermoluminescence (TL), and electron paramagnetic resonance (EPR). An optical absorption band peaking near 350 nm is assigned to the Cu{sup +} ions at Li{sup +} sites and represents an excitation from a 3d{sup 10} ground state to a 3d{sup 9}4s{sup 1} excited state. A broad PL emission from these excited Cu{sup +} ions has a peak near 523 nm and the related PLE band has a peak near 356 nm (this PLE band links the emission to the optical absorption band). Illuminating a Cu-diffused crystal at room temperature with 325 nm laser light converts a portion of the Cu{sup +} ions to Cu{sup 2+} ions. EPR spectra from these 3d{sup 9} ions are easily seen at low temperatures and their angular dependence is used to determine the g matrix and the {sup 63}Cu hyperfine matrix. Subsequent heating produces a TL peak near 122 °C with a maximum in its spectral dependence near 535 nm. Correlated EPR measurements show that this TL peak occurs when trapped electrons are thermally released from unintentionally present transition-metal ions (most likely Fe) and recombine with holes at the Cu{sup 2+} ions.

  8. Crystal growth and luminescence properties of Pr-doped LuLiF4 single crystal

    International Nuclear Information System (INIS)

    Sugiyama, Makoto; Yanagida, Takayuki; Yokota, Yuui; Kurosawa, Shunsuke; Fujimoto, Yutaka; Yoshikawa, Akira

    2013-01-01

    0.1, 1, and 3% Pr (with respect to Lu) doped LuLiF 4 (Pr:LuLiF 4 ) single crystals were grown by the micro-pulling-down (μ-PD) method. Transparency of the grown crystals was higher than 70% in the visible wavelength region with some absorption bands due to Pr 3+ 4f-4f transitions. Intense absorption bands related with the Pr 3+ 4f-5d transitions were observed at 190 and 215 nm. In radioluminescence spectra, Pr 3+ 5d-4f emissions were observed at 220, 240, 340, and 405 nm. In the pulse height spectra recorded under 137 Cs γ-ray excitation, the Pr 3% doped sample showed the highest light yield of 2050 photons/MeV and the scintillation decay time of it exhibited 23 and 72 ns also excited by 137 Cs γ-ray. -- Highlights: ► 0.1, 1, and 3% Pr-doped LuLiF 4 single crystals were grown by the μ-PD method. ► Pr 3+ 5d-4f emission peaks appeared at 220, 240, 340, and 405 nm ► The Pr 3%:LuLiF 4 crystal showed the highest light yield of 2050 photons/MeV

  9. Transfer and control of molecular chirality in the 1 : 2 host-guest supramolecular complex consisting of Mg(II)bisporphyrin and chiral diols: the effect of H-bonding on the rationalization of chirality.

    Science.gov (United States)

    Ikbal, Sk Asif; Brahma, Sanfaori; Rath, Sankar Prasad

    2014-11-21

    A clear rationalization of the origin of chirality transfer from an optically active diol guest to an achiral Mg(ii)bisporphyrin host in a series of 1 : 2 host-guest supramolecular complexes has been reported here that has so far remained the most outstanding issue for the chirogenic process.

  10. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals

    Science.gov (United States)

    Jiménez‐Solano, Alberto; Delgado‐Sánchez, José‐Maria; Calvo, Mauricio E.; Miranda‐Muñoz, José M.; Lozano, Gabriel; Sancho, Diego; Sánchez‐Cortezón, Emilio

    2015-01-01

    Abstract Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one‐dimensional photonic crystals and in‐plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide‐area nanostructured multilayers with photonic crystal properties were deposited by a cost‐efficient and scalable liquid processing amenable to large‐scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in‐plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long‐term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd. PMID:27656090

  11. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals.

    Science.gov (United States)

    Jiménez-Solano, Alberto; Delgado-Sánchez, José-Maria; Calvo, Mauricio E; Miranda-Muñoz, José M; Lozano, Gabriel; Sancho, Diego; Sánchez-Cortezón, Emilio; Míguez, Hernán

    2015-12-01

    Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one-dimensional photonic crystals and in-plane CuInGaSe 2 (CIGS) solar cells. Highly uniform and wide-area nanostructured multilayers with photonic crystal properties were deposited by a cost-efficient and scalable liquid processing amenable to large-scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in-plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long-term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.

  12. Luminescence and scintillation properties of Ce-doped Cs2ZnCl4 crystals

    Science.gov (United States)

    Sugawara, K.; Koshimizu, M.; Yanagida, T.; Fujimoto, Y.; Haruki, R.; Nishikido, F.; Kishimoto, S.; Asai, K.

    2015-03-01

    In this study, we have synthesized scintillation materials based on Ce-doped Cs2ZnCl4 crystals. The light yield was enhanced by up to 20% by doping Cs2ZnCl4 with Ce3+ ions. In the scintillation time profiles, fast components exhibited decay time constants on the order of nanoseconds, which was ascribed to Auger-free luminescence (AFL). The light yield of the AFL component decreased at 10 mol% Ce3+ concentration, which is mainly attributed to the reabsorption of AFL photons inside the crystals by Ce3+ ions, as seen in the scintillation spectra. Long components had decay time constants of approximately 30 ns. In addition, at 10 mol% Ce3+ concentration, a prominent band appeared at approximately 500 nm in the scintillation spectrum, which was not observed in the photoluminescence spectra. The long components in the scintillation time profiles and the 500 nm band in the scintillation spectra were tentatively attributed to self-trapped excitons perturbed by Ce3+ ions.

  13. Optically stimulated luminescence (OSL) from Ag-doped Li2B4O7 crystals

    International Nuclear Information System (INIS)

    Kananen, B.E.; Maniego, E.S.; Golden, E.M.; Giles, N.C.; McClory, J.W.; Adamiv, V.T.; Burak, Ya.V.; Halliburton, L.E.

    2016-01-01

    Optically stimulated luminescence (CW-OSL) is observed from Ag-doped lithium tetraborate (Li 2 B 4 O 7 ) crystals. Photoluminescence, optical absorption, and electron paramagnetic resonance (EPR) are used to identify the defects participating in the OSL process. As-grown crystals have Ag + ions substituting for Li + ions. They also have Ag + ions occupying interstitial sites. During a room-temperature exposure to ionizing radiation, holes are trapped at the Ag + ions that replace Li + ions and electrons are trapped at the interstitial Ag + ions, i.e., the radiation forms Ag 2+ (4d 9 ) ions and Ag 0 (4d 10 5s 1 ) atoms. These Ag 2+ and Ag 0 centers have characteristic EPR spectra. The Ag 0 centers also have a broad optical absorption band peaking near 370 nm. An OSL response is observed when the stimulation wavelength overlaps this absorption band. Specifically, stimulation with 400 nm light produces an intense OSL response when emission is monitored near 270 nm. Electrons optically released from the Ag 0 centers recombine with holes trapped at Ag 2+ ions to produce the ultraviolet emission. The OSL response is progressively smaller as the stimulation light is moved to longer wavelengths (i.e., away from the 370 nm peak of the absorption band of the Ag 0 electron traps). Oxygen vacancies are also present in the Ag-doped Li 2 B 4 O 7 crystals, and their role in the OSL process as a secondary relatively short-lived electron trap is described.

  14. Host-Guest Recognition-Assisted Electrochemical Release: Its Reusable Sensing Application Based on DNA Cross Configuration-Fueled Target Cycling and Strand Displacement Reaction Amplification.

    Science.gov (United States)

    Chang, Yuanyuan; Zhuo, Ying; Chai, Yaqin; Yuan, Ruo

    2017-08-15

    In this work, an elegantly designed host-guest recognition-assisted electrochemical release was established and applied in a reusable electrochemical biosensor for the detection of microRNA-182-5p (miRNA-182-5p), a prostate cancer biomarker in prostate cancer, based on the DNA cross configuration-fueled target cycling and strand displacement reaction (SDR) amplification. With such a design, the single target miRNA input could be converted to large numbers of single-stranded DNA (S1-Trp and S2-Trp) output, which could be trapped by cucurbit[8]uril methyl viologen (CB-8-MV 2+ ) based on the host-guest recognition, significantly enhancing the sensitivity for miRNA detection. Moreover, the nucleic acids products obtained from the process of cycling amplification could be utilized sufficiently, avoiding the waste and saving the experiment cost. Impressively, by resetting a settled voltage, the proposed biosensor could release S1-Trp and S2-Trp from the electrode surface, attributing that the guest ion methyl viologen (MV 2+ ) was reduced to MV +· under this settled voltage and formed a more-stable CB-8-MV +· -MV +· complex. Once O 2 was introduced in this system, MV +· could be oxidized to MV 2+ , generating the complex of CB-8-MV 2+ for capturing S1-Trp and S2-Trp again in only 5 min. As a result, the simple and fast regeneration of biosensor for target detection was realized on the base of electrochemical redox-driven assembly and release, overcoming the challenges of time-consuming, burdensome operations and expensive experimental cost in traditional reusable biosensors and updating the construction method for a reusable bisensor. Furthermore, the biosensor could be reused for more than 10 times with a regeneration rate of 93.20%-102.24%. After all, the conception of this work provides a novel thought for the construction of effective reusable biosensor to detect miRNA and other biomarkers and has great potential application in the area requiring the release of

  15. Effect of microwave treatment on the luminescence properties of CdS and CdTe:Cl Single Crystals

    International Nuclear Information System (INIS)

    Red’ko, R. A.; Budzulyak, S. I.; Korbutyak, D. V.; Lotsko, A. P.; Vakhnyak, N. D.; Demchyna, L. A.; Kalytchuk, S. M.; Konakova, R. V.; Milenin, V. V.; Bykov, Yu. V.; Egorov, S. V.; Eremeev, A. G.

    2015-01-01

    The effect of microwave radiation on the luminescence properties of CdS and CdTe:Cl single crystals is studied. It is established that the exposure of these semiconductors to short-term (≤30 s) microwave radiation substantially modifies their impurity and defect structure. The mechanisms of transformation of the defect subsystem of II–VI single crystals upon microwave treatment are discussed. It is shown that the experimentally observed changes are defined by the nonthermal effects of microwave radiation at a power density of 7.5 W cm –2 ; at 90 W cm –2 , nonthermal effects are prevailing

  16. Features of the core-valence luminescence and electron energy band structure of A1-xCsxCaCl3 (A = K,Rb) crystals

    International Nuclear Information System (INIS)

    Chornodolskyy, Ya; Stryganyuk, G; Syrotyuk, S; Voloshinovskii, A; Rodnyi, P

    2007-01-01

    From luminescence spectroscopy of CsCaCl 3 , Rb 1-x Cs x CaCl 3 and K 1-x Cs x CaCl 3 crystals, we have found evidence for intrinsic and impurity core-valence luminescence due to the radiative recombination of valence electrons with the holes of intrinsic or impurity 5p Cs + core states. The structural similarity of core-valence luminescence spectra has been revealed for the A 1-x Cs x CaCl 3 (A = K,Rb) crystals investigated. The electron energy structure of the CsCaCl 3 crystal has been calculated using the pseudopotential approach taking into account the gradient corrections for the exchange-correlation energy. The calculated density of the electronic states of CsCaCl 3 has been compared with corresponding parameters obtained from the analysis of core-valence luminescence spectra

  17. A New 1D Chained Coordination Polymer: Synthesis, Crystal Structure, Antitumor Activity and Luminescent Property

    Directory of Open Access Journals (Sweden)

    Xi-Shi Tai

    2015-11-01

    Full Text Available A new 1D chained coordination polymer of Zn(II, {[Zn(L2(4,4′-bipy]·(H2O}n(1 (HL = N-acetyl-l-phenylalanine; 4,4′-bipy = 4,4′-bipyridine has been synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction analysis. Theresults show that each asymmetric unit of Zn(II complex belongs to monoclinic, space group P21 with a = 11.421(2 Å, b = 9.2213(17 Å, c = 15.188(3 Å,β = 106.112(3°, V = 1536.7(5 Å3, Z = 2, Dc = 1.444 g·cm−3, µ = 0.857 mm−1, F(000 = 696, and final R1 = 0.0439, ωR2 = 0.1013. The molecules form one-dimensional chained structure by its the bridging 4,4′-bipyridine ligands. The antitumor activities and luminescent properties of Zn(II coordination polymer have also been investigated.

  18. A new zinc(II supramolecular square: Synthesis, crystal structure, thermal behavior and luminescence

    Directory of Open Access Journals (Sweden)

    Wang Xiu-Yan

    2015-01-01

    Full Text Available A new square-shaped Zn(II complex, namely, [Zn4(L4(phen4]•6H2O (1 (L = 2-hydroxynicotinate and phen = 1,10- phenanthroline, has been synthesized under hydrothermal condition. The crystal of 1 belongs to triclinic, space group P -1 with a = 10.773(2 Å, b = 12.641(3 Å, c = 13.573(3 Å, α = 107.44(3º, β = 102.66(3º, γ = 93.89(3°, C72H56N12O18Zn4, Mr = 1638.77, V = 1702.8(6 Å3 , Z = 1, Dc = 1.598 g/cm3 , S = 1.045, μ(MoKα = 1.475 mm-1 , F(000 = 836, R = 0.0472 and wR = 0.0919. In 1, four L ligands bridge four Zn(II atoms to form a square-shaped structure, where four phen ligands are respectively located on four corners of the square. The π-π stacking interactions extend the adjacent squares into a 1D supramolecular chain. The thermal behavior of 1 has been characterized. Moreover, its solid state luminescence property has been studied at room temperature.

  19. Spectrally resolved thermally stimulated luminescence of irradiated anion-defective alumina single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kortov, V., E-mail: vskortov@mail.ru [Ural Federal University, Mira Str. 19, 620002 Ekaterinburg (Russian Federation); Lushchik, A.; Nagirnyi, V. [Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu (Estonia); Ananchenko, D. [Ural Federal University, Mira Str. 19, 620002 Ekaterinburg (Russian Federation); Romet, I. [Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu (Estonia)

    2017-06-15

    Thermally stimulated luminescence (TSL) spectra in the 313–580 K temperature range have been studied in anion-defective alumina crystals (named in literature as Al{sub 2}O{sub 3}:C) exposed to different irradiation doses. The TSL curve features two peaks with the maxima at T{sub m1}=437 K and T{sub m2}=565 K. The TSL spectrum of the first peak contains the emission of F centers and the R line of Cr{sup 3+} impurity ions. The absence of the emission of F{sup +} centers indicates that electron traps are responsible for the first dosimetric TSL peak. The TSL spectrum of the second peak features emission bands of F, F{sup +} centers, R line as well as a wide band centered at 550 nm and associated with the formation of aggregate centers (F{sub 2} and F{sub 2}{sup 2+}) under irradiation. Possible excitation mechanisms of the TSL emission bands that involve both electron and hole traps related to anion vacancies and impurities are discussed. - Highlights: •TSL curve of alumina crystals features peaks at 437 and 565 K. •There are emission bands of 410 and 695 nm in the TSL spectrum of the first peak. •TSL spectrum of the second peak features bands of F, F{sub 2}-type centers and the R line of trivalent chromium. •Excitation mechanisms of the emission bands in TSL spectra are discussed.

  20. X-ray-excited optical luminescence of protein crystals: a new tool for studying radiation damage during diffraction data collection.

    Science.gov (United States)

    Owen, Robin L; Yorke, Briony A; Pearson, Arwen R

    2012-05-01

    During X-ray irradiation protein crystals radiate energy in the form of small amounts of visible light. This is known as X-ray-excited optical luminescence (XEOL). The XEOL of several proteins and their constituent amino acids has been characterized using the microspectrophotometers at the Swiss Light Source and Diamond Light Source. XEOL arises primarily from aromatic amino acids, but the effects of local environment and quenching within a crystal mean that the XEOL spectrum of a crystal is not the simple sum of the spectra of its constituent parts. Upon repeated exposure to X-rays XEOL spectra decay non-uniformly, suggesting that XEOL is sensitive to site-specific radiation damage. However, rates of XEOL decay were found not to correlate to decays in diffracting power, making XEOL of limited use as a metric for radiation damage to protein crystals. © 2012 International Union of Crystallography

  1. Mobile interstitial model and mobile electron model of mechano-induced luminescence in coloured alkali halide crystals

    International Nuclear Information System (INIS)

    Chandra, B.P.; Singh, Seema; Ojha, Bharti; Shrivastava, R.G.

    1996-01-01

    A theoretical study is made on the mobile interstitial and mobile electron models of mechano-induced luminescence in coloured alkali halide crystals. Equations derived indicate that the mechanoluminescence intensity should depend on several factors like strain rate, applied stress, temperature, density of F-centres and volume of crystal. The equations also involve the efficiency and decay time of mechanoluminescence. Results of mobile interstitial and mobile electron models are compared with the experimental observations, which indicated that the latter is more suitable as compared to the former. From the temperature dependence of ML, the energy gaps between the dislocation band and ground state of F-centre is calculated which are 0.08, 0.072 and 0.09 eV for KCl, KBr and NaCl crystals, respectively. The theory predicts that the decay of ML intensity is related to the process of stress relaxation in crystals. (author). 33 refs., 5 figs., 1 tab

  2. Novel photoluminescence enzyme immunoassay based on supramolecular host-guest recognition using L-arginine/6-aza-2-thiothymine-stabilized gold nanocluster.

    Science.gov (United States)

    Wang, Youmei; Lu, Minghua; Tang, Dianping

    2018-06-30

    A new photoluminescence (PL) enzyme immunoassay was designed for sensitive detection of aflatoxin B 1 (AFB 1 ) via an innovative enzyme substrate, 6-aza-2-thiothymine-stabilized gold nanocluster (AAT-AuNC) with L-arginine. The enzyme substrate with strong PL intensity was formed through supramolecular host-guest assembly between guanidine group of L-arginine and AAT capped on the surface of AuNC. Upon arginase introduction, the captured L-arginine was hydrolyzed into ornithine and urea, thus resulting in the decreasing PL intensity. Based on this principle, a novel competitive-type immunoreaction was first carried out on AFB 1 -bovine serum albumin (AFB 1 -BSA) conjugate-coated microplate, using arginase-labeled anti-AFB 1 antibody as the competitor. Under the optimum conditions, the PL intensity increased with the increment of target AFB 1 , and allowed the detection of the analyte at concentrations as low as 3.2 pg mL -1 (ppt). Moreover, L-arginine-AAT-AuNC-based PL enzyme immunoassay afforded good reproducibility and acceptable specificity. In addition, the accuracy of this methodology, referring to commercial AFB 1 ELISA kit, was evaluated to analyze naturally contaminated or spiked peanut samples, giving well-matched results between two methods, thus representing a useful scheme for practical application in quantitative monitoring of mycotoxins in foodstuff. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Can we beat the biotin-avidin pair?: cucurbit[7]uril-based ultrahigh affinity host-guest complexes and their applications.

    Science.gov (United States)

    Shetty, Dinesh; Khedkar, Jayshree K; Park, Kyeng Min; Kim, Kimoon

    2015-12-07

    The design of synthetic, monovalent host-guest molecular recognition pairs is still challenging and of particular interest to inquire into the limits of the affinity that can be achieved with designed systems. In this regard, cucurbit[7]uril (CB[7]), an important member of the host family cucurbit[n]uril (CB[n], n = 5-8, 10, 14), has attracted much attention because of its ability to form ultra-stable complexes with multiple guests. The strong hydrophobic effect between the host cavity and guests, ion-dipole and dipole-dipole interactions of guests with CB portals helps in cooperative and multiple noncovalent interactions that are essential for realizing such strong complexations. These highly selective, strong yet dynamic interactions can be exploited in many applications including affinity chromatography, biomolecule immobilization, protein isolation, biological catalysis, and sensor technologies. In this review, we summarize the progress in the development of high affinity guests for CB[7], factors affecting the stability of complexes, theoretical insights, and the utility of these high affinity pairs in different challenging applications.

  4. Host-guest chemistry of dendrimer-drug complexes. 6. Fully acetylated dendrimers as biocompatible drug vehicles using dexamethasone 21-phosphate as a model drug.

    Science.gov (United States)

    Yang, Kun; Weng, Liang; Cheng, Yiyun; Zhang, Hongfeng; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen

    2011-03-17

    Fully acetylated poly(amidoamine) (PAMAM) dendrimer was proposed as a biocompatible drug vehicle using dexamethasone 21-phosphate (Dp21) as a model drug. NMR techniques including (1)H NMR and 2D NOE NMR were used to characterize the host-guest chemistry of acetylated dendrimer/Dp21 and cationic dendrimer/Dp21 complexes. The pH-dependent micellization, complexation, and inclusion behaviors of Dp21 were observed in the presence of acetylated and cationic PAMAM dendrimers. Acetylated dendrimer only encapsulates Dp21 at acidic conditions, while cationic dendrimer can host Dp21 at both acidic and neutral conditions. The orientation of Dp21 molecules in the dendrimer cavities depends on the quaternization degree of tertiary amine groups of dendrimer and the protonation ratio of phosphate group of Dp21. A distinctive pH-dependent release behavior of Dp21 from the acetylated and nonacetylated dendritic matrix was observed: Dp21 exhibits a much slower release rate from acetylated dendrimer at lower pH conditions and a much faster release rate from nonacetylated dendrimer with decreasing pH values. Cytotoxicity studies further confirmed the biocompatibility of acetylated dendrimers, which are much safer in the delivery of therapeutics for the treatment of various diseases than nonacetylated dendrimers. The dendrimer-drug binding and release mechanisms provide a new insight for the design and optimization of biocompatible dendrimer-based drug delivery systems. © 2011 American Chemical Society

  5. Luminescence of Er3+ doped double lead halide crystals under X-ray, UV, VIS and IR excitation

    Science.gov (United States)

    Serazetdinov, A. R.; Smirnov, A. A.; Pustovarov, V. A.; Isaenko, L. I.

    2017-09-01

    Er3+ doped double lead halide crystals incorporate a number of properties making them interesting for practical use in light conducting materials. X-ray excited luminescence (XRL) spectra, photoluminescence (PL) spectra in region of 1.5-3.5 eV, photoluminescence excitation (PLE) spectra (2.75-5 eV) and anti-stokes luminescence (ASL) spectra were measured at room temperature in KPb2Cl5 (KPC) and RbPb2Br5 (RPB) matrices doped with Er3+ (1%) ions and in KPC doped with Er3++ Yb3+ ions(1:3 ratio concentration). Intraconfigurational f→f transitions are observed in Er3+ ions in most of the cases. The concrete spectrum form is strongly dependent on the excitation energy. Under 980 nm excitation upper Er3+ levels are excited, showing upconversional processes. In case of 313 nm (UV) and 365 nm (VIS) excitation self trapped exciton luminescence was detected in RPB crystal. Additional Yb3+ doping ions strongly increase quantum yield under 980 nm excitation and this doping cause insignificant influence on quantum yield under VIS or UV excitation.

  6. Luminescent unit computerization to research spectral characteristics of fine film alkali halide crystal

    International Nuclear Information System (INIS)

    Zhalimbetov, T.; Zhabetov, A.; Moldagaliev, A.; Sarmukhanov, E.; Shunkeev, K.; Shunkeev, S.; Abdullin, K.; Tokmoldin, C.

    2002-01-01

    languages (Visual C++ 6.0, Visual Basic 6.0). As the result of the experiments it has been noted that the burning effect of own luminescence is in its maximum in the iodides of alkaline metals, for instance, in KI, NaI, RbI, and CsI crystals. From the point of the experimental equipment in order to registration the fundamental optical absorption of these crystals there is no necessity in such rare vacuum monochromators

  7. Tetranuclear cluster-based Pb(II)-MOF: Synthesis, crystal structure and luminescence sensing for CS2

    Science.gov (United States)

    Dong, Yanli

    2018-05-01

    A new Pb(II) coordination polymer, namely [Pb2(bptc)(DMA)]n (1, H4bptc = biphenyl-3,3‧,5,5‧-tetracarboxylic acid, DMA = N, N‧- dimethylacetamide), has been synthesized by the combination of H4bptc with Pb(NO3)2 under solvothermal conditions. Single crystal X-ray diffraction analysis revealed that compound 1 features a 3D framework based on tetranuclear [Pb4(COO)6] subunits, and topological analysis revealed that compound represents a binodal (4, 8)-connected scu-type topological network with the point symbol of {416,612}{44,62}2. Luminescence studies indicated that 1 and 1' (1‧ represents the desolvated samples) showed intense yellow emissions. Significantly, 1‧ exhibited sensitive luminescence sensing for CS2 solvent molecules at a low concentration.

  8. Luminescence properties of pure and Eu-doped SrI{sub 2} crystals purified by a “Liquinert” process and grown by vertical Bridgman method

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Taketoshi, E-mail: buri@p.s.osakafu-u.ac.jp [Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531 (Japan); Sakuragi, Shiro; Hashimoto, Satoshi [Union Materials Inc. 1640 Oshido, Tone-machi, Ibaraki 300-1602 (Japan)

    2016-08-15

    We have prepared high quality crystals of pure SrI{sub 2} and Eu-doped SrI{sub 2} by our original “Liquinert” process and investigated their luminescence properties. Under the excitation with the 193 nm light of an ArF excimer laser, which corresponds to the wavelength above the bandgap of SrI{sub 2} bulk crystals, the pure and Eu doped SrI{sub 2} crystals exhibit no luminescence band related to defects or impurities around 560 nm. This fact indicates that the crystals prepared by the “Liquinert” process contain lower defects and/or impurities. When the Eu-doped SrI{sub 2} crystals are excited with the 325 nm light of a He–Cd laser, only the luminescence band due to the 5d→4f transition in the Eu{sup 2+} ions is observed around 425 nm. The 425 nm band observed at a forward configuration exhibits the shift to the longer wavelength side and the decrease of the luminescence intensity with increasing Eu concentration. The Eu concentration dependences of the peak wavelength and luminescence intensity are simulated on the basis of a simple self-absorption model. - Highlights: • Our original “Liquinert” process allows us to prepare high quality crystals of SrI{sub 2}. • No luminescence band related with impurities and/or defects is observed. • The 425 nm luminescence bands due to Eu{sup 2+} ions are affected by a self-absorption. • A simple self-absorption model reproduces the changes of the 425 nm bands.

  9. Zinc(II) halide complexes with 2-methoxyaniline ligand: Synthesis, characterization, thermal analyses, crystal structure determination and luminescent properties

    Science.gov (United States)

    Amani, Vahid

    2018-03-01

    Three new mononuclear zinc(II) complexes, [Zn(2-MeO-C6H4NH2)2X2] (X is Cl in 1, Br in 2 and I in 3), were prepared from the reactions of ZnX2 with 2-methoxyaniline (2-MeO-C6H4NH2) ligand in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurements by slow evaporation of methanol solution at room temperature. The three complexes were thoroughly characterized by thermogravimetric analysis, elemental analysis (CHNO), spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the zinc(II) cation is four-coordinated in a distorted tetrahedral configuration by two N atoms from two 2-methoxyanyline ligands and two halide anions. Also, in these complexes intermolecular interactions, for example Nsbnd H⋯X hydrogen bonds (in 1-3), Csbnd H⋯X hydrogen bonds (in 3), Csbnd H⋯π interactions (in 1 and 2) and π⋯π interactions (in 3), are effective in the stabilization of the crystal structures. In addition, the luminescence spectra of all complexes in methanolic solution show that the intensity of their emission bands is stronger than that for free 2-methoxyaniline ligand.

  10. Luminescence mechanism in doubly Gd, Nd-codoped fluoride crystals for VUV scintillators

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Fukuda, K.; Babin, Vladimir; Kurosawa, S.; Yokota, Y.; Yoshikawa, A.; Nikl, Martin

    2016-01-01

    Roč. 169, Jan (2016), s. 682-689 ISSN 0022-2313. [International Conference on Luminescence and Optical Spectroscopy of Condensed Matter /17./. Wroclaw, 13.07.2014-18.07.2014] R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : barium –lutetium–yttrium fluoride * lutetium fluoride * scintillator * VUV luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.686, year: 2016

  11. Synthesis, crystal structure and luminescence properties of lanthanide coordination polymers with a new semirigid bridging thenylsalicylamide ligand

    International Nuclear Information System (INIS)

    Song, Xue-Qin; Wang, Li; Zhao, Meng-Meng; Wang, Xiao-Run; Peng, Yun-Qiao; Cheng, Guo-Quan

    2013-01-01

    Two new lanthanide coordination polymers based on a semirigid bridging thenylsalicylamide ligand ([Ln 2 L 3 (NO 3 ) 6 ]·(C 4 H 8 O 2 ) 2 ) ∞ were obtained and characterized by elemental analysis, X-ray diffraction, IR and TGA measurements. The two compounds are isostructure and possess one dimensional trapezoid ladder-like chain built up from the connection of isolated LnO 3 (NO 3 ) 3 polyhedra (distorted monocapped antisquare prism) through the ligand. The photoluminescence analysis suggest that there is an efficient ligand-to-Ln(III) energy transfer in Tb(III) complex and the ligand is an efficient “antenna” for Tb(III). From a more general perspective, the results demonstrated herein provide the possibility of controlling the formation of the desired lanthanide coordination structure to enrich the crystal engineering strategy and enlarge the arsenal for developing excellent luminescent lanthanide coordination polymers. - Graphical abstract: We present herein one dimensional lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display interesting structures but also possess strong luminescence properties. Display Omitted - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit interesting structures. • The luminescent properties of Tb(III) complexes are discussed in detail

  12. Pure zero-dimensional Cs4PbBr6 single crystal rhombohedral microdisks with high luminescence and stability.

    Science.gov (United States)

    Zhang, Haihua; Liao, Qing; Wu, Yishi; Chen, Jianwei; Gao, Qinggang; Fu, Hongbing

    2017-11-08

    Zero-dimensional (0D) perovskite Cs 4 PbBr 6 has been speculated to be an efficient solid-state emitter, exhibiting strong luminescense on achieving quantum confinement. Although several groups have reported strong green luminescence from Cs 4 PbBr 6 powders and nanocrystals, doubts that the origin of luminescence comes from Cs 4 PbBr 6 itself or CsPbBr 3 impurities have been a point of controversy in recent investigations. Herein, we developed a facile one-step solution self-assembly method to synthesize pure zero-dimensional rhombohedral Cs 4 PbBr 6 micro-disks (MDs) with a high PLQY of 52% ± 5% and photoluminescence full-width at half maximum (FWHM) of 16.8 nm. The obtained rhombohedral MDs were high quality single-crystalline as demonstrated by XRD and SAED patterns. We demonstrated that Cs 4 PbBr 6 MDs and CsPbBr 3 MDs were phase-separated from each other and the strong green emission comes from Cs 4 PbBr 6 . Power and temperature dependence spectra evidenced that the observed strong green luminescence of pure Cs 4 PbBr 6 MDs originated from direct exciton recombination in the isolated octahedra with a large binding energy of 303.9 meV. Significantly, isolated PbBr 6 4- octahedra separated by a Cs + ion insert in the crystal lattice is beneficial to maintaining the structural stability, depicting superior thermal and anion exchange stability. Our study provides an efficient approach to obtain high quality single-crystalline Cs 4 PbBr 6 MDs with highly efficient luminescence and stability for further optoelectronic applications.

  13. luminescence properties

    Indian Academy of Sciences (India)

    1Faculty of Science and Arts, Department of Chemistry, Bozok University, Yozgat 66900, Turkey. 2Faculty of Science, Department of Chemistry, Erciyes ... synthesized by the conventional solid-state reaction method, their crystal structures and luminescence properties were investigated. X-ray diffraction patterns (XRD) ...

  14. Color Tunable and Upconversion Luminescence in Yb-Tm Co-Doped Yttrium Phosphate Inverse Opal Photonic Crystals.

    Science.gov (United States)

    Wang, Siqin; Qiu, Jianbei; Wang, Qi; Zhou, Dacheng; Yang, Zhengwen

    2016-04-01

    For this paper, YPO4: Tm, Yb inverse opals with the photonic band gaps at 475 nm and 655 nm were prepared by polystyrene colloidal crystal templates. We investigated the influence of photonic band gaps on the Tm-Yb upconversion emission which was in the YPO4: Tm Yb inverse opal photonic crystals. Comparing with the reference sample, significant suppression of both the blue and red upconversion luminescence of Tm3+ ions were observed in the inverse opals. The color purity of the blue emission was improved in the inverse opal by the suppression of red upconversion emission. Additionally, mechanism of upconversion emission in the inverse opal was discussed. We believe that the present work will be valuable for not only the foundational study of upconversion emission modification but also the development of new optical devices in upconversion lighting and display.

  15. Synthesis, Crystal Structure, and Luminescence Properties of a New Calcium(II Coordination Polymer Based on L-Malic Acid

    Directory of Open Access Journals (Sweden)

    Duraisamy Senthil Raja

    2013-01-01

    Full Text Available A new calcium coordination polymer [Ca(HL-MA]n (H3L-MA = L-malic acid has been solvothermally synthesized. The structure of the newly synthesized complex has been determined by single-crystal X-ray diffraction analysis and further characterized by elemental analysis, reflectance UV-Vis & IR spectra, powder X-ray diffraction (PXRD, and thermogravimetric analysis (TGA. The single crystal structure analysis showed that the complex forms three-dimensional framework. The new Ca(II complex has displayed very high thermal stability which was inferred from TGA and PXRD results. As far as the optical property of the new complex is concerned, the complex emitted its own characteristic sensitized luminescence.

  16. Mononuclear mercury(II) complexes containing bipyridine derivatives and thiocyanate ligands: Synthesis, characterization, crystal structure determination, and luminescent properties

    Science.gov (United States)

    Amani, Vahid; Alizadeh, Robabeh; Alavije, Hanieh Soleimani; Heydari, Samira Fadaei; Abafat, Marzieh

    2017-08-01

    A series of mercury(II) complexes, [Hg(Nsbnd N)(SCN)2] (Nsbnd N is 4,4‧-dimethyl-2,2‧-bipyridine in 1, 5,5‧-dimethyl-2,2‧-bipyridine in 2, 6,6‧-dimethyl-2,2‧-bipyridine in 3 and 6-methyl-2,2‧-bipyridine in 4), were prepared from the reactions of Hg(SCN)2 with mentioned ligands in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurement by methanol diffusion into a DMSO solution. The four complexes were thoroughly characterized by spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), elemental analysis (CHNS) and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the mercury(II) cation is four-coordinated in a distorted tetrahedral configuration by two S atoms from two thiocyanate anions and two N atoms from one chelating 2,2‧-bipyridine derivative ligand. Also, in these complexes intermolecular interactions, for example Csbnd H⋯N hydrogen bonds (in 1-4), Csbnd H⋯S hydrogen bonds (in 1, 2 and 4), π … π interactions (in 2-4), Hg⋯N interactions (in 2) and S⋯S interactions (in 4), are effective in the stabilization of the crystal structures and the formation of the 3D supramolecular complexes. Furthermore, the luminescence spectra of the title complexes show that the intensity of their emission bands are stronger than the emission bands for the free bipyridine derivative ligands.

  17. Growth and luminescence properties of Eu:SrI.sub.2./sub. single crystals prepared by modified micro-pulling-down method

    Czech Academy of Sciences Publication Activity Database

    Král, Robert; Jarý, Vítězslav; Pejchal, Jan; Kurosawa, S.; Nitsch, Karel; Yokota, Y.; Nikl, Martin; Yoshikawa, A.

    2016-01-01

    Roč. 63, č. 2 (2016), s. 453-458 ISSN 0018-9499 R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : Eu 2+ and Eu 3+ doping * crystal growth * luminescence * micro-pulling-down method * strontium iodide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.171, year: 2016

  18. Phase transition control, melt growth of (Gd,RE)F{sub 3} single crystal and their luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Akira, E-mail: yosikawa@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Jouini, Anis [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); BerlinSolar GmbH, Magnusstrasse 11, D-12489 Berlin (Germany); Kamada, Kei [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Boulon, Georges [Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon 1 University, UMR 5620 CNRS, Villeurbanne (France); Nikl, Martin [Institute of Physics AS CR, Cukrovarnicka 10, Prague 16253 (Czech Republic); Saito, Fumio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2009-12-15

    Rare-earth sesquifluorides with no absorption in visible spectral region, such as LaF{sub 3}, GdF{sub 3}, LuF{sub 3}, YF{sub 3}, ScF{sub 3}, are the topic of intense study as a host for luminescence materials. However, except Nd:LaF{sub 3}, they are not studied as a host for laser materials. The main obstacle troubling further study of GdF{sub 3}, LuF{sub 3}, YF{sub 3}, ScF{sub 3} single crystal is the fact that there is first-order phase transition (LaF{sub 3} type{leftrightarrow}{beta}-YF{sub 3} type for GdF{sub 3}, {alpha}-YF{sub 3} type{leftrightarrow}{beta}-YF{sub 3} type for the rest) between the room and melting temperature.To prevent the phase transition, first of all, we have tried to make solid solution between GdF{sub 3} and YF{sub 3} in such a way that the average cation radii can be shifted to the size that does not have phase transition. Ce{sup 3+} perturbed luminescence was observed in the Ce- and Sr-codoped GdF{sub 3}-YF{sub 3} system. Similar solid solution concept was applied to the combination between GdF{sub 3} and YbF{sub 3}. The emission spectrum of Yb{sup 3+} that exhibits broad bands around 1 {mu}m was observed. Room temperature up-conversion luminescence spectra of Pr{sup 3+}-doped Gd{sub 1-x}Yb{sub x}F{sub 3} were studied and visible emission from Pr{sup 3+} was obtained under infrared laser pumping in the Yb{sup 3+} broad absorption band at 935.5 nm.

  19. Luminescence and photothermally stimulated defects creation processes in PbWO4:La3+, Y3+ (PWO II) crystals

    International Nuclear Information System (INIS)

    Auffray, E.; Korjik, M.; Zazubovich, S.

    2015-01-01

    Photoluminescence and thermally stimulated luminescence (TSL) are studied for a PbWO 4 crystal grown by the Czochralski method at Bogoroditsk Technical Chemical Plant, Russia from the melt with a precise tuning of the stoichiometry and co-doped with La 3+ and Y 3+ ions (the PWO II crystal). Photothermally stimulated processes of electron and hole centers creation under selective UV irradiation of this crystal in the 3.5–5.0 eV energy range and the 85–205 K temperature range are clarified and the optically created electron and hole centers are identified. The electrons in PWO II are mainly trapped at the (WO 4 ) 2− groups located close to single La 3+ and Y 3+ ions, producing the electron {(WO 4 ) 3− –La 3+ } and {(WO 4 ) 3− –Y 3+ } centers. The holes are mainly trapped at the regular oxygen ions O 2− located close to La 3+ and Y 3+ ions associated with lead vacancies, producing the hole O − (I)-type centers. No evidence of single-vacancy-related centers has been observed in PWO II. The data obtained indicate that excellent scintillation characteristics of the PWO II crystal can be explained by a negligible concentration of single (non-compensated) oxygen and lead vacancies as the traps for electrons and holes, respectively. - Highlights: • Photoluminescence of the PbWO 4 :La 3+ , Y 3+ (PWO II) crystal is investigated. • Creation of defects under UV irradiation of PWO II is studied by TSL. • Origin of dominating electron and hole centers is ascertained. • Concentration of single-vacancy-related centers is found to be negligible. • Excellent scintillation characteristics of the PWO II crystal are explained.

  20. Theoretical exploration of the nanoscale host-guest interactions between [n]cycloparaphenylenes (n = 10, 8 and 9) and fullerene C₆₀: from single- to three-potential well.

    Science.gov (United States)

    Yuan, Kun; Zhou, Cai-Hua; Zhu, Yuan-Cheng; Zhao, Xiang

    2015-07-28

    The nanoscale host-guest interactions between [n]cycloparaphenylene ([n]CPP; n = 10, 8 and 9) nano-ring and fullerene C60 were explored theoretically. It is found that relatively small variations in the sizes of the [n]CPP host lead to very significant changes in encapsulation property toward the fullerene C60 guest. Expectedly, one stable inclusion-configuration of [10]CPP⊃C60 and one floating-configuration of [8]CPP⊃C60 are located on the potential surfaces of the two complexes, respectively. Unexpectedly, besides a floating-configuration (F-[9]CPP⊃C60), another stable inclusion-configuration (I-[9]CPP⊃C60) is also located on the potential surface of [9]CPP⊃C60 host-guest complex. Interaction energies and natural steric analysis show that these complexes are stabilized by balancing concave-convex π-π attractive and steric repulsive host-guest interactions. In contrast, the steric repulsive energy (Es) between host and guest of I-[9]CPP⊃C60 is as high as 233.12 kJ mol(-1), which is much larger than those in other complexes. The movements of C60 guest through the cavities of [n]CPP host (n = 10, 8 and 9) are simulated by calculating the energy profile, and the results interestingly reveal that the encapsulation of C60 by [10]CPP is in the manner of a single-potential well, by [8]CPP in the manner of a double-potential well, and by [9]CPP in the special manner of a three-potential well. We predict that the movement of C60 guest through the cavity of [9]CPP host should be experimentally observable owing to the relatively low energy barrier (<50 kJ mol(-1), M06-2X/6-31G(d)). Charge population analysis shows that an obvious charge transfer between host and guest takes place during the formation of I-[9]CPP⊃C60, which is different from those during the formation of [8]CPP⊃C60, [10]CPP⊃C60 and F-[9]CPP⊃C60. Additionally, the host-guest interaction regions were detected and visualized in real space based on the electron density and reduced density

  1. Single-crystal-to-single-crystal transformation and solvochromic luminescence of a dinuclear gold(I)-(aza-[18]crown-6)dithiocarbamate compound.

    Science.gov (United States)

    Tzeng, Biing-Chiau; Chao, An

    2015-01-26

    The treatment of [AuCl(SMe2 )] with an equimolar amount of NaO5 NCS2 (O5 NCS2 =(aza-[18]crown-6)dithiocarbamate) in CH3 CN gave [Au2 (O5 NCS2 )2 ]⋅2 CH3 CN (2⋅2 CH3 CN), and its crystal structure displays a dinuclear gold(I)-azacrown ether ring and an intermolecular gold(I)⋅⋅⋅gold(I) contact of 2.8355(3) Å in crystal lattices. It is noted that two other single crystals of 2⋅tert-butylbenzene⋅H2 O and 2⋅0.5 m-xylene can be successfully obtained from a single-crystal-to-single-crystal (SCSC) transformation process by immersing single crystals of 2⋅2 CH3 CN in the respective solvents, and both also show intermolecular gold(I)⋅⋅⋅gold(I) contacts of 2.9420(5) and 2.890(2)-2.902(2) Å, respectively. Significantly, the emissions of all three 2⋅solvates are well correlated with their respective intermolecular gold(I)⋅⋅⋅gold(I) contacts, where such contacts increase with 2⋅2 CH3 CN (2.8355(3) Å)energies increase with 2⋅2 CH3 CN (602 nm)<2⋅0.5 m-xylene (583 nm)<2⋅tert-butylbenzene⋅H2 O (546 nm) as well. In this regard, we further examine the solvochromic luminescence for some other aromatics, and finally their emissions are within 546-602 nm. Obviously, the above results are mostly ascribed to the occurrence of intermolecular gold(I)⋅⋅⋅gold(I) contacts in 2⋅solvates, which are induced by the presence of various solvates in the solid state, as a key role to be responsible for their solvochromic luminescence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses

    Science.gov (United States)

    Oreshkina, K. V.; Dubrovin, V. D.; Ignat'ev, A. I.; Nikonorov, N. V.

    2017-10-01

    The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses is studied. Multicomponent photosensitive glasses of the Na2O-ZnO-Al2O3-SiO2 system with photosensitizing agents (cerium, antimony, silver) and halogenides (fluorine and bromine) are synthesized. Ultraviolet irradiation and thermal treatment below the glass-transition temperature of the glasses cause the formation of silver molecular clusters, which exhibit luminescence in the visible and infrared regions. UV irradiation and thermal treatment of glasses above the glass-transition temperature lead to the growth of silver nanoparticles with plasmon resonance peak in the region of 420 nm. Further thermal treatment of glasses above the glass-transition temperature shifts the plasmon-resonance maximum by 70 nm to longer wavelengths, which is related to the growth of a crystalline shell consisting of mixed silver and sodium bromides on nanoparticles. This formation of a crystalline phase on colloidal centers results in a local increase in the refractive index of the irradiated region by +Δ n 900 ppm compared to the nonirradiated region. Photo-thermo-refractive glasses with increased silver concentration are promising photosensitive materials for creating holographic optical elements and devices for line narrowing and stabilizing filters, spectral beam combiners, and filters for increasing the spectral brightness of laser diodes. A positive change in the refractive index of Photo-thermo-refractive glasses provides the possibility of recording in them 3D waveguide and integrated-optical structures.

  3. The influence of defect drift in external electric field on green luminescence of ZnO single crystals

    International Nuclear Information System (INIS)

    Korsunska, N.O.; Borkovska, L.V.; Bulakh, B.M.; Khomenkova, L.Yu.; Kushnirenko, V.I.; Markevich, I.V.

    2003-01-01

    In nominally undoped Zn O single crystals, the influence of electric field on photoluminescence in visible wavelength range was investigated. A well-known broad unstructured band consisting of green and orange ones was observed. It was found that the action of direct electric field of about 100 V/cm at 600-700 deg. C resulted in the increase of green band intensity near the cathode and its decrease near the anode, while orange band intensity was not influenced by this treatment. The redistribution of green band intensity along the sample under electric field is accounted for by drift of zinc interstitials from the anode to the cathode. It is supposed that emitting centres responsible for green luminescence are complex defects including zinc interstitials

  4. Spectral and luminescence properties of Cr(3+) ad Nd(3+) ions in gallium garnet crystals

    Science.gov (United States)

    Denisov, A. L.; Ostroumov, V. G.; Saidov, Z. S.; Smirnov, V. A.; Shcherbakov, I. A.

    1986-01-01

    The effective peak stimulated-emission cross section of chromium-doped gadolinium-scandium-gallium garnets (GSGG) has been determined to be 8.5 x 10 to the -21st sq cm at room temperature. The values of the energy-gap Delta E(2E-4T2) chromim fluorescence lifetime and the chromium to neodymium energy-transfer parameter C(DA) (Cr-Nd) are determined for several gallium garnets. Temperature-dependent absorption and luminescence spectra of neodymium-doped GGG and GSGG are reported and discussed in the context of their use as laser materials.

  5. Thermostimulated luminescence in KBr-In crystals after optical creation of electronic excitation

    International Nuclear Information System (INIS)

    Popov, A.I.

    1990-01-01

    Thermal stability of the radiation defects produced in KBr-In by optical creation of the electronic excitation (optical creation of the excitons or optical ionization of In + -ions under C-band illumination) is investigated by the method of thermostimulated luminescence (TSL). A method of detection of prehistory defects, when the optical ionization of In + -ions and TSL are performed, is proposed. Quadratic dependence of V 2 -center creation upon dose is shown. This dependence confirms assocative mechanism of the creation of V 2 -centers from two interstitial centers

  6. Growth and luminescent properties of the Ce, Pr doped NaCl single crystals grown by the modified micro-pulling-down method

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Yuui, E-mail: y-yokota@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan); Yanagida, Takayuki; Fujimoto, Yutaka [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan); Nikl, Martin [Institute of Physics, Academy of Sciences of the Czech Republic/6253, Prague (Czech Republic); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan)

    2010-03-15

    We have investigated luminescent properties of nondope, Ce and Pr doped NaCl [nondope NaCl, Ce:NaCl, Pr:NaCl] single crystals grown by a modified micro-pulling-down method with a removable chamber system. Nondope, Ce 1% and Pr 1% doped NaCl crystals with a single phase of NaCl structure were obtained and the crystals indicated general crystal quality by the X-ray rocking curve measurement. For the nondope NaCl and Pr:NaCl crystals, the transmittance spectra indicated almost more than 60% in the wavelength from 200 to 800 nm and an absorption of Ce{sup 3+} ion was observed in the transmittance spectrum of Ce:NaCl crystal. The emission spectrum originated from Ce{sup 3+} 5d-4f transition appeared around 300 nm in the photoluminescence spectrum and the decay time was 19.7 ns.

  7. Growth and luminescent properties of the Ce, Pr doped NaCl single crystals grown by the modified micro-pulling-down method

    International Nuclear Information System (INIS)

    Yokota, Yuui; Yanagida, Takayuki; Fujimoto, Yutaka; Nikl, Martin; Yoshikawa, Akira

    2010-01-01

    We have investigated luminescent properties of nondope, Ce and Pr doped NaCl [nondope NaCl, Ce:NaCl, Pr:NaCl] single crystals grown by a modified micro-pulling-down method with a removable chamber system. Nondope, Ce 1% and Pr 1% doped NaCl crystals with a single phase of NaCl structure were obtained and the crystals indicated general crystal quality by the X-ray rocking curve measurement. For the nondope NaCl and Pr:NaCl crystals, the transmittance spectra indicated almost more than 60% in the wavelength from 200 to 800 nm and an absorption of Ce 3+ ion was observed in the transmittance spectrum of Ce:NaCl crystal. The emission spectrum originated from Ce 3+ 5d-4f transition appeared around 300 nm in the photoluminescence spectrum and the decay time was 19.7 ns.

  8. Studies in crystal structure and luminescence properties of Eu3+-doped metal tungstate phosphors for white LEDs

    International Nuclear Information System (INIS)

    Lee, Gwan-Hyoung; Kang, Shinhoo

    2011-01-01

    The correlation between the crystal structure and luminescent properties of Eu 3+ -doped metal tungstate phosphors for white LEDs was investigated. Red-emitting A 4-3x (WO 4 ) 2 :Eu x 3+ (A=Li, Na, K) and B (4-3x)/2 (WO 4 ) 2 :Eu x 3+ (B=Mg, Ca, Sr) phosphors were synthesized by solid-state reactions. The findings confirmed that these phosphors exhibited a strong absorption in the near UV to green range, due to the intra-configurational 4f-4f electron transition of Eu 3+ ions. The high doping concentration of Eu 3+ enhanced the absorption of near UV light and red emission without any detectable concentration quenching. Based on the results of a Rietveld refinement, it was attributed to the unique crystal structure. In the crystal structure of the Eu 3+ -doped metal tungstate phosphor, the critical energy transfer distance is larger than 5 A so that exchange interactions between Eu 3+ ions would occur with difficulty, even at a high doping concentration. The energy transfer between Eu 3+ ions, which causes a decrease in red emission with increasing concentration of Eu 3+ , appears to be due to electric multi-polar interactions. In addition, the Eu-O distance in the host lattice affected the shape of emission spectrum by splitting of emission peak at the 5 D 0 → 7 F 2 transition of Eu 3+ . - Highlights: → Eu 3+ -doped metal tungstate was synthesized as a red phosphor for white LEDs. → Crystal structure is tetragonal with a space group of I4 1 /c. → A strong absorption in the near UV to green range was observed. → High doping of Eu 3+ enhanced the absorption of near UV light and red emission.

  9. Luminescence and energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Blasse, G; Bleijenberg, K C; Powell, R C

    1980-01-01

    This paper deals with the luminescence of uranate centres in solids. The luminescence properties are influenced by the coordination number of the hexavalent uranium ion and by the crystallographic surroundings of the uranate centre. Transitions playing a role in the luminescence processes within the octahedral UO/sub 6//sup 6 -/ group are discussed using the results from both theoretical and experimental studies on another octahedral uranium complex: UF/sub 6/. The luminescence of the octahedral uranate group in oxidic compounds is discussed. Attention is paid to the vibrational structure, which is observed in the luminescence spectra at low temperatures and to the temperature quenching of the luminescence. The temperature quenching of the uranate luminescence in uranium-doped tungstates with ordered perovskite structure can be described in terms of a three state single configurational coordinate diagram. The complicated luminescence spectra of uranium-activated sodium fluoride (NaF-U) crystals have been unraveled using chemical variation of the crystal compositions and using site selective laser excitation techniques. Four different luminescent uranate centres have been observed in NaF-U. A model for the configurations of the luminescent centres has been deduced using the results from ionic conductivity experiments.

  10. Selective creation of colour centres and peaks of thermally stimulated luminescence by VUV photons in LiF single crystals

    International Nuclear Information System (INIS)

    Vasil'chenko, E.; Kudryavtseva, I.; Lushchik, A.; Lushchik, Ch.; Nagirnyi, V.

    2005-01-01

    Processes of radiation creation and annealing of Frenkel defects as well as electron-hole processes have been studied in LiF single crystals with a various content of impurity ions by means of highly sensitive method of thermally stimulated luminescence (TSL) and other optical methods. In highly pure LiF crystals, X-irradiated at 4.2 K, the TSL peaks connected with the annealing of interstitial fluorine ions (25-40 K) or atoms, i.e. H centres (50-65 K) and self-trapped holes (120-140 K) have been separated. For the first time, the creation spectra of the TSL peaks at 480 and 550 K by 10-33 eV-photon irradiation at 295 K have been measured. The anomalously high creation efficiency of the TSL peak at 480 K by 11.7-12.3 eV and 26-27 eV photons is interpreted as the creation of near-impurity electronic excitations both, directly by photons and by hot conduction electrons. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Synthesis, crystal structures and luminescent properties of zinc(II) metal–organic frameworks constructed from terpyridyl derivative ligand

    International Nuclear Information System (INIS)

    Yang, Xiao-Le; Shangguan, Yi-Qing; Hu, Huai-Ming; Xu, Bing; Wang, Bao-Cheng; Xie, Juan; Yuan, Fei; Yang, Meng-Lin; Dong, Fa-Xin; Xue, Gang-Lin

    2014-01-01

    Five zinc(II) metal–organic frameworks, [Zn 3 (344-pytpy) 2 Cl 6 ] n ·n(H 2 O) (1), [Zn(344-pytpy)(ox)] n (2), [Zn 2 (344-pytpy)(bdc) 2 ] n ·1.5n(H 2 O) (3), [Zn 2 (344-pytpy) 2 (sfdb) 2 ] n ·1.5n(H 2 O) (4) and [Zn 3 (344-pytpy) 2 (btc) 2 ] n ·2n(H 2 O) (5), (344-pytpy=4′-(3-pyridyl)-4,2′:6′,4″-terpyridine, H 2 ox=oxalic acid, H 2 bdc=1,4-benzenedi-carboxylic acid, H 2 sfdb=4,4′-sulfonyldibenzoic acid and H 3 btc=1,3,5-benzene-tricarboxylic acid) have been prepared by hydrothermal reactions. Compound 1 is a 1D chain structure, in which 344-pytpy ligand links three Zn II centers through three of terminal N-donors. Compound 2 is a 4-connected 3D framework with the dia topological net and the Schläfli symbol of 6 6 . Compound 3 displays a unusual 3-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,3,4)-connected topological net with the Schläfli symbol of (4.8 2 )(4.8 5 )(8 3 ). Compound 4 features a two-fold interpenetrating 4-connected 2D framework with the sql topological net and the Schläfli symbol of (4 4 .6 2 ). Compound 5 is a new self-interpenetrating (3,3,4,4)-connected topological net with the Schläfli symbol of (6.8 2 ) 2 (6 2 .8 2 .10.12)(6 2 .8 3 .10) 2 (6 2 .8) 2 . The luminescence properties of 1–5 have been investigated by emission spectra and they possess great thermal stabilities which can be stable up to around 400 °C. - Graphical abstract: Five new Zn(II) metal–organic frameworks based on dicarboxylate and terpyridyl derivative ligands have been synthesized by hydrothermal reactions, giving networks from 1D to 3D structures. The thermal stability and luminescent property have been investigated. - Highlights: • Five zinc(II) metal–organic frameworks have been prepared under hydrothermal conditions. • Their crystal and topological structures have been investigated. • The luminescent properties have been investigated. • They possess great thermal stabilities which can be stable up to

  12. Recurrent thermo-luminescence phenomenon in yttrium-aluminum garnet crystals

    International Nuclear Information System (INIS)

    Islamov, A.Kh.; Nuritdinov, I.; Esanov, Z.U.; Eshchanov, B.Kh.; Khayitov, I.A.

    2014-01-01

    Full text : The crystals of yttrium-aluminum garnet Y 2 Al 2 O 1 2 activated by cerium and praseodymium ions by their thermal and chemical durability as well as fast response are perspective scintillation materials. In this work the capture centres formed by action of the ionizing radiation on pure and doped by praseodymium and cerium crystals were investigated. The samples were grown using Chokhralsky method

  13. Controlled synthesis and relationship between luminescent properties and shape/crystal structure of Zn2SiO4:MN2+ phosphor

    International Nuclear Information System (INIS)

    Wan Junxi; Wang Zhenghua; Chen Xiangying; Mu Li; Yu Weichao; Qian Yitai

    2006-01-01

    Mn-doped Zn 2 SiO 4 phosphors with different morphology and crystal structure, which show different luminescence and photoluminescence intensity, were synthesized via a low-temperature hydrothermal route without further calcining treatment. As-synthesized zinc silicate nanostructures show green or yellow luminescence depending on their different crystal structure obtained under different preparation conditions. The yellow peak occurring at 575 nm comes from the β-phase zinc silicate, while the green peak centering at 525 nm results from the usual α-phase zinc silicate. From photoluminescence spectra, it is found that Zn 2 SiO 4 nanorods have higher photoluminescence intensity than Zn 2 SiO 4 nanoparticles. It can be ascribed to reduced surface-damaged region and high crystallinity of nanorods

  14. Luminescence and charge trapping in Cs.sub.2./sub.HfCl.sub.6./sub. single crystals: optical and magnetic resonance spectroscopy study

    Czech Academy of Sciences Publication Activity Database

    Král, Robert; Babin, Vladimir; Mihóková, Eva; Buryi, Maksym; Laguta, Valentyn; Nitsch, Karel; Nikl, Martin

    2017-01-01

    Roč. 121, č. 22 (2017), s. 12375-12382 ISSN 1932-7447 R&D Projects: GA MŠk LO1409; GA ČR GA17-09933S Institutional support: RVO:68378271 Keywords : Cs2HfCl6 * single crystal * luminescence * temperature dependence * EPR spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.536, year: 2016

  15. Blue luminescence in Tm3+-doped KGd(WO4)2 single crystals

    International Nuclear Information System (INIS)

    Gueell, F.; Mateos, X.; Gavalda, Jna.; Sole, R.; Aguilo, M.; Diaz, F.; Massons, J.

    2004-01-01

    Up-conversion blue emissions of trivalent thulium ions in monoclinic KGd(WO 4 ) 2 single crystals at 454 and 479 nm are reported for a single pump laser source at 688 nm. We grew thulium-doped KGd(WO 4 ) 2 single crystals at several concentrations from 0.1% to 10%. We recorded a polarized optical absorption spectrum for the 3 F 2 + 3 F 3 energy levels of thulium at room temperature and low temperature (6 K). From the low temperature emission spectra we determined the splitting of the 3 H 6 ground state. The blue emissions are characterized as a function of the dopant concentration and temperature from 10 K to room temperature. To our knowledge, this is the first time that sequential two-photon excitation process (STEP) generated blue emissions in thulium-doped single crystals with a single excitation wavelength

  16. Controllable synthesis and tunable luminescence of glass ceramic containing Mn2+:ZnAl2O4 and Pr3+:YF3 nano-crystals

    International Nuclear Information System (INIS)

    Yu, Yunlong; Li, Xiaoyan

    2016-01-01

    Highlights: • Glass ceramic containing ZnAl 2 O 4 and YF 3 nano-crystals is fabricated. • Mn 2+ and Pr 3+ are selectively incorporated into ZnAl 2 O 4 and YF 3 , respectively. • The luminescence color can be tuned by adjusting the excitation wavelength. - Abstract: Glass ceramic containing spinel ZnAl 2 O 4 :Mn 2+ and orthorhombic YF 3 :Pr 3+ nano-crystals has been successfully prepared by a melt-quenching technique. X-ray diffraction and transmission electron microscopy demonstrated that two nano-phases, i.e. ZnAl 2 O 4 and YF 3 , were homogeneously distributed among the glass matrix. Importantly, the selective incorporation of Pr 3+ ions into the Y 3+ nine-fold coordinated sites of YF 3 and the segregation of Mn 2+ dopants in the Zn 2+ tetrahedral sites of ZnAl 2 O 4 were confirmed based on the excitation/emission spectra and the crystal field calculation. Under blue light excitation, both Pr 3+ and Mn 2+ in the glass ceramic can be simultaneously excited, and emit red and green luminescence, respectively, owing to the suppression of energy transfer between them. The luminescence color of the obtained glass ceramic can be easily tuned by adjusting the excitation wavelength. These results indicate the potential application of the glass ceramic as converting phosphor to generate white-light after coupling with the blue LED chip.

  17. Inside Perovskites: Quantum Luminescence from Bulk Cs4PbBr6 Single Crystals

    KAUST Repository

    de Bastiani, Michele; Dursun, Ibrahim; Zhang, Yuhai; Alshankiti, Buthainah; Miao, Xiaohe; Yin, Jun; Yengel, Emre; Alarousu, Erkki; Turedi, Bekir; Almutlaq, Jawaher; Saidaminov, Makhsud I.; Mitra, Somak; Gereige, Issam; Alsaggaf, Ahmed; Zhu, Yihan; Han, Yu; Roqan, Iman S.; Bredas, Jean-Luc; Mohammed, Omar F.; Bakr, Osman

    2017-01-01

    the chemistry and structure of these materials, without revealing the origins of their optical behaviour, which is contradictory to the well-studied APbX3 perovskites. In this work, we synthesize single crystals of Cs4PbBr6 0D-PRS, and investigated the origins

  18. Synthesis, crystal structure and photo luminescent property of a 3D ...

    Indian Academy of Sciences (India)

    isonicotinate)2(suc)2]n. Empirical formula. C20H16Cd3N2O12. Formula weight. 813.58 ..... SMART and SAINT, Bruker AXS Inc, Madison, WI. 1998. 47. Sheldrick G M 1997 SHELXS-97 Program for solution of crystal structures, University of Gottingen, ...

  19. Optically stimulated luminescence of Tb{sup 3+}/Sm{sup 3+} doubly doped K{sub 2}YF{sub 5} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, L.; Marcazzo, J.; Santiago, M.; Caselli, E. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Gral. Pinto 399, B7000GHG, Tandil (Argentina); Khaidukov, N. M., E-mail: jmarcass@exa.unicen.edu.ar [Kurnakov Institute of General and Inorganic Chemistry, RAS, Leninskii Prospekt 31, 119991 Moscow (Russian Federation)

    2014-08-15

    In this work optically stimulated luminescence (OSL) properties of K{sub 2}YF{sub 5} crystals doubly doped with Tb{sup 3+} and Sm{sup 3+} ions have been investigated for the first time. OSL responses for different dopant concentration and for optical stimulation with different wavelengths have been analyzed for each compound. Dosimetric properties of the most efficient composition, namely, K{sub 2}YF{sub 5}:1.0 at.% Tb{sup 3+}; 1.0 at.% Sm{sup 3+}, have been studied. Finally, the possible application of this single crystal as OSL dosimeter has been evaluated. (Author)

  20. Crystal structures and luminescence of two cadmium-carboxylate cluster-based compounds with mixed ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui-Fang; Lei, Qian; Wang, Yu-Ling; Yin, Shun-Gao; Liu, Qing-Yan [College of Chemistry and Chemical Engineering and Key Lab. of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal Univ., Nanchang (China)

    2017-04-04

    Reactions of Cd(NO{sub 3}){sub 2}.4H{sub 2}O with 2-quinolinecarboxylic acid (H-QLC) in the presence of 1,4-benzenedicarboxylic acid (H{sub 2}-BDC) or 1,3,5-benzenetricarboxylic acid (H-BTC) in DMF/H{sub 2}O solvent afforded two compounds, namely, [Cd(QLC)(BDC){sub 1/2}(H{sub 2}O)]{sub n} (1) and [Cd(QLC)(BTC){sub 1/3}]{sub n} (2). Both compounds are two-dimensional (2D) frameworks but feature different cadmium-carboxylate clusters as a result of the presence of the polycarboxylate ligands with different geometries and coordination preference. The dinuclear Cd{sub 2}(QLC){sub 2} units in 1 are bridged by the pairs of bridging water ligands to give a one-dimensional (1D) chain, which is further linked by the second ligand of BDC{sup 2-} to form a 2D structure. Compound 2 is constructed from unique hexanuclear macrometallacyclic Cd{sub 6}(QLC){sub 6} clusters, which are linked by the surrounding BTC{sup 3-} ligands to generate a 2D structure. Photoluminescence studies showed both compounds exhibit ligand-centered luminescent emissions with emission maxima at 405 and 401 nm, respectively. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    International Nuclear Information System (INIS)

    Magaryan, K.A.; Mikhailov, M.A.; Karimullin, K.R.; Knyazev, M.V.; Eremchev, I.Y.; Naumov, A.V.; Vasilieva, I.A.; Klimusheva, G.V.

    2016-01-01

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm 2 . Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  2. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    Energy Technology Data Exchange (ETDEWEB)

    Magaryan, K.A., E-mail: xmagaros@gmail.com [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Mikhailov, M.A. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Karimullin, K.R. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); E.K. Zavoyski Kazan Physical-Technical Institute of RAS, 10/7 Sibirski trakt Str., Kazan 420029 (Russian Federation); Knyazev, M.V.; Eremchev, I.Y. [Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); Naumov, A.V. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); Vasilieva, I.A. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Klimusheva, G.V. [Institute of Physics, NAS of Ukraine, 46 Prospect Nauki, Kiev 03028 (Ukraine)

    2016-01-15

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm{sup 2}. Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  3. Host-Guest Inclusion Complexes between Amlodipine Enantiomers in the Biphasic Recognition Chiral Extraction System using Tartaric Acid and β-Cyclodextrin Derivatives as Positive Confirmation by using their Enantioselective Extraction.

    Science.gov (United States)

    Al Azzam, Khaldun M; Abdallah, Hassan H; Halim, Hairul N Abdul; Ahmad, Maizatul Akmam; Shaibah, Hassan

    2015-01-01

    The current work reports an extended theoretical study from our previous experimental work for the enantioselective extraction of amlodipine enantiomers in a biphasic recognition chiral extraction system (BRCES) consisting of hydrophobic D-diisopropyl tartrate dissolved in organic phase (n-decanol) and hydrophilic hydroxypropyl-β-cyclodextrin (HP-β-CD) in aqueous phase (acetate buffer) which preferentially recognize the R-enantiomer and S-enantiomer, respectively. The calculations were simulated using a semi-empirical PM3 method as a part of the Gaussian09 software package and were used to optimize the structures of the hosts, guests, and host-guest complexes in the gas phase without any restrictions. It was found that HP-β-CD has the strongest recognition ability among the three β-CD derivatives studied, namely HP-β-CD, hydroxyethyl-β-cyclodextrin (HE-β-CD), and methylated-β-cyclodextrin (Me-β-CD), due to the large interaction energies (Ecomp = -14.3025 kcal/ mol), while D-diisopropyl tartrate has the strongest ability among the four tartaric acid derivatives studied namely; L-diisopropyl tartrate, D-diisopropyl tartrate, L-diethyl tartrate, and D-diethyl tartrate (Ecomp = -5.9964 kcal/ mol). The computational calculations for the enantioselective partitioning of amlodipine enantiomers rationalized the reasons for the different behaviors for this extraction. The present theoretical results may be informative to scientists who are devoting themselves to developing models for their experimental parts or for enhancing the hydrophobic drug solubility in drug delivery systems.

  4. Host-Guest Inclusion Complexes between Amlodipine Enantiomers in the Biphasic Recognition Chiral Extraction System using Tartaric Acid and β-Cyclodextrin Derivatives as Positive Confirmation by using their Enantioselective Extraction

    Science.gov (United States)

    Al Azzam, Khaldun M.; Abdallah, Hassan H.; Halim, Hairul N. Abdul; Ahmad, Maizatul Akmam; Shaibah, Hassan

    2015-01-01

    The current work reports an extended theoretical study from our previous experimental work for the enantioselective extraction of amlodipine enantiomers in a biphasic recognition chiral extraction system (BRCES) consisting of hydrophobic D-diisopropyl tartrate dissolved in organic phase (n-decanol) and hydrophilic hydroxypropyl-β-cyclodextrin (HP-β-CD) in aqueous phase (acetate buffer) which preferentially recognize the R-enantiomer and S-enantiomer, respectively. The calculations were simulated using a semi-empirical PM3 method as a part of the Gaussian09 software package and were used to optimize the structures of the hosts, guests, and host-guest complexes in the gas phase without any restrictions. It was found that HP-β-CD has the strongest recognition ability among the three β-CD derivatives studied, namely HP-β-CD, hydroxyethyl-β-cyclodextrin (HE-β-CD), and methylated-β-cyclodextrin (Me-β-CD), due to the large interaction energies (Ecomp = −14.3025 kcal/ mol), while D-diisopropyl tartrate has the strongest ability among the four tartaric acid derivatives studied namely; L-diisopropyl tartrate, D-diisopropyl tartrate, L-diethyl tartrate, and D-diethyl tartrate (Ecomp = −5.9964 kcal/ mol). The computational calculations for the enantioselective partitioning of amlodipine enantiomers rationalized the reasons for the different behaviors for this extraction. The present theoretical results may be informative to scientists who are devoting themselves to developing models for their experimental parts or for enhancing the hydrophobic drug solubility in drug delivery systems. PMID:26839848

  5. Hydrothermal synthesis, crystal structures, and luminescent properties of a series of new lanthanide oxalatophosphonates with a layer architecture.

    Science.gov (United States)

    Zhu, Yan-Yu; Sun, Zhen-Gang; Tong, Fei; Liu, Zhong-Min; Huang, Cui-Ying; Wang, Wei-Nan; Jiao, Cheng-Qi; Wang, Cheng-Lin; Li, Chao; Chen, Kai

    2011-05-28

    Eleven new lanthanide oxalatophosphonate hybrids with a 2D layered structures, namely, [Ln(H(3)L)(C(2)O(4))]·2H(2)O (Ln = La-Dy, Er and Y, H(4)L = C(6)H(5)CH(2)N(CH(2)PO(3)H(2))(2)), have been synthesized under hydrothermal conditions and structurally characterized by X-ray single-crystal diffraction, X-ray powder diffraction, infrared spectroscopy, elemental analysis and thermogravimetric analysis. Compounds 1-11 are isomorphous and they exhibit a 2D framework structure. Two {LnO(8)} polyhedra and four {CPO(3)} tetrahedra are interconnected into a unit via corner-sharing, and the so-built units are bridged by the oxalate anions into a layer. The result of connections in this manner is the formation of a 24-atom window. The thermal stabilities and guest desorption-sorption properties of compounds 1-11 have been investigated. The luminescent properties of compounds 5, 6, 8 and 9 have also been studied.

  6. Preparation of three terbium complexes with p-aminobenzoic acid and investigation of crystal structure influence on luminescence property

    International Nuclear Information System (INIS)

    Ye Chaohong; Sun Haoling; Wang Xinyi; Li Junran; Nie Daobo; Fu Wenfu; Gao Song

    2004-01-01

    Three new rare earth p-aminobenzoic acid complexes, [Tb 2 L 6 (H 2 O) 2 ] n (1), [Tb 2 L 6 (H 2 O) 4 ].2H 2 O (2) and [Tb(phen) 2 L 2 (H 2 O) 2 ](phen)L·4H 2 O (3) (HL: p-aminobenzoic acid; phen: 1, 10-phenanthroline), with different structural forms are reported in this paper. Complex 1 is a polymolecule with a two-dimensional plane structure. Compound 2 is a binuclear molecule, and 3 appears to be a mononuclear complex. The fluorescence intensity, the fluorescence life-time and emission quantum yield of 2, which has two coordination water molecules, is better than those of 1, which has only one coordination water molecule. This is an unusual phenomenon for general fluorescent rare earth complexes. The fluorescence performance of 3 is the most unsatisfactory among the three complexes. Their crystal structures show that the coordination mode of the ligand is an important factor influencing the luminescence properties of a fluorescent rare earth complex

  7. Hydrogen-Bonding Interactions in Luminescent Quinoline-Triazoles with Dominant 1D Crystals

    Directory of Open Access Journals (Sweden)

    Shi-Qiang Bai

    2017-09-01

    Full Text Available Quinoline-triazoles 2-((4-(diethoxymethyl-1H-1,2,3-triazol-1-ylmethylquinoline (1, 2-((4-(m-tolyl-1H-1,2,3-triazol-1-ylmethylquinoline (2 and 2-((4-(p-tolyl-1H-1,2,3-triazol-1-ylmethylquinoline (3 have been prepared with CuAAC click reactions and used as a model series to probe the relationship between lattice H-bonding interaction and crystal direction of growth. Crystals of 1–3 are 1D tape and prism shapes that correlate with their intermolecular and solvent 1D lattice H-bonding interactions. All compounds were thermally stable up to about 200 C and blue-green emissive in solution.

  8. Luminescence of single crystals of manganese doped zinc indium binary sulfides

    International Nuclear Information System (INIS)

    Arama, Efim; Vovc, Victor; Gheorghita, Eugene Iv.; Pintea, Valentina

    2013-01-01

    Radiative recombination spectra of Mn-doped ZnIn 2 S 4 single crystals have been analyzed in the work. The emission spectra interval close to its maximum (1,91±0,2) eV contains a number of the special features which were identified by us as intra-center transitions. We attribute the special features observed on the complex emission spectra to this type of transition by their decomposition into simple lines, using Alentsev -Foch method. (authors)

  9. Luminescent lanthanide complexes with 4-acetamidobenzoate: Synthesis, supramolecular assembly via hydrogen bonds, crystal structures and photoluminescence

    International Nuclear Information System (INIS)

    Yin Xia; Fan Jun; Wang Zhihong; Zheng Shengrun; Tan Jingbo; Zhang Weiguang

    2011-01-01

    Four new luminescent complexes, namely, [Eu(aba) 2 (NO 3 )(C 2 H 5 OH) 2 ] (1), [Eu(aba) 3 (H 2 O) 2 ].0.5 (4, 4'-bpy).2H 2 O (2), [Eu 2 (aba) 4 (2, 2'-bpy) 2 (NO 3 ) 2 ].4H 2 O (3) and [Tb 2 (aba) 4 (phen) 2 (NO 3 ) 2 ].2C 2 H 5 OH (4) were obtained by treating Ln(NO 3 ) 3 .6H 2 O and 4-acetamidobenzoic acid (Haba) with different coligands (4, 4'-bpy=4, 4'-bipyridine, 2, 2'-bpy=2, 2'-bipyridine, and phen=1, 10-phenanthroline). They exhibit 1D chains (1-2) and dimeric structures (3-4), respectively. This structural variation is mainly attributed to the change of coligands and various coordination modes of aba molecules. Moreover, the coordination units are further connected via hydrogen bonds to form 2D even 3D supramolecular networks. These complexes show characteristic emissions in the visible region at room temperature. In addition, thermal behaviors of four complexes have been investigated under air atmosphere. The relationship between the structures and physical properties has been discussed. - Graphical abstract: Structure variation of four complexes is attributed to the change of coligands and various coordination modes of aba molecules. Moreover, they show characteristic emissions in the visible region. Highlights: → Auxiliary ligands have played the crucial roles on the structures of the resulting complexes. → Isolated structure units are further assembled via H-bonds to form supramolecular networks. → These solid-state complexes exhibit strong, characteristic emissions in the visible region.

  10. Inside Perovskites: Quantum Luminescence from Bulk Cs4PbBr6 Single Crystals

    KAUST Repository

    de Bastiani, Michele

    2017-08-01

    Zero-dimensional perovskite-related structures (0D-PRS) are a new frontier of perovskite-based materials. 0D-PRS, commonly synthesized in powder form, manifest distinctive optical properties such as strong photoluminescence (PL), narrow emission linewidth, and high exciton binding energy. These properties make 0D-PRS compelling for several types of optoelectronic applications, including phosphor screens and electroluminescent devices. However, it would not be possible to rationally design the chemistry and structure of these materials, without revealing the origins of their optical behaviour, which is contradictory to the well-studied APbX3 perovskites. In this work, we synthesize single crystals of Cs4PbBr6 0D-PRS, and investigated the origins of their unique optical and electronic properties. The crystals exhibit a PL quantum yield higher than 40%, the highest reported for perovskite-based single crystals. Time-resolved and temperature dependent PL studies, supported by DFT calculations, and structural analysis, elucidate an emissive behaviour reminiscent of a quantum confined structure rather than a typical bulk perovskite material.

  11. Temperature dependence of the defect luminescence in La2Be2O5 single crystals

    International Nuclear Information System (INIS)

    Ogorodnikov, I.N.; Pustovarov, V.A.

    2015-01-01

    Temperature quenching (TQ) curves in the temperature range of 80–500 K have been studied for both the undoped, and doped with RE 3+ -ions (RE = Ce, Eu, Er, Pr, Nd) lanthanum beryllate (BLO) single crystals. Photoluminescence spectra and TQ-curves were recorded upon excitation in the absorption bands of the lattice defects. The reaction rate model has been developed to describe the experimental results. The model includes two competing processes with characteristic temperatures: thermal quenching of intracenter PL (T 1 ) and thermally stimulated migration of electronic excitations (T 2 ). The competition between these two processes leads to the observed non-monotonic TQ-curves. The rationalized formulas using three parameters (intensity, activation energy, characteristic temperature), were developed to describe each of these processes. Within the framework of the unified model, all the experimental results were described and the best fit parameters were obtained. Classification of the investigated lanthanum beryllate crystals was carried out in line with the best fit parameters obtained for the TQ-curves. - Highlights: • We studied La 2 Be 2 O 5 (BLO) single crystals (pristine and RE 3+ -doped). • We studied PL emission spectra of defects in BLO and BLO:RE 3+ . • Temperature quenching of the defect PL emission was studied at 80–500 K. • We developed the reaction rate model to describe non-monotonic TQ-curves. • TQ-curves were parameterized for BLO, BLO:RE 3+ (RE = Ce, Pr, Eu, Nd, Er).

  12. Crystal structure and luminescence of complexes of Eu(III) and Tb(III) with furan-2,5-dicarboxylate

    NARCIS (Netherlands)

    Akerboom, S.; Fu, W.T.; Lutz, M.; Bouwman, E.

    2012-01-01

    Four new Ln(III) complexes (Ln = Eu, Tb) with furan-2,5-dicarboxylic acid (H2FDA) as a ligand have been synthesized and characterized in the solid state. Luminescence studies indicate that the compounds exhibit line-like luminescence characteristic of the lanthanide centre upon excitation in the

  13. Influence of the crystallization process on the luminescence of multilayers of SiGe nanocrystals embedded in SiO2

    International Nuclear Information System (INIS)

    Avella, M.; Prieto, A.C.; Jimenez, J.; Rodriguez, A.; Sangrador, J.; Rodriguez, T.; Ortiz, M.I.; Ballesteros, C.

    2008-01-01

    Multilayers of SiGe nanocrystals embedded in an oxide matrix have been fabricated by low-pressure chemical vapor deposition of SiGe and SiO 2 onto Si wafers (in a single run at 390 deg. C and 50 mTorr, using GeH 4 , Si 2 H 6 and O 2 ) followed by a rapid thermal annealing treatment to crystallize the SiGe nanoparticles. The main emission band is located at 400 nm in both cathodoluminescence and photoluminescence experiments at 80 K and also at room temperature. The annealing conditions (temperatures ranging from 700 to 1000 deg. C and for times of 30 and 60 s) have been investigated in samples with different diameter of the nanoparticles (from ∼3 to ≥5 nm) and oxide interlayer thickness (15 and 35 nm) in order to establish a correlation between the crystallization of the nanoparticles, the degradation of their composition by Ge diffusion and the intensity of the luminescence emission band. Structures with small nanoparticles (3-4.5 nm) separated by thick oxide barriers (∼35 nm) annealed at 900 deg. C for 60 s yield the maximum intensity of the luminescence. An additional treatment at 450 deg. C in forming gas for dangling-bond passivation increases the intensity of the luminescence band by 25-30%

  14. Luminescent properties of Y{sub 3}Al{sub 5−x}Ga{sub x}O{sub 12}:Ce crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zorenko, Yu., E-mail: zorenko@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, Powstańców Wielkopolskich No 2, 85-090 Bydgoszcz (Poland); Zorenko, T. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, Powstańców Wielkopolskich No 2, 85-090 Bydgoszcz (Poland); Department of Electronics, Ivan Franko National University of Lviv, Gen. Tarnavskyj str. 107, 70017 Lviv (Ukraine); Malinowski, P. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, Powstańców Wielkopolskich No 2, 85-090 Bydgoszcz (Poland); Sidletskiy, O.; Neicheva, S. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Lenina pr. 60, 61001 Kharkiv (Ukraine)

    2014-12-15

    Absorption, luminescent and scintillation properties of Ce{sup 3+} doped Y{sub 3}Al{sub 5−x}Ga{sub x}O{sub 12} crystals with Ga content in the x=1–5 range were investigated in this work and compared with the properties of YAG:Ce crystals. Apart from the traditional spectral methods (absorption, cathodoluminescence and light yield measurements), the intrinsic and Ce{sup 3+} related luminescence of Y{sub 3}Al{sub 5−x}Ga{sub x}O{sub 12}:Ce solid-solution were also investigated using the luminescent spectroscopy under excitation by synchrotron radiation in the 3.7–25 eV range. We show that the optical properties Y{sub 3}Al{sub 5−x}Ga{sub x}O{sub 12}:Ce garnets monotonically change with increasing the Ga content in the x=0–3 range due to preferable localization of Ga ions in the tetrahedral position of the garnet lattice. At the highest Ga concentration (x>3) the deviation of the optical properties of Y{sub 3}Al{sub 5−x}Ga{sub x}O{sub 12}:Ce garnets is observed from the respective properties of these crystals with Ga content in the x=0–3 range due to occupation by Ga ions of the octahedral position in the garnet host. - Highlights: • Different dependence of optical properties of Y{sub 3}Al{sub 5−x}Ga{sub x}O{sub 12}:Ce crystals on Ga content in x=0–3 and 3–5 ranges. • Elimination of the luminescence of Y{sub Al} antisite defects in Y{sub 3}Al{sub 5−x}Ga{sub x}O{sub 12}:Ce crystals at x>2. • Significant improvement of the scintillation properties of Y{sub 3}Al{sub 5−x}Ga{sub x}O{sub 12}:Ce crystals at x=2 and 3 in comparison with YAG:Ce.

  15. Luminescence and defects creation in Ce3+-doped YAlO3 and Lu0.3Y0.7AlO3 crystals

    International Nuclear Information System (INIS)

    Blazek, K.; Nejezchleb, K.; Krasnikov, A.; Savikhina, T.; Zazubovich, S.; Nikl, M.

    2005-01-01

    Luminescence, energy transfer and defects creation processes were studied for the Ce 3+ -doped YAlO 3 and Lu x Y 1-x AlO 3 (x=0.3) crystals in the temperature range 4.2-300 K under selective photoexcitation in the energy range 3.5-11.5 eV. For the first time, defects creation spectra were measured and analyzed. Influence of the charge and ionic radii of co-doping ions on the luminescence and defects creation efficiency was considered. The origin of the defects created and possible mechanisms of their formation were discussed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Controllable synthesis and crystal structure determined upconversion luminescence properties of Tm{sup 3+} (Er{sup 3+}) ions doped YbF{sub 3} and NaYbF{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China); Qin, Weiping, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhou, Jun [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China)

    2014-04-01

    Graphical abstract: - Highlights: • The synthesis of YbF{sub 3} and NaYbF{sub 4} crystals was successfully fulfilled by hydrothermal method. • The phase and morphology of products were adjusted by changing the hydrothermal conditions. • Relatively enhanced ultraviolet upconversion emissions were observed in YbF{sub 3} nanocrystals. • The crystalline phase impact on the upconversion luminescence was systematically studied. - Abstract: The synthesis of YbF{sub 3} and NaYbF{sub 4} crystals was successfully fulfilled by a facial hydrothermal method. The phase and morphology of the products were adjusted by changing the surfactant additive and fluorine source and tuning the pH value of the initial solution. The products with various morphologies range from octahedral nanoparticles, corn-like nanobundles, nanospheres, microrods, and hollow microprisms were prepared at different conditions. The growth mechanism of these products has been systematically studied. Impressively, relatively enhanced high order ultraviolet (UV) upconversion (UC) luminescence was observed in Tm{sup 3+} (Er{sup 3+}) ions doped YbF{sub 3} nanocrystals (NCs) compared with NaYbF{sub 4} microcrystals under the excitation of 980 nm infrared laser. The investigation results reveal that the crystal symmetry of matrix has significant effect on the spectra and lifetimes of the doping lanthanide ions. The simply synthesized water soluble YbF{sub 3} NCs with efficient UV UC luminescence may find potential application in biochemistry.

  17. Synthesis, Crystal Structure and Luminescent Property of Cd (II Complex with N-Benzenesulphonyl-L-leucine

    Directory of Open Access Journals (Sweden)

    Xishi Tai

    2012-09-01

    Full Text Available A new trinuclear Cd (II complex [Cd3(L6(2,2-bipyridine3] [L = N-phenylsulfonyl-L-leucinato] has been synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction analysis. The results show that the complex belongs to the orthorhombic, space group P212121 with a = 16.877(3 Å, b = 22.875(5 Å, c = 29.495(6 Å, α = β = γ = 90°, V = 11387(4 Å3, Z = 4, Dc= 1.416 μg·m−3, μ = 0.737 mm−1, F (000 = 4992, and final R1 = 0.0390, ωR2 = 0.0989. The complex comprises two seven-coordinated Cd (II atoms, with a N2O5 distorted pengonal bipyramidal coordination environment and a six-coordinated Cd (II atom, with a N2O4 distorted octahedral coordination environment. The molecules form one dimensional chain structure by the interaction of bridged carboxylato groups, hydrogen bonds and p-p interaction of 2,2-bipyridine. The luminescent properties of the Cd (II complex and N-Benzenesulphonyl-L-leucine in solid and in CH3OH solution also have been investigated.

  18. Synthesis, Crystal Structure and Luminescence Property of a New Silver(I) Dimer with Isonicotinic Acid

    International Nuclear Information System (INIS)

    Yuan, Qi; Liu, Bing

    2005-01-01

    The absorption spectrum was calculated from reflection spectrum by the Kubelka.Munk function. The energy gap of the title compound determined by extrapolation from the linear portion of the absorption edge in a (α/S) versus energy plot is 1.91 eV, which suggests that the title compound behaves as semiconductor. Isonicotinic acid (Iso), namely 4.pyridinecarboxylate, a multi.functional chelating and/or bridging ligand, has proved to be very powerful for the construction of multi. dimensional metal.organic coordination networks. Furthermore, The isonicotinic acid complexes has raised many interests in fluorescence probing with numerous potential applications for studies of microsecond diffusion and dynamics of membranes. Metal centers are potential carriers of electrochemical, magnetic, catalytic, or optical properties that may be introduced into the inorganic.organic hybrid materials. d"1"0 metals with rich photophysical and photochemical character have focused attentions to synthesize polynuclear complexes. Considering the versatile coordination abilities of Iso, we employ the ligand to coordinate with silver nitrate to fabricate a coordination complex with excellent fluorescence property. Herein we report the synthesis, crystal structure and fluorescence property of a new d"1"0 coordination dimer [Ag_2(Iso)_2(NO_3)_2

  19. Synthesis, Crystal Structure and Luminescence Property of a New Silver(I) Dimer with Isonicotinic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Qi [Pharmacy College of Henan University, Kaifeng (China); Liu, Bing [Chinese Academy of Sciences, Fuzhou (China)

    2005-10-15

    The absorption spectrum was calculated from reflection spectrum by the Kubelka.Munk function. The energy gap of the title compound determined by extrapolation from the linear portion of the absorption edge in a (α/S) versus energy plot is 1.91 eV, which suggests that the title compound behaves as semiconductor. Isonicotinic acid (Iso), namely 4.pyridinecarboxylate, a multi.functional chelating and/or bridging ligand, has proved to be very powerful for the construction of multi. dimensional metal.organic coordination networks. Furthermore, The isonicotinic acid complexes has raised many interests in fluorescence probing with numerous potential applications for studies of microsecond diffusion and dynamics of membranes. Metal centers are potential carriers of electrochemical, magnetic, catalytic, or optical properties that may be introduced into the inorganic.organic hybrid materials. d{sup 10} metals with rich photophysical and photochemical character have focused attentions to synthesize polynuclear complexes. Considering the versatile coordination abilities of Iso, we employ the ligand to coordinate with silver nitrate to fabricate a coordination complex with excellent fluorescence property. Herein we report the synthesis, crystal structure and fluorescence property of a new d{sup 10} coordination dimer [Ag{sub 2}(Iso){sub 2}(NO{sub 3}){sub 2}].

  20. Luminescence and scintillation properties of rare-earth-doped LuF.sub.3./sub. scintillation crystals

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Fukuda, K.; Kurosawa, S.; Yokota, Y.; Yoshikawa, A.

    2015-01-01

    Roč. 41, Mar SI (2015), s. 58-62 ISSN 0925-3467 Institutional support: RVO:68378271 Keywords : lutetium fluoride * scintillator * scintillator * VUV luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2015

  1. A new (4, 6)-connected Cu(I) coordination polymer based on rare tetranuclear [Cu4I2] clusters: Synthesis, crystal structure, luminescent and photocatalytic properties

    Science.gov (United States)

    Cui, Li-Jing; Liu, Chun-Yan; Bian, Ming; Yu, Li-Jun

    2018-03-01

    A new Cu(I) coordination polymer, namely [Cu5I3(L)2]n (1 HL = 3-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazolyl), was solvothermally synthesized using CuI, HL and NaI as the starting materials. Single crystal X-ray structural analysis shows that compound 1 features a (4, 6)-connected 3D framework employing rare tetranuclear [Cu4I2] clusters as building subunits. It exhibits intense metal-to-ligand luminescence and excellent photocatalytic activity on degradation of methylene blue (MB).

  2. Experimental and theoretical investigations on Pd(II) host-guest compound: Deciphering the structural and electronic features of a potential bioactive complex

    Science.gov (United States)

    Sreejith, S. S.; Mohan, Nithya; Prathapachandra Kurup, M. R.

    2017-10-01

    A Pd(II) complex from N,N‧-bis(2-hydroxy-3-ethoxybenzylidene)butane-1,4-diamine salen-type ligand has been synthesized and characterised using single crystal XRD analysis, elemental analysis, IR and UV-Vis spectroscopic methods. Thermal profile of the compound is investigated using TG-DTG-DSC method. The quantification of intermolecular interactions and surface morphology has been done using Hirshfeld surface study mapped using various functions like dnorm, shape index and curvedness. ESP analysis is done to visualize the electrophilic and nucleophilic regions in the complex. Geometry optimization of the structure is done using DFT at B3LYP/def2-TZVP level of theory. Frontier orbital analysis reveals the kinetical stability and chemical inertness of the complex. A detailed charge distribution analysis is done using different analytical methods like Mulliken, Löwdin, NPA and AIM methods. Further bond order analysis and topological analysis are also done. Finally the bioactivity of the titled complex is checked using molecular docking method on both DNA and protein.

  3. Synthesis, crystal structure and luminescent properties of a new pyrochlore type tungstate CsGa0.333W1.667O6

    Science.gov (United States)

    Zhao, Dan; Zhao, Ji; Fan, Yun-Chang; Ma, Zhao; Zhang, Rui-Juan; Liu, Bao-Zhong

    2018-06-01

    High temperature solution reaction leads to a new tungstate compound CsGa0.333W1.667O6, whose structure was determined by single-crystal X-ray diffraction analysis. The results show that it crystallizes in pyrochlore structure with cubic space group Fd-3m and a = 10.2529 (13) Å. In this structure, Ga and W atoms are in a statistical disorder manner. The self-activated luminescent properties CsGa0.333W1.667O6 were studied. Under the excitation of 323 nm, the emission spectrum exhibits a blue emission centered at 466 nm with the chromaticity coordinates (0.1838, 0.1814).

  4. The crystal structure and luminescence quenching of poly- and single-crystalline KYW{sub 2}O{sub 8}:Tb{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Schwung, Sebastian [Fachbereich Chemieingenieurwesen, Fachhochschule Münster, Stegerwaldstraße 39, 48565 Steinfurt (Germany); Rytz, Daniel, E-mail: rytz@fee-io.de [Forschungsinstitut für mineralische und metallische Werkstoffe-Edelsteine/ Edelmetalle-GmbH (FEE), Struthstraße 2, 55743 Idar-Oberstein (Germany); Heying, Birgit; Rodewald, Ute Ch.; Niehaus, Oliver [Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30 48149 Münster (Germany); Enseling, David [Fachbereich Chemieingenieurwesen, Fachhochschule Münster, Stegerwaldstraße 39, 48565 Steinfurt (Germany); Jüstel, Thomas, E-mail: tj@fh-muenster.de [Fachbereich Chemieingenieurwesen, Fachhochschule Münster, Stegerwaldstraße 39, 48565 Steinfurt (Germany); Pöttgen, Rainer, E-mail: pottgen@uni-muenster.de [Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30 48149 Münster (Germany)

    2015-10-15

    Terbium-substituted KYW{sub 2}O{sub 8} single crystals of high optical quality were grown by the top seeded solution growth technique. The degree of yttrium–terbium mixed occupancy was determined for two samples through structure refinements on the basis of single crystal X-ray diffractometer data. Temperature dependent magnetic susceptibility data underline the paramagnetic nature of terbium doped crystals. No magnetic ordering is evident down to 2 K. Luminescence measurements yield the typical excitation and emission spectra as expected for Tb{sup 3+} activated materials. The decay time of Tb{sup 3+} decreases linearly with the Tb{sup 3+} concentration, while the excess of thermal quenching does not change significantly. At about 405 K the decay time is reduced by roughly 50% relative to the low-temperature value, both for the powders as for the single crystals. - Highlights: • Single crystalline and powder series of K(Y,Tb)W{sub 2}O{sub 8.} • Refined XRD data of high quality crystals. • Linear decrease of the decay time with Tb{sup 3+} content.

  5. Development and measurement of luminescence properties of Ce-doped Cs2LiGdBr6 crystals irradiated with X-ray, γ-ray and proton beam

    Science.gov (United States)

    Jang, Jonghun; Kim, H. J.; Rooh, Gul; Kim, Sunghwan

    2017-12-01

    The effect of higher Ce-concentration on the luminescence and scintillation properties of Cs2LiGdBr6 single crystals are studied. We used the Bridgman method for the growth of Ce-doped Cs2LiGdBr6 single crystals. Luminescence properties of the grown crystals are measured by X-ray and proton excitations. We measured the pulse height and fluorescence decay time spectra of Cs2LiGdBr6:Ce3+ with a bi-alkali photo multiplier tube (PMT) under γ-ray excitation from 137Cs source. Improvements in the scintillation properties are observed with the increase of Ce-concentration in the lattice. Detailed procedure of the crystal growth is also discussed.

  6. Luminescence and photothermally stimulated defects creation processes in PbWO{sub 4}:La{sup 3+}, Y{sup 3+} (PWO II) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Auffray, E. [CERN, Geneva 23, Geneva (Switzerland); Korjik, M. [Institute for Nuclear Problems, 11 Bobruiskaya, 220020 Minsk (Belarus); Zazubovich, S., E-mail: svetlana.zazubovits@ut.ee [Institute of Physics, University of Tartu, Ravila 14 c, 50411 Tartu (Estonia)

    2015-12-15

    Photoluminescence and thermally stimulated luminescence (TSL) are studied for a PbWO{sub 4} crystal grown by the Czochralski method at Bogoroditsk Technical Chemical Plant, Russia from the melt with a precise tuning of the stoichiometry and co-doped with La{sup 3+} and Y{sup 3+} ions (the PWO II crystal). Photothermally stimulated processes of electron and hole centers creation under selective UV irradiation of this crystal in the 3.5–5.0 eV energy range and the 85–205 K temperature range are clarified and the optically created electron and hole centers are identified. The electrons in PWO II are mainly trapped at the (WO{sub 4}){sup 2−} groups located close to single La{sup 3+} and Y{sup 3+} ions, producing the electron {(WO_4)"3"−–La"3"+} and {(WO_4)"3"−–Y"3"+} centers. The holes are mainly trapped at the regular oxygen ions O{sup 2−} located close to La{sup 3+} and Y{sup 3+} ions associated with lead vacancies, producing the hole O{sup −}(I)-type centers. No evidence of single-vacancy-related centers has been observed in PWO II. The data obtained indicate that excellent scintillation characteristics of the PWO II crystal can be explained by a negligible concentration of single (non-compensated) oxygen and lead vacancies as the traps for electrons and holes, respectively. - Highlights: • Photoluminescence of the PbWO{sub 4}:La{sup 3+}, Y{sup 3+} (PWO II) crystal is investigated. • Creation of defects under UV irradiation of PWO II is studied by TSL. • Origin of dominating electron and hole centers is ascertained. • Concentration of single-vacancy-related centers is found to be negligible. • Excellent scintillation characteristics of the PWO II crystal are explained.

  7. Circularly Polarized Luminescence from a Pyrene-Cyclodextrin Supra-Dendron.

    Science.gov (United States)

    Zhang, Yuening; Yang, Dong; Han, Jianlei; Zhou, Jin; Jin, Qingxian; Liu, Minghua; Duan, Pengfei

    2018-05-22

    Soft nanomaterials with circularly polarized luminescence (CPL) have been currently attracting great interest. Here, we report a pyrene-containing π-peptide dendron hydrogel, which shows 1D and 2D nanostructures with varied CPL activities. It was found that the individual dendrons formed hydrogels in a wide pH range (3-12) and self-assembled into helices with pH-tuned pitches. Through chirality transfer, the pyrene unit could show CPL originated from both the monomer and excimer bands. When cyclodextrin was introduced, different supra-dendrons were obtained with β-cyclodextrin (PGAc@β-CD) and γ-cyclodextrin (PGAc@γ-CD) through host-guest interactions, respectively. Interestingly, the PGAc@β-CD and PGAc@γ-CD supra-dendrons self-assembled into 2D nanosheet and entangled nanofibers, respectively, showing cyclodextrin induced circularly polarized emission from both the monomer and excimer bands of the pyrene moiety. Thus, through a simple host-guest interaction, both the nanostructures and the chiroptical activities could be modulated.

  8. Solvent-induced controllable synthesis, single-crystal to single-crystal transformation and encapsulation of Alq3 for modulated luminescence in (4,8)-connected metal-organic frameworks.

    Science.gov (United States)

    Lan, Ya-Qian; Jiang, Hai-Long; Li, Shun-Li; Xu, Qiang

    2012-07-16

    In this work, for the first time, we have systematically demonstrated that solvent plays crucial roles in both controllable synthesis of metal-organic frameworks (MOFs) and their structural transformation process. With solvent as the only variable, five new MOFs with different structures have been constructed, in which one MOF undergoes solvent-induced single-crystal to single-crystal (SCSC) transformation that involves not only solvent exchange but also the cleavage and formation of coordination bonds. Particularly, a significant crystallographic change has been realized through an unprecedented three-step SCSC transformation process. Furthermore, we have demonstrated that the obtained MOF could be an excellent host for chromophores such as Alq3 for modulated luminescent properties.

  9. Highly Luminescent 2D-Type Slab Crystals Based on a Molecular Charge-Transfer Complex as Promising Organic Light-Emitting Transistor Materials.

    Science.gov (United States)

    Park, Sang Kyu; Kim, Jin Hong; Ohto, Tatsuhiko; Yamada, Ryo; Jones, Andrew O F; Whang, Dong Ryeol; Cho, Illhun; Oh, Sangyoon; Hong, Seung Hwa; Kwon, Ji Eon; Kim, Jong H; Olivier, Yoann; Fischer, Roland; Resel, Roland; Gierschner, Johannes; Tada, Hirokazu; Park, Soo Young

    2017-09-01

    A new 2:1 donor (D):acceptor (A) mixed-stacked charge-transfer (CT) cocrystal comprising isometrically structured dicyanodistyrylbenzene-based D and A molecules is designed and synthesized. Uniform 2D-type morphology is manifested by the exquisite interplay of intermolecular interactions. In addition to its appealing structural features, unique optoelectronic properties are unveiled. Exceptionally high photoluminescence quantum yield (Φ F ≈ 60%) is realized by non-negligible oscillator strength of the S 1 transition, and rigidified 2D-type structure. Moreover, this luminescent 2D-type CT crystal exhibits balanced ambipolar transport (µ h and µ e of ≈10 -4 cm 2 V -1 s -1 ). As a consequence of such unique optoelectronic characteristics, the first CT electroluminescence is demonstrated in a single active-layered organic light-emitting transistor (OLET) device. The external quantum efficiency of this OLET is as high as 1.5% to suggest a promising potential of luminescent mixed-stacked CT cocrystals in OLET applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Site symmetry and crystal field of Ce{sup 3+} luminescent centres in KMgF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yamaga, M. [Department of Electrical and Electronic Engineering, Faculty of Engineering, Gifu University, Gifu (Japan); Honda, M.; Kawamata, N. [Faculty of Science, Naruto University of Education, Naruto (Japan); Fujita, T.; Shimamura, K.; Fukuda, T. [Institute for Materials Research, Tohoku University, Sendai (Japan)

    2001-04-09

    The electron-spin resonance (ESR) spectra of Ce{sup 3+} in KMgF{sub 3} observed at low temperatures (<20 K) show that two tetragonal and two orthorhombic Ce{sup 3+} centres exist in the absence of a cubic centre. These Ce{sup 3+} centres are strongly associated with substitution of Ce{sup 3+} ions for K{sup +} ions with K{sup +}-ion vacancies at three different sites and for a Mg{sup 2+} ion with a vacancy of the nearest neighbour Mg{sup 2+} ion along the [101] direction as charge compensators. The optical absorption spectrum of Ce{sup 3+} in KMgF{sub 3} measured at room temperature consists of two intense broadbands with peaks at 229 and 237 nm, and two weak bands with peaks at 203 and 211 nm corresponding to the transition from the ground state {sup 2}F{sub 5/2} to the 5d{sup 1} excited states of Ce{sup 3+}. The Ce{sup 3+} luminescence spectrum excited at 229 or 237 nm at room temperature is composed of broadbands with double peaks at 265 and 282 nm, which are due to the ground-state splitting between {sup 2}F{sub 5/2} and {sup 2}F{sub 7/2}. The peak of the weak luminescence band excited at a tail (250-280 nm) of the intense absorption bands is shifted to lower energy. The intense and weak Ce{sup 3+} luminescence bands are assigned to Ce{sup 3+} ions substituting for K{sup +} ions away from and near to K{sup +}-ion vacancies, respectively. The luminescence from Ce{sup 3+} ions substituting for Mg{sup 2+} ions could not be observed at room temperature. (author)

  11. Epitaxial growth of hetero-Ln-MOF hierarchical single crystals for domain- and orientation-controlled multicolor luminescence 3D coding capability

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan [MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou (China); Su, Cheng-Yong [MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou (China); State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou (China)

    2017-11-13

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Near-Band-Edge Optical Responses of CH3NH3PbCl3 Single Crystals: Photon Recycling of Excitonic Luminescence

    Science.gov (United States)

    Yamada, Takumi; Aharen, Tomoko; Kanemitsu, Yoshihiko

    2018-02-01

    The determination of the band gap and exciton energies of lead halide perovskites is very important from the viewpoint of fundamental physics and photonic device applications. By using photoluminescence excitation (PLE) spectra, we reveal the optical properties of CH3NH3PbCl3 single crystals in the near-band-edge energy regime. The one-photon PLE spectrum exhibits the 1 s exciton peak at 3.11 eV. On the contrary, the two-photon PLE spectrum exhibits no peak structure. This indicates photon recycling of excitonic luminescence. By analyzing the spatial distribution of the excitons and photon recycling, we obtain 3.15 eV for the band gap energy and 41 meV for the exciton binding energy.

  13. Epitaxial Growth of Hetero-Ln-MOF Hierarchical Single Crystals for Domain- and Orientation-Controlled Multicolor Luminescence 3D Coding Capability.

    Science.gov (United States)

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan; Su, Cheng-Yong

    2017-11-13

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Epitaxial growth of hetero-Ln-MOF hierarchical single crystals for domain- and orientation-controlled multicolor luminescence 3D coding capability

    International Nuclear Information System (INIS)

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan; Su, Cheng-Yong

    2017-01-01

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. SYNTHESIS, CRYSTAL STRUCTURE AND LUMINESCENT PROPERTY OF A DINUCLEAR Tb(II COMPLEX WITH HOMOPHTHALIC ACID AND 2,2’-BIPYRIDYL

    Directory of Open Access Journals (Sweden)

    LI-HUA WANG

    2015-07-01

    Full Text Available A novel dinuclear Tb(III complex, [Tb(bpy2L2] (bpy = 2,2’-bipyridine, H2L = homophthalic acid, has been synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The Tb(III complex is monoclinic, space group P21/c with a = 9.368(2 Å, b = 15.948(4 Å, c = 12.216(3 Å, β = 103.023(4º, V= 1778.2(7 Å3, Z = 2, Dc = 1.910 mg·m-3, μ = 4.011 mm-1, F(000 = 996, and final R1 = 0.0602, ωR2 = 0.2192. The result shows that the Tb(III center is seven-coordination with a N2O5 distorted pengonal bipyramidal geometry. The luminescent property of Tb(III complex was investigated.

  16. Crystal structures and luminescence properties of two Cd(II) complexes based on 2-(1H-imidazol-1methyl)-6-methyl-1H-benzimidazole

    International Nuclear Information System (INIS)

    Zhang, Yuhong; Meng, Xiangru; Wen, Yu; Li, Peng; Ma, Lin; Zhang, Qiuju

    2015-01-01

    Two new complexes, {[Cd(immb)I 2 ].DMF} n (1) and {[Cd 3 (immb)(btc) 2 ]. H 2 O} n (2) (immb = 2-(1H-imidazol- 1-methyl)-6-methyl-1H-benzimidazole, btc = 1,2,3-benzenetricarboxylate, DMF = dimethyl formamide), have been synthesized and characterized. Single crystal X-ray diffraction shows that 1 exhibits a chain structure constructed by immb ligands bridging Cd(II) ions. In 2, Cd(II) ions are linked by immb ligands with bridging mode and btc3- anions with the μ 2 -η 2 :η 1 bonding pattern leading to a 2D structure. Luminescent properties have been investigated in the solid state at room temperature.

  17. Crystal structure and luminescence properties of the first hydride oxide chloride with divalent europium. LiEu{sub 2}HOCl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, Daniel; Schleid, Thomas [Institute for Inorganic Chemistry, University of Stuttgart (Germany); Enseling, David; Juestel, Thomas [Department of Chemical Engineering, Muenster University of Applied Sciences, Steinfurt (Germany)

    2017-11-17

    The mixed-anionic hydride oxide chloride LiEu{sub 2}HOCl{sub 2} with divalent europium was synthesized by the reduction of Eu{sub 2}O{sub 3} with LiH in a LiCl flux at 750 C for 4 d in silica-jacketed niobium capsules. According to structure determination by single-crystal X-ray diffraction the yellow compound crystallizes in the orthorhombic space group Cmcm (a = 1492.30(11) pm, b = 570.12(4) pm, c = 1143.71(8) pm, Z = 8) with a crystal structure closely related to that one of the quaternary hydride oxide LiLa{sub 2}HO{sub 3} and the hydride nitride LiSr{sub 2}H{sub 2}N. On the other hand it can also be derived from the PbFCl-type structure of EuHCl showing astonishingly short Eu{sup 2+}..Eu{sup 2+} contacts of 326 and 329 pm. Both crystallographically different Eu{sup 2+} cations have nine anionic neighbors, while all other ions (Li{sup +}, H{sup -}, O{sup 2-} and Cl{sup -}) reside in six-membered coordination spheres. LiEu{sub 2}OCl{sub 2}H exhibits a bright yellow luminescence with an emission maximum at 581 nm upon excitation at 440 nm. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Crystal structure and luminescence properties of a novel red-emitting phosphor BaAlBO{sub 3}F{sub 2}:Eu{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wanping, E-mail: cwp0918@aliyun.com; Zhou, Ahong; Liu, Yan; Dai, Xiaoyan; Yang, Xin

    2014-12-15

    A series of novel red-emitting phosphors BaAlBO{sub 3}F{sub 2}:xEu{sup 3+} (0.001≤x≤0.08) were first synthesized via a high temperature solid-state reaction. X-ray diffraction and photoluminescence spectroscopy were used to characterize the crystal structure and photoluminescence properties of the phosphor, respectively. The phosphor can be effectively excited with a 395 nm light, and shows a dominant {sup 5}D{sub 0}−{sup 7}F{sub 2} emission with chromatic coordination of 0.628 and 0.372. The optimal doping concentration is about 0.04. Rietveld refinement results and the luminescence behavior of Eu{sup 3+} indicate that the Eu{sup 3+} ion occupies a C{sub 3} symmetry site, and the host BaAlBO{sub 3}F{sub 2} has a hexagonal structure with P-6 space group. In addition, the phosphor could be a potential candidate as red-emitting phosphor for application in white light-emitting diode. - Graphical abstract: The luminescence behavior and Rietveld refinement of BaAlBO{sub 3}F{sub 2}:Eu{sup 3+} indicate that the red-emitting phosphor has potential application in white LED and the host has a hexagonal structure with P-6 space group. - Highlights: • A novel red-emitting phosphor BaAlBO{sub 3}F{sub 2}:Eu{sup 3+} is first synthesized. • The crystal structure of BaAlBO{sub 3}F{sub 2} is confirmed. • The phosphor shows potential application in white LED.

  19. Luminescence and scintillation properties of Mg-codoped LuAG:Pr single crystals annealed in air

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Buryi, Maksym; Babin, Vladimir; Průša, Petr; Beitlerová, Alena; Bárta, Jan; Havlák, Lubomír; Kamada, K.; Yoshikawa, A.; Laguta, Valentyn; Nikl, Martin

    2017-01-01

    Roč. 181, Jan (2017), s. 277-285 ISSN 0022-2313 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA ČR GJ15-18300Y EU Projects: European Commission(XE) 644260 - INTELUM Institutional support: RVO:68378271 Keywords : scintillation * Pr4+ * luminescence * codoping * lutetium–aluminum garnet Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.686, year: 2016

  20. Luminescence nanothermometry

    Science.gov (United States)

    Jaque, Daniel; Vetrone, Fiorenzo

    2012-07-01

    The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed.The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed. This work was supported by the Universidad Autónoma de Madrid and Comunidad Autónoma de Madrid (Project S2009/MAT-1756), by the Spanish Ministerio de Educacion y Ciencia (MAT2010-16161) and by Caja Madrid Foundation.

  1. Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF{sub 4}:Yb{sup 3+}/Er{sup 3+} nano-/micro-crystals derived from a microwave-assisted hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lili [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Li, Xiangping, E-mail: lixp@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Hua, Ruinian [College of Life Science, Dalian Nationalities University, Dalian 116600 (China); Li, Xuejing; Zheng, Hui; Sun, Jiashi; Zhang, Jinsu; Cheng, Lihong [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Chen, Baojiu, E-mail: chenmbj@sohu.com [Department of Physics, Dalian Maritime University, Dalian 116026 (China)

    2015-11-15

    Yb{sup 3+}/Er{sup 3+} co-doped α- and β-phase NaYF{sub 4} nano-/micro-crystals were prepared through a microwave-assisted hydrothermal route. The crystal structure and microscopic morphology of the samples were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Frequency upconverted emissions from the two thermally coupled excited state {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} levels of Er{sup 3+} in both phases of phosphors were recorded at temperatures ranging from room temperature to 573 K under 980 nm infrared laser excitation. The time scanning upconversion spectra were investigated in detail to reveal the thermal effect induced by laser irradiation and the luminescent thermal stability of the two phases NaYF{sub 4} polycrystals. Comparison of the upconversion luminescence and the sensitivity between the two phases NaYF{sub 4} polycrystals indicated that β-phase NaYF{sub 4} won much stronger luminescent intensity, better luminescent thermal stability, and higher temperature sensitivity. - Highlights: • Yb{sup 3+}/Er{sup 3+} codoped NaYF{sub 4} were prepared by a microwave-assisted hydrothermal route. • The UC luminescence and temperature sensing properties were studied. • Comparison of the UCL and the sensitivity between α- and β-phase samples were done. • Thermal effect and UCL thermo-stability were studied by time scanning UCL spectra. • β-phase sample won much better luminescent and temperature sensing properties.

  2. Synthesis and luminescence of CePO4 and CePO4:Tb hollow and core-shell microspheres composed of single-crystal nanorods

    International Nuclear Information System (INIS)

    Guan Mingyun; Sun Jianhua; Han Min; Xu Zheng; Tao Feifei; Yin Gui; Wei Xianwen; Zhu Jianmin; Jiang Xiqun

    2007-01-01

    Lanthanide phosphate microspheres composed of single-crystal CePO 4 and CePO 4 :Tb nanorods were successfully synthesized, respectively, using the functionalized composite aggregate as a template, which is composed of P123, H 6 P 4 O 13 and Ce 3+ , and also as a resource of reaction species with high chemical potential. The shape and the phase structure of the CePO 4 nanocrystal can be easily controlled via adjusting reaction temperature, monomer concentration and annealing temperature. SEM images show the spherical superstructure composed of nanorods. HRTEM and SAED images reveal the single-crystalline nature of nanorod and TEM images show the hollow interiors of the superstructure. XRD patterns indicate that the crystal structure of the nanorods is hexagonal before and monoclinic after annealing. The formation mechanism was proposed. Strong UV and green luminescence were observed for the CePO 4 and CePO 4 :Tb microspheres, respectively. The synthesis method can be extended to the fabrication of NRHS and core-shell microspheres of other rare-earth or doped LnPO 4 materials for wide applications

  3. Ionic liquid-assisted hydrothermal synthesis and excitation wavelength-dependent luminescence of YBO3:Eu3+ nano-/micro-crystals

    International Nuclear Information System (INIS)

    Tian, Yue; Tian, Bining; Chen, Baojiu; Cui, Cai’e; Huang, Ping; Wang, Lei; Hua, Ruinian

    2014-01-01

    Graphical abstract: Three dimensional (3D) architectures YBO 3 :Eu 3+ phosphors were prepared via ionic liquid assisted hydrothermal process. The pH values and ionic liquid play an important role on the morphology of products. Excitation wavelength-dependent luminescent behavior was found in the as-prepared tyre-like YBO 3 :Eu 3+ microspheres. Highlights: • YBO 3 :Eu 3+ phosphors were prepared via ionic liquid assisted hydrothermal process. • pH values and ionic liquid play an important role on the morphology of products. • Excitation wavelength-dependent luminescent behavior was found. -- Abstract: Three dimensional (3D) architectures YBO 3 :Eu 3+ phosphors were prepared via ionic liquid-assisted hydrothermal process and characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and photoluminescence (PL). The pH value and ionic liquid play an important role in the control of morphology of products. By comparing with the corresponding bulk, the tyre-like YBO 3 :5 mol%Eu 3+ microspheres demonstrate a red shift of the charge transfer band (CTB), appearance of a long excitation tail at the long wavelength side of the CTB and high improved chromaticity. Two Eu 3+ environments in the tyre-like sample, namely interior and outside Eu 3+ , were found by selective excitation under the different wavelength light. Finally, fluorescent decays and Judd–Ofelt (J–O) theory were utilized to analyze the local crystal environments around Eu 3+ ions in the tyre-like and bulk phosphors

  4. Primary and aggregate color centers in proton irradiated LiF crystals and thin films for luminescent solid state detectors

    International Nuclear Information System (INIS)

    Piccinini, M; Ambrosini, F; Ampollini, A; Bonfigli, F; Libera, S; Picardi, L; Ronsivalle, C; Vincenti, M A; Montereali, R M

    2015-01-01

    Proton beams of 3 MeV energy, produced by the injector of a linear accelerator for proton therapy, were used to irradiate at room temperature lithium fluoride crystals and polycrystalline thin films grown by thermal evaporation. The irradiation fluence range was 10 11 -10 15 protons/cm 2 . The proton irradiation induced the stable formation of primary and aggregate color centers. Their formation was investigated by optical absorption and photoluminescence spectroscopy. The F 2 and F 3 + photoluminescence intensities, carefully measured in LiF crystals and thin films, show linear behaviours up to different maximum values of the irradiation fluence, after which a quenching is observed, depending on the nature of the samples (crystals and films). The Principal Component Analysis, applied to the absorption spectra of colored crystals, allowed to clearly identify the formation of more complex aggregate defects in samples irradiated at highest fluences. (paper)

  5. Primary and aggregate color centers in proton irradiated LiF crystals and thin films for luminescent solid state detectors

    Science.gov (United States)

    Piccinini, M.; Ambrosini, F.; Ampollini, A.; Bonfigli, F.; Libera, S.; Picardi, L.; Ronsivalle, C.; Vincenti, M. A.; Montereali, R. M.

    2015-04-01

    Proton beams of 3 MeV energy, produced by the injector of a linear accelerator for proton therapy, were used to irradiate at room temperature lithium fluoride crystals and polycrystalline thin films grown by thermal evaporation. The irradiation fluence range was 1011-1015 protons/cm2. The proton irradiation induced the stable formation of primary and aggregate color centers. Their formation was investigated by optical absorption and photoluminescence spectroscopy. The F2 and F3+ photoluminescence intensities, carefully measured in LiF crystals and thin films, show linear behaviours up to different maximum values of the irradiation fluence, after which a quenching is observed, depending on the nature of the samples (crystals and films). The Principal Component Analysis, applied to the absorption spectra of colored crystals, allowed to clearly identify the formation of more complex aggregate defects in samples irradiated at highest fluences.

  6. Some experiences with absorption, phonon Raman, and luminescence spectroscopic probes of crystal structure of f-element compounds

    International Nuclear Information System (INIS)

    Peterson, J.R.

    1992-01-01

    Structural information is crucial to the study and understanding of the basic chemical properties of the f elements. X-ray diffraction (XRD) techniques are usually used to obtain crystal structure information. However, the transuranium (5f) elements, because of their radioactivity and limited availability, present problems for standard XRD analysis. For some time now we have been developing and using various spectroscopic probes of crystal structure; an overview of our research in this area is presented here

  7. Luminescent properties of Cr-doped gallium garnet crystals grown by the micro-pulling-down method

    Czech Academy of Sciences Publication Activity Database

    Kurosawa, S.; Suzuki, A.; Yamaji, A.; Kamada, K.; Pejchal, Jan; Ohashi, Y.; Yokota, Y.; Chani, V.I.; Yoshikawa, A.

    2016-01-01

    Roč. 452, Oct (2016), s. 95-100 ISSN 0022-0248. [American Conference on Crystal Growth and Epitaxy /20./ (ACCGE) / 17th Biennial Workshop on Organometallic Vapor Phase Epitaxy (OMVPE) / 2nd 2D Electronic Materials Symposium. Big Sky, MT, 02.08.2015-07.08.2015] Institutional support: RVO:68378271 Keywords : scintillator materials * single crystal growth * gallium compounds Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.751, year: 2016

  8. Optically stimulated luminescence (OSL) from Ag-doped Li{sub 2}B{sub 4}O{sub 7} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kananen, B.E.; Maniego, E.S.; Golden, E.M.; Giles, N.C.; McClory, J.W. [Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433 (United States); Adamiv, V.T.; Burak, Ya.V. [Vlokh Institute of Physical Optics, Dragomanov 23, L’viv 79005 (Ukraine); Halliburton, L.E., E-mail: Larry.Halliburton@mail.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States)

    2016-09-15

    Optically stimulated luminescence (CW-OSL) is observed from Ag-doped lithium tetraborate (Li{sub 2}B{sub 4}O{sub 7}) crystals. Photoluminescence, optical absorption, and electron paramagnetic resonance (EPR) are used to identify the defects participating in the OSL process. As-grown crystals have Ag{sup +} ions substituting for Li{sup +} ions. They also have Ag{sup +} ions occupying interstitial sites. During a room-temperature exposure to ionizing radiation, holes are trapped at the Ag{sup +} ions that replace Li{sup +} ions and electrons are trapped at the interstitial Ag{sup +} ions, i.e., the radiation forms Ag{sup 2+} (4d{sup 9}) ions and Ag{sup 0} (4d{sup 10}5s{sup 1}) atoms. These Ag{sup 2+} and Ag{sup 0} centers have characteristic EPR spectra. The Ag{sup 0} centers also have a broad optical absorption band peaking near 370 nm. An OSL response is observed when the stimulation wavelength overlaps this absorption band. Specifically, stimulation with 400 nm light produces an intense OSL response when emission is monitored near 270 nm. Electrons optically released from the Ag{sup 0} centers recombine with holes trapped at Ag{sup 2+} ions to produce the ultraviolet emission. The OSL response is progressively smaller as the stimulation light is moved to longer wavelengths (i.e., away from the 370 nm peak of the absorption band of the Ag{sup 0} electron traps). Oxygen vacancies are also present in the Ag-doped Li{sub 2}B{sub 4}O{sub 7} crystals, and their role in the OSL process as a secondary relatively short-lived electron trap is described.

  9. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  10. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2008-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  11. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2012-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  12. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  13. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2013-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  14. Synthesis, crystal structures and luminescence properties of new multi-component co-crystals of isostructural Co(II) and Zn(II) complexes

    Science.gov (United States)

    Tella, Adedibu C.; Owalude, Samson O.; Omotoso, Mary F.; Olatunji, Sunday J.; Ogunlaja, Adeniyi S.; Alimi, Lukman O.; Popoola, Olugbenga K.; Bourne, Susan A.

    2018-04-01

    Two novel isostructural compounds containing multi-component co-crystals [M(C6H4NO2)2(H2O)2](C9H6O6)2 (M = Co (1), Zn (2), C6H4NO2 = Picolinic acid, C9H6O6 = Trimesic acid) have been synthesized. The compounds were characterized by elemental analysis, FT-IR, UV-Visible and 1H NMR spectroscopies as well as thermal and single crystal X-ray diffraction analyses. Single crystal X-ray diffraction analysis reveals that 1 and 2 are isostructural. Compound 1 crystallizes in triclinic space group (P-1, with a = 5.154 (10) Å, b = 11.125 (2) Å, c = 14.113 (3) Å, α = 91.01 (3)°, β = 100.54 (3)°, and γ = 102.71 (3)°). In a similar fashion, compound 2 crystallizes in triclinic space group (P-1, with a = 5.1735 (3) Å, b = 11.0930 (10) Å, c = 14.1554 (8) Å, α = 91.70 (3)°, β = 100.26 (3)°, γ = 102.90 (3)°). The metal (II) cation presents distorted MN2O4 octahedral geometry with H2O molecules coordinated to the metal in equatorial position while the picolinic acid molecules are axially coordinated through the pyridine N atom. The two trimesic acid molecules are not part of the first coordination sphere. Compounds 1 and 2 constitute an example of a class of coordination compound of multicomponent crystals having trimesic acid outside the coordination sphere where it is neither protonated or deprotonated. The two compounds were investigated for luminiscence properties.

  15. Luminescence and photo-thermally stimulated defects creation processes in PbWO{sub 4} crystals doped with trivalent rare-earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Fabeni, P. [Institute of Applied Physics “N.Carrara” (IFAC) of CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Krasnikov, A.; Kärner, T. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Laguta, V.V.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Pazzi, G.P. [Institute of Applied Physics “N.Carrara” (IFAC) of CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Zazubovich, S., E-mail: svet@fi.tartu.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2013-04-15

    In PbWO{sub 4} crystals, doped with various trivalent rare-earth A{sup 3+} ions (A{sup 3+}: La{sup 3+}, Lu{sup 3+}, Y{sup 3+}, Ce{sup 3+}, Gd{sup 3+}), electron (WO{sub 4}){sup 3−} and {(WO_4)"3"−–A"3"+} centers can be created under UV irradiation not only in the host absorption region but also in the energy range around 3.85 eV (Böhm et al., 1999; Krasnikov et al., 2010). Under excitation in the same energy range, the UV emission peak at 3.05–3.20 eV is observed. In the present work, the origin of this emission is investigated in detail by low-temperature time-resolved luminescence methods. Photo-thermally stimulated creation of (WO{sub 4}){sup 3−} and {(WO_4)"3"−–A"3"+} centers is studied also in PbWO{sub 4}:Mo,A{sup 3+} crystals. Various processes, which could explain both the appearance of the UV emission and the creation of the {(WO_4)"3"−–A"3"+}-type centers under irradiation of PbWO{sub 4}: A{sup 3+} crystals in the 3.85±0.35 eV energy range, are discussed. The radiative and non-radiative decay of the excitons localized near A{sup 3+} ions is considered as the most probable mechanism to explain the observed features. -- Highlights: ► UV emission of PbWO{sub 4}: A{sup 3+} (A{sup 3+}: La{sup 3+}, Lu{sup 3+}, Y{sup 3+}, Ce{sup 3+}, and Gd{sup 3+}) crystals is studied. ► The emission is ascribed to the radiative decay of excitons localized near A{sup 3+} ions. ► The excitons are created at 3.85 eV excitation by a two-step process. ► Non-radiative decay of the excitons leads to the creation of (WO{sub 4}){sup 3−}–A{sup 3+} centers.

  16. Luminescence properties and gamma-ray response of the Ce and Ca co-doped (Gd,Y)F{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kei, E-mail: k-kamada@furukawakk.co.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai (Japan); Furukawa Co. Ltd. (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Fukabori, Akihiro [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai (Japan); New Industry Creation Hatchery Center, Tohoku University, Sendai (Japan); Nikl, Martin [Institute of Physics AS CR (Czech Republic)

    2011-12-11

    The Ca0.5% and Ce1%, 3%, 7%, 10% co-doped Gd{sub 0.5}Y{sub 0.5}F{sub 3} single crystals were grown by the {mu}-PD method. In the Ca0.5% and Ce3% co-doped sample, Ce{sup 3+}-perturbed luminescence at 380 nm was observed with 32.4 ns photoluminescence decay time. The energy transfer in the sequence of the regular Ce{sup 3+}{yields} (Gd{sup 3+}){sub n}{yields} the perturbed Ce{sup 3+} sites was evidenced through observation of decay time shortening of the regular Ce{sup 3+} and Gd{sup 3+} centers and the change between the Gd{sup 3+} and Ce{sup 3+}-perturbed emission intensity. The gamma-ray excited scintillation response of the Ca0.5%, Ce7% co-doped Gd{sub 0.5}Y{sub 0.5}F{sub 3} sample was investigated with the help of the pulse height spectra and the light yield, energy resolution and non-proportionality was evaluated in the interval of energies of 59.4-1274 keV.

  17. Luminescence properties and gamma-ray response of the Ce and Ca co-doped (Gd,Y)F3 single crystals

    International Nuclear Information System (INIS)

    Kamada, Kei; Yanagida, Takayuki; Fujimoto, Yutaka; Fukabori, Akihiro; Yoshikawa, Akira; Nikl, Martin

    2011-01-01

    The Ca0.5% and Ce1%, 3%, 7%, 10% co-doped Gd 0.5 Y 0.5 F 3 single crystals were grown by the μ-PD method. In the Ca0.5% and Ce3% co-doped sample, Ce 3+ -perturbed luminescence at 380 nm was observed with 32.4 ns photoluminescence decay time. The energy transfer in the sequence of the regular Ce 3+ → (Gd 3+ ) n → the perturbed Ce 3+ sites was evidenced through observation of decay time shortening of the regular Ce 3+ and Gd 3+ centers and the change between the Gd 3+ and Ce 3+ -perturbed emission intensity. The gamma-ray excited scintillation response of the Ca0.5%, Ce7% co-doped Gd 0.5 Y 0.5 F 3 sample was investigated with the help of the pulse height spectra and the light yield, energy resolution and non-proportionality was evaluated in the interval of energies of 59.4-1274 keV.

  18. Crystal structure and Temperature-Dependent Luminescence Characteristics of KMg4(PO4)3:Eu2+ phosphor for White Light-emitting diodes

    Science.gov (United States)

    Chen, Jian; Liu, Yangai; Mei, Lefu; Liu, Haikun; Fang, Minghao; Huang, Zhaohui

    2015-01-01

    The KMg4(PO4)3:Eu2+ phosphor was prepared by the conventional high temperature solid-state reaction. The crystal structure, luminescence and reflectance spectra, thermal stability, quantum efficiency and the application for N-UV LED were studied respectively. The phase formation and crystal structure of KMg4(PO4)3:Eu2+ were confirmed from the powder X-ray diffraction and the Rietveld refinement. The concentration quenching of Eu2+ in the KMg4(PO4)3 host was determined to be 1mol% and the quenching mechanism was certified to be the dipole–dipole interaction. The energy transfer critical distance of as-prepared phosphor was calculated to be about 35.84Å. Furthermore, the phosphor exhibited good thermal stability and the corresponding activation energy ΔE was reckoned to be 0.24eV. Upon excitation at 365nm, the internal quantum efficiency of the optimized KMg4(PO4)3:Eu2+ was estimated to be 50.44%. The white N-UV LEDs was fabricated via KMg4(PO4)3:Eu2+, green-emitting (Ba,Sr)2SiO4:Eu2+, and red-emitting CaAlSiN3:Eu2+ phosphors with a near-UV chip. The excellent color rendering index (Ra = 96) at a correlated color temperature (5227.08K) with CIE coordinates of x = 0.34, y = 0.35 of the WLED device indicates that KMg4(PO4)3:Eu2+ is a promising blue-emitting phosphor for white N-UV light emitting diodes (LEDs). PMID:25855866

  19. Luminescence and light yield of (Gd2Y)(Ga3Al2)O12:Pr3+ single crystal scintillators

    Science.gov (United States)

    Lertloypanyachai, Prapon; Pathumrangsan, Nichakorn; Sreebunpeng, Krittiya; Pattanaboonmee, Nakarin; Chewpraditkul, Weerapong; Yoshikawa, Akira; Kamada, Kei; Nikl, Martin

    2017-06-01

    Praseodymium-doped (Gd2Y)(Ga3Al2)O12 (GYGAG: Pr) single crystals are grown by the micro-pulling down method with different Pr concentrations. The energy transfer process between Pr3+ and Gd3+ is investigated by photoluminescence excitation (PLE) and emission (PL) spectra measurements. Photoelectron yield measurements are carried out using photomultiplier. At 662 keV γ-rays, photoelectron yield of 2520 phe/MeV obtained for the GYGAG: Pr (0.01%) sample is larger than that of 1810 phe/MeV obtained for BGO crystal. Light yield degradation for the GYGAG: Pr scintillators is presumably due to the energy transfer from 5d state of Pr3+ to 4f state of Gd3+ together with the concentration quenching in the Gd3+-sublattice.

  20. Intense luminescence emission from rare-earth-doped MoO3 nanoplates and lamellar crystals for optoelectronic applications

    International Nuclear Information System (INIS)

    Vila, M; Díaz-Guerra, C; Jerez, D; Piqueras, J; Lorenz, K; Alves, E

    2014-01-01

    Strong and stable room-temperature photoluminescence (PL) emission is achieved in MoO 3 nanoplates and lamellar crystals doped with Er and Eu by ion implantation and subsequent annealing. Micro-Raman and PL spectroscopy reveal that optical activation of the rare earth ions and recovery of the original MoO 3 structure are achieved for shorter annealing treatments and for lower temperatures in nanoplates, as compared with lamellar crystals. Er seems to be more readily incorporated into optically active sites in the oxide lattice than Eu. The influence of the dimensionality of the host sample on the characteristics of the PL emission of both rare earth dopants is addressed. (paper)

  1. Synthesis and Crystal Structures of Luminescent Mononuclear Ni(ii and Cd(ii Complexes with 1,10-phenanthroline

    Directory of Open Access Journals (Sweden)

    Ecaterina Tocana

    2017-12-01

    Full Text Available New supramolecular systems of Ni(II and Cd(II with 1,10-phenanthroline constructed by non-covalent interactions have been synthesized and characterized by single-crystal X-ray diffractometry. The smaller nickel(II ion forms a cis complex with outer-sphere perchlorates, while the cadmium(II ion forms a trans complex involving inner-sphere perchlorates. Both compoundsrevealintraligand-basedluminescentproperties.

  2. Synthesis, crystal structures, and luminescent properties of two series' of new lanthanide (III) amino-carboxylate-phosphonates.

    Science.gov (United States)

    Zhou, Tian-Hua; Yi, Fei-Yan; Li, Pei-Xin; Mao, Jiang-Gao

    2010-02-01

    Hydrothermal reactions of lanthanide(III) chlorides with 4-HOOC-C(6)H(4)-CH(2)NHCH(2)PO(3)H(2) (H(3)L) at different ligand-to-metal (L/M) ratios afforded nine new lanthanide(III) carboxylate-phosphonates with two types of 3D network structures, namely, LnCl(HL)(H(2)O)(2) (Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Er, 6) and [Ln(2)(HL)(H(2)L)(L)(H(2)O)(2)].4H(2)O (Ln = Nd, 7; Sm, 8; Eu, 9). Compounds 1-6 are isostructural and feature a 3D network in which the LnO(7)Cl polyhedra are interconnected by bridging CPO(3) tetrahedra into 2D inorganic layers parallel to the bc plane. These layers are further cross-linked by organic groups of the carboxylate-phosphonate ligands via the coordination of the carboxylate groups into a pillared-layered architecture. Compounds 7-9 are also isostructural and feature a 3D open-framework composed of 1D lanthanide(III) phosphonate inorganic slabs which are further bridged by organic groups of the carboxylate-phosphonate liagnds via the coordination of the carboxylate groups, forming large 1D tunnels along the b-axis which are filled by lattice water molecules. Luminescent measurements indicate that compounds 2, 4, and 5 show strong emission bands in red, green, and yellow light region, respectively. Magnetic properties of 2, 3, 5, and 7 have also been studied.

  3. Luminescence rise time in self-activated PbWO{sub 4} and Ce-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} scintillation crystals

    Energy Technology Data Exchange (ETDEWEB)

    Auffray, E. [CERN, Geneva (Switzerland); Augulis, R. [Center for Physical Sciences and Technology, Savanorių av. 231, Vilnius (Lithuania); Borisevich, A. [Research Institute for Nuclear Problems, Bobruiskaya str. 11, Minsk (Belarus); Gulbinas, V. [Center for Physical Sciences and Technology, Savanorių av. 231, Vilnius (Lithuania); Fedorov, A.; Korjik, M. [Research Institute for Nuclear Problems, Bobruiskaya str. 11, Minsk (Belarus); Lucchini, M.T. [CERN, Geneva (Switzerland); Mechinsky, V. [Research Institute for Nuclear Problems, Bobruiskaya str. 11, Minsk (Belarus); Nargelas, S. [Vilnius University, Universiteto str. 3, Vilnius (Lithuania); Songaila, E. [Center for Physical Sciences and Technology, Savanorių av. 231, Vilnius (Lithuania); Tamulaitis, G. [Vilnius University, Universiteto str. 3, Vilnius (Lithuania); Vaitkevičius, A., E-mail: augustas.vaitkevicius@ff.vu.lt [Vilnius University, Universiteto str. 3, Vilnius (Lithuania); Zazubovich, S. [Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, Tartu (Estonia)

    2016-10-15

    The time resolution of scintillation detectors of ionizing radiation is one of the key parameters sought for in the current and future high-energy physics experiments. This study is encouraged by the necessity to find novel detection methods enabling a sub-10-ps time resolution in scintillation detectors and is focused on the exploitation of fast luminescence rise front. Time-resolved photoluminescence (PL) spectroscopy and thermally stimulated luminescence techniques have been used to study two promising scintillators: self-activated lead tungstate (PWO, PbWO{sub 4}) and Ce-doped gadolinium aluminum gallium garnet (GAGG, Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12}). A sub-picosecond PL rise time is observed in PWO, while longer processes in the PL response in GAGG:Ce are detected and studied. The mechanisms responsible for the PL rise time in self-activated and doped scintillators are under discussion. - Highlights: • Photoluminescence rise time is studied in two scintillators: PWO and GAGG:Ce. • Sub-picosecond photoluminescence rise time in PWO is observed for the first time. • A multicomponent luminescence rise edge is observed in GAGG:Ce. • The mechanisms behind luminescence kinetics in the crystals are under discussion.

  4. A far ultraviolet spectroscopic study of the reflectance, luminescence and electronic properties of SrMgF4 single crystals

    International Nuclear Information System (INIS)

    Ogorodnikov, I.N.; Pustovarov, V.A.; Omelkov, S.I.; Isaenko, L.I.; Yelisseyev, A.P.; Goloshumova, A.A.; Lobanov, S.I.

    2014-01-01

    The electronic properties of single crystals of SrMgF 4 have been determined using low-temperature (10–293 K) time-resolved vacuum ultraviolet synchrotron radiation spectroscopy, far ultraviolet (3.7–36 eV) reflectance spectra and calculations for the spectra of optical functions. The bandgap of investigated compound was found at E g =12.55eV, the energy threshold for creation of the unrelaxed excitons at E n=1 =11.37eV, and the low-energy fundamental absorption edge at 10.3 eV. Two groups of photoluminescence (PL) bands have been identified: the exciton-type emissions at 2.6–3.3 and 3.3–4.2 eV and defect-related emissions at 1.8–2.6 and 4.2–5.5 eV. It was shown that PL excitation (PLE) for the exciton-type emission bands occurs mainly at the low-energy tail of the fundamental absorption of the crystal with a maximum at 10.7 eV. At excitation energies above E g the energy transfer from the host lattice to the PL emission centers is inefficient. The paper discusses the origin of the excitonic-type PLE spectra taking into account the results of modeling the PLE spectra shape in the framework of a simple diffusion theory and surface energy losses. -- Highlights: • Far-ultraviolet reflection spectra of SrMgF 4 were studied. • Photoluminescence (PL) emission and PL excitation spectra were studied. • Optical function spectra were calculated on the basis of experimental data. • Electronic structure properties of undoped SrMgF 4 crystals were determined

  5. Luminescence and scintillation timing characteristics of (Lu{sub x}Gd{sub 2−x})SiO{sub 5}:Ce single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yawai, Nattasuda; Chewpraditkul, Warut; Sakthong, Ongsa [Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok10140 (Thailand); Chewpraditkul, Weerapong, E-mail: weerapong.che@kmutt.ac.th [Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok10140 (Thailand); Wantong, Kriangkrai [Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok10140 (Thailand); Szczesniak, Tomasz; Swiderski, Lukasz; Moszynski, Marek [National Centre for Nuclear Research, A. Soltana 7, PL 05-400 Otwock-Swierk (Poland); Sidletskiy, Oleg [Institute for Scintillation Materials NAS of Ukraine, 60 Nauky Avenue, 61001 Kharkiv (Ukraine)

    2017-02-01

    The luminescence and scintillation characteristics of cerium-doped lutetium-gadolinium orthosilicate (Lu{sub x}Gd{sub 2−x}SiO{sub 5}:Ce; x=0, 0.8, 1.8) single crystals were investigated. At 662 keV γ-rays, the light yield of 29,800±3000 ph MeV{sup −1} obtained for Lu{sub 1.8}Gd{sub 0.2}SiO{sub 5}:Ce is higher than that of 20,200±2000 and 11,800±1200 ph MeV{sup −1} obtained for Lu{sub 0.8}Gd{sub 1.2}SiO{sub 5}:Ce and Gd{sub 2}SiO{sub 5}:Ce, respectively. The fast component decay time of 32, 18 and 17 ns was measured in the scintillation decay of Gd{sub 2}SiO{sub 5}:Ce, Lu{sub 0.8}Gd{sub 1.2}SiO{sub 5}:Ce and Lu{sub 1.8}Gd{sub 0.2}SiO{sub 5}:Ce, respectively. The coincidence time spectra for 511 keV annihilation quanta were measured in reference to a fast BaF{sub 2} detector and time resolution was discussed in terms of a number of photoelectrons and decay time of the fast component. The mass attenuation coefficient for studied crystals at 60 and 662 keV γ-rays was also evaluated and discussed. - Highlights: • Scintillation timing characteristics of Lu{sub x}Gd{sub 2−x}SiO{sub 5}:Ce crystals are studied. • Lu{sub 1.8}Gd{sub 0.2}SiO{sub 5}:Ce exhibits excellent light yield and timing response. • Energy resolution of 6% @662 keV is obtained for Lu{sub 0.8}Gd{sub 1.2}SiO{sub 5}:Ce. • Coincidence time resolution of 368 ps is obtained for Lu{sub 1.8}Gd{sub 0.2}SiO{sub 5}:Ce.

  6. Hydrothermal synthesis, crystal structure, luminescent and magnetic properties of a new mononuclear GdIII coordination complex

    Science.gov (United States)

    Coban, Mustafa Burak

    2018-06-01

    A new GdIII coordination complex, {[Gd(2-stp)2(H2O)6].2(4,4'-bipy).4(H2O)}, complex 1, (2-stp = 2-sulfoterephthalate anion and 4,4'-bipy = 4,4'-bipyridine), has been synthesized by hydrothermal method and characterized by elemental analysis, solid state UV-Vis and FT-IR spectroscopy, single-crystal X-ray diffraction, solid state photoluminescence and variable-temperature magnetic measurements. The crystal structure determination shows that GdIII ions are eight coordinated and adopt a distorted square-antiprismatic geometry. Molecules interacting through intra- and intermolecular (O-H⋯O, O-H⋯N) hydrogen bonds in complex 1, give rise to 3D hydrogen bonded structure and the discrete lattice 4,4'-bipy molecules occupy the channel of the 3D structure. π-π stacking interactions also exist 4,4'-bipy-4,4'-bipy and 4,4'-bipy-2-stp molecule rings in 3D structures. Additionally, solid state photoluminescence properties of complex 1 at room temperature have been investigated. Under the excitation of UV light (at 349 nm), the complex 1 exhibited green emissions (at 505 nm) of GdIII ion in the visible region. Furthermore, Variable-temperature magnetic susceptibility and isothermal magnetization as function of external magnetic field studies reveal that complex 1 displays possible antiferromagnetic interaction.

  7. Competition of the self-activated and Mn-related luminescence in ZnS single crystals

    Science.gov (United States)

    Bacherikov, Yu. Yu.; Vorona, I. P.; Markevich, I. V.; Korsunska, N. O.; Kurichka, R. V.

    2018-06-01

    The photoluminescence (PL) and photoluminescence excitation (PLE) spectra of ZnS single crystals thermally doped from ZnS/MnS mixture were studied at 300 and 77 K. PL spectra exhibit bands caused by Mn-related centers and centers of self-activated (SA) emission. Besides intrinsic maximum, a number of narrow peaks corresponded to Mn-related absorption are found in the PLE spectra of both SA and Mn-related emission. A redistribution of SA and Mn-related emission intensities is observed with temperature change. The mechanism of this phenomenon involving free hole trapping by MnZn and the possible position of a ground energy level of substitutional Mn are discussed.

  8. Chiral Binaphthylbis(4,4'-Bipyridin-1-Ium)/Cucurbit[8]Uril Supramolecular System and Its Induced Circularly Polarized Luminescence.

    Science.gov (United States)

    Chen, Xu-Man; Chen, Yong; Liang, Lu; Liu, Qiu-Jun; Liu, Yu

    2018-05-01

    Circularly polarized luminescence (CPL) induced by host-guest complexation remains a challenge in supramolecular chemistry. Herein, a couple of CPL-silent enantiomeric guest binaphthylbis(4,4'-bipyridinium) salts can emit obvious CPL in the presence of cucurbit[8]uril in aqueous media, due to the restriction of molecular rotation limitation effect. Such CPL can be reversibly adjusted by the addition of acid and base. Furthermore, the resultant supramolecular systems can interact with DNA, accompanied by the morphological conversion from branched supramolecular nanowires to exfoliated nanowires, which can enable to the exploration of such supramolecular systems as DNA markers by CPL signals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Determination of molecular structures of aromatic hydrocarbons of crystal fractions of Noriysk crude by a series of luminescent-spectral methods

    Energy Technology Data Exchange (ETDEWEB)

    Ogloblina, A.I.; Alekseyeva, T.A.; Barabadze, Sh.Sh.; Melikadze, L.D.; Teplitskaya, T.A.

    1979-01-01

    The structure of crystalline aromatic hydrocarbons isolated from the high boiling fraction (540-560 degrees) of Noriysk crude was studied using methods of luminescent-spectral analysis. The individual composition of the crystalline aromatic hydrocarbons was analyzed by a combination of fine structure luminescent spectroscopy and spectrofluorimetric methods in frozen matrices using spectra of fluorescence, phosphorescence and excitation of luminescence. The composite method used at 77 K is very effective and allows detailed characteristics of the molar-group composition of complex mixtures of petroleum aromatic hydrocarbons to the point of identification of individual components.

  10. Synthesis, Crystal Structure, Luminescence, Electrochemical and Antimicrobial Properties of Bis(salamo-Based Co(II Complex

    Directory of Open Access Journals (Sweden)

    Li Wang

    2017-09-01

    Full Text Available A newly designed Co(II complex, [Co3(L(OAc2(CH3OH2]·CH3OH, by the reaction of a bis(salamo-type tetraoxime ligand (H4L with Co(II acetate tetrahydrate was synthesized and characterized by elemental analyses, IR, UV-vis spectra and single-crystal X-ray crystallography. The UV-vis titration experiment manifested that a trinuclear (L:M = 1:3 complex was formed. It is worth noting that the two terminal Co(II (Co1 and Co3 atoms of the Co(II complex have different coordination modes and geometries unreported earlier. Furthermore, through intermolecular interactions (C–H···O, C–H···π and O–H···O, a 2D layer-like network is constructed. In addition, the fluorescence behaviors, antimicrobial activities and electrochemical properties of H4L and its Co(II complex were investigated.

  11. Short-wavelength luminescence in Ho{sup 3+}-doped KGd(WO{sub 4}){sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, M., E-mail: m.malinowski@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Kaczkan, M.; Stopinski, S.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Majchrowski, A. [Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2009-12-15

    Emissions from the high-lying excited states, energy transfer and upconversion processes are investigated in Ho{sup 3+}-activated KGd(WO{sub 4}){sub 2} crystal. The spectral assignment based on time-resolved emission spectra allowed to identify various near ultra-violet (UV), blue and green emissions starting from the excited {sup 3}H{sub 5}, {sup 5}G{sub 4}, {sup 5}G{sub 5}, {sup 5}F{sub 3} and {sup 5}S{sub 2} levels. The temporal behavior of these transitions after pulsed excitation was analyzed as a function of temperature and holmium ions concentration. The shortening and nonexponentiality of the decays, observed with increasing activator concentrations, indicated cross-relaxation (CR) among the Ho{sup 3+} ions. Cross-relaxation rates were experimentally determined as a function of activator concentration and used to evaluate the values of the nearest-neighbor trapping rates X{sub 01} and to model the decays. It was observed that KGW, despite higher than in YAG maximum phonon energy of about 900 cm{sup -1}, is more efficient short-wavelength emitter than YAG. Examples of the excited-state absorption (ESA) and energy transfer (ET) mechanisms responsible for the upconverted, short-wavelength emissions were identified by analyzing fluorescence dynamics and possible energy resonances.

  12. Luminescence in medical image science

    Energy Technology Data Exchange (ETDEWEB)

    Kandarakis, I.S., E-mail: kandarakis@teiath.gr

    2016-01-15

    Radiation detection in Medical Imaging is mostly based on the use of luminescent materials (scintillators and phosphors) coupled to optical sensors. Materials are employed in the form of granular screens, structured (needle-like) crystals and single crystal transparent blocks. Storage phosphors are also incorporated in some x-ray imaging plates. Description of detector performance is currently based on quality metrics, such as the Luminescence efficiency, the Modulation Transfer Function (MTF), the Noise Power Spectrum (NPS) and the Detective Quantum Efficiency (DQE) can be defined and evaluated. The aforementioned metrics are experimental evaluated for various materials in the form of screens. A software was designed (MINORE v1) to present image quality measurements in a graphical user interface (GUI) environment. Luminescence efficiency, signal and noise analysis are valuable tools for the evaluation of luminescent materials as candidates for medical imaging detectors. - Highlights: • Luminescence based medical imaging detectors. • Image science: MTF, NPS, DQE. • Phosphors screens light emission efficiency experimental evaluation. • Theoretical models for estimation of phosphor screen properties. • Software for medical image quality metrics.

  13. Synthesis, crystal structure and luminescent properties of lanthanide extended structure with asymmetrical dinuclear units based on 2-(methylthio)benzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiane K.; Souza, Viviane P. de; Luz, Leonis L. da [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil); Menezes Vicenti, Juliano R. de [Escola de Química e Alimento, FURG, 96203-900 Rio Grande, RS (Brazil); Burrow, Robert A. [Departamento de Química, UFSM, 97105-900 Santa Maria, RS (Brazil); Severino Alves; Longo, Ricardo L. [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil); Malvestiti, Ivani, E-mail: ivani@ufpe.br [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil)

    2016-02-15

    The extended structures [Ln{sub 2}(L){sub 6}(OH{sub 2}){sub 4}] with L=2-(methylthio)benzoato (2-CH{sub 3}S–C{sub 6}H{sub 4}COO{sup −}) and Ln=Tb (1), Eu (2) and Gd (3) were successfully synthesized and characterized. The single crystal structure of compound 1 was determined and showed an extended structure made up of asymmetrical dinuclear units with the formula catena-poly[{Tb(H_2O)_4}-(μ-L-1κO:2κO'){sub 2}-{Tb(L-κO,O')_2}-(μ-L-1κO:2κO'){sub 2}]. In the molecule of 1, there are two distinct metal sites. The Tb atom in site 1 is bound to four coordinated water molecules and four oxygen atoms from four different benzoate ligands, two of which bridge to site 2 Tb atoms on one side and two to site 2 Tb atoms on the other side. The site 2 Tb atom is bound to four oxygen atoms from two chelating benzoate ligands and four oxygen atoms from four different benzoate ligands, two of which bridge to site 1 Tb atoms on one side and two to site 1 Tb atoms on the other side. The bridging benzoate ligands extend the framework in one-dimension with alternating site 1/site 2 Tb atoms. The luminescent properties of these asymmetric dinuclear extended structures are quite peculiar and showed a single emitting lanthanide center. The quantum yields of 1 (ca. 50–55%) is practically independent of the excitation energy, whereas those of 2 are vanishing small (<1%) when excited at the ligand states and become sizable (ca. 10–20%) upon excitation at the intra-4f manifold. To reconcile these experimental observations in conjunction with the spectral data for compounds 1 and 3, a strong interaction between the lanthanide emitting states at sites 1 and 2 was proposed. For compound 1, the numerical solutions of the rate equations provided evidences that when the transition rates between the emitting states at both sites are larger than the highest decaying rate of these states, the system becomes an effective single emitter. This establishes, for the first time

  14. Luminescent CsPbI.sub.3./sub. and Cs.sub.4./sub.PbI.sub.6./sub. aggregates in annealed CsI:Pb crystals

    Czech Academy of Sciences Publication Activity Database

    Babin, V.; Fabeni, P.; Nikl, Martin; Nitsch, Karel; Pazzi, G.P.; Zazubovich, S.

    2001-01-01

    Roč. 226, č. 2 (2001), s. 419-428 ISSN 0370-1972 Institutional research plan: CEZ:AV0Z1010914 Keywords : CsPbI 3 * Cs 4 PbI 6 * nanoaggregates * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.873, year: 2001

  15. Luminescent screens

    International Nuclear Information System (INIS)

    Lu, C.-I.

    1982-01-01

    Luminescent screens which are useful for such purposes as intensifying screens for radiographs are comprised of a support bearing a layer of finely divided particles of a phosphor dispersed in a cross-linked polymeric matrix formed by heat-curing of a coating composition comprising an unsaturated cross-linkable polymer, a polymerizable acrylic monomer, a thermoplastic polyurethane elastomer, and a heat-activatable polymerization initiator. The phosphor layer includes voids formed by evaporation of an evaporable component which is present in the coating composition from which such layer is formed. (author)

  16. Neutral Guest Capture via Lewis Acid/Base Molecular Square Receptors. X-ray Crystal Structure of {Cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis- (PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)- ((-)OSO(2)CF(3))(6).

    Science.gov (United States)

    Whiteford, Jeffery A.; Stang, Peter J.; Huang, Songping D.

    1998-10-19

    Interaction of {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(L)M)]Ag(2)}(+6)((-)OSO(2)CF(3))(6), where M = Pt(II) or Pd(II) and L = dppp or 2PEt(3), with pyridine, pyrazine, phenazine, or 4,4'-dipyridyl ketone results in coordination Lewis acid/base host-guest assemblies via the "pi-tweezer effect" and mono or bis neutral guest coordination. All host-guest complexes are air stable microcrystalline solids with decomposition points greater than 170 degrees C. The homometallic Pt(II) receptors are more stable than the heteroaromatic Pt(II)-Pd(II) receptors toward heteratom-containing aromatic guests. The X-ray crystal structure of the host-guest complex {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)((-)OSO(2)CF(3))(6) is reported. The crystals with the empirical formula C(62)H(68)AgF(9)N(3)O(9)P(4)Pt(2)S(3) are triclinic P&onemacr; with a = 12.3919(8) Å, b = 17.160(1) Å, c = 18.932(1) Å, alpha = 90.892(1) degrees, beta = 97.127(1) degrees, gamma = 89.969(1) degrees, and Z = 2.

  17. Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals

    CERN Document Server

    E. Auffray; A. Borisevich; V. Gulbinas; A. Fedorov; M. Korjik; M.T. Lucchini; V. Mechinsky; S. Nargelas; E. Songaila; G. Tamulaitis; A. Vaitkevičius; S. Zazubovich

    2016-01-01

    The time resolution of scintillation detectors of ionizing radiation is one of the key parameters sought for in the current and future high-energy physics experiments. This study is encouraged by the necessity to find novel detection methods enabling a sub-10-ps time resolution in scintillation detectors and is focused on the exploitation of fast luminescence rise front. Time-resolved photoluminescence (PL) spectroscopy and thermally stimulated luminescence techniques have been used to study two promising scintillators: self-activated lead tungstate (PWO, PbWO4) and Ce-doped gadolinium aluminum gallium garnet (GAGG, Gd3Al2Ga3O12). A sub-picosecond PL rise time is observed in PWO, while longer processes in the PL response in GAGG:Ce are detected and studied. The mechanisms responsible for the PL rise time in self-activated and doped scintillators are under discussion.

  18. Luminescent, optical and electronic properties of La{sub 3}Ta{sub 0.5}Ga{sub 5.5}O{sub 14} single crystals grown in different atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Spassky, D.A., E-mail: deris2002@mail.ru [National University of Science and Technology (MISiS), Leninsky Prospekt, 4, Moscow 119049 (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, Tartu 50411 (Estonia); Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Brik, M.G. [Institute of Physics, University of Tartu, Ravila 14c, Tartu 50411 (Estonia); College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland); Kozlova, N.S.; Kozlova, A.P.; Zabelina, E.V. [National University of Science and Technology (MISiS), Leninsky Prospekt, 4, Moscow 119049 (Russian Federation); Buzanov, O.A. [Fomos-Materials, Buzheninova 16, Moscow 107023 (Russian Federation); Belsky, A. [Institute of Light and Matter, CNRS, University Lyon1, Villeurbanne 69622 (France)

    2016-09-15

    Luminescent, optical and electronic properties of La{sub 3}Ta{sub 0.5}Ga{sub 5.5}O{sub 14} single crystals grown in different atmospheres are presented. The absorption bands at 255, 290, 350 and 480 nm were detected; the intensity of bands increases with the concentration of oxygen in the growth atmosphere. It is shown that the shift of the fundamental absorption edge with the temperature obeys Urbach rule. The corresponding fitting allowed to estimate the slope coefficient σ=0.35, which implies self-trapping of excitons in La{sub 3}Ta{sub 0.5}Ga{sub 5.5}O{sub 14}. Calculations of the band structure, partial densities of states and reflectivity spectra were performed. The bandgap of La{sub 3}Ta{sub 0.5}Ga{sub 5.5}O{sub 14} was determined as E{sub g}=5.6 eV. The luminescence properties under UV, VUV and X-ray excitation were studied. Intrinsic emission band at 440–450 nm is attributed to the excitons self-trapped at TaO{sub 6} molecular complexes. Extrinsic emission bands at 410, 440 and 550 nm are attributed to the emission of excitons trapped by antisite defects, F-centers and oxygen deficient oxyanionic complexes.

  19. Luminescence properties and their temperature dependence of Lu.sub.2./sub.Si.sub.2./sub.O.sub.7./sub.:Ce scintillation crystals

    Czech Academy of Sciences Publication Activity Database

    Ren, G.; Feng, H.; Ding, D.; Nikl, Martin; Li, H.; Qin, L.; Pan, S.

    2010-01-01

    Roč. 57, č. 3 (2010), s. 1291-1294 ISSN 0018-9499. [International Conference on Inorganic Scintillators and their Applications /10./. Cheju Isl, 08.06.2009-12.06.2009] R&D Projects: GA MŠk ME08034 Institutional research plan: CEZ:AV0Z10100521 Keywords : light output * LPS:Ce * luminescence * oxygen vacancy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.519, year: 2010

  20. Improvement of the growth of Li.sub.4./sub.SiO.sub.4./sub. single crystals for neutron detection and their scintillation and luminescence properties

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Babin, Vladimir; Beitlerová, Alena; Kurosawa, S.; Yokota, Y.; Yoshikawa, A.; Nikl, Martin

    2017-01-01

    Roč. 457, Jan (2017), s. 143-150 ISSN 0022-0248 R&D Projects: GA ČR GJ15-18300Y; GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : luminescence * transition metal ion doping * micro-pulling-down method * lithium silicate * scintillator materials Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.751, year: 2016

  1. Lu.sub.2./sub.SiO.sub.5./sub.:Ce and Y.sub.2./sub.SiO.sub.5./sub.:Ce single crystals and single crystalline film scintillators: comparisom of the luminescent and scintillation properties

    Czech Academy of Sciences Publication Activity Database

    Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Zorenko, T.; Grinyov, B.; Sidletskiy, O.; Fedorov, A.; Mareš, Jiří A.; Nikl, Martin; Kučera, M.

    2013-01-01

    Roč. 56, SEP (2013), s. 84-89 ISSN 1350-4487. [International Conference on Luminescent Detectors and Transformers of Ionizing Radiation 2012 /8./, LUMDETR 2012. Halle (Saale), 10.09.2012-14.09.2012] R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : Lu 2 SiO 5 :Ce * Y 2 SiO 2 * single crystalline film, * single crystal * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.140, year: 2013

  2. Crystal structure, intensity luminescence characteristics and stimulated radiation of disordered gallate LaSr2Ga11O20-Nd3+

    International Nuclear Information System (INIS)

    Kaminskij, A.A.; Mill', B.V.; Belokoneva, E.L.; Butashin, A.V.; Sarkisov, S.Eh.; Kurbanov, K.; Khodzhabagyan, G.G.

    1986-01-01

    LnA 2 2+ Ga 11 O 20 and A 3 2+ M 0.5 5+ Ga 10.5 O 20 compounds are synthesized, LaSr 2 Ga 11 O 20 and LaSr 2 Ga 11 O 20 -Nd 3+ monocrystals are grown by Czochralski method. Their X-ray diffraction analysis is conducted, absorption - luminescence characteristics are obtained, stimulated Nd 3+ ion radiation is excited and investigated in two generating channel waves 4 F 3/2 → 4 I 11/2,13/2 at 300 K

  3. Thermostimulated luminescence in KBr-In crystals after optical creation of electronic excitation. Termostimulirovannaya lyuminestsentsiya v kristallakh KBr-In pri opticheskom sozdanii ehlektronnykh vozbuzhdenij

    Energy Technology Data Exchange (ETDEWEB)

    Popov, A I [AN Latvijskoj SSR, Riga (USSR). Inst. Fiziki

    1990-01-01

    Thermal stability of the radiation defects produced in KBr-In by optical creation of the electronic excitation (optical creation of the excitons or optical ionization of In{sup +}-ions under C-band illumination) is investigated by the method of thermostimulated luminescence (TSL). A method of detection of prehistory defects, when the optical ionization of In{sup +}-ions and TSL are performed, is proposed. Quadratic dependence of V{sub 2}-center creation upon dose is shown. This dependence confirms assocative mechanism of the creation of V{sub 2}-centers from two interstitial centers.

  4. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  5. Perovskite BaBiO3 Transformed Layered BaBiO2.5 Crystals Featuring Unusual Chemical Bonding and Luminescence.

    Science.gov (United States)

    Li, Hong; Zhao, Qing; Liu, Bo-Mei; Zhang, Jun-Ying; Li, Zhi-Yong; Guo, Shao-Qiang; Ma, Ju-Ping; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Zheng, Li-Rong; Sun, Hong-Tao

    2018-04-14

    Engineering oxygen coordination environments of cations in oxides has received intense interest thanks to the opportunities for the discovery of novel oxides with unusual properties. Here we present the successful synthesis of stoichiometric layered BaBiO2.5 enabled by a non-topotactic phase transformation of perovskite BaBiO3. By analysing the synchrotron X-ray diffraction data using the maximum entropy method/Rietveld technique, we find that Bi forms unusual chemical bondings with four oxygen atoms, featuring one ionic bonding and three covalent bondings that results in an asymmetric coordination geometry. A broad range of photophysical characterizations reveal that this peculiar structure shows near-infrared luminescence differing from conventional Bi-bearing systems. Experimental and theoretical results lead us to propose the excitonic nature of luminescence. Our work highlights that synthesizing materials with uncommon Bi-O bonding and Bi coordination geometry provides a pathway to the discovery of systems with new functionalities. We envisage that this work could inspire interest for the exploration of a range of materials containing heavier p-block elements, offering prospects for the finding of systems with unusual properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  7. Luminescence centers in bismuth orthogermanate

    International Nuclear Information System (INIS)

    Bordun, O.M.

    2001-01-01

    The luminescence and photoexcitation spectra of single crystals,ceramics,and thin films of Bi 4 Ce 3 O 1 2 are studied.The decomposition of the luminescence spectra into elementary components by the Alentsev-Fock method showed that they consist of three bands with maxima at 2.7,2.4,and 2.05 eV.The bands with maxima at 2.7 and 2.4 eV are assigned to the emission of self-trapped Frenkel excitons describing the excited state of a (BiO 6 ) 9- molecular ion. Emission bands with maxima at 2.0 5 eV are assigned to recombination on traps caused by structural defects

  8. β-Cyclodextrin functionalised gold nanoclusters as luminescence probes for the ultrasensitive detection of dopamine.

    Science.gov (United States)

    Ban, Rui; Abdel-Halim, E S; Zhang, Jianrong; Zhu, Jun-Jie

    2015-02-21

    A novel luminescence probe based on mono-6-amino-β-cyclodextrin (NH2-β-CD) functionalised gold nanoclusters (β-CD-AuNC) was designed for dopamine (DA) detection. The NH2-β-CD molecules were conjugated onto the surface of 11-mercaptoundecanoic acid capped AuNCs (11-MUA-AuNC) via a carbodiimide coupling reaction. The integrity of the β-CD cavities was preserved on the surface of AuNCs and they retained their capability for molecular DA host-guest recognition. DA could be captured by the β-CD cavities to form an inclusion complex in which the oxidised DA could quench the fluorescence of the β-CD-AuNC probe by electron transfer. The probe could be used to quantify DA in the range of 5-1000 nM with a detection limit of 2 nM. This sensitivity was 1-2 orders of magnitude higher than that in previously reported methods. Interference by both ascorbic acid (AA) and uric acid (UA) was not observed. Therefore, the β-CD-AuNC probe could be directly used to determine the DA content in biological samples without further separation. This strategy was successfully applied to a DA assay in spiked human serum samples and it exhibited remarkable accuracy, sensitivity and selectivity.

  9. Luminescent lanthanide coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L.; Evans, O.R.; Foxman, B.M.; Lin, W.

    1999-12-13

    One-dimensional lanthanide coordination polymers with the formula Ln(isonicotinate){sub 3}(H{sub 2}O){sub 2} (Ln = Ce, Pr, Nd, Sm, Eu, Tb; 1a-f) were synthesized by treating nitrate or perchlorate salts of Ln(III) with 4-pyridinecarboxaldehyde under hydro(solvo)thermal conditions. Single-crystal and powder X-ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. While Ce(III), Pr(III), and Nd(III) complexes adopt a chain structure with alternating Ln-(carboxylate){sub 2}-Ln and Ln-(carboxylate){sub 4}-Ln linkages, Sm(III), Eu(III), and Tb(III) complexes have a doubly carboxylate-bridged infinite-chain structure with one chelating carboxylate group on each metal center. In both structures, the lanthanide centers also bind to two water molecules to yield an eight-coordinate, square antiprismatic geometry. The pyridine nitrogen atoms of the isonicotinate groups do not coordinate to the metal centers in these lanthanide(III) complexes; instead, they direct the formation of Ln(III) coordination polymers via hydrogen bonding with coordinated water molecules. Photoluminescence measurements show that Tb(isonicotinate){sub 3}(H{sub 2}O){sub 2} is highly emissive at room temperature with a quantum yield of {approximately}90%. These results indicate that highly luminescent lanthanide coordination polymers can be assembled using a combination of coordination and hydrogen bonds. Crystal data for 1a: monoclinic space group P2{sub 1}/c, a = 9.712(2) {angstrom}, b = 19.833(4) {angstrom}, c = 11.616(2) {angstrom}, {beta} = 111.89(3){degree}, Z = 4. Crystal data for 1f: monoclinic space group C2/c, a = 20.253(4) {angstrom}, b = 11.584(2) {angstrom}, c = 9.839(2) {angstrom}, {beta} = 115.64(3){degree}, Z = 8.

  10. Host-guest interaction on Bruny and Magnetic Islands, Australia

    OpenAIRE

    Moyle, Brent Don

    2017-01-01

    Islands are integral to the earth’s biodiversity, with their distinct environments offering a haven for a variety of threatened species of plants, wildlife and unique human cultures. Worldwide, tourism activity profoundly impacts upon destinations, but the impacts on islands are noticeably more acute due to their fragile environments and isolated communities. Research has found that tourism can impact island communities in a variety of ways, including economically, socially and environmentall...

  11. Reversible Guest Exchange Mechanisms in Supramolecular Host-GuestAssemblies

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.

    2006-09-01

    Synthetic chemists have provided a wide array of supramolecular assemblies able to encapsulate guest molecules. The scope of this tutorial review focuses on supramolecular host molecules capable of reversibly encapsulating polyatomic guests. Much work has been done to determine the mechanism of guest encapsulation and guest release. This review covers common methods of monitoring and characterizing guest exchange such as NMR, UV-VIS, mass spectroscopy, electrochemistry, and calorimetry and also presents representative examples of guest exchange mechanisms. The guest exchange mechanisms of hemicarcerands, cucurbiturils, hydrogen-bonded assemblies, and metal-ligand assemblies are discussed. Special attention is given to systems which exhibit constrictive binding, a motif common in supramolecular guest exchange systems.

  12. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics.

    Science.gov (United States)

    Wang, Lei; Li, Li-li; Fan, Yun-shan; Wang, Hao

    2013-07-26

    Extensive efforts have been devoted to the construction of functional supramolecular nanosystems for applications in catalysis, energy conversion, sensing and biomedicine. The applications of supramolecular nanosystems such as liposomes, micelles, inorganic nanoparticles, carbon materials for cancer diagnostics and therapeutics have been reviewed by other groups. Here, we will focus on the recent momentous advances in the implementation of typical supramolecular hosts (i.e., cyclodextrins, calixarenes, cucurbiturils and metallo-hosts) and their nanosystems in cancer diagnostics and therapeutics. We discuss the evolutive process of supramolecular nanosystems from the structural control and characterization to their diagnostic and therapeutic function exploitation and even the future potentials for clinical translation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. SANS contrast variation on a dendrimer host-guest complex

    NARCIS (Netherlands)

    Kleppinger, R.; Mortensen, K.; Meijer, E.W.

    2002-01-01

    Small-angle neutron scattering (SANS) technique was used to study the configurational changes in an oligoethyleneoxy-functionalized poly(propyleneimine) dendrimer (host) when forming complexes with rose bengal (guest). Guinier fits to the scattering data recorded at max. contrast indicated a

  14. Luminescence and photo-thermally stimulated defect-creation processes in Bi.sup.3+./sup.-doped single crystals of lead tungstate

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Boháček, Pavel; Chernenko, K.; Krasnikov, A.; Laguta, Valentyn; Mihóková, Eva; Nikl, Martin; Zazubovich, S.

    2016-01-01

    Roč. 123, č. 5 (2016), 895-910 ISSN 0370-1972 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : defects * EPR * excitons * PbWO 4 :Bi single crystals * photoluminescence * thermoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.674, year: 2016

  15. Crystal growth and luminescence properties of Yb.sub.2./sub.Si.sub.2./sub.O.sub.7./sub. infra-red emission scintillator

    Czech Academy of Sciences Publication Activity Database

    Horiai, T.; Kurosawa, S.; Murakami, R.; Pejchal, Jan; Yamaji, A.; Shoji, Y.; Chani, V.I.; Ohashi, Y.; Kamada, K.; Yokota, Y.; Yoshikawa, A.

    2016-01-01

    Roč. 58, Aug (2016), s. 14-17 ISSN 0925-3467 R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : scintillator * pyrosilicate * charge transfer * infra-red * single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.238, year: 2016

  16. Luminescence and photo-thermally stimulated defect creation processes in PbWO.sub.4./sub.:Mo,La,Y (PWO III) crystals

    Czech Academy of Sciences Publication Activity Database

    Auffray, E.; Korjik, M.; Laguta, Valentyn; Zazubovich, S.

    2015-01-01

    Roč. 252, č. 10 (2015), s. 2259-2267 ISSN 0370-1972 Institutional support: RVO:68378271 Keywords : defects * ESR * PbWO4:Mo * La * Y crystals * photoluminescence * thermoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.522, year: 2015

  17. Comparison of the scintillation and luminescence properties of the (Lu1−xGdx)2SiO5:Ce single crystal scintillators

    International Nuclear Information System (INIS)

    Jarý, V; Mihóková, E; Mareš, J A; Beitlerová, A; Nikl, M; Kurtsev, D; Sidletskiy, O

    2014-01-01

    We provide a systematic comparison of the scintillation and luminescence properties, including emission mechanisms, of the highly efficient cerium-doped scintillators lutetium-(gadolinium) orthosilicates Lu 2 (SiO 4 )O (LSO), (Lu 1−x Gd x ) 2 (SiO) 4 O(LGSO) and Gd 2 (SiO 4 )O (GSO). Determined characteristics manifest an advantage of LGSO:Ce with respect to both LSO:Ce and GSO:Ce for scintillator applications around room temperature. This is thanks to combined fast decay (faster than both limit compositions) high light yield, similar to that of LSO:Ce (twice higher than GSO:Ce) and low afterglow, similar to that of GSO:Ce (almost two orders of magnitude lower than LSO:Ce). High temperature applications do not, however, seem to be a suitable option for LGSO:Ce due to evidenced thermal ionization of both Ce1 and Ce2 centres above room temperature. (paper)

  18. Tunable multicolor and white-light upconversion luminescence in Yb3+/Tm3+/Ho3+ tri-doped NaYF4 micro-crystals.

    Science.gov (United States)

    Lin, Hao; Xu, Dekang; Teng, Dongdong; Yang, Shenghong; Zhang, Yueli

    2015-09-01

    NaYF4 micro-crystals with various concentrations of Yb(3+) /Tm(3+) /Ho(3+) were prepared successfully via a simple and reproducible hydrothermal route using EDTA as the chelating agent. Their phase structure and surface morphology were studied using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD patterns revealed that all the samples were pure hexagonal phase NaYF4. SEM images showed that Yb(3+)/Tm(3+)/Ho(3+) tri-doped NaYF4 were hexagonal micro-prisms. Upconversion photoluminescence spectra of Yb(3+)/Tm(3+)/Ho(3+) tri-doped NaYF4 micro-crystals with various dopant concentrations under 980 nm excitation with a 665 mW pump power were studied. Tunable multicolor (purple, purplish blue, yellowish green, green) and white light were achieved by simply adjusting the Ho(3+) concentration in 20%Yb(3+)/1%Tm(3+)/xHo(3+) tri-doped NaYF4 micro-crystals. Furthermore, white-light emissions could be obtained using different pump powers in 20%Yb(3+)/1%Tm(3+)/1%Ho(3+) tri-doped NaYF4 micro-crystals at 980 nm excitation. The pump power-dependent intensity relationship was studied and relevant energy transfer processes were discussed in detail. The results suggest that Yb(3+)/Tm(3+) Ho(3+) tri-doped NaYF4 micro-crystals have potential applications in optoelectronic devices such as photovoltaic, plasma display panel and white-light-emitting diodes. Copyright © 2014 John Wiley & Sons, Ltd.

  19. On the Use of Dynamical Diffraction Theory To Refine Crystal Structure from Electron Diffraction Data: Application to KLa5O5(VO4)2, a Material with Promising Luminescent Properties.

    Science.gov (United States)

    Colmont, Marie; Palatinus, Lukas; Huvé, Marielle; Kabbour, Houria; Saitzek, Sébastien; Djelal, Nora; Roussel, Pascal

    2016-03-07

    A new lanthanum oxide, KLa5O5(VO4)2, was synthesized using a flux growth technique that involved solid-state reaction under an air atmosphere at 900 °C. The crystal structure was solved and refined using an innovative approach recently established and based on three-dimensional (3D) electron diffraction data, using precession of the electron beam and then validated against Rietveld refinement and denisty functional theory (DFT) calculations. It crystallizes in a monoclinic unit cell with space group C2/m and has unit cell parameters of a = 20.2282(14) Å, b = 5.8639(4) Å, c = 12.6060(9) Å, and β = 117.64(1)°. Its structure is built on Cresnel-like two-dimensional (2D) units (La5O5) of 4*3 (OLa4) tetrahedra, which run parallel to (001) plane, being surrounded by isolated VO4 tetrahedra. Four isolated vanadate groups create channels that host K(+) ions. Substitution of K(+) cations by another alkali metal is possible, going from lithium to rubidium. Li substitution led to a similar phase with a primitive monoclinic unit cell. A complementary selected area electron diffraction (SAED) study highlighted diffuse streaks associated with stacking faults observed on high-resolution electron microscopy (HREM) images of the lithium compound. Finally, preliminary catalytic tests for ethanol oxidation are reported, as well as luminescence evidence. This paper also describes how solid-state chemists can take advantages of recent progresses in electron crystallography, assisted by DFT calculations and powder X-ray diffraction (PXRD) refinements, to propose new structural types with potential applications to the physicist community.

  20. Luminescence of color centers in MgF{sub 2} crystals; Lyuminestsentsiya tsentrov okraski v kristallakh MgF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vakhidov, Sh A; Nuritdinov, I; Musaeva, M A [Inst. Yadernoj Fizili AN Uzbekistana, Tashkent (Uzbekistan)

    1999-08-01

    The photoluminescence characteristics of the proper radiation color centers of the MgF{sub 2} crystals are studied. The samples were irradiated by the {sup 60}Co source {gamma}-rays up to the dose 10{sup 7}Gy. The bands with the maxima in the area of 420, 460, 550 and 620 nm were identified, which are excited correspondingly in the bands with the maxima of 370, 320, 410 and 480 nm.

  1. Luminescent beam stop

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Diane; Morton, Simon A.

    2017-10-25

    This disclosure provides systems, methods, and apparatus related to beam stops. In one aspect, a device comprises a luminescent material, a beam stop plate, and an optical fiber. The luminescent material is a parallelepiped having a first side and a second side that are squares and having a third side that is a rectangle or a square. The first side and the second side are perpendicular to the third side. The beam stop plate is attached to the first side of the luminescent material. The optical fiber has a first end and a second end, with the first end of the optical fiber attached to the third side of the luminescent material.

  2. Luminescence detection of shellfish

    International Nuclear Information System (INIS)

    Sanderson, D.C.W.; Carmichael, L.A.; Spencer, J.Q.; Naylor, J.D.

    1996-01-01

    The Scottish Universities Research and Reactor Centre (SURRC) has been active in the development and application of luminescence techniques in the detection of irradiated foods, in support of UK legislation. Thermoluminescence (TL), photostimulated luminescence (PSL) and photo-transfer luminescence (PTTL) are radiation-specific phenomena which arise due to energy stored by trapped charge carriers following irradiation. The energy released following stimulation is accompanied by detectable luminescence. The TL method involves preparation of pure silicate extracts from the sample and subsequent TL analysis, whereas PSL uses stimulation by electromagnetic radiation (visible, or near visible wavelengths) thus avoiding heating the sample. (author)

  3. Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from semi-rigid multi-dentate N-containing ligand

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Gang; Shao, Kui-Zhan; Chen, Lei; Liu, Xin-Xin [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Su, Zhong-Min, E-mail: zmsu@nenu.edu.cn [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Ma, Jian-Fang [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China)

    2012-12-15

    good luminescent properties.

  4. Optical and luminescent properties of the lead and barium molybdates

    Energy Technology Data Exchange (ETDEWEB)

    Spassky, D.A. E-mail: dima@opts.phys.msu.ru; Ivanov, S.N.; Kolobanov, V.N.; Mikhailin, V.V.; Zemskov, V.N.; Zadneprovski, B.I.; Potkin, L.I

    2004-12-01

    Time-resolved luminescence as well as excitation and reflectivity spectra of the oriented lead and barium molybdate single crystals were studied using synchrotron radiation. Features in reflectivity spectra in the fundamental absorption region were analyzed. The contribution of electronic states of lead cation to the formation of the bandgap in PbMoO{sub 4} is supposed. The role of lead states in the intrinsic luminescence of PbMoO{sub 4} is discussed.

  5. Splitting of the luminescent excited state of the uranyl ion

    International Nuclear Information System (INIS)

    Flint, C.D.; Sharma, P.; Tanner, P.A.

    1982-01-01

    The luminescence spectra of some uranyl compounds has been studied. It has been proposed that the splitting of the luminescent excited state of the uranyl ion is due to a descent in symmetry experienced by the uranyl ion when it is placed in a crystal field. In recent years there has been developed a highly successful model of the electronic structure of the uranyl ion. In this paper the authors use this model to interpret the luminescence spectra of a variety of uranyl compounds

  6. Origin of dislocation luminescence centers and their reorganization in p-type silicon crystal subjected to plastic deformation and high temperature annealing.

    Science.gov (United States)

    Pavlyk, Bohdan; Kushlyk, Markiyan; Slobodzyan, Dmytro

    2017-12-01

    Changes of the defect structure of silicon p-type crystal surface layer under the influence of plastic deformation and high temperature annealing in oxygen atmosphere were investigated by deep-level capacitance-modulation spectroscopy (DLCMS) and IR spectroscopy of molecules and atom vibrational levels. Special role of dislocations in the surface layer of silicon during the formation of its energy spectrum and rebuilding the defective structure was established. It is shown that the concentration of linear defects (N ≥ 10 4  cm -2 ) enriches surface layer with electrically active complexes (dislocation-oxygen, dislocation-vacancy, and dislocation-interstitial atoms of silicon) which are an effective radiative recombination centers.

  7. Luminescence and the light emitting diode the basics and technology of leds and the luminescence properties of the materials

    CERN Document Server

    Williams, E W; Pamplin, BR

    2013-01-01

    Luminescence and the Light Emitting Diode: The Basics and Technology of LEDS and the Luminescence Properties of the Materials focuses on the basic physics and technology of light emitting diodes (LEDS) and pn junction lasers as well as their luminescence properties. Optical processes in semiconductors and the useful devices which can be made are discussed. Comprised of 10 chapters, this book begins with an introduction to the crystal structure and growth, as well as the optical and electrical properties of LED materials. The detailed fabrication of the LED is then considered, along with the lu

  8. Crystal structure and luminescence properties of (Ca{sub 2.94-x}Lu{sub x}Ce{sub 0.06})(Sc{sub 2-y}Mg{sub y})Si{sub 3}O{sub 12} phosphors for white LEDs with excellent colour rendering and high luminous efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yongfu; Zhang Xia; Hao Zhendong; Lu Wei; Liu Xingyuan; Zhang Jiahua [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun 130033 (China); Wang Xiaojun, E-mail: zhangjh@ciomp.ac.cn [Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States)

    2011-02-23

    Lu-modified (Ca{sub 2.94-x}Lu{sub x}Ce{sub 0.06})(Sc{sub 2-y}Mg{sub y})Si{sub 3}O{sub 12} (CLSMS : Ce{sup 3+}) yellow emitting phosphors are prepared by a solid-state reaction. Controllable luminescent intensity and emitting colour are studied as a function of Lu and Mg contents. Fixing the Mg content to be 1, the effect of Lu content on crystal phase formation, luminescence properties and temperature characteristics is studied. It is revealed that the Lu-induced luminescent enhancement is the result of an increase in absorbance of Ce{sup 3+} rather than the internal quantum efficiency. Intense and broadband emission is realized by controlling the Lu content to obtain a pure CLSMS crystal phase. The maximum luminescence intensity is obtained at x = 0.54, which is as high as 156% of the Lu-free phosphor. The Lu-containing phosphor also exhibits better temperature characteristics for its big activation energy (0.20 eV) than the Lu-free one (0.18 eV). Combining the present phosphor with a blue light-emitting diode (LED) chip, a white LED with an excellent colour rendering index R{sub a} of 86 and a high luminous efficiency of 86 lm W{sup -1} is obtained. The results of the present study demonstrate that the CLSMS : Ce{sup 3+} phosphors show a good performance and are attractive candidates for commercial applications when used in white LEDs.

  9. Two series of reactant's ratio-dependent lanthanide organic frameworks derived from nicotinic acid N-oxide and oxalate: synthesis, crystal structures and luminescence properties.

    Science.gov (United States)

    Yu, Yanyan; Zhang, Lijuan; Zhou, Yunshan; Zuhra, Zareen

    2015-03-14

    Two series of lanthanide(III)–organic frameworks with the molecular formula [Ln2(NNO)2(OX)2(H2O)4]n (Ln = Eu 1, Tb 2, Sm 3, Dy 4, Gd 5) and [Ln2(NNO)4(OX)(H2O)2]n (Ln = Eu 6, Tb 7, Sm 8, Dy 9, Gd 10) were synthesized successfully under the same hydrothermal conditions with nicotinic N-oxide (HNNO) and oxalic acid (H2OX) as the mixed ligands merely through varying the molar ratio of the reactants. The compounds were characterized by IR, elemental analysis, UV, TG-DTA and powder X-ray diffraction (XRD). X-ray single-crystal diffraction analyses of compounds 1 and 7 selected as representatives and powder XRD analysis of the compounds revealed that both the series of compounds feature three-dimensional (3-D) open frameworks, and crystallize in the triclinic P1 space group while with different unit cell parameters. In compound 1, pairs of Eu(3+) ions and pairs of NNO(−) ligands connect with each other alternately to form a 1-D infinite Eu-NNO double chain, the adjacent 1-D double-chains are then joined together through OX(2−) ligands leading to a 2D layer, the 2-D layers are further ‘pillared’ by OX(2−) ligands resulting in a 3-D framework. In compound 7, the 1-D Tb-NNO infinite chain and its 2-D layer are formed in an almost similar fashion to that in compound 1. The difference between the structures of the two compounds 1 and 7 is that the adjacent 2-D layers in compound 7 are further connected by NNO(−) ligands resulting in a 3-D framework. The photoluminescence properties and energy transfer mechanism of the compounds were studied systematically. The energy level of the lowest triplet states of the HNNO ligand (23148 cm(−1)) was determined based on the phosphorescence spectrum of compound 5 at 77 K. The (5)D0 (Eu(3+)) and (5)D4 (Tb(3+)) emission lifetimes are 0.46 ms, 0.83 ms, 0.69 ms and 0.89 ms and overall quantum yields are 1.03%, 3.29%, 2.58% and 3.78% for the compounds 1, 2, 6 and 7, respectively.

  10. Europium enabled luminescent nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, S.S., E-mail: syamchand.ss@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2015-09-15

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  11. Europium enabled luminescent nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Syamchand, S.S.; Sony, G.

    2015-01-01

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  12. Crystal structure, energy transfer and tunable luminescence properties of Ca8ZnCe(PO4)7:Eu2+,Mn2+ phosphor

    Science.gov (United States)

    Ding, Chong; Tang, Wanjun

    2018-02-01

    Single-phased Ca8ZnCe(PO4)7:Eu2+,Mn2+ phosphors with whitlockite-type structure have been prepared via the combustion-assisted synthesis technique. The XRD pattern show that the as-obtained phosphors crystallize in a trigonal phase with space group of R-3c (161). Ca8ZnCe(PO4)7 host is full of sensitizers (Ce3+) and the Ce3+ emission at different lattice sites has been discussed. The efficient energy transfers from Ce3+ ions to Eu2+/Mn2+ ions and from Eu2+ to Mn2+ have been validated. Under UV excitation, the emitting color of Ca8ZnCe(PO4)7:Eu2+/Mn2+ samples can be modulated from violet blue to green and from violet blue to red-orange by the energy transfers of Ce3+→Eu2+ and Ce3+→Mn2+, respectively. Additionally, white emission has been obtained through adjusting the relative concentrations of Eu2+ and Mn2+ ions in the Ca8ZnCe(PO4)7 host under UV excitation. These results indicate that as-prepared Ca8ZnCe(PO4)7:Eu2+,Mn2+ may be a potential candidate as color-tunable white light-emitting phosphors.

  13. Five new Zn(II) and Cd(II) coordination polymers constructed by 3,5-bis-oxyacetate-benzoic acid: Syntheses, crystal structures, network topologies and luminescent properties

    International Nuclear Information System (INIS)

    Jiang Xianrong; Yuan Hongyan; Feng Yunlong

    2012-01-01

    Five Zn(II) and Cd(II) coordination polymers, [Zn 2 (BOABA)(bpp)(OH)]·0.5H 2 O (1), [Cd 3 (BOABA) 2 (bpp) 2 (H 2 O) 6 ]·2H 2 O (2), [Cd 3 (BOABA) 2 (2,2′-bipy) 3 (H 2 O) 4 ]·5.5H 2 O (3), [CdNa(BOABA)(H 2 O)] 2 ·H 2 O (4) and [Cd 2 (BOABA)(bimb)Cl(H 2 O) 2 ]·H 2 O (5) (H 3 BOABA=3,5-bis-oxyacetate-benzoic acid, bpp=1,3-bi(4-pyridyl)propane, 2,2′-bipy=2,2′-bipyridine, bimb=1,4-bis(imidazol-1′-yl)butane), have been solvothermally synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and TG analyses. 1 is an uninodal 4-connected 2D square grid network based on binuclear zinc clusters. 2 is 2D wavelike layer structure and further linked by hydrogen bonds into the final 3D (5,6,6)-connected topology network. 3 is 3-connected 2D topology network and the 2,2′-bipy ligands decorate in two different types. 4 is a (4,8)-connected 2D topology network with heterocaryotic {Cd 2 Na 2 } clusters and BOABA 3– ligands. 5 can be rationalized as a (3,10)-connected 3D topology network with tetranuclear {Cd 4 Cl 2 } clusters and BOABA 3– ligands. Meanwhile, photoluminescence studies revealed that these five coordination polymers display strong fluorescent emission bands in the solid state at room temperature. - Graphical abstract: Five new d 10 metal(II) coordination polymers based on H 3 BOABA ligand were obtained and characterized. They display different topological structures and luminescent properties. Highlights: ► Five d 10 metal(II) polymers based on 3,5-bis-oxyacetate-benzoic acid were obtained. ► The polymers were structurally characterized by single-crystal X-ray diffraction. ► Polymers 1–5 display different topological structures. ► They show strong fluorescent emission bands in the solid state.

  14. Influence of Nano sized Silicon Oxide on the Luminescent Properties of Zn O Nanoparticles

    International Nuclear Information System (INIS)

    Shvalagin, V.; Grodziuk, G.; Kurmach, M.; Granchak, V.; Sarapulova, O.; Sherstiuk, V.

    2016-01-01

    For practical use of nano sized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of Zn O nanoparticles and obtain high-luminescent Zn O/SiO 2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nano crystals to the source solutions during the synthesis of Zn O nanoparticles. Then the quantum yield of luminescence of the obtained Zn O/SiO 2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of Zn O nano crystals on the surface of silica, which reduces the probability of separation of photo generated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of Zn O nanoparticles. This way of increasing nano-Zn O luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  15. Energy localization and decay in highly ionic crystals

    International Nuclear Information System (INIS)

    Williams, R.T.; Thoma, E.D.; Bunton, P.H.

    1994-01-01

    Luminescence from localized states in pure wide-gap crystals is examined from the perspective of modern fast scintillator requirements. Recent advances in the understanding of self-trapped excitons are summarized with regard to excited-state configurations, spectra, and luminescence efficiency. As an example, the fast luminescence of partially quenched type I STEs (self-trapped excitons) in RbI offers tunable-lifetime subnanosecond pulses which could be useful for timing applications. The possible role of hole localization in cross luminescence is discussed. Stokes-shifted luminescence in some pure rare-earth fluoride crystals probably originates from self-trapped excitons of forms to be discussed

  16. Seismic Moment and Recurrence using Luminescence Dating Techniques: Characterizing brittle fault zone materials suitable for luminescence dating

    Science.gov (United States)

    Tsakalos, E.; Lin, A.; Bassiakos, Y.; Kazantzaki, M.; Filippaki, E.

    2017-12-01

    During a seismic-geodynamic process, frictional heating and pressure are generated on sediments fragments resulting in deformation and alteration of minerals contained in them. The luminescence signal enclosed in minerals crystal lattice can be affected and even zeroed during such an event. This has been breakthrough in geochronological studies as it could be utilized as a chronometer for the previous seismic activity of a tectonically active area. Although the employment of luminescence dating has in some cases been successfully described, a comprehensive study outlining and defining protocols for routine luminescence dating applied to neotectonic studies has not been forthcoming. This study is the experimental investigation, recording and parameterization of the effects of tectonic phenomena on minerals luminescence signal and the development of detailed protocols for the standardization of the luminescence methodology for directly dating deformed geological formations, so that the long-term temporal behaviour of seismically active faults could be reasonably understood and modeled. This will be achieved by: a) identifying and proposing brittle fault zone materials suitable for luminescence dating using petrological, mineralogical and chemical analyses and b) investigating the "zeroing" potential of the luminescence signal of minerals contained in fault zone materials by employing experimental simulations of tectonic processes in the laboratory, combined with luminescence measurements on samples collected from real fault zones. For this to be achieved, a number of samples collected from four faults of four different geographical regions will be used. This preliminary-first step of the study presents the microstructural, and mineralogical analyses for the characterization of brittle fault zone materials that contain suitable minerals for luminescence dating (e.g., quartz and feldspar). The results showed that the collected samples are seismically deformed fault

  17. Positron-Induced Luminescence

    Science.gov (United States)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  18. 1.8 μm luminescent properties and energy transfer of Yb{sup 3+}/Tm{sup 3+} co-doped α-NaYF{sub 4} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhigang [Key Laboratory of Photo-electronic Materials, Ningbo University, Ningbo, Zhejiang, 315211 (China); Xia, Haiping, E-mail: hpxcm@nbu.edu.cn [Key Laboratory of Photo-electronic Materials, Ningbo University, Ningbo, Zhejiang, 315211 (China); Wang, Cheng; Zhang, Zhixiong; Jiang, Dongsheng; Zhang, Jian; He, Shinan; Tang, Qingyang; Sheng, Qiguo; Gu, Xuemei; Zhang, Yuepin [Key Laboratory of Photo-electronic Materials, Ningbo University, Ningbo, Zhejiang, 315211 (China); Chen, Baojiu [Department of Physics, Dalian Maritime University, Dalian, Liaoning Province, 116026 (China); Jiang, Haochuan, E-mail: jianghaochuan@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, The Chinese Academy of Sciences, Ningbo, Zhejiang, 315211 (China)

    2016-09-25

    This paper reports on successful preparation of α-NaYF{sub 4} single crystals co-doped with ∼1.9 mol% Tm{sup 3+} and various concentrations (3.85 mol%, 7.69 mol%, 11.54 mol%, 15.38 mol%) of Yb{sup 3+} by using a flux-Bridgman method. The fluorescence decay curve was measured to investigate the luminescent properties of the Yb{sup 3+}/Tm{sup 3+} co-doped α-NaYF{sub 4}, and the energy transfer process from Yb{sup 3+} to Tm{sup 3+}; the J-O intensity parameters of Tm{sup 3+} were further calculated and analyzed according to the absorption spectra. Results show that, an intense 1.8 μm emission was achieved with Yb{sup 3+} as sensitizer for Tm{sup 3+} in the α-NaYF{sub 4} single crystal under the excitation of 980 nm LD (Laser Diode) because of the strong energy transfer from Yb{sup 3+} to Tm{sup 3+}. The maximum emission intensity at 1.8 μm is obtained at about 15.38 mol% doping concentration of Yb{sup 3+} when the concentration of Tm{sup 3+} ions is fixed at ∼1.90 mol% in the current research. Moreover, the calculated maximum value of emission cross section at 1.8 μm is 1.63 × 10{sup −20} cm{sup 2} for 3.85 mol% Yb{sup 3+}/1.9 mol% Tm{sup 3+} sample, and the obtained energy transfer rate (W{sub ET}) and energy transfer efficiency (η) are 1543 s{sup −1} and 83.8%, respectively. Our analysis of the fluorescence dynamics indicates that electric dipole-dipole interaction is dominant for the energy transfer from Yb{sup 3+} ions to Tm{sup 3+} ions by using Inokuti-Hirayama’s model. - Highlights: • The Tm{sup 3+}/Yb{sup 3+} co-doped α-NaYF{sub 4} single crystals were grown by Bridgman method. • The 1.8 μm emission intensity is obtained at 15.38 mol% Yb{sup 3+}/1.90 mol% Tm{sup 3+} sample. • The maximum value of emission cross section at 1.8 μm is 1.63 × 10{sup −20} cm{sup 2}. • The energy transfer rate is 1543 s{sup −1} and energy transfer efficiency is 83.8%. • The physical mechanism for energy transfer from Yb{sup 3+} to Tm{sup 3+} ions

  19. Luminescence Properties of Surface Radiation-Induced Defects in Lithium Fluoride

    Science.gov (United States)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Novikov, A. N.; Runets, L. P.; Stupak, A. P.

    2013-11-01

    Luminescence and luminescence excitation spectra are recorded for surface radiation-induced defects in lithium fluoride at temperatures of 77 and 293 K. The presence of three bands with relatively small intensity differences is a distinctive feature of the excitation spectrum. These bands are found to belong to the same type of defects. The positions of the peaks and the widths of the absorption and luminescence bands for these defects are determined. The luminescence decay time is measured. All the measured characteristics of these surface defects differ from those of previously known defects induced by radiation in the bulk of the crystals. It is found that the luminescence of surface defects in an ensemble of nanocrystals with different orientations is not polarized. The number of anion vacancies in the surface defects is estimated using the polarization measurements. It is shown that radiative scattering distorts the intensity ratios of the luminescence excitation bands located in different spectral regions.

  20. Five new Zn(II) and Cd(II) coordination polymers constructed by 3,5-bis-oxyacetate-benzoic acid: Syntheses, crystal structures, network topologies and luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xianrong; Yuan Hongyan [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Feng Yunlong, E-mail: sky37@zjnu.edu.cn [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China)

    2012-07-15

    Five Zn(II) and Cd(II) coordination polymers, [Zn{sub 2}(BOABA)(bpp)(OH)]{center_dot}0.5H{sub 2}O (1), [Cd{sub 3}(BOABA){sub 2}(bpp){sub 2}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O (2), [Cd{sub 3}(BOABA){sub 2}(2,2 Prime -bipy){sub 3}(H{sub 2}O){sub 4}]{center_dot}5.5H{sub 2}O (3), [CdNa(BOABA)(H{sub 2}O)]{sub 2}{center_dot}H{sub 2}O (4) and [Cd{sub 2}(BOABA)(bimb)Cl(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) (H{sub 3}BOABA=3,5-bis-oxyacetate-benzoic acid, bpp=1,3-bi(4-pyridyl)propane, 2,2 Prime -bipy=2,2 Prime -bipyridine, bimb=1,4-bis(imidazol-1 Prime -yl)butane), have been solvothermally synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and TG analyses. 1 is an uninodal 4-connected 2D square grid network based on binuclear zinc clusters. 2 is 2D wavelike layer structure and further linked by hydrogen bonds into the final 3D (5,6,6)-connected topology network. 3 is 3-connected 2D topology network and the 2,2 Prime -bipy ligands decorate in two different types. 4 is a (4,8)-connected 2D topology network with heterocaryotic {l_brace}Cd{sub 2}Na{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. 5 can be rationalized as a (3,10)-connected 3D topology network with tetranuclear {l_brace}Cd{sub 4}Cl{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. Meanwhile, photoluminescence studies revealed that these five coordination polymers display strong fluorescent emission bands in the solid state at room temperature. - Graphical abstract: Five new d{sup 10} metal(II) coordination polymers based on H{sub 3}BOABA ligand were obtained and characterized. They display different topological structures and luminescent properties. Highlights: Black-Right-Pointing-Pointer Five d{sup 10} metal(II) polymers based on 3,5-bis-oxyacetate-benzoic acid were obtained. Black-Right-Pointing-Pointer The polymers were structurally characterized by single-crystal X-ray diffraction. Black-Right-Pointing-Pointer Polymers 1-5 display different

  1. Luminescence properties of a nanoporous freshwater diatom.

    Science.gov (United States)

    Goswami, Bondita; Choudhury, Amarjyoti; Buragohain, Alak K

    2012-01-01

    Freshwater diatom frustules show special optical properties. In this paper we observed luminescence properties of the freshwater diatom Cyclotella meneghiniana. To confirm the morphological properties we present scanning electron microscopy (SEM) images. X-ray diffraction (XRD) studies were carried out to visualize the structural properties of the frustules, confirming that silica present in diatom frustules crystallizes in an α-quartz structure. Study of the optical properties of the silica frustules of diatoms using ultra-violet-visible (UV-vis) spectroscopy and photoluminescence spectroscopy confirmed that the diatom C. meneghiniana shows luminescence in the blue region of the electromagnetic spectrum when irradiated with UV light. This property of diatoms can be exploited to obtain many applications in day-to-day life. Also, using time-resolved photoluminescence spectroscopy (TRPL) it was confirmed that this species of diatom shows bi-exponential decay. Copyright © 2011 John Wiley & Sons, Ltd.

  2. The effects of Tb 3+ doping concentration on luminescence ...

    Indian Academy of Sciences (India)

    BaF2 phosphor; crystal structure; luminescence properties; X-ray diffraction; concentration quenching. 1. Introduction ... reported that the particle size, shape, crystallinity, etc., sig- nificantly ... Figure 3 shows the excitation and emission spectra of sam- ple with 4 ... gies obtained earlier.9,10 The ground term of the Tb3+ ion is.

  3. Effect of Mg.sup.2+./sup. ions co-doping on luminescence and defects formation processes in Gd.sub.3./sub.(Ga,Al).sub.5./sub.O.sub.12./sub.:Ce single crystals

    Czech Academy of Sciences Publication Activity Database

    Babin, Vladimir; Boháček, Pavel; Grigorjeva, L.; Kučera, M.; Nikl, Martin; Zazubovich, S.; Zolotarjovs, A.

    2017-01-01

    Roč. 66, Apr (2017), s. 48-58 ISSN 0925-3467 R&D Projects: GA ČR GA16-15569S Institutional support: RVO:68378271 Keywords : luminescence * multicomponent garnets * Ce 3+ * Mg 2+ * scintillators Sub ject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.238, year: 2016

  4. Luminescence study of spodumene

    International Nuclear Information System (INIS)

    Isotani, S.; Fujii, A.T.; Antonini, R.; Pontuschka, W.M.; Rabani, S.R.; Furtado, W.W.

    1990-02-01

    A comparative study is made of the luminescence of five kinds of spodumene from Minas Gerais, Brazil, studied previously by optical absorption spectroscopy. Natural gemstones are used which, in the course of the experiments, were irradiated with X-rays. (L.C.) [pt

  5. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  6. Circularly polarized luminescence of syndiotactic polystyrene

    Science.gov (United States)

    Rizzo, Paola; Abbate, Sergio; Longhi, Giovanna; Guerra, Gaetano

    2017-11-01

    Syndiotactic polystyrene (s-PS) films, when crystallized from the amorphous state by temporary sorption of non-racemic guest molecules (like carvone) not only exhibit unusually high optical activity, both in the UV-Visible and Infrared ranges, but also present circularly polarized luminescence (CPL) with high dissymmetry ratios (g = ΔI/I values in the range 0.02-0.03). Experimental evidences provide support, rather than to the usual molecular circular dichroism, to a supramolecular chiral optical response being extrinsic to the site of photon absorption and emission, possibly associated with a helical morphology of s-PS crystallites.

  7. Luminescence and scintillation kinetics of the Pr.sup.3+./sup. doped Lu.sub.2./sub.Si.sub.2./sub.O.sub.7./sub. single crystal

    Czech Academy of Sciences Publication Activity Database

    Nikl, Martin; Ren, G.; Ding, D.; Mihóková, Eva; Jarý, Vítězslav; Feng, H.

    2010-01-01

    Roč. 493, 1-3 (2010), s. 72-75 ISSN 0009-2614 R&D Projects: GA MŠk(CZ) ME10084 Institutional research plan: CEZ:AV0Z10100521 Keywords : Lu 2 Si 2 O 7 * Pr-doped * luminescence * scintillator * excited state ionization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.282, year: 2010

  8. Luminescence and light yield of (Gd.sub.2./sub.Y)(Ga.sub.3./sub.Al.sub.2./sub.)O.sub.12./sub.:Pr.sup.3+./sup. single crystal scintillators

    Czech Academy of Sciences Publication Activity Database

    Lertloypanyachai, P.; Pathumrangsan, N.; Sreebunpeng, K.; Pattanaboonmee, N.; Chewpraditkul, W.; Yoshikawa, A.; Kamada, K.; Nikl, Martin

    2017-01-01

    Roč. 468, Jun (2017), s. 369-372 ISSN 0022-0248 R&D Projects: GA ČR GA16-15569S Institutional support: RVO:68378271 Keywords : (Gd 2 Y)(Ga 3 Al 2 )O 12 :Pr 3+ * photoelectron yield * luminescence * scintillation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.751, year: 2016

  9. EPR and luminescence studies of the radiation induced Eu.sup.2+./sup. centers in the EuAl.sub.3./sub.(BO.sub.3./sub.).sub.4./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Prokhorov, Andriy; Chernush, L.F.; Babin, Vladimir; Buryi, Maksym; Savchenko, Dariia; Lančok, Ján; Nikl, Martin; Prokhorov, A.D.

    2017-01-01

    Roč. 66, Apr (2017), s. 428-433 ISSN 0925-3467 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088 Institutional support: RVO:68378271 Keywords : EPR spectra * multiferroics * rare-earth * luminescence * aluminum borates * X-ray irradiation * spin Hamiltonian parameters * superposition model Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.238, year: 2016

  10. Origin of slow low-temperature luminescence in undoped and Ce-doped Y.sub.2./sub.SiO.sub.5./sub. and Lu.sub.2./sub.SiO.sub.5./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Jarý, Vítězslav; Krasnikov, A.; Nikl, Martin; Zazubovich, S.

    2015-01-01

    Roč. 252, č. 2 (2015), s. 274-281 ISSN 0370-1972 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : decay kinetics * luminescence * Lu 2 SiO 5 * time-resolved spectra * Y 2 SiO 5 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.522, year: 2015

  11. Peculiarities of luminescence of low-temperature-deformed cadmium sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Negrij, V.D.; Osip' yan, Yu.A. (AN SSSR, Chernogolovka. Inst. Fiziki Tverdogo Tela)

    1982-02-01

    Spatially resolved photoluminescence of CdS crystals deformed at low temperatures is investigated. It is revealed that production and movement of certain dislocations, i. e. microplastic deformation take place in the crystal under the effect of uniaxial loading F >= 10 kG/mm/sup 3/ at 6 K. Dislocations during their movement in the sliding planes produce specific defects in the crystalline lattice which, being the effective centres of irradiation recombination with characteristic radiation spectrum are presented in the form of luminescent traces which passed through the dislocation crystal. A group of symmetry of these centers is determined by means of piesospectroscopic investigations of the obtained radiation spectrum.

  12. Optical and luminescence properties of zinc oxide (Review)

    Science.gov (United States)

    Rodnyi, P. A.; Khodyuk, I. V.

    2011-11-01

    We generalize and systematize basic experimental data on optical and luminescence properties of ZnO single crystals, thin films, powders, ceramics, and nanocrystals. We consider and study mechanisms by which two main emission bands occur, a short-wavelength band near the fundamental absorption edge and a broad long-wavelength band, the maximum of which usually lies in the green spectral range. We determine a relationship between the two luminescence bands and study in detail the possibility of controlling the characteristics of ZnO by varying the maximum position of the short-wavelength band. We show that the optical and luminescence characteristics of ZnO largely depend on the choice of the corresponding impurity and the parameters of the synthesis and subsequent treatment of the sample. Prospects for using zinc oxide as a scintillator material are discussed. Additionally, we consider experimental results that are of principal interest for practice.

  13. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2011-01-01

    . Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal......Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub......-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic...

  14. Luminescent solar concentrator

    Directory of Open Access Journals (Sweden)

    Tugce Tosun

    2015-07-01

    Full Text Available Luminescent solar concentrator (LSC is a device that has luminescent molecules embedding or topping polymeric or glass waveguide to generate electricity from sunlight with a photovoltaic cell attachment. LSCs can be employed both in small and large scale projects, independent on the direction or angle of the surface with respect to the sun, promising more freedom for integration in urban environments compared to the traditional PV systems. The aim of the SEB&C PDEng project is to investigate the applicability of this innovative technology in the built environment and to bridge the gap of knowledge linking societal, design and technological aspects. The final goal is to exhibit potential application concepts of LSC developed by co-creative methods at SPARK campus which is a hub for open innovation in built environment. Necessity of a paradigm shift towards sustainable and smart cities came into being due to the significant increase in energy demand of the buildings. The challenge is to increase renewable sources in the energy mix while designing aesthetic environments. Thus, building integrated renewable energy technologies represent a great opportunity to help overcome this current challenge. Smart energy, energy efficiency and use of renewable sources are key aspects to be considered nowadays and many innovative technologies need further exploitation to be commercially viable, such as luminescent solar concentrator.

  15. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  16. Spectral-luminescent investigation of polymers doped with europium trisphenoyltrifluoroacetonate compound with 1,10-phenanthroline

    International Nuclear Information System (INIS)

    Karasev, V.E.; Mirochnik, A.G.; Shchelokov, R.N.

    1983-01-01

    Spectral-luminescent characteristics of europium tristhenoyltrifluoroacetonate with 1.10-phenanthpoline in polystyrepe and polyvinyl chloride are investigated. E 4 (TTA) 3 phen during introduction into polymers preserves its composition and structure. Weak temperature dependence of half-Width of luminescent lines qualitatively different from the case of crystal chelate is characteristic for polymers doped with E 4 (TTA) 3 xphen. Investigation into temperature dependence of E 4 3+ luminescent intensity in chelate doped polymers proves the conclusion on weakening processes of excitation energy relaxation by vibration constituents of close and far environment during chelate introduction into polymers

  17. Luminescence dating of Netherland's sediments

    NARCIS (Netherlands)

    Wallinga, J.; Davids, F.; Dijkmans, J.W.A.

    2007-01-01

    Over the last decades luminescence dating techniques have been developed that allow earth scientists to determine the time of deposition of sediments. In this contribution we revity: 1) the development of the methodology, 2) tests of the reliability of luminescence dating on Netherlands' sediments;

  18. Luminescence from metals and insulators

    International Nuclear Information System (INIS)

    Crawford, O.H.

    1985-01-01

    The term luminescence is normally applied to light emission that is not explainable by the mechanisms discussed by the other speakers in this meeting. Specifically, it is not transition radiation, surface plasmon radiation, or bremsstrahlung. One normally thinks of luminescence as arising from one-electron transitions within a medium. This talk consists of an overview of luminescence from condensed matter under irradiation by either energetic particles or photons. The author begins with organic molecules, where luminescence is best understood, and then discusses inorganic insulators and metals. Finally, the dependence of yield upon projectile species and velocity is discussed, and predictions are made concerning the relative effectiveness of electrons, protons, and hydrogen atoms in exciting luminescence

  19. A luminescent nisin biosensor

    Science.gov (United States)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  20. LUMINESCENCE DETERMINATION OF ETODOLAC

    Directory of Open Access Journals (Sweden)

    A. V. Yegorova

    2015-02-01

    Full Text Available A highly sensitive, simple and rapid method for determination of non-steroidal anti- inflammatory drug – etodolac (Et in washings from surfaces of pharmaceutical equipment have been proposed. The intensity of native luminescence of water-n-propanol solutions of etodolac (λex= 274 nm; λlum= 350 nm was used as the analytical signal. The calibration graph is linear in the concentration range 0.014-2.3 μg/ml, the limit of detection is 0.5 ng/ml.

  1. Luminescence and circularly polarized luminescence of macrocyclic Eu(III) and Tb(III) complexes embedded in xerogel and sol-gel SiO2 glasses

    International Nuclear Information System (INIS)

    Morita, M.; Rau, D.; Kai, T.

    2002-01-01

    Luminescence, time-resolved luminescence, circularly polarized luminescence (CPL) and decay profiles of Ln(III)(15-crownether-5) (Ln=Ce, Sm, Eu, Tb) and Tb(III)-(R),(S)-cyclen derivative complexes doped in xerogel and sol-gel silica glasses are measured at temperatures down to 10 K to characterize luminescence properties and the electronic structure in the excited states. Luminescence spectral profiles and calculation of crystal field parameters (B 0 (2) ,B 2 (2) ) in the 5 D 0 → 7 F J (J=1,2) transition give evidence of the fact that the pentagonal and planar structure of Eu(III) (15-crownether-5) does hold in xerogel and sol-gel glasses prepared at temperatures below 100 deg. C. As annealing temperatures are increased from 80 deg. C to 750 deg. C, Eu(III) complexes in sol-gel glasses are found to decompose gradually to SiO 2 :Eu 3+ . Tb(III)-(R) and (S)-cyclen derivative complexes in xerogel reveal at room temperature and 10 K sharp CPL spectra with luminescence dissymmetry factors g lum =-0.1 and 0.1, respectively. These complexes doped in sol-gel glasses represent luminescence characteristics of rare earth ions encapsulated in the nano-porous host

  2. Influence of photochemical transformations upon optic-spectral characteristics of iodine cadmium crystals with copper dopant

    International Nuclear Information System (INIS)

    Novosad, S.S.

    2000-01-01

    The influence of photochemical transformations upon absorption. X-ray, photo- and thermostimulated luminescence of crystals CdI 2 :CuI, CdI 2 :CuI and CdI 2 :CuO grown by Stockbarger - Czochralski method has been studied. The photochemical reactions in crystals of iodine cadmium with the dopant of copper leads to reducing the intensity of X-ray, photo- and thermostimulated luminescence, the appearance of new luminescent centers is not observed

  3. Luminescence dating in archaeology

    International Nuclear Information System (INIS)

    Wintle, A.G.

    2001-01-01

    Thermoluminescence (TL) dating is routinely applied to burnt lithic material. Simple fires are capable of enabling stones weighing a few hundred grams to reach 450 o C, thus zeroing the TL signal. TL dates have been obtained for Upper and Lower Paleolithic sites in Europe and the Near East. TL dating continues to be used for dating pottery and for authentification of ceramic works of art. Some recent studies report the use of optically stimulated luminescence (OSL) (also know as photoluminescence) for dating very small samples of quartz, e.g. from small pieces of pottery or frm metallurgical slag The major recent advance has been in the development of a reliable laboratory procedure for using the OSL signal from quartz to obtain the past radiation exposure. The quartz OSL signal is extremely sensitive to light and is reduced to a negligible level on exposure to direct sunlight for radionuclides during burial, signal to date san.sized quartz grains extracted from sediments, The OSL signal is stimulated by 470 nm light from emitting diodes and the detected using flirters centred on 340 nm A similar signal can be obtained from feldspar grain when are exposed to infrared wavelengths around 880 nm. The infrared stimulated luminescence (IRSL) signals is also rapidly depleted by exposure to sunlight, and dating of colluvial deposits from archaeological sites has been reported

  4. Luminescent and laser properties of Yb Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers

    Science.gov (United States)

    Denker, B.; Galagan, B.; Ivleva, L.; Osiko, V.; Sverchkov, S.; Voronina, I.; Hellstrom, J. E.; Karlsson, G.; Laurell, F.

    2004-09-01

    We present for the first time 1.5-μm laser emission in Yb Er:GdCa4O(BO3)3 (GdCOB). The crystals were grown by the Czochralski method from platinum crucibles. Spectroscopic and laser tests of the crystals are described. A continuous-wave output power of 80 mW was achieved in a monolithic microchip cavity under laser-diode pumping.

  5. Studies on synthesis, structural, luminescent and thermal properties of a new non-linear optical crystal: 4-amino-4H-1,2,4-triazol-1-ium-3-hydroxy-2,4,6-trinitrophenolate

    Energy Technology Data Exchange (ETDEWEB)

    Dhamodharan, P.; Sathya, K.; Dhandapani, M., E-mail: chemistrydhandapani@gmail.com

    2017-03-01

    A new organic proton transfer complex having NLO activity, 4-amino-4H-1,2,4-triazol-1-ium-3-hydroxy-2,4,6-trinitrophenolate (ATHTP), was crystallized to investigate the factors which stabilize the structure of the crystal. The compound crystallizes in triclinic system with space group P-1. Elemental analysis, thermal analysis, UV–Vis–NIR, FT-IR and NMR spectral analyses were carried out to characterize the crystal. Optical, spectral and thermal properties of the title crystal were analyzed to recommend the material for optical applications. Z-scan was used to measure the effective third-order nonlinear optical susceptibility and nonlinear refractive index. The crystal structure was determined using single crystal XRD method and the structure was optimized using Gaussian 09 program at B3LYP/6-311++G(d,p) level of basis set. This hydrogen bond interactions led to the increase in first-order hyperpolarizability of ATHTP and was 30 times greater than that of urea. Hirshfeld analyses surface analysis was carried out to explore intermolecular interactions in the crystalline state. - Highlights: • Single crystals were grown by slow evaporation solution growth technique. • N-H…O, O-H…O and C-H…O type of interactions lead to stable network. • The thermal stability of the compound was investigated by TG/DTA analyses. • The third-order nonlinear optical susceptibility is found to be 2.1×10{sup −7} esu. • Hirshfeld analyses explore covalent and non covalent interactions.

  6. Thermo-luminescent dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Reither, M; Schorn, B; Schneider, E

    1981-01-01

    The development of paediatric radiology which began in the late 195O's has been characterised by the need to limit the dose of ionising radiation to which the child is subjected. The aim has been to keep radiation exposure as low as possible by the introduction of suitable techniques and by the development of new methods. It is therefore surprising that studies in dosimetry in the paediaytric age range have only been carried out in recent years. One reason for this may have been the fact that a suitable technique of measurement was not available at the time. The introduction of solid state dosimetry based on thermo-luminescence, first into radiotherapy (1968) and subsequently into radiodiagnosis, has made it possible to abandon the previously widely used ionisation chamber. The purpose of the present paper is to indicate the suitability of this form of dose measurement for paediatric radiological purposes and to stimulate its application in this field.

  7. Persistent luminescence nanothermometers

    Science.gov (United States)

    Martín Rodríguez, Emma; López-Peña, Gabriel; Montes, Eduardo; Lifante, Ginés; García Solé, José; Jaque, Daniel; Diaz-Torres, Luis Armando; Salas, Pedro

    2017-08-01

    Persistent phosphorescence nanoparticles emitting in the red and near-infrared spectral regions are strongly demanded as contrast nanoprobes for autofluorescence free bioimaging and biosensing. In this work, we have developed Sr4Al14O25:Eu2+, Cr3+, Nd3+ nanopowders that produce persistent red phosphorescence peaking at 694 nm generated by Cr3+ ions. This emission displays temperature sensitivity in the physiological temperature range (20-60 °C), which makes these nanoparticles potentially useful as fluorescence (contactless) nanothermometers operating without requiring optical excitation. Nd3+ ions, which act as shallow electron traps for the red Cr3+ persistent emission, also display infrared emission bands, extending the fluorescence imaging capability to the second biological window. This unique combination of properties makes these nanoparticles multifunctional luminescent probes with great potential applications in nanomedicine.

  8. Reflection measurements for luminescent powders

    Science.gov (United States)

    Kroon, R. E.

    2018-04-01

    Luminescent materials are useful in applications varying from lighting and display technologies to document security features and medical research, amongst many others. Measurement of the excitation range is an important consideration, and absorption bands are often determined from a decrease in the measured diffuse reflectance of the material using a ultraviolet-visible (UV-vis) spectrophotometer with an integrating sphere. Such a system may provide questionable results when used to measure the reflectance of a luminescence material, which is demonstrated for a Tb doped silica phosphor, because the system cannot differentiate between the reflected light and luminescence. It is shown that more reliable results are achieved for this phosphor by measuring the reflectance using a synchronous zero-offset scan in a fluorescence spectrometer equipped with an integrating sphere. This method is therefore recommended instead of traditional reflectance measurements using a UV-vis spectrophotometer for luminescent powders.

  9. Luminescence enhancement in irradiated polyethylene

    International Nuclear Information System (INIS)

    Charlesby, A.; Owen, G.P.

    1976-01-01

    Results are presented for the luminescence decay in polyethylene following irradiation at liquid nitrogen temperature and its enhancement on application of an electric field. It is found that both the luminescence enhancement and its subsequent decay may be described by a model involving electron tunnelling from a monoenergetic trap distribution to the parent positive ion. The possible nature of the trap is briefly discussed. (author)

  10. A series of novel metal–organic coordination polymers constructed from the new 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole spacer and aromatic carboxylates: Synthesis, crystal structures, and luminescence properties

    International Nuclear Information System (INIS)

    Sun, Jiayin; Zhang, Daojun; Wang, Li; Zhang, Renchun; Wang, Junjie; Zeng, Ying; Zhan, Jinling; Xu, Jianing; Fan, Yong

    2013-01-01

    Using bifunctional organic ligand 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole (HL) and different aromatic carboxylates as secondary ligands, four novel metal-organic coordination polymers, [Zn(L)(1,4-bdc) 0.5 ] (1), [Zn 1.5 (L)(2,5-pydc)] (2), [Zn(HL)(1,2,4,5-btec) 0.5 ] (3), and [Cd(HL)(1,2,4,5-btec) 0.5 ] (4) (1,4-bdc, 1,4-benzenedicarboxylate; 2,5-pydc, 2,5-pyridinedicarboxylate; 1,2,4,5-btec, 1,2,4,5-benzenetetracarboxylate) have been successfully synthesized and analyzed. Compound 1 features the 2D [Zn(L)] n layers built by μ 3 -L bridging ligands and Zn(II) ions, which are further linked by pillared 1,4-bdc 2− ligands to form a 2-fold interpenetrating dmc framework. The 3D network of compound 2 can be simplified as a rare 2-nodal (3,6)-connected rtl (rutile) topology. Compound 3 possesses a 2D layer structure which is accomplished by connecting ladder-chains to L ligands. Compound 4 exhibits 2D [Cd(1,2,4,5-btec)] layers with infinite Cd–O–Cd rods and the adjacent 2D networks are further pillared by L with terminal bidentate coordination mode to generate the final 3D structure. The solid-state luminescent studies show that compounds 1–4 display intense fluorescent emissions. - Graphical abstract: Using bifunctional organic ligand 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole (HL) and different aromatic carboxylates as secondary ligands, four novel metal-organic coordination polymers have been obtained. All compounds show good luminescence properties at room temperature. Display Omitted - Highlights: • Four Zn(II)/Cd(II)-MOCPs have been successfully prepared with the rigid bifunctional ligand 5-(4-imidazol -1-yl-phenyl) -2H-tetrazole and different aromatic carboxylates mixed ligands. • Compound 2 is a 2-nodal rtl (rutile) net and compound 4 is a binodal (5, 6)-connected net with yav topology. • Compounds 1-4 display intense fluorescent emissions at room temperature

  11. Luminescence of CdSe/ZnS quantum dots infiltrated into an opal matrix

    International Nuclear Information System (INIS)

    Gruzintsev, A. N.; Emelchenko, G. A.; Masalov, V. M.; Yakimov, E. E.; Barthou, C.; Maitre, A.

    2009-01-01

    The effect of the photonic band gap in the photonic crystal, the synthesized SiO 2 opal with embedded CdSe/ZnS quantum dots, on its luminescence in the visible spectral region is studied. It is shown that the position of the photonic band gap in the luminescence and reflectance spectra for the infiltrated opal depends on the diameter of the constituent nanospheres and on the angle of recording the signal. The optimal conditions for embedding the CdSe/ZnS quantum dots from the solution into the opal matrix are determined. It is found that, for the opal-CdSe/ZnS nanocomposites, the emission intensity decreases and the luminescence decay time increases in the spatial directions, in which the spectral positions of the photonic band gap and the luminescence peak of the quantum dots coincide.

  12. Ion beam induced luminescence from diamond using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A A; Jamieson, D N; Prawer, S; Allen, M G [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1994-12-31

    Analysis of the luminescence induced by a MeV ion beam offers the potential to provide useful information about the chemical properties of atoms in crystals to complement the information provided by more traditional Ion Beam Analysis (IBA) such as Rutherford Backscattering Spectrometry (RBS), ion channeling and Particle Induced X-ray Emission (PIXE). Furthermore, the large penetration depth of the MeV ion beam offers several advantages over the relatively shallow penetration of keV electrons typically employed in cathodoluminescence. An Ion Beam Induced Luminescence (IBIL) detection system was developed for the Melbourne microprobe that allows the spatial mapping of the luminescence signal along with the signals from RBS and PIXE. Homoepitaxial diamond growth has been studied and remarkable shifts in the characteristic blue luminescence of diamond towards the green were observed in the overgrowth. This has been tentatively identified as being due to transition metal inclusions in the epitaxial layers. 8 refs., 2 refs.

  13. Ion beam induced luminescence from diamond using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A.; Jamieson, D. N.; Prawer, S.; Allen, M.G. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    Analysis of the luminescence induced by a MeV ion beam offers the potential to provide useful information about the chemical properties of atoms in crystals to complement the information provided by more traditional Ion Beam Analysis (IBA) such as Rutherford Backscattering Spectrometry (RBS), ion channeling and Particle Induced X-ray Emission (PIXE). Furthermore, the large penetration depth of the MeV ion beam offers several advantages over the relatively shallow penetration of keV electrons typically employed in cathodoluminescence. An Ion Beam Induced Luminescence (IBIL) detection system was developed for the Melbourne microprobe that allows the spatial mapping of the luminescence signal along with the signals from RBS and PIXE. Homoepitaxial diamond growth has been studied and remarkable shifts in the characteristic blue luminescence of diamond towards the green were observed in the overgrowth. This has been tentatively identified as being due to transition metal inclusions in the epitaxial layers. 8 refs., 2 refs.

  14. Luminescence characteristics of the Ce.sup.3+./sup.-doped pyrosilicates: the case of La-admixed Gd.sub.2./sub.Si.sub.2./sub.O.sub.7./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Jarý, Vítězslav; Nikl, Martin; Kurosawa, S.; Shoji, Y.; Mihóková, Eva; Beitlerová, Alena; Pazzi, G.P.; Yoshikawa, A.

    2014-01-01

    Roč. 118, č. 46 (2014), s. 26521-26529 ISSN 1932-7447 R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : lutetium silicate sci ntillators * floating-zone growth * electronic-structure * yttrium content * lyso crystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.772, year: 2014

  15. Crystal growth and luminescence properties of Yb-doped Gd.sub.3./sub.Al.sub.2./sub.Ga.sub.3./sub.O.sub.12./sub. infra-red scintillator

    Czech Academy of Sciences Publication Activity Database

    Suzuki, A.; Kurosawa, S.; Nagata, S.; Yamamura, T.; Pejchal, Jan; Yamaji, A.; Yokota, Y.; Shirasaki, K.; Homma, Y.; Aoki, D.; Shikama, T.; Yoshikawa, A.

    2014-01-01

    Roč. 36, č. 9 (2014), s. 1484-1487 ISSN 0925-3467 Institutional support: RVO:68378271 Keywords : infra-red scintillator * radiation therapy * Yb:GAGG * bulk crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.981, year: 2014

  16. Exciton luminescence in CdxMn1-xTe compounds

    International Nuclear Information System (INIS)

    Caraman, M.; Gashin, P.; Metelitsa, Snejana; Nicorici, Valentina; Nicorici, A.

    2002-01-01

    The Cd x Mn 1-x Te (0.5 7 W/cm 2 . The luminescence spectra were observed at 78 K. The results of the study had shown that the presence of relatively narrow luminescence peaks localized in the region of the fundamental absorption edge is characteristic for these spectra and for the majority of the crystals a wide maximum in the long wavelength region is observed. The luminescence maxima with an accuracy of ∼ 5 meV correspond to the resonance energy of the excitons of the state with n=1 determined from the absorption spectra. Hence, these maxima can be considered as exciton luminescence stimulated either by the excitons of the state n=1 or bounded to the exciton ionization centers. From the analysis of the absorption and exciton luminescence spectra one can make a conclusion about the fact that the homogeneity extent of the crystals decreases from CdTe to the compounds with x= 0.8 - 0.7 and slightly increases at the x decrease to 0.5. The exciton luminescence lines in CdTe and Cd 0.99 Mn 0.01 Te crystals is shifting by 7 - 10 meV relatively to the lines of free excitons absorption. This fact is explained by the fact that in these crystals, probably, excitons bounding to the lattice inherited defects with the binding energy of 7 - 10 meV participate in the luminescence. In the long wavelength region a wide peak is observed on which the impurity lines are not displayed. In the luminescence spectra of CdTe with 0.1%. As crystals three maxima at 1.51 eV, 1.46 eV and 1.42 eV are revealed. For pure CdTe the maximum at 1.4 eV is also revealed. These maxima are explained by the luminescence through the recombination levels localized at 0.46 eV. (authors)

  17. Goldenphilicity: Luminescent gold compounds

    International Nuclear Information System (INIS)

    Sansores, L.E.

    2002-01-01

    In the solids and molecules different types of bonds are presented depending on the involved atoms, covalent bonds are common among elements of open shell, where more bond orbitals are filled than anti bond orbitals. It is expected that ionic bonds among closed shell atoms which have charges of opposite sign. Bonds type Van der Waals are presented among molecules which have a bipolar moment. It would not be expected bonds among zero charge species, or more generally with the same nominal charge and in any case the attractive forces would be very small. In fact it is expected that two metallic cations to be repelled each other. There recently is evidence that in organic or organometallic compounds could exist attractive interactions between two cations of the d 8 -d 10 -s 2 families. These bonds are weak but stronger than those of Van der Waals. They are compared with the hydrogen bonds. In this work it was reviewed some examples in which the goldenphilicity plays an important role in the luminescence that the gold complexes present. Examples of mono, bi and trinuclear and the structures that these organometallic compounds could take are examined. (Author)

  18. Luminescent properties of Cr-doped (Gd.sub.x./sub., Y.sub.1-x./sub.).sub.3./sub.Al.sub.5./sub.O.sub.12./sub. infra-red scintillator crystals

    Czech Academy of Sciences Publication Activity Database

    Suzuki, A.; Kurosawa, S.; Yamaji, A.; Shoji, Y.; Pejchal, Jan; Kamada, K.; Yokota, Y.; Yoshikawa, A.

    2014-01-01

    Roč. 36, č. 12 (2014), s. 1938-1941 ISSN 0925-3467. [International Symposium on Laser, Scintillator and Non Linear Optical Materials (ISLNOM) /6./. Shanghai, 20.10.2013-23.10.2013] Institutional support: RVO:68378271 Keywords : infra-red scintillator * patient dosimetry * Cr-doped oxide garnet * bulk crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.981, year: 2014

  19. Luminescence of Cr{sup 3+} ions in ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} spinels: correlation between experimental spectroscopic studies and crystal field calculations

    Energy Technology Data Exchange (ETDEWEB)

    Brik, M.G., E-mail: mikhail.brik@ut.ee [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411 (Estonia); Institute of Physics, Jan Dlugosz University, Al. Armii Krajowej 13/15, Czestochowa PL-42200 (Poland); Papan, J.; Jovanović, D.J. [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, Belgrade 11001 (Serbia); Dramićanin, M.D., E-mail: dramican@vinca.rs [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, Belgrade 11001 (Serbia)

    2016-09-15

    Details of preparation, spectroscopic and structural studies along with crystal field calculations for two Cr{sup 3+} doped spinels MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} are given in the present paper. Both compounds show efficient red emission at about 685 nm, which is due to the {sup 2}E{sub g} → {sup 4}A{sub 2g} spin-forbidden transition of Cr{sup 3+} ions located at the sites with D{sub 3d} local symmetry. Analysis of structure of the CrO{sub 6} clusters was performed; comparison of the crystal field effects in both compounds revealed that the low-symmetry splitting of the orbital triplet states is more pronounced in ZnAl{sub 2}O{sub 4}. Both compounds show potential for applications as red-emitting phosphors. - Highlights: • Cr{sup 3+}-doped MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} spinels were synthesized. • Excitation/emission spectra were recorded and analyzed. • Symmetry properties of the Cr-sites were analyzed. • Cr{sup 3+} energy levels in trigonal crystal field were calculated. • Cr{sup 3+}-doped MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} spinels can be used as red phosphors.

  20. Identification of yellow luminescence centers in Be-doped GaN through pressure-dependent studies

    Science.gov (United States)

    Teisseyre, Henryk; Lyons, John L.; Kaminska, Agata; Jankowski, Dawid; Jarosz, Dawid; Boćkowski, Michał; Suchocki, Andrzej; Van de Walle, Chris G.

    2017-06-01

    Effective acceptor doping of wide-band-gap semiconductors is still an outstanding problem. Beryllium has been suggested as a shallow acceptor in GaN, but despite sporadic announcements, Be-induced p-type doping has never been practically realized. Be-doped GaN possesses two luminescence bands; one at 3.38 eV and a second near 2.2 eV at an energy close to that of the parasitic yellow luminescence often found in undoped GaN crystals. We have performed high hydrostatic pressure studies of bulk, Be-doped gallium nitride crystals using the diamond anvil cell technique. We observed a splitting of the yellow luminescence line under hydrostatic pressure into two components, one which is strongly dependent on applied pressure and another whose pressure dependence is more modest. Together with hybrid functional calculations, we attribute the strongly-varying component to the beryllium-oxygen complex. The second component of the yellow luminescence possesses very similar pressure behavior to the yellow luminescence observed in undoped samples grown by the same method, behavior which we find consistent with the CN acceptor. At higher pressure, we observe the vanishing of yellow luminescence and a rapid increase in luminescence intensity of the UV line. We explain this as the pressure-induced transformation of the Be-O complex from a highly localized state with large lattice relaxation to a delocalized state with limited lattice relaxation.

  1. Luminescence sensitivity changes in quartz

    CERN Document Server

    Wintle, A G

    1999-01-01

    In the luminescence dating of sedimentary or heated quartz, some heat treatment is usually applied to the sample immediately prior to the measurement of the optically stimulated luminescence. In this paper we report experiments on a 30,000-year-old sedimentary quartz, in which we use the luminescence response to a test dose to monitor the changes in sensitivity that are caused by holding the quartz at temperatures from 160 to 280 deg. C for times from 10 s to 22 h. For an optically bleached sample, the monitoring is by both optically stimulated luminescence and the 110 deg. C TL peak; both luminescence signals are shown to have the same sensitisation (i.e. activation energy) characteristics. For natural or laboratory irradiated samples only the 110 deg. C TL peak can be used; sensitivity increases of up to a factor of 1.3 and 3 are observed for the natural and laboratory irradiated aliquots, respectively. Up to four exponential components are used to deconvolve the sensitivity change data; the dominant compon...

  2. Unique Chiral Interpenetrating d-f Heterometallic MOFs as Luminescent Sensors.

    Science.gov (United States)

    Wu, Zhi-Lei; Dong, Jie; Ni, Wei-Yan; Zhang, Bo-Wen; Cui, Jian-Zhong; Zhao, Bin

    2015-06-01

    One novel three-dimensional (3D) 3d-4f metal-organic framework (MOF), [TbZn(L)(CO3)2(H2O)]n (1) [HL = 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine], has been successfully synthesized and structurally characterized. Structural analysis shows that compound 1 features a unique chiral interpenetrating 3D framework for the first time. The resulting crystals of 1 are composed of enantiomers 1a (P41) and 1b (P43), as was clearly confirmed by the crystal structure and the corresponding circular dichroism (CD) analyses of eight randomly selected crystals. The investigations on CD spectra based on every single crystal clearly assigned the Cotton effect signals. The powder X-ray diffraction measurement of 1 after being immersed in common solvents reveals that 1 possess excellent solvent stability. Furthermore, luminescent studies imply that 1 displays highly selective luminescent sensing of aldehydes, such as formol, acetaldehyde, and propanal.

  3. Effect of particle size and morphology on the properties of luminescence in ZnWO4

    International Nuclear Information System (INIS)

    Lisitsyn, V.M.; Valiev, D.T.; Tupitsyna, I.A.; Polisadova, E.F.; Oleshko, V.I.; Lisitsyna, L.A.; Andryuschenko, L.A.; Yakubovskaya, A.G.; Vovk, O.M.

    2014-01-01

    We investigated pulsed photoluminescence and pulsed cathodoluminescence in ZnWO 4 crystals and composite materials based on dispersed powders of zinc tungstate in the polymer matrix. It is shown that the size of crystal particles affects the luminescence decay time in excitation by electron and laser radiation. The decay time obtained for the composite material with nanoparticles 25 nm and 100 nm in size is equal to 5 µs and 7 µs, respectively. Relative values of the light yield of composite containing zinc tungstate crystals in the form of rods are found to be larger in comparison with crystallites in the form of grains. The mechanisms of luminescence recombination in laser and electron excitation are discussed. - Highlights: • Pulsed photoluminescence and pulsed cathodoluminescence spectra and decay kinetics of nano- and microcrystals of zinc tungstate in the organosilicic matrix compared to a single crystal were studied. • The luminescence decay kinetics and life-time of the excited state depend on the size of particles in the composite materials and on the type of excitation. • The probability of excitation of luminescence centers responsible for the band at 490 nm is higher which is apparently due to the larger capture cross-section and quantum yield

  4. Synthesis and Crystal Structures of Two Metal Complexes Incorporating Malonate and Organodiamine Ligands

    International Nuclear Information System (INIS)

    Zhang, Quan Zheng; Yang, Wen Bin; Chen, Shu Mei; Lu, Can Zhong

    2005-01-01

    In the present work we report the synthesis and X-ray crystal structures of two new malonato complexes incorporating organodiamine ligands: [Ni(phen)(mal)(H_2O)_2]·3H_2O (H_2mal = malonic acid, phen = 1,10-phenanthroline) and [Zn(bpy)(H_2O)]_2[Zn(bpy)(mal)(H_2O)_2]_2(NO_3)_4·4H_2O (bpy = 2,2'-bipyridine). Investigation on novel organic-inorganic hybrid framework assemblies represents one of the most active areas of material science and chemical research. Major advances have been made in these materials due to their interesting properties and potential in various applications, e. g., electrical conductivity, magnetism, host-guest chemistry, ion exchange, catalysis, nonlinear optics, etc. Moreover, discovery and design of such new materials with specific networks remain of a particularly important and active subject in the field of supramolecuar chemistry and crystal engineering. A variety of complexes with interesting compositions and topologies have been prepared through taking certain factors into account, such as the coordination nature of the metal ion and the shape, functionality, flexibility, and symmetry of organic ligand. Recently, some dicarboxylate ligands, such as oxalate, malonate, and terephthalate, have been widely used in the construction of these interesting structures

  5. On luminescence lifetimes in quartz

    International Nuclear Information System (INIS)

    Chithambo, M.L.; Galloway, R.B.

    2000-01-01

    In this paper we present results of investigations concerning the time dependence of luminescence emission relative to the time of stimulation in quartz. Measurements of time-resolved spectra were performed on a new versatile pulsed light emitting diode system using 525 nm stimulation, an 11 μs duration pulse, a repetition rate of 11 kHz and a 64 μs dynamic range. Effects on luminescence lifetime resulting from sample treatments such as optical stimulation, irradiation, and preheating, are reported

  6. Luminescent materials and their applications

    CERN Document Server

    Virk, Hardev Singh

    2015-01-01

    It is pertinent to note that Luminescence phenomenon has once again occupied a central stage with the announcement of Nobel Prize in October 2014 to three Japanese scientists. The discovery of Galium Nitride proved to be a revolutionary step forward in creation of Blue LEDs. With the advent of LED lamps we now have more long-lasting and more efficient alternatives to older light sources. The Volume under reference consists of 9 Chapters, written by experts in the area of Luminescent Materials. First 5 Chapters are contributed as Review Papers and the last 4 are based on Research Papers.Chapter

  7. Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Mikhailik, V.B.

    2003-01-01

    Spatially-resolved measurements of optically stimulated luminescence (OSL) were performed using a two-dimensional scanning system designed for use with planar samples. The scanning system employs a focused laser beam to stimulate a selected area of the sample, which is moved under the beam by a motorised stage. Exposure of the sample is controlled by an electronic shutter. Mapping of the distribution of OSL using a continuous wave laser source was obtained with sub-millimeter resolution for samples of sliced brick, synthetic single crystal quartz, concrete and dental ceramic. These revealed sporadic emission in the case of brick or concrete and significant spatial variation of emission for quartz and dental ceramic slices. Determinations of absorbed dose were performed for quartz grains within a slice of modern brick. Reconfiguration of the scanner with a pulsed laser source enabled quartz and feldspathic minerals within a ceramic sample to be thinner region. about 6 nm from the extrapolation of themeasuring the time-resolved luminescence spectrum

  8. Advantages and disadvantages of luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Olko, Pawel, E-mail: Pawel.Olko@ifj.edu.p [Institute of Nuclear Physics Polish Academy of Science (IFJ PAN), Krakow (Poland)

    2010-03-15

    Owing to their excellent dosimetric properties, luminescence detectors of ionizing radiation are now extensively applied in individual dosimetry services. The most frequently used personal dosemeters are based on Optically Stimulated Luminescence (OSL), radiophotoluminescence (RPL) or thermoluminescence (TL). Luminescence detectors have also found several applications in clinical dosimetry, especially around new radiation modalities in radiotherapy, such as Intensity Modulated Radiotherapy (IMRT) or ion beam radiotherapy. Requirements of luminescence detectors applied in individual and clinical dosimetry and some recent developments in luminescence of detectors and techniques leading to significant improvements of the functionality and accuracy of dosimetry systems are reviewed and discussed.

  9. Detection of food irradiation with luminescence methods

    International Nuclear Information System (INIS)

    Anderle, H.

    1997-06-01

    Food irradiation is applied as method for the preservation of foods, the prevention of food spoilage and the inhibition of food-borne pathogens. Doses exceeding 10 kGy (10 kJ/kg) are not recommended by the WHO. The different legislation requires methods for the detection and the closimetry of irradiated foods. Among the physical methods based on the radiation-induced changes in inorganic, nonhygroscopic crystalline solids are thermoluminescence (TL), photostimulated luminescence (PSL) and lyoluminescence (LL) measurement. The luminescence methods were tested on natural minerals. Pure quartz, feldspars, calcite, aragonite and dolomite of known origin were irradiated, read out and analyzed to determine the influence of luminescence-activators and deactivators. Carbonate minerals show an orange-red TL easily detectable by blue-sensitive photomultiplier tubes. TIL-inactive carbonate samples may be identified by a lyoluminescence method using the reaction of trapped irradiation-generated charge carriers with the solvent during crystal-lattice breakup. The fine-ground mineral is dissolved in an alkaline complexing agent/chemiluminescence sensitizer/chemiluminescence catalyst (EDTA/luminol/hemin) reagent mixture. The TL and PSL of quartz is too weak to contribute a significant part for the corresponding signals in polymineral dust. Alkali and soda feldspar show intense TL and PSL. The temperature maxima in the TL glow curves allow a clear distinction. PSL does not give this additional information, it suffers from bleaching by ambient light and requires light-protection. Grain disinfestated with low irradiation doses (500 Gy) may not identified by both TL and PSL measurement. The natural TL of feldspar particles may be overlap with the irradiation-induced TL of other minerals. As a routine method, irradiated spices are identified with TL measurement. The dust particles have to be enriched by heavy-liquid flotation and centrifugation. The PSL method allows a clear

  10. Recombination luminescence from H centers and conversion of H centers into I centers in alkali iodides

    International Nuclear Information System (INIS)

    Berzina, B.J.

    1981-01-01

    The study is aimed at the search for H-plus-electron centers of luminescence and the investigation of the conversion of H- into I centers by the luminescence of H-plus-electron centers in alkali iodide crystals. KI, RbI and NaI crystals were studied at 12 K. H and F centers were created by irradiation with ultraviolet light corresponding to the absorption band of anion excitons. Then the excitation of electron centers by red light irradiation was followed. The spectra of stimulated recombination luminescence were studied. The luminescence of H-plus- electron centers had been observed and the conclusion was made that this center was formed on immobile H centers. In case of stable H centers the optically stimulated conversion of H centers into I centers occurs. The assumption is advanced on the spontaneous annihilation of near placed unstable F, H centers which leads to the creation of H-plus-electron luminescence centers and to the spontaneous H-I-centers conversion [ru

  11. Crystal structure and luminescence properties of Bi{sup 3+}activated Ca{sub 2}Y{sub 8}(SiO{sub 4}){sub 6}O{sub 2} phosphors under near UV excitation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhihua [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xian Jiaotong University, Xian 710049, ShannXi (China); International Center for Dielectric Research, Xian Jiaotong University, Xian 710049, ShannXi (China); School of Materials Science and Engineer, Chang’an University, Xi’an 710061, ShannXi (China); Wang, Minqiang, E-mail: mqwang@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xian Jiaotong University, Xian 710049, ShannXi (China); International Center for Dielectric Research, Xian Jiaotong University, Xian 710049, ShannXi (China); Yang, Zhi [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xian Jiaotong University, Xian 710049, ShannXi (China); International Center for Dielectric Research, Xian Jiaotong University, Xian 710049, ShannXi (China); Liu, Kaiping; Zhu, Feiyan [School of Materials Science and Engineer, Chang’an University, Xi’an 710061, ShannXi (China)

    2016-07-15

    Oxyapatite Ca{sub 2}Y{sub 8−x}(SiO{sub 4}){sub 6}O{sub 2}:xBi{sup 3+}phosphor has been prepared via high temperature solid-state reaction. Its crystal structure and PL properties were investigated by X-ray diffraction, photoluminescence excitation and emission spectra. The results indicated that the Ca{sub 2}Y{sub 8}(SiO{sub 4}){sub 6}O{sub 2} crystallizes as a hexagonal structure with a space group of P6{sub 3}/m and lattice constants of a=b=9.3507 Å, c=6.7899 Å, α=β=90.00°, γ=120.00°, V=514.14 Å{sup 3}; The phosphor has two prominent emission bands: when excited under 320–360 nm, the phosphors emit a broad band centered at 495 nm due to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of Bi{sup 3+} in 4f (C{sub 3}) sites; when excited under 380 nm, the phosphors emit a broad band centered at 411 nm due to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of Bi{sup 3+} in 6h (C{sub s}) sites. The emission color varies from the greenish blue to blue as the excitation wavelength increases from 335 to 380 nm. The optimal intensity of emission band was observed when x=0.015 in the Ca{sub 2}Y{sub 8−x}(SiO{sub 4}){sub 6}O{sub 2}:xBi{sup 3+} series. The average critical distance Rc among Bi{sup 3+} ions is determined to be 20.15 Å.

  12. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF 4 nanoparticles. JIGMET LADOL HEENA KHAJURIA SONIKA KHAJURIA ... Keywords. Citric acid; X-ray diffraction; down-conversion emission; energy transfer.

  13. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    that nanoparticles have cylindrical shape and crystalline nature of nanoparticles was confirmed by SAED patterns. Down- conversion (DC) luminescent properties of doped NaLaF4 were also .... Figure 1 shows the XRPD patterns of undoped NaLaF4 and .... which can be assigned to the transitions from the 7F6 ground.

  14. A portable luminescence dating instrument

    DEFF Research Database (Denmark)

    Kook, M.H.; Murray, A.S.; Lapp, Torben

    2011-01-01

    We describe a portable luminescence reader suitable for use in remote localities in the field. The instrument weighs about 8kg and is based around a 30mm bialkali photomultiplier detecting signals through a glass filter centered on 340nm. Stimulation is by 470nm blue LEDs (24W in total) operating...

  15. Advances in luminescence instrument systems

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Bulur, E.; Duller, G.A.T.

    2000-01-01

    We report on recent advances in the development of luminescence measurement systems and techniques at Riso. These include: (1) optical stimulation units based on new-generation powerful blue light (470 nm) emitting diodes providing up to 28 mW/cm(2) for OSL measurements; (2) an infrared (830 nm...

  16. Silica-modified luminescent LaPO4 :Eu@LaPO4 @SiO2 core/shell nanorods: Synthesis, structural and luminescent properties.

    Science.gov (United States)

    Ansari, Anees A

    2018-02-01

    Monoclinic-type tetragonal LaPO 4 :Eu (core) and LaPO 4 :Eu@LaPO 4 (core/shell) nanorods (NRs) were successfully prepared using a urea-based co-precipitation process under ambient conditions. An amorphous silica layer was coated around the luminescent core/shell NRs via the sol-gel process to improve their solubility and colloidal stability in aqueous and non-aqueous media. The prepared nano-products were systematically characterized by X-ray diffraction pattern, transmission electron microscopy, energy dispersive X-ray analysis, and FTIR, UV/Vis, and photoluminescence spectroscopy to examine their phase purity, crystal phase, surface chemistry, solubility and luminescence characteristics. The length and diameter of the nano-products were in the range 80-120 nm and 10-15 nm, respectively. High solubility of the silica-modified core/shell/Si NRs was found for the aqueous medium. The luminescent core NRs exhibited characteristic excitation and emission transitions in the visible region that were greatly affected by surface growth of insulating LaPO 4 and silica layers due to the multiphonon relaxation rate. Our luminescence spectral results clearly show a distinct difference in intensities for core, core/shell, and core/shell/Si NRs. Highly luminescent NRs with good solubility could be useful candidates for a variety of photonic-based biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Synthesis and Features of Luminescent Bromo- and Iodohectorite Nanoclay Materials

    Directory of Open Access Journals (Sweden)

    Hellen Silva Santos

    2017-11-01

    Full Text Available The smectites represent a versatile class of clay minerals with broad usage in industrial applications, e.g., cosmetics, drug delivery, bioimaging, etc. Synthetic hectorite Na0.7(Mg5.5Li0.3[Si8O20](OH4 is a distinct material from this class due to its low-cost production method that allows to design its structure to match better the applications. In the current work, we have synthesized for the first time ever nanoclay materials based on the hectorite structure but with the hydroxyl groups (OH− replaced by Br− or I−, yielding bromohectorite (Br-Hec and iodohectorite (I-Hec. It was aimed that these materials would be used as phosphors. Thus, OH− replacement was done to avoid luminescence quenching by multiphonon de-excitation. The crystal structure is similar to nanocrystalline fluorohectorite, having the d001 spacing of 14.30 Å and 3 nm crystallite size along the 00l direction. The synthetic materials studied here show strong potential to act as host lattices for optically active species, possessing mesoporous structure with high specific surface area (385 and 363 m2 g−1 for Br-Hec and I-Hec, respectively and good thermal stability up to 800 °C. Both materials also present strong blue-green emission under UV radiation and short persistent luminescence (ca. 5 s. The luminescence features are attributed to Ti3+/TiIV impurities acting as the emitting center in these materials.

  18. Evaluation of one-step luminescent cyanoacrylate fuming.

    Science.gov (United States)

    Khuu, Alicia; Chadwick, Scott; Spindler, Xanthe; Lam, Rolanda; Moret, Sébastien; Roux, Claude

    2016-06-01

    One-step luminescent cyanoacrylates have recently been introduced as an alternative to the conventional cyanoacrylate fuming methods. These new techniques do not require the application of a luminescent post-treatment in order to enhance cyanoacrylate-developed fingermarks. In this study, three one-step polymer cyanoacrylates: CN Yellow Crystals (Aneval Inc.), PolyCyano UV (Foster+Freeman Ltd.) and PECA Multiband (BVDA), and one monomer cyanoacrylate: Lumikit™ (Crime Scene Technology), were evaluated against a conventional two-step cyanoacrylate fuming method (Cyanobloom (Foster+Freeman Ltd.) with rhodamine 6G stain). The manufacturers' recommended conditions or conditions compatible with the MVC™ 1000/D (Foster+Freeman Ltd.) were assessed with fingermarks aged for up to 8 weeks on non-porous and semi-porous substrates. Under white light, Cyanobloom generally gave better development than the one-step treatments across the substrates. Similarly when viewed under the respective luminescent conditions, Cyanobloom with rhodamine 6G stain resulted in improved contrast against the one-step treatments except on polystyrene, where PolyCyano UV and PECA Multiband gave better visualisation. Rhodamine 6G post-treatment of one-step samples did not significantly enhance the contrast of any of the one-step treatments against Cyanobloom/rhodamine 6G-treated samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Redox-induced reversible luminescence switching of cerium-doped upconversion nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanan [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xiao, Qingbo, E-mail: qbxiao2011@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Wang, Jian [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xi, Yonglan [Laboratory for Agricultural Wastes Treatment and Recycling Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Science, Nanjing 210014 (China); Li, Fujin [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Feng, Yamin [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Shi, Liyi [College of Sciences, Shanghai University, Shanghai 200444 (China); Lin, Hongzhen, E-mail: hzlin2010@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China)

    2016-05-15

    Smart upconversion nanophosphors (UCNPs) that can be reversibly switched between two or more luminescent states by certain external stimuli have attracted considerable attention due to their great potential in biological applications. Here we report for the first time a type of redox-switchable UCNPs by codoping NaGdF{sub 4}:Yb/Er nanorods with the redox-active Ce{sup 3+}/Ce{sup 4+} ion pairs. A reversible switching of their UC luminescence intensity was observed upon the variation of the surrounding redox environments. We show solid proof that the luminescence switching is caused by the tailoring of the NaGdF{sub 4} host crystal structure in response to changing redox state of the codoped cerium ions. A proof-of-concept example is further demonstrated by using these UCNPs for probing the dynamical variation of redox environments in biological tissues. - Highlights: • Synthesis of upconversion nanoparticles doped with Ce{sup 3+}/Ce{sup 4+} ions. • The precise and reversible modification of crystal structure by redox reactions. • Tuning the upconversion luminescence by tailoring the crystal structure.

  20. High-temperature peaks of thermostimulated luminescence in the ammonium halogens

    International Nuclear Information System (INIS)

    Kim, L.M.; Musenova, Eh.K.; Mukhamedrakhimov, K.U.

    2003-01-01

    The ammonium halogen crystals (AHC) are the close analogs of the alkali halogen crystals by the type of chemical bonds and crystal lattice structure. The ammonium halogen after irradiation by X-rays within 80-300 K range have two peaks of thermo-stimulation luminescence. Its maximums in dependence of anions type are in the 110-120 K and 170-180 K ranges. The first range is related with activation of auto-localized holes migration, and the second one - with the NH 3 + defects decay. Experimentally is established, that the pure ammonium halogens have memory about the previous irradiation at heating up to 300 K. After repeat irradiation the recombination luminescence high-temperature peak's shoulder is appearing. The second luminescence peak's shoulder revealing does not depend on the impurity center nature. It is known, that in the AHC there is the next thermo-stimulation luminescence peak within 340-360 K. The thermal annealing of this peak leads to the memory effect disappearance. So, the observing phenomenon is related with own defect of the matrix in the cation sublattice. Experimentally is established, that at a room temperature the AHC memorizing about previous irradiation during 20 h

  1. Thermoluminescence, luminescence optically stimulated and creation of defects in alkaline halogenides contaminated with Europium

    International Nuclear Information System (INIS)

    Barboza F, M.

    1999-01-01

    The alkaline halogenides have been subject matter of investigations related with the search of sensor materials for X-ray bidimensional images or optical memories. The understanding of the damage formation processes generated by ionizing and non-ionizing radiations is important for the correct design of devices that working as detectors and dosemeters of both type of radiations. In this work we present the investigation results related with the defects produced by the ionizing radiation type X and ultraviolet light in the range of 200-360 nm in crystals of KCl: Eu 2+ and KBr:Eu 2+ . It is examined the thermoluminescence and luminescence spectra with the purpose of identifying the exciton processes, owing to the excitation of the halogenide ions in which the primary defects correspond to the F and H centers. It has been found that the 400-600 nm emission is associated with the luminescence type that in his turn can be associated with autotrapped excitons perturbed by the impurity. On the other hand, it is examined the emission spectra of the luminescence optically stimulated in crystals of KBr: Eu 2+ and KCl: Eu 2+ finding too that such materials would be used as optical memories susceptible of to store information, and through of photostimulation to read this. It was determined that the F centers participate in the luminescence optically stimulated in these crystals, as well as too in the recombination processes responsible by the thermoluminescent emission. (Author)

  2. HOST-GUEST INTERACTION OF PESTICIDE BIFENOX WITH CYCLODEXTRIN MOLECULES. AN ELECTROCHEMICAL STUDY

    Czech Academy of Sciences Publication Activity Database

    Hromadová, Magdaléna; Sokolová, Romana; Pospíšil, Lubomír; Lachmanová, Štěpánka; Fanelli, N.; Giannarelli, S.

    2009-01-01

    Roč. 74, 11-12 (2009), s. 1647-1664 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400400802; GA ČR GA203/08/1157; GA ČR GA203/09/0705; GA ČR GA203/09/1607; GA MŠk LC510; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40400503 Keywords : reductions * electroreduction * nitro anion radical * electrochemistry Subject RIV: CG - Electrochemistry Impact factor: 0.856, year: 2009

  3. Carbohydrate Nanotechnology: Hierarchical Assemblies and Information Processing with Oligosaccharide-Synthetic Lectin Host-Guest Systems

    Science.gov (United States)

    2013-08-05

    Carbohydrates were explored as targets for synthetic receptors, in nanopatterning, and for directing the movement of nanoswimmers. A synthetic...dimensional movement of rods with translational and rotational diffusion coefficients and Dr respectively, neglecting the difference in...consistent with the previous theories. In the absence of flipping (f = 0), the diffusivity reduces to that of Brownian motion in circles. Neither of

  4. Charge transport in disordered organic host-guest systems: effects of carrier density and electric field

    NARCIS (Netherlands)

    Yimer, Y.Y.; Bobbert, P.A.; Coehoorn, R.

    2008-01-01

    We investigate charge transport in disordered organic host–guest systems with a bimodal Gaussian density of states (DOS). The energy difference between the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice with site

  5. Charge transport in disordered organic host-guest systems: effects of carrier density and electric field

    NARCIS (Netherlands)

    Yimer, Y.Y.; Bobbert, P.A.; Coehoorn, R.

    2009-01-01

    We investigate charge transport in disordered organic host–guest systems with a bimodal Gaussian density of states. The energy difference between the peaks of the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice we

  6. Host-Guest Interaction between Herbicide Oxadiargyl and Hydroxypropyl- β -Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Sofia Benfeito

    2013-01-01

    Full Text Available In the face of a growing human population and increased urbanization, the demand for pesticides will simply rise. Farmers must escalate yields on increasingly fewer farm acres. However, the risks of pesticides, whether real or perceived, may force changes in the way these chemicals are used. Scientists are working toward pest control plans that are environmentally sound, effective, and profitable. In this context the development of new pesticide formulations which may improve application effectiveness, safety, handling, and storage can be pointed out as a solution. As a contribution to the area, the microencapsulation of the herbicide oxadiargyl (OXA in (2-hydroxypropyl-β-cyclodextrin (HP-β-CD was performed. The study was conducted in different aqueous media (ultrapure water and in different pH buffer solutions. In all cases an increment of the oxadiargyl solubility as a function of the HP-β-CD concentration that has been related to the formation of an inclusion complex was verified. UV-Vis and NMR experiments allowed concluding that the stoichiometry of the OXA/HP-β-CD complex formed is 1 : 1. The gathered results can be regarded as an important step for its removal from industrial effluents and/or to increase the stabilizing action, encapsulation, and adsorption in water treatment plants.

  7. Easily Processed Host-Guest Polymer Systems with High-Tg Characteristics (First-year Report)

    Science.gov (United States)

    2012-05-01

    manner such that the effective electro- optical coefficient is maximized. Unfortunately, relaxation of the chromophore in the host polymer leads to...polished stainless steel facing plates (0.25 in thickness, McMaster ) and window molds cut from aluminum stock (1 mm thickness, McMaster ). Both facing...plasticization from the chromophore. Both chromophores resulted in substantial red-shifted absorption compared to a sample prepared in virgin PMMA. We expect

  8. Molecular Recognition of Vesicles : Host-Guest Interactions Combined with Specific Dimerization of Zwitterions

    NARCIS (Netherlands)

    Voskuhl, Jens; Fenske, Tassilo; Stuart, Marc C. A.; Wibbeling, Birgit; Schmuck, Carsten; Ravoo, Bart Jan

    2010-01-01

    The aggregation of beta-cyclodextrin vesicles can be induced by an adamantyl-substituted zwitterionic guanidiniocarbonylpyrrole carboxylate guest molecule (1). Upon addition of 1 to the cyclodextrin vesicles at neutral pH, the vesicles aggregate (but do not fuse), as shown by using UV/Vis and

  9. New dendrimer - Peptide host - Guest complexes: Towards dendrimers as peptide carriers

    DEFF Research Database (Denmark)

    Boas, Ulrik; Sontjens, S.H.M.; Jensen, Knud Jørgen

    2002-01-01

    Adamantyl urea and adamantyl thiourea modified poly(propylene imine) dendrimers act as hosts for N-terminal tert-butoxycarbonyl (Boc)-protected peptides and form chloroform-soluble complexes. investigations with NMR spectroscopy show that the peptide is bound to the dendrimer by ionic interactions...... between the dendrimer outer shell tertiary amines and the C-terminal carboxylic acid of the peptide, and also through host-urea to peptide-amide hydrogen bonding. The hydrogen-bonding nature of the peptide dendrimer interactions was further confirmed by using Fourier transform IR spectroscopy, for which...... the NH- and CO-stretch signals of the peptide amide moieties shift towards lower wave-numbers upon complexation with the dendrimer. Spatial analysis of the complexes with NOESY spectroscopy generally shows close proximity of the N-terminal Boc group of the peptide to the peripheral adamantyl groups...

  10. New dendrimer - peptide host - guest complexes : towards dendrimers as peptide carriers

    NARCIS (Netherlands)

    Boas, U.; Sontjens, S.H.M.; Jensen, K.J.; Christensen, J.B.; Meijer, E.W.

    2002-01-01

    Adamantyl urea and adamantyl thiourea modified poly(propylene imine) dendrimers act as hosts for N-terminal tert-butoxycarbonyl (Boc)-protected peptides and form chloroform-soluble complexes. investigations with NMR spectroscopy show that the peptide is bound to the dendrimer by ionic interactions

  11. Nuclear magnetic resonance titration studies of simple host-guest amine-carboxylic acid systems

    International Nuclear Information System (INIS)

    Mahinay, Myrna S.; Lindoy, Leonard F.

    1999-01-01

    Adduct formation for the open-chain 1,2-diaminoethane and its N-methyl derivatives [N,N-dimethyl-ethylenediamine (N,N-DMEN),N,N'-dimethylethylenediamine (N,N'-DMEN);N,N,N',N'-tetramethyl-ethylenediamine (N,N,N',N'-TMEN)]; 1,4-diaminobutane; diethylenetriamine (DIEN); triethylenetramine (TRIEN); and the carboxylic acid systems in polar CD 3 OH and nonpolar CDCl 3 solvents were elucidated by nmr titration. The stoichiometries of the adducts were found to correspond to the number of nitrogen present in the amine species with the exception of ligand incorporating N-donors of low basicity; that is, whose log K values for the protonated species in water were less than approximately 6 to 7.(Author)

  12. Mathematical aspects of ground state tunneling models in luminescence materials

    International Nuclear Information System (INIS)

    Pagonis, Vasilis; Kitis, George

    2015-01-01

    Luminescence signals from a variety of natural materials have been known to decrease with storage time at room temperature due to quantum tunneling, a phenomenon known as anomalous fading. This paper is a study of several mathematical aspects of two previously published luminescence models which describe tunneling phenomena from the ground state of a donor–acceptor system. It is shown that both models are described by the same type of integral equation, and two new analytical equations are presented. The first new analytical equation describes the effect of anomalous fading on the dose response curves (DRCs) of naturally irradiated samples. The DRCs in the model were previously expressed in the form of integral equations requiring numerical integration, while the new analytical equation can be used immediately as a tool for analyzing experimental data. The second analytical equation presented in this paper describes the anomalous fading rate (g-Value per decade) as a function of the charge density in the model. This new analytical expression for the g-Value is tested using experimental anomalous fading data for several apatite crystals which exhibit high rate of anomalous fading. The two new analytical results can be useful tools for analyzing anomalous fading data from luminescence materials. In addition to the two new analytical equations, an explanation is provided for the numerical value of a constant previously introduced in the models. - Highlights: • Comparative study of two luminescence models for feldspars. • Two new analytical equations for dose response curves and anomalous fading rate. • The numerical value z=1.8 of previously introduced constant in models explained.

  13. Crystal structure of isomeric boron difluoride acetylnaphtholates

    International Nuclear Information System (INIS)

    Bukvetskij, B.V.; Fedorenko, E.V.; Mirochnik, A.G.; Karasev, V.E.

    2006-01-01

    Crystal structures of luminescent isomeric acetylnaphtholates of boron difluoride are investigated. Full X-ray structural analysis is done at 293 K. Coordinated of atoms, bond angles, bond lengths, interatomic distances are determined. Results of comparative evaluations of the isomers are represented [ru

  14. Uranyl fluoride luminescence in acidic aqueous solutions

    International Nuclear Information System (INIS)

    Beitz, J.V.; Williams, C.W.

    1996-01-01

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 ± 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO 4 at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO 2 F 2 . Studies on the effect of added LiNO 3 or Na 2 WO 4 ·2H 2 O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF 6 content of WF 6 gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF 6

  15. Luminescence of LiH(D):Ru monocrystals

    International Nuclear Information System (INIS)

    Sabirzyanov, A.A.; Oparin, D.V.; Pilipenko, G.I.; Gavrilov, F.F.

    1993-01-01

    Luminescence of lithium hydride (deuteride) activated by ruthenium is recorded for the first time. The features connected with the structure and oscillations of the basic lattice are detected in luminescence spectrum. The qualitative model of luminescence spectrum is suggested

  16. X-ray luminescent glasses

    International Nuclear Information System (INIS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    X-ray luminescent glasses comprising a divalent cation such as an alkaline earth metal or other divalent cations such as pb, cd, or zn, and certain rare earth metaphosphates are suitable as vitreous, x-ray phosphors or x-ray luminescent glass fibers in an x-ray intensifying screen. The glasses have the composition n(Mo X p2o5)((1-y)tb2o3 X yce2o3 X 3p2o5) wherein N is greater than zero but less than or equal to 16, M is an alkaline earth metal or other divalent cation such as pb, cd, or zn, and Y is greater than or equal to zero but less than one

  17. Temperature, stress, and annealing effects on the luminescence from electron-irradiated silicon

    Science.gov (United States)

    Jones, C. E.; Johnson, E. S.; Compton, W. D.; Noonan, J. R.; Streetman, B. G.

    1973-01-01

    Low-temperature photoluminescence spectra are presented for Si crystals which have been irradiated with high-energy electrons. Studies of isochronal annealing, stress effects, and the temperature dependences of the luminescence are used to discuss the nature of the luminescent transitions and the properties of defects. Two dominant bands present after room-temperature anneal of irradiated material are discussed, and correlations of the properties of these bands are made with known Si defects. A band between 0.8 and 1.0 eV has properties which are related to those of the divacancy, and a band between 0.6 and 0.8 eV has properties related to those of the Si-G15(K) center. Additional peaks appear in the luminescence after high-temperature anneal; the influence of impurities and the effects of annealing of these lines are discussed.

  18. Controlling Second Coordination Sphere Effects in Luminescent Ruthenium Complexes by Means of External Pressure.

    Science.gov (United States)

    Pannwitz, Andrea; Poirier, Stéphanie; Bélanger-Desmarais, Nicolas; Prescimone, Alessandro; Wenger, Oliver S; Reber, Christian

    2018-06-04

    Two luminescent heteroleptic Ru II complexes with a 2,2'-biimidazole (biimH 2 ) ligand form doubly hydrogen-bonded salt bridges to 4-sulfobenzoate anions in single crystals. The structure of one of these cation-anion adducts shows that the biimH 2 ligand is deprotonated. Its 3 MLCT luminescence band does not shift significantly under the influence of an external hydrostatic pressure, a behavior typical for these electronic transitions. In contrast, hydrostatic pressure on the other crystalline cation-anion adduct induces a shift of proton density from the peripheral N-H groups of biimH 2 towards benzoate, leading to a pronounced redshift of the 3 MLCT luminescence band. Such a significant and pressure-tunable influence from an interaction in the second coordination sphere is unprecedented in artificial small-molecule-based systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Apparatus for reducing solvent luminescence background emissions

    Energy Technology Data Exchange (ETDEWEB)

    Affleck, Rhett L. (Los Alamos, NM); Ambrose, W. Patrick (Los Alamos, NM); Demas, James N. (Charlottesville, VA); Goodwin, Peter M. (Jemez Springs, NM); Johnson, Mitchell E. (Pittsburgh, PA); Keller, Richard A. (Los Alamos, NM); Petty, Jeffrey T. (Los Alamos, NM); Schecker, Jay A. (Sante Fe, NM); Wu, Ming (Los Alamos, NM)

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  20. Modern luminescence spectroscopy of minerals and materials

    CERN Document Server

    Gaft, Michael; Panczer, Gerard

    2005-01-01

    Luminescence Spectroscopy of Minerals and Materials presents an overview of the general concepts in luminescence spectroscopy as well as experimental methods and their interpretation. Special emphasis is laid on the fluorescence lifetime and the determination of time-resolved spectra. This method enables the exposure of new luminescence in minerals previously hidden by more intensive centers. Specialists in the fields of solid state physics, chemistry and spectroscopy will find a wealth of new information in this unique book.

  1. Material for a luminescent solar concentrator

    Science.gov (United States)

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  2. Handbook of luminescent semiconductor materials

    CERN Document Server

    Bergman, Leah

    2011-01-01

    Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to study semiconductor materials in a variety of applications, including solid-state lighting, solar energy conversion, optical devices, and biological imaging. After introducing basic semiconductor theory and photoluminescence principles, the book focuses

  3. Electrostatic probes in luminescent discharges

    International Nuclear Information System (INIS)

    Cunha Raposo, C. da.

    1980-01-01

    A system to produce luminescent type plasma by continuos discharge and ionization by high frequency was constructed. The ionization was done in the air and in the argon under pressures from 3 to 10 mmHg. The parameters of a non magnetized collisional plasma and the parameters of a magnetized plasma such as, density, eletron temperature and potential, using a Langmuir probe with plane geometry, were determined. (M.C.K.) [pt

  4. Luminescence studies on phosphor screens

    International Nuclear Information System (INIS)

    Panayiotakis, G.; Nomikos, C.; Bakas, A.; Proimos, B.

    1994-01-01

    We report our results on x-ray phosphor screens prepared of some new materials focusing attention on their efficiency under fluoroscopy conditions, on optimization conditions and on comparisons among the various materials. All data are presented in absolute values. A theoretical model is presented, that takes into account the granular structure of the screens, permitting the explanation and prediction of the luminescence properties of the screens. (authors)

  5. Luminescence studies on phosphor screens

    Energy Technology Data Exchange (ETDEWEB)

    Panayiotakis, G; Nomikos, C; Bakas, A; Proimos, B [Medical Physics Department, University of Patras, 265 00 Patras, Greece (Greece)

    1994-12-31

    We report our results on x-ray phosphor screens prepared of some new materials focusing attention on their efficiency under fluoroscopy conditions, on optimization conditions and on comparisons among the various materials. All data are presented in absolute values. A theoretical model is presented, that takes into account the granular structure of the screens, permitting the explanation and prediction of the luminescence properties of the screens. (authors). 12 refs, 3 figs.

  6. Optical stimulated luminescence (OSL) dating

    International Nuclear Information System (INIS)

    Banerjee, D.

    1999-01-01

    Since the pioneering work by Huntley et al. (1985), optical dating is being increasingly recognised as an important technique for establishing a time frame of deposition of sediments (Aitken, 1998). Optical dating differs from thermoluminescence (TL) dating in that visible/infrared light from lasers or LEDs (light-emitting-diodes) is used as a means of stimulation, in contrast to thermal stimulation. It has several advantages over TL dating: (i) the resetting of the OSL (optically stimulated luminescence) clock is more effective than that of TL clock; for sediments transported under water or in other situations where the sediment grains have undergone inhomogeneous bleaching, this property ensures that ages based on optical dating are generally more reliable than TL ages, (ii) the optical dating technique is non-destructive, and multiple readouts of the optical signal is possible; this feature has resulted in the development of single-aliquot and single-grain protocols (Murray and Wintle, 1999; Banerjee et al. 1999), (iii) the sample is not heated as in TL; thus, spurious luminescence is avoided and there is a significant reduction in blackbody radiation. Dating of materials which change phase on heating is also practical, and finally, (iv) thermal quenching of luminescence is negligible, allowing accurate estimation of kinetic parameters using standard techniques and providing access to deep OSL traps. This characteristic may be helpful in extending the limits of optical dating beyond the last 150 ka from a global point of view

  7. Methods of producing luminescent images

    International Nuclear Information System (INIS)

    Broadhead, P.; Newman, G.A.

    1977-01-01

    A method is described for producing a luminescent image in a layer of a binding material in which is dispersed a thermoluminescent material. The layer is heated uniformly to a temperature of 80 to 300 0 C and is exposed to luminescence inducing radiation whilst so heated. The preferred exposing radiation is X-rays and preferably the thermoluminescent material is insensitive to electromagnetic radiation of wavelength longer than 300 mm. Information concerning preparation of the luminescent material is given in BP 1,347,672; this material has the advantage that at elevated temperatures it shows increased sensitivity compared with room temperature. At temperatures in the range 80 to 150 0 C the thermoluminescent material exhibits 'afterglow', allowing the image to persist for several seconds after the X-radiation has ceased, thus allowing the image to be retained for visual inspection in this temperature range. At higher temperatures, however, there is negligible 'afterglow'. The thermoluminescent layers so produced are particularly useful as fluoroscopic screens. The preferred method of heating the thermoluminescent material is described in BP 1,354,149. An example is given of the application of the method. (U.K.)

  8. Luminescent sulfides of monovalent and trivalent cations

    International Nuclear Information System (INIS)

    1975-01-01

    The invention discloses a family of luminescent materials or phosphors having a rhombohedral crystal structure and consisting essentially of a mixed host sulfide of at least one monovalent host cation and at least one trivalent host cation, and containing, for each mole of phosphor, 0.0005 to 0.05 mole of at least one activating cation. The monovalent host cations may be Na, K or Rb and Cs. The trivalent host cations may be Gd, La, Lu, Sc and Y. The activating cations may be one or more of trivalent As, Bi, Ce, Dy, Er, Pr, Sb, Sm, Tb and Tm; divalent Lu, Mn, Pb and Sn; and monovalent Ag, Cu and Tl. The novel phosphors may be used in devices to convert electron-beam, ultraviolet or x-ray energy to light in the visible spectrum. Such energy conversion can be employed for example in fluoroscopic screens, and in viewing screens of cathode-ray tubes and other electron tubes

  9. Electron excitations in BeAl2O4, Be2SiO4 and Be3Al2Si6O18 crystals

    International Nuclear Information System (INIS)

    Ivanov, V.Yu.; Pustovarov, V.A.; Shlygin, E.S.; Korotaev, A.V.; Kruzhalov, A.V.

    2005-01-01

    Low-temperature (T = 7 K) time-resolved selectively photoexcited luminescence spectra (2-6 eV) and luminescence excitation spectra (8-35 eV) of wide-bandgap chrysoberyl BeAl 2 O 4 , phenacite Be 2 SiO 4 , and beryl Be 3 Al 2 Si 6 O 18 crystals have been studied using time-resolved VUV spectroscopy. Both the intrinsic luminescence of the crystals and the luminescence associated with structural defects were assigned. Energy transfer to impurity luminescence centers in alexandrite and emerald was investigated. Luminescence characteristics of stable crystal lattice defects were probed by 3.6-MeV accelerated helium ion beams [ru

  10. Resonance-shifting luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.

    2018-01-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  11. Discuss on luminescence dose data analysis technology

    International Nuclear Information System (INIS)

    Ma Xinhua; Xiao Wuyun; Ai Xianyun; Shi Zhilan; Liu Ying

    2009-01-01

    This article describes the development of luminescence dose data measurement and processing technology. General design planning of luminescence dose data measurement and processing technology is put forward with the diverse demands. The emphasis is focused on dose data processing method, luminescence curve analysis method, using of network, mechanics of communication among computers, data base management system of individual dose in this paper. The main methods and skills used in this technology as well as their advantages are also discussed. And it offers general design references for development luminescence dose data processing software. (authors)

  12. Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosticher, Céline [UPMC Univ Paris 06, CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France); Viana, Bruno, E-mail: bruno.viana@chimie-paristech.fr [PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Maldiney, Thomas; Richard, Cyrille [Unité de Technologies Chimiques et Biologiques pour la Santé, CNRS, UMR 8258, Paris Cedex F-75270 (France); Inserm U1022, Paris Cedex F-75270 (France); Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, Paris Cedex F-75270 (France); Chanéac, Corinne, E-mail: corinne.chaneac@upmc.fr [UPMC Univ Paris 06, CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France)

    2016-02-15

    Biocompatible nanoparticles possessing persistent luminescence properties offer attractive possibilities for in vivo imaging applications as it allows an excitation of the sensors outside the animal before injection and a long-lasting emission of light. Here we report the development of highly biocompatible calcium phosphate nanoparticles doped with europium, Mn{sup 2+} and Ln{sup 3+} (Ln{sup 3+}=Dy{sup 3+}, Pr{sup 3+}) ions synthesized by hydrothermal route and tailored to present red-near infrared persistent luminescence after UV excitation. Nanosize biphasic HAp/β-TCP compounds with sphere and rod-shaped were obtained. Two emission bands in the red-near infrared range were observed and attributed to {sup 4}T{sub 1}→{sup 6}A{sub 1} transitions of Mn{sup 2+} ions in HAp/β-TCP. An annealing treatment in reductive atmosphere post-synthesis was essential to reveal persistent luminescence properties. Indeed, such thermal treatment allows reducing Eu{sup 3+} ions in Eu{sup 2+} ions and generating required defaults as oxygen vacancies in the crystal necessary for red emission in accordance with persistent luminescence mechanism. These nanoparticles have been tested for the first time for in vivo imaging on small animal as proof of concept of prospective highly biocompatible nanoprobes. - Highlights: • Biocompatible HAp/b-TCP nanoparticles with persistent luminescence are investigated. • Reducing step induced persistent luminescence. • Nanoparticles have been tested for the first time for in vivo imaging. • Persistent luminescence is observed after 10 min in vivo.

  13. Investigations of the luminescence of phosphate glasses with respect to their application as solid dosemeters

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1977-03-01

    A comprehensive presentation of the luminescent properties of phosphate glass is worked out. The extensive investigations show an essential enlargement of the knowledge on the luminescence of phosphate glass existing hitherto. These results form the basis for a detailed discussion of the luminescence mechanism. By applying additional results of measurements concerning optical and paramagnetic absorption, enabling the access to the atomic effect, propositions were developed for models of absorption, excitation and luminous centers relevant for dosimetry for which Ag ++ was found to be the constituent determining the centers. The interpretation of the luminescence phenomena within the frame of these models leads to considerable corrections on the existing concepts. At the same time the comparability of Ag-doped phosphate glasses and alkali halogenides is shown with respect to their luminescence behaviour, and with it an argument for the existence of crystal-like short-order regions in the amorphous glass is provided. This result serves as a basis for a discussion of the centers in the band model. Further investigations dealt with the quantities of influence for the practical application of the dosemeter. By interpretation of these results explanations are given for the effect of irradiation and evaluation temperatures, of LET, the dose, and UV light on the measuring signal. The phenomenon of 'pre-dose', for which especially surface effects have been detected as cause, is discussed under the aspect of a boundary layer theory. (orig./HP) [de

  14. Tuning the luminescence of ZnO:Eu nanoparticles for applications in biology and medicine

    Science.gov (United States)

    Kaszewski, Jarosław; Kiełbik, Paula; Wolska, Ewelina; Witkowski, Bartłomiej; Wachnicki, Łukasz; Gajewski, Zdzisław; Godlewski, Marek; Godlewski, Michał M.

    2018-06-01

    Zinc oxide nanoparticles were synthesized with microwave hydrothermal technique and tested as luminescent contrast for biological imaging. Luminescence was activated by Eu3+ ions embedded in the nanoparticle matrix in the increasing concentrations of 1, 5 and 10 %mol. It was found that europium did not create a separate crystalline phase up to the concentration as high as 5 %mol. However, Eu3+ ions did not substitute Zn2+ in the host lattice, but allocated in the low symmetry environment. It was proposed that europium was locating in the inter-grain space or on the surface of nanoparticles. The luminescence intensity in ZnO:Eu, as well as the size of particles, increased with the Eu ion concentration. Moreover, in 10 %mol Eu sample, the separate phase of Eu-hydroxide was identified with crystals of micrometre length. Interestingly, in vivo study revealed, that contrary to the in silico experiments, following gastric gavage, the brightest nanoparticle-related luminescence signal was observed at 1 %mol. concentration of Eu. Since the alimentary uptake of nanoparticles was related to their size, we concluded that the increase in luminescence at 5 and 10 %mol. Eu concentrations was associated with the largest ZnO:Eu and Eu-hydroxide particles that did not cross the gastrointestinal barrier.

  15. Scintillation and optical stimulated luminescence of Ce-doped CaF2

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Watanabe, Kenichi; Fukuda, Kentaro; Kawaguchi, Noriaki; Miyamoto, Yuka; Nanto, Hidehito

    2014-01-01

    Scintillation and optical stimulated luminescence of Ce 0.1–20% doped CaF 2 crystals prepared by Tokuyama Corp. were investigated. In X-ray induced scintillation spectra, luminescence due to Ce 3+ 5d–4f transition appeared around 320 nm with typically 40 ns decay time. By 241 Am 5.5 MeV α-ray irradiation, 0.1% doped one showed the highest scintillation light yield and the light yield monotonically decreased with Ce concentrations. Optically stimulated luminescence after X-ray irradiation was observed around 320 nm under 550 or 830 nm stimulation in all samples. As a result, intensities of optically stimulated luminescence were proportional to Ce concentrations. Consequently, scintillation and optically stimulated luminescence resulted to have a complementary relation in Ce-doped CaF 2 system. - Highlights: • Optical, scintillation, and OSL properties of Ce 0.1–20% doped CaF 2 were studied. • Scintillation light yield exhibited inverse proportionality to Ce concentrations. • OSL intensities showed proportionality to Ce concentrations. • Complementary relation of scintillation and OSL was experimentally confirmed

  16. Luminescence studies of rare earth doped dosimeters

    International Nuclear Information System (INIS)

    Karali, T.

    1999-10-01

    The main objective of this thesis has been to address the applications and fundamentals of thermoluminescence (TL) and to contribute to existing knowledge about TL mechanisms in materials which are applied as radiation dosimeters. This issue has been explored for a long time but the mechanisms lack completeness and certainty. TL, Radioluminescence (RL) and Radio-thermoluminescence (RLTL) measurements have been conducted on a high sensitivity TL spectrometer both at low (30-290 K) and high (25-400 deg. C) temperatures, and different heat treatments (furnace and laser) were conducted in order to study the possible impurity clustering which changes the TL spectra and efficiency of the dosimeters. Studies have been based on three different host structure, namely sulphate, borates and zircon. The spectra of calcium sulphate samples doped with Tm 3+ and Dy 3+ at different concentration were examined using TL, RL and RLTL. Similar procedures were applied to the borate samples. Modifications of the material by thermal treatments convert the state of dispersion of the rare earth ions between isolated, pair or defect clusters, which alter the dosimeter efficiency. In some cases, modified geometries are detectable by movement of the line emissions such as for quenched samples which are attributable to new microcrystal line phases. The study of co-doped samples showed unequivocal evidence of a glow peak displacement of the two dopants within a single sample. This result supports the new view that RE 3+ ions could form part of a complex defect acting as both charge trap and recombination centres. Pulsed laser heating with a UV laser changed the glow curve shape and lead to strong signals. The detailed mechanisms for this process are discussed. The RL and TL spectra of synthetic zircon crystals doped with different RE 3+ ions (Pr, Sm, Eu, Gd, Ho, Dy, Er, and Yb) and phosphorus are reported. Even though there is some intrinsic emission from the host lattice the major signals are

  17. Luminescent properties of BaCl2-Eu microcrystals embedded in a CsI matrix

    International Nuclear Information System (INIS)

    Pushak, A.; Vistovskyy, V.; Voloshinovskii, A.; Savchyn, P.; Antonyak, O.; Demkiv, T.; Dacyuk, Yu.; Myagkota, S.; Gektin, A.

    2013-01-01

    The spectral-luminescent properties of CsI-BaCl 2 (1 mol%)-Eu(0.02 mol%) crystalline system are studied. Europium ion doped BaCl 2 microcrystals embedded in a CsI matrix are revealed on CsI-BaCl 2 (1 mol%)-Eu(0.02 mol%) freshly cleaved surface by the scanning electron microscopy. The size of microcrystals is shown to be within 0.5–5 microns. The luminescent parameters of the BaCl 2 -Eu 2+ microcrystals are shown to be similar to ones of a single crystal analogue. The 4f → 5d absorption transitions in europium ions and the reabsorption of the intrinsic emission of the CsI host are the main excitation mechanisms of europium luminescence in the BaCl 2 microcrystals. -- Highlights: ► The formation of chloride BaCl 2 :Eu microcrystals in the case of BaCl 2 doped CsI crystal has been revealed. ► The observed size of microcrystals at BaCl 2 concentration of 1% is about 0.5–5 μm. ► Majority of Eu 2+ ions in CsI-BaCl 2 -EuCl 3 crystalline system enters into BaCl 2 microcrystals. ► The luminescent parameters of the BaCl 2 :Eu 2+ microcrystals and its bulk analogue are similar

  18. Luminescent converter of neodymium laser radiation

    International Nuclear Information System (INIS)

    Ryba-Romanowski, W.; Golab, S.

    1992-01-01

    The new luminescent converter of neodymium laser radiation has been worked out. Activated inorganic compounds of ytterbium and erbium ions has been used as luminescent agent. The multi-component inorganic glass containing tellurium oxide as well as boron, sodium, magnesium and zinc oxides has been applied as a converter matrix

  19. Receptor-Targeted Luminescent Silver Bionanoparticles

    NARCIS (Netherlands)

    Bunschoten, Anton; Chin, Patrick T.K.; Buckle, Tessa; Linden, van der Marte; Barendregt, Arjan; Verheijen, Marcel A.; Leeuwen, van Fijs W.B.

    2016-01-01

    Luminescent Ag nanoclusters (Ag-NC) provide the next generation in bionanoparticles, wherein the luminescence (650 nm) and large Stokes shift of these inorganic nanoclusters are favorable for biological imaging. By combining these characteristics with those of human serum albumin (HSA; a protein

  20. Kinetics of infrared stimulated luminescence from feldspars

    DEFF Research Database (Denmark)

    Jain, Mayank; Sohbati, Reza; Guralnik, Benny

    2015-01-01

    thermal and optical, of the infrared stimulated luminescence signal from feldspar. Based on the application of this model, it is concluded that different infra-red stimulated luminescence emissions (UV, blue, yellow and far-red) follow the same kinetics, and, therefore, involve participation of the same...

  1. Application of luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Jungner, H.

    1999-01-01

    Luminescence signals measured from minerals within bricks or ceramic samples can provide information about the absorbed radiation dose. This feature has for several years been used in dating archaeological and geological samples and recently luminescence techniques have been intensively used far ...

  2. Luminescence and structural properties of RbGdS.sub.2./sub. compounds doped by rare earth elements

    Czech Academy of Sciences Publication Activity Database

    Jarý, Vítězslav; Havlák, Lubomír; Bárta, J.; Mihóková, Eva; Nikl, Martin

    2013-01-01

    Roč. 35, č. 6 (2013), s. 1226-1229 ISSN 0925-3467 R&D Projects: GA TA ČR TA01011017 Institutional support: RVO:68378271 Keywords : luminescence * X-ray diffraction * crystal structure * optical materials * ternary sulfides * rare earth s doping Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.075, year: 2013

  3. Time-resolved measurements of luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Bradley B. [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); McShane, Michael J., E-mail: mcshane@tamu.edu [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Program, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States)

    2013-12-15

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described.

  4. Time-resolved measurements of luminescence

    International Nuclear Information System (INIS)

    Collier, Bradley B.; McShane, Michael J.

    2013-01-01

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described

  5. Metal plasmon enhanced europium complex luminescence

    International Nuclear Information System (INIS)

    Liu Feng; Aldea, Gabriela; Nunzi, Jean-Michel

    2010-01-01

    The plasmon enhanced luminescence of a rare-earth complex Tris(6, 6, 7, 7, 8, 8, 8-heptafluoro-2, 2-dimethyl-3, 5-octanedionato) europium (Eu(fod) 3 ) was investigated. A polyvinyl alcohol (PVA) thin film was successfully adopted as a spacer to separate the Eu complex from the silver island film (SIF), and five-fold enhancement of the radiative decay rate of the Eu complex on SIF was demonstrated based on the luminescence intensity and lifetime measurement. Investigation of the distance dependent luminescence indicates that 7 nm is an optimal distance for SIF enhanced Eu luminescence. Plasmon enhanced rare-earth luminescence based on an organic film spacer would find potential applications in plasmon enhanced organic light emitting diode (OLED) devices.

  6. Luminescence detection of irradiated foods

    International Nuclear Information System (INIS)

    Sanderson, D.C.W.

    1990-01-01

    The need for forensic tests to identify irradiated foods has been widely recognised at a time of growing international trade in such products and impending changes in UK and EEC legislation to control the process. This paper outlines the requirements for and of such tests, and discusses recent developments in luminescence approaches aimed at meeting the needs of public analysts, retailers and consumers. Detecting whether or not food has been irradiated, and if so to what dose, is one of the challenges which food irradiation poses to the scientist. (author)

  7. Rupture luminescence from natural fibers

    Science.gov (United States)

    Li, W.; Haneman, D.

    1999-12-01

    Fibers of cotton and wool, and samples of paper, have been ruptured in tension in vacuum and in air, and give detectable luminescence in the visible range. All have a common emission peak at around 2.0 eV, which is ascribed to the deexcitation of states excited by the rupture of organic chain molecule bonds. Rubber bands give stronger emission in air, but no emission in vacuum, suggesting the material breaks only at weak interchain bonds. Mohair, cat, and horse hair also give emission in air. The phenomena reveal effects that would occur widely in nature.

  8. Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator

    Czech Academy of Sciences Publication Activity Database

    Tamulaitis, G.; Vaitkevičius, A.; Nargelas, S.; Augulis, R.; Gulbinas, V.; Boháček, Karel; Nikl, Martin; Borisevich, A.; Fedorov, A.; Korjik, M.; Auffray, E.

    2017-01-01

    Roč. 870, Oct (2017), s. 25-29 ISSN 0168-9002 R&D Projects: GA ČR GA16-15569S EU Projects: European Commission(XE) 654168 - AIDA-2020 Grant - others:COST(XE) TD1401 Institutional support: RVO:68378271 Keywords : scintillator * GAGG garnet crystal * luminescence kinetics * radiation detector Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.362, year: 2016

  9. Tuning the Cavity Size and Chirality of Self-Assembling 3D DNA Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Chad R.; Zhang, Fei; MacCulloch, Tara; Fahmi, Noureddine; Stephanopoulos, Nicholas; Liu, Yan; Seeman, Nadrian C. [Department; Yan, Hao

    2017-08-02

    The foundational goal of structural DNA nanotechnology—the field that uses oligonucleotides as a molecular building block for the programmable self-assembly of nanostructured systems—was to use DNA to construct three-dimensional (3D) lattices for solving macromolecular structures. The programmable nature of DNA makes it an ideal system for rationally constructing self-assembled crystals and immobilizing guest molecules in a repeating 3D array through their specific stereospatial interactions with the scaffold. In this work, we have extended a previously described motif (4 × 5) by expanding the structure to a system that links four double-helical layers; we use a central weaving oligonucleotide containing a sequence of four six-base repeats (4 × 6), forming a matrix of layers that are organized and dictated by a series of Holliday junctions. In addition, we have assembled mirror image crystals (l-DNA) with the identical sequence that are completely resistant to nucleases. Bromine and selenium derivatives were obtained for the l- and d-DNA forms, respectively, allowing phase determination for both forms and solution of the resulting structures to 3.0 and 3.05 Å resolution. Both right- and left-handed forms crystallized in the trigonal space groups with mirror image 3-fold helical screw axes P32 and P31 for each motif, respectively. The structures reveal a highly organized array of discrete and well-defined cavities that are suitable for hosting guest molecules and allow us to dictate a priori the assembly of guest–DNA conjugates with a specified crystalline hand.

  10. A thin layer fiber-coupled luminescence dosimeter based on Al2O3:C

    DEFF Research Database (Denmark)

    Klein, F.A.; Greilich, Steffen; Andersen, Claus Erik

    2011-01-01

    In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence of the intr......In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence...... of the introduced polymer host matrix on the dosimetric properties was observed. Depth-dose measurements with the new detectors in a 142.66 MeV proton and 270.55 MeV/u carbon ion beam are presented as example applications. We used an RL protocol with saturated crystals allowing for time-effective measurements...... without sensitivity corrections. For protons, a relative luminescence efficiency hHCP of 0.715 0.014 was found in the Bragg peak. For carbon ions, a value of 0.498 0.001 was found in the entrance channel, 0.205 0.015 in the Bragg peak, and a mean of 0.413 0.050 in the tail region. The mean range...

  11. Investigation into scanning tunnelling luminescence microscopy

    International Nuclear Information System (INIS)

    Manson-Smith, S.K.

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provide information on recombination processes and material properties. The design and construction of a scanning tunnelling luminescence microscope is described in detail. Operating under ambient conditions, the microscope has several novel features, including a new type of miniature inertial slider-based approach motor, large solid-angle light collection optical arrangement and a tip-height regulation system which requires the minimum of operator input. (author)

  12. Single fiber temperature probe configuration using anti-Stokes luminescence from Cr:GdAlO3

    Science.gov (United States)

    Eldridge, Jeffrey I.

    2018-06-01

    Single-photon excitation of anti-Stokes-shifted emission from a thermographic phosphor allows operation of a luminescence decay-based single fiber temperature probe with negligible interference from background fiber-generated Raman scattering. While single fiber probe configurations for luminescence-based fiber optic thermometers offer advantages of simple design, compactness, and superior emission light collection efficiency, their effective use has been limited by interference from Raman scattering in the fiber probe and excitation delivery fiber that produces distortion of the luminescence decay that follows the excitation pulse. The near elimination of interference by background fiber-generated Raman scattering was demonstrated by incorporating a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor as the sensing element at the end of a single fiber luminescence decay-based thermometer and detecting anti-Stokes-shifted luminescence centered at 542 or 593 nm produced by 695 nm excitation. Measurements were performed using both silica (up to 1150 °C) and single-crystal YAG (up to 1200 °C) fiber-based thermometers. Selection of emission detection centered at 542 nm greatly benefited the YAG fiber probe measurements by practically eliminating detection of otherwise significant luminescence from Cr3+ impurities in the YAG fiber. For both the silica and YAG fiber probes, the relative benefit of adopting single-photon excitation of anti-Stokes-shifted luminescence was evaluated by comparison with results obtained by conventional 532 nm excitation of Stokes-shifted luminescence.

  13. Latest developments in silica fibre luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D. A.; Abdul S, S. F.; Jafari, S. M.; Alanazi, A. [University of Surrey, Department of Physics, GU2 7XH Guildford, Surrey (United Kingdom); Amouzad M, G. [University of Malaya, Faculty of Engineering, Department of Electrical Engineering, Integrated Lightwave Research Group, 50603 Kuala Lumpur (Malaysia); Addul R, H. A.; Mizanur R, A. K. M.; Zubair, H. T.; Begum, M.; Yusoff, Z.; Omar, N. Y. M. [Multimedia University, Faculty of Engineering, 2010 Cyberjaya, Selangor (Malaysia); Maah, M. J. [University of Malaya, Department of Chemistry, 50603 Kuala Lumpur (Malaysia); Collin, S. [National Physical Laboratory, Hampton Road, Teddington, TW11 OLW Middlesex (United Kingdom); Mat-Sharif, K. A.; Muhd-Yassin, S. Z.; Zulkifli, M. I., E-mail: d.a.bradley@surrey.ac.uk [Telekom Malaysia Research and Development Sdn Bhd., 63000 Cyberjaya, Selangor (Malaysia)

    2015-10-15

    Full text: Using tailor made sub-mm diameter doped-silica fibres, we are carrying out luminescence dosimetry studies for a range of situations, including thermoluminescence (Tl)investigations on a liquid alpha source formed of {sup 223}RaCl (the basis of the Bayer Health care product Xofigo), the Tl response to a 62 MeV proton source and Tl response to irradiation from an {sup 241}Am-Be neutron source. In regard to the former, in accord with the intrinsic high linear energy transfer (Let) and short path length (<100 um) of the α-particles in calcified tissue, the product is in part intended as a bone-seeking radionuclide for treatment of metastatic cancer, offering high specificity and efficacy. The Tl yield of Ge-doped SiO{sub 2} fibres has been investigated including for photonic crystal fibre un collapsed, flat fibres and single mode fibres, these systems offering many advantages over conventional passive dosimetry types. In particular, one can mention comparable and even superior sensitivity, an effective atomic number Z{sub eff} of the silica dosimetric material close to that of bone, and the glassy nature of the fibres offering the additional advantage of being able to place such dosimeters directly into liquid environments. Finally we review the use of our tailor made fibres for on-line radioluminescence measurements of radiotherapy beams. The outcome from these various lines of research is expected to inform development of doped fiber radiation dosimeters of versatile utility, ranging from clinical applications through to industrial studies and environmental evaluations. (Author)

  14. Tris(bipyridineMetal(II-Templated Assemblies of 3D Alkali-Ruthenium Oxalate Coordination Frameworks: Crystal Structures, Characterization and Photocatalytic Activity in Water Reduction

    Directory of Open Access Journals (Sweden)

    Alla Dikhtiarenko

    2016-02-01

    Full Text Available A series of 3D oxalate-bridged ruthenium-based coordination polymers with the formula of {[ZII(bpy3][MIRu(C2O43]}n (ZII = Zn2+ (1, Cu2+ (3, 4, Ru2+ (5, 6, Os2+ (7, 8; MI = Li+, Na+; bpy = 2,2’-bipyridine and {[ZnII(bpy3](H2O[LiRu(C2O43]}n (2 has been synthesized at room temperature through a self-assembly reaction in aqueous media and characterized by single-crystal and powder X-ray diffraction, elemental analysis, infrared and diffuse reflectance UV–Vis spectroscopy and thermogravimetric analysis. The crystal structures of all compounds comprise chiral 3D honeycomb-like polymeric nets of the srs-type, which possess triangular anionic cages where [ZII(bpy3]2+ cationic templates are selectively embedded. Structural analysis reveals that the electronic configuration of the cationic guests is affected by electrostatic interaction with the anionic framework. Moreover, the MLCT bands gaps values for 1–8 can be tuned in a rational way by judicious choice of [ZII(bpy3]2+ guests. The 3D host-guest polymeric architectures can be used as self-supported heterogeneous photocatalysts for the reductive splitting of water, exhibiting photocatalytic activity for the evolution of H2 under UV light irradiation.

  15. Real-time luminescence from Al2O3 fiber dosimeters

    International Nuclear Information System (INIS)

    Polf, J.C.; Yukihara, E.G.; Akselrod, M.S.; McKeever, S.W.S.

    2004-01-01

    The real-time luminescence signal from Al 2 O 3 single crystal fibers, monitored during simultaneous irradiation and optical stimulation, was investigated using computer simulations and experimental measurements. Both radioluminescence (RL) and optically stimulated luminescence (OSL) signals were studied. The simulations were performed initially using a simple one-trap/one-recombination-center energy band model, and then extended to include shallow and deep electron traps as well. Real-time luminescence experiments were performed for different radiation dose rates and optical stimulation powers using periodic laser stimulation of the samples through a fiber optic cable, and the experimental results were compared with the predictions from the computer simulations. The luminescence signal was observed, both theoretically and experimentally, to increase from its initial value to a steady-state level. The steady-state RL and OSL levels were found to be dependent on dose rate, the steady-state level of the real-time OSL being independent of laser power. It was also shown that the total integrated absorbed dose throughout the irradiation period can be determined by correcting the real-time OSL signal for depletion caused by each laser stimulation pulse. The effects of the shallow and deep traps on the time-dependence of the real-time luminescence signal were studied comparing the experimental data from several Al 2 O 3 fibers known to have different trapping state concentrations. The additional traps were found to slow the response of the real-time luminescence such that the time to reach steady state was increased as the additional traps were added

  16. The potential of optically stimulated luminescence for medieval building; A case study at Termez, Uzbekistan

    International Nuclear Information System (INIS)

    Vieillevigne, Emmanuelle; Guibert, Pierre; Rita Zuccarello, Agnese; Bechtel, Francoise

    2006-01-01

    Luminescence techniques thermoluminescence (TL) and optically stimulated luminescence (OSL) are generally used to assess the chronology of the last firing of ceramics. In the field of building archaeology, fired bricks can be dated by these techniques. Nevertheless, these luminescence ages are not exactly related to the construction of the building itself, but to the production of the building materials. In some cases, re-use is possible and this raises problems with the interpretation of the dating results. This led us to employ optically stimulated luminescence in a less conventional way. Before bricks were sealed in masonry by mortar, they would have been exposed to day light, and, as a result, the optical traps of the crystals on the material surface should have been bleached (zeroed by light). Dating the end of the bleaching period is possible by OSL using blue light for stimulation and by IRSL (infrared stimulated luminescence) using IR stimulation. Thus the OSL or IRSL age for these crystals is directly related to the construction of the architectural structure. Experiments were carried out to determine the suitability of this approach and to solve practical problems of sampling. The results show that the bleaching light penetrates between 0.5 to 1 mm into the bricks, according to their transparency. This depth is sufficient to collect enough quartz and feldspar inclusions that have been affected by light in the past, and thus date the construction of the masonry directly. Attempts at surface dating of bricks collected at the medieval citadel of Termez, Uzbekistan, already dated by TL, were the starting point of this research

  17. Luminescence properties and scintillation response in Ce.sup.3+./sup.-doped Y.sub.2./sub.Gd.sub.1./sub.Al.sub.5-x./sub.Ga.sub.x./sub.O.sub.12./sub. (x = 2, 3, 4) single crystals

    Czech Academy of Sciences Publication Activity Database

    Chewpraditkul, Wa.; Pánek, D.; Brůža, P.; Chewpraditkul, W.; Wanarak, C.; Pattanaboonmee, N.; Babin, Vladimir; Bartosiewicz, Karol; Kamada, K.; Yoshikawa, A.; Nikl, Martin

    2014-01-01

    Roč. 116, č. 8 (2014), "083505-1"-"083505-7" ISSN 0021-8979 R&D Projects: GA MŠk(CZ) LH14266 EU Projects: European Commission(XE) 316906 - F-CHROMA Institutional support: RVO:68378271 Keywords : luminescence * scintillation * photoluminescence Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.183, year: 2014

  18. Polymeric Luminescent Compositions Doped with Beta-Diketonates Boron Difluoride as Material for Luminescent Solar Concentrator

    Science.gov (United States)

    Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.

    2017-11-01

    In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.

  19. Spectral-luminescence properties of trivalent titanium in aluminum-sodium phosphate glass

    International Nuclear Information System (INIS)

    Sukhanov, S.B.; Batyaev, I.M.

    1992-01-01

    Since development of the first crystal laser, Al 2 O 3 crystals remain the most widely used in quantum electronics. In the present work, the aluminum-sodium phosphate glass, Al 2 O 3 -Na 2 O 3 -P 2 O 5 , was studied with different proportions of components. A luminescence medium is obtained based on phosphate glass doped by Ti 3+ ions with intense emission in the 700-900-nm spectral range. This glass is a promising lasing medium for tunable solid-state lasers. 12 refs., 2 figs

  20. Strongly Enhanced Free-Exciton Luminescence in Microcrystalline CsPbBr3 Films

    Science.gov (United States)

    Kondo, Shin-ichi; Kakuchi, Mitsugu; Masaki, Atsushi; Saito, Tadaaki

    2003-07-01

    The luminescence properties of CsPbBr3 films prepared via the amorphous phase by crystallization are dominated by free-exciton emission, and only a weak trace of emission due to trapped excitons was observed, in contrast to the case of bulk CsPbBr3 crystals. In particular, the films in the microcrystalline state show by more than an order of magnitude stronger free-exciton emission than in the polycrystalline state. The enhanced free-exciton emission is suggestive of excitonic superradiance.

  1. Luminescence and structure of manganese(II) halogenides. Pt. 1

    International Nuclear Information System (INIS)

    Oelkrug, D.; Kempny, W.

    1976-01-01

    The luminescence decay times tau and luminescence intensities I of the mixed crystals Mnsub(x)Cdsub(1-x)Hal 2 (Hal = Bl, Br, J; x 6 -octahedra and of some compounds A 2 MnHal 4 (A = large cation) with unlinked MnHal 4 -tetrahedra were investigated between 4.2 K and 295 K. In Osub(h)-coordinated compounds tau decreases with increasing temperature, most strongly in the iodide namely by a factor of five. On the other hand I correspondingly increases to the same extent so that in all cases I x tau = const. That justifies the assumption of quantum yields independent of temperature with the ideal value of one. In Tsub(d)-coordinated compounds tau and I taken as such are constant in the whole temperature range. The Osub(h) - Tsub(d) contrast in tau and I is attributed to oscillator strengths either dependent on temperature or constant. In the case of MnHal 6 coordination the dependency on temperature may be expressed by the function ctgh(hνc/2kT), (νsub(J) = 80, νsub(Br) = 140, νsub(Cl) = 190 cm -1 ), νsup(Hal) very well corresponding with the mean value of the odd optical k = 0 phonons in the CdHal 2 lattice. (orig.) [de

  2. Superposition of the luminescence spectra of free and bound excitons in ZnP2-D48

    International Nuclear Information System (INIS)

    Stamov, Ion; Nemerenco, Lucretia; Ivanenco, Iurii; Syrbu, Nicolae

    2011-01-01

    The luminescence spectra of ZnP 2 tetragonal crystals doped Mn, Sn, Cd, Sb at 10 K emission lines of bound excitons is detected. In the spectra non-phonon emission lines of bound and free excitons and their phonon replicas is isolated. The emission lines by the levels of the axial center are described. The composition of the luminescence of free and bound excitons at the axial center is investigated. In the region of phonon replicas of free excitons observed enhancement of lines due to forbidden transitions involving the recombination of excitons. A model of optic recombination transitions of the axial centre is proposed

  3. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    Science.gov (United States)

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-08-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  4. Kinetics of non-equilibrium processes in non-linear crystals of lithium borates excited with synchrotron radiation

    CERN Document Server

    Ogorodnikov, I N; Isaenko, L I; Zinin, E I; Kruzhalov, A V

    2000-01-01

    The paper presents the results of a study of the LiB sub 3 O sub 5 and Li sub 2 B sub 4 O sub 7 crystals by the use of the luminescent spectroscopy with the sub-nanosecond time resolution under excitation of the high-power synchrotron radiation. The commonness in the origin of the non-equilibrium processes in these crystals as well as the observed differences in the luminescence manifestations is discussed.

  5. Kinetics of non-equilibrium processes in non-linear crystals of lithium borates excited with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikov, I.N. E-mail: ogo@dpt.ustu.ru; Pustovarov, V.A.; Isaenko, L.I.; Zinin, E.I.; Kruzhalov, A.V

    2000-06-21

    The paper presents the results of a study of the LiB{sub 3}O{sub 5} and Li{sub 2}B{sub 4}O{sub 7} crystals by the use of the luminescent spectroscopy with the sub-nanosecond time resolution under excitation of the high-power synchrotron radiation. The commonness in the origin of the non-equilibrium processes in these crystals as well as the observed differences in the luminescence manifestations is discussed.

  6. Photodegradation of luminescence in organic-ligand-capped Eu3+:LaF3 nano-particles

    International Nuclear Information System (INIS)

    King, Gavin G. G.; Taylor, Luke R.; Longdell, Jevon J.; Clarke, David J.; Quilty, J. W.

    2014-01-01

    The luminescence from europium doped lanthanum trifluoride (Eu 3+ :LaF 3 ) nano-crystals can be greatly enhanced by capping with β-diketonate organic ligands. Here, we report on photo-stability measurements for the case of nano-crystals capped with thenoyltrifluroacetone (TTA) and compared with those capped with an inactive ligand, oleic acid. With exposure to UV pump light, we observed significant decrease in fluorescence and change in emission spectrum of the TTA-capped nano-particles whilst the fluorescence lifetime remained approximately constant. After a dose of order 70 kJ cm −2 , the luminescence level was similar to that of oleic acid capped nano-crystals. We discuss possible mechanisms

  7. Luminescence properties of uranyl-acetate species

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Hannes; Moll, Henry [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Stumpf, Thorsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was applied to characterize uranium(VI)- acetate species based on their luminescence properties. In contrast to previous interpretations, no indications were detected for the existence of the 1: 3 complex.

  8. Calibration beads containing luminescent lanthanide ion complexes

    Science.gov (United States)

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  9. Towards Luminescence Dating Of Mosaic Glass

    Science.gov (United States)

    Galli, A.; Martini, M.; Sibila, E.; Villa, I.

    The possibility of dating archaeological glass by means of luminescent techniques has been investigated in recent years, despite the difficulties of this application, mainly linked to the amorphous structure of the material. We focused in particular on mosaic glass, after the encouraging results obtained on byzantine and medieval samples. Further studies were devoted to the comprehension of the luminescent mechanisms in silica glasses, and to the investigation of the relationships between luminescence, colouring or opacifier ions and crystalline phase of the vitreous matrix. The results of a study on the dosimetric characteristics of thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) of a few medieval blue-green mosaic glasses from the San Lorenzo church (Milan) are presented, and the experimental protocols established to identify their suitability for dating are discussed.

  10. Controlled fabrication of luminescent and magnetic nanocomposites

    Science.gov (United States)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  11. Recent developments in luminescent solar concentrators

    Science.gov (United States)

    van Sark, W. G. J. H. M.

    2014-10-01

    High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.

  12. Low temperature luminescence and charge carrier trapping in a cryogenic scintillator Li{sub 2}MoO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Spassky, D.A., E-mail: deris2002@mail.ru [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991 Moscow (Russian Federation); Nagirnyi, V. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Savon, A.E. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991 Moscow (Russian Federation); Kamenskikh, I.A. [Physics Faculty, Moscow State University, 119991 Moscow (Russian Federation); Barinova, O.P.; Kirsanova, S.V. [D. Mendeleyev University of Chemical Technology of Russia, 125047 Moscow (Russian Federation); Grigorieva, V.D.; Ivannikova, N.V.; Shlegel, V.N. [Nikolaev Institute of Inorganic Chemistry, SB RAS, 630090 Novosibirsk (Russian Federation); Aleksanyan, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); A.Alikhanyan National Science Laboratory, 2 Br. Alikhanyan Str., 0036 Yerevan (Armenia); Yelisseyev, A.P. [Sobolev Institute of Geology and Mineralogy, SB RAS, 630090 Novosibirsk (Russian Federation); Belsky, A. [Institute of Light and Matter, CNRS, University Lyon1, 69622 Villeurbanne (France)

    2015-10-15

    The luminescence and optical properties of promising cryogenic scintillator Li{sub 2}MoO{sub 4} were studied in the temperature region of 2–300 K. The data on luminescence spectra and decay characteristics, excitation spectra, thermostimulated luminescence curves and spectra as well as transmission and reflectivity spectra are presented for the single crystals grown by two different procedures, the conventional Czochralski method and the low-temperature gradient Czochralski technique. The bandgap of Li{sub 2}MoO{sub 4} is estimated from the analysis of transmission, luminescence excitation and reflectivity spectra. Up to three luminescence bands with the maxima at 1.98, 2.08 and 2.25 eV are detected in the emission spectra of crystals and their origin is discussed. In the thermoluminescence curves of both studied crystals, two high-intensity peaks were observed at 22 and 42 K, which are ascribed to the thermal release of self-trapped charge carriers. The coexistence of self-trapped electrons and holes allows one to explain the poor scintillation light yield of Li{sub 2}MoO{sub 4} at low temperatures. - Highlights: • Single crystals of Li{sub 2}MoO{sub 4} were grown by two methods. • The transparency cutoff (~4.3 eV) and bandgap values (<4.9 eV) are estimated. • The emission 2.08 eV is ascribed to self-trapped excitons and quenches at T>7 K. • Shallow traps considerably influence the energy transfer to emission centres. • Co-existence of self-trapped holes and electrons results in a low light yield.

  13. Luminescence properties of Yb:Nd:Tm:KY3F10 nanophosphor and thermal treatment effects

    International Nuclear Information System (INIS)

    Gomes, Laércio; Linhares, Horácio Marconi da Silva M.D.; Ichikawa, Rodrigo Uchida; Martinez, Luis Gallego; Ranieri, Izilda Marcia

    2015-01-01

    In this work, we present the spectroscopic properties of KY 3 F 10 (KY3F) nanocrystals activated with thulium and codoped with ytterbium and neodymium ions. The most important processes that lead to the thulium upconversion emissions in the blue region were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays and to determine the most important mechanisms involved in the upconversion process that populates 1 G 4 (Tm 3+ ) excited states. Analysis of the energy-transfer processes dynamics using selective pulsed-laser excitations in Yb:Nd:Tm, Nd:KY3F nanocrystals shows that the direct energy transfer from Nd 3+ to Tm 3+ ions is the mechanism responsible for the 78% of the blue upconversion luminescence in the Yb:Nd:Tm:KY3F when compared with the Yb:Nd:Tm:KY3F bulk crystal for an laser excitation at 802 nm. An investigation of the 1 G 4 level luminescence kinetic of Tm 3+ in Yb/Nd/Tm system revealed that the luminescence efficiency ( 1 G 4 ) starts with a very low value (0.38%) for the synthesized nanocrystal (as grown) and strongly increases to 97% after thermal treatment at 550 °C for 6 h under argon flow. As a consequence of the thermal treatment at T=550 °C, the contributions of the (Nd×Tm) (Up 1 ) and (Nd×Yb×Tm) (Up 2 ) upconversion processes to the 1 G 4 luminescence are 33% (Up 1 ) and 67% for Up 2 . Up 2 process represented by Nd 3+ ( 4 F 3/2 )→Yb 3+ ( 2 F 7/2 ) followed by Yb 3+ ( 2 F 5/2 )→Tm ( 3 H 4 )→Tm 3+ ( 1 G 4 ) was previously reported as the main mechanism to produce the blue luminescence in Yb:Nd:Tm:YLiF 4 and KY 3 F 10 bulk crystals. Results of X-ray diffraction analysis of nanopowder using the Rietveld method reveled that crystallite sizes remain unchanged (12–14 nm) after thermal treatments with T≤400 °C, while the 1 G 4 luminescence efficiency strongly increases from 0.38% (T=25 °C) to 12% (T=400 °C). Results shown that the Nd 3+ ions distribution has a concentration

  14. Luminescence basic concepts, applications and instrumentation

    CERN Document Server

    Virk, Hardev Singh

    2014-01-01

    The word luminescence was first used by a German physicist, Eilhardt Wiedemann, in 1888. He also classified luminescence into six kinds according to the method of excitation. No better basis of classification is available today. He recognized photoluminescence, thermoluminescence, electroluminescence, crystalloluminescence, triboluminescence, and chemiluminescence. The designations are obvious, characterized by the prefix. This Volume consists of 9 Chapters, including 8 Review Papers and one Case Study. The first two papers are based on OLEDs. Organic light emitting diodes (OLEDs) have been th

  15. Luminescence of Lanthanoides (Rare-earth elements) – Probes of structural variations in minerals

    International Nuclear Information System (INIS)

    Lenz, C.

    2015-01-01

    This cumulative PhD thesis summarises several individual studies on the luminescence of REE (rare-earth elements; i.e., trivalent lanthanoides), which are typically incorporated in accessory minerals such as zircon, titanite, monazite–(Ce) and xenotime–(Y). A main objective of these studies is to examine the powerfulness of REE luminescence-spectroscopy as structural probe. In particular, this concerns the potential use of REE3+ emissions in characterising structural disorder of their accessory host minerals as caused by radiation damage and/or compositional heterogeneity. Especially the former (i.e., mineral disorder due to radiation damage) is of interest to Earth and materials scientists, for instance for the understanding of changed physicochemical properties of initially crystalline materials that are affected by structural damage as caused by the radioactive decay of actinides. Moreover, a substantial contribution of the studies presented lies in the field of basic properties of the REE luminescence of natural accessory minerals. First, the investigations have addressed the identification of diverse REE species in diverse natural host minerals (which is done using synthetic REE-doped analogues). Second, factors that may bias the quantitative estimation of spectroscopic parameters have been studied, including effects of experimental parameters (crystal orientation and temperature) and the samples’ compositional heterogeneity. The results will be particularly useful to the growing community of Earth scientists who apply REE luminescence-spectroscopy in studying geological materials. (author) [de

  16. [Digital luminescence radiography. A new method of study in thoracic diagnosis at the intensive care unit].

    Science.gov (United States)

    Witte, G; Pothmann, W; Bause, H; Nicolas, V; Schulte am Esch, J; Bücheler, E

    1989-02-01

    The digital luminescence-radiography (DLR) technique relies on a complete digitalization of the X-ray image. Luminescence crystals on the imaging plate serve as an energy reservoir following their exposure to ionized radiation from any conventional X-ray source. A Helium-Neon laser stimulates the electrons in their high energy bands and therefore will be dropped back emitting luminescence. This luminescence is digitized by the DLR-System thus delivering a complete digital image to the image processor for subsequent processing and evaluation. The processed digital image is then recorded on a conventional film or a monitor screen. More than 3000 chest examinations using DLR have been performed on intensive care unit (ICU) patients at the University Hospital Eppendorf following the first eleven months since the clinical introduction of this new technique. The positive aspects of DLR such as high-contrast resolution and optimal reproducibility were clinically evaluated under ICU conditions. It was shown that DLR greatly improves the quality of the chest X-rays of all ICU patients and offers the following advantages: reproducibility, lateral chest projection, no insufficient exposure, reduction of exposure dose, electronical post-processing and storage, quality preserving digital storage and copying.

  17. Luminescence investigation of Yb3+/Er3+ codoped single LiYF4 microparticle

    International Nuclear Information System (INIS)

    Gao, Wei; Zheng, Hairong; He, Enjie; Lu, Ying; Gao, Fangqi

    2014-01-01

    Tetragonal phase LiYF 4 :Yb 3+ /Er 3+ microparticles are synthesized via facile hydrothermal method. Single LiYF 4 microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. It is found that single LiYF 4 :Yb 3+ /Er 3+ microparticle with sub-structure presents stronger upconversion luminescence emission and smaller intensity ratio of red to green emission than that from LiYF 4 :Yb 3+ /Er 3+ microparticle with no sub-structure. The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion luminescence emission are investigated. The current study suggests that the luminescence observation with single micropaticle can effectively avoid the influence of environment and neighbor particles, which is important for investigating the luminescence properties of micro- or nano-crystals and for extending their application. - Highlights: • Single LiYF 4 microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. • Single LiYF 4 microparticle with different morphology exhibits different fluorescence emission intensity and intensity ratio of red to green emission. • The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion emission are investigated

  18. Comparison of temperature sensing of the luminescent upconversion and ZnCdS nanoparticles

    Science.gov (United States)

    Yanina, I. Yu.; Volkova, E. K.; Sagaidachnaya, E. A.; Konyukhova, J. G.; Kochubey, V. I.; Tuchin, V. V.

    2018-02-01

    The luminescence spectra of upconversion nanoparticles (UCNPs) and ZnCdS nanoparticles (ZnCdSNPs) were measured and analyzed in a wide temperature range: from room to human body and further to a hyperthermic temperature resulting in tissue morphology change. The results show that the luminescence signal of UCNPs and ZnCdSNPs placed within the tissue is reasonably good sensitive to temperature change and accompanied by phase transitions of lipid structures of adipose tissue. The most likely that the multiple phase transitions are associated with the different components of fat cells, such as phospholipids of cell membrane and lipids of fat droplets. In the course of fat cell heating, lipids of fat droplet first transit from a crystalline form to a liquid crystal form and then to a liquid form, which is characterized by much less scattering. The results of phase transitions of lipids were observed as the changes in the slope of the temperature dependence of the intensity of luminescence of the film with nanoparticles embedded into tissue. The obtained results confirm a high sensitivity of the luminescent UCNPs and ZnCdSNPs to the temperature variations within thin tissue samples and show a strong potential for the controllable tissue thermolysis.

  19. Review of present trends in luminescence research

    International Nuclear Information System (INIS)

    Williams, F.; Delaware Univ., Newark

    1981-01-01

    The difficulties of a comprehensive review of the broad and diverse branches of molecular and solid-state luminescence research are noted. This review is thus limited to selective topics. Some general concepts and trends are then introduced, including: luminescence excitation as a collective excitation of a many-body problem, encompassing in some cases the source and probe in its formulation; continuing trends towards extremal conditions of experiments and towards inhomogeneous and structured materials, from man-made superlattices to biological materials; and increased attention to applications of luminescence research to lamps, displays, solar devices and biological research. Representative recent and new specific research areas include: site selection spectroscopy and 'hole burning'; picosecond delayed coherent anti-Stokes Raman scattering; computer simulation of dynamical processes in luminescence; electron-hole expansion from the Fermi pressure of e-h plasmas; and hot electron phenomena and hot luminescence. Finally some pending problems in luminescence research, such as reconciling the configuration coordinate model and the electronic band theory and clarifying multi-phonon non-radiative processes, are discussed. (orig.)

  20. Plasmon-enhanced optically stimulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, E. J.; Baffa, O. [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Ramos, A. P., E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Quimica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  1. Plasmon-enhanced optically stimulated luminescence

    International Nuclear Information System (INIS)

    Guidelli, E. J.; Baffa, O.; Ramos, A. P.

    2015-10-01

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  2. Silica nanoparticles with a substrate switchable luminescence

    International Nuclear Information System (INIS)

    Bochkova, O D; Mustafina, A R; Fedorenko, S V; Konovalov, A I

    2011-01-01

    Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.

  3. Thermally and optically stimulated radiative processes in Eu and Y co-doped LiCaAlF6 crystal

    International Nuclear Information System (INIS)

    Fukuda, Kentaro; Yanagida, Takayuki; Fujimoto, Yutaka

    2015-01-01

    Yttrium co-doping was attempted to enhance dosimeter performance of Eu doped LiCaAlF 6 crystal. Eu doped and Eu, Y co-doped LiCaAlF 6 were prepared by the micro-pulling-down technique, and their dosimeter characteristics such as optically stimulated luminescence (OSL) and thermally stimulated luminescence (TSL) were investigated. By yttrium co-doping, emission intensities of OSL and TSL were enhanced by some orders of magnitude. In contrast, scintillation characteristics of yttrium co-doped crystal such as intensity of prompt luminescence induced by X-ray and light yield under neutron irradiation were degraded

  4. Optical characterization of luminescent silicon nanocrystals embedded in glass matrices

    Energy Technology Data Exchange (ETDEWEB)

    Debieu, Olivier

    2008-12-16

    Interstellar dust in nebulae and in the Diffuse Interstellar Medium (DISM) of galaxies contains a component which exhibits efficient visible-near infrared luminescence ranging from 500 to 1000 nm, known as Extended Red Emission (ERE). Silicon nanocrystals (nc-Si) are discussed as possible carriers of the ERE. We employed the accelerator facilities of the Institute of Solid State Physics of the University of Jena to implant Si ions into fused silica windows. An excess concentration of silicon atoms is thus produced in the host SiO{sub 2} matrix which, by applying an annealing at 1100 C, condensates to silicon nanoparticles and crystallizes. Although the condensation and crystallization occur after an annealing of one minute,10, 15 the samples were annealed during one hour in order to well-passivate the nc-Si, that means, to reduce effectively the number of Si-dangling bonds at the nc-Si surface that are efficient non-radiative recombination centers. 10, 16 Upon excitation with UV light, most of our nc-Si/SiO{sub 2} samples revealed strong PL. We implanted into our luminescent nc-Si/SiO{sub 2} systems other atomic elements, as for instance magnesium and calcium, which form silicates if their oxide is combined with SiO{sub 2}. The purpose is to simulate the conditions for silicates containing nc-Si. In order to understand the effect of the incorporation of foreign atoms on the PL properties of our nc-Si/SiO{sub 2} systems, we proceeded to similar experiments with Er and Ge. As has been demonstrated by several authors, 17, 18 the presence of nc-Si in a glass matrix enhances considerably the emission of Er{sup 3+} ions at 1.536{mu}m. At the same time, the PL of nc-Si is considerably quenched. Since the solubility of Er in crystalline silicon is about 2 orders of magnitude lower than in SiO{sub 2}, the optically active Er{sup 3+} ions are believed to be localized outside the nc-Si core, demonstrating that ions present in the host SiO{sub 2} matrix influence the PL

  5. Theory of fluorescence in photonic crystals

    International Nuclear Information System (INIS)

    Vats, Nipun; John, Sajeev; Busch, Kurt

    2002-01-01

    We present a formalism for the description of fluorescence from optically active materials embedded in a photonic crystal structure possessing a photonic band gap or pseudogap. An electromagnetic field expansion in terms of Bloch modes of the crystal is used to develop the equations for fluorescence in terms of the local density of photon modes available to the emitting atoms in either the high or low dielectric regions of the crystal. We then obtain expressions for fluorescence spectra and emission dynamics for luminescent materials in photonic crystals. The validity of our formalism is demonstrated through the calculation of relevant quantities for model photon densities of states. The connection of our calculations to the description of realistic systems is discussed. We also describe the consequences of these analyses on the accurate description of the interaction between radiative systems and the electromagnetic reservoir within photonic crystals

  6. X-ray photoemission spectroscopy investigation of CaTiO3:Eu for luminescence property: effect of Eu3+ ion

    International Nuclear Information System (INIS)

    Wang, Kaichen; Zhao, Baijun; Gao, Lu

    2016-01-01

    Graphical abstract: The influence on the photoluminescent performance due to the electronic structure change in Eu-doped CaTiO 3 of the specific core-level and valence band spectrum via X-ray photoemission spectroscopy were characterized. - Highlights: • Single phase CaTiO 3 and CaTiO 3 : Eu crystals were prepared under mild hydrothermal method. • Crystal structure, doping level and the relations to their luminescent property were discussed. • Charge compensation mechanism was discussed via valance band spectrum by XPS. - Abstract: Charge compensation of on-site Eu 4f–5d transition that determines the luminescent performance was confirmed with valance band spectrum. Influence of photoelectrons from CaTiO 3 : Eu to the corresponding luminescent performance was discussed based on the crystal structure, doping level and the relations to their luminescent property. This paper is important to further optimize the luminescent performance for improving the efficiency and reducing the cost in light emitting diode industry.

  7. Luminescence studies of molecular materials

    International Nuclear Information System (INIS)

    Miller, P.F.

    2000-01-01

    Molecular materials have been widely studied for their potential uses in novel semiconductor devices. They occupy the intellectually interesting area between molecular and bulk descriptions of matter, and as such often have unique and useful characteristics. The design and engineering of these structures is inter-disciplinary in its nature, embracing the fields of physics, electrical engineering and both synthetic and physical chemistry. In this thesis luminescence studies of molecular materials will be presented that probe the nature of the excited states in two promising semiconductor systems. Luminescence techniques provide a powerful and sensitive tool in the investigation of kinetic pathways of radiative and non-radiative emission from these samples. This is particularly appropriate here, as the materials being studied are of potential use in electroluminescent devices. The suitability of photoluminescence techniques comes from both the electroluminescence and photoluminescence sharing the same emitting state. The first class of material studied here is an organic semiconducting polymer, cyano-substituted polyphenylenevinylene (CN-PPV). Conjugated polymers combine semiconducting electronic properties with favourable processing properties and offer the possibility of tuning their optical and electronic properties chemically. The cyanosubstitution increases the electron affinity of the polymer backbone, facilitating electron injection in light-emitting diodes. The polymers are soluble in solvents such as toluene and chloroform due the presence of alkoxy sidegroups. CdSe semiconductor nanocrystals are the other class of material characterised in this work. Semiconductor nanocrystals exhibit interesting size-tunable optical properties due to the confinement of the electronic wave functions. Characterisation of samples produced by different synthetic routes has been carried out to demonstrate the advantages of a novel synthetic method in terms of physical and

  8. Recombination luminescence in irradiated silicon-effects of uniaxial stress and temperature variations.

    Science.gov (United States)

    Jones, C. E.; Compton, W. D.

    1971-01-01

    Demonstration that luminescence in irradiated silicon consists of a spectral group between 0.80 and 1.0 eV which seems to be independent of impurities, while a lower energy group between 0.60 and 0.80 eV is seen only in pulled crystals. The small halfwidth and temperature dependence of the sharp zero-phonon lines observed in these spectra indicate that the luminescence arises from a bound-to-bound transition. A model is proposed for the transition mechanism. Stress data taken on the 0.79-eV zero-phonon line in pulled crystals can be fit by either a tetragonal 100 (in brackets) defect symmetry or by conduction-band splitting effects. It is suggested that the 0.79-eV zero-phonon line and the 0.60- to 0.80-eV spectral group arise from the EPR G-15 center. Stress data on a zero-phonon line at 0.97 eV associated with the 0.80- to 1.0-eV spectral group can be explained by a trigonal 111 (in brackets) defect. The divacancy is tentatively suggested as responsible for this luminescence spectra.

  9. Crystal growth and characterization of calcium metaborate scintillators

    Czech Academy of Sciences Publication Activity Database

    Fujimoto, Y.; Yanagida, T.; Kawaguchi, N.; Fukuda, K.; Totsuka, D.; Watanabe, K.; Yamazaki, A.; Chani, V.; Nikl, Martin; Yoshikawa, A.

    2013-01-01

    Roč. 703, MAR (2013), s. 7-10 ISSN 0168-9002 Institutional support: RVO:68378271 Keywords : Czochralski method * single crystal * scintillator * calcium metaborate * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.316, year: 2013

  10. Thermally stimulated luminescence and photoluminescence ...

    Indian Academy of Sciences (India)

    2012-01-13

    Jan 13, 2012 ... red to ultraviolet, which depends on the crystal structure of host materials ..... to strong anisotropic nature of the fine structure (fs) transi- tion(s), other .... 39 2065. Pan Shilie, Wu Yicheng, Fu Peizhen, Zhang Guochun, Li Zhihua,.

  11. Efficient and thermally stable red luminescence from nano-sized phosphor of Gd6MoO12:Eu3+

    International Nuclear Information System (INIS)

    Qin, Lin; Wei, Donglei; Huang, Yanlin; Kim, Sun Il; Yu, Young Moon; Seo, Hyo Jin

    2013-01-01

    A novel red-emitting nano-phosphor of Eu 3+ -doped Gd 6 MoO 12 was successfully synthesized by the Pechini method. The crystalline phase was confirmed by X-ray powder diffraction analysis. The morphology of the nano-phosphor was analyzed by scanning electron microscopy, indicating a good crystallization with particles smaller than 500 nm. The luminescence properties such as photoluminescence spectra and decay curves were investigated. The phosphors can be efficiently excited by near-ultraviolet (near-UV) light and exhibit a bright red luminescence around 613 nm ascribed to the forced electric dipole transition 5 D 0 → 7 F 2 of Eu 3+ ions. The thermal stabilities were investigated from the temperature-dependent luminescence decay curves (lifetimes) and spectra intensities. The luminescence properties in relation to applications in white light-emitting diodes (W-LEDs) such as the absolute luminescence quantum efficiency, excitation wavelength, and color coordinates were discussed. The Gd 6 MoO 12 :Eu 3+ nano-phosphor is a promising red-emitting candidate for the fabrication of W-LEDs with near-UV chips

  12. Luminescence dating at Rose cottage cave: a progress report

    CSIR Research Space (South Africa)

    Woodborne, S

    1997-10-01

    Full Text Available Deal with infrared-stimulated luminescence and thermoluminescence dates from Rose Cottage Cave in South Africa. Discrepancy between luminescence and radiocarbon dates; Concentration of radioactive elements in sediments before and after leaching...

  13. Green and red luminescence in co-precipitation synthesized Pr:LuAG nanophosphor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. Arun; Kumar, K. Ashok; Gunaseelan, M.; Senthilselvan, J., E-mail: jsselvan@hotmail.com [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai–600 025, Tamil Nadu (India); Asokan, K. [Materials Science Group, Inter University Accelerator Centre, New Delhi-110067 (India)

    2016-05-06

    Pr:LuAG nanophosphor is an effective candidate in magnetic resonance imaging coupled positron emission tomography (MRI-PET) for medical imaging and scintillator applications. LuAG:Pr (0.05, 0.15 mol%) nanoscale ceramic powders were synthesized by co-precipitation method using urea as precipitant. Effect of antisite defect on structure and luminescence behavior was investigated. Pr:LuAG nanoceramic powders are found crystallized in cubic structure by high temperature calcination at 1400 °C and it shows antisite defect. HR-SEM analysis revealed spherically shaped Pr:LuAG nanoceramic particulate powders with ∼100 nm size. By the excitation at 450 nm, Pr:LuAG nanophosphor exhibit green to red luminescence in the wavelength range of 520 to 680 nm, which is originated from multiplet transition of Pr{sup 3+} ions.

  14. Synthesis of luminescent bioapatite nanoparticles for utilization as a biological probe

    International Nuclear Information System (INIS)

    Doat, A.; Pelle, F.; Gardant, N.; Lebugle, A.

    2004-01-01

    A europium-doped apatitic calcium phosphate was synthesized at low temperature (37 degree sign C) in water-ethanol medium. This apatite was calcium-deficient, rich in hydrogen phosphate ions, and poorly crystallized with nanometric sized crystallites. It is similar to the mineral part of calcified tissues of living beings and is thus a biomimetic material. The substitution limit of Eu 3+ for Ca 2+ ions in this type of bioapatite ranged about 2-3%. The substitution at this temperature was facilitated by vacancies in the calcium-deficient apatite structure. As the luminescence of europium is photostable, the doped apatite could be employed as a biological probe. Internalization of these nanoparticles by human pancreatic cells in culture was observed by luminescence confocal microscopy

  15. Luminescent polymethyl methacrylate modified by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Guilherme F. [Faculdade de Tecnologia de Sao Paulo (FATEC-ZL), Sao Paulo, SP (Brazil); Forster, Pedro L.; Marchini, Leonardo G.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: dfparra@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Thin films of PMMA (polymethyl methacrylate) doped with luminescent complexes have been studied and developed for applications in advanced technologies. The problem of stability of these films is focused in this study. Films stabilization by reaction with fluorinated monomers is a recent study that aims to increase its luminescence properties for long time. The films were prepared by dilution of PMMA in chloroform with addition of europium complex, at proportion of 5% by weight of polymer. The luminescent polymer films were obtained by casting. Thin layer slides of the film were separated in three parts. One was reacted with fluorinated monomers (C{sub 2}F{sub 4}) in closed reactor for 48 hours. A second part was reacted with C{sub 2}F{sub 4} after irradiation in gamma source at 5 kGy in simultaneous process. The last part was used as obtained. The luminescent polymer matrices were characterized using the techniques of infrared (FTIR) and thermogravimetry (TGA/DTG). Samples of the films were, in presence of fluorine monomers, exposed to ionizing radiation in dose of 5 kGy, for react with monomers in the doped polymer surface. In this case the effects of radiation were evaluated on the luminescent films. (author)

  16. Luminescent polymethyl methacrylate modified by gamma radiation

    International Nuclear Information System (INIS)

    Morais, Guilherme F.; Forster, Pedro L.; Marchini, Leonardo G.; Lugao, Ademar B.; Parra, Duclerc F.

    2011-01-01

    Thin films of PMMA (polymethyl methacrylate) doped with luminescent complexes have been studied and developed for applications in advanced technologies. The problem of stability of these films is focused in this study. Films stabilization by reaction with fluorinated monomers is a recent study that aims to increase its luminescence properties for long time. The films were prepared by dilution of PMMA in chloroform with addition of europium complex, at proportion of 5% by weight of polymer. The luminescent polymer films were obtained by casting. Thin layer slides of the film were separated in three parts. One was reacted with fluorinated monomers (C 2 F 4 ) in closed reactor for 48 hours. A second part was reacted with C 2 F 4 after irradiation in gamma source at 5 kGy in simultaneous process. The last part was used as obtained. The luminescent polymer matrices were characterized using the techniques of infrared (FTIR) and thermogravimetry (TGA/DTG). Samples of the films were, in presence of fluorine monomers, exposed to ionizing radiation in dose of 5 kGy, for react with monomers in the doped polymer surface. In this case the effects of radiation were evaluated on the luminescent films. (author)

  17. Two luminescent frameworks constructed from lead(II) salts with carboxylate ligands containing dinuclear lead(II) units

    International Nuclear Information System (INIS)

    Zhu Xiandong; Li Xiaoju; Liu Qingyan; Lue Jian; Guo Zhengang; He Jinrun; Li Yafeng; Cao Rong

    2007-01-01

    Two luminescent Pb(II) coordination frameworks containing dinuclear lead(II) units, [Pb(PYDC)(H 2 O)] n (1) and [Pb(HPHT)] n (2) have been prepared by the self-assembly of lead(II) salts with pyridinecarboxylate and benzenecarboxylate. Single-crystal X-ray diffraction analyses reveal that compound 1 is a three-dimensional architecture consisting of Pb 2 O 2 dimeric building units, whereas compound 2 is a two-dimensional layer structure containing one-dimensional lead-oxide chains. The luminescent properties of 1 and 2 have been investigated in the solid state at room temperature, indicating structure-dependent photoluminescent properties of the coordination frameworks. - Graphical abstract: Two luminescent Pb(II) coordination frameworks, [Pb(PYDC)(H 2 O)] n (1) and [Pb(HPHT)] n (2) have been prepared. Single-crystal analyses reveal that compound 1 is a three-dimensional architecture consisting of Pb 2 O 2 dimeric building units, whereas compound 2 is a two-dimensional layer structure containing one-dimensional lead-oxide chains. The luminescent properties have been investigated, indicating structure-dependent photoluminescent properties of the coordination frameworks

  18. Luminescence enhancement of uranyl ion by benzoic acid in acetonitrile

    International Nuclear Information System (INIS)

    Satendra Kumar; Maji, S.; Joseph, M.; Sankaran, K.

    2014-01-01

    Uranyl ion is known for its characteristic green luminescence and therefore luminescence spectroscopy is a suitable technique for characterizing different uranyl species. In aqueous medium, luminescence of uranyl ion is generally weak due to its quenching by water molecules and therefore in order to enhance the luminescence of uranyl ion in aqueous medium, luminescence enhancing reagents such as H 3 PO 4 , H 2 SO 4 , HCIO 4 have been widely used. The other method to enhance the uranyl luminescence is by ligand sensitized luminescence, a method well established for lanthanides. In this work, luminescence of uranyl ion is found to be enhanced by benzoic acid in acetonitrile medium. In aqueous medium benzoic acid does not enhance the uranyl luminescence although it forms 1:1 and 1:2 complexes with uranyl ion. Luminescence spectra of uranyl benzoate revealed that enhancement is due to sensitization of uranyl luminescence by benzoate ions. UV-Vis spectroscopy has been utilized to characterize the specie formed in the in acetonitrile medium. UV-Vis spectroscopy along with luminescence spectra revealed that the specie to be tribenzoate complex of uranyl (UO 2 (C 6 H 5 COO) 3 ) - having D 3 h symmetry. (author)

  19. Study of the liquid water luminescence induced by charged particles

    International Nuclear Information System (INIS)

    Rusu, Mircea; Stere, Oana; Haiduc, Maria; Caramete, Laurentiu

    2004-01-01

    Many observations suggested that liquid water (with impurities) could give a luminescence output when irradiated with charged particles. We investigate theoretical and practical possibility of detecting such luminescence. Preliminary results on this possibility are presented, and a layout of the device proposed for measuring luminescence is given. (authors)

  20. Cleavage Luminescence from Cleaved Indium Phosphide

    International Nuclear Information System (INIS)

    Dong-Guang, Li

    2008-01-01

    We outline the experiments performed to gain further information about the structure and properties of cleaved InP surfaces. The experiments involved detecting the luminescence produced after cleaving thin InP plates within a high vacuum, by a process of converting the luminescence to an electrical signal which could be amplified and measured accurately. The experimental results show that the detected luminescence durations from cleaved InP are usually only about 10μs. It is believed that this time represents the time of travel of the crack with the actual recombination time being much shorter. Strong signals could also be picked up from cleaved InP in air

  1. [Synthesis of reserve polyhydroxyalkanoates by luminescent bacteria].

    Science.gov (United States)

    Boiandin, A N; Kalacheva, G S; Rodicheva, E K; Volova, T G

    2008-01-01

    The ability of marine luminescent bacteria to synthesize polyesters of hydroxycarboxylic acids (polyhydroxyalkanoates, PHA) as reserve macromolecules was studied. Twenty strains from the collection of the luminescent bacteria CCIBSO (WDSM839) of the Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, assigned to different taxa (Photobacterium leiognathi, Ph. phosphoreum, Vibrio harveyi, and V. fischeri) were analyzed. The most productive strains were identified, and the conditions ensuring high polymer yields in batch culture (40-70% of the cell dry mass weight) were determined. The capacity of synthesizing two- and three-component polymers containing hydroxybutyric acid as the main monomer and hydroxyvaleric and hydroxyhexanoic acids was revealed in Ph. leiognathi and V. harveyi strains. The results allow luminescent microorganisms to be regarded as new producers of multicomponent polyhydroxyalkanoates.

  2. Process for obtaining luminescent glass layers

    International Nuclear Information System (INIS)

    Heindi, R.; Robert, A.

    1984-01-01

    Process for obtaining luminescent glass layers, application to the production of devices provided with said layers and to the construction of photoscintillators. The process comprises projecting onto a support, by cathodic sputtering, the material of at least one target, each target including silica and at least one chemical compound able to give luminescent centers, such as a cerium oxide, so as to form at least one luminescent glass layer of the said support. The layer or layers formed preferably undergo a heat treatment such as annealing in order to increase the luminous efficiency thereof. It is in this way possible to form a scintillating glass layer on the previously frosted entrance window of a photomultiplier in order to obtain an integrated photoscintillator

  3. Cerium luminescence in nd0 perovskites

    International Nuclear Information System (INIS)

    Setlur, A.A.; Happek, U.

    2010-01-01

    The luminescence of Ce 3+ in perovskite (ABO 3 ) hosts with nd 0 B-site cations, specifically Ca(Hf,Zr)O 3 and (La,Gd)ScO 3 , is investigated in this report. The energy position of the Ce 3+ excitation and emission bands in these perovskites is compared to those of typical Al 3+ perovskites; we find a Ce 3+ 5d 1 centroid shift and Stokes shift that are larger versus the corresponding values for the Al 3+ perovskites. It is also shown that Ce 3+ luminescence quenching is due to Ce 3+ photoionization. The comparison between these perovskites shows reasonable correlations between Ce 3+ luminescence quenching, the energy position of the Ce 3+ 5d 1 excited state with respect to the host conduction band, and the host composition. - Graphical abstract: Ce 3+ decay times versus temperature for perovskites with nd 0 B-site cations.

  4. Optical and magnetic properties of new luminescent inorganic materials

    International Nuclear Information System (INIS)

    Acevedo, R; Hurtado, O.F; Poblete, V; Navarro, G

    1999-01-01

    The theoretical and experimental study of radiative and non radiative processes in luminescent inorganic materials is a permanent topic of interest in lineal and non lineal physics. This article aims to present a review and update of the mechanistic aspects associated with spectral intensities in stoichiometric cubic crystals type elpasolite (Cs-2NaLnZ-6), where Ln 3+ is a positive trivalent lanthanide and Z represents a halogen, essentially fluorine, chlorine and bromine, which belong to the spatial Fm3m group. From a theoretical point of view we will be interested in focusing our attention on cutting edge topics such as: the preparation of new models and calculus formalisms for the case of electronic excitations prohibited by parity and electronic spin. We wish to show the set of different complementary and competitive processes that define the relative force values of the electric oscillator and the magnetic one for cubic crystals. We will illustrate our work with a novel system, Cs-2NaEuCI-6, which has theoretical and experimental complexities with unsuspected characteristics

  5. Series of chiral interpenetrating 3d-4f heterometallic MOFs: Luminescent sensors and magnetic properties

    Science.gov (United States)

    Zhang, Xiaolei; Chen, Chen; Liu, Xiaoli; Gao, Peng; Hu, Ming

    2017-09-01

    Series of chiral 3d-4f heterometallic MOFs based on a multidentate terpyridyl carboxylic acid ligand have been synthesized under the solvothermal conditions, namely, [LnZnL(CO3)2(H2O)]n (Ln = Eu (1), Gd (2), Dy (3), Ho (4), Er (5), Tm (6), Yb (7), Lu (8)) (HL = 4‧-(4-carboxyphenyl)-2,2‧:6‧,2″-terpyridine). Compounds 1-8 were structurally characterized by the elemental analyses, infrared spectra, and single crystal X-ray diffractions. Compounds 1-8 exhibit the chiral interpenetrating 3D frameworks. Interestingly, 1 can serve as the luminescent sensor to detect nitrobenzene molecules with high sensitivity. The investigations on CD spectra of single crystals clearly assigned the Cotton effect, indicating that there exist two chiral enantiomers of 1-8 in the course of crystallization. The magnetic properties of 2 and 7 were exploited, respectively.

  6. Luminescent emission of LiF: Mg, Ti exposed to UV radiation

    International Nuclear Information System (INIS)

    Estrada G, A.; Castano M, V.M.; Cruz Z, E.; Garcia F, F.

    2002-01-01

    It was investigated the luminescent emission stimulated by heat (Tl) of LiF: Mg, Ti crystals which were exposed to UV radiation coming from a mercury lamp. Since this crystal depends on the thermal history, it has been used a thermal treatment consisting of a baking at 380 C during one hour for each reading and they were irradiated with UV. The brilliance curves between 5 and 840 minutes of exposure in the face of UV light were obtained. An important loss in the response, starting from 150 minutes of irradiation was observed. Also the relative intensity of the brilliance curve decay when the crystals being stored in darkness and room temperature conditions, which is according to the results in the literature about. (Author)

  7. Thermal quenching of luminescence processes in feldspars

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Duller, G.A.T.

    1995-01-01

    , which display very different behaviour. The first involves the internal transitions of common transition metal ions. The second is typical of centres not displaying excited states within the band gap that are likely to arise from direct recombination between the conduction band and the ground state......The technique of optically stimulated luminescence has important uses in the dose evaluation of irradiated feldspars. The luminescence process involves the eviction of electrons from donor traps, charge transfer through the conduction band, and recombination at acceptor sites; each...

  8. Further results on cerium fluoride crystals

    International Nuclear Information System (INIS)

    Anderson, S.; Auffray, E.; Aziz, T.; Baccaro, S.; Banerjee, S.; Bareyre, P.; Barone, L.E.; Borgia, B.; Boutet, D.; Burq, J.P.; Chemarin, M.; Chipaux, R.; Dafinei, I.; D'Atanasio, P.; De Notaristefani, F.; Dezillie, B.; Dujardin, C.; Dutta, S.; Faure, J.L.; Fay, J.; Ferrere, D.; Francescangeli, O.; Fuchs, B.A.; Ganguli, S.N.; Gillespie, G.; Goyot, M.; Gupta, S.K.; Gurtu, A.; Heck, J.; Herve, A.; Hillemanns, H.; Holdener, F.; Ille, B.; Joensson, L.; Kierstead, J.; Krenz, W.; Kway, W.; Le Goff, J.M.; Lebeau, M.; Lebrun, P.; Lecoq, P.; Lemoigne, Y.; Loomis, G.; Lubelsmeyer, K.; Madjar, N.; Majni, G.; El Mamouni, H.; Mangla, S.; Mares, J.A.; Martin, J.P.; Mattioli, M.; Mauger, G.J.; Mazumdar, K.; Mengucci, P.; Merlo, J.P.; Moine, B.; Nikl, N.; Pansart, J.P.; Pedrini, C.; Poinsignon, J.; Polak, K.; Raghavan, R.; Rebourgeard, P.; Rinaldi, D.; Rosa, J.; Rosowsky, A.; Sahuc, P.; Samsonov, V.; Sarkar, S.; Schegelski, V.; Schmitz, D.; Schneegans, M.; Seliverstov, D.; Stoll, S.; Sudhakar, K.; Svensson, A.; Tonwar, S.C.; Topa, V.; Vialle, J.P.; Vivargent, M.; Wallraff, W.; Weber, M.J.; Winter, N.; Woody, C.; Wuest, C.R.; Yanovski, V.

    1993-01-01

    A systematic investigation of the properties of cerium fluoride monocrystals has been performed by the 'Crystal Clear' collaboration in view of a possible use of such crystals for the construction of high precision electromagnetic calorimeters for the future generation of high luminosity accelerators. A large sample of different crystals grown by several producers has been studied. The spectroscopic characteristics, the transmission, luminescence and excitation spectra and the decay time curves are analysed. The light yield of the different crystals is measured with photomultipliers and Si photodiodes and compared to reference standards like BGO and NaI(Tl). The radiation damage behaviour is then presented for γ and neutron irradiations, at different doses and dose rates, including thermal and optical bleaching. (orig.)

  9. Quasi-self-trapped Frenkel-exciton near-UV luminescence with large Stokes shift in wide-bandgap Cs4PbCl6 nanocrystals

    Science.gov (United States)

    Zhang, Yumeng; Fan, Baolu; Liu, Yuzhen; Li, Hongxia; Deng, Kaiming; Fan, Jiyang

    2018-04-01

    Inorganic lead halide perovskite nanocrystals (NCs) have attracted great interest owing to their superior luminescence and optoelectronic properties. In comparison to cubic CsPbX3 (X = Cl, Br, or I) that has visible luminescence, trigonal Cs4PbX6 has a much larger bandgap and distinct optical properties. Little has been known about the luminescence properties of the Cs4PbX6 NCs. In this study, we synthesize the well-crystallized Cs4PbCl6 NCs with sizes of 2.2-11.8 nm, which exhibit stable and near-UV luminescence (with a lifetime of 19.7-24.2 ns) with a remarkable quantum confinement effect at room temperature. In comparison to the negligible Stokes shift in the CsPbCl3 NCs, the Stokes shift of the Cs4PbCl6 NCs is very large (0.91 eV). The experimental results in combination with the first-principles calculations reveal that the near-UV luminescence of the Cs4PbCl6 NCs stems from the Frenkel excitons self-trapped in the isolated PbCl64- octahedrons. This is different from the CsPbCl3 NCs whose luminescence originates from the free Wannier excitons. The theoretical model based on the lattice relaxation is proposed to account for the large Stokes shift and its abnormal decrease with the decreasing particle size.

  10. Preparation, luminescence and structural properties of RE-doped RbLaS.sub.2./sub. compounds

    Czech Academy of Sciences Publication Activity Database

    Havlák, Lubomír; Jarý, Vítězslav; Nikl, Martin; Boháček, Pavel; Bárta, J.

    2011-01-01

    Roč. 59, č. 16 (2011), 6219-6227 ISSN 1359-6454 R&D Projects: GA TA ČR TA01011017; GA AV ČR KAN300100802 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : X-ray diffraction * optical materials * crystal growth * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.755, year: 2011

  11. Luminescence of Ce3+ ions in Y3Al5O12 - Y3Ga5O12 solid solution

    International Nuclear Information System (INIS)

    Zorenko, Yu.V.; Nazar, I.V.; Limarenko, L.N.; Pashkovskij, M.V.

    1996-01-01

    Regularities of changes in spectral and energetic characteristics of the Ce 3+ ions radiation in the Y 3 Al 5-x Ga x O 12 solid solutions, related to change in the matrix crystal field force and dissipation of the luminescence excitation energy because of transfers between the valency zone ceiling and the Ce 3+ excited ion basis state are obtained. 9 refs., 3 figs., 1 tab

  12. Polymorphism of Ag29(BDT)12(TPP)43- cluster: interactions of secondary ligands and their effect on solid state luminescence.

    Science.gov (United States)

    Nag, Abhijit; Chakraborty, Papri; Bodiuzzaman, Mohammad; Ahuja, Tripti; Antharjanam, Sudhadevi; Pradeep, Thalappil

    2018-05-31

    We present the first example of polymorphism (cubic & trigonal) in single crystals of an atomically precise monolayer protected cluster, Ag29(BDT)12(TPP)43-. We demonstrate that C-Hπ interactions of the secondary ligands (TPP) are dominant in a cubic lattice compared to a trigonal lattice, resulting in a greater rigidity of the structure, which in turn, results in a higher luminescence efficiency in it.

  13. Preparation and up-conversion luminescence of SrAlF{sub 5}:Yb{sup 3+}/Er{sup 3+} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China); Hua, Ruinian, E-mail: rnhua@dlnu.edu.cn [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Zhang, Wei; Feng, Zhiqing; Tang, Dongxin; Na, Liyan [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Chen, Baojiu, E-mail: chenmbj@sohu.com [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China)

    2014-03-05

    Graphical abstract: The SrAlF{sub 5} nanorods co-doped with various Yb{sup 3+}/Er{sup 3+} concentrations was synthetized via a microemulsion-hydrothermal process for the first time. It was found that the optimum doping concentration of Yb{sup 3+} and Er{sup 3+} in SrAlF{sub 5} matrix was about 4 mol%. Furthermore, the temperature effect of upconversion luminescence was investigated. It was also found that the post heat-treatment could greatly improve upconversion luminescence. Highlights: • SrAlF{sub 5}:Yb{sup 3+}/Er{sup 3+} nanorods were synthesized via a microemulsion-hydrothermal process. • Crystal structure and morphology were characterized by using XRD and FESEM. • The upconversion luminescence intensity depend on LD working current was studied. • The post heat-treatment could greatly improve upconversion luminescence. -- Abstract: Yb{sup 3+} and Er{sup 3+} co-doped SrAlF{sub 5} nanorods with average diameter of 35 nm and average length of 400 nm were synthesized via a microemulsion-hydrothermal process, and their crystal structure and morphology were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The optimum doping concentration of Yb{sup 3+}/Er{sup 3+} in SrAlF{sub 5} matrix was about 4 mol%. The upconversion luminescence intensity dependence on the laser diode (LD) working current was studied and the possible upconversion mechanism was analyzed. Furthermore, the temperature effect of upconversion luminescence was investigated. It was also found that the post heat-treatment could greatly improve upconversion luminescence.

  14. Table-top instrumentation for time-resolved luminescence spectroscopy of solids excited by nanosecond pulse of soft X-ray source and/or UV laser

    International Nuclear Information System (INIS)

    Bruza, Petr; Fidler, Vlastimil; Nikl, Martin

    2011-01-01

    The practical applicability of the rare-earth doped scintillators in high-speed detectors is limited by the slow decay components in the temporal response of a scintillator. The study of origin and properties of material defects that induce the slow decay components is of major importance for the development of new scintillation materials. We present a table-top, time-domain UV-VIS luminescence spectrometer, featuring extended time and input sensitivity ranges and two excitation sources. The combination of both soft X-ray/XUV and UV excitation source allows the comparative measurements of luminescence spectra and decay kinetics of scintillators to be performed under the same experimental conditions. The luminescence of emission centers of a doped scintillator can be induced by conventional N 2 laser pulse, while the complete scintillation process can be initiated by a soft X-ray/XUV pulse excitation from the laser-produced plasma in gas puff target of 4 ns duration. In order to demonstrate the spectrometer, the UV-VIS luminescence spectra and decay kinetics of cerium doped Lu 3 Al 5 O 12 single crystal (LuAG:Ce) scintillator excited by XUV and UV radiation were acquired. Luminescence of the doped Ce 3+ ions was studied under 2.88 nm (430 eV) XUV excitation from the laser-produced nitrogen plasma, and compared with the luminescence under 337 nm (3.68 eV) UV excitation from nitrogen laser. In the former case the excitation energy is deposited in the LuAG host, while in the latter the 4f-5d 2 transition of Ce 3+ is directly excited. Furthermore, YAG:Ce and LuAG:Ce single crystals luminescence decay profiles are compared and discussed.

  15. Fabrication of luminescent porous silicon with stain etches and evidence that luminescence originates in amorphous layers

    Science.gov (United States)

    Fathauer, R. W.; George, T.; Ksendzov, A.; Lin, T. L.; Pike, W. T.; Vasquez, R. P.; Wu, Z.-C.

    1992-01-01

    Simple immersion of Si in stain etches of HF:HNO3:H2O or NaNO2 in aqueous HF was used to produce films exhibiting luminescence in the visible similar to that of anodically-etched porous Si. All of the luminescent samples consist of amorphous porous Si in at least the near surface region. No evidence was found for small crystalline regions within these amorphous layers.

  16. Thermally and optically stimulated radiative processes in Eu and Y co-doped LiCaAlF{sub 6} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Kentaro, E-mail: ken-fukuda@tokuyama.co.jp [Tokuyama Corporation, 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196 (Japan)

    2015-06-01

    Yttrium co-doping was attempted to enhance dosimeter performance of Eu doped LiCaAlF{sub 6} crystal. Eu doped and Eu, Y co-doped LiCaAlF{sub 6} were prepared by the micro-pulling-down technique, and their dosimeter characteristics such as optically stimulated luminescence (OSL) and thermally stimulated luminescence (TSL) were investigated. By yttrium co-doping, emission intensities of OSL and TSL were enhanced by some orders of magnitude. In contrast, scintillation characteristics of yttrium co-doped crystal such as intensity of prompt luminescence induced by X-ray and light yield under neutron irradiation were degraded.

  17. Luminescent properties of fluorophosphate glasses with lead chalcogenides molecular clusters

    International Nuclear Information System (INIS)

    Kolobkova, E.V.; Kukushkin, D.S.; Nikonorov, N.V.; Shakhverdov, T.A.; Sidorov, A.I.; Vasiliev, V.N.

    2015-01-01

    Fluorophosphate glasses containing lead, selenium, and sulfur exhibit an intense luminescence in the 400–620 nm spectral region when excited by the 240–420 nm radiation. This luminescence is due to the presence of (PbSe) n and/or (PbS) n molecular clusters in the glasses, which appear in the as-prepared glasses before quantum dots formation. The thermal treatment at temperatures less than the glass transition temperature results in the red-shift of the luminescence bands and in an increase in the luminescence intensity. Heating the thermally treated glass samples leads to the reversible thermal quenching of the luminescence. - Highlights: • Fluorophosphate glasses with Pb, Se, and S ions contain (PbSe) n or (PbS) n molecular clusters. • (PbSe) n and (PbS) n molecular clusters possess luminescence in the visible with UV excitation. • Heating the glass leads to the reversible thermal quenching of the luminescence

  18. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion....... As representative examples, a metal (Pt), an alloy (PtSn), and a metal carbide (beta-Mo2C) were supported on conventional and mesoporous zeolite carriers, respectively, and the degree of particle dispersion was compared by TEM imaging. On conventional zeolites, the supported material aggregated on the outer surface...

  19. Thermally stimulated luminescence and persistent luminescence of β-irradiated YAG:Pr"3"+ nanophosphors produced by combustion synthesis

    International Nuclear Information System (INIS)

    Santacruz-Gomez, K.; Meléndrez, R.; Gil-Tolano, M.I.; Jimenez, J.A.; Makale, M.T.; Barboza-Flores, M.; Castaneda, B.; Soto-Puebla, D.; Pedroza-Montero, M.; McKittrick, J.; Hirata, G.A.

    2016-01-01

    In this work, the thermally stimulated luminescence (TSL) and persistent luminescence (PLUM) properties of praseodymium doped yttrium aluminum garnet (YAG:Pr"3"+) exposed to β-irradiation are reported. X-ray diffraction (XRD) confirms a single phase of YAG obtained by the combustion method. Transmission electron microscopy (TEM) shows that powder particles appear to be irregular crystals with an average size of 67 nm. TSL glow-curve deconvolution of YAG:Pr"3"+ after β-irradiation consist in six peaks centered at 394, 450, 467, 543, 637 and 705 K. The TSL fading and PLUM signals were found to be associated with at least with two different kinds of traps, corresponding to the peaks located at 394, 450 and 467 K. YAG:Pr"3"+ nanophosphors analyzed in this work showed interesting features about the dosimetric sensitivity as well as the reproducibility for both TSL/PLUM techniques, with good linearity dose response. These results indicate that nanocrystalline YAG:Pr3"+ is a good candidate for dosimetric applications in the range of 80 mGy-20 Gy. - Highlights: • β-irradiated YAG:Pr"3"+ TSL consist in 394, 450, 467, 543, 637 and 705 K peaks. • YAG:Pr"3"+ is a good candidate for dosimetry in the range of 80 mGy-20 Gy. • PLUM can be potentially used for in vivo, in situ and quasi in real time dosimetry.

  20. Enhancing and quenching luminescence with gold nanoparticle films: the influence of substrate on the luminescent properties

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Baffa, Oswaldo; Ramos, Ana Paula

    2016-01-01

    Gold nanoparticle (AuNP) films were sputtered over glass and aluminum substrates to enhance optically stimulated luminescence (OSL), a luminescent technique employed for radiation detection, from x-ray irradiated NaCl nanocrystals. The AuNP films deposited over glass led to enhanced-OSL emission, whereas the AuNP films deposited on aluminum substrates quenched the OSL emission. The enhanced-OSL intensity is proportional to the optical density of the film's plasmon resonance band at the stimulation wavelength. For the case of the AuNP/aluminum films, the luminescence quenching diminishes, and OSL intensity partially recovers upon increasing the distance between the AuNPs and the aluminum substrates, and between the luminescent nanocrystals and the AuNP films. These results suggest that plasmonic interactions between the emitter nanocrystals, the localized surface plasmons (LSP) of the AuNPs, and the substrate are responsible for the OSL enhancement and quenching. In this sense, the substrate dictates whether LSP relaxation occurs by radiative or non-radiative transisitions, leading to enhanced or quenched OSL, respectively. Therefore, besides showing that AuNP films can enhance and/or tune the sensitivity of luminescent radiation detectors, and demonstrating OSL as a new technique to investigate mechanisms of plasmon-enhanced luminescence, these results bring insights on how substrates strongly modify the optical properties of AuNP films. (paper)

  1. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  2. single crystals

    Indian Academy of Sciences (India)

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  3. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  4. The thermoluminescence and optically stimulated luminescence properties of Cr-doped alpha alumina transparent ceramics

    International Nuclear Information System (INIS)

    Liu, Qiang; Yang, Qiu Hong; Zhao, Guang Gen; Lu, Shen Zhou; Zhang, Hao Jia

    2013-01-01

    Highlights: •Polycrystalline Cr:α-Al 2 O 3 transparent ceramics were obtained with vacuum sintering method. •The influence of different concentration of Cr 2 O 3 on the thermoluminescence and optical stimulated luminescence properties of Cr:α-Al 2 O 3 transparent ceramics was studied. •It had a main peak at 503 K of very high intensity and linear concentration dependence up to high concentration. •It showed so interesting results with high TL sensitivity and high stability of OSL signal that Cr:α-Al 2 O 3 transparent ceramics might be a promising material in TL dosimetry and replace Cr:α-Al 2 O 3 crystals. -- Abstract: Polycrystalline Cr:α-Al 2 O 3 transparent ceramics were fabricated by conventional solid-state processing under vacuum condition. The SEM microstructure photographs of Cr:α-Al 2 O 3 transparent ceramics doped with different content of Cr 2 O 3 were investigated. The absorption, emission spectra, thermoluminescence and optical stimulated luminescence of Cr:α-Al 2 O 3 transparent ceramics were comparable to those of Cr:α-Al 2 O 3 crystals. The influence of different concentration of Cr 2 O 3 on the thermoluminescence and optical stimulated luminescence properties of Cr:α-Al 2 O 3 transparent ceramics was discussed. It showed so interesting results with high TL sensitivity and high stability of OSL signal that Cr:α-Al 2 O 3 transparent ceramics might be a promising material in TL dosimetry and replace Cr:α-Al 2 O 3 crystals

  5. Multistate Luminescent Solar Concentrator "Smart" Windows

    NARCIS (Netherlands)

    Sol, Jeroen A.H.P.; Timmermans, Gilles H.; Breugel, van Abraham J.; Schenning, Albertus P.H.J.; Debije, Michael G.

    2018-01-01

    A supertwist liquid crystalline luminescent solar concentrator (LSC) "smart" window is fabricated which can be switched electrically between three states: one designed for increased light absorption and electrical generation (the "dark" state), one for transparency (the "light" state), and one for

  6. Luminescent Solar Concentrators with Fibre Geometry

    NARCIS (Netherlands)

    Edelenbosch, O.Y.; Fisher, M.; Patrignani, L.; Sark, W.G.J.H.M. van; Chatten, A.J.

    2013-01-01

    The potential of a fibre luminescent solar concentrator has been explored by means of both analytical and ray-tracing techniques. Coated fibres have been found to be more efficient than homogeneously doped fibres, at low absorption. For practical fibres concentration is predicted to be linear

  7. Co-precipitation synthesis and upconversion luminescence ...

    Indian Academy of Sciences (India)

    Introduction. Researches of rare-earth-doped upconversion (UC) materials as fluorescent labels, temperature-sensing probes, solid-state lasers and new generation television screens have recently started to be considered1,2 due to their enhanced luminescent properties induced by the small size. UC process is the gener-.

  8. Holographic patterning of luminescent photopolymer nanocomposites

    International Nuclear Information System (INIS)

    Sakhno, Oksana V.; Smirnova, Tatiana N.; Goldenberg, Leonid M.; Stumpe, Joachim

    2008-01-01

    Volume phase gratings in the photopolymerisable composites, containing luminescent nanoparticles have been fabricated for the first time. Nanoparticles of LaPO 4 , doped by Ce 3+ and Tb 3+ ions (the trade name is REN-X-green) with high luminescence quantum yield were used as a luminescent inorganic additive. The holographic gratings in such materials are formed as a result of the diffusion distribution of the nanoparticles during exposure of photopolymerisable composites to interference pattern. The influence of the pre-polymer formulation and the holographic patterning parameters on the grating formation is comprehensively investigated. The use of the optimised pre-polymer syrup containing two monomers with sufficiently different polymerisation rates allows fabrication of gratings with diffraction efficiency up to 80% at low optical losses (< 5%) (20 μm film thickness). To obtain maximum diffraction efficiency the intensity and the period of the interference pattern were optimised for each formulation. In addition maximum diffraction efficiency was achieved with the nanocomposites containing 30-32 wt.% of nanoparticles. On the other hand the highest possible modulation of the nanoparticles' concentration was obtained for the concentration of about 20 wt.%. In this case maximum ordering of the nanoparticles in the polymer matrix is achieved. The photoluminescence of the nanoparticles within the homogeneous polymer film and within the grating has been measured. The example application of the photopolymerisable composite containing luminescence inorganic nanoparticles in holographic security technology has been demonstrated

  9. Probing luminescence centers in Na rich feldspar

    DEFF Research Database (Denmark)

    Prasad, Amit Kumar; Lapp, Torben; Kook, Myung Ho

    2016-01-01

    our understanding of the luminescence mechanisms and recombination sites, in a sample of Na rich plagioclase feldspar (oligoclase). Both the UV and violet–blue emissions show resonant excitations arising from a distribution of energy levels. We propose, contrary to the general understanding...

  10. Studies of positron induced luminescence from polymers

    International Nuclear Information System (INIS)

    Xu, J.; Hulett, L.D. Jr.; Lewis, T.A.; Tolk, N.H.

    1994-01-01

    Light emission from polymers (anthracene dissolved in polystryrene) induced by low-energy positrons and electrons has been studied. Results indicate a clear difference between optical emissions under positron and electron bombardment. The positron-induced luminescence spectrum is believed to be generated by both collisional and annihilation processes

  11. Combustion synthesis and preliminary luminescence studies of ...

    Indian Academy of Sciences (India)

    The polycrystalline sample of LiBaPO4 : Tb3+ (LBPT) was successfully synthesized by solution combustion synthesis and studied for its luminescence characteristics. The thermoluminescence (TL) glow curve of LBPT material consists of two peaks at 204.54 and 251.21°C. The optimum concentration was 0.005 mol to ...

  12. Biosynthesis of myristic acid in luminescent bacteria

    International Nuclear Information System (INIS)

    Byers, D.M.

    1987-01-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with [ 14 C] acetate in a nutrient-depleted medium accumulated substantial tree [ 14 C]fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with [ 14 C]acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition

  13. Co-precipitation synthesis and upconversion luminescence ...

    Indian Academy of Sciences (India)

    ... light: strong green (539 nm), weak red (670 nm) and near-infrared (760 nm). The upconversion luminescence is based on two-photon absorption by the energy transfer from the donor (Yb3+) to the acceptor (Ho3+). All the results indicate that ZrO2:Yb3+-Ho3+ phosphors could be a promising biological labelling material.

  14. Luminescence of porous silicon doped by erbium

    International Nuclear Information System (INIS)

    Bondarenko, V.P.; Vorozov, N.N.; Dolgij, L.N.; Dorofeev, A.M.; Kazyuchits, N.M.; Leshok, A.A.; Troyanova, G.N.

    1996-01-01

    The possibility of the 1.54 μm intensive luminescence in the silicon dense porous layers, doped by erbium, with various structures is shown. Low-porous materials of both porous type on the p-type silicon and porous silicon with wood-like structure on the n + type silicon may be used for formation of light-emitting structures

  15. The effect of micro-structure on upconversion luminescence of Nd3+/Yb3+ co-doped La2O3-TiO2-ZrO2 glass-ceramics

    Science.gov (United States)

    Zhang, Minghui; Wen, Haiqin; Pan, Xiuhong; Yu, Jianding; Jiang, Meng; Yu, Huimei; Tang, Meibo; Gai, Lijun; Ai, Fei

    2018-03-01

    Nd3+/Yb3+ co-doped La2O3-TiO2-ZrO2 glasses have been prepared by aerodynamic levitation method. The glasses show high refractive index of 2.28 and Abbe number of 18.3. Glass-ceramics heated at 880 °C for 50 min perform the strongest upconversion luminescence. X-ray diffraction patterns of glass-ceramics with different depths indicate that rare earth ions restrain crystallization. Body crystallization mechanism mixed with surface crystallization is confirmed in the heat treatment. Surface crystals achieve priority to grow, resulting in important effects on upconversion luminescence. The results of atomic force microscope and scanning electron microscope indicate that crystal particles with uniform size distribute densely and homogenously on the surface and large amount of glass matrix exists in the glass ceramics heated at 880 °C for 50 min. Crystals in the glass-ceramics present dense structure and strong boundaries, which can reduce the mutual nonradiative relaxation rate among rare earth ions and then improve upconversion luminescence effectively. Based on micro-structural study, the mechanism that upconversion luminescence can be improved by heat treatment has been revealed. The results of micro-structural analysis agree well with the spectra.

  16. Study of the absorption and energy transfer processes in inorganic luminescent materials in the UV and VUV region

    International Nuclear Information System (INIS)

    Mayolet, A.

    1995-01-01

    In order to find a green emitting phosphor showing high quantum efficiency and a short decay time which can be used in the color Plasma Display Panels developed by Thomson-TTE-TIV company, a VUV spectrophotometer built at IPN Orsay, using the synchrotron radiation from the SUPER-ACO storage ring as an excitation source, allow us the simultaneous recording of the luminescence excitation and diffuse reflectivity spectra of the inorganic compounds in the UV-VUV range. In addition, this experimental set-up enable us to determine the luminescence quantum efficiency of phosphors in the whole energy range of investigation. The chemical synthesis of rare-earth ortho-- and metaborate and rare-earth ortho- and metaphosphate doped with trivalent lanthanide ions cerium, praseodymium, europium and terbium have been made. The energy variation of the thresholds of the luminescence excitation mechanisms in function of the nature and the structure of the host matrix is discussed. We have determined the influence of the nephelauxetic effect and the crystal field intensity on the energy of the f-d inter-configuration transitions. The variation of the luminescence quantum efficiency of the dopant ion is interpreted through the 'impurity bound exciton' model. The systematic comparison of the cerium and terbium trivalent ions spectroscopic properties in the Y(AG)G host lattice series stands to reason that the self-ionized state of the luminescent center plays an important role in the rate of the non radiative relaxation. It is the redox power of the host matrix which imposes to the luminescent center, the energy of this state. (author)

  17. Paper-based biodetection using luminescent nanoparticles.

    Science.gov (United States)

    Ju, Qiang; Noor, M Omair; Krull, Ulrich J

    2016-05-10

    Point-of-care and in-field technologies for rapid, sensitive and selective detection of molecular biomarkers have attracted much interest. Rugged bioassay technology capable of fast detection of markers for pathogens and genetic diseases would in particular impact the quality of health care in the developing world, but would also make possible more extensive screening in developed countries to tackle problems such as those associated with water and food quality, and tracking of infectious organisms in hospitals and clinics. Literature trends indicate an increasing interest in the use of nanomaterials, and in particular luminescent nanoparticles, for assay development. These materials may offer attributes for development of assays and sensors that could achieve improvements in analytical figures of merit, and provide practical advantages in sensitivity and stability. There is opportunity for cost-efficiency and technical simplicity by implementation of luminescent nanomaterials as the basis for transduction technology, when combined with the use of paper substrates, and the ubiquitous availability of cell phone cameras and associated infrastructure for optical detection and transmission of results. Luminescent nanoparticles have been described for a broad range of bioanalytical targets including small molecules, oligonucleotides, peptides, proteins, saccharides and whole cells (e.g., cancer diagnostics). The luminescent nanomaterials that are described herein for paper-based bioassays include metal nanoparticles, quantum dots and lanthanide-doped nanocrystals. These nanomaterials often have broad and strong absorption and narrow emission bands that improve opportunity for multiplexed analysis, and can be designed to provide emission at wavelengths that are efficiently processed by conventional digital cameras. Luminescent nanoparticles can be embedded in paper substrates that are designed to direct fluid flow, and the resulting combination of technologies can offer

  18. Luminescence and defects creation in Ce3+-doped aluminium and lutetium perovskites and garnets

    International Nuclear Information System (INIS)

    Krasnikov, A.; Savikhina, T.; Zazubovich, S.; Nikl, M.; Mares, J.A.; Blazek, K.; Nejezchleb, K.

    2005-01-01

    Luminescence, scintillation response, energy transfer and defect creation processes were studied at 4.2-300K for Ce 3+ -doped YAlO 3 , Lu x Y 1-x AlO 3 (x=0.3) and Lu 3 Al 5 O 12 crystals under excitation in the 2.5-11.5eV energy range. Influence of the charge and ionic radius of co-doping ions on the efficiency of these processes, the origin of the defects created and possible mechanisms of their formation were discussed

  19. Quenching methods for background reduction in luminescence-based probe-target binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hong [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Keller, Richard A [Los Alamos, NM; Nolan, Rhiannon L [Santa Fe, NM

    2007-04-10

    Background luminescence is reduced from a solution containing unbound luminescent probes, each having a first molecule that attaches to a target molecule and having an attached luminescent moiety, and luminescent probe/target adducts. Quenching capture reagent molecules are formed that are capable of forming an adduct with the unbound luminescent probes and having an attached quencher material effective to quench luminescence of the luminescent moiety. The quencher material of the capture reagent molecules is added to a solution of the luminescent probe/target adducts and binds in a proximity to the luminescent moiety of the unbound luminescent probes to quench luminescence from the luminescent moiety when the luminescent moiety is exposed to exciting illumination. The quencher capture reagent does not bind to probe molecules that are bound to target molecules and the probe/target adduct emission is not quenched.

  20. Optically stimulated luminescence (OSL) of dental enamel for retrospective assessment of radiation exposure

    International Nuclear Information System (INIS)

    Yukihara, E.G.; Mittani, J.; McKeever, S.W.S.; Simon, S.L.

    2007-01-01

    This paper briefly reviews the optically stimulated luminescence (OSL) properties of dental enamel and discusses the potential and challenges of OSL for filling the technology gap in biodosimetry required for medical triage following a radiological/nuclear accident or terrorist event. The OSL technique uses light to stimulate a radiation-induced luminescence signal from materials previously exposed to ionizing radiation. This luminescence originates from radiation-induced defects in insulating crystals and is proportional to the absorbed dose of ionizing radiation. In our research conducted to date, we focused on fundamental investigations of the OSL properties of dental enamel using extracted teeth and tabletop OSL readers. The objective was to obtain information to support the development of the necessary instrumentation for retrospective dosimetry using dental enamel in laboratory, or for in situ and non-invasive accident dosimetry using dental enamel in emergency triage. An OSL signal from human dental enamel was detected using blue, green, or IR stimulation. Blue/green stimulation associated with UV emission detection seems to be the most appropriate combination in the sense that there is no signal from un-irradiated samples and the shape of the OSL decay is clear. Improvements in the minimum detection level were achieved by incorporating an ellipsoidal mirror in the OSL system to maximize light collection. Other possibilities to improve the sensitivity and research steps necessary to establish the feasibility of the technique for retrospective assessment of radiation exposure are also discussed

  1. Conformal and highly luminescent monolayers of Alq3 prepared by gas-phase molecular layer deposition.

    Science.gov (United States)

    Räupke, André; Albrecht, Fabian; Maibach, Julia; Behrendt, Andreas; Polywka, Andreas; Heiderhoff, Ralf; Helzel, Jonatan; Rabe, Torsten; Johannes, Hans-Hermann; Kowalsky, Wolfgang; Mankel, Eric; Mayer, Thomas; Görrn, Patrick; Riedl, Thomas

    2014-01-22

    The gas-phase molecular layer deposition (MLD) of conformal and highly luminescent monolayers of tris(8-hydroxyquinolinato)aluminum (Alq3) is reported. The controlled formation of Alq3 monolayers is achieved for the first time by functionalization of the substrate with amino groups, which serve as initial docking sites for trimethyl aluminum (TMA) molecules binding datively to the amine. Thereby, upon exposure to 8-hydroxyquinoline (8-HQ), the self-limiting formation of highly luminescent Alq3 monolayers is afforded. The growth process and monolayer formation were studied and verified by in situ quartz crystal monitoring, optical emission and absorption spectroscopy, and X-ray photoelectron spectroscopy. The nature of the MLD process provides an avenue to coat arbitrarily shaped 3D surfaces and porous structures with high surface areas, as demonstrated in this work for silica aerogels. The concept presented here paves the way to highly sensitive luminescent sensors and dye-sensitized metal oxides for future applications (e.g., in photocatalysis and solar cells).

  2. Luminescence properties of Y3Al5O12:Ce nanoceramics

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Voznyak, T.; Gorbenko, V.; Zych, E.; Nizankovski, S.; Dan'ko, A.; Puzikov, V.

    2011-01-01

    Comparative analysis of the luminescent properties of Y 3 Al 5 O 12 :Ce (YAG:Ce) transparent optical ceramics (OS) with those of single crystal (SC) and single crystalline film (SCF) analogues has been performed under excitation by pulsed synchrotron radiation in the fundamental absorption range of YAG host. It has been shown that the properties of YAG:Ce OC are closer to the properties of the SCF counterpart, where Y Al antisite defects are completely absent, rather than to the properties of SC of this garnet with large concentration of Y Al antisite defects. At the same time, the luminescence spectra of YAG:Ce OC show weak emission bands in the 200-470 nm range related to Y Al antisite defects and charged oxygen vacancies (F + and F centers). YAG:Ce OS also possesses significantly larger contribution of slow components in the Ce 3+ luminescence decay under high-energy excitation in comparison with SC and SCF of this garnet due to the involvement of antisite defects, charged oxygen vacancies as well as boundaries of grains in the energy transfer processes from the host to the Ce 3+ ions.

  3. Search for the dose-sensitive optically stimulated luminescence response in natural carbonates

    International Nuclear Information System (INIS)

    Jaek, Ivar; Huett, Galina; Rammo, Ilmar; Vasilchenko, Valeri

    2001-01-01

    Carbonates of different origin, such as Iceland spar, calcites, and mollusc shells, used as electron spin resonance and thermoluminescence paleodosimeters, were studied in order to determine their suitability for optically stimulated luminescence dating. The stimulation/excitation spectra of the afterglow of the samples were recorded in the wavelength range of 250-1100 nm. The results of the study show that these spectra present either excitation spectra of Mn 2+ ion fluorescence (samples of calcites and Iceland spar, red emission recorded) or the excitation spectra of primary phosphorescence (samples of carbonates, including molluscs shells; short-wave emission bands recorded). The recorded stimulation spectra revealed no spectral bands sensitive to stimulation by ionizing radiation, which would disappear as a result of heating and could thus be related to deep traps in carbonates, needed dating. The cause of this situation which is unusual in luminescent crystals, including luminescence (paleo)dosimeters, and the ways of overcoming the difficulties in optical dating of natural carbonates are discussed. (author)

  4. Thermoluminescence, luminescence optically stimulated and creation of defects in alkaline halogenides contaminated with Europium; Termoluminiscencia, luminiscencia opticamente estimulada y creacion de defectos en halogenuros alcalinos contaminados con Europio

    Energy Technology Data Exchange (ETDEWEB)

    Barboza F, M. [Centro de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    1999-07-01

    The alkaline halogenides have been subject matter of investigations related with the search of sensor materials for X-ray bidimensional images or optical memories. The understanding of the damage formation processes generated by ionizing and non-ionizing radiations is important for the correct design of devices that working as detectors and dosemeters of both type of radiations. In this work we present the investigation results related with the defects produced by the ionizing radiation type X and ultraviolet light in the range of 200-360 nm in crystals of KCl: Eu{sup 2+} and KBr:Eu{sup 2+}. It is examined the thermoluminescence and luminescence spectra with the purpose of identifying the exciton processes, owing to the excitation of the halogenide ions in which the primary defects correspond to the F and H centers. It has been found that the 400-600 nm emission is associated with the luminescence type that in his turn can be associated with autotrapped excitons perturbed by the impurity. On the other hand, it is examined the emission spectra of the luminescence optically stimulated in crystals of KBr: Eu{sup 2+} and KCl: Eu{sup 2+} finding too that such materials would be used as optical memories susceptible of to store information, and through of photostimulation to read this. It was determined that the F centers participate in the luminescence optically stimulated in these crystals, as well as too in the recombination processes responsible by the thermoluminescent emission. (Author)

  5. Zinc Oxide Nano crystals Synthesized by Quenching Technique

    International Nuclear Information System (INIS)

    Norhayati Abu Bakar; Akrajas Ali Umar; Muhamad Mat Salleh; Muhammad Yahya

    2011-01-01

    This paper reports an attempt to synthesize non toxic zinc oxide (ZnO) nano crystals using a simple quenching technique. The hot zinc oxide powder was quenched in hexane solution to obtain ZnO nano crystals. As the result, diameter size of the synthesized ZnO is 200 nm. It was also exhibited a good crystalline with wurtzite phase. The nano crystals properties of ZnO were revealed from good absorbance and green luminescence under UV exposure. This may be related with oxygen vacancy ionization during the annealing process. (author)

  6. Development of polarization magneto-optics of paramagnetic crystals

    International Nuclear Information System (INIS)

    Zapasskij, V.S.; Feofilov, P.P.

    1975-01-01

    The present status of the polarization magnetooptics of crystals containing paramagnetic ion impurities is reviewed. The paper discusses methods of measurement of circular magnetic anisotropy and results obtained in recent years in the field of conventional magnetooptical studies, e.g., magnetooptical activity in absorption spectra for intrinsic and impurity defects in crystals, luminescence magnetic circular polarization, anisotropy of magnetooptical activity in cubic crystals. The main emphasis is placed on new trends in polarization magnetooptics: studies of interactions of a spin system with a lattice, in particular, spin-lattice relaxation and spin memory effect, experiments in the double radiooptical resonance, studies of optical spin relaxation, nonlinear magnetooptical effects, etc

  7. Monomial Crystals and Partition Crystals

    Science.gov (United States)

    Tingley, Peter

    2010-04-01

    Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

  8. P 8: Table-top instrumentation for time-resolved luminescence spectroscopy of solids excited by soft X-ray from a laser induced plasma source and/or UV-VIS laser

    International Nuclear Information System (INIS)

    Bruza, P.; Fidler, V.; Nikl, M.

    2010-01-01

    The design and use of a novel, table-top UV-VIS luminescence spectrometer with two excitation sources is described: a soft X-ray/XUV pulse excitation from the laser-produced plasma in gas puff target of about 4 ns duration, and a conventional N 2 pulse laser excitation at 337 nm (or any other UV-VIS pulse laser excitation). The XUV plasma source generates photons of either quasi-monochromatic (N target, E = 430 eV) or wide (Ar target, E = 200 ∼ 600 eV) spectral range. A combination of both X-ray/XUV and UV-VIS excitation in one experimental apparatus allows to perform comparative luminescence spectra and kinetics measurements under the same experimental conditions. In order to demonstrate the spectrometer, the UV-VIS luminescence spectra and decay kinetics of cerium doped Lu 3 Al 5 O 12 single crystal (LuAG:Ce) scintillator excited by XUV and UV radiation were acquired. Luminescence of doped Ce 3+ ions was studied under XUV 430 eV excitation from the laser-produced nitrogen plasma, and compared with the luminescence under 337 nm (3,68 eV) UV excitation from nitrogen laser. In the former case the excitation energy is deposited in the LuAG host, while in the latter the 4f-5d transition of Ce 3+ is directly excited. Furthermore, LuAG:Ce single crystals and single crystalline films luminescence decay profiles are compared and discussed. (authors)

  9. Luminescence properties of Yb:Nd:Tm:KY{sub 3}F{sub 10} nanophosphor and thermal treatment effects

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Laércio, E-mail: lgomes@ipen.br [Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Butantã, P.O. Box 11049, São Paulo, SP o5422-970 (Brazil); Linhares, Horácio Marconi da Silva M.D. [Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Butantã, P.O. Box 11049, São Paulo, SP o5422-970 (Brazil); Ichikawa, Rodrigo Uchida; Martinez, Luis Gallego [Departamento de Ciências dos Materiais, Instituto de Pesquisas Energéticas e Nucleares (Brazil); Ranieri, Izilda Marcia [Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Butantã, P.O. Box 11049, São Paulo, SP o5422-970 (Brazil)

    2015-01-15

    In this work, we present the spectroscopic properties of KY{sub 3}F{sub 10} (KY3F) nanocrystals activated with thulium and codoped with ytterbium and neodymium ions. The most important processes that lead to the thulium upconversion emissions in the blue region were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays and to determine the most important mechanisms involved in the upconversion process that populates {sup 1}G{sub 4} (Tm{sup 3+}) excited states. Analysis of the energy-transfer processes dynamics using selective pulsed-laser excitations in Yb:Nd:Tm, Nd:KY3F nanocrystals shows that the direct energy transfer from Nd{sup 3+} to Tm{sup 3+} ions is the mechanism responsible for the 78% of the blue upconversion luminescence in the Yb:Nd:Tm:KY3F when compared with the Yb:Nd:Tm:KY3F bulk crystal for an laser excitation at 802 nm. An investigation of the {sup 1}G{sub 4} level luminescence kinetic of Tm{sup 3+} in Yb/Nd/Tm system revealed that the luminescence efficiency ({sup 1}G{sub 4}) starts with a very low value (0.38%) for the synthesized nanocrystal (as grown) and strongly increases to 97% after thermal treatment at 550 °C for 6 h under argon flow. As a consequence of the thermal treatment at T=550 °C, the contributions of the (Nd×Tm) (Up{sub 1}) and (Nd×Yb×Tm) (Up{sub 2}) upconversion processes to the {sup 1}G{sub 4} luminescence are 33% (Up{sub 1}) and 67% for Up{sub 2}. Up{sub 2} process represented by Nd{sup 3+} ({sup 4}F{sub 3/2})→Yb{sup 3+} ({sup 2}F{sub 7/2}) followed by Yb{sup 3+} ({sup 2}F{sub 5/2})→Tm ({sup 3}H{sub 4})→Tm{sup 3+} ({sup 1}G{sub 4}) was previously reported as the main mechanism to produce the blue luminescence in Yb:Nd:Tm:YLiF{sub 4} and KY{sub 3}F{sub 10} bulk crystals. Results of X-ray diffraction analysis of nanopowder using the Rietveld method reveled that crystallite sizes remain unchanged (12–14 nm) after thermal treatments with T≤400 °C, while the

  10. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Tadić, Nenad [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Radić, Nenad [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Stefanov, Plamen [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, 1113 Sofia (Bulgaria); Grbić, Boško [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Vasilić, Rastko [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2015-11-15

    Graphical abstract: - Highlights: • Anodic luminescence is correlated to the existence of morphological defects in the oxide. • Spectrum under spark discharging reveals only oxygen and hydrogen lines. • Oxide films formed under spark discharging are crystallized and composed of Nb{sub 2}O{sub 5}. • Photocatalytic activity and photoluminescence of Nb{sub 2}O{sub 5} films increase with time. - Abstract: This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb{sub 2}O{sub 5} hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  11. A new luminescent terbium 4-methylsalicylate complex as a novel sensor for detecting the purity of methanol.

    Science.gov (United States)

    Zeng, Cheng-Hui; Yang, Yang-Yi; Zhu, Yi-Min; Wang, Hong-Ming; Chu, Tian-Shu; Ng, Seik Weng

    2012-01-01

    A new dinuclear terbium complex [Tb(2)(4-msal)(6)(H(2)O)(4)]·6H(2)O (1) (4-msal = 4-methylsalcylate) was synthesized. Its structure was determined by single crystal X-ray diffraction, and the complex was characterized by PXRD, FT-IR, fluorescence, TGA and DTA. Complex 1 exists as discrete molecules that are linked by extensive O-H … O hydrogen bonds into a 3D network. The luminescence lifetimes of 3 μM methanol solution and solid sample of 1 are 1.321 and 1.009 ms, respectively. The quantum yield of solid sample is 6.0%. The luminescence quenched more than 50% when 3% (vol/vol) different impurities (acetone, acetonitrile, chloroform, dichloromethane, dioxane, DMF, DMSO, ethanol, ether, ethyl acetate, glycol, H(2)O, hexane, TEA, THF and toluene or their mixture) were added. The inverse linear relationship between the Lg value of fluorescence intensity and the volume ratio of the minor component (to a maximum of 20%) is interpreted in terms of LgI = a-bX (I: luminescence intensity; X: volume ratio of impurities in methanol; a, b are constants). So 1 is a potential luminescent sensor for analyzing the purity of methanol. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  12. Possibility of RGB emission by Eu2+ ion doped MIIMIIIMVI phosphors for color inorganic electro- luminescent displays

    International Nuclear Information System (INIS)

    Jabbarov, R.B.; Tagiev, B.G.; Tagiev, O.B.; Musaeva, N.N.; Benalloul, P.; Barthou, C.

    2004-01-01

    Full text: Eu 2+ ion give broad-band emission due to f-d transitions. The 5d orbital are not shelled from the host lattice by any occupied orbital. Therefore the wavelength positions of the emission bands depend on host and change from hear UV to red. With increasing crystal field strength, the emission bands shift to longer wavelength. The broad band absorption and luminescence of Eu 2+ is parity-and spin-allowed and lifetime is sub-microseconds. In resent years, many efforts have been devoted to luminescence studies of thio gallates and thio-aluminates doped with rare-earth ions because of their chemical stability in ambient environments. In ternary compounds both the ligand field at the divalent cation site and the nephelauxetic effect are reduced by the presence of trivalent or tetravalent ions. This effect is more pronounced with Al than with Ga. In a same family of compounds, the emission band generally shifts to shorter wavelengths with increasing M II /M IV or M VI /M III ratio. In this paper we revisited the luminescence of the phosphors CaGa 2 S 4 , BaGa 2 S 4 , BaAl 2 S 4 activated by Eu 2+ ion. Influence of temperature and Eu 2+ concentration on the luminescence characteristics of these phosphors are studied. These dates will be useful to evaluate the quality oi the powder or thin films prepared for devices

  13. SrAl2O4:Eu2+ (1%) luminescence under UV, VUV and electron beam excitation

    Science.gov (United States)

    Nazarov, M.; Mammadova, S.; Spassky, D.; Vielhauer, S.; Abdullayeva, S.; Huseynov, A.; Jabbarov, R.

    2018-01-01

    This paper reports the luminescence properties of nanosized SrAl2O4:Eu2+ (1%) phosphors. The samples were prepared by combustion method at 600 °C, followed by annealing of the resultant combustion ash at 1000 °C in a reductive (Ar + H2) atmosphere. X-ray diffraction (XRD), photo luminescence (PL) and cathodoluminescence (CL) analysis and thermal stimulated luminescence (TSL) method were applied to characterize the phosphor. For the first time a peak at 375 nm was observed in CL spectra of SrAl2O4:Eu2+ (1%) nanophosphors. Luminescence excitation spectra analysis have shown that this peak is related to crystal defects. Also in TSL curve one strong peak was observed in the region above room temperature (T = 325 K), which is attributed to lattice defects, namely oxygen vacancies. A green LED was fabricated by the combination of the SrAl2O4:Eu2+ (1%) nanosized phosphor and a 365 nm UV InGaN chip.

  14. Luminescence investigation of Yb{sup 3+}/Er{sup 3+} codoped single LiYF{sub 4} microparticle

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wei; Zheng, Hairong, E-mail: hrzheng@snnu.edu.cn; He, Enjie; Lu, Ying; Gao, Fangqi

    2014-08-01

    Tetragonal phase LiYF{sub 4}:Yb{sup 3+}/Er{sup 3+} microparticles are synthesized via facile hydrothermal method. Single LiYF{sub 4} microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. It is found that single LiYF{sub 4}:Yb{sup 3+}/Er{sup 3+} microparticle with sub-structure presents stronger upconversion luminescence emission and smaller intensity ratio of red to green emission than that from LiYF{sub 4}:Yb{sup 3+}/Er{sup 3+} microparticle with no sub-structure. The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion luminescence emission are investigated. The current study suggests that the luminescence observation with single micropaticle can effectively avoid the influence of environment and neighbor particles, which is important for investigating the luminescence properties of micro- or nano-crystals and for extending their application. - Highlights: • Single LiYF{sub 4} microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. • Single LiYF{sub 4} microparticle with different morphology exhibits different fluorescence emission intensity and intensity ratio of red to green emission. • The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion emission are investigated.

  15. Study on fast luminescence component induced by gamma-rays in Ce doped LiCaAlF6 scintillators

    International Nuclear Information System (INIS)

    Watanabe, Kenichi; Kondo, Yoshiyuki; Yamazaki, Atsushi; Uritani, Akira; Iguchi, Tetsuo; Kawaguchi, Noriaki; Fukuda, Kentaro; Ishizu, Sumito; Yanagida, Takayuki; Fujimoto, Yutaka; Yoshikawa, Akira

    2014-01-01

    We discuss the origin of the fast luminescence component induced by fast electrons generated in gamma-ray interactions in Ce doped LiCaAlF 6 scintillators. Although the slow luminescence component induced by Ce 3+ emissions depends on the Ce concentration in the LiCaAlF 6 scintillator, the fast component is independent. The fast component is suggested to be generated in the host matrix of the LiCaAlF 6 crystal. From quantitative considerations based on Frank–Tamm equation, which shows the light yield of the Cherenkov radiation, the Cherenkov radiation was determined as the origin of the fast component. We, additionally, found that the slow rise time of main Ce 3+ emissions in the Ce:LiCaAlF 6 scintillator plays an important role to perform the pulse shape discrimination. - Highlights: • The fast luminescence in Ce:LiCaAlF 6 scintillator is generated in the host matrix. • The origin of the fast luminescence is determined as the Cherenkov radiation. • The slow rise time also plays an important role to perform PSD

  16. Study of the fluorescence blinking behavior of single F2 color centers in LiF crystal

    International Nuclear Information System (INIS)

    Boichenko, S V; Koenig, K; Zilov, S A; Dresvianskiy, V P; Rakevich, A L; Kuznetsov, A V; Bartul, A V; Martynovich, E F; Voitovich, A P

    2014-01-01

    Using confocal fluorescence microscopy technique, we observed experimentally the luminescence of single F 2 color centers in LiF crystal. It is disclosed that the fluorescence shows blinking behavior. It is shown that this phenomenon is caused by the F 2 center reorientation occurring during the experiment. The ratio of luminescence intensities of differently oriented centers is assessed theoretically for two different experiment configurations. The calculated ratios are in fine agreement with experimental result

  17. Luminescent amine sensor based on europium(III) chelate.

    Science.gov (United States)

    Petrochenkova, Nataliya V; Mirochnik, Anatolii G; Emelina, Tatyana B; Sergeev, Alexander A; Leonov, Andrei A; Voznesenskii, Sergey S

    2018-07-05

    The effect of methylamine vapor on luminescence of Eu(III) tris-benzoylacetonate (I) immobilized in thin-layer chromatography plates has been investigated. It has been revealed that interaction of I with analyte vapor results in increase of the intensity of Eu(III) luminescence. The mechanism of the effect of methylamine vapors on intensification of the Eu(III) luminescence has been suggested using the data of IR spectroscopy and quantum chemistry calculations. The mechanism of luminescence sensitization consists in bonding of an analyte molecule with a water molecule into the coordination sphere of Eu(III). As a result, the bond of a water molecule with the luminescence centre weakens, rigid structural fragment including europium ion, water and methylamine molecules forms. The presence of such fragment must naturally promote decrease of influence of OH-vibrations on luminescence of the complex I. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Microcalorimetric and spectrographic studies on host-guest interactions of {alpha}-, {beta}-, {gamma}- and M{beta}-cyclodextrin with resveratrol

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Xu, Xiangyu; Liu, Min [College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong Province (China); Sun, Dezhi, E-mail: sundezhisdz@163.com [College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong Province (China); Li, Linwei, E-mail: lilinwei@lcu.edu.cn [College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong Province (China)

    2010-10-20

    Thermal effects of inclusion processes of {alpha}-, {beta}-, {gamma}- and M{beta}-cyclodextrin with resveratrol (RES) in aqueous solutions were determined by isothermal titration calorimetry (ITC) with nanowatt sensitivity at the temperature of 298.15 K. Standard enthalpy changes, stoichiometry and equilibrium constants of the inclusion complexes were derived from the direct calorimetric data utilizing nonlinear simulation. The thermodynamic parameters were discussed in the light of weak interactions between the host and the guest molecules combining with UV spectral message. The results indicate that all of the complexes formed in the aqueous solutions are in 1:1 stoichiometry. The binding processes of {alpha}-, {beta}- and M{beta}-cyclodextrin with the guest are mainly driven by enthalpy, while that of {gamma}-cyclodextrin with the drug is driven by both enthalpy and entropy.

  19. Location of MTBE and toluene in the channel system of the zeolite mordenite: Adsorption and host-guest interactions

    Energy Technology Data Exchange (ETDEWEB)

    Arletti, Rossella, E-mail: rossella.arletti@unito.it [Department of Earth Sciences, University of Torino Via Valperga Caluso 35, I-10125, Torino (Italy); Martucci, Annalisa; Alberti, Alberto [Department of Earth Sciences, University of Ferrara, Via G. Saragat 1, I-44100, Ferrara (Italy); Pasti, Luisa; Nassi, Marianna [Department of Chemistry, University of Ferrara, Via L. Borsari 26, I-44100 Ferrara (Italy); Bagatin, Roberto [Research Centre for Non-Conventional Energy-Istituto ENI Donegani, Environmental Technologies, Via Fauser 4, I-28100 Novara (Italy)

    2012-10-15

    This paper reports a study of the location of Methyl Tertiary Butyl Ether (MTBE) and toluene molecules adsorbed in the pores of the organophylic zeolite mordenite from an aqueous solution. The presence of these organic molecules in the zeolite channels was revealed by structure refinement performed by the Rietveld method. About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the cavities of mordenite, representing 75% and 80% of the total absorption capacity of this zeolite. In both cases a water molecule was localized inside the side pocket of mordenite. The saturation capacity determined by the adsorption isotherms, obtained by batch experiments, and the weight loss given by thermogravimetric (TG) analyses were in very good agreement with these values. The interatomic distances obtained after the structural refinements suggest MTBE could be connected to the framework through a water molecule, while toluene could be bonded to framework oxygen atoms. The rapid and high adsorption of these hydrocarbons into the organophylic mordenite zeolite makes this cheap and environmental friendly material a suitable candidate for the removal of these pollutants from water. - graphical abstract: Location of MTBE (a) and toluene (b) in mordenite channels (projection along the [001] direction). Highlights: Black-Right-Pointing-Pointer We investigated the MTBE and toluene adsorption process into an organophilic zeolite mordenite. Black-Right-Pointing-Pointer The presence of MTBE and toluene in mordenite was determined by X-ray diffraction studies. Black-Right-Pointing-Pointer About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the zeolite cavities. Black-Right-Pointing-Pointer MTBE is connected to the framework through a water molecule. Black-Right-Pointing-Pointer Toluene is directly bonded to framework oxygen atoms.

  20. Structural elucidation of dendritic host-guest complexes by X-ray crystallography and molecular dynamics simulations

    NARCIS (Netherlands)

    Chang, T.; Pieterse, K.; Broeren, M.A.C.; Kooijman, H.; Spek, A.L.; Hilbers, P.A.J.; Meijer, E.W.

    2007-01-01

    The multiple monovalent binding of adamantyl-urea poly(propyleneimine) dendrimers with carboxylic acid-urea guests was investigated using molecular dynamics simulations and X-ray crystallography to better understand the structure and behavior of the dynamic multivalent complex in solution. The