WorldWideScience

Sample records for ltr dna recognition

  1. Accurate episomal HIV 2-LTR circles quantification using optimized DNA isolation and droplet digital PCR.

    Science.gov (United States)

    Malatinkova, Eva; Kiselinova, Maja; Bonczkowski, Pawel; Trypsteen, Wim; Messiaen, Peter; Vermeire, Jolien; Verhasselt, Bruno; Vervisch, Karen; Vandekerckhove, Linos; De Spiegelaere, Ward

    2014-01-01

    In HIV-infected patients on combination antiretroviral therapy (cART), the detection of episomal HIV 2-LTR circles is a potential marker for ongoing viral replication. Quantification of 2-LTR circles is based on quantitative PCR or more recently on digital PCR assessment, but is hampered due to its low abundance. Sample pre-PCR processing is a critical step for 2-LTR circles quantification, which has not yet been sufficiently evaluated in patient derived samples. We compared two sample processing procedures to more accurately quantify 2-LTR circles using droplet digital PCR (ddPCR). Episomal HIV 2-LTR circles were either isolated by genomic DNA isolation or by a modified plasmid DNA isolation, to separate the small episomal circular DNA from chromosomal DNA. This was performed in a dilution series of HIV-infected cells and HIV-1 infected patient derived samples (n=59). Samples for the plasmid DNA isolation method were spiked with an internal control plasmid. Genomic DNA isolation enables robust 2-LTR circles quantification. However, in the lower ranges of detection, PCR inhibition caused by high genomic DNA load substantially limits the amount of sample input and this impacts sensitivity and accuracy. Moreover, total genomic DNA isolation resulted in a lower recovery of 2-LTR templates per isolate, further reducing its sensitivity. The modified plasmid DNA isolation with a spiked reference for normalization was more accurate in these low ranges compared to genomic DNA isolation. A linear correlation of both methods was observed in the dilution series (R2=0.974) and in the patient derived samples with 2-LTR numbers above 10 copies per million peripheral blood mononuclear cells (PBMCs), (R2=0.671). Furthermore, Bland-Altman analysis revealed an average agreement between the methods within the 27 samples in which 2-LTR circles were detectable with both methods (bias: 0.3875±1.2657 log10). 2-LTR circles quantification in HIV-infected patients proved to be more

  2. Effects of As2O3 on DNA methylation, genomic instability, and LTR retrotransposon polymorphism in Zea mays.

    Science.gov (United States)

    Erturk, Filiz Aygun; Aydin, Murat; Sigmaz, Burcu; Taspinar, M Sinan; Arslan, Esra; Agar, Guleray; Yagci, Semra

    2015-12-01

    Arsenic is a well-known toxic substance on the living organisms. However, limited efforts have been made to study its DNA methylation, genomic instability, and long terminal repeat (LTR) retrotransposon polymorphism causing properties in different crops. In the present study, effects of As2O3 (arsenic trioxide) on LTR retrotransposon polymorphism and DNA methylation as well as DNA damage in Zea mays seedlings were investigated. The results showed that all of arsenic doses caused a decreasing genomic template stability (GTS) and an increasing Random Amplified Polymorphic DNAs (RAPDs) profile changes (DNA damage). In addition, increasing DNA methylation and LTR retrotransposon polymorphism characterized a model to explain the epigenetically changes in the gene expression were also found. The results of this experiment have clearly shown that arsenic has epigenetic effect as well as its genotoxic effect. Especially, the increasing of polymorphism of some LTR retrotransposon under arsenic stress may be a part of the defense system against the stress.

  3. Rapid turnover of 2-LTR HIV-1 DNA during early stage of highly active antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Weijun Zhu

    Full Text Available BACKGROUND: Despite prolonged treatment with highly active antiretroviral therapy (HAART, the infectious HIV-1 continues to replicate and resides latently in the resting memory CD4+ T lymphocytes, which blocks the eradication of HIV-1. The viral persistence of HIV-1 is mainly caused by its proviral DNA being either linear nonintegrated, circular nonintegrated, or integrated. Previous reports have largely focused on the dynamics of HIV-1 DNA from the samples collected with relatively long time intervals during the process of disease and HAART treatment, which may have missed the intricate changes during the intervals in early treatment. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the dynamics of HIV-1 DNA in patients during the early phase of HARRT treatment. Using optimized real time PCR, we observed significant changes in 2-LTR during the first 12-week of treatment, while total and integrated HIV-1 DNA remained stable. The doubling time and half-life of 2-LTR were not correlated with the baseline and the rate of changes in plasma viral load and various CD4+ T-cell populations. Longitudinal analyses on 2-LTR sequences and plasma lipopolysaccharide (LPS levels did not reveal any significant changes in the same treatment period. CONCLUSIONS/SIGNIFICANCE: Our study revealed the rapid changes in 2-LTR concentration in a relatively large number of patients during the early HAART treatment. The rapid changes indicate the rapid infusion and clearance of cells bearing 2-LTR in the peripheral blood. Those changes are not expected to be caused by the blocking of viral integration, as our study did not include the integrase inhibitor raltegravir. Our study helps better understand the dynamics of HIV-DNA and its potential role as a biomarker for the diseases and for the treatment efficacy of HAART.

  4. Marcadores virológicos no convencionales en pacientes infectados con el virus de la inmunodeficiencia humana: ADN HIV-T, ADN HIV- 2LTR y ARN de HIV Non conventional virological markers in HIV-infected patients: T-HIV DNA, 2LTR-HIV DNA and HIV RNA

    Directory of Open Access Journals (Sweden)

    Rosana Gariglio

    2004-10-01

    Full Text Available La terapia antirretroviral de alta eficacia (TAAE induce una reducción marcada y persistente de la viremia plasmática, contribuyendo a disminuir la mortalidad y morbilidad de los pacientes HIV-positivos. Así, la carga viral (CV es el método de referencia para evaluar la eficacia terapéutica. Sin embargo, aun en presencia de una TAAE eficiente no se ha logrado la erradicación viral. En este estudio analizamos la presencia del ADN total de HIV (ADN HIV-T, del ADN no integrado con 2LTR (ADN HIV-2LTR y del ARN de HIV, en un grupo de 55 pacientes HIV-positivos en distintos estadios clínicos, con y sin TAAE, mediante ensayos de PCR con revelado colorimétrico en microplaca, optimizados en nuestro laboratorio. La sensibilidad clínica del ARN del HIV fue evaluada con el bDNA, resultando del 74% y del 64%, respectivamente, con una concordancia del 85%. Este ensayo podría ser utilizado en el seguimiento de pacientes bajo TAAE. El ADN HIV-2LTR resultó positivo en el 54% aunque estuvo ausente en pacientes con elevada CV. Este marcador se consideraba un producto lábil y su presencia se asociaba a infección reciente. Sin embargo, actuales evidencias ponen en discusión su estabilidad por lo que su significado clínico debe ser reconsiderado. La ausencia del ADN HIV-2LTR en pacientes con CV detectable puede relacionarse con la heterogeneidad de la secuencia utilizada para su detección. El ADN HIV-T estuvo presente en el 100% de las muestras y resultaría relevante como marcador de remisión cuando se dispongan de terapias que efectivamente erradiquen la infección.Highly active antiretroviral therapy (HAART induces a persistent reduction of the plasmatic viremia, contributing to decrease mortality and morbidity of infected people with human immunodeficiency virus (HIV. Thus, viral load (VL is the reference method to evaluate therapy effectiveness. However, even in the presence of efficient HAART viral eradication was yet not achieved. In this

  5. Human Immunodeficiency Virus-Type 1 LTR DNA contains an intrinsic gene producing antisense RNA and protein products

    Directory of Open Access Journals (Sweden)

    Hsiao Chiu-Bin

    2006-11-01

    Full Text Available Abstract Background While viruses have long been shown to capitalize on their limited genomic size by utilizing both strands of DNA or complementary DNA/RNA intermediates to code for viral proteins, it has been assumed that human retroviruses have all their major proteins translated only from the plus or sense strand of RNA, despite their requirement for a dsDNA proviral intermediate. Several studies, however, have suggested the presence of antisense transcription for both HIV-1 and HTLV-1. More recently an antisense transcript responsible for the HTLV-1 bZIP factor (HBZ protein has been described. In this study we investigated the possibility of an antisense gene contained within the human immunodeficiency virus type 1 (HIV-1 long terminal repeat (LTR. Results Inspection of published sequences revealed a potential transcription initiator element (INR situated downstream of, and in reverse orientation to, the usual HIV-1 promoter and transcription start site. This antisense initiator (HIVaINR suggested the possibility of an antisense gene responsible for RNA and protein production. We show that antisense transcripts are generated, in vitro and in vivo, originating from the TAR DNA of the HIV-1 LTR. To test the possibility that protein(s could be translated from this novel HIV-1 antisense RNA, recombinant HIV antisense gene-FLAG vectors were designed. Recombinant protein(s were produced and isolated utilizing carboxy-terminal FLAG epitope (DYKDDDDK sequences. In addition, affinity-purified antisera to an internal peptide derived from the HIV antisense protein (HAP sequences identified HAPs from HIV+ human peripheral blood lymphocytes. Conclusion HIV-1 contains an antisense gene in the U3-R regions of the LTR responsible for both an antisense RNA transcript and proteins. This antisense transcript has tremendous potential for intrinsic RNA regulation because of its overlap with the beginning of all HIV-1 sense RNA transcripts by 25 nucleotides. The

  6. [Non-LTR retrotransposons: LINEs and SINEs in plant genome].

    Science.gov (United States)

    Cheng, Xu-Dong; Ling, Hong-Qing

    2006-06-01

    Retrotransposons are one of the drivers of genome evolution. They include LTR (long terminal repeat) retrotransposons, which widespread in Eukaryotagenomes, show structural similarity to retroviruses. Non-LTR retrotransposons were first discovered in animal genomes and then identified as ubiquitous components of nuclear genomes in many species across the plant kingdom. They constitute a large fraction of the repetitive DNA. Non-LTR retrotransposons are divided into LINEs (long interspersed nuclear elements) and SINEs (short interspersed nuclear elements). Transposition of non-LTR retrotransposons is rarely observed in plants indicating that most of them are inactive and/or under regulation of the host genome. Transposition is poorly understood, but experimental evidence from other genetic systems shows that LINEs are able to transpose autonomously while non-autonomous SINEs depend on the reverse transcription machinery of other retrotransposons. Phylogenic analysis shows LINEs are probably the most ancient class of retrotransposons in plant genomes, while the origin of SINEs is unknown. This review sums up the above data and wants to show readers a clear picture of non-LTR retrotransposons.

  7. A novel function for spumaretrovirus integrase: an early requirement for integrase-mediated cleavage of 2 LTR circles

    Directory of Open Access Journals (Sweden)

    Mouscadet Jean-François

    2005-05-01

    Full Text Available Abstract Retroviral integration is central to viral persistence and pathogenesis, cancer as well as host genome evolution. However, it is unclear why integration appears essential for retrovirus production, especially given the abundance and transcriptional potential of non-integrated viral genomes. The involvement of retroviral endonuclease, also called integrase (IN, in replication steps apart from integration has been proposed, but is usually considered to be accessory. We observe here that integration of a retrovirus from the spumavirus family depends mainly on the quantity of viral DNA produced. Moreover, we found that IN directly participates to linear DNA production from 2-LTR circles by specifically cleaving the conserved palindromic sequence found at LTR-LTR junctions. These results challenge the prevailing view that integrase essential function is to catalyze retroviral DNA integration. Integrase activity upstream of this step, by controlling linear DNA production, is sufficient to explain the absolute requirement for this enzyme. The novel role of IN over 2-LTR circle junctions accounts for the pleiotropic effects observed in cells infected with IN mutants. It may explain why 1 2-LTR circles accumulate in vivo in mutants carrying a defective IN while their linear and integrated DNA pools decrease; 2 why both LTRs are processed in a concerted manner. It also resolves the original puzzle concerning the integration of spumaretroviruses. More generally, it suggests to reassess 2-LTR circles as functional intermediates in the retrovirus cycle and to reconsider the idea that formation of the integrated provirus is an essential step of retrovirus production.

  8. Low levels of LTR retrotransposon deletion by ectopic recombination in the gigantic genomes of salamanders.

    Science.gov (United States)

    Frahry, Matthew Blake; Sun, Cheng; Chong, Rebecca A; Mueller, Rachel Lockridge

    2015-02-01

    Across the tree of life, species vary dramatically in nuclear genome size. Mutations that add or remove sequences from genomes-insertions or deletions, or indels-are the ultimate source of this variation. Differences in the tempo and mode of insertion and deletion across taxa have been proposed to contribute to evolutionary diversity in genome size. Among vertebrates, most of the largest genomes are found within the salamanders, an amphibian clade with genome sizes ranging from ~14 to ~120 Gb. Salamander genomes have been shown to experience slower rates of DNA loss through small (i.e., genomes. However, no studies have addressed DNA loss from salamander genomes resulting from larger deletions. Here, we focus on one type of large deletion-ectopic-recombination-mediated removal of LTR retrotransposon sequences. In ectopic recombination, double-strand breaks are repaired using a "wrong" (i.e., ectopic, or non-allelic) template sequence-typically another locus of similar sequence. When breaks occur within the LTR portions of LTR retrotransposons, ectopic-recombination-mediated repair can produce deletions that remove the internal transposon sequence and the equivalent of one of the two LTR sequences. These deletions leave a signature in the genome-a solo LTR sequence. We compared levels of solo LTRs in the genomes of four salamander species with levels present in five vertebrates with smaller genomes. Our results demonstrate that salamanders have low levels of solo LTRs, suggesting that ectopic-recombination-mediated deletion of LTR retrotransposons occurs more slowly than in other vertebrates with smaller genomes.

  9. DNA recognition by synthetic constructs.

    Science.gov (United States)

    Pazos, Elena; Mosquera, Jesús; Vázquez, M Eugenio; Mascareñas, José L

    2011-09-05

    The interaction of transcription factors with specific DNA sites is key for the regulation of gene expression. Despite the availability of a large body of structural data on protein-DNA complexes, we are still far from fully understanding the molecular and biophysical bases underlying such interactions. Therefore, the development of non-natural agents that can reproduce the DNA-recognition properties of natural transcription factors remains a major and challenging goal in chemical biology. In this review we summarize the basics of double-stranded DNA recognition by transcription factors, and describe recent developments in the design and preparation of synthetic DNA binders. We mainly focus on synthetic peptides that have been designed by following the DNA interaction of natural proteins, and we discuss how the tools of organic synthesis can be used to make artificial constructs equipped with functionalities that introduce additional properties to the recognition process, such as sensing and controllability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bio-recognitive photonics of a DNA-guided organic semiconductor

    Science.gov (United States)

    Back, Seung Hyuk; Park, Jin Hyuk; Cui, Chunzhi; Ahn, Dong June

    2016-01-01

    Incorporation of duplex DNA with higher molecular weights has attracted attention for a new opportunity towards a better organic light-emitting diode (OLED) capability. However, biological recognition by OLED materials is yet to be addressed. In this study, specific oligomeric DNA-DNA recognition is successfully achieved by tri (8-hydroxyquinoline) aluminium (Alq3), an organic semiconductor. Alq3 rods crystallized with guidance from single-strand DNA molecules show, strikingly, a unique distribution of the DNA molecules with a shape of an `inverted' hourglass. The crystal's luminescent intensity is enhanced by 1.6-fold upon recognition of the perfect-matched target DNA sequence, but not in the case of a single-base mismatched one. The DNA-DNA recognition forming double-helix structure is identified to occur only in the rod's outer periphery. This study opens up new opportunities of Alq3, one of the most widely used OLED materials, enabling biological recognition.

  11. Bio-recognitive photonics of a DNA-guided organic semiconductor.

    Science.gov (United States)

    Back, Seung Hyuk; Park, Jin Hyuk; Cui, Chunzhi; Ahn, Dong June

    2016-01-04

    Incorporation of duplex DNA with higher molecular weights has attracted attention for a new opportunity towards a better organic light-emitting diode (OLED) capability. However, biological recognition by OLED materials is yet to be addressed. In this study, specific oligomeric DNA-DNA recognition is successfully achieved by tri (8-hydroxyquinoline) aluminium (Alq3), an organic semiconductor. Alq3 rods crystallized with guidance from single-strand DNA molecules show, strikingly, a unique distribution of the DNA molecules with a shape of an 'inverted' hourglass. The crystal's luminescent intensity is enhanced by 1.6-fold upon recognition of the perfect-matched target DNA sequence, but not in the case of a single-base mismatched one. The DNA-DNA recognition forming double-helix structure is identified to occur only in the rod's outer periphery. This study opens up new opportunities of Alq3, one of the most widely used OLED materials, enabling biological recognition.

  12. Insertion of a solo LTR retrotransposon associates with spur mutations in 'Red Delicious' apple (Malus × domestica).

    Science.gov (United States)

    Han, Mengxue; Sun, Qibao; Zhou, Junyong; Qiu, Huarong; Guo, Jing; Lu, Lijuan; Mu, Wenlei; Sun, Jun

    2017-09-01

    Insertion of a solo LTR, which possesses strong bidirectional, stem-specific promoter activities, is associated with the evolution of a dwarfing apple spur mutation. Spur mutations in apple scions revolutionized global apple production. Since long terminal repeat (LTR) retrotransposons are tightly related to natural mutations, inter-retrotransposon-amplified polymorphism technique and genome walking were used to find sequences in the apple genome based on these LTRs. In 'Red Delicious' spur mutants, a novel, 2190-bp insertion was identified as a spur-specific, solo LTR (sLTR) located at the 1038th nucleotide of another sLTR, which was 1536 bp in length. This insertion-within-an-insertion was localized within a preexisting Gypsy-50 retrotransposon at position 3,762,767 on chromosome 4. The analysis of transcriptional activity of the two sLTRs (the 2190- and 1536-bp inserts) indicated that the 2190-bp sLTR is a promoter, capable of bidirectional transcription. GUS expression in the 2190-bp-sense and 2190-bp-antisense transgenic lines was prominent in stems. In contrast, no promoter activity from either the sense or the antisense strand of the 1536-bp sLTR was detected. From ~150 kb of DNA on each side of the 2190 bp, sLTR insertion site, corresponding to 300 kb of the 'Golden Delicious' genome, 23 genes were predicted. Ten genes had predicted functions that could affect shoot development. This first report, of a sLTR insertion associated with the evolution of apple spur mutation, will facilitate apple breeding, cloning of spur-related genes, and discovery of mechanisms behind dwarf habit.

  13. LTR retrotransposons in fungi.

    Directory of Open Access Journals (Sweden)

    Anna Muszewska

    Full Text Available Transposable elements with long terminal direct repeats (LTR TEs are one of the best studied groups of mobile elements. They are ubiquitous elements present in almost all eukaryotic genomes. Their number and state of conservation can be a highlight of genome dynamics. We searched all published fungal genomes for LTR-containing retrotransposons, including both complete, functional elements and remnant copies. We identified a total of over 66,000 elements, all of which belong to the Ty1/Copia or Ty3/Gypsy superfamilies. Most of the detected Gypsy elements represent Chromoviridae, i.e. they carry a chromodomain in the pol ORF. We analyzed our data from a genome-ecology perspective, looking at the abundance of various types of LTR TEs in individual genomes and at the highest-copy element from each genome. The TE content is very variable among the analyzed genomes. Some genomes are very scarce in LTR TEs (8000 elements. The data shows that transposon expansions in fungi usually involve an increase both in the copy number of individual elements and in the number of element types. The majority of the highest-copy TEs from all genomes are Ty3/Gypsy transposons. Phylogenetic analysis of these elements suggests that TE expansions have appeared independently of each other, in distant genomes and at different taxonomical levels. We also analyzed the evolutionary relationships between protein domains encoded by the transposon pol ORF and we found that the protease is the fastest evolving domain whereas reverse transcriptase and RNase H evolve much slower and in correlation with each other.

  14. LTR-retrotransposons-based molecular markers in cultivated ...

    African Journals Online (AJOL)

    GRACE

    2006-07-03

    Jul 3, 2006 ... LTR-retrotransposons represent a standard component of the Gossypium Genome (Zaki and Abdel Ghany,. 2003). The analysis of the molecular existence and distribution of ancient and active LTR-retrotransposons, therefore, provides a comprehensive evaluation of the evolutionary history of Gossypium.

  15. Genome-wide analysis of LTR-retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.).

    Science.gov (United States)

    Mascagni, Flavia; Giordani, Tommaso; Ceccarelli, Marilena; Cavallini, Andrea; Natali, Lucia

    2017-08-18

    Genome divergence by mobile elements activity and recombination is a continuous process that plays a key role in the evolution of species. Nevertheless, knowledge on retrotransposon-related variability among species belonging to the same genus is still limited. Considering the importance of the genus Helianthus, a model system for studying the ecological genetics of speciation and adaptation, we performed a comparative analysis of the repetitive genome fraction across ten species and one subspecies of sunflower, focusing on long terminal repeat retrotransposons at superfamily, lineage and sublineage levels. After determining the relative genome size of each species, genomic DNA was isolated and subjected to Illumina sequencing. Then, different assembling and clustering approaches allowed exploring the repetitive component of all genomes. On average, repetitive DNA in Helianthus species represented more than 75% of the genome, being composed mostly by long terminal repeat retrotransposons. Also, the prevalence of Gypsy over Copia superfamily was observed and, among lineages, Chromovirus was by far the most represented. Although nearly all the same sublineages are present in all species, we found considerable variability in the abundance of diverse retrotransposon lineages and sublineages, especially between annual and perennial species. This large variability should indicate that different events of amplification or loss related to these elements occurred following species separation and should have been involved in species differentiation. Our data allowed us inferring on the extent of interspecific repetitive DNA variation related to LTR-RE abundance, investigating the relationship between changes of LTR-RE abundance and the evolution of the genus, and determining the degree of coevolution of different LTR-RE lineages or sublineages between and within species. Moreover, the data suggested that LTR-RE abundance in a species was affected by the annual or perennial

  16. A parametric LTR solution for discrete-time systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Jannerup, Ole Erik

    1989-01-01

    A parametric LTR (loop transfer recovery) solution for discrete-time compensators incorporating filtering observers which achieve exact recovery is presented for both minimum- and non-minimum-phase systems. First the recovery error, which defines the difference between the target loop transfer...... and the full loop transfer function, is manipulated into a general form involving the target loop transfer matrix and the fundamental recovery matrix. A parametric LTR solution based on the recovery matrix is developed. It is shown that the LQR/LTR (linear quadratic Gaussian/loop transfer recovery) solution...

  17. An application of LTR design in fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    1998-01-01

    The fault detection and isolation (FDI) problem is considered in this paper. The FDI problem is formulated as a filter design problem, where the faults in the system is estimated and the disturbance acting on the system is rejected. It turns out that the filter design problem can be considered...... as a standard Loop Transfer Recovery (LTR) design problem. As a consequence of the connection between LTR and FDI design, it is shown in an example how the LQG/LTR design method for full order and a proportional-integral observer can be applied with advantages in connection with FDI....

  18. FoxA1 binding to the MMTV LTR modulates chromatin structure and transcription

    International Nuclear Information System (INIS)

    Holmqvist, Per-Henrik; Belikov, Sergey; Zaret, Kenneth S.; Wrange, Oerjan

    2005-01-01

    Novel binding sites for the forkhead transcription factor family member Forkhead box A (FoxA), previously referred to as Hepatocyte Nuclear Factor 3 (HNF3), were found within the mouse mammary tumor virus long terminal repeat (MMTV LTR). The effect of FoxA1 on MMTV LTR chromatin structure, and expression was evaluated in Xenopus laevis oocytes. Mutagenesis of either of the two main FoxA binding sites showed that the distal site, -232/-221, conferred FoxA1-dependent partial inhibition of glucocorticoid receptor (GR) driven MMTV transcription. The proximal FoxA binding segment consisted of two individual FoxA sites at -57/-46 and -45/-34, respectively, that mediated an increased basal MMTV transcription. FoxA1 binding altered the chromatin structure of both the inactive- and the hormone-activated MMTV LTR. Hydroxyl radical foot printing revealed FoxA1-mediated changes in the nucleosome arrangement. Micrococcal nuclease digestion showed the hormone-dependent sub-nucleosome complex, containing ∼120 bp of DNA, to be expanded by FoxA1 binding to the proximal segment into a larger complex containing ∼200 bp. The potential function of the FoxA1-mediated expression of the MMTV provirus for maintenance of expression in different tissues is discussed

  19. Enzymatic recognition of DNA replication origins

    International Nuclear Information System (INIS)

    Stayton, M.M.; Bertsch, L.; Biswas, S.

    1983-01-01

    In this paper we discuss the process of recognition of the complementary-strand origin with emphasis on RNA polymerase action in priming M13 DNA replication, the role of primase in G4 DNA replication, and the function of protein n, a priming protein, during primosome assembly. These phage systems do not require several of the bacterial DNA replication enzymes, particularly those involved in the regulation of chromosome copy number of the initiatiion of replication of duplex DNA. 51 references, 13 figures, 1 table

  20. A Theory of LTR Junk-food Consumption

    OpenAIRE

    Levy, Amnon

    2003-01-01

    LTR junk-food consumption balances the marginal satisfaction with the marginal deterioration of health. An LTR person discounts the instantaneous marginal satisfaction from junk-food consumption by its implications for his survival probability. His change rate of health evaluation is increased (decreased) by junk-food consumption when health is better (worse) than a critical level. The moderating direct effects of age and relative price on junk-food consumption may be amplified, or dimmed, by...

  1. Convergent evolution of ribonuclease h in LTR retrotransposons and retroviruses.

    Science.gov (United States)

    Ustyantsev, Kirill; Novikova, Olga; Blinov, Alexander; Smyshlyaev, Georgy

    2015-05-01

    Ty3/Gypsy long terminals repeat (LTR) retrotransposons are structurally and phylogenetically close to retroviruses. Two notable structural differences between these groups of genetic elements are 1) the presence in retroviruses of an additional envelope gene, env, which mediates infection, and 2) a specific dual ribonuclease H (RNH) domain encoded by the retroviral pol gene. However, similar to retroviruses, many Ty3/Gypsy LTR retrotransposons harbor additional env-like genes, promoting concepts of the infective mode of these retrotransposons. Here, we provide a further line of evidence of similarity between retroviruses and some Ty3/Gypsy LTR retrotransposons. We identify that, together with their additional genes, plant Ty3/Gypsy LTR retrotransposons of the Tat group have a second RNH, as do retroviruses. Most importantly, we show that the resulting dual RNHs of Tat LTR retrotransposons and retroviruses emerged independently, providing strong evidence for their convergent evolution. The convergent resemblance of Tat LTR retrotransposons and retroviruses may indicate similar selection pressures acting on these diverse groups of elements and reveal potential evolutionary constraints on their structure. We speculate that dual RNH is required to accelerate retrotransposon evolution through increased rates of strand transfer events and subsequent recombination events. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice

    Directory of Open Access Journals (Sweden)

    Liu Jin-Song

    2008-08-01

    Full Text Available Abstract Background Long terminal repeat retrotransposons (LTR elements are ubiquitous Eukaryotic TEs that transpose through RNA intermediates. Accounting for significant proportion of many plant genomes, LTR elements have been well established as one of the major forces underlying the evolution of plant genome size, structure and function. The accessibility of more than 40% of genomic sequences of the model legume Medicago truncatula (Mt has made the comprehensive study of its LTR elements possible. Results We use a newly developed tool LTR_FINDER to identify LTR retrotransposons in the Mt genome and detect 526 full-length elements as well as a great number of copies related to them. These elements constitute about 9.6% of currently available genomic sequences. They are classified into 85 families of which 64 are reported for the first time. The majority of the LTR retrotransposons belong to either Copia or Gypsy superfamily and the others are categorized as TRIMs or LARDs by their length. We find that the copy-number of Copia-like families is 3 times more than that of Gypsy-like ones but the latter contribute more to the genome. The analysis of PBS and protein-coding domain structure of the LTR families reveals that they tend to use only 4–5 types of tRNAs and many families have quite conservative ORFs besides known TE domains. For several important families, we describe in detail their abundance, conservation, insertion time and structure. We investigate the amplification-deletion pattern of the elements and find that the detectable full-length elements are relatively young and most of them were inserted within the last 0.52 MY. We also estimate that more than ten million bp of the Mt genomic sequences have been removed by the deletion of LTR elements and the removal of the full-length structures in Mt has been more rapid than in rice. Conclusion This report is the first comprehensive description and analysis of LTR retrotransposons in the

  3. Long Terminal Repeat Circular DNA as Markers of Active Viral Replication of Human T Lymphotropic Virus-1 in Vivo

    Directory of Open Access Journals (Sweden)

    James M Fox

    2016-03-01

    Full Text Available Clonal expansion of human T-lymphotropic virus type-1 (HTLV-1 infected cells in vivo is well documented. Unlike human immunodeficiency virus type 1 (HIV-1, HTLV-1 plasma RNA is sparse. The contribution of the “mitotic” spread of HTLV-1 compared with infectious spread of the virus to HTLV-1 viral burden in established infection is uncertain. Since extrachromosomal long terminal repeat (LTR DNA circles are indicators of viral replication in HIV-1 carriers with undetectable plasma HIV RNA, we hypothesised that HTLV-1 LTR circles could indicate reverse transcriptase (RT usage and infectious activity. 1LTR and 2LTR DNA circles were measured in HTLV-1 cell lines and peripheral blood mononuclear cells (PBMC of asymptomatic carriers (ACs and patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP or adult T cell leukaemia/lymphoma (ATLL. 1LTR DNA circles were detected in 14/20 patients at a mean of 1.38/100 PBMC but did not differentiate disease status nor correlate with HTLV-1 DNA copies. 2LTR DNA circles were detected in 30/31 patients and at higher concentrations in patients with HTLV-1-associated diseases, independent of HTLV-1 DNA load. In an incident case the 2LTR DNA circle concentration increased 2.1 fold at the onset of HAM/TSP compared to baseline. Detectable and fluctuating levels of HTLV-1 DNA circles in patients indicate viral RT usage and virus replication. Our results indicate HTLV-1 viral replication capacity is maintained in chronic infection and may be associated with disease onset.

  4. An Analysis Of Pole/zero Cancellation In LTR-based Feedback Design

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Jannerup, Ole Erik

    1990-01-01

    The pole/zero cancellation in LTR-based feedback design will be analyzed for both full-order as well as minimal-order observers. The asymptotic behaviour of the sensitivity function from the LTR-procedure are given in explicit expressions in the case when a zero is not cancelled by an equivalent...... pole. It will be shown that the non-minimum phase case is included as a special case. The results are not based on any specific LTR-method....

  5. Nuclear Matrix protein SMAR1 represses HIV-1 LTR mediated transcription through chromatin remodeling

    International Nuclear Information System (INIS)

    Sreenath, Kadreppa; Pavithra, Lakshminarasimhan; Singh, Sandeep; Sinha, Surajit; Dash, Prasanta K.; Siddappa, Nagadenahalli B.; Ranga, Udaykumar; Mitra, Debashis; Chattopadhyay, Samit

    2010-01-01

    Nuclear Matrix and MARs have been implicated in the transcriptional regulation of host as well as viral genes but their precise role in HIV-1 transcription remains unclear. Here, we show that > 98% of HIV sequences contain consensus MAR element in their promoter. We show that SMAR1 binds to the LTR MAR and reinforces transcriptional silencing by tethering the LTR MAR to nuclear matrix. SMAR1 associated HDAC1-mSin3 corepressor complex is dislodged from the LTR upon cellular activation by PMA/TNFα leading to an increase in the acetylation and a reduction in the trimethylation of histones, associated with the recruitment of RNA Polymerase II on the LTR. Overexpression of SMAR1 lead to reduction in LTR mediated transcription, both in a Tat dependent and independent manner, resulting in a decreased virion production. These results demonstrate the role of SMAR1 in regulating viral transcription by alternative compartmentalization of LTR between the nuclear matrix and chromatin.

  6. Dynamic conformational change regulates the protein-DNA recognition: an investigation on binding of a Y-family polymerase to its target DNA.

    Directory of Open Access Journals (Sweden)

    Xiakun Chu

    2014-09-01

    Full Text Available Protein-DNA recognition is a central biological process that governs the life of cells. A protein will often undergo a conformational transition to form the functional complex with its target DNA. The protein conformational dynamics are expected to contribute to the stability and specificity of DNA recognition and therefore may control the functional activity of the protein-DNA complex. Understanding how the conformational dynamics influences the protein-DNA recognition is still challenging. Here, we developed a two-basin structure-based model to explore functional dynamics in Sulfolobus solfataricus DNA Y-family polymerase IV (DPO4 during its binding to DNA. With explicit consideration of non-specific and specific interactions between DPO4 and DNA, we found that DPO4-DNA recognition is comprised of first 3D diffusion, then a short-range adjustment sliding on DNA and finally specific binding. Interestingly, we found that DPO4 is under a conformational equilibrium between multiple states during the binding process and the distributions of the conformations vary at different binding stages. By modulating the strength of the electrostatic interactions, the flexibility of the linker, and the conformational dynamics in DPO4, we drew a clear picture on how DPO4 dynamically regulates the DNA recognition. We argue that the unique features of flexibility and conformational dynamics in DPO4-DNA recognition have direct implications for low-fidelity translesion DNA synthesis, most of which is found to be accomplished by the Y-family DNA polymerases. Our results help complete the description of the DNA synthesis process for the Y-family polymerases. Furthermore, the methods developed here can be widely applied for future investigations on how various proteins recognize and bind specific DNA substrates.

  7. Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts.

    Science.gov (United States)

    Savreux-Lenglet, Gaëlle; Depauw, Sabine; David-Cordonnier, Marie-Hélène

    2015-11-05

    DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of DNA adducts to then particularly focus on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) function in DNA adduct interaction with illustration using original experiments performed with S23906-1/DNA adduct. The introduction of this review is a state of the art of protein/DNA adducts recognition, depending on the major or minor groove orientation of the DNA bonding as well as on the molecular consequences in terms of double-stranded DNA maintenance. It reviews the implication of proteins from both DNA repair, transcription, replication and chromatin maintenance in selective DNA adduct recognition. The main section of the manuscript is focusing on the implication of the moonlighting protein GAPDH in DNA adduct recognition with the model of the peculiar DNA minor groove alkylating and destabilizing drug S23906-1. The mechanism of action of S23906-1 alkylating drug and the large variety of GAPDH cellular functions are presented prior to focus on GAPDH direct binding to S23906-1 adducts.

  8. Conformational Selection and Induced Fit for RNA Polymerase and RNA/DNA Hybrid Backtracked Recognition

    Directory of Open Access Journals (Sweden)

    Haifeng eChen

    2015-11-01

    Full Text Available RNA polymerase catalyzes transcription with a high fidelity. If DNA/RNA mismatch or DNA damage occurs downstream, a backtracked RNA polymerase can proofread this situation. However, the backtracked mechanism is still poorly understood. Here we have performed multiple explicit-solvent molecular dynamics (MD simulations on bound and apo DNA/RNA hybrid to study backtracked recognition. MD simulations at room temperature suggest that specific electrostatic interactions play key roles in the backtracked recognition between the polymerase and DNA/RNA hybrid. Kinetics analysis at high temperature shows that bound and apo DNA/RNA hybrid unfold via a two-state process. Both kinetics and free energy landscape analyses indicate that bound DNA/RNA hybrid folds in the order of DNA/RNA contracting, the tertiary folding and polymerase binding. The predicted Φ-values suggest that C7, G9, dC12, dC15 and dT16 are key bases for the backtracked recognition of DNA/RNA hybrid. The average RMSD values between the bound structures and the corresponding apo ones and Kolmogorov-Smirnov (KS P test analyses indicate that the recognition between DNA/RNA hybrid and polymerase might follow an induced fit mechanism for DNA/RNA hybrid and conformation selection for polymerase. Furthermore, this method could be used to relative studies of specific recognition between nucleic acid and protein.

  9. Two-step interrogation then recognition of DNA binding site by Integration Host Factor: an architectural DNA-bending protein.

    Science.gov (United States)

    Velmurugu, Yogambigai; Vivas, Paula; Connolly, Mitchell; Kuznetsov, Serguei V; Rice, Phoebe A; Ansari, Anjum

    2018-02-28

    The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a μs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 μs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1-10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.

  10. DMPD: All is not Toll: new pathways in DNA recognition. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16446382 All is not Toll: new pathways in DNA recognition. Wagner H, Bauer S. J Exp... Med. 2006 Feb 20;203(2):265-8. Epub 2006 Jan 30. (.png) (.svg) (.html) (.csml) Show All is not Toll: new pathways in DNA recognition.... PubmedID 16446382 Title All is not Toll: new pathways in DNA recognition. Authors

  11. Alterations in HIV-1 LTR promoter activity during AIDS progression

    International Nuclear Information System (INIS)

    Hiebenthal-Millow, Kirsten; Greenough, Thomas C.; Bretttler, Doreen B.; Schindler, Michael; Wildum, Steffen; Sullivan, John L.; Kirchhoff, Frank

    2003-01-01

    HIV-1 variants evolving in AIDS patients frequently show increased replicative capacity compared to those present during early asymptomatic infection. It is known that late stage HIV-1 variants often show an expanded coreceptor tropism and altered Nef function. In the present study we investigated whether enhanced HIV-1 LTR promoter activity might also evolve during disease progression. Our results demonstrate increased LTR promoter activity after AIDS progression in 3 of 12 HIV-1-infected individuals studied. Further analysis revealed that multiple alterations in the U3 core-enhancer and in the transactivation-response (TAR) region seem to be responsible for the enhanced functional activity. Our findings show that in a subset of HIV-1-infected individuals enhanced LTR transcription contributes to the increased replicative potential of late stage virus isolates and might accelerate disease progression

  12. DMPD: Innate immune recognition of, and regulation by, DNA. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16979939 Innate immune recognition of, and regulation by, DNA. Ishii KJ, Akira S. T...rends Immunol. 2006 Nov;27(11):525-32. Epub 2006 Sep 18. (.png) (.svg) (.html) (.csml) Show Innate immune recognition... of, and regulation by, DNA. PubmedID 16979939 Title Innate immune recognition of, and regulation b

  13. DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification.

    Science.gov (United States)

    Liu, Meng; Yin, Qingxin; McConnell, Erin M; Chang, Yangyang; Brennan, John D; Li, Yingfu

    2018-03-26

    Technologies capable of linking DNA amplification to molecular recognition are very desirable for ultrasensitive biosensing applications. We have developed a simple but powerful isothermal DNA amplification method, termed DNAzyme feedback amplification (DFA), that is capable of relaying molecular recognition to exponential DNA amplification. The method incorporates both an RNA-cleaving DNAzyme (RCD) and rolling circle amplification (RCA) carried out by a special DNA polymerase using a circular DNA template. DFA begins with a stimulus-dependent RCA reaction, producing tandemly linked RCDs in long-chain DNA products. These RCDs cleave an RNA-containing DNA sequence to form additional primers that hybridize to the circular DNA molecule, giving rise to DNA assemblies that act as the new inputs for RCA. The RCA reaction and the cleavage event keep on feeding each other autonomously, resulting in exponential growth of repetitive DNA sequences that can be easily detected. This method can be used for the detection of both nucleic acid based targets and non-nucleic acid analytes. In this article, we discuss the conceptual framework of the feedback amplification approach, the essential features of this method as well as remaining challenges and possible solutions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Programmable molecular recognition based on the geometry of DNA nanostructures.

    Science.gov (United States)

    Woo, Sungwook; Rothemund, Paul W K

    2011-07-10

    From ligand-receptor binding to DNA hybridization, molecular recognition plays a central role in biology. Over the past several decades, chemists have successfully reproduced the exquisite specificity of biomolecular interactions. However, engineering multiple specific interactions in synthetic systems remains difficult. DNA retains its position as the best medium with which to create orthogonal, isoenergetic interactions, based on the complementarity of Watson-Crick binding. Here we show that DNA can be used to create diverse bonds using an entirely different principle: the geometric arrangement of blunt-end stacking interactions. We show that both binary codes and shape complementarity can serve as a basis for such stacking bonds, and explore their specificity, thermodynamics and binding rules. Orthogonal stacking bonds were used to connect five distinct DNA origami. This work, which demonstrates how a single attractive interaction can be developed to create diverse bonds, may guide strategies for molecular recognition in systems beyond DNA nanostructures.

  15. Antibody recognition of Z-DNA

    International Nuclear Information System (INIS)

    Lafer, E.M.; Moeller, A.; Valle, R.P.C.; Nordheim, V.A.; Rich, A.; Stollar, B.D.; Massachusetts Inst. of Tech., Cambridge)

    1983-01-01

    To measure serological reactions under physiological ionic strength, we prepared a brominated (Bl) poly(dG-dC).poly(dG-dC), which forms a stable Z helix in solutions of low salt concentration. Mice and rabbits were immunized with this polymer complexed with the basic protein methylated bovine serum albumin (MBSA), and it was discovered that the Z-DNA helix is a strong immunogen. Various antibody populations were purified from the rabbit serum by quantitative immunoprecipitation. Spleen cells from the mice were used for the preparation of hybridoma cell lines secreting monoclonal antibodies. Anti-Z-DNA antibodies were also raised by immunizing animals with poly(dG-dm 5 C).poly(dG-dm 5 C) under conditions where it was reported to be in the left-handed Z conformation as well as unmodified poly(dG-dC).poly(dG-dC) that was in the right-handed B conformation: both were complexed with MBSA. Z-DNA reactive antibodies were found in both murine and human SLE. A Z-DNA-specific as well as a dDNA and Z-DNA cross-reactive antibody population were distinguished by affinity chromatography of the SLE sera. The specificities of the various anti-Z-DNA antibody populations were measured by direct-binding and competitive radioimmunoassays, using synthetic polymers of defined structure under various ionic strengths. These studies allow us to map the possible antigenic sites for these antibodies, which serve as a model for DNA-protein recognition. The findings also established the usefulness of the antibodies as biochemical probes for Z-DNA. 29 references, 6 figures, 1 table

  16. Cooperative DNA Recognition Modulated by an Interplay between Protein-Protein Interactions and DNA-Mediated Allostery.

    Directory of Open Access Journals (Sweden)

    Felipe Merino

    2015-06-01

    Full Text Available Highly specific transcriptional regulation depends on the cooperative association of transcription factors into enhanceosomes. Usually, their DNA-binding cooperativity originates from either direct interactions or DNA-mediated allostery. Here, we performed unbiased molecular simulations followed by simulations of protein-DNA unbinding and free energy profiling to study the cooperative DNA recognition by OCT4 and SOX2, key components of enhanceosomes in pluripotent cells. We found that SOX2 influences the orientation and dynamics of the DNA-bound configuration of OCT4. In addition SOX2 modifies the unbinding free energy profiles of both DNA-binding domains of OCT4, the POU specific and POU homeodomain, despite interacting directly only with the first. Thus, we demonstrate that the OCT4-SOX2 cooperativity is modulated by an interplay between protein-protein interactions and DNA-mediated allostery. Further, we estimated the change in OCT4-DNA binding free energy due to the cooperativity with SOX2, observed a good agreement with experimental measurements, and found that SOX2 affects the relative DNA-binding strength of the two OCT4 domains. Based on these findings, we propose that available interaction partners in different biological contexts modulate the DNA exploration routes of multi-domain transcription factors such as OCT4. We consider the OCT4-SOX2 cooperativity as a paradigm of how specificity of transcriptional regulation is achieved through concerted modulation of protein-DNA recognition by different types of interactions.

  17. A new activity of anti-HIV and anti-tumor protein GAP31: DNA adenosine glycosidase - Structural and modeling insight into its functions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-Guang [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States); Huang, Philip L. [American Biosciences, Boston, MA 02114 (United States); Zhang, Dawei; Sun, Yongtao [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States); Chen, Hao-Chia [Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892 (United States); Zhang, John [Department of Chemistry, New York University, New York, NY 10003 (United States); Huang, Paul L. [Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114 (United States); Kong, Xiang-Peng, E-mail: xiangpeng.kong@med.nyu.edu [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States); Lee-Huang, Sylvia, E-mail: sylvia.lee-huang@med.nyu.edu [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States)

    2010-01-01

    We report here the high-resolution atomic structures of GAP31 crystallized in the presence of HIV-LTR DNA oligonucleotides systematically designed to examine the adenosine glycosidase activity of this anti-HIV and anti-tumor plant protein. Structural analysis and molecular modeling lead to several novel findings. First, adenine is bound at the active site in the crystal structures of GAP31 to HIV-LTR duplex DNA with 5' overhanging adenosine ends, such as the 3'-processed HIV-LTR DNA but not to DNA duplex with blunt ends. Second, the active site pocket of GAP31 is ideally suited to accommodate the 5' overhanging adenosine of the 3'-processed HIV-LTR DNA and the active site residues are positioned to perform the adenosine glycosidase activity. Third, GAP31 also removes the 5'-end adenine from single-stranded HIV-LTR DNA oligonucleotide as well as any exposed adenosine, including that of single nucleotide dAMP but not from AMP. Fourth, GAP31 does not de-purinate guanosine from di-nucleotide GT. These results suggest that GAP31 has DNA adenosine glycosidase activity against accessible adenosine. This activity is distinct from the generally known RNA N-glycosidase activity toward the 28S rRNA. It may be an alternative function that contributes to the antiviral and anti-tumor activities of GAP31. These results provide molecular insights consistent with the anti-HIV mechanisms of GAP31 in its inhibition on the integration of viral DNA into the host genome by HIV-integrase as well as irreversible topological relaxation of the supercoiled viral DNA.

  18. The effects of multiple UV exposures on HIV-LTR (long terminal repeat) expression

    International Nuclear Information System (INIS)

    Schreck, S.; Milton, J.; Panozzo, J.; Libertin, C.R.; Woloschak, G.E.; Loyola Univ., Maywood, IL

    1995-01-01

    Previous studies have shown that cellular stress agents such as UV radiation induce transcription from the long terminal repeat (LTR) of the human immunodeficiency virus (HIV). Using HeLa cells stably transfected with the HIV-LTR sequence, which transcriptionally drives the chloramphenicol acetyl transferase (CAT) reporter gene, we examined the effects of multiple exposures to UVC (254 nm) on HIV-LTR-CAT expression. Low doses (≤ 5 J m -2 ) had no effect on CAT expression, but up to 29-fold induction was observed with 10 J m -2 when cells were harvested 48 h after completion of the exposure. Little difference was noted in induction levels when cells were exposed to one 25 J m -2 dose, viable cells were harvested at 24 h, 48 h or 72 h, and cell lysates were assayed for CAT expression. Two sequential 12.5 J m -2 exposures, given 24 h apart, resulted in an additive effect on CAT expression; these two exposures produced CAT activity equivalent to that induced following a single 25 J m -2 dose. Our data suggest that HIV-LTR requires a specific threshold UV dose in order to elicit induction; a maximal induction dose is also evident; exposures higher than this maximal dose contribute no more to HIV-LTR induction in viable cells. (author)

  19. Characterization of EIAV LTR variability and compartmentalization in various reservoir tissues of long-term inapparent carrier ponies

    International Nuclear Information System (INIS)

    Reis, Jenner K.P.; Craigo, Jodi K.; Cook, Sheila J.; Issel, Charles J.; Montelaro, Ronald C.

    2003-01-01

    Dynamic genomic variation resulting in changes in envelope antigenicity has been established as a fundamental mechanism of persistence by equine infectious anemia virus (EIAV), as observed with other lentiviruses, including HIV-1. In addition to the reported changes in envelope sequences, however, certain studies indicate the viral LTR as a second variable EIAV gene, with the enhancer region being designated as hypervariable. These observations have lead to the suggestion that LTR variation may alter viral replication properties to optimize to the microenvironment of particular tissue reservoirs. To test this hypothesis directly, we examined the population of LTR quasispecies contained in various tissues of two inapparent carrier ponies experimentally infected with a reference EIAV biological clone for 18 months. The results of these studies demonstrated that the EIAV LTR is in fact highly conserved with respect to the infecting LTR species after 1.5 years of persistent infection and regardless of the tissue reservoir. Thus, these comprehensive analyses demonstrate for the first time that the EIAV LTR is highly conserved during long-term persistent infection and that the observed variations in viral LTR are associated more with in vitro adaptation to replication in cultured cells rather than in vivo replication in natural target cells

  20. LTR real-time PCR for HIV-1 DNA quantitation in blood cells for early diagnosis in infants born to seropositive mothers treated in HAART area (ANRS CO 01).

    Science.gov (United States)

    Avettand-Fènoël, Véronique; Chaix, Marie-Laure; Blanche, Stéphane; Burgard, Marianne; Floch, Corinne; Toure, Kadidia; Allemon, Marie-Christine; Warszawski, Josiane; Rouzioux, Christine

    2009-02-01

    HIV-1 diagnosis in babies born to seropositive mothers is one of the challenges of HIV epidemics in children. A simple, rapid protocol was developed for quantifying HIV-1 DNA in whole blood samples and was used in the ANRS French pediatric cohort in conditions of prevention of mother-to-child transmission. A quantitative HIV-1 DNA protocol (LTR real-time PCR) requiring small blood volumes was developed. First, analytical reproducibility was evaluated on 172 samples. Results obtained on blood cell pellets and Ficoll-Hypaque separated mononuclear cells were compared in 48 adult HIV-1 samples. Second, the protocol was applied to HIV-1 diagnosis in infants in parallel with plasma HIV-RNA quantitation. This prospective study was performed in children born between May 2005 and April 2007 included in the ANRS cohort. The assay showed good reproducibility. The 95% detection cut-off value was 6 copies/PCR, that is, 40 copies/10(6) leukocytes. HIV-DNA levels in whole blood were highly correlated with those obtained after Ficoll-Hypaque separation (r = 0.900, P mothers have received HAART. (c) 2008 Wiley-Liss, Inc.

  1. DMPD: Cytosolic DNA recognition for triggering innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18280611 Cytosolic DNA recognition for triggering innate immune responses. Takaoka ...A, Taniguchi T. Adv Drug Deliv Rev. 2008 Apr 29;60(7):847-57. Epub 2007 Dec 31. (.png) (.svg) (.html) (.csml) Show Cytosol...ic DNA recognition for triggering innate immune responses. PubmedID 18280611 Title Cytosolic D

  2. Physical signals for protein–DNA recognition

    International Nuclear Information System (INIS)

    Cao, Xiao-Qin; Zeng, Jia; Yan, Hong

    2009-01-01

    This paper discovers consensus physical signals around eukaryotic splice sites, transcription start sites, and replication origin start and end sites on a genome-wide scale based on their DNA flexibility profiles calculated by three different flexibility models. These salient physical signals are localized highly rigid and flexible DNAs, which may play important roles in protein–DNA recognition by the sliding search mechanism. The found physical signals lead us to a detailed hypothetical view of the search process in which a DNA-binding protein first finds a genomic region close to the target site from an arbitrary starting location by three-dimensional (3D) hopping and intersegment transfer mechanisms for long distances, and subsequently uses the one-dimensional (1D) sliding mechanism facilitated by the localized highly rigid DNAs to accurately locate the target flexible binding site within 30 bp (base pair) short distances. Guided by these physical signals, DNA-binding proteins rapidly search the entire genome to recognize a specific target site from the 3D to 1D pathway. Our findings also show that current promoter prediction programs (PPPs) based on DNA physical properties may suffer from lots of false positives because other functional sites such as splice sites and replication origins have similar physical signals as promoters do

  3. DNA sensor cGAS-mediated immune recognition

    Directory of Open Access Journals (Sweden)

    Pengyan Xia

    2016-09-01

    Full Text Available Abstract The host takes use of pattern recognition receptors (PRRs to defend against pathogen invasion or cellular damage. Among microorganism-associated molecular patterns detected by host PRRs, nucleic acids derived from bacteria or viruses are tightly supervised, providing a fundamental mechanism of host defense. Pathogenic DNAs are supposed to be detected by DNA sensors that induce the activation of NFκB or TBK1-IRF3 pathway. DNA sensor cGAS is widely expressed in innate immune cells and is a key sensor of invading DNAs in several cell types. cGAS binds to DNA, followed by a conformational change that allows the synthesis of cyclic guanosine monophosphate–adenosine monophosphate (cGAMP from adenosine triphosphate and guanosine triphosphate. cGAMP is a strong activator of STING that can activate IRF3 and subsequent type I interferon production. Here we describe recent progresses in DNA sensors especially cGAS in the innate immune responses against pathogenic DNAs.

  4. DMPD: TLR9 as a key receptor for the recognition of DNA. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18262306 TLR9 as a key receptor for the recognition of DNA. Kumagai Y, Takeuchi O, ...TLR9 as a key receptor for the recognition of DNA. PubmedID 18262306 Title TLR9 as a key receptor for the recognition

  5. Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns

    Directory of Open Access Journals (Sweden)

    Domingues Douglas S

    2012-04-01

    Full Text Available Abstract Background Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out. Results Sixty complete LTR-RT elements were classified into 35 families within four Copia and three Gypsy lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of Gypsy/heterochromatin, Copia/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of Ale1, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements. Conclusions Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.

  6. Imidazopyridine/Pyrrole and hydroxybenzimidazole/pyrrole pairs for DNA minor groove recognition.

    Science.gov (United States)

    Renneberg, Dorte; Dervan, Peter B

    2003-05-14

    The DNA binding properties of fused heterocycles imidazo[4,5-b]pyridine (Ip) and hydroxybenzimidazole (Hz) paired with pyrrole (Py) in eight-ring hairpin polyamides are reported. The recognition profile of Ip/Py and Hz/Py pairs were compared to the five-membered ring pairs Im/Py and Hp/Py on a DNA restriction fragment at four 6-base pair recognition sites which vary at a single position 5'-TGTNTA-3', where N = G, C, T, A. The Ip/Py pair distinguishes G.C from C.G, T.A, and A.T, and the Hz/Py pair distinguishes T.A from A.T, G.C, and C.G, affording a new set of heterocycle pairs to target the four Watson-Crick base pairs in the minor groove of DNA.

  7. Evolutionary genomics revealed interkingdom distribution of Tcn1-like chromodomain-containing Gypsy LTR retrotransposons among fungi and plants

    Directory of Open Access Journals (Sweden)

    Blinov Alexander

    2010-04-01

    Full Text Available Abstract Background Chromodomain-containing Gypsy LTR retrotransposons or chromoviruses are widely distributed among eukaryotes and have been found in plants, fungi and vertebrates. The previous comprehensive survey of chromoviruses from mosses (Bryophyta suggested that genomes of non-seed plants contain the clade which is closely related to the retrotransposons from fungi. The origin, distribution and evolutionary history of this clade remained unclear mainly due to the absence of information concerning the diversity and distribution of LTR retrotransposons in other groups of non-seed plants as well as in fungal genomes. Results In present study we preformed in silico analysis of chromodomain-containing LTR retrotransposons in 25 diverse fungi and a number of plant species including spikemoss Selaginella moellendorffii (Lycopodiophyta coupled with an experimental survey of chromodomain-containing Gypsy LTR retrotransposons from diverse non-seed vascular plants (lycophytes, ferns, and horsetails. Our mining of Gypsy LTR retrotransposons in genomic sequences allowed identification of numerous families which have not been described previously in fungi. Two new well-supported clades, Galahad and Mordred, as well as several other previously unknown lineages of chromodomain-containing Gypsy LTR retrotransposons were described based on the results of PCR-mediated survey of LTR retrotransposon fragments from ferns, horsetails and lycophytes. It appeared that one of the clades, namely Tcn1 clade, was present in basidiomycetes and non-seed plants including mosses (Bryophyta and lycophytes (genus Selaginella. Conclusions The interkingdom distribution is not typical for chromodomain-containing LTR retrotransposons clades which are usually very specific for a particular taxonomic group. Tcn1-like LTR retrotransposons from fungi and non-seed plants demonstrated high similarity to each other which can be explained by strong selective constraints and the

  8. Evolutionary characterization of Ty3/gypsy-like LTR retrotransposons in the parasitic cestode Echinococcus granulosus.

    Science.gov (United States)

    Bae, Young-An

    2016-11-01

    Cyclophyllidean cestodes including Echinococcus granulosus have a smaller genome and show characteristics such as loss of the gut, a segmented body plan, and accelerated growth rate in hosts compared with other tissue-invading helminths. In an effort to address the molecular mechanism relevant to genome shrinkage, the evolutionary status of long-terminal-repeat (LTR) retrotransposons, which are known as the most potent genomic modulators, was investigated in the E. granulosus draft genome. A majority of the E. granulosus LTR retrotransposons were classified into a novel characteristic clade, named Saci-2, of the Ty3/gypsy family, while the remaining elements belonged to the CsRn1 clade of identical family. Their nucleotide sequences were heavily corrupted by frequent base substitutions and segmental losses. The ceased mobile activity of the major retrotransposons and the following intrinsic DNA loss in their inactive progenies might have contributed to decrease in genome size. Apart from the degenerate copies, a gag gene originating from a CsRn1-like element exhibited substantial evidences suggesting its domestication including a preserved coding profile and transcriptional activity, the presence of syntenic orthologues in cestodes, and selective pressure acting on the gene. To my knowledge, the endogenized gag gene is reported for the first time in invertebrates, though its biological function remains elusive.

  9. Recognition of methylated DNA through methyl-CpG binding domain proteins

    DEFF Research Database (Denmark)

    Zou, Xueqing; Ma, Wen; Solov'yov, Ilia

    2012-01-01

    DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although...... the function of MBD proteins has attracted considerable attention and is well characterized, the mechanism underlying mDNA recognition by MBD proteins is still poorly understood. In this article, we demonstrate that the methyl-CpG dinucleotides are recognized at the MBD-mDNA interface by two MBD arginines...

  10. Cellular specificity of HIV-1 replication can be controlled by LTR sequences

    International Nuclear Information System (INIS)

    Reed-Inderbitzin, Edward; Maury, Wendy

    2003-01-01

    Two well-established determinants of retroviral tropism are envelope sequences that regulate entry and LTR sequences that can regulate viral expression in a cell-specific manner. Studies with human immunodeficiency virus-1 (HIV-1) have demonstrated that tropism of this virus maps primarily to variable envelope sequences. Studies have demonstrated that T cell and macrophage-specific transcription factor binding motifs exist in the upstream region of the LTR U3; however, the ability of the core enhancer/promoter proximal elements (two NF-κB and three Sp1 sites) to function well in macrophages and T cells have led many to conclude that HIV LTR sequences are not primary determinants of HIV tropism. To determine if cellular specificity could be imparted to HIV by the core enhancer elements, the enhancer/promoter proximal region of the HIV LTR was substituted with motifs that control gene expression in a myeloid-specific manner. The enhancer region from equine infectious anemia virus (EIAV) when substituted for the HIV enhancer/promoter proximal region was found to drive expression in a macrophage-specific manner and was responsive to HIV Tat. The addition of a 5' methylation-dependent binding site (MDBP) and a promoter proximal Sp1 motif increased expression without altering cellular specificity. Spacing between the promoter proximal region and the TATA box was also found to influence LTR activity. Infectivity studies using chimeric LTRs within the context of a dual-tropic infectious molecular clone established that these LTRs directed HIV replication and production of infectious virions in macrophages but not primary T cells or T cell lines. This investigation demonstrates that cellular specificity can be imparted onto HIV-1 replication at the level of viral transcription and not entry

  11. Full Length Research Paper LTR-retrotransposons-based molecular ...

    African Journals Online (AJOL)

    LTR-retrotransposons possess unique properties that make them appropriate for investigating relationships between closely related species and populations. The aim of the current study was to employ Ty1-copia group retrotransposons as molecular markers in cultivated Egyptian cottons, G. barbadense L. Restriction site ...

  12. Expression of protein-coding genes embedded in ribosomal DNA

    DEFF Research Database (Denmark)

    Johansen, Steinar D; Haugen, Peik; Nielsen, Henrik

    2007-01-01

    Ribosomal DNA (rDNA) is a specialised chromosomal location that is dedicated to high-level transcription of ribosomal RNA genes. Interestingly, rDNAs are frequently interrupted by parasitic elements, some of which carry protein genes. These are non-LTR retrotransposons and group II introns that e...... in the nucleolus....

  13. Damage-recognition proteins as a potential indicator of DNA-damage-mediated sensitivity or resistance of human cells to ultraviolet radiation

    International Nuclear Information System (INIS)

    Chao, C.C.-K.

    1992-01-01

    The authors compared damage-recognition proteins in cells expressing different sensitivities to DNA damage. An increase in damage-recognition proteins and an enhancement of plasmid re-activation were detected in HeLa cells resistant to cisplatin and u.v. However, repair-defective cells derived from xeroderma-pigmentosum (a rare skin disease) patients did not express less cisplatin damage-recognition proteins than repair-competent cells, suggesting that damage-recognition-protein expression may not be related to DNA repair. By contrast, cells resistant to DNA damage consistently expressed high levels of u.v.-modified-DNA damage-recognition proteins. The results support the notion that u.v. damage-recognition proteins are different from those that bind to cisplatin. Findings also suggest that the damage-recognition proteins identified could be used as potential indicators of the sensitivity or resistance of cells to u.v. (author)

  14. Regulatory elements involved in tax-mediated transactivation of the HTLV-I LTR.

    Science.gov (United States)

    Seeler, J S; Muchardt, C; Podar, M; Gaynor, R B

    1993-10-01

    HTLV-I is the etiologic agent of adult T-cell leukemia. In this study, we investigated the regulatory elements and cellular transcription factors which function in modulating HTLV-I gene expression in response to the viral transactivator protein, tax. Transfection experiments into Jurkat cells of a variety of site-directed mutants in the HTLV-1 LTR indicated that each of the three motifs A, B, and C within the 21-bp repeats, the binding sites for the Ets family of proteins, and the TATA box all influenced the degree of tax-mediated activation. Tax is also able to activate gene expression of other viral and cellular promoters. Tax activation of the IL-2 receptor and the HIV-1 LTR is mediated through NF-kappa B motifs. Interestingly, sequences in the 21-bp repeat B and C motifs contain significant homology with NF-kappa B regulatory elements. We demonstrated that an NF-kappa B binding protein, PRDII-BF1, but not the rel protein, bound to the B and C motifs in the 21-bp repeat. PRDII-BF1 was also able to stimulate activation of HTLV-I gene expression by tax. The role of the Ets proteins on modulating tax activation was also studied. Ets 1 but not Ets 2 was capable of increasing the degree of tax activation of the HTLV-I LTR. These results suggest that tax activates gene expression by either direct or indirect interaction with several cellular transcription factors that bind to the HTLV-I LTR.

  15. Molecular recognition of AT-DNA sequences by the induced CD pattern of dibenzotetraaza[14]annulene (DBTAA)-adenine derivatives.

    Science.gov (United States)

    Stojković, Marijana Radić; Skugor, Marko; Dudek, Lukasz; Grolik, Jarosław; Eilmes, Julita; Piantanida, Ivo

    2014-01-01

    An investigation of the interactions of two novel and several known DBTAA-adenine conjugates with double-stranded DNA and RNA has revealed the DNA/RNA groove as the dominant binding site, which is in contrast to the majority of previously studied DBTAA analogues (DNA/RNA intercalators). Only DBTAA-propyladenine conjugates revealed the molecular recognition of AT-DNA by an ICD band pattern > 300 nm, whereas significant ICD bands did not appear for other ds-DNA/RNA. A structure-activity relation for the studied series of compounds showed that the essential structural features for the ICD recognition are a) the presence of DNA-binding appendages (adenine side chain and positively charged side chain) on both DBTAA side chains, and b) the presence of a short propyl linker, which does not support intramolecular aromatic stacking between DBTAA and adenine. The observed AT-DNA-ICD pattern differs from previously reported ss-DNA (poly dT) ICD recognition by a strong negative ICD band at 350 nm, which allows for the dynamic differentiation between ss-DNA (poly dT) and coupled ds-AT-DNA.

  16. Contrasting roles for DNA methyltransferases and histone deacetylases in single-item and associative recognition memory.

    Science.gov (United States)

    Scott, Hannah; Smith, Anna E; Barker, Gareth R; Uney, James B; Warburton, E Clea

    2017-03-01

    Recognition memory enables us to judge whether we have encountered a stimulus before and to recall associated information, including where the stimulus was encountered. The perirhinal cortex (PRh) is required for judgment of stimulus familiarity, while hippocampus (HPC) and medial prefrontal cortex (mPFC) are additionally involved when spatial information associated with a stimulus needs to be remembered. While gene expression is known to be essential for the consolidation of long-term recognition memory, the underlying regulatory mechanisms are not fully understood. Here we investigated the roles of two epigenetic mechanisms, DNA methylation and histone deacetylation, in recognition memory. Infusion of DNA methyltransferase inhibitors into PRh impaired performance in novel object recognition and object-in-place tasks while infusions into HPC or mPFC impaired object-in-place performance only. In contrast, inhibition of histone deacetylases in PRh, but not mPFC, enhanced recognition memory. These results support the emerging role of epigenetic processes in learning and memory.

  17. Contrasting roles for DNA methyltransferases and histone deacetylases in single-item and associative recognition memory

    Directory of Open Access Journals (Sweden)

    Hannah Scott

    2017-03-01

    Full Text Available Recognition memory enables us to judge whether we have encountered a stimulus before and to recall associated information, including where the stimulus was encountered. The perirhinal cortex (PRh is required for judgment of stimulus familiarity, while hippocampus (HPC and medial prefrontal cortex (mPFC are additionally involved when spatial information associated with a stimulus needs to be remembered. While gene expression is known to be essential for the consolidation of long-term recognition memory, the underlying regulatory mechanisms are not fully understood. Here we investigated the roles of two epigenetic mechanisms, DNA methylation and histone deacetylation, in recognition memory. Infusion of DNA methyltransferase inhibitors into PRh impaired performance in novel object recognition and object-in-place tasks while infusions into HPC or mPFC impaired object-in-place performance only. In contrast, inhibition of histone deacetylases in PRh, but not mPFC, enhanced recognition memory. These results support the emerging role of epigenetic processes in learning and memory.

  18. Molecular recognition of AT-DNA sequences by the induced CD pattern of dibenzotetraaza[14]annulene (DBTAA)–adenine derivatives

    Science.gov (United States)

    Stojković, Marijana Radić; Škugor, Marko; Dudek, Łukasz; Grolik, Jarosław; Eilmes, Julita

    2014-01-01

    Summary An investigation of the interactions of two novel and several known DBTAA–adenine conjugates with double-stranded DNA and RNA has revealed the DNA/RNA groove as the dominant binding site, which is in contrast to the majority of previously studied DBTAA analogues (DNA/RNA intercalators). Only DBTAA–propyladenine conjugates revealed the molecular recognition of AT-DNA by an ICD band pattern > 300 nm, whereas significant ICD bands did not appear for other ds-DNA/RNA. A structure–activity relation for the studied series of compounds showed that the essential structural features for the ICD recognition are a) the presence of DNA-binding appendages (adenine side chain and positively charged side chain) on both DBTAA side chains, and b) the presence of a short propyl linker, which does not support intramolecular aromatic stacking between DBTAA and adenine. The observed AT-DNA-ICD pattern differs from previously reported ss-DNA (poly dT) ICD recognition by a strong negative ICD band at 350 nm, which allows for the dynamic differentiation between ss-DNA (poly dT) and coupled ds-AT-DNA. PMID:25246976

  19. DNA pattern recognition using canonical correlation algorithm.

    Science.gov (United States)

    Sarkar, B K; Chakraborty, Chiranjib

    2015-10-01

    We performed canonical correlation analysis as an unsupervised statistical tool to describe related views of the same semantic object for identifying patterns. A pattern recognition technique based on canonical correlation analysis (CCA) was proposed for finding required genetic code in the DNA sequence. Two related but different objects were considered: one was a particular pattern, and other was test DNA sequence. CCA found correlations between two observations of the same semantic pattern and test sequence. It is concluded that the relationship possesses maximum value in the position where the pattern exists. As a case study, the potential of CCA was demonstrated on the sequence found from HIV-1 preferred integration sites. The subsequences on the left and right flanking from the integration site were considered as the two views, and statistically significant relationships were established between these two views to elucidate the viral preference as an important factor for the correlation.

  20. Human macrophages support persistent transcription from unintegrated HIV-1 DNA

    International Nuclear Information System (INIS)

    Kelly, Jeremy; Beddall, Margaret H.; Yu Dongyang; Iyer, Subashini R.; Marsh, Jon W.; Wu Yuntao

    2008-01-01

    Retroviruses require integration of their RNA genomes for both stability and productive viral replication. In HIV infection of non-dividing, resting CD4 T cells, where integration is greatly impeded, the reverse transcribed HIV DNA has limited biological activity and a short half-life. In metabolically active and proliferating T cells, unintegrated DNA rapidly diminishes with cell division. HIV also infects the non-dividing but metabolically active macrophage population. In an in vitro examination of HIV infection of macrophages, we find that unintegrated viral DNA not only has an unusual stability, but also maintains biological activity. The unintegrated linear DNA, 1-LTR, and 2-LTR circles are stable for at least 30 days. Additionally, there is persistent viral gene transcription, which is selective and skewed towards viral early genes such as nef and tat with highly diminished rev and vif. One viral early gene product Nef was measurably synthesized. We also find that independent of integration, the HIV infection process in macrophages leads to generation of numerous chemokines

  1. Retroviral DNA Integration

    Science.gov (United States)

    2016-01-01

    The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3′-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications. PMID:27198982

  2. Structural basis for sequence-specific recognition of DNA by TAL effectors

    KAUST Repository

    Deng, Dong

    2012-01-05

    TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.

  3. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition

    NARCIS (Netherlands)

    Wienk, H.L.J.; Slootweg, J.C.; Speerstra, S.; Kaptein, R.; Boelens, R.; Folkers, G.E.

    2013-01-01

    To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL

  4. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG).

    Science.gov (United States)

    Lee, Chun-Yue I; Delaney, James C; Kartalou, Maria; Lingaraju, Gondichatnahalli M; Maor-Shoshani, Ayelet; Essigmann, John M; Samson, Leona D

    2009-03-10

    The human 3-methyladenine DNA glycosylase (AAG) recognizes and excises a broad range of purines damaged by alkylation and oxidative damage, including 3-methyladenine, 7-methylguanine, hypoxanthine (Hx), and 1,N(6)-ethenoadenine (epsilonA). The crystal structures of AAG bound to epsilonA have provided insights into the structural basis for substrate recognition, base excision, and exclusion of normal purines and pyrimidines from its substrate recognition pocket. In this study, we explore the substrate specificity of full-length and truncated Delta80AAG on a library of oligonucleotides containing structurally diverse base modifications. Substrate binding and base excision kinetics of AAG with 13 damaged oligonucleotides were examined. We found that AAG bound to a wide variety of purine and pyrimidine lesions but excised only a few of them. Single-turnover excision kinetics showed that in addition to the well-known epsilonA and Hx substrates, 1-methylguanine (m1G) was also excised efficiently by AAG. Thus, along with epsilonA and ethanoadenine (EA), m1G is another substrate that is shared between AAG and the direct repair protein AlkB. In addition, we found that both the full-length and truncated AAG excised 1,N(2)-ethenoguanine (1,N(2)-epsilonG), albeit weakly, from duplex DNA. Uracil was excised from both single- and double-stranded DNA, but only by full-length AAG, indicating that the N-terminus of AAG may influence glycosylase activity for some substrates. Although AAG has been primarily shown to act on double-stranded DNA, AAG excised both epsilonA and Hx from single-stranded DNA, suggesting the possible significance of repair of these frequent lesions in single-stranded DNA transiently generated during replication and transcription.

  5. Recognition of thymine in DNA bulges by a Zn(II) macrocyclic complex.

    Science.gov (United States)

    del Mundo, Imee Marie A; Fountain, Matthew A; Morrow, Janet R

    2011-08-14

    A Zn(II) macrocyclic complex with appended quinoline is a bifunctional recognition agent that uses both the Zn(II) center and the pendent aromatic group to bind to thymine in bulges with good selectivity over DNA containing G, C or A bulges. Spectroscopic studies show that the stem containing the bulge stays largely intact in a DNA hairpin with the Zn(II) complex bound to the thymine bulge. This journal is © The Royal Society of Chemistry 2011

  6. Probing the role of interfacial waters in protein-DNA recognition using a hybrid implicit/explicit solvation model

    Science.gov (United States)

    Li, Shen; Bradley, Philip

    2013-01-01

    When proteins bind to their DNA target sites, ordered water molecules are often present at the protein-DNA interface bridging protein and DNA through hydrogen bonds. What is the role of these ordered interfacial waters? Are they important determinants of the specificity of DNA sequence recognition, or do they act in binding in a primarily non-specific manner, by improving packing of the interface, shielding unfavorable electrostatic interactions, and solvating unsatisfied polar groups that are inaccessible to bulk solvent? When modeling details of structure and binding preferences, can fully implicit solvent models be fruitfully applied to protein-DNA interfaces, or must the individualistic properties of these interfacial waters be accounted for? To address these questions, we have developed a hybrid implicit/explicit solvation model that specifically accounts for the locations and orientations of small numbers of DNA-bound water molecules while treating the majority of the solvent implicitly. Comparing the performance of this model to its fully implicit counterpart, we find that explicit treatment of interfacial waters results in a modest but significant improvement in protein sidechain placement and DNA sequence recovery. Base-by-base comparison of the performance of the two models highlights DNA sequence positions whose recognition may be dependent on interfacial water. Our study offers large-scale statistical evidence for the role of ordered water for protein DNA recognition, together with detailed examination of several well-characterized systems. In addition, our approach provides a template for modeling explicit water molecules at interfaces that should be extensible to other systems. PMID:23444044

  7. AN ILLUMINATION INVARIANT TEXTURE BASED FACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    K. Meena

    2013-11-01

    Full Text Available Automatic face recognition remains an interesting but challenging computer vision open problem. Poor illumination is considered as one of the major issue, since illumination changes cause large variation in the facial features. To resolve this, illumination normalization preprocessing techniques are employed in this paper to enhance the face recognition rate. The methods such as Histogram Equalization (HE, Gamma Intensity Correction (GIC, Normalization chain and Modified Homomorphic Filtering (MHF are used for preprocessing. Owing to great success, the texture features are commonly used for face recognition. But these features are severely affected by lighting changes. Hence texture based models Local Binary Pattern (LBP, Local Derivative Pattern (LDP, Local Texture Pattern (LTP and Local Tetra Patterns (LTrPs are experimented under different lighting conditions. In this paper, illumination invariant face recognition technique is developed based on the fusion of illumination preprocessing with local texture descriptors. The performance has been evaluated using YALE B and CMU-PIE databases containing more than 1500 images. The results demonstrate that MHF based normalization gives significant improvement in recognition rate for the face images with large illumination conditions.

  8. Genome-wide analysis of LTR-retrotransposons in oil palm.

    Science.gov (United States)

    Beulé, Thierry; Agbessi, Mawussé Dt; Dussert, Stephane; Jaligot, Estelle; Guyot, Romain

    2015-10-15

    The oil palm (Elaeis guineensis Jacq.) is a major cultivated crop and the world's largest source of edible vegetable oil. The genus Elaeis comprises two species E. guineensis, the commercial African oil palm and E. oleifera, which is used in oil palm genetic breeding. The recent publication of both the African oil palm genome assembly and the first draft sequence of its Latin American relative now allows us to tackle the challenge of understanding the genome composition, structure and evolution of these palm genomes through the annotation of their repeated sequences. In this study, we identified, annotated and compared Transposable Elements (TE) from the African and Latin American oil palms. In a first step, Transposable Element databases were built through de novo detection in both genome sequences then the TE content of both genomes was estimated. Then putative full-length retrotransposons with Long Terminal Repeats (LTRs) were further identified in the E. guineensis genome for characterization of their structural diversity, copy number and chromosomal distribution. Finally, their relative expression in several tissues was determined through in silico analysis of publicly available transcriptome data. Our results reveal a congruence in the transpositional history of LTR retrotransposons between E. oleifera and E. guineensis, especially the Sto-4 family. Also, we have identified and described 583 full-length LTR-retrotransposons in the Elaeis guineensis genome. Our work shows that these elements are most likely no longer mobile and that no recent insertion event has occurred. Moreover, the analysis of chromosomal distribution suggests a preferential insertion of Copia elements in gene-rich regions, whereas Gypsy elements appear to be evenly distributed throughout the genome. Considering the high proportion of LTR retrotransposon in the oil palm genome, our work will contribute to a greater understanding of their impact on genome organization and evolution

  9. Molecular recognition in complexes of TRF proteins with telomeric DNA.

    Directory of Open Access Journals (Sweden)

    Miłosz Wieczór

    Full Text Available Telomeres are specialized nucleoprotein assemblies that protect the ends of linear chromosomes. In humans and many other species, telomeres consist of tandem TTAGGG repeats bound by a protein complex known as shelterin that remodels telomeric DNA into a protective loop structure and regulates telomere homeostasis. Shelterin recognizes telomeric repeats through its two major components known as Telomere Repeat-Binding Factors, TRF1 and TRF2. These two homologous proteins are therefore essential for the formation and normal function of telomeres. Indeed, TRF1 and TRF2 are implicated in a plethora of different cellular functions and their depletion leads to telomere dysfunction with chromosomal fusions, followed by apoptotic cell death. More specifically, it was found that TRF1 acts as a negative regulator of telomere length, and TRF2 is involved in stabilizing the loop structure. Consequently, these proteins are of great interest, not only because of their key role in telomere maintenance and stability, but also as potential drug targets. In the current study, we investigated the molecular basis of telomeric sequence recognition by TRF1 and TRF2 and their DNA binding mechanism. We used molecular dynamics (MD to calculate the free energy profiles for binding of TRFs to telomeric DNA. We found that the predicted binding free energies were in good agreement with experimental data. Further, different molecular determinants of binding, such as binding enthalpies and entropies, the hydrogen bonding pattern and changes in surface area, were analyzed to decompose and examine the overall binding free energies at the structural level. With this approach, we were able to draw conclusions regarding the consecutive stages of sequence-specific association, and propose a novel aspartate-dependent mechanism of sequence recognition. Finally, our work demonstrates the applicability of computational MD-based methods to studying protein-DNA interactions.

  10. Identification of a non-LTR retrotransposon from the gypsy moth

    Science.gov (United States)

    K.J. Garner; J.M. Slavicek

    1999-01-01

    A family of highly repetitive elements, named LDT1, has been identified in the gypsy moth, Lymantria dispar. The complete element is 5.4 kb in length and lacks long-terminal repeats, The element contains two open reading frames with a significant amino acid sequence similarity to several non-LTR retrotransposons. The first open reading frame contains...

  11. Computational studies of radiation and oxidative damage to DNA and its recognition by repair enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, M. [Center for Promotion of Computational Science and Engineering, Tokai Research Establishment, Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2000-03-01

    Molecular dynamics (MD) simulation is used to study the time evolution of the recognition processes and to construct a model of the specific DNA-repair enzyme' complexes. MD simulations of the following molecules were performed: DNA dodecamer with thymine dimer (TD), DNA 30-mer with thymine glycol (TG), and respective specific repair enzymes T4 Endonuclease V and Endonuclease III. Both DNA lesions are experimentally suggested to be mutagenic and carcinogenic unless properly recognized and repaired by repair enzymes. In the case of TD, there is detected a strong kink around the TD site, that is not observed in native DNA. In addition there is observed a different value of electrostatic energy at the TD site - negative '-9 kcal/mol', in contrast to the nearly neutral value of the native thymine site. These two factors - structural changes and specific electrostatic energy - seem to be important for proper recognition of a TD damaged site and for formation of DNA-enzyme complex. Formation of this complex is the onset of the repair of DNA. In the case of TG damaged DNA the structural characteristics of the TG were calculated (charges, bond lengths, bond angles, etc.). The formed TG was used to replace the native thymine and then submitted to the simulation in the system with a repair enzyme with Endonuclease III for the purpose of the study of the formation of the DNA-enzyme complex. (author)

  12. DNA Recognition by the DNA Primase of Bacteriophage T7: A Structure Function Study of the Zinc-Binding Domain

    International Nuclear Information System (INIS)

    Akabayov, B.; Lee, S.; Akabayov, S.; Rekhi, S.; Zhu, B.; Richardson, C.

    2009-01-01

    Synthesis of oligoribonucleotide primers for lagging-strand DNA synthesis in the DNA replication system of bacteriophage T7 is catalyzed by the primase domain of the gene 4 helicase-primase. The primase consists of a zinc-binding domain (ZBD) and an RNA polymerase (RPD) domain. The ZBD is responsible for recognition of a specific sequence in the ssDNA template whereas catalytic activity resides in the RPD. The ZBD contains a zinc ion coordinated with four cysteine residues. We have examined the ligation state of the zinc ion by X-ray absorption spectroscopy and biochemical analysis of genetically altered primases. The ZBD of primase engaged in catalysis exhibits considerable asymmetry in coordination to zinc, as evidenced by a gradual increase in electron density of the zinc together with elongation of the zinc-sulfur bonds. Both wild-type primase and primase reconstituted from purified ZBD and RPD have a similar electronic change in the level of the zinc ion as well as the configuration of the ZBD. Single amino acid replacements in the ZBD (H33A and C36S) result in the loss of both zinc binding and its structural integrity. Thus the zinc in the ZBD may act as a charge modulation indicator for the surrounding sulfur atoms necessary for recognition of specific DNA sequences.

  13. Novel DNA packaging recognition in the unusual bacteriophage N15

    Energy Technology Data Exchange (ETDEWEB)

    Feiss, Michael [Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242 (United States); Geyer, Henriette, E-mail: henriettegeyer@gmail.com [Division of Viral Infections, Robert Koch Institute, Berlin (Germany); Division of Viral Infections, Robert Koch Institute, Berlin (Germany); Klingberg, Franco, E-mail: franco.klingberg@thermofisher.com [Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt (Germany); Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt (Germany); Moreno, Norma, E-mail: nmoreno@islander.tamucc.edu [Texas A& M University – Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, United States. (United States); Texas A& M University – Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, United States. (United States); Forystek, Amanda, E-mail: eamanda-forystek@uiowa.edu [Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt (Germany); Room # 2911 JPP, Dept. of Psychiatry, The University of Iowa, 200 Hawkins Drive, Iowa City, Iowa, 52242 (United States); Maluf, Nasib Karl, E-mail: fKarl.Maluf@ap-lab.com [Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt (Germany); Alliance Protein Laboratories, Inc. 6042 Cornerstone Court West, Suite ASan Diego, CA 92121, USA. (United States); Sippy, Jean [Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242 (United States)

    2015-08-15

    Phage lambda's cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos{sup N15}) is closely related to cos{sup λ}, but whereas the cosB{sup N15} subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB{sup λ}. A bioinformatic study of N15-like phages indicates that cosB{sup N15} also has an accessory, remote rR2 site, which is proposed to increase packaging efficiency, like R2 and R1 of lambda. N15 plus five prophages all have the rR2 sequence, which is located in the TerS-encoding 1 gene, approximately 200 bp distal to R3. An additional set of four highly related prophages, exemplified by Monarch, has R3 sequence, but also has R2 and R1 sequences characteristic of cosB–λ. The DNA binding domain of TerS-N15 is a dimer. - Highlights: • There are two classes of DNA packaging signals in N15-related phages. • Phage N15's TerS binding site: a critical site and a possible remote accessory site. • Viral DNA recognition signals by the λ-like bacteriophages: the odd case of N15.

  14. LTRsift: a graphical user interface for semi-automatic classification and postprocessing of de novo detected LTR retrotransposons.

    Science.gov (United States)

    Steinbiss, Sascha; Kastens, Sascha; Kurtz, Stefan

    2012-11-07

    Long terminal repeat (LTR) retrotransposons are a class of eukaryotic mobile elements characterized by a distinctive sequence similarity-based structure. Hence they are well suited for computational identification. Current software allows for a comprehensive genome-wide de novo detection of such elements. The obvious next step is the classification of newly detected candidates resulting in (super-)families. Such a de novo classification approach based on sequence-based clustering of transposon features has been proposed before, resulting in a preliminary assignment of candidates to families as a basis for subsequent manual refinement. However, such a classification workflow is typically split across a heterogeneous set of glue scripts and generic software (for example, spreadsheets), making it tedious for a human expert to inspect, curate and export the putative families produced by the workflow. We have developed LTRsift, an interactive graphical software tool for semi-automatic postprocessing of de novo predicted LTR retrotransposon annotations. Its user-friendly interface offers customizable filtering and classification functionality, displaying the putative candidate groups, their members and their internal structure in a hierarchical fashion. To ease manual work, it also supports graphical user interface-driven reassignment, splitting and further annotation of candidates. Export of grouped candidate sets in standard formats is possible. In two case studies, we demonstrate how LTRsift can be employed in the context of a genome-wide LTR retrotransposon survey effort. LTRsift is a useful and convenient tool for semi-automated classification of newly detected LTR retrotransposons based on their internal features. Its efficient implementation allows for convenient and seamless filtering and classification in an integrated environment. Developed for life scientists, it is helpful in postprocessing and refining the output of software for predicting LTR

  15. Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons

    DEFF Research Database (Denmark)

    Mourier, Tobias; Willerslev, Eske

    2010-01-01

    of transcriptional activity are observed from both strands of solitary LTR sequences. Transcriptome data collected during meiosis suggests that transcription of solitary LTRs is correlated with the transcription of nearby protein-coding genes. CONCLUSIONS: Presumably, the host organism negatively regulates...

  16. Unexpected Modulation of Recall B and T Cell Responses after Immunization with Rotavirus-like Particles in the Presence of LT-R192G

    Directory of Open Access Journals (Sweden)

    Christelle Basset

    2010-08-01

    Full Text Available LT-R192G, a mutant of the thermolabile enterotoxin of E. coli, is a potent adjuvant of immunization. Immune responses are generally analyzed at the end of protocols including at least 2 administrations, but rarely after a prime. To investigate this point, we compared B and T cell responses in mice after one and two intrarectal immunizations with 2/6 rotavirus-like particles (2/6-VLP and LT-R192G. After a boost, we found, an unexpected lower B cell expansion measured by flow cytometry, despite a secondary antibody response. We then analyzed CD4+CD25+Foxp3+ regulatory T cells (Tregs and CD4+CD25+Foxp3− helper T cells after in vitro (restimulation of mesenteric lymph node cells with the antigen (2/6-VLP, the adjuvant (LT-R192G or both. 2/6-VLP did not activate CD4+CD25+Foxp3− nor Foxp3+ T cells from non-immunized and 2/6-VLP immunized mice, whereas they did activate both subsets from mice immunized with 2/6-VLP in the presence of adjuvant. LT-R192G dramatically decreased CD4+CD25+Foxp3+ T cells from non-immunized and 2/6-VLP immunized mice but not from mice immunized with 2/6-VLP and adjuvant. Moreover, in this case, LT-R192G increased Foxp3 expression on CD4+CD25+Foxp3+ cells, suggesting specific Treg activation during the recall. Finally, when both 2/6-VLP and LT-R192G were used for restimulation, LT-R192G clearly suppressed both 2/6-VLP-specific CD4+CD25+Foxp3− and Foxp3+ T cells. All together, these results suggest that LT-R192G exerts different effects on CD4+CD25+Foxp3+ T cells, depending on a first or a second contact. The unexpected immunomodulation observed during the recall should be considered in designing vaccination protocols.

  17. Sensitive Fluorescent Sensor for Recognition of HIV-1 dsDNA by Using Glucose Oxidase and Triplex DNA

    Directory of Open Access Journals (Sweden)

    Yubin Li

    2018-01-01

    Full Text Available A sensitive fluorescent sensor for sequence-specific recognition of double-stranded DNA (dsDNA was developed on the surface of silver-coated glass slide (SCGS. Oligonucleotide-1 (Oligo-1 was designed to assemble on the surface of SCGS and act as capture DNA, and oligonucleotide-2 (Oligo-2 was designed as signal DNA. Upon addition of target HIV-1 dsDNA (Oligo-3•Oligo-4, signal DNA could bind on the surface of silver-coated glass because of the formation of C•GoC in parallel triplex DNA structure. Biotin-labeled glucose oxidase (biotin-GOx could bind to signal DNA through the specific interaction of biotin-streptavidin, thereby GOx was attached to the surface of SCGS, which was dependent on the concentration of target HIV-1 dsDNA. GOx could catalyze the oxidation of glucose and yield H2O2, and the HPPA can be oxidized into a fluorescent product in the presence of HRP. Therefore, the concentration of target HIV-1 dsDNA could be estimated with fluorescence intensity. Under the optimum conditions, the fluorescence intensity was proportional to the concentration of target HIV-1 dsDNA over the range of 10 pM to 1000 pM, the detection limit was 3 pM. Moreover, the sensor had good sequence selectivity and practicability and might be applied for the diagnosis of HIV disease in the future.

  18. Ancient Origin of the U2 Small Nuclear RNA Gene-Targeting Non-LTR Retrotransposons Utopia.

    Science.gov (United States)

    Kojima, Kenji K; Jurka, Jerzy

    2015-01-01

    Most non-long terminal repeat (non-LTR) retrotransposons encoding a restriction-like endonuclease show target-specific integration into repetitive sequences such as ribosomal RNA genes and microsatellites. However, only a few target-specific lineages of non-LTR retrotransposons are distributed widely and no lineage is found across the eukaryotic kingdoms. Here we report the most widely distributed lineage of target sequence-specific non-LTR retrotransposons, designated Utopia. Utopia is found in three supergroups of eukaryotes: Amoebozoa, SAR, and Opisthokonta. Utopia is inserted into a specific site of U2 small nuclear RNA genes with different strength of specificity for each family. Utopia families from oomycetes and wasps show strong target specificity while only a small number of Utopia copies from reptiles are flanked with U2 snRNA genes. Oomycete Utopia families contain an "archaeal" RNase H domain upstream of reverse transcriptase (RT), which likely originated from a plant RNase H gene. Analysis of Utopia from oomycetes indicates that multiple lineages of Utopia have been maintained inside of U2 genes with few copy numbers. Phylogenetic analysis of RT suggests the monophyly of Utopia, and it likely dates back to the early evolution of eukaryotes.

  19. Dynamic two-stage mechanism of versatile DNA damage recognition by xeroderma pigmentosum group C protein

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Flurina C.; Camenisch, Ulrike; Fei, Jia; Kaczmarek, Nina; Mathieu, Nadine [Institute of Pharmacology and Toxicology, University of Zuerich-Vetsuisse, Winterthurerstrasse 260, CH-8057 Zuerich (Switzerland); Naegeli, Hanspeter, E-mail: naegelih@vetpharm.uzh.ch [Institute of Pharmacology and Toxicology, University of Zuerich-Vetsuisse, Winterthurerstrasse 260, CH-8057 Zuerich (Switzerland)

    2010-03-01

    The recognition and subsequent repair of DNA damage are essential reactions for the maintenance of genome stability. A key general sensor of DNA lesions is xeroderma pigmentosum group C (XPC) protein, which recognizes a wide variety of helix-distorting DNA adducts arising from ultraviolet (UV) radiation, genotoxic chemicals and reactive metabolic byproducts. By detecting damaged DNA sites, this unique molecular sensor initiates the global genome repair (GGR) pathway, which allows for the removal of all the aforementioned lesions by a limited repertoire of excision factors. A faulty GGR activity causes the accumulation of DNA adducts leading to mutagenesis, carcinogenesis, neurological degeneration and other traits of premature aging. Recent findings indicate that XPC protein achieves its extraordinary substrate versatility by an entirely indirect readout strategy implemented in two clearly discernible stages. First, the XPC subunit uses a dynamic sensor interface to monitor the double helix for the presence of non-hydrogen-bonded bases. This initial screening generates a transient nucleoprotein intermediate that subsequently matures into the ultimate recognition complex by trapping undamaged nucleotides in the abnormally oscillating native strand, in a way that no direct contacts are made between XPC protein and the offending lesion itself. It remains to be elucidated how accessory factors like Rad23B, centrin-2 or the UV-damaged DNA-binding complex contribute to this dynamic two-stage quality control process.

  20. Biochemical and Structural Insights into the Mechanism of DNA Recognition by Arabidopsis ETHYLENE INSENSITIVE3.

    Directory of Open Access Journals (Sweden)

    Jinghui Song

    Full Text Available Gaseous hormone ethylene regulates numerous stress responses and developmental adaptations in plants by controlling gene expression via transcription factors ETHYLENE INSENSITIVE3 (EIN3 and EIN3-Like1 (EIL1. However, our knowledge regarding to the accurate definition of DNA-binding domains (DBDs within EIN3 and also the mechanism of specific DNA recognition by EIN3 is limited. Here, we identify EIN3 82-352 and 174-306 as the optimal and core DBDs, respectively. Results from systematic biochemical analyses reveal that both the number of EIN3-binding sites (EBSs and the spacing length between two EBSs affect the binding affinity of EIN3; accordingly, a new DNA probe which has higher affinity with EIN3 than ERF1 is also designed. Furthermore, we show that palindromic repeat sequences in ERF1 promoter are not necessary for EIN3 binding. Finally, we provide, to our knowledge, the first crystal structure of EIN3 core DBD, which contains amino acid residues essential for DNA binding and signaling. Collectively, these data suggest the detailed mechanism of DNA recognition by EIN3 and provide an in-depth view at molecular level for the transcriptional regulation mediated by EIN3.

  1. LTRsift: a graphical user interface for semi-automatic classification and postprocessing of de novo detected LTR retrotransposons

    Directory of Open Access Journals (Sweden)

    Steinbiss Sascha

    2012-11-01

    Full Text Available Abstract Background Long terminal repeat (LTR retrotransposons are a class of eukaryotic mobile elements characterized by a distinctive sequence similarity-based structure. Hence they are well suited for computational identification. Current software allows for a comprehensive genome-wide de novo detection of such elements. The obvious next step is the classification of newly detected candidates resulting in (super-families. Such a de novo classification approach based on sequence-based clustering of transposon features has been proposed before, resulting in a preliminary assignment of candidates to families as a basis for subsequent manual refinement. However, such a classification workflow is typically split across a heterogeneous set of glue scripts and generic software (for example, spreadsheets, making it tedious for a human expert to inspect, curate and export the putative families produced by the workflow. Results We have developed LTRsift, an interactive graphical software tool for semi-automatic postprocessing of de novo predicted LTR retrotransposon annotations. Its user-friendly interface offers customizable filtering and classification functionality, displaying the putative candidate groups, their members and their internal structure in a hierarchical fashion. To ease manual work, it also supports graphical user interface-driven reassignment, splitting and further annotation of candidates. Export of grouped candidate sets in standard formats is possible. In two case studies, we demonstrate how LTRsift can be employed in the context of a genome-wide LTR retrotransposon survey effort. Conclusions LTRsift is a useful and convenient tool for semi-automated classification of newly detected LTR retrotransposons based on their internal features. Its efficient implementation allows for convenient and seamless filtering and classification in an integrated environment. Developed for life scientists, it is helpful in postprocessing and refining

  2. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals.

    Science.gov (United States)

    Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is "mammalian-specific genomic functions", a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of "mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons", based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes.

  3. Caulobacter crescentus Cell Cycle-Regulated DNA Methyltransferase Uses a Novel Mechanism for Substrate Recognition.

    Science.gov (United States)

    Woodcock, Clayton B; Yakubov, Aziz B; Reich, Norbert O

    2017-08-01

    Caulobacter crescentus relies on DNA methylation by the cell cycle-regulated methyltransferase (CcrM) in addition to key transcription factors to control the cell cycle and direct cellular differentiation. CcrM is shown here to efficiently methylate its cognate recognition site 5'-GANTC-3' in single-stranded and hemimethylated double-stranded DNA. We report the K m , k cat , k methylation , and K d for single-stranded and hemimethylated substrates, revealing discrimination of 10 7 -fold for noncognate sequences. The enzyme also shows a similar discrimination against single-stranded RNA. Two independent assays clearly show that CcrM is highly processive with single-stranded and hemimethylated DNA. Collectively, the data provide evidence that CcrM and other DNA-modifying enzymes may use a new mechanism to recognize DNA in a key epigenetic process.

  4. Regulation of FeLV-945 by c-Myb binding and CBP recruitment to the LTR

    Directory of Open Access Journals (Sweden)

    Finstad Samantha L

    2004-09-01

    Full Text Available Abstract Background Feline leukemia virus (FeLV induces degenerative, proliferative and malignant hematologic disorders in its natural host, the domestic cat. FeLV-945 is a viral variant identified as predominant in a cohort of naturally infected animals. FeLV-945 contains a unique sequence motif in the long terminal repeat (LTR comprised of a single copy of transcriptional enhancer followed by a 21-bp sequence triplicated in tandem. The LTR is precisely conserved among independent cases of multicentric lymphoma, myeloproliferative disease and anemia in animals from the cohort. The 21-bp triplication was previously shown to act as a transcriptional enhancer preferentially in hematopoietic cells and to confer a replicative advantage. The objective of the present study was to examine the molecular mechanism by which the 21-bp triplication exerts its influence and the selective advantage responsible for its precise conservation. Results Potential binding sites for the transcription factor, c-Myb, were identified across the repeat junctions of the 21-bp triplication. Such sites would not occur in the absence of the repeat; thus, a requirement for c-Myb binding to the repeat junctions of the triplication would exert a selective pressure to conserve its sequence precisely. Electrophoretic mobility shift assays demonstrated specific binding of c-Myb to the 21-bp triplication. Reporter gene assays showed that the triplication-containing LTR is responsive to c-Myb, and that responsiveness requires the presence of both c-Myb binding sites. Results further indicated that c-Myb in complex with the 21-bp triplication recruits the transcriptional co-activator, CBP, a regulator of normal hematopoiesis. FeLV-945 replication was shown to be positively regulated by CBP in a manner dependent on the presence of the 21-bp triplication. Conclusion Binding sites for c-Myb across the repeat junctions of the 21-bp triplication may account for its precise conservation in

  5. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease.

    Science.gov (United States)

    Anders, Carolin; Niewoehner, Ole; Duerst, Alessia; Jinek, Martin

    2014-09-25

    The CRISPR-associated protein Cas9 is an RNA-guided endonuclease that cleaves double-stranded DNA bearing sequences complementary to a 20-nucleotide segment in the guide RNA. Cas9 has emerged as a versatile molecular tool for genome editing and gene expression control. RNA-guided DNA recognition and cleavage strictly require the presence of a protospacer adjacent motif (PAM) in the target DNA. Here we report a crystal structure of Streptococcus pyogenes Cas9 in complex with a single-molecule guide RNA and a target DNA containing a canonical 5'-NGG-3' PAM. The structure reveals that the PAM motif resides in a base-paired DNA duplex. The non-complementary strand GG dinucleotide is read out via major-groove interactions with conserved arginine residues from the carboxy-terminal domain of Cas9. Interactions with the minor groove of the PAM duplex and the phosphodiester group at the +1 position in the target DNA strand contribute to local strand separation immediately upstream of the PAM. These observations suggest a mechanism for PAM-dependent target DNA melting and RNA-DNA hybrid formation. Furthermore, this study establishes a framework for the rational engineering of Cas9 enzymes with novel PAM specificities.

  6. MD study of pyrimidine base damage on DNA and its recognition by repair enzyme

    International Nuclear Information System (INIS)

    Pinak, M.

    2000-01-01

    The molecular dynamics (MD) simulation was used on the study of two specific damages of pyrimidine bases of DNA. Pyrimidine bases are major targets either of free radicals induced by ionizing radiation in DNA surrounding environment or UV radiation. Thymine dimer (TD) is UV induced damage, in which two neighboring thymines in one strand are joined by covalent bonds of C(5)-C(5) and C(6)-C(6) atoms of thymines. Thymine glycol (TG) is ionizing radiation induced damage in which the free water radical adds to unsaturated bond C(5)-C(6) of thymine. Both damages are experimentally suggested to be mutagenetic and carcinogenic unless properly repaired by repair enzymes. In the case of MD of TD, there is detected strong kink around the TD site that is not observed in native DNA. In addition there is observed the different value of electrostatic energy at the TD site - negative '-10 kcal/mol', in contrary to nearly neutral value of native thymine site. Structural changes and specific electrostatic energy - seems to be important for proper recognition of TD damaged site, formation of DNA-enzyme complex and thus for subsequent repair of DNA. In the case of TG damaged DNA there is major structural distortion at the TG site, mainly the increased distance between TG and the C5' of adjacent nucleotide. This enlarged gap between the neighboring nucleotides may prevent the insertion of complementary base during replication causing the replication process to stop. In which extend this structural feature together with energy properties of TG contributes to the proper recognition of TG by repair enzyme Endonuclease III is subject of further computational MD study. (author)

  7. LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome

    Czech Academy of Sciences Publication Activity Database

    Barghini, E.; Natali, L.; Giordani, T.; Cossu, R.M.; Scalabrin, S.; Cattonaro, F.; Šimková, Hana; Vrána, Jan; Doležel, Jaroslav; Morgante, M.; Cavallini, A.

    2015-01-01

    Roč. 22, č. 1 (2015), s. 91-100 ISSN 1340-2838 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : LTR retrotransposons * next-generation sequencing * olive Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.267, year: 2015

  8. The herpes viral transcription factor ICP4 forms a novel DNA recognition complex

    Science.gov (United States)

    Tunnicliffe, Richard B.; Lockhart-Cairns, Michael P.; Levy, Colin; Mould, A. Paul; Jowitt, Thomas A.; Sito, Hilary; Baldock, Clair; Sandri-Goldin, Rozanne M.

    2017-01-01

    Abstract The transcription factor ICP4 from herpes simplex virus has a central role in regulating the gene expression cascade which controls viral infection. Here we present the crystal structure of the functionally essential ICP4 DNA binding domain in complex with a segment from its own promoter, revealing a novel homo-dimeric fold. We also studied the complex in solution by small angle X-Ray scattering, nuclear magnetic resonance and surface-plasmon resonance which indicated that, in addition to the globular domain, a flanking intrinsically disordered region also recognizes DNA. Together the data provides a rationale for the bi-partite nature of the ICP4 DNA recognition consensus sequence as the globular and disordered regions bind synergistically to adjacent DNA motifs. Therefore in common with its eukaryotic host, the viral transcription factor ICP4 utilizes disordered regions to enhance the affinity and tune the specificity of DNA interactions in tandem with a globular domain. PMID:28505309

  9. Repair of DNA treated with lambda-irradiation and chemical carcinogens. Progress report, 1984-1985

    International Nuclear Information System (INIS)

    Goldthwait, D.A.

    1985-01-01

    Research progress is reported in the following areas: (1) DNA repair in HeLa cells; (2) a search for human transposable elements; (3) the effect of radiation and carcinogens on the activation of LTR sequences; and (4) studies on oncogenes of central nervous system tumors

  10. Recognition and repair of the CC-1065-(N3-Adenine)-DNA adduct by the UVRABC nuclease

    International Nuclear Information System (INIS)

    Tang, M.; Lee, C.S.; Doisy, R.; Ross, L.; Needham-VanDevanter, D.R.; Hurley, L.H.

    1988-01-01

    The recognition and repair of the helix-stabilizing and relatively nondistortive CC-1065-(N3-adenine)-DNA adduct by UVRABC nuclease has been investigated both in vivo with phi X174RFI DNA by a transfection assay and in vitro by a site-directed adduct in a 117 base pair fragment from M13mp1. CC-1065 is a potent antitumor antibiotic produced by Streptomyces zelensis which binds within the minor groove of DNA through N3 of adenine. In contrast to the helix-destabilizing and distortive modifications of DNA caused by ultraviolet light or N-acetoxy-2-(acetylamino)fluorene, CC-1065 increases the melting point of DNA and decreases the S1 nuclease activity. Using a viral DNA-Escherichia coli transfection system, the authors have found that the uvrA, uvrB, and uvrC genes, which code for the major excision repair proteins for UV- and NAAAF-induced DNA damage, are also involved in the repair of CC-1065-DNA adducts. In contrast, the uvrD gene product, which has been found to be involved in the repair of UV damage, has no effect in repairing CC-1065-DNA adducts. Purified UVRA, UVRB, and UVRC proteins must work in concert to incise the drug-modified phi X174RFI DNA. Using a site-directed and multiple CC-1065 modified (MspI-BstNI) 117 base pair fragment from M13mp1, they have found that UVRABC nuclease incises at the eight phosphodiester bond on the 5' side of the CC-1065-DNA adduct on the drug-modified strand. The enzymes do not cut the noncovalently modified strand. The DNA sequence and/or helix-stabilizing effect of multiple adducts may determine the recognition and/or incision of the drug-DNA adduct by UVRABC nuclease. These results are discussed in relation to the structure of the CC-1065-DNA adduct and the effect of drug binding on local DNA structure

  11. The dual action of poly(ADP-ribose polymerase -1 (PARP-1 inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity

    Directory of Open Access Journals (Sweden)

    Slava eRom

    2015-08-01

    Full Text Available The transcription of HIV-1 (HIV is regulated by complex mechanisms involving various cellular factors and virus-encoded transactivators. Poly(ADP-ribose polymerase 1 (PARP-1 inhibition has emerged recently as a potent anti-inflammatory tool, since PARP-1 is involved in the regulation of some genes through its interaction with various transcription factors. We propose a novel approach to diminish HIV replication via PARP-1 inhibition using human primary monocyte-derived macrophages (MDM as an in vitro model system. PARP-1 inhibitors were able to reduce HIV replication in MDM by 60-80% after 7 days infection. Long Terminal Repeat (LTR acts as a switch in virus replication and can be triggered by several agents such as: Tat, tumor necrosis factor α (TNFα, and phorbol 12-myristate 13-acetate (PMA. Overexpression of Tat in MDM transfected with an LTR reporter plasmid led to a 4.2-fold increase in LTR activation; PARP inhibition resulted in 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85-95%. MDM treated with PARP inhibitors showed 90% reduction in NFκB activity (known to mediate PMA- and TNFα-induced HIV LTR activation. Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These findings suggest that HIV replication in MDM could be suppressed by PARP inhibition via NFκB suppression, diminution of LTR activation and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide a potent approach to treatment of HIV infection.

  12. Cloning and heterologous expression of a hydrophobin gene Ltr.hyd from the tiger milk mushroom Lentinus tuber-regium in yeast-like cells of Tremella fuciformis

    Directory of Open Access Journals (Sweden)

    Dongmei Liu

    2018-03-01

    Full Text Available Background: Hydrophobins are small proteins secreted by filamentous fungi, which show a highly surface activity. Because of the signally self-assembling abilities and surface activities, hydrophobins were considered as candidates in many aspects, for example, stabilizing foams and emulsions in food products. Lentinus tuber-regium, known as tiger milk mushroom, is both an edible and medicinal sclerotium-producing mushroom. Up to now, the hydrophobins of L. tuber-regium have not been identified. Results: In this paper, a Class I hydrophobin gene, Ltr.hyd, was cloned from L. tuber-regium and expressed in the yeast-like cells of Tremella fuciformis mediated by Agrobacterium tumefaciens. The expression vector pGEH-GH was under the control of T. fuciformis glyceraldehyde-3-phosphate dehydrogenase gene (gpd promoter. The integration of Ltr.hyd into the genome of T. fuciformis was confirmed by PCR, Southern blot, fluorescence observation and quantitative real-time PCR (qRT-PCR. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE demonstrated that recombinant hydrophobin rLtr.HYD with an expected molecular mass of 13 kDa was extracted. The yield of rLtr.HYD was 0.66 mg/g dry weight. The emulsifying activity of rLtr.HYD was better than the typical food emulsifiers sodium caseinate and Tween 20. Conclusions: We evaluated the emulsifying property of hydrophobin Ltr.HYD, which can be potentially used as a food emulsifier. Keywords: Agrobacterium tumefaciens, Emulsifier, Expression vector, Filamentous fungi, Gel electrophoresis, Glyceraldehyde-3-phosphate dehydrogenase, Heterogenous expression, Hydrophobin, Quantitative real-time PCR, Southern blot, Surface activity

  13. Structural factors involved in the recognition of helix distortions in uv-damaged DNA by model peptides

    Energy Technology Data Exchange (ETDEWEB)

    Lang, H; Zimmer, C [Akademie der Wissenschaften der DDR, Jena. Forschungszentrum fuer Molekularbiologie und Medizin

    1977-02-28

    On the basis of our previous and present results concerning conformational changes of DNA after uv-irradiation some conclusions on the structure of DNA double helix in uv-damaged regions were drawn. From the results it appears that local distortions like denaturation or premelting should be excluded. Furthermore it was shown that the thymine dimerization strongly depends on the adjacent nucleic acid bases. By means of a strong binding effect of the oligopeptide netropsin to DNA irradiated at low uv-doses it is concluded that such local distortions in DNA together with a specific sequence-dependent variation of the conformation could act as recognition sites for endonucleases.

  14. Molecular recognition of AT-DNA sequences by the induced CD pattern of dibenzotetraaza[14]annulene (DBTAA)–adenine derivatives

    OpenAIRE

    Stojković, Marijana Radić; Škugor, Marko; Dudek, Łukasz; Grolik, Jarosław; Eilmes, Julita; Piantanida, Ivo

    2014-01-01

    Summary An investigation of the interactions of two novel and several known DBTAA–adenine conjugates with double-stranded DNA and RNA has revealed the DNA/RNA groove as the dominant binding site, which is in contrast to the majority of previously studied DBTAA analogues (DNA/RNA intercalators). Only DBTAA–propyladenine conjugates revealed the molecular recognition of AT-DNA by an ICD band pattern > 300 nm, whereas significant ICD bands did not appear for other ds-DNA/RNA. A structure–activity...

  15. Structural basis for the cooperative DNA recognition by Smad4 MH1 dimers

    Science.gov (United States)

    Baburajendran, Nithya; Jauch, Ralf; Tan, Clara Yueh Zhen; Narasimhan, Kamesh; Kolatkar, Prasanna R.

    2011-01-01

    Smad proteins form multimeric complexes consisting of the ‘common partner’ Smad4 and receptor regulated R-Smads on clustered DNA binding sites. Deciphering how pathway specific Smad complexes multimerize on DNA to regulate gene expression is critical for a better understanding of the cis-regulatory logic of TGF-β and BMP signaling. To this end, we solved the crystal structure of the dimeric Smad4 MH1 domain bound to a palindromic Smad binding element. Surprisingly, the Smad4 MH1 forms a constitutive dimer on the SBE DNA without exhibiting any direct protein–protein interactions suggesting a DNA mediated indirect readout mechanism. However, the R-Smads Smad1, Smad2 and Smad3 homodimerize with substantially decreased efficiency despite pronounced structural similarities to Smad4. Therefore, intricate variations in the DNA structure induced by different Smads and/or variant energetic profiles likely contribute to their propensity to dimerize on DNA. Indeed, competitive binding assays revealed that the Smad4/R-Smad heterodimers predominate under equilibrium conditions while R-Smad homodimers are least favored. Together, we present the structural basis for DNA recognition by Smad4 and demonstrate that Smad4 constitutively homo- and heterodimerizes on DNA in contrast to its R-Smad partner proteins by a mechanism independent of direct protein contacts. PMID:21724602

  16. Analysis of the substrate recognition state of TDP-43 to single-stranded DNA using fluorescence correlation spectroscopy

    Directory of Open Access Journals (Sweden)

    Akira Kitamura

    2018-07-01

    Full Text Available Normal function and abnormal aggregation of transactivation response (TAR DNA/RNA-binding protein 43 kDa (TDP-43 are directly associated with the lethal genetic diseases: cystic fibrosis, amyotrophic lateral sclerosis (ALS, and frontotemporal lobar degeneration (FTLD. The binding of TDP-43 to single-stranded DNA (ssDNA or RNA is involved in transcriptional repression, regulation of RNA splicing, and RNA stabilization. Equilibrium dissociation constants (Kd of TDP-43 and ssDNA or RNA have been determined using various methods; however, methods that can measure Kd with high sensitivity in a short time using a small amount of TDP-43 in solution would be advantageous. Here, in order to determine the Kd of TDP-43 and fluorescence-labeled ssDNA as well as the binding stoichiometry, we use fluorescence correlation spectroscopy (FCS, which detects the slowed diffusion of molecular interactions in solution with single-molecule sensitivity, in addition to electrophoretic mobility shift assay (EMSA. Using tandem affinity chromatography of TDP-43 dually tagged with glutathione-S-transferase and poly-histidine tags, highly purified protein was obtained. FCS successfully detected specific interaction between purified TDP-43 and TG ssDNA repeats, with a Kd in the nanomolar range. The Kd of the TDP-43 mutant was not different from the wild type, although mutant oligomers, which did not bind ssDNA, were observed. Analysis of the fluorescence brightness per dimerized TDP-43/ssDNA complex was used to evaluate their binding stoichiometry. The results suggest that an assay combining FCS and EMSA can precisely analyze ssDNA recognition mechanisms, and that FCS may be applied for the rapid and quantitative determination of the interaction strength between TDP-43 and ssDNA or RNA. These methods will aid in the elucidation of the substrate recognition mechanism of ALS- and FTLD-associated variants of TDP-43.

  17. Isolation of Retroelement from Plant Genomic DNA

    OpenAIRE

    sprotocols

    2014-01-01

    Author: Pat Heslop-Harrison ### Abstract: Retroelements and their derivatives are an ubiquitous and abundant component of plant genomes. From the 1990s, PCR based techniques have been developed to isolate the elements from genomic DNA of different plants, and the methods and primers used are presented here. Major classes of retroelements include the Ty1-copia, the Ty3-gypsy and the LINE (non-LTR) groups. Mixed PCR products representing the full heterogeneous pool of retrotransposo...

  18. Proceedings of the workshop. Recognition of DNA damage as onset of successful repair. Computational and experimental approaches

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    2002-03-01

    This was held at The Tokai Research Establishment, Japan Atomic Energy Research Institute, on the 18th and 19th of December 2001. The Laboratory of Radiation Risk Analysis of JAERI organized the workshop. The main subject of the workshop was the DNA damage and its repair. Presented works described the leading experimental as well computational approaches, focusing mainly on the formation of DNA damage, its proliferation, enzymatic recognition and repair, and finally imaging and detection of lesions on a DNA molecule. The 19 of the presented papers are indexed individually. (J.P.N.)

  19. Role of DNA conformation & energetic insights in Msx-1-DNA recognition as revealed by molecular dynamics studies on specific and nonspecific complexes.

    Science.gov (United States)

    Kachhap, Sangita; Singh, Balvinder

    2015-01-01

    In most of homeodomain-DNA complexes, glutamine or lysine is present at 50th position and interacts with 5th and 6th nucleotide of core recognition region. Molecular dynamics simulations of Msx-1-DNA complex (Q50-TG) and its variant complexes, that is specific (Q50K-CC), nonspecific (Q50-CC) having mutation in DNA and (Q50K-TG) in protein, have been carried out. Analysis of protein-DNA interactions and structure of DNA in specific and nonspecific complexes show that amino acid residues use sequence-dependent shape of DNA to interact. The binding free energies of all four complexes were analysed to define role of amino acid residue at 50th position in terms of binding strength considering the variation in DNA on stability of protein-DNA complexes. The order of stability of protein-DNA complexes shows that specific complexes are more stable than nonspecific ones. Decomposition analysis shows that N-terminal amino acid residues have been found to contribute maximally in binding free energy of protein-DNA complexes. Among specific protein-DNA complexes, K50 contributes more as compared to Q50 towards binding free energy in respective complexes. The sequence dependence of local conformation of DNA enables Q50/Q50K to make hydrogen bond with nucleotide(s) of DNA. The changes in amino acid sequence of protein are accommodated and stabilized around TAAT core region of DNA having variation in nucleotides.

  20. Human XPC-hHR23B interacts with XPA-RPA in the recognition of triplex-directed psoralen DNA interstrand crosslinks

    DEFF Research Database (Denmark)

    Thoma, Brian S; Wakasugi, Mitsuo; Christensen, Jesper

    2005-01-01

    (NER), XPA-RPA, recognizes DNA ICLs. We now report the use of triplex technology to direct a site-specific psoralen ICL to a target DNA substrate to determine whether the human global genome NER damage recognition complex, XPC-hHR23B, recognizes this lesion. Our results demonstrate that XPC-hHR23B...... recognizes psoralen ICLs, which have a structure fundamentally different from other lesions that XPC-hHR23B is known to bind, with high affinity and specificity. XPC-hHR23B and XPA-RPA protein complexes were also observed to bind psoralen ICLs simultaneously, demonstrating not only that psoralen ICLs...... are recognized by XPC-hHR23B alone, but also that XPA-RPA may interact cooperatively with XPC-hHR23B on damaged DNA, forming a multimeric complex. Since XPC-hHR23B and XPA-RPA participate in the recognition and verification of DNA damage, these results support the hypothesis that interplay between components...

  1. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element Specific for Bromacil

    Directory of Open Access Journals (Sweden)

    Ryan M. Williams

    2014-01-01

    Full Text Available Bromacil is a widely used herbicide that is known to contaminate environmental systems. Due to the hazards it presents and inefficient detection methods, it is necessary to create a rapid and efficient sensing device. Towards this end, we have utilized a stringent in vitro selection method to identify single-stranded DNA molecular recognition elements (MRE specific for bromacil. We have identified one MRE with high affinity (Kd=9.6 nM and specificity for bromacil compared to negative targets of selection and other pesticides. The selected ssDNA MRE will be useful as the sensing element in a field-deployable bromacil detection device.

  2. Omni-PolyA: a method and tool for accurate recognition of Poly(A) signals in human genomic DNA

    KAUST Repository

    Magana-Mora, Arturo

    2017-08-15

    BackgroundPolyadenylation is a critical stage of RNA processing during the formation of mature mRNA, and is present in most of the known eukaryote protein-coding transcripts and many long non-coding RNAs. The correct identification of poly(A) signals (PAS) not only helps to elucidate the 3′-end genomic boundaries of a transcribed DNA region and gene regulatory mechanisms but also gives insight into the multiple transcript isoforms resulting from alternative PAS. Although progress has been made in the in-silico prediction of genomic signals, the recognition of PAS in DNA genomic sequences remains a challenge.ResultsIn this study, we analyzed human genomic DNA sequences for the 12 most common PAS variants. Our analysis has identified a set of features that helps in the recognition of true PAS, which may be involved in the regulation of the polyadenylation process. The proposed features, in combination with a recognition model, resulted in a novel method and tool, Omni-PolyA. Omni-PolyA combines several machine learning techniques such as different classifiers in a tree-like decision structure and genetic algorithms for deriving a robust classification model. We performed a comparison between results obtained by state-of-the-art methods, deep neural networks, and Omni-PolyA. Results show that Omni-PolyA significantly reduced the average classification error rate by 35.37% in the prediction of the 12 considered PAS variants relative to the state-of-the-art results.ConclusionsThe results of our study demonstrate that Omni-PolyA is currently the most accurate model for the prediction of PAS in human and can serve as a useful complement to other PAS recognition methods. Omni-PolyA is publicly available as an online tool accessible at www.cbrc.kaust.edu.sa/omnipolya/.

  3. Rotavirus 2/6 Viruslike Particles Administered Intranasally with Cholera Toxin, Escherichia coli Heat-Labile Toxin (LT), and LT-R192G Induce Protection from Rotavirus Challenge

    Science.gov (United States)

    O’Neal, Christine M.; Clements, John D.; Estes, Mary K.; Conner, Margaret E.

    1998-01-01

    We have shown that rotavirus 2/6 viruslike particles composed of proteins VP2 and VP6 (2/6-VLPs) administered to mice intranasally with cholera toxin (CT) induced protection from rotavirus challenge, as measured by virus shedding. Since it is unclear if CT will be approved for human use, we evaluated the adjuvanticity of Escherichia coli heat-labile toxin (LT) and LT-R192G. Mice were inoculated intranasally with 10 μg of 2/6-VLPs combined with CT, LT, or LT-R192G. All three adjuvants induced equivalent geometric mean titers of rotavirus-specific serum antibody and intestinal immunoglobulin G (IgG). Mice inoculated with 2/6-VLPs with LT produced significantly higher titers of intestinal IgA than mice given CT as the adjuvant. All mice inoculated with 2/6-VLPs mixed with LT and LT-R192G were totally protected (100%) from rotavirus challenge, while mice inoculated with 2/6-VLPs mixed with CT showed a mean 91% protection from challenge. The availability of a safe, effective mucosal adjuvant such as LT-R192G will increase the practicality of administering recombinant vaccines mucosally. PMID:9525668

  4. A specific insertion of a solo-LTR characterizes the Y-chromosome of Bryonia dioica (Cucurbitaceae).

    Science.gov (United States)

    Oyama, Ryan K; Silber, Martina V; Renner, Susanne S

    2010-06-14

    Relatively few species of flowering plants are dioecious and even fewer are known to have sex chromosomes. Current theory posits that homomorphic sex chromosomes, such as found in Bryonia dioica (Cucurbitaceae), offer insight into the early stages in the evolution of sex chromosomes from autosomes. Little is known about these early steps, but an accumulation of transposable element sequences has been observed on the Y-chromosomes of some species with heteromorphic sex chromosomes. Recombination, by which transposable elements are removed, is suppressed on at least part of the emerging Y-chromosome, and this may explain the correlation between the emergence of sex chromosomes and transposable element enrichment. We sequenced 2321 bp of the Y-chromosome in Bryonia dioica that flank a male-linked marker, BdY1, reported previously. Within this region, which should be suppressed for recombination, we observed a solo-LTR nested in a Copia-like transposable element. We also found other, presumably paralogous, solo-LTRs in a consensus sequence of the underlying Copia-like transposable element. Given that solo-LTRs arise via recombination events, it is noteworthy that we find one in a genomic region where recombination should be suppressed. Although the solo-LTR could have arisen before recombination was suppressed, creating the male-linked marker BdY1, our previous study on B. dioica suggested that BdY1 may not lie in the recombination-suppressed region of the Y-chromosome in all populations. Presence of a solo-LTR near BdY1 therefore fits with the observed correlation between retrotransposon accumulation and the suppression of recombination early in the evolution of sex chromosomes. These findings further suggest that the homomorphic sex chromosomes of B. dioica, the first organism for which genetic XY sex-determination was inferred, are evolutionarily young and offer reference information for comparative studies of other plant sex chromosomes.

  5. Enhancement of Intranasal Vaccination in Mice with Deglycosylated Chain A Ricin by LTR72, a Novel Mucosal Adjuvant

    National Research Council Canada - National Science Library

    Kende, Meir; Del Giudice, Giuseppe; Rivera, Noelia; Hewetson, John

    2006-01-01

    .... However, in the presence of 4, 2, or 1 microg of the mucosal adjuvant LTR72, a mutant of the heat-labile enterotoxin of Escherichia coli, the low antibody response and protection were substantially enhanced...

  6. Intracellular high mobility group B1 protein (HMGB1) represses HIV-1 LTR-directed transcription in a promoter- and cell-specific manner

    International Nuclear Information System (INIS)

    Naghavi, Mojgan H.; Nowak, Piotr; Andersson, Jan; Soennerborg, Anders; Yang Huan; Tracey, Kevin J.; Vahlne, Anders

    2003-01-01

    We investigated whether the high mobility group B 1 (HMGB1), an abundant nuclear protein in all mammalian cells, affects HIV-1 transcription. Intracellular expression of human HMGB1 repressed HIV-1 gene expression in epithelial cells. This inhibitory effect of HMGB1 was caused by repression of long terminal repeat (LTR)-mediated transcription. Other viral promoters/enhancers, including simian virus 40 or cytomegalovirus, were not inhibited by HMGB1. In addition, HMGB1 inhibition of HIV-1 subtype C expression was dependent on the number of NFκB sites in the LTR region. The inhibitory effect of HMGB1 on viral gene expression observed in HeLa cells was confirmed by an upregulation of viral replication in the presence of antisense HMGB1 in monocytic cells. In contrast to what was found in HeLa cells and monocytic cells, endogenous HMGB1 expression did not affect HIV-1 replication in unstimulated Jurkat cells. Thus, intracellular HMGB1 affects HIV-1 LTR-directed transcription in a promoter- and cell-specific manner

  7. Enhancement of Intranasal Vaccination in Mice with Deglycosylated Chain A Ricin by LTR72, a Novel Mucosal Adjuvant

    National Research Council Canada - National Science Library

    Kende, Meir; Del Giudice, Giuseppe; Rivera, Noelia; Hewetson, John

    2006-01-01

    .... However, in the presence of 4, 2, or 1 micro-gram of the mucosal adjuvant LTR72, a mutant of the heat-labile enterotoxin of Escherichia coli, the low antibody response and protection were substantially enhanced...

  8. DNA cytosine methylation in the bovine leukemia virus promoter is associated with latency in a lymphoma-derived B-cell line: potential involvement of direct inhibition of cAMP-responsive element (CRE)-binding protein/CRE modulator/activation transcription factor binding.

    Science.gov (United States)

    Pierard, Valérie; Guiguen, Allan; Colin, Laurence; Wijmeersch, Gaëlle; Vanhulle, Caroline; Van Driessche, Benoît; Dekoninck, Ann; Blazkova, Jana; Cardona, Christelle; Merimi, Makram; Vierendeel, Valérie; Calomme, Claire; Nguyên, Thi Liên-Anh; Nuttinck, Michèle; Twizere, Jean-Claude; Kettmann, Richard; Portetelle, Daniel; Burny, Arsène; Hirsch, Ivan; Rohr, Olivier; Van Lint, Carine

    2010-06-18

    Bovine leukemia virus (BLV) proviral latency represents a viral strategy to escape the host immune system and allow tumor development. Besides the previously demonstrated role of histone deacetylation in the epigenetic repression of BLV expression, we showed here that BLV promoter activity was induced by several DNA methylation inhibitors (such as 5-aza-2'-deoxycytidine) and that overexpressed DNMT1 and DNMT3A, but not DNMT3B, down-regulated BLV promoter activity. Importantly, cytosine hypermethylation in the 5'-long terminal repeat (LTR) U3 and R regions was associated with true latency in the lymphoma-derived B-cell line L267 but not with defective latency in YR2 cells. Moreover, the virus-encoded transactivator Tax(BLV) decreased DNA methyltransferase expression levels, which could explain the lower level of cytosine methylation observed in the L267(LTaxSN) 5'-LTR compared with the L267 5'-LTR. Interestingly, DNA methylation inhibitors and Tax(BLV) synergistically activated BLV promoter transcriptional activity in a cAMP-responsive element (CRE)-dependent manner. Mechanistically, methylation at the -154 or -129 CpG position (relative to the transcription start site) impaired in vitro binding of CRE-binding protein (CREB) transcription factors to their respective CRE sites. Methylation at -129 CpG alone was sufficient to decrease BLV promoter-driven reporter gene expression by 2-fold. We demonstrated in vivo the recruitment of CREB/CRE modulator (CREM) and to a lesser extent activating transcription factor-1 (ATF-1) to the hypomethylated CRE region of the YR2 5'-LTR, whereas we detected no CREB/CREM/ATF recruitment to the hypermethylated corresponding region in the L267 cells. Altogether, these findings suggest that site-specific DNA methylation of the BLV promoter represses viral transcription by directly inhibiting transcription factor binding, thereby contributing to true proviral latency.

  9. Structural basis of hAT transposon end recognition by Hermes, an octameric DNA transposase from Musca domestica.

    Science.gov (United States)

    Hickman, Alison B; Ewis, Hosam E; Li, Xianghong; Knapp, Joshua A; Laver, Thomas; Doss, Anna-Louise; Tolun, Gökhan; Steven, Alasdair C; Grishaev, Alexander; Bax, Ad; Atkinson, Peter W; Craig, Nancy L; Dyda, Fred

    2014-07-17

    Hermes is a member of the hAT transposon superfamily that has active representatives, including McClintock's archetypal Ac mobile genetic element, in many eukaryotic species. The crystal structure of the Hermes transposase-DNA complex reveals that Hermes forms an octameric ring organized as a tetramer of dimers. Although isolated dimers are active in vitro for all the chemical steps of transposition, only octamers are active in vivo. The octamer can provide not only multiple specific DNA-binding domains to recognize repeated subterminal sequences within the transposon ends, which are important for activity, but also multiple nonspecific DNA binding surfaces for target capture. The unusual assembly explains the basis of bipartite DNA recognition at hAT transposon ends, provides a rationale for transposon end asymmetry, and suggests how the avidity provided by multiple sites of interaction could allow a transposase to locate its transposon ends amidst a sea of chromosomal DNA. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Akv murine leukemia virus enhances bone tumorigenesis in hMT-c-fos-LTR transgenic mice

    DEFF Research Database (Denmark)

    Schmidt, Jörg; Krump-Konvalinkova, Vera; Luz, Arne

    1995-01-01

    hMt-c-fos-LTR transgenic mice (U. Rüther, D. Komitowski, F. R. Schubert, and E. F. Wagner. Oncogene 4, 861–865, 1989) developed bone sarcomas in 20% (3/15) of females at 448 ± 25 days and in 8% (1/12) of males at 523 days. After infection of newborns with Akv, an infectious retrovirus derived from...

  11. Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2-or 4-pyrenyl-functionalized O2 '-alkylated RNA monomers

    DEFF Research Database (Denmark)

    Karmakar, Saswata; Madsen, Andreas Stahl; Guenther, Dale C.

    2014-01-01

    '-alkylated uridine monomers X-Z by means of thermal denaturation experiments, optical spectroscopy, force-field simulations and recognition experiments using DNA hairpins as model targets. We demonstrate that Invaders with +1 interstrand zippers of X or Y monomers efficiently recognize mixed-sequence DNA...

  12. Diversity, distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum.

    Science.gov (United States)

    Paz, Rosalía Cristina; Kozaczek, Melisa Eliana; Rosli, Hernán Guillermo; Andino, Natalia Pilar; Sanchez-Puerta, Maria Virginia

    2017-10-01

    Transposable elements are the most abundant components of plant genomes and can dramatically induce genetic changes and impact genome evolution. In the recently sequenced genome of tomato (Solanum lycopersicum), the estimated fraction of elements corresponding to retrotransposons is nearly 62%. Given that tomato is one of the most important vegetable crop cultivated and consumed worldwide, understanding retrotransposon dynamics can provide insight into its evolution and domestication processes. In this study, we performed a genome-wide in silico search of full-length LTR retroelements in the tomato nuclear genome and annotated 736 full-length Gypsy and Copia retroelements. The dispersion level across the 12 chromosomes, the diversity and tissue-specific expression of those elements were estimated. Phylogenetic analysis based on the retrotranscriptase region revealed the presence of 12 major lineages of LTR retroelements in the tomato genome. We identified 97 families, of which 77 and 20 belong to the superfamilies Copia and Gypsy, respectively. Each retroelement family was characterized according to their element size, relative frequencies and insertion time. These analyses represent a valuable resource for comparative genomics within the Solanaceae, transposon-tagging and for the design of cultivar-specific molecular markers in tomato.

  13. Type I-E CRISPR-Cas Systems Discriminate Target from Non-Target DNA through Base Pairing-Independent PAM Recognition

    Science.gov (United States)

    Datsenko, Kirill A.; Jackson, Ryan N.; Wiedenheft, Blake; Severinov, Konstantin; Brouns, Stan J. J.

    2013-01-01

    Discriminating self and non-self is a universal requirement of immune systems. Adaptive immune systems in prokaryotes are centered around repetitive loci called CRISPRs (clustered regularly interspaced short palindromic repeat), into which invader DNA fragments are incorporated. CRISPR transcripts are processed into small RNAs that guide CRISPR-associated (Cas) proteins to invading nucleic acids by complementary base pairing. However, to avoid autoimmunity it is essential that these RNA-guides exclusively target invading DNA and not complementary DNA sequences (i.e., self-sequences) located in the host's own CRISPR locus. Previous work on the Type III-A CRISPR system from Staphylococcus epidermidis has demonstrated that a portion of the CRISPR RNA-guide sequence is involved in self versus non-self discrimination. This self-avoidance mechanism relies on sensing base pairing between the RNA-guide and sequences flanking the target DNA. To determine if the RNA-guide participates in self versus non-self discrimination in the Type I-E system from Escherichia coli we altered base pairing potential between the RNA-guide and the flanks of DNA targets. Here we demonstrate that Type I-E systems discriminate self from non-self through a base pairing-independent mechanism that strictly relies on the recognition of four unchangeable PAM sequences. In addition, this work reveals that the first base pair between the guide RNA and the PAM nucleotide immediately flanking the target sequence can be disrupted without affecting the interference phenotype. Remarkably, this indicates that base pairing at this position is not involved in foreign DNA recognition. Results in this paper reveal that the Type I-E mechanism of avoiding self sequences and preventing autoimmunity is fundamentally different from that employed by Type III-A systems. We propose the exclusive targeting of PAM-flanked sequences to be termed a target versus non-target discrimination mechanism. PMID:24039596

  14. The crystal structure of the Sox4 HMG domain-DNA complex suggests a mechanism for positional interdependence in DNA recognition.

    Science.gov (United States)

    Jauch, Ralf; Ng, Calista K L; Narasimhan, Kamesh; Kolatkar, Prasanna R

    2012-04-01

    It has recently been proposed that the sequence preferences of DNA-binding TFs (transcription factors) can be well described by models that include the positional interdependence of the nucleotides of the target sites. Such binding models allow for multiple motifs to be invoked, such as principal and secondary motifs differing at two or more nucleotide positions. However, the structural mechanisms underlying the accommodation of such variant motifs by TFs remain elusive. In the present study we examine the crystal structure of the HMG (high-mobility group) domain of Sox4 [Sry (sex-determining region on the Y chromosome)-related HMG box 4] bound to DNA. By comparing this structure with previously solved structures of Sox17 and Sox2, we observed subtle conformational differences at the DNA-binding interface. Furthermore, using quantitative electrophoretic mobility-shift assays we validated the positional interdependence of two nucleotides and the presence of a secondary Sox motif in the affinity landscape of Sox4. These results suggest that a concerted rearrangement of two interface amino acids enables Sox4 to accommodate primary and secondary motifs. The structural adaptations lead to altered dinucleotide preferences that mutually reinforce each other. These analyses underline the complexity of the DNA recognition by TFs and provide an experimental validation for the conceptual framework of positional interdependence and secondary binding motifs.

  15. Dual chromatin recognition by the histone deacetylase complex HCHC is required for proper DNA methylation in Neurospora crassa

    Science.gov (United States)

    Honda, Shinji; Bicocca, Vincent T.; Gessaman, Jordan D.; Rountree, Michael R.; Yokoyama, Ayumi; Yu, Eun Y.; Selker, Jeanne M. L.; Selker, Eric U.

    2016-01-01

    DNA methylation, heterochromatin protein 1 (HP1), histone H3 lysine 9 (H3K9) methylation, histone deacetylation, and highly repeated sequences are prototypical heterochromatic features, but their interrelationships are not fully understood. Prior work showed that H3K9 methylation directs DNA methylation and histone deacetylation via HP1 in Neurospora crassa and that the histone deacetylase complex HCHC is required for proper DNA methylation. The complex consists of the chromodomain proteins HP1 and chromodomain protein 2 (CDP-2), the histone deacetylase HDA-1, and the AT-hook motif protein CDP-2/HDA-1–associated protein (CHAP). We show that the complex is required for proper chromosome segregation, dissect its function, and characterize interactions among its components. Our analyses revealed the existence of an HP1-based DNA methylation pathway independent of its chromodomain. The pathway partially depends on CHAP but not on the CDP-2 chromodomain. CDP-2 serves as a bridge between the recognition of H3K9 trimethylation (H3K9me3) by HP1 and the histone deacetylase activity of HDA-1. CHAP is also critical for HDA-1 localization to heterochromatin. Specifically, the CHAP zinc finger interacts directly with the HDA-1 argonaute-binding protein 2 (Arb2) domain, and the CHAP AT-hook motifs recognize heterochromatic regions by binding to AT-rich DNA. Our data shed light on the interrelationships among the prototypical heterochromatic features and support a model in which dual recognition by the HP1 chromodomain and the CHAP AT-hooks are required for proper heterochromatin formation. PMID:27681634

  16. Binding to the DNA Minor Groove by Heterocyclic Dications: From AT Specific Monomers to GC Recognition with Dimers

    Science.gov (United States)

    Nanjunda, Rupesh; Wilson, W. David

    2012-01-01

    Compounds that bind in the DNA minor groove have provided critical information on DNA molecular recognition, they have found extensive uses in biotechnology and they are providing clinically useful drugs against diseases as diverse as cancer and sleeping sickness. This review focuses on the development of clinically useful heterocyclic diamidine minor groove binders. These compounds have shown us that the classical model for minor groove binding in AT DNA sequences must be expanded in several ways: compounds with nonstandard shapes can bind strongly to the groove, water can be directly incorporated into the minor groove complex in an interfacial interaction, and the compounds can form cooperative stacked dimers to recognize GC and mixed AT/GC base pair sequences. PMID:23255206

  17. Rotavirus 2/6 Viruslike Particles Administered Intranasally with Cholera Toxin, Escherichia coli Heat-Labile Toxin (LT), and LT-R192G Induce Protection from Rotavirus Challenge

    OpenAIRE

    O’Neal, Christine M.; Clements, John D.; Estes, Mary K.; Conner, Margaret E.

    1998-01-01

    We have shown that rotavirus 2/6 viruslike particles composed of proteins VP2 and VP6 (2/6-VLPs) administered to mice intranasally with cholera toxin (CT) induced protection from rotavirus challenge, as measured by virus shedding. Since it is unclear if CT will be approved for human use, we evaluated the adjuvanticity of Escherichia coli heat-labile toxin (LT) and LT-R192G. Mice were inoculated intranasally with 10 μg of 2/6-VLPs combined with CT, LT, or LT-R192G. All three adjuvants induced ...

  18. Histone acetyltransferase (HAT) activity of p300 modulates human T lymphotropic virus type 1 p30II-mediated repression of LTR transcriptional activity

    International Nuclear Information System (INIS)

    Michael, Bindhu; Nair, Amrithraj M.; Datta, Antara; Hiraragi, Hajime; Ratner, Lee; Lairmore, Michael D.

    2006-01-01

    Human T-lymphotropic virus type-1 (HTLV-1) is a deltaretrovirus that causes adult T cell leukemia/lymphoma, and is implicated in a variety of lymphocyte-mediated inflammatory disorders. HTLV-1 provirus has regulatory and accessory genes in four pX open reading frames. HTLV-1 pX ORF-II encodes two proteins, p13 II and p30 II , which are incompletely defined in virus replication or pathogenesis. We have demonstrated that pX ORF-II mutations block virus replication in vivo and that ORF-II encoded p30 II , a nuclear-localizing protein that binds with CREB-binding protein (CBP)/p300, represses CREB and Tax responsive element (TRE)-mediated transcription. Herein, we have identified p30 II motifs important for p300 binding and in regulating TRE-mediated transcription in the absence and presence of HTLV-1 provirus. Within amino acids 100-179 of p30 II , a region important for repression of LTR-mediated transcription, we identified a single lysine residue at amino acid 106 (K3) that significantly modulates the ability of p30 II to repress TRE-mediated transcription. Exogenous p300, in a dose-responsive manner, reverses p30 II -dependent repression of TRE-mediated transcription, in the absence or presence of the provirus, In contrast to wild type p300, p300 HAT mutants (defective in histone acetyltransferase activity) only partially rescued p30 II -mediated LTR repression. Deacetylation by histone deacetylase-1 (HDAC-1) enhanced p30 II -mediated LTR repression, while inhibition of deacetylation by trichostatin A decreases p30 II -mediated LTR repression. Collectively, our data indicate that HTLV-1 p30 II modulates viral gene expression in a cooperative manner with p300-mediated acetylation

  19. DNA Topology and the Initiation of Virus DNA Packaging.

    Directory of Open Access Journals (Sweden)

    Choon Seok Oh

    Full Text Available During progeny assembly, viruses selectively package virion genomes from a nucleic acid pool that includes host nucleic acids. For large dsDNA viruses, including tailed bacteriophages and herpesviruses, immature viral DNA is recognized and translocated into a preformed icosahedral shell, the prohead. Recognition involves specific interactions between the viral packaging enzyme, terminase, and viral DNA recognition sites. Generally, viral DNA is recognized by terminase's small subunit (TerS. The large terminase subunit (TerL contains translocation ATPase and endonuclease domains. In phage lambda, TerS binds a sequence repeated three times in cosB, the recognition site. TerS binding to cosB positions TerL to cut the concatemeric DNA at the adjacent nicking site, cosN. TerL introduces staggered nicks in cosN, generating twelve bp cohesive ends. Terminase separates the cohesive ends and remains bound to the cosB-containing end, in a nucleoprotein structure called Complex I. Complex I docks on the prohead's portal vertex and translocation ensues. DNA topology plays a role in the TerSλ-cosBλ interaction. Here we show that a site, I2, located between cosN and cosB, is critically important for an early DNA packaging step. I2 contains a complex static bend. I2 mutations block DNA packaging. I2 mutant DNA is cut by terminase at cosN in vitro, but in vivo, no cos cleavage is detected, nor is there evidence for Complex I. Models for what packaging step might be blocked by I2 mutations are presented.

  20. Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors.

    Directory of Open Access Journals (Sweden)

    Hua Wan

    Full Text Available TAL (transcriptional activator-like effectors (TALEs are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA, the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL. The conformational analysis of DNA indicates that the 5' end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism.

  1. Biosensors for DNA sequence detection

    Science.gov (United States)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  2. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation.

    Science.gov (United States)

    Kalendar, Ruslan; Antonius, Kristiina; Smýkal, Petr; Schulman, Alan H

    2010-11-01

    Molecular markers are essential in plant and animal breeding and biodiversity applications, in human forensics, and for map-based cloning of genes. The long terminal repeat (LTR) retrotransposons are well suited as molecular markers. As dispersed and ubiquitous transposable elements, their "copy and paste" life cycle of replicative transposition leads to new genome insertions without excision of the original element. Both the overall structure of retrotransposons and the domains responsible for the various phases of their replication are highly conserved in all eukaryotes. Nevertheless, up to a year has been required to develop a retrotransposon marker system in a new species, involving cloning and sequencing steps as well as the development of custom primers. Here, we describe a novel PCR-based method useful both as a marker system in its own right and for the rapid isolation of retrotransposon termini and full-length elements, making it ideal for "orphan crops" and other species with underdeveloped marker systems. The method, iPBS amplification, is based on the virtually universal presence of a tRNA complement as a reverse transcriptase primer binding site (PBS) in LTR retrotransposons. The method differs from earlier retrotransposon isolation methods because it is applicable not only to endogenous retroviruses and retroviruses, but also to both Gypsy and Copia LTR retrotransposons, as well as to non-autonomous LARD and TRIM elements, throughout the plant kingdom and to animals. Furthermore, the inter-PBS amplification technique as such has proved to be a powerful DNA fingerprinting technology without the need for prior sequence knowledge.

  3. Application of biomolecular recognition via magnetic nanoparticle in nanobiotechnology

    Science.gov (United States)

    Shen, Wei-Zheng; Cetinel, Sibel; Montemagno, Carlo

    2018-05-01

    The marriage of biomolecular recognition and magnetic nanoparticle creates tremendous opportunities in the development of advanced technology both in academic research and in industrial sectors. In this paper, we review current progress on the magnetic nanoparticle-biomolecule hybrid systems, particularly employing the recognition pairs of DNA-DNA, DNA-protein, protein-protein, and protein-inorganics in several nanobiotechnology application areas, including molecular biology, diagnostics, medical treatment, industrial biocatalysts, and environmental separations.

  4. Synergy of Two Highly Specific Biomolecular Recognition Events

    DEFF Research Database (Denmark)

    Ejlersen, Maria; Christensen, Niels Johan; Sørensen, Kasper K

    2018-01-01

    Two highly specific biomolecular recognition events, nucleic acid duplex hybridization and DNA-peptide recognition in the minor groove, were coalesced in a miniature ensemble for the first time by covalently attaching a natural AT-hook peptide motif to nucleic acid duplexes via a 2'-amino......-LNA scaffold. A combination of molecular dynamics simulations and ultraviolet thermal denaturation studies revealed high sequence-specific affinity of the peptide-oligonucleotide conjugates (POCs) when binding to complementary DNA strands, leveraging the bioinformation encrypted in the minor groove of DNA...

  5. DNA barcoding of Arctic Ocean holozooplankton for species identification and recognition

    Science.gov (United States)

    Bucklin, Ann; Hopcroft, Russell R.; Kosobokova, Ksenia N.; Nigro, Lisa M.; Ortman, Brian D.; Jennings, Robert M.; Sweetman, Christopher J.

    2010-01-01

    Zooplankton species diversity and distribution are important measures of environmental change in the Arctic Ocean, and may serve as 'rapid-responders' of climate-induced changes in this fragile ecosystem. The scarcity of taxonomists hampers detailed and up-to-date monitoring of these patterns for the rarer and more problematic species. DNA barcodes (short DNA sequences for species recognition and discovery) provide an alternative approach to accurate identification of known species, and can speed routine analysis of zooplankton samples. During 2004-2008, zooplankton samples were collected during cruises to the central Arctic Ocean and Chukchi Sea. A ˜700 base-pair region of the mitochondrial cytochrome oxidase I (mtCOI) gene was amplified and sequenced for 82 identified specimens of 41 species, including cnidarians (six hydrozoans, one scyphozoan), arthropod crustaceans (five amphipods, 24 copepods, one decapod, and one euphausiid); two chaetognaths; and one nemertean. Phylogenetic analysis used the Neighbor-Joining algorithm with Kimura-2-Parameter (K-2-P) distances, with 1000-fold bootstrapping. K-2-P genetic distances between individuals of the same species ranged from 0.0 to 0.2; genetic distances between species ranged widely from 0.1 to 0.7. The mtCOI gene tree showed monophyly (at 100% bootstrap value) for each of the 26 species for which more than one individual was analyzed. Of seven genera for which more than one species was analyzed, four were shown to be monophyletic; three genera were not resolved. At higher taxonomic levels, only the crustacean order Copepoda was resolved, with bootstrap value of 83%. The mtCOI barcodes accurately discriminated and identified known species of 10 taxonomic groups of Arctic Ocean holozooplankton. A comprehensive DNA barcode database for the estimated 300 described species of Arctic holozooplankton will allow rapid assessment of species diversity and distribution in this climate-vulnerable ocean ecosystem.

  6. DNA nanotechnology-enabled biosensors.

    Science.gov (United States)

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. LOCAL TEXTURE DESCRIPTION FRAMEWORK FOR TEXTURE BASED FACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    R. Reena Rose

    2014-02-01

    Full Text Available Texture descriptors have an important role in recognizing face images. However, almost all the existing local texture descriptors use nearest neighbors to encode a texture pattern around a pixel. But in face images, most of the pixels have similar characteristics with that of its nearest neighbors because the skin covers large area in a face and the skin tone at neighboring regions are same. Therefore this paper presents a general framework called Local Texture Description Framework that uses only eight pixels which are at certain distance apart either circular or elliptical from the referenced pixel. Local texture description can be done using the foundation of any existing local texture descriptors. In this paper, the performance of the proposed framework is verified with three existing local texture descriptors Local Binary Pattern (LBP, Local Texture Pattern (LTP and Local Tetra Patterns (LTrPs for the five issues viz. facial expression, partial occlusion, illumination variation, pose variation and general recognition. Five benchmark databases JAFFE, Essex, Indian faces, AT&T and Georgia Tech are used for the experiments. Experimental results demonstrate that even with less number of patterns, the proposed framework could achieve higher recognition accuracy than that of their base models.

  8. Recognition and repair of 2-aminofluorene- and 2-(acetylamino)fluorene-DNA adducts by UVRABC nuclease

    International Nuclear Information System (INIS)

    Pierce, J.R.; Case, R.; Tang, Moonshong

    1989-01-01

    Recognition of damage induced by N-hydroxy-2-aminofluorene (N-OH-AF) and N-acetoxy-2-(acetylamino)fluorene (NAAAF) in both φX174 RFI supercoiled DNA and a linear DNA fragment by purified UVRA, UVRB, and UVRC proteins was investigated. The authors have previously demonstrated that N-OH-AF and NAAAF treatments produce N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) and N-(deoxyguanosin-8-yl)-2-(acetylamino)fluorene (dG-C8-AAF), respectively, in DNA. Using a piperidine cleavage method and DNA sequence analysis, they have found that all guanine residues can be modified by N-OH-AF and NAAAF. These two kinds of adducts have different impacts on the DNA helix structure; while dG-C8-AF maintains the anti configuration, dG-C8-AAF is in the syn form. φX174 RF DNA-Escherichia coli transfection results indicate that while the uvrA, uvrB, and uvrC gene products are needed to repair dG-C8-AAF, the uvrC, but not the uvrA or uvrB gene products, is needed for repair of dG-C8-Af. However, they have found that in vitro the UVRA, UVRB, and UVRC proteins must work in concert to nick both dG-C8-AF and dG-C8-AAF. In general, the reactions of UVRABC nuclease toward dG-C8-AF are similar to those toward dG-C8-AAF; it incises seven to eight nucleotides from the 5' side and three to four nucleotides from the 3' side of the DNA adduct. Evidence is presented to suggest that hydrolysis on the 3' and 5' sides of the damaged base by UVRABC nuclease is not simultaneous and that at least occasionally hydrolysis occurs only on the 3' side or on the 5' side of the damage site. The possible mechanisms of UVRABC nuclease incision for AF-DNA are discussed

  9. Effects of gamma rays, ultraviolet radiation, sunlight, microwaves and electromagnetic fields on gene expression mediated by human immunodeficiency virus promoter

    International Nuclear Information System (INIS)

    Libertin, C.R.; Woloschak, G.E.; Panozzo, J.; Groh, K.R.; Chang-Liu, Chin-Mei; Schreck, S.

    1994-01-01

    Previous work by our group and others has shown the modulation of human immunodeficiency virus (HIV) promoter or long terminal repeat (LTR) after exposure to neutrons and ultraviolet radiations. Using HeLa cells stably transfected with a construct containing the chloramphenicol acetyl transferase (CAT) gene, the transcription of which is mediated by the HIV-LTR, we designed experiments to examine the effects of exposure to different types of radiation (such as γ rays, ultraviolet and sunlight irradiations, electromagnetic fields and microwaves) in HIV-LTR-driven expression of CAT. These results demonstrated ultraviolet-light-induced transcription from the HIV promoter, as has been shown by others. Exposure to other DNA-damaging agents such as γ rays and sunlight (with limited exposures) had no significant effect on transcription mediated by HIV-LTR, suggesting that induction of HIV is not mediated by just any type of DNA damage but rather may require specific types of DNA damage. Microwaves did not cause cell killing when cells in culture were exposed in high volumes of medium, and the same cells showed no changes in expression. When microwave exposure was carried out in low volumes of medium (so that excessive heat was generated) induction of HIV-LTR transcription (as assayed by CAT activity) was evident. Electromagnetic field exposures had no effect on expression of HIV-LTR. These results demonstrate that not all types of radiation and not all DNA-damaging agents are capable of inducing HIV. We hypothesize that induction of HIV transcription may be mediated by several different signals exposure to radiation. 22 refs., 8 figs

  10. Selection of reliable reference genes for gene expression studies in Trichoderma afroharzianum LTR-2 under oxalic acid stress.

    Science.gov (United States)

    Lyu, Yuping; Wu, Xiaoqing; Ren, He; Zhou, Fangyuan; Zhou, Hongzi; Zhang, Xinjian; Yang, Hetong

    2017-10-01

    An appropriate reference gene is required to get reliable results from gene expression analysis by quantitative real-time reverse transcription PCR (qRT-PCR). In order to identify stable and reliable reference genes in Trichoderma afroharzianum under oxalic acid (OA) stress, six commonly used housekeeping genes, i.e., elongation factor 1, ubiquitin, ubiquitin-conjugating enzyme, glyceraldehyde-3-phosphate dehydrogenase, α-tubulin, actin, from the effective biocontrol isolate T. afroharzianum strain LTR-2 were tested for their expression during growth in liquid culture amended with OA. Four in silico programs (comparative ΔCt, NormFinder, geNorm and BestKeeper) were used to evaluate the expression stabilities of six candidate reference genes. The elongation factor 1 gene EF-1 was identified as the most stably expressed reference gene, and was used as the normalizer to quantify the expression level of the oxalate decarboxylase coding gene OXDC in T. afroharzianum strain LTR-2 under OA stress. The result showed that the expression of OXDC was significantly up-regulated as expected. This study provides an effective method to quantify expression changes of target genes in T. afroharzianum under OA stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Assembling of G-strands into novel tetra-molecular parallel G4-DNA nanostructures using avidin-biotin recognition.

    Science.gov (United States)

    Borovok, Natalia; Iram, Natalie; Zikich, Dragoslav; Ghabboun, Jamal; Livshits, Gideon I; Porath, Danny; Kotlyar, Alexander B

    2008-09-01

    We describe a method for the preparation of novel long (hundreds of nanometers), uniform, inter-molecular G4-DNA molecules composed of four parallel G-strands. The only long continuous G4-DNA reported so far are intra-molecular structures made of a single G-strand. To enable a tetra-molecular assembly of the G-strands we developed a novel approach based on avidin-biotin biological recognition. The steps of the G4-DNA production include: (i) Enzymatic synthesis of long poly(dG)-poly(dC) molecules with biotinylated poly(dG)-strand; (ii) Formation of a complex between avidin-tetramer and four biotinylated poly(dG)-poly(dC) molecules; (iii) Separation of the poly(dC) strands from the poly(dG)-strands, which are connected to the avidin; (iv) Assembly of the four G-strands attached to the avidin into tetra-molecular G4-DNA. The average contour length of the formed structures, as measured by AFM, is equal to that of the initial poly(dG)-poly(dC) molecules, suggesting a tetra-molecular mechanism of the G-strands assembly. The height of tetra-molecular G4-nanostructures is larger than that of mono-molecular G4-DNA molecules having similar contour length. The CD spectra of the tetra- and mono-molecular G4-DNA are markedly different, suggesting different structural organization of these two types of molecules. The tetra-molecular G4-DNA nanostructures showed clear electrical polarizability. This suggests that they may be useful for molecular electronics.

  12. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms

    Directory of Open Access Journals (Sweden)

    Mueller Nancy

    2005-10-01

    Full Text Available Abstract Background Human T-cell leukemia virus type I (HTLV-I causes adult T-cell leukemia (ATL after a long latent period. Among accessory genes encoded by HTLV-I, the tax gene is thought to play a central role in oncogenesis. However, Tax expression is disrupted by several mechanims including genetic changes of the tax gene, deletion/hypermethylation of 5'-LTR. To clarify the role of epigenetic changes, we analyzed DNA methylation and histone modification in the whole HTLV-I provirus genome. Results The gag, pol and env genes of HTLV-I provirus were more methylated than pX region, whereas methylation of 5'-LTR was variable and 3'-LTR was not methylated at all. In ATL cell lines, complete DNA methylation of 5'-LTR was associated with transcriptional silencing of viral genes. HTLV-I provirus was more methylated in primary ATL cells than in carrier state, indicating the association with disease progression. In seroconvertors, DNA methylation was already observed in internal sequences of provirus just after seroconversion. Taken together, it is speculated that DNA methylation first occurs in the gag, pol and env regions and then extends in the 5' and 3' directions in vivo, and when 5'-LTR becomes methylated, viral transcription is silenced. Analysis of histone modification in the HTLV-I provirus showed that the methylated provirus was associated with hypoacetylation. However, the tax gene transcript could not be detected in fresh ATL cells regardless of hyperacetylated histone H3 in 5'-LTR. The transcription rapidly recovered after in vitro culture in such ATL cells. Conclusion These results showed that epigenetic changes of provirus facilitated ATL cells to evade host immune system by suppressing viral gene transcription. In addition, this study shows the presence of another reversible mechanism that suppresses the tax gene transcription without DNA methylation and hypoacetylated histone.

  13. Molecular recognition of naphthalene diimide ligands by telomeric quadruplex-DNA: the importance of the protonation state and mediated hydrogen bonds.

    Science.gov (United States)

    Spinello, A; Barone, G; Grunenberg, J

    2016-01-28

    In depth Monte Carlo conformational scans in combination with molecular dynamics (MD) simulations and electronic structure calculations were applied in order to study the molecular recognition process between tetrasubstituted naphthalene diimide (ND) guests and G-quadruplex (G4) DNA receptors. ND guests are a promising class of telomere stabilizers due to which they are used in novel anticancer therapeutics. Though several ND guests have been studied experimentally in the past, the protonation state under physiological conditions is still unclear. Based on chemical intuition, in the case of N-methyl-piperazine substitution, different protonation states are possible and might play a crucial role in the molecular recognition process by G4-DNA. Depending on the proton concentration, different nitrogen atoms of the N-methyl-piperazine might (or might not) be protonated. This fact was considered in our simulation in terms of a case by case analysis, since the process of molecular recognition is determined by possible donor or acceptor positions. The results of our simulations show that the electrostatic interactions between the ND ligands and the G4 receptor are maximized in the case of the protonation of the terminal nitrogen atoms, forming compact ND G4 complexes inside the grooves. The influence of different protonation states in terms of the ability to form hydrogen bonds with the sugar-phosphate backbone, as well as the importance of mediated vs. direct hydrogen bonding, was analyzed in detail by MD and relaxed force constant (compliance constant) simulations.

  14. LEDGF/p75 Deficiency Increases Deletions at the HIV-1 cDNA Ends.

    Science.gov (United States)

    Bueno, Murilo T D; Reyes, Daniel; Llano, Manuel

    2017-09-15

    Processing of unintegrated linear HIV-1 cDNA by the host DNA repair system results in its degradation and/or circularization. As a consequence, deficient viral cDNA integration generally leads to an increase in the levels of HIV-1 cDNA circles containing one or two long terminal repeats (LTRs). Intriguingly, impaired HIV-1 integration in LEDGF/p75-deficient cells does not result in a correspondent increase in viral cDNA circles. We postulate that increased degradation of unintegrated linear viral cDNA in cells lacking the lens epithelium-derived growth factor (LEDGF/p75) account for this inconsistency. To evaluate this hypothesis, we characterized the nucleotide sequence spanning 2-LTR junctions isolated from LEDGF/p75-deficient and control cells. LEDGF/p75 deficiency resulted in a significant increase in the frequency of 2-LTRs harboring large deletions. Of note, these deletions were dependent on the 3' processing activity of integrase and were not originated by aberrant reverse transcription. Our findings suggest a novel role of LEDGF/p75 in protecting the unintegrated 3' processed linear HIV-1 cDNA from exonucleolytic degradation.

  15. DNA-Destabilizing Agents as an Alternative Approach for Targeting DNA: Mechanisms of Action and Cellular Consequences

    Directory of Open Access Journals (Sweden)

    Gaëlle Lenglet

    2010-01-01

    Full Text Available DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs. The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy.

  16. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species.

    Science.gov (United States)

    Posey, Karen L; Koufopanou, Vassiliki; Burt, Austin; Gimble, Frederick S

    2004-01-01

    Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 --> T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites.

  17. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species

    Science.gov (United States)

    Posey, Karen L.; Koufopanou, Vassiliki; Burt, Austin; Gimble, Frederick S.

    2004-01-01

    Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 → T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites. PMID:15280510

  18. Dynamic constitutional frameworks for DNA biomimetic recognition.

    Science.gov (United States)

    Catana, Romina; Barboiu, Mihail; Moleavin, Ioana; Clima, Lilia; Rotaru, Alexandru; Ursu, Elena-Laura; Pinteala, Mariana

    2015-02-07

    Linear and cross-linked dynamic constitutional frameworks generated from reversibly interacting linear PEG/core constituents and cationic sites shed light on the dominant coiling versus linear DNA binding behaviours, closer to the histone DNA binding wrapping mechanism.

  19. Repair of DNA-polypeptide crosslinks by human excision nuclease

    Science.gov (United States)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  20. A yeast model for target-primed (non-LTR retrotransposition

    Directory of Open Access Journals (Sweden)

    Busby Jason N

    2007-08-01

    Full Text Available Abstract Background Target-primed (non-LTR retrotransposons, such as the human L1 element, are mobile genetic elements found in many eukaryotic genomes. They are often present in large numbers and their retrotransposition can cause mutations and genomic rearrangements. Despite their importance, many aspects of their replication are not well understood. Results We have developed a yeast model system for studying target-primed retrotransposons. This system uses the Zorro3 element from Candida albicans. A cloned copy of Zorro3, tagged with a retrotransposition indicator gene, retrotransposes at a high frequency when introduced into an appropriate C. albicans host strain. Retrotransposed copies of the tagged element exhibit similar features to the native copies, indicating that the natural retrotransposition pathway is being used. Retrotransposition is dependent on the products of the tagged element's own genes and is highly temperature-regulated. The new assay permits the analysis of the effects of specific mutations introduced into the cloned element. Conclusion This Zorro3 retrotransposition assay system complements previously available target-primed retrotransposition assays. Due to the relative simplicity of the growth, manipulation and analysis of yeast cells, the system should advance our understanding of target-primed retrotransposition.

  1. Bond graph modeling and LQG/LTR controller design of magnetically levitation systems

    International Nuclear Information System (INIS)

    Kim, Jong Shik; Park, Jeon Soo

    1991-01-01

    A logical and systematic procedure to derive a mathematical model for magnetically levitation (MAGLEV) systems with a combined lift and guidance is developed by using bond graph modeling techniques. First, bond graph is contructed for the 1 st -dimensional MAGLEV system in which three subsystems (energy feeding, track and vehicle) are considered. And, the 2 nd -dimensional MAGLEV system in which lift and guidance dynamics are coupled is modeled by using the concept of multi-port field in bond graph languages. Finally, the LQG/LTR control system is designed for a multivariable MAGLEV system with stagger configuration type. In this paper, it has been shown that the bond graph is an excellent effective method for modeling multi-energy domain systems such as MAGLEV systems with uncertainties such as mass variations, track irregularities and wind gusts. (Author)

  2. Bond graph modeling and LQG/LTR controller design of magnetically levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Shik; Park, Jeon Soo [Busan National Univ. (Korea, Republic of)

    1991-09-01

    A logical and systematic procedure to derive a mathematical model for magnetically levitation (MAGLEV) systems with a combined lift and guidance is developed by using bond graph modeling techniques. First, bond graph is contructed for the 1{sup st}-dimensional MAGLEV system in which three subsystems (energy feeding, track and vehicle) are considered. And, the 2{sup nd}-dimensional MAGLEV system in which lift and guidance dynamics are coupled is modeled by using the concept of multi-port field in bond graph languages. Finally, the LQG/LTR control system is designed for a multivariable MAGLEV system with stagger configuration type. In this paper, it has been shown that the bond graph is an excellent effective method for modeling multi-energy domain systems such as MAGLEV systems with uncertainties such as mass variations, track irregularities and wind gusts. (Author).

  3. Biochip microsystem for bioinformatics recognition and analysis

    Science.gov (United States)

    Lue, Jaw-Chyng (Inventor); Fang, Wai-Chi (Inventor)

    2011-01-01

    A system with applications in pattern recognition, or classification, of DNA assay samples. Because DNA reference and sample material in wells of an assay may be caused to fluoresce depending upon dye added to the material, the resulting light may be imaged onto an embodiment comprising an array of photodetectors and an adaptive neural network, with applications to DNA analysis. Other embodiments are described and claimed.

  4. Tet1 oxidase regulates neuronal gene transcription, active DNA hydroxymethylation, object location memory, and threat recognition memory

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2015-10-01

    Full Text Available A dynamic equilibrium between DNA methylation and demethylation of neuronal activity-regulated genes is crucial for memory processes. However, the mechanisms underlying this equilibrium remain elusive. Tet1 oxidase has been shown to play a key role in the active DNA demethylation in the central nervous system. In this study, we used Tet1 gene knockout (Tet1KO mice to examine the involvement of Tet1 in memory consolidation and storage in the adult brain. We found that Tet1 ablation leads to altered expression of numerous neuronal activity-regulated genes, compensatory upregulation of active demethylation pathway genes, and upregulation of various epigenetic modifiers. Moreover, Tet1KO mice showed an enhancement in the consolidation and storage of threat recognition (cued and contextual fear conditioning and object location memories. We conclude that Tet1 plays a critical role in regulating neuronal transcription and in maintaining the epigenetic state of the brain associated with memory consolidation and storage.

  5. Transcription of highly repetitive tandemly organized DNA in amphibians and birds: A historical overview and modern concepts.

    Science.gov (United States)

    Trofimova, Irina; Krasikova, Alla

    2016-12-01

    Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription.

  6. Simultaneous fluorescence light-up and selective multicolor nucleobase recognition based on sequence-dependent strong binding of berberine to DNA abasic site.

    Science.gov (United States)

    Wu, Fei; Shao, Yong; Ma, Kun; Cui, Qinghua; Liu, Guiying; Xu, Shujuan

    2012-04-28

    Label-free DNA nucleobase recognition by fluorescent small molecules has received much attention due to its simplicity in mutation identification and drug screening. However, sequence-dependent fluorescence light-up nucleobase recognition and multicolor emission with individual emission energy for individual nucleobases have been seldom realized. Herein, an abasic site (AP site) in a DNA duplex was employed as a binding field for berberine, one of isoquinoline alkaloids. Unlike weak binding of berberine to the fully matched DNAs without the AP site, strong binding of berberine to the AP site occurs and the berberine's fluorescence light-up behaviors are highly dependent on the target nucleobases opposite the AP site in which the targets thymine and cytosine produce dual emission bands, while the targets guanine and adenine only give a single emission band. Furthermore, more intense emissions are observed for the target pyrimidines than purines. The flanking bases of the AP site also produce some modifications of the berberine's emission behavior. The binding selectivity of berberine at the AP site is also confirmed by measurements of fluorescence resonance energy transfer, excited-state lifetime, DNA melting and fluorescence quenching by ferrocyanide and sodium chloride. It is expected that the target pyrimidines cause berberine to be stacked well within DNA base pairs near the AP site, which results in a strong resonance coupling of the electronic transitions to the particular vibration mode to produce the dual emissions. The fluorescent signal-on and emission energy-modulated sensing for nucleobases based on this fluorophore is substantially advantageous over the previously used fluorophores. We expect that this approach will be developed as a practical device for differentiating pyrimidines from purines by positioning an AP site toward a target that is available for readout by this alkaloid probe. This journal is © The Royal Society of Chemistry 2012

  7. Alterations of ultraviolet irradiated DNA

    International Nuclear Information System (INIS)

    Davila, C.; Garces, F.

    1980-01-01

    Thymine dimers production has been studied in several DNA- 3 H irradiated at various wave lenght of U.V. Light. The influence of dimers on the hydrodynamic and optic properties, thermal structural stability and transformant capacity of DNA have been studied too. At last the recognition and excision of dimers by the DNA-UV-Endonuclease and DNA-Polimerase-I was also studied. (author)

  8. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases.

    Directory of Open Access Journals (Sweden)

    Julia Arand

    2012-06-01

    Full Text Available The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites. The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position-, cell type-, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM to calculate the relative contribution of DNA methyltransferases (Dnmts for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs.

  9. Importance of the Sequence-Directed DNA Shape for Specific Binding Site Recognition by the Estrogen-Related Receptor

    Directory of Open Access Journals (Sweden)

    Kareem Mohideen-Abdul

    2017-06-01

    Full Text Available Most nuclear receptors (NRs bind DNA as dimers, either as hetero- or as homodimers on DNA sequences organized as two half-sites with specific orientation and spacing. The dimerization of NRs on their cognate response elements (REs involves specific protein–DNA and protein–protein interactions. The estrogen-related receptor (ERR belongs to the steroid hormone nuclear receptor (SHR family and shares strong similarity in its DNA-binding domain (DBD with that of the estrogen receptor (ER. In vitro, ERR binds with high affinity inverted repeat REs with a 3-bps spacing (IR3, but in vivo, it preferentially binds to single half-site REs extended at the 5′-end by 3 bp [estrogen-related response element (ERREs], thus explaining why ERR was often inferred as a purely monomeric receptor. Since its C-terminal ligand-binding domain is known to homodimerize with a strong dimer interface, we investigated the binding behavior of the isolated DBDs to different REs using electrophoretic migration, multi-angle static laser light scattering (MALLS, non-denaturing mass spectrometry, and nuclear magnetic resonance. In contrast to ER DBD, ERR DBD binds as a monomer to EREs (IR3, such as the tff1 ERE-IR3, but we identified a DNA sequence composed of an extended half-site embedded within an IR3 element (embedded ERRE/IR3, where stable dimer binding is observed. Using a series of chimera and mutant DNA sequences of ERREs and IR3 REs, we have found the key determinants for the binding of ERR DBD as a dimer. Our results suggest that the sequence-directed DNA shape is more important than the exact nucleotide sequence for the binding of ERR DBD to DNA as a dimer. Our work underlines the importance of the shape-driven DNA readout mechanisms based on minor groove recognition and electrostatic potential. These conclusions may apply not only to ERR but also to other members of the SHR family, such as androgen or glucocorticoid, for which a strong well-conserved half

  10. An impedimetric study of DNA hybridization on paper-supported inkjet-printed gold electrodes

    International Nuclear Information System (INIS)

    Ihalainen, Petri; Määttänen, Anni; Peltonen, Jouko; Pettersson, Fredrik; Pesonen, Markus; Österbacka, Ronald; Viitala, Tapani

    2014-01-01

    In this study, two different supramolecular recognition architectures for impedimetric detection of DNA hybridization have been formed on disposable paper-supported inkjet-printed gold electrodes. The gold electrodes were fabricated using a gold nanoparticle based ink. The first recognition architecture consists of subsequent layers of biotinylated self-assembly monolayer (SAM), streptavidin and biotinylated DNA probe. The other recognition architecture is constructed by immobilization of thiol-functionalized DNA probe (HS-DNA) and subsequent backfill with 11-mercapto-1-undecanol (MUOH) SAM. The binding capacity and selectivity of the recognition architectures were examined by surface plasmon resonance (SPR) measurements. SPR results showed that the HS-DNA/MUOH system had a higher binding capacity for the complementary DNA target. Electrochemical impedance spectroscopy (EIS) measurements showed that the hybridization can be detected with impedimetric spectroscopy in picomol range for both systems. EIS signal indicated a good selectivity for both recognition architectures, whereas SPR showed very high unspecific binding for the HS-DNA/MUOH system. The factors affecting the impedance signal were interpreted in terms of the complexity of the supramolecular architecture. The more complex architecture acts as a less ideal capacitive sensor and the impedance signal is dominated by the resistive elements. (paper)

  11. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel; (Harvard-Med); (EMBL)

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.

  12. Deletion of the LTR enhancer/promoter has no impact on the integration profile of MLV vectors in human hematopoietic progenitors.

    Directory of Open Access Journals (Sweden)

    Arianna Moiani

    Full Text Available Moloney murine leukemia virus (MLV-derived gamma-retroviral vectors integrate preferentially near transcriptional regulatory regions in the human genome, and are associated with a significant risk of insertional gene deregulation. Self-inactivating (SIN vectors carry a deletion of the U3 enhancer and promoter in the long terminal repeat (LTR, and show reduced genotoxicity in pre-clinical assays. We report a high-definition analysis of the integration preferences of a SIN MLV vector compared to a wild-type-LTR MLV vector in the genome of CD34(+ human hematopoietic stem/progenitor cells (HSPCs. We sequenced 13,011 unique SIN-MLV integration sites and compared them to 32,574 previously generated MLV sites in human HSPCs. The SIN-MLV vector recapitulates the integration pattern observed for MLV, with the characteristic clustering of integrations around enhancer and promoter regions associated to H3K4me3 and H3K4me1 histone modifications, specialized chromatin configurations (presence of the H2A.Z histone variant and binding of RNA Pol II. SIN-MLV and MLV integration clusters and hot spots overlap in most cases and are generated at a comparable frequency, indicating that the reduced genotoxicity of SIN-MLV vectors in hematopoietic cells is not due to a modified integration profile.

  13. Ex vivo response to histone deacetylase (HDAC inhibitors of the HIV long terminal repeat (LTR derived from HIV-infected patients on antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Hao K Lu

    Full Text Available Histone deacetylase inhibitors (HDACi can induce human immunodeficiency virus (HIV transcription from the HIV long terminal repeat (LTR. However, ex vivo and in vivo responses to HDACi are variable and the activity of HDACi in cells other than T-cells have not been well characterised. Here, we developed a novel assay to determine the activity of HDACi on patient-derived HIV LTRs in different cell types. HIV LTRs from integrated virus were amplified using triple-nested Alu-PCR from total memory CD4+ T-cells (CD45RO+ isolated from HIV-infected patients prior to and following suppressive antiretroviral therapy. NL4-3 or patient-derived HIV LTRs were cloned into the chromatin forming episomal vector pCEP4, and the effect of HDACi investigated in the astrocyte and epithelial cell lines SVG and HeLa, respectively. There were no significant differences in the sequence of the HIV LTRs isolated from CD4+ T-cells prior to and after 18 months of combination antiretroviral therapy (cART. We found that in both cell lines, the HDACi panobinostat, trichostatin A, vorinostat and entinostat activated patient-derived HIV LTRs to similar levels seen with NL4-3 and all patient derived isolates had similar sensitivity to maximum HDACi stimulation. We observed a marked difference in the maximum fold induction of luciferase by HDACi in HeLa and SVG, suggesting that the effect of HDACi may be influenced by the cellular environment. Finally, we observed significant synergy in activation of the LTR with vorinostat and the viral protein Tat. Together, our results suggest that the LTR sequence of integrated virus is not a major determinant of a functional response to an HDACi.

  14. Nucleic Acid Sensors Involved in the Recognition of HBV in the Liver–Specific in vivo Transfection Mouse Models—Pattern Recognition Receptors and Sensors for HBV

    Directory of Open Access Journals (Sweden)

    Chean Ring Leong

    2015-04-01

    Full Text Available Cellular innate immune system recognizing pathogen infection is critical for the host defense against viruses. Hepatitis B virus (HBV is a DNA virus with a unique life cycle whereby the DNA and RNA intermediates present at different phases. However, it is still unclear whether the viral DNA or RNA templates are recognized by the pattern-recognition receptors (PRRs to trigger host antiviral immune response. Here in this article, we review the recent advances in the progress of the HBV studies, focusing on the nucleic acid sensors and the pathways involved in the recognition of HBV in the liver–specific in vivo transfection mouse models. Hydrodynamic injection transfecting the hepatocytes in the gene-disrupted mouse model with the HBV replicative genome DNA has revealed that IFNAR and IRF3/7 are indispensable in HBV eradication in the mice liver but not the RNA sensing pathways. Interestingly, accumulating evidence of the recent studies has demonstrated that HBV markedly interfered with IFN-β induction and antiviral immunity mediated by the Stimulator of interferon genes (STING, which has been identified as a central factor in foreign DNA recognition and antiviral innate immunity. This review will present the current understanding of innate immunity in HBV infection and of the challenges for clearing of the HBV infection.

  15. Mutations in the Lactococcus lactis Ll.LtrB group II intron that retain mobility in vivo

    Directory of Open Access Journals (Sweden)

    D'Souza Lisa M

    2002-12-01

    Full Text Available Abstract Background Group II introns are mobile genetic elements that form conserved secondary and tertiary structures. In order to determine which of the conserved structural elements are required for mobility, a series of domain and sub-domain deletions were made in the Lactococcus lactis group II intron (Ll.LtrB and tested for mobility in a genetic assay. Point mutations in domains V and VI were also tested. Results The largest deletion that could be made without severely compromising mobility was 158 nucleotides in DIVb(1–2. This mutant had a mobility frequency comparable to the wild-type Ll.LtrB intron (ΔORF construct. Hence, all subsequent mutations were done in this mutant background. Deletion of DIIb reduced mobility to approximately 18% of wild-type, while another deletion in domain II (nts 404–459 was mobile to a minor extent. Only two deletions in DI and none in DIII were tolerated. Some mobility was also observed for a DIVa deletion mutant. Of the three point mutants at position G3 in DV, only G3A retained mobility. In DVI, deletion of the branch-point nucleotide abolished mobility, but the presence of any nucleotide at the branch-point position restored mobility to some extent. Conclusions The smallest intron capable of efficient retrohoming was 725 nucleotides, comprising the DIVb(1–2 and DII(iia,b deletions. The tertiary elements found to be nonessential for mobility were alpha, kappa and eta. In DV, only the G3A mutant was mobile. A branch-point residue is required for intron mobility.

  16. Tet1 Oxidase Regulates Neuronal Gene Transcription, Active DNA Hydroxy-methylation, Object Location Memory, and Threat Recognition Memory.

    Science.gov (United States)

    Kumar, Dinesh; Aggarwal, Milan; Kaas, Garrett A; Lewis, John; Wang, Jing; Ross, Daniel L; Zhong, Chun; Kennedy, Andrew; Song, Hongjun; Sweatt, J David

    2015-10-01

    A dynamic equilibrium between DNA methylation and demethylation of neuronal activity-regulated genes is crucial for memory processes. However, the mechanisms underlying this equilibrium remain elusive. Tet1 oxidase has been shown to play a key role in the active DNA demethylation in the CNS. In this study, we used Tet1 gene knockout (Tet1KO) mice to examine the involvement of Tet1 in memory consolidation and storage in the adult brain. We found that Tet1 ablation leads to: altered expression of numerous neuronal activity-regulated genes, compensatory upregulation of active demethylation pathway genes, and upregulation of various epigenetic modifiers. Moreover, Tet1KO mice showed an enhancement in the consolidation and storage of threat recognition (cued and contextual fear conditioning) and object location memories. We conclude that Tet1 plays a critical role in regulating neuronal transcription and in maintaining the epigenetic state of the brain associated with memory consolidation and storage.

  17. DNA-tension dependence of restriction enzyme activity reveals mechanochemical properties of the reaction pathway

    NARCIS (Netherlands)

    van den Broek, B.; Noom, M.C.; Wuite, G.J.L.

    2005-01-01

    Type II restriction endonucleases protect bacteria against phage infections by cleaving recognition sites on foreign double-stranded DNA (dsDNA) with extraordinary specificity. This capability arises primarily from large conformational changes in enzyme and/or DNA upon target sequence recognition.

  18. Dual Recognition of Human Telomeric G-quadruplex by Neomycin-anthraquinone Conjugate

    Science.gov (United States)

    Ranjan, Nihar; Davis, Erik; Xue, Liang

    2013-01-01

    The authors report the recognition of a G-quadruplex formed by four repeat human telomeric DNA with aminosugar intercalator conjugates. The recognition of G-quadruplex through dual binding mode ligands significantly increased the affinity of ligands for G-quadruplex. One such example is a neomycin-anthraquinone 2 which exhibited nanomolar affinity for the quadruplex, and the affinity of 2 is nearly 1000 fold higher for human telomeric G-quadruplex DNA than its constituent units, neomycin and anthraquinone. PMID:23698792

  19. Excision of HIV-1 proviral DNA by recombinant cell permeable tre-recombinase.

    Directory of Open Access Journals (Sweden)

    Lakshmikanth Mariyanna

    Full Text Available Over the previous years, comprehensive studies on antiretroviral drugs resulted in the successful introduction of highly active antiretroviral therapy (HAART into clinical practice for treatment of HIV/AIDS. However, there is still need for new therapeutic approaches, since HAART cannot eradicate HIV-1 from the infected organism and, unfortunately, can be associated with long-term toxicity and the development of drug resistance. In contrast, novel gene therapy strategies may have the potential to reverse the infection by eradicating HIV-1. For example, expression of long terminal repeat (LTR-specific recombinase (Tre-recombinase has been shown to result in chromosomal excision of proviral DNA and, in consequence, in the eradication of HIV-1 from infected cell cultures. However, the delivery of Tre-recombinase currently depends on the genetic manipulation of target cells, a process that is complicating such therapeutic approaches and, thus, might be undesirable in a clinical setting. In this report we demonstrate that E.coli expressed Tre-recombinases, tagged either with the protein transduction domain (PTD from the HIV-1 Tat trans-activator or the translocation motif (TLM of the Hepatitis B virus PreS2 protein, were able to translocate efficiently into cells and showed significant recombination activity on HIV-1 LTR sequences. Tre activity was observed using episomal and stable integrated reporter constructs in transfected HeLa cells. Furthermore, the TLM-tagged enzyme was able to excise the full-length proviral DNA from chromosomal integration sites of HIV-1-infected HeLa and CEM-SS cells. The presented data confirm Tre-recombinase activity on integrated HIV-1 and provide the basis for the non-genetic transient application of engineered recombinases, which may be a valuable component of future HIV eradication strategies.

  20. Conformational elasticity can facilitate TALE-DNA recognition.

    Science.gov (United States)

    Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P; Segal, David J; Duan, Yong

    2014-01-01

    Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo and bound conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. © 2014 Elsevier Inc. All rights reserved.

  1. Lune/eye gone, a Pax-like protein, uses a partial paired domain and a homeodomain for DNA recognition.

    Science.gov (United States)

    Jun, S; Wallen, R V; Goriely, A; Kalionis, B; Desplan, C

    1998-11-10

    Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix-turn-helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes.

  2. LQG/LTR [linear quadratic Gaussian with loop transfer recovery] robust control system design for a low-pressure feedwater heater train

    International Nuclear Information System (INIS)

    Murphy, G.V.; Bailey, J.M.

    1990-01-01

    This paper uses the linear quadratic Gaussian with loop transfer recovery (LQG/LTR) control system design method to obtain a level control system for a low-pressure feedwater heater train. The control system performance and stability robustness are evaluated for a given set of system design specifications. The tools for analysis are the return ratio, return difference, and inverse return difference singular-valve plots for a loop break at the plant output. 3 refs., 7 figs., 2 tabs

  3. [Using IRAP markers for analysis of genetic variability in populations of resource and rare species of plants].

    Science.gov (United States)

    Boronnikova, S V; Kalendar', R N

    2010-01-01

    Species-specific LTR retrotransposons were first cloned in five rare relic species of drug plants located in the Perm' region. Sequences of LTR retrotransposons were used for PCR analysis based on amplification of repeated sequences from LTR or other sites of retrotransposons (IRAP). Genetic diversity was studied in six populations of rare relic species of plants Adonis vernalis L. by means of the IRAP method; 125 polymorphic IRAP-markers were analyzed. Parameters for DNA polymorphism and genetic diversity of A. vernalis populations were determined.

  4. Tat-dependent repression of human immunodeficiency virus type 1 long terminal repeat promoter activity by fusion of cellular transcription factors

    International Nuclear Information System (INIS)

    Zhao Cunyou; Chen Yali; Park, Jiyoung; Kim, Jae Bum; Tang Hong

    2004-01-01

    Transcription initiation from HIV-1 long terminal repeat (LTR) promoter requires the virally encoded transactivator, Tat, and several cellular co-factors to accomplish the Tat-dependent processive transcription elongation. Individual cellular transcription activators, LBP-1b and Oct-1, on the other hand, have been shown to inhibit LTR promoter activities probably via competitive binding against TFIID to the TATA-box in LTR promoter. To explore the genetic interference strategies against the viral replication, we took advantage of the existence of the bipartite DNA binding domains and the repression domains of LBP-1b and Oct-1 factors to generate a chimeric transcription repressor. Our results indicated that the fusion protein of LBP-1b and Oct-1 exhibited higher DNA binding affinity to the viral promoter than the individual factors, and little interference with the host cell gene expression due to its anticipated rare cognate DNA sites in the host cell genome. Moreover, the chimera exerted increased Tat-dependent repression of transcription initiation at the LTR promoter both in vitro and in vivo compared to LBP-1b, Oct-1 or combination of LBP-1b and Oct-1. These results might provide the lead in generating a therapeutic reagent useful to suppress HIV-1 replication

  5. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    Science.gov (United States)

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  6. DNA binding and cleavage studies of new sulfasalazine-derived dipeptide Zn(II) complex: Validation for specific recognition with 5 Prime -TMP

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, Sartaj [Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002 (India); Al-Asbahy, Waddhaah M.; Afzal, Mohd.; Shamsi, Manal; Arjmand, Farukh [Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002 (India)

    2012-11-15

    A new water soluble complex [Zn(glygly)(ssz)(H{sub 2}O)]{center_dot}6H{sub 2}O, 1 derived from dipeptide (glycyl glycine) and sulfasalazine was synthesized and characterized by spectroscopic (IR, UV-vis, NMR, ESI-MS) and analytical methods. The in vitro DNA binding studies of complex 1 with calf-thymus DNA were carried out by employing various biophysical methods and molecular docking technique which reveals strong electrostatic binding via phosphate backbone of DNA helix, in addition to partial intercalation. To gain further insight into the molecular recognition at the target site, interaction studies of complex 1 with 5 Prime -TMP and 5 Prime -GMP were carried out by UV-vis titration which was validated by {sup 1}H and {sup 31}P NMR with 5 Prime -TMP, which implicate the preferential selectivity of 1 towards N3 of thymine. Complex 1 is accessible to minor groove of DNA and cleaved pBR322 DNA via hydrolytic pathway (validated by T4 ligase assay). - Graphical abstract: Synthesis, characterization, DNA binding and cleavage studies of [Zn(glygly)(ssz)(H{sub 2}O)]{center_dot}6H{sub 2}O (1) containing glycyl glycine and sulfasalazine ligand. Complex 1 recognize minor groove of DNA and show hydrolytic DNA cleavage. Highlights: Black-Right-Pointing-Pointer Novel Zn(II) complex 1 bearing bioactive glycyl glycine and sulfasalazine ligand scaffold. Black-Right-Pointing-Pointer Cleavage activity of 1 was enhanced in presence of activators: H{sub 2}O{sub 2}>MPA>GSH>Asc. Black-Right-Pointing-Pointer Complex 1 recognize minor groove as depicted in the cleavage pattern and molecular docking. Black-Right-Pointing-Pointer Complex 1 cleaves pBR322 DNA via hydrolytic mechanism and validated by T4 DNA ligase experiments.

  7. Recognition by nonaromatic and stereochemical subunit-containing polyamides of the four Watson-Crick base pairs in the DNA minor groove.

    Science.gov (United States)

    Zhang, Hong-Fei; Wu, Yan-Ling; Jiang, Shi-Kun; Wang, Pu; Sugiyama, Hiroshi; Chen, Xing-Lai; Zhang, Wen; Ji, Yan-Juan; Guo, Chuan-Xin

    2012-06-18

    In order to develop an optimal subunit as a T-recognition element in hairpin polyamides, 15 novel chirality-modified polyamides containing (R)-α,β-diaminopropionic acid ((R) β α-NH 2), (S)-α,β-diaminopropionic acid ((S) β α-NH 2), (1R,3S)-3-aminocyclopentanecarboxylic acid ((RS) Cp), (1S,3R)-3-amino-cyclopentanecarboxylic acid ((RS) Cp), (1R,3R)-3-aminocyclopentanecarboxylic acid ((RR) Cp) and (1S,3S)-3-amino-cyclopentanecarboxylic acid ((SS) Cp) residues were synthesized. Their binding characteristics to DNA sequences 5'-TGCNCAT-3'/3'-ACGN'GTA-5' (N⋅N'=A⋅T, T⋅A, G⋅C and C⋅G) were systemically studied by surface plasmon resonance (SPR) and molecular simulation (MSim) techniques. SPR showed that polyamide 4, AcIm-(S) β α-NH 2-ImPy-γ-ImPy-β-Py-βDp (β/(S) β α-NH 2 pair), bound to a DNA sequence containing a core binding site of 5'-TGCACAT-3' with a dissociation equilibrium constant (K(D) ) of 4.5×10(-8)  m. This was a tenfold improvement in specificity over 5'-TGCTCAT-3' (K(D) =4.5×10(-7)  M). MSim studies supported the SPR results. More importantly, for the first time, we found that chiral 3-aminocyclopentanecarboxylic acids in polyamides can be employed as base readers with only a small decrease in binding affinity to DNA. In particular, SPR showed that polyamide 9 ((RR) Cp/β pair) had a 15-fold binding preference for 5'-TGCTCAT-3' over 5'-TGCACAT-3'. A large difference in standard free energy change for A⋅T over T⋅A was determined (ΔΔG(o) =5.9 kJ mol(-1) ), as was a twofold decrease in interaction energy by MSim. Moreover, a 1:1 stoichiometry (9 to 5'-TGCTCAT-3'/3'-ACGAGTA-5') was shown by MSim to be optimal for the chiral five-membered cycle to fit the minor groove. Collectively, the study suggests that the (S)-α-amino-β-aminopropionic acid and (1R,3R)-3-aminocyclopentanecarboxylic acid can serve as a T-recognition element, and the stereochemistry and the nature of these subunits significantly influence

  8. Studying DNA Looping by Single-Molecule FRET

    OpenAIRE

    Le, Tung T.; Kim, Harold D.

    2014-01-01

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can als...

  9. DNA binding and cleavage studies of new sulfasalazine-derived dipeptide Zn(II) complex: Validation for specific recognition with 5′–TMP

    International Nuclear Information System (INIS)

    Tabassum, Sartaj; Al–Asbahy, Waddhaah M.; Afzal, Mohd.; Shamsi, Manal; Arjmand, Farukh

    2012-01-01

    A new water soluble complex [Zn(glygly)(ssz)(H 2 O)]·6H 2 O, 1 derived from dipeptide (glycyl glycine) and sulfasalazine was synthesized and characterized by spectroscopic (IR, UV–vis, NMR, ESI–MS) and analytical methods. The in vitro DNA binding studies of complex 1 with calf–thymus DNA were carried out by employing various biophysical methods and molecular docking technique which reveals strong electrostatic binding via phosphate backbone of DNA helix, in addition to partial intercalation. To gain further insight into the molecular recognition at the target site, interaction studies of complex 1 with 5′-TMP and 5′-GMP were carried out by UV–vis titration which was validated by 1 H and 31 P NMR with 5′-TMP, which implicate the preferential selectivity of 1 towards N3 of thymine. Complex 1 is accessible to minor groove of DNA and cleaved pBR322 DNA via hydrolytic pathway (validated by T4 ligase assay). - Graphical abstract: Synthesis, characterization, DNA binding and cleavage studies of [Zn(glygly)(ssz)(H 2 O)]·6H 2 O (1) containing glycyl glycine and sulfasalazine ligand. Complex 1 recognize minor groove of DNA and show hydrolytic DNA cleavage. Highlights: ► Novel Zn(II) complex 1 bearing bioactive glycyl glycine and sulfasalazine ligand scaffold. ► Cleavage activity of 1 was enhanced in presence of activators: H 2 O 2 >MPA>GSH>Asc. ► Complex 1 recognize minor groove as depicted in the cleavage pattern and molecular docking. ► Complex 1 cleaves pBR322 DNA via hydrolytic mechanism and validated by T4 DNA ligase experiments.

  10. Chirality as a tool in nucleic acid recognition: principles and relevance in biotechnology and in medicinal chemistry.

    Science.gov (United States)

    Corradini, Roberto; Sforza, Stefano; Tedeschi, Tullia; Marchelli, Rosangela

    2007-05-05

    The understanding of the interaction of chiral species with DNA or RNA is very important for the development of new tools in biology and of new drugs. Several cases in which chirality is a crucial point in determining the DNA binding mode are reviewed and discussed, with the aim of illustrating how chirality can be considered as a tool for improving the understanding of mechanisms and the effectiveness of nucleic acid recognition. The review is divided into two parts: the former describes examples of chiral species interacting with DNA: intercalators, metal complexes, and groove binders; the latter part is dedicated to chirality in DNA analogs, with discussion of phosphate stereochemistry and chirality of ribose substitutes, in particular of peptide nucleic acids (PNAs) for which a number of works have been published recently dealing with the effect of chirality in DNA recognition. The discussion is intended to show how enantiomeric recognition originates at the molecular level, by exploiting the enormous progresses recently achieved in the field of structural characterization of complexes formed by nucleic acid with their ligands by crystallographic and spectroscopic methods. Examples of application of the DNA binding molecules described and the role of chirality in DNA recognition relevant for biotechnology or medicinal chemistry are reported. (c) 2007 Wiley-Liss, Inc.

  11. Programmable RNA recognition and cleavage by CRISPR/Cas9.

    Science.gov (United States)

    O'Connell, Mitchell R; Oakes, Benjamin L; Sternberg, Samuel H; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A

    2014-12-11

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA-DNA complementarity to identify target sites for sequence-specific double-stranded DNA (dsDNA) cleavage. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, known as the protospacer adjacent motif (PAM), next to and on the strand opposite the twenty-nucleotide target site in dsDNA. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in a large range of prokaryotic and eukaryotic cell types, and in whole organisms, but it has been thought to be incapable of targeting RNA. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalysed DNA cleavage. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous messenger RNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable transcript recognition without the need for tags.

  12. Large branched self-assembled DNA complexes

    International Nuclear Information System (INIS)

    Tosch, Paul; Waelti, Christoph; Middelberg, Anton P J; Davies, A Giles

    2007-01-01

    Many biological molecules have been demonstrated to self-assemble into complex structures and networks by using their very efficient and selective molecular recognition processes. The use of biological molecules as scaffolds for the construction of functional devices by self-assembling nanoscale complexes onto the scaffolds has recently attracted significant attention and many different applications in this field have emerged. In particular DNA, owing to its inherent sophisticated self-organization and molecular recognition properties, has served widely as a scaffold for various nanotechnological self-assembly applications, with metallic and semiconducting nanoparticles, proteins, macromolecular complexes, inter alia, being assembled onto designed DNA scaffolds. Such scaffolds may typically contain multiple branch-points and comprise a number of DNA molecules selfassembled into the desired configuration. Previously, several studies have used synthetic methods to produce the constituent DNA of the scaffolds, but this typically constrains the size of the complexes. For applications that require larger self-assembling DNA complexes, several tens of nanometers or more, other techniques need to be employed. In this article, we discuss a generic technique to generate large branched DNA macromolecular complexes

  13. Helicase Dependent Isothermal Amplification of DNA and RNA using Self-Avoiding Molecular Recognition Systems

    Science.gov (United States)

    Yang, Zunyi; McLendon, Chris; Hutter, Daniel; Bradley, Kevin M.; Hoshika, Shuichi; Frye, Carole; Benner, Steven A.

    2015-01-01

    Assays that target DNA or RNA (xNA) are highly sensitive, as small amounts of xNA can be amplified by PCR. Unfortunately, PCR is inconvenient in low resource environments, requiring equipment and power that may not be available in these environments. However, isothermal procedures that avoid thermal cycling are often confounded by primer dimers, off-target priming, and other artifacts. Here, we show how a “self avoiding molecular recognition system” (SAMRS) eliminates these artifacts to give clean amplicons in a helicase-dependent isothermal amplification (SAMRS-HDA). We also show that incorporating SAMRS into the 3′-ends of primers facilitates the design and screening of primers for HDA assays. Finally, we show that SAMRS-HDA can be twofold multiplexed, something difficult to achieve with HDA using standard primers. This shows that SAMRS-HDA is a more versatile approach than standard HDA with a broader applicability for xNA-targeted diagnostics and research. PMID:25953623

  14. Kinetics and Thermodynamics of DNA Processing by Wild Type DNA-Glycosylase Endo III and Its Catalytically Inactive Mutant Forms

    Directory of Open Access Journals (Sweden)

    Olga A. Kladova

    2018-03-01

    Full Text Available Endonuclease III (Endo III or Nth is one of the key enzymes responsible for initiating the base excision repair of oxidized or reduced pyrimidine bases in DNA. In this study, a thermodynamic analysis of structural rearrangements of the specific and nonspecific DNA-duplexes during their interaction with Endo III is performed based on stopped-flow kinetic data. 1,3-diaza-2-oxophenoxazine (tCO, a fluorescent analog of the natural nucleobase cytosine, is used to record multistep DNA binding and lesion recognition within a temperature range (5–37 °C. Standard Gibbs energy, enthalpy, and entropy of the specific steps are derived from kinetic data using Van’t Hoff plots. The data suggest that enthalpy-driven exothermic 5,6-dihydrouracil (DHU recognition and desolvation-accompanied entropy-driven adjustment of the enzyme–substrate complex into a catalytically active state play equally important parts in the overall process. The roles of catalytically significant amino acids Lys120 and Asp138 in the DNA lesion recognition and catalysis are identified. Lys120 participates not only in the catalytic steps but also in the processes of local duplex distortion, whereas substitution Asp138Ala leads to a complete loss of the ability of Endo III to distort a DNA double chain during enzyme–DNA complex formation.

  15. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes.

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar Rai

    2017-12-01

    Full Text Available Retroviruses and Long Terminal Repeat (LTR-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements.

  16. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes.

    Science.gov (United States)

    Rai, Sudhir Kumar; Sangesland, Maya; Lee, Michael; Esnault, Caroline; Cui, Yujin; Chatterjee, Atreyi Ghatak; Levin, Henry L

    2017-12-01

    Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements.

  17. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.

    Science.gov (United States)

    Staton, S Evan; Bakken, Bradley H; Blackman, Benjamin K; Chapman, Mark A; Kane, Nolan C; Tang, Shunxue; Ungerer, Mark C; Knapp, Steven J; Rieseberg, Loren H; Burke, John M

    2012-10-01

    Aside from polyploidy, transposable elements are the major drivers of genome size increases in plants. Thus, understanding the diversity and evolutionary dynamics of transposable elements in sunflower (Helianthus annuus L.), especially given its large genome size (∼3.5 Gb) and the well-documented cases of amplification of certain transposons within the genus, is of considerable importance for understanding the evolutionary history of this emerging model species. By analyzing approximately 25% of the sunflower genome from random sequence reads and assembled bacterial artificial chromosome (BAC) clones, we show that it is composed of over 81% transposable elements, 77% of which are long terminal repeat (LTR) retrotransposons. Moreover, the LTR retrotransposon fraction in BAC clones harboring genes is disproportionately composed of chromodomain-containing Gypsy LTR retrotransposons ('chromoviruses'), and the majority of the intact chromoviruses contain tandem chromodomain duplications. We show that there is a bias in the efficacy of homologous recombination in removing LTR retrotransposon DNA, thereby providing insight into the mechanisms associated with transposable element (TE) composition in the sunflower genome. We also show that the vast majority of observed LTR retrotransposon insertions have likely occurred since the origin of this species, providing further evidence that biased LTR retrotransposon activity has played a major role in shaping the chromatin and DNA landscape of the sunflower genome. Although our findings on LTR retrotransposon age and structure could be influenced by the selection of the BAC clones analyzed, a global analysis of random sequence reads indicates that the evolutionary patterns described herein apply to the sunflower genome as a whole. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  18. Circular viral DNA detection and junction sequence analysis from PBMC of SHIV-infected cynomolgus monkeys with undetectable virus plasma RNA

    International Nuclear Information System (INIS)

    Cara, Andrea; Maggiorella, Maria Teresa; Bona, Roberta; Sernicola, Leonardo; Baroncelli, Silvia; Negri, Donatella R.M.; Leone, Pasqualina; Fagrouch, Zahra; Heeney, Jonathan; Titti, Fausto; Cafaro, Aurelio; Ensoli, Barbara

    2004-01-01

    Extrachromosomal forms of human immunodeficiency virus (HIV)-1 can be detected in peripheral blood mononuclear cell (PBMC) from HIV-infected patients in the absence of detectable viral replication and are thought to be a sign of active but cryptic virus replication. No information, however, are available on whether these forms are also present in animal models for acquired immunodeficiency syndrome (AIDS) and on their relation with other methods of detection of virus replication. To this aim, a polymerase chain reaction (PCR) approach was used to detect and analyze unintegrated circular 2-LTR-containing forms in PBMC of simian human immunodeficiency virus (SHIV)89.6P infected cynomolgus monkeys with RNA levels ranging between 1.8x10 6 and less than 50 copies/ml of plasma. 2-LTR forms were detected in 96.5% of monkeys' samples above 50 copies/ml of plasma, whereas they were present in 75.8% of monkeys' samples below 50 copies/ml of plasma. Persistence of unintegrated viral DNA in monkeys with undetectable plasma RNA could indicate either stability in non-dividing cells or ongoing low levels of viral replication in dividing cells

  19. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae.

    Science.gov (United States)

    Macas, Jiří; Novák, Petr; Pellicer, Jaume; Čížková, Jana; Koblížková, Andrea; Neumann, Pavel; Fuková, Iva; Doležel, Jaroslav; Kelly, Laura J; Leitch, Ilia J

    2015-01-01

    The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55-83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.

  20. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae.

    Directory of Open Access Journals (Sweden)

    Jiří Macas

    Full Text Available The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55-83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57% of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%. Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.

  1. The nucleosome: orchestrating DNA damage signaling and repair within chromatin.

    Science.gov (United States)

    Agarwal, Poonam; Miller, Kyle M

    2016-10-01

    DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.

  2. Improved understanding of protein complex offers insight into DNA

    Science.gov (United States)

    Summer Science Writing Internship Improved understanding of protein complex offers insight into DNA clearer understanding of the origin recognition complex (ORC) - a protein complex that directs DNA replication - through its crystal structure offers new insight into fundamental mechanisms of DNA replication

  3. A DNA minor groove electronegative potential genome map based on photo-chemical probing

    DEFF Research Database (Denmark)

    Lindemose, Søren; Nielsen, Peter Eigil; Hansen, Morten

    2011-01-01

    The double-stranded DNA of the genome contains both sequence information directly relating to the protein and RNA coding as well as functional and structural information relating to protein recognition. Only recently is the importance of DNA shape in this recognition process being fully appreciat...

  4. Structure of long terminal repeats of transcriptionally active and inactive copies of Drosophila mobile dispersed genetic elements mdg3

    International Nuclear Information System (INIS)

    Dzhumagaliev, E.B.; Mazo, A.N.; Baev, A.A. Jr.; Gorelova, T.V.; Arkhipova, I.R.; Shuppe, N.G.; Il'in, Yu.V.

    1986-01-01

    The authors have determined the nucleotide sequences of long terminal repeats (LTRS) and adjacent regions in the transcribed and nontranscribed variants of the mobile dispersed gene mdg3. In its main characteristics the mdg3 is similar to other mdg. Its integration into chromosomal DNA brings about duplication of the 4 bp of the host DNA, no specificity of the mdg integration at the nucleotide level being detected. The mdg3 is flanked by a 5 bp inverted repeat. The variations in the length of the LTR in different mdg copies is mainly due to duplication of certain sequences in the U3 and R regions. mdg3 copies with a LTR length of 267 bp are the most abundant and are completely conservative in their primary structure. They are transcribed in the cells of the 67J25D culture, but not transcribed in the K/sub c/ line, where another mdg3 variant with a LTR length of 293 bp is transcriptionally active. The SI mapping of transcription initiation and termination sites has shown that in both mdg3 variants they are localized in the same LTR regions, and that the LTR itself has a characteristic U3-R-U5 structure-like retroviral LTRs. The possible factors involved in the regulation of mdg transcription are discussed

  5. DNA nanotechnology and fluorescence applications.

    Science.gov (United States)

    Schlichthaerle, Thomas; Strauss, Maximilian T; Schueder, Florian; Woehrstein, Johannes B; Jungmann, Ralf

    2016-06-01

    Structural DNA nanotechnology allow researchers to use the unique molecular recognition properties of DNA strands to construct nanoscale objects with almost arbitrary complexity in two and three dimensions. Abstracted as molecular breadboards, DNA nanostructures enable nanometer-precise placement of guest molecules such as proteins, fluorophores, or nanoparticles. These assemblies can be used to study biological phenomena with unprecedented control over number, spacing, and molecular identity. Here, we give a general introduction to structural DNA nanotechnology and more specifically discuss applications of DNA nanostructures in the field of fluorescence and plasmonics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Role of protein structure and the role of individual fingers in zinc finger protein-DNA recognition: a molecular dynamics simulation study and free energy calculations

    Science.gov (United States)

    Hamed, Mazen Y.

    2018-05-01

    Molecular dynamics and MM_GBSA energy calculations on various zinc finger proteins containing three and four fingers bound to their target DNA gave insights into the role of each finger in the DNA binding process as part of the protein structure. The wild type Zif 268 (PDB code: 1AAY) gave a ΔG value of - 76.1 (14) kcal/mol. Zinc fingers ZF1, ZF2 and ZF3 were mutated in one experiment and in another experiment one finger was cut and the rest of the protein was studied for binding. The ΔΔG values for the Zinc Finger protein with both ZF1 and ZF2 mutated was + 80 kcal/mol, while mutating only ZF1 the ΔΔG value was + 52 kcal/mol (relative to the wild type). Cutting ZF3 and studying the protein consisting only of ZF1 linked to ZF2 gave a ΔΔG value of + 68 kcal/mol. Upon cutting ZF1, the resulting ZF2 linked to ZF3 protein gave a ΔΔG value of + 41 kcal/mol. The above results shed light on the importance of each finger in the binding process, especially the role of ZF1 as the anchoring finger followed in importance by ZF2 and ZF3. The energy difference between the binding of the wild type protein Zif268 (1AAY) and that for individual finger binding to DNA according to the formula: ΔΔGlinkers, otherstructuralfactors = ΔGzif268 - (ΔGF1+F2+F3) gave a value = - 44.5 kcal/mol. This stabilization can be attributed to the contribution of linkers and other structural factors in the intact protein in the DNA binding process. DNA binding energies of variant proteins of the wild type Zif268 which differ in their ZF1 amino acid sequence gave evidence of a good relationship between binding energy and recognition and specificity, this finding confirms the reported vital role of ZF1 in the ZF protein scanning and anchoring to the target DNA sequence. The role of hydrogen bonds in both specific and nonspecific amino acid-DNA contacts is discussed in relation to mutations. The binding energies of variant Zinc Finger proteins confirmed the role of ZF1 in the recognition

  7. Helicase-Dependent Isothermal Amplification of DNA and RNA by Using Self-Avoiding Molecular Recognition Systems.

    Science.gov (United States)

    Yang, Zunyi; McLendon, Chris; Hutter, Daniel; Bradley, Kevin M; Hoshika, Shuichi; Frye, Carole B; Benner, Steven A

    2015-06-15

    Assays that detect DNA or RNA (xNA) are highly sensitive, as small amounts of xNA can be amplified by PCR. Unfortunately, PCR is inconvenient in low-resource environments, and requires equipment and power that might not be available in these environments. Isothermal procedures, which avoid thermal cycling, are often confounded by primer dimers, off-target priming, and other artifacts. Here, we show how a "self avoiding molecular recognition system" (SAMRS) eliminates these artifacts and gives clean amplicons in a helicase-dependent isothermal amplification (SAMRS-HDA). We also show that incorporating SAMRS into the 3'-ends of primers facilitates the design and screening of primers for HDA assays. Finally, we show that SAMRS-HDA can be twofold multiplexed, difficult to achieve with HDA using standard primers. Thus, SAMRS-HDA is a more versatile approach than standard HDA, with a broader applicability for xNA-targeted diagnostics and research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 3D DNA Crystals and Nanotechnology

    Directory of Open Access Journals (Sweden)

    Paul J. Paukstelis

    2016-08-01

    Full Text Available DNA’s molecular recognition properties have made it one of the most widely used biomacromolecular construction materials. The programmed assembly of DNA oligonucleotides has been used to create complex 2D and 3D self-assembled architectures and to guide the assembly of other molecules. The origins of DNA nanotechnology are rooted in the goal of assembling DNA molecules into designed periodic arrays, i.e., crystals. Here, we highlight several DNA crystal structures, the progress made in designing DNA crystals, and look at the current prospects and future directions of DNA crystals in nanotechnology.

  9. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles

    Science.gov (United States)

    Edwardson, Thomas G. W.; Lau, Kai Lin; Bousmail, Danny; Serpell, Christopher J.; Sleiman, Hanadi F.

    2016-02-01

    DNA nanotechnology offers unparalleled precision and programmability for the bottom-up organization of materials. This approach relies on pre-assembling a DNA scaffold, typically containing hundreds of different strands, and using it to position functional components. A particularly attractive strategy is to employ DNA nanostructures not as permanent scaffolds, but as transient, reusable templates to transfer essential information to other materials. To our knowledge, this approach, akin to top-down lithography, has not been examined. Here we report a molecular printing strategy that chemically transfers a discrete pattern of DNA strands from a three-dimensional DNA structure to a gold nanoparticle. We show that the particles inherit the DNA sequence configuration encoded in the parent template with high fidelity. This provides control over the number of DNA strands and their relative placement, directionality and sequence asymmetry. Importantly, the nanoparticles produced exhibit the site-specific addressability of DNA nanostructures, and are promising components for energy, information and biomedical applications.

  10. The effects of 5-fluorouracil and doxorubicin on expression of human immunodeficiency virus type 1 long terminal repeat

    International Nuclear Information System (INIS)

    Panozzo, J.; Akan, E.; Griffiths, T.D.

    1996-01-01

    Previous work by many groups has documented induction of the HIV-LTR following exposure of cells to ultraviolet light and other DNA damaging agents. Our experiments set out to determine the relative activation or repression of the HIV-LTR in response to two classes of chemotherapeutic agents: Doxorubicin is a DNA-damage inducing agent, and 5-fluorouracil has an antimetabolic mode of action. Using HeLa cells stably transfected with a construct in which HIV-LTR drives expression of the chloramphenicol acetyl transferase reporter gene, we demonstrated an up to 10-fold induction following doxorubicin treatment in 24 h post-treatment. This induction was repressed by treatment with salicylic acid, suggesting a role for prostaglandin/cyclo-oxygenase pathways and/or NFKB in the inductive response. Induction by 5-fluorouracil, in contrast, was more modest (two-fold at most) though it was consistently elevated over controls

  11. Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus

    DEFF Research Database (Denmark)

    Gresham, D.; Usaite, Renata; Germann, S.M.

    2010-01-01

    and deletions at the GAP1 locus. GAP1 encodes the general amino acid permease, which transports amino acids across the plasma membrane. We identified a self-propagating extrachromosomal circular DNA molecule that results from intrachromosomal recombination between long terminal repeats (LTRs) flanking GAP1....... Extrachromosomal DNA circles (GAP1(circle)) contain GAP1, the replication origin ARS1116, and a single hybrid LTR derived from recombination between the two flanking LTRs. Formation of the GAP1(circle) is associated with deletion of chromosomal GAP1 (gap1 Delta) and production of a single hybrid LTR at the GAP1...

  12. Molecular threading and tunable molecular recognition on DNA origami nanostructures.

    Science.gov (United States)

    Wu, Na; Czajkowsky, Daniel M; Zhang, Jinjin; Qu, Jianxun; Ye, Ming; Zeng, Dongdong; Zhou, Xingfei; Hu, Jun; Shao, Zhifeng; Li, Bin; Fan, Chunhai

    2013-08-21

    The DNA origami technology holds great promise for the assembly of nanoscopic technological devices and studies of biochemical reactions at the single-molecule level. For these, it is essential to establish well controlled attachment of functional materials to predefined sites on the DNA origami nanostructures for reliable measurements and versatile applications. However, the two-sided nature of the origami scaffold has shown limitations in this regard. We hypothesized that holes of the commonly used two-dimensional DNA origami designs are large enough for the passage of single-stranded (ss)-DNA. Sufficiently long ssDNA initially located on one side of the origami should thus be able to "thread" to the other side through the holes in the origami sheet. By using an origami sheet attached with patterned biotinylated ssDNA spacers and monitoring streptavidin binding with atomic force microscopic (AFM) imaging, we provide unambiguous evidence that the biotin ligands positioned on one side have indeed threaded through to the other side. Our finding reveals a previously overlooked critical design feature that should provide new interpretations to previous experiments and new opportunities for the construction of origami structures with new functional capabilities.

  13. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA.

    Science.gov (United States)

    Herzner, Anna-Maria; Hagmann, Cristina Amparo; Goldeck, Marion; Wolter, Steven; Kübler, Kirsten; Wittmann, Sabine; Gramberg, Thomas; Andreeva, Liudmila; Hopfner, Karl-Peter; Mertens, Christina; Zillinger, Thomas; Jin, Tengchuan; Xiao, Tsan Sam; Bartok, Eva; Coch, Christoph; Ackermann, Damian; Hornung, Veit; Ludwig, Janos; Barchet, Winfried; Hartmann, Gunther; Schlee, Martin

    2015-10-01

    Cytosolic DNA that emerges during infection with a retrovirus or DNA virus triggers antiviral type I interferon responses. So far, only double-stranded DNA (dsDNA) over 40 base pairs (bp) in length has been considered immunostimulatory. Here we found that unpaired DNA nucleotides flanking short base-paired DNA stretches, as in stem-loop structures of single-stranded DNA (ssDNA) derived from human immunodeficiency virus type 1 (HIV-1), activated the type I interferon-inducing DNA sensor cGAS in a sequence-dependent manner. DNA structures containing unpaired guanosines flanking short (12- to 20-bp) dsDNA (Y-form DNA) were highly stimulatory and specifically enhanced the enzymatic activity of cGAS. Furthermore, we found that primary HIV-1 reverse transcripts represented the predominant viral cytosolic DNA species during early infection of macrophages and that these ssDNAs were highly immunostimulatory. Collectively, our study identifies unpaired guanosines in Y-form DNA as a highly active, minimal cGAS recognition motif that enables detection of HIV-1 ssDNA.

  14. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.

    Science.gov (United States)

    Sternberg, Samuel H; Redding, Sy; Jinek, Martin; Greene, Eric C; Doudna, Jennifer A

    2014-03-06

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  15. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9

    Science.gov (United States)

    Sternberg, Samuel H.; Redding, Sy; Jinek, Martin; Greene, Eric C.; Doudna, Jennifer A.

    2014-03-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  16. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes

    Science.gov (United States)

    Ma, Enbo; Harrington, Lucas B.; O’Connell, Mitchell R.; Zhou, Kaihong; Doudna, Jennifer A.

    2015-01-01

    Summary Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide-RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. PMID:26545076

  17. GABBR1 has a HERV-W LTR in its regulatory region – a possible implication for schizophrenia

    Directory of Open Access Journals (Sweden)

    Hegyi Hedi

    2013-02-01

    Full Text Available Abstract Schizophrenia is a complex disease with uncertain aetiology. We suggest GABBR1, GABA receptor B1 implicated in schizophrenia based on a HERV-W LTR in the regulatory region of GABBR1. Our hypothesis is supported by: (i GABBR1 is in the 6p22 genomic region most often implicated in schizophrenia; (ii microarray studies found that only presynaptic pathway-related genes, including GABA receptors, have altered expression in schizophrenic patients and (iii it explains how HERV-W elements, expressed in schizophrenia, play a role in the disease: by altering the expression of GABBR1 via a long terminal repeat that is also a regulatory element to GABBR1. Reviewers This paper was reviewed by Sandor Pongor and Martijn Huynen.

  18. G-quadruplex recognition activities of E. Coli MutS

    Directory of Open Access Journals (Sweden)

    Ehrat Edward A

    2012-07-01

    Full Text Available Abstract Background Guanine quadruplex (G4 DNA is a four-stranded structure that contributes to genome instability and site-specific recombination. G4 DNA folds from sequences containing tandemly repetitive guanines, sequence motifs that are found throughout prokaryote and eukaryote genomes. While some cellular activities have been identified with binding or processing G4 DNA, the factors and pathways governing G4 DNA metabolism are largely undefined. Highly conserved mismatch repair factors have emerged as potential G4-responding complexes because, in addition to initiating heteroduplex correction, the human homologs bind non-B form DNA with high affinity. Moreover, the MutS homologs across species have the capacity to recognize a diverse range of DNA pairing variations and damage, suggesting a conserved ability to bind non-B form DNA. Results Here, we asked if E. coli MutS and a heteroduplex recognition mutant, MutS F36A, were capable of recognizing and responding to G4 DNA structures. We find by mobility shift assay that E. coli MutS binds to G4 DNA with high affinity better than binding to G-T heteroduplexes. In the same assay, MutS F36A failed to recognize G-T mismatched oligonucleotides, as expected, but retained an ability to bind to G4 DNA. Association with G4 DNA by MutS is not likely to activate the mismatch repair pathway because nucleotide binding did not promote release of MutS or MutS F36A from G4 DNA as it does for heteroduplexes. G4 recognition activities occur under physiological conditions, and we find that M13 phage harboring G4-capable DNA poorly infected a MutS deficient strain of E. coli compared to M13mp18, suggesting functional roles for mismatch repair factors in the cellular response to unstable genomic elements. Conclusions Taken together, our findings demonstrate that E. coli MutS has a binding activity specific for non-B form G4 DNA, but such binding appears independent of canonical heteroduplex repair activation.

  19. Identification of Biomolecular Building Blocks by Recognition Tunneling: Stride towards Nanopore Sequencing of Biomolecules

    Science.gov (United States)

    Sen, Suman

    DNA, RNA and Protein are three pivotal biomolecules in human and other organisms, playing decisive roles in functionality, appearance, diseases development and other physiological phenomena. Hence, sequencing of these biomolecules acquires the prime interest in the scientific community. Single molecular identification of their building blocks can be done by a technique called Recognition Tunneling (RT) based on Scanning Tunneling Microscope (STM). A single layer of specially designed recognition molecule is attached to the STM electrodes, which trap the targeted molecules (DNA nucleoside monophosphates, RNA nucleoside monophosphates or amino acids) inside the STM nanogap. Depending on their different binding interactions with the recognition molecules, the analyte molecules generate stochastic signal trains accommodating their "electronic fingerprints". Signal features are used to detect the molecules using a machine learning algorithm and different molecules can be identified with significantly high accuracy. This, in turn, paves the way for rapid, economical nanopore sequencing platform, overcoming the drawbacks of Next Generation Sequencing (NGS) techniques. To read DNA nucleotides with high accuracy in an STM tunnel junction a series of nitrogen-based heterocycles were designed and examined to check their capabilities to interact with naturally occurring DNA nucleotides by hydrogen bonding in the tunnel junction. These recognition molecules are Benzimidazole, Imidazole, Triazole and Pyrrole. Benzimidazole proved to be best among them showing DNA nucleotide classification accuracy close to 99%. Also, Imidazole reader can read an abasic monophosphate (AP), a product from depurination or depyrimidination that occurs 10,000 times per human cell per day. In another study, I have investigated a new universal reader, 1-(2-mercaptoethyl)pyrene (Pyrene reader) based on stacking interactions, which should be more specific to the canonical DNA nucleosides. In addition

  20. DNA Packaging by λ-Like Bacteriophages: Mutations Broadening the Packaging Specificity of Terminase, the λ-Packaging Enzyme

    OpenAIRE

    Feiss, Michael; Reynolds, Erin; Schrock, Morgan; Sippy, Jean

    2010-01-01

    The DNA-packaging specificities of phages λ and 21 depend on the specific DNA interactions of the small terminase subunits, which have support helix-turn-recognition helix-wing DNA-binding motifs. λ-Terminase with the recognition helix of 21 preferentially packages 21 DNA. This chimeric terminase's ability to package λDNA is reduced ∼20-fold. Phage λ with the chimeric terminase is unable to form plaques, but pseudorevertants are readily obtained. Some pseudorevertants have trans-acting suppre...

  1. Association of endogenous retroviruses and long terminal repeats with human disorders

    Directory of Open Access Journals (Sweden)

    Iyoko eKatoh

    2013-09-01

    Full Text Available Since the human genome sequences became available in 2001, our knowledge about the human transposable elements which comprise ~40% of the total nucleotides has been expanding. Non- LTR (long terminal repeat retrotransposons are actively transposing in the present-day human genome, and have been found to cause ~100 identified clinical cases of varied disorders. In contrast, almost all of the human endogenous retroviruses (HERVs originating from ancient infectious retroviruses lost their infectivity and transposing activity at various times before the human-chimpanzee speciation (~6 million years ago, and no known HERV is presently infectious. Insertion of HERVs and mammalian apparent LTR retrotransposons (MaLRs into the chromosomal DNA influenced a number of host genes in various modes during human evolution. Apart from the aspect of genome evolution, HERVs and solitary LTRs being suppressed in normal biological processes can potentially act as extra transcriptional apparatuses of cellular genes by re-activation in individuals. There has been a reasonable prediction that aberrant LTR activation could trigger malignant disorders and autoimmune responses if epigenetic changes including DNA hypomethylation occur in somatic cells. Evidence supporting this hypothesis has begun to emerge only recently: a MaLR family LTR activation in the pathogenesis of Hodgkin’s lymphoma and a HERV-E antigen expression in an anti-renal cell carcinoma immune response. This mini review addresses the impacts of the remnant-form LTR retrotransposons on human pathogenesis.

  2. DNA-Based Applications in Nanobiotechnology

    Directory of Open Access Journals (Sweden)

    Khalid M. Abu-Salah

    2010-01-01

    Full Text Available Biological molecules such as deoxyribonucleic acid (DNA have shown great potential in fabrication and construction of nanostructures and devices. The very properties that make DNA so effective as genetic material also make it a very suitable molecule for programmed self-assembly. The use of DNA to assemble metals or semiconducting particles has been extended to construct metallic nanowires and functionalized nanotubes. This paper highlights some important aspects of conjugating the unique physical properties of dots or wires with the remarkable recognition capabilities of DNA which could lead to miniaturizing biological electronics and optical devices, including biosensors and probes. Attempts to use DNA-based nanocarriers for gene delivery are discussed. In addition, the ecological advantages and risks of nanotechnology including DNA-based nanobiotechnology are evaluated.

  3. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns

    Science.gov (United States)

    Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.

    2018-02-01

    As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.

  4. Intrinsic flexibility of B-DNA: the experimental TRX scale.

    Science.gov (United States)

    Heddi, Brahim; Oguey, Christophe; Lavelle, Christophe; Foloppe, Nicolas; Hartmann, Brigitte

    2010-01-01

    B-DNA flexibility, crucial for DNA-protein recognition, is sequence dependent. Free DNA in solution would in principle be the best reference state to uncover the relation between base sequences and their intrinsic flexibility; however, this has long been hampered by a lack of suitable experimental data. We investigated this relationship by compiling and analyzing a large dataset of NMR (31)P chemical shifts in solution. These measurements reflect the BI BII equilibrium in DNA, intimately correlated to helicoidal descriptors of the curvature, winding and groove dimensions. Comparing the ten complementary DNA dinucleotide steps indicates that some steps are much more flexible than others. This malleability is primarily controlled at the dinucleotide level, modulated by the tetranucleotide environment. Our analyses provide an experimental scale called TRX that quantifies the intrinsic flexibility of the ten dinucleotide steps in terms of Twist, Roll, and X-disp (base pair displacement). Applying the TRX scale to DNA sequences optimized for nucleosome formation reveals a 10 base-pair periodic alternation of stiff and flexible regions. Thus, DNA flexibility captured by the TRX scale is relevant to nucleosome formation, suggesting that this scale may be of general interest to better understand protein-DNA recognition.

  5. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Seung-Hyeon; Lee, Woojong; Jiang, Li; Molugu, Kaivalya; Zheng, Aiping; Li, Yitong; Park, Sanghyun; Bradfield, Christopher A.; Xing, Yongna (UW)

    2017-04-10

    he aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR–ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.

  6. Protection of hematopoietic cells from O(6)-alkylation damage by O(6)-methylguanine DNA methyltransferase gene transfer: studies with different O(6)-alkylating agents and retroviral backbones.

    Science.gov (United States)

    Jansen, M; Bardenheuer, W; Sorg, U R; Seeber, S; Flasshove, M; Moritz, T

    2001-07-01

    Overexpression of O(6)-methylguanine DNA methyltransferase (MGMT) can protect hematopoietic cells from O(6)-alkylation damage. To identify possible clinical applications of this technology we compared the effect of MGMT gene transfer on the hematotoxicity induced by different O(6)-alkylating agents in clinical use: the chloroethylnitrosoureas ACNU, BCNU, CCNU and the tetrazine derivative temozolomide. In addition, various retroviral vectors expressing the MGMT-cDNA were investigated to identify optimal viral backbones for hematoprotection by MGMT expression. Protection from ACNU, BCNU, CCNU or temozolomide toxicity was evaluated utilizing a Moloney murine leukemia virus-based retroviral vector (N2/Zip-PGK-MGMT) to transduce primary murine bone marrow cells. Increased resistance in murine colony-forming units (CFU) was demonstrated for all four drugs. In comparison to mock-transduced controls, after transduction with N2/Zip-PGK-MGMT the IC50 for CFU increased on average 4.7-fold for ACNU, 2.5-fold for BCNU, 6.3-fold for CCNU and 1.5-fold for temozolomide. To study the effect of the retroviral backbone on hematoprotection various vectors expressing the human MGMT-cDNA from a murine embryonic sarcoma virus LTR (MSCV-MGMT) or a hybrid spleen focus-forming/murine embryonic sarcoma virus LTR (SF1-MGMT) were compared with the N2/Zip-PGK-MGMT vector. While all vectors increased resistance of transduced human CFU to ACNU, the SF1-MGMT construct was most efficient especially at high ACNU concentrations (8-12 microg/ml). Similar results were obtained for protection of murine high-proliferative-potential colony-forming cells. These data may help to optimize treatment design and retroviral constructs in future clinical studies aiming at hematoprotection by MGMT gene transfer.

  7. Influence of the complexity of radiation-induced DNA damage on enzyme recognition

    International Nuclear Information System (INIS)

    Palmer, Philip

    2002-01-01

    Ionising radiation is unique in inducing DNA clustered damage together with the simple isolated lesions. Understanding how these complex lesions are recognised and repaired by the cell is key to understanding the health risks associated with radiation exposure. This study focuses on whether ionising radiation-induced complex single-strand breaks (SSB) are recognised by DNA-PK and PARP, and whether the complexity of DSB influence their ligation by either DNA ligase lV/XRCC4 (LX) complex or T4 DNA ligase. Plasmid DNA, irradiated in aqueous solution using sparsely ionising γ-rays and densely ionising α-particles produce different yields of complex DNA damages, used as substrates for in vitro DNA-PK and PARP activity assays. The activity of DNA-PK to phosphorylate a peptide was determined using HF19 cell nuclear extracts as a source of DNA-PK. PARP ADP-ribosylation activity was determined using purified PARP enzyme. The activation of DNA-PK and PARP by irradiated DNA is due to SSB and not the low yield of DSB (linear plasmid DNA <10%). A ∼2 fold increase in DNA-PK activation and a ∼3-fold reduction in PARP activity seen on increasing the ionising density of the radiation (proportion of complex damage) are proposed to reflect changes in the complexity of SSB and may relate to damage signalling. Complex DSB synthesised as double-stranded oligonucleotides, with a 2 bp 5'-overhang, and containing modified lesions, 8-oxoguanine and abasic sites, at known positions relative to the termini were used as substrates for in vitro ligation by DNA ligase IV/XRCC4 or T4 ligase. The presence of a modified lesion 2 or 3 bp but not 4 bp from the 3'-termini and 2 or 6 bp from the 5'-termini caused a drastic reduction in the extent of ligation. Therefore, the presence of modified lesions near to the termini of a DSB may compromise their rejoining by non-homologous end-joining (NHEJ) involving the LX complex. (author)

  8. Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic.

    Science.gov (United States)

    Marcon, Helena Sanches; Domingues, Douglas Silva; Silva, Juliana Costa; Borges, Rafael Junqueira; Matioli, Fábio Filippi; Fontes, Marcos Roberto de Mattos; Marino, Celso Luis

    2015-08-14

    In Eucalyptus genus, studies on genome composition and transposable elements (TEs) are particularly scarce. Nearly half of the recently released Eucalyptus grandis genome is composed by retrotransposons and this data provides an important opportunity to understand TE dynamics in Eucalyptus genome and transcriptome. We characterized nine families of transcriptionally active LTR retrotransposons from Copia and Gypsy superfamilies in Eucalyptus grandis genome and we depicted genomic distribution and copy number in two Eucalyptus species. We also evaluated genomic polymorphism and transcriptional profile in three organs of five Eucalyptus species. We observed contrasting genomic and transcriptional behavior in the same family among different species. RLC_egMax_1 was the most prevalent family and RLC_egAngela_1 was the family with the lowest copy number. Most families of both superfamilies have their insertions occurring Eucalyptus species. Using EST analysis and qRT-PCRs, we observed transcriptional activity in several tissues and in all evaluated species. In some families, osmotic stress increases transcript values. Our strategy was successful in isolating transcriptionally active retrotransposons in Eucalyptus, and each family has a particular genomic and transcriptional pattern. Overall, our results show that retrotransposon activity have differentially affected genome and transcriptome among Eucalyptus species.

  9. Molecular Recognition of DNA Damage Sites by Apurinic/Apyrimidinic Endonucleases

    Energy Technology Data Exchange (ETDEWEB)

    Braun, W. A.

    2005-07-28

    The DNA repair/redox factor AP endonuclease 1 (APE1) is a multifunctional protein which is known to to be essential for DNA repair activity in human cells. Structural/functional analyses of the APE activity is thus been an important research field to assess cellular defense mechanisms against ionizing radiation.

  10. In Vitro Selection of Single-Stranded DNA Molecular Recognition Elements against S. aureus Alpha Toxin and Sensitive Detection in Human Serum

    Directory of Open Access Journals (Sweden)

    Ka L. Hong

    2015-01-01

    Full Text Available Alpha toxin is one of the major virulence factors secreted by Staphylococcus aureus, a bacterium that is responsible for a wide variety of infections in both community and hospital settings. Due to the prevalence of S. aureus related infections and the emergence of methicillin-resistant S. aureus, rapid and accurate diagnosis of S. aureus infections is crucial in benefiting patient health outcomes. In this study, a rigorous Systematic Evolution of Ligands by Exponential Enrichment (SELEX variant previously developed by our laboratory was utilized to select a single-stranded DNA molecular recognition element (MRE targeting alpha toxin with high affinity and specificity. At the end of the 12-round selection, the selected MRE had an equilibrium dissociation constant (Kd of 93.7 ± 7.0 nM. Additionally, a modified sandwich enzyme-linked immunosorbent assay (ELISA was developed by using the selected ssDNA MRE as the toxin-capturing element and a sensitive detection of 200 nM alpha toxin in undiluted human serum samples was achieved.

  11. Peroxynitrite modified DNA presents better epitopes for anti-DNA autoantibodies in diabetes type 1 patients.

    Science.gov (United States)

    Tripathi, Prashant; Moinuddin; Dixit, Kiran; Mir, Abdul Rouf; Habib, Safia; Alam, Khursheed; Ali, Asif

    2014-07-01

    Peroxynitrite (ONOO(-)), formed by the reaction between nitric oxide (NO) and superoxide (O2(-)), has been implicated in the etiology of numerous disease processes. Peroxynitrite interacts with DNA via direct oxidative reactions or via indirect radical-mediated mechanism. It can inflict both oxidative and nitrosative damages on DNA bases, generating abasic sites, resulting in the single strand breaks. Plasmid pUC 18 isolated from Escherichiacoli was modified with peroxynitrite, generated by quenched flow process. Modifications incurred in plasmid DNA were characterized by ultraviolet and fluorescence spectroscopy, circular dichroism, HPLC and melting temperature studies. Binding characteristics and specificity of antibodies from diabetes patients were analyzed by direct binding and inhibition ELISA. Peroxynitrite modification of pUC 18 plasmid resulted in the formation of strand breaks and base modification. The major compound formed when peroxynitrite reacted with DNA was 8-nitroguanine, a specific marker for peroxynitrite induced DNA damage in inflamed tissues. The concentration of 8-nitroguanine was found to be 3.8 μM. Sera from diabetes type 1 patients from different age groups were studied for their binding to native and peroxynitrite modified plasmid. Direct binding and competitive-inhibition ELISA results showed higher recognition of peroxynitrite modified plasmid, as compared to the native form, by auto-antibodies present in diabetes patients. The preferential recognition of modified plasmid by diabetes autoantibodies was further reiterated by gel shift assay. Experimentally induced anti-peroxynitrite-modified plasmid IgG was used as a probe to detect nitrosative lesions in the DNA isolated from diabetes patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Nucleotide Excision Repair Lesion-Recognition Protein Rad4 Captures a Pre-Flipped Partner Base in a Benzo[a]pyrene-Derived DNA Lesion: How Structure Impacts the Binding Pathway.

    Science.gov (United States)

    Mu, Hong; Geacintov, Nicholas E; Min, Jung-Hyun; Zhang, Yingkai; Broyde, Suse

    2017-06-19

    The xeroderma pigmentosum C protein complex (XPC) recognizes a variety of environmentally induced DNA lesions and is the key in initiating their repair by the nucleotide excision repair (NER) pathway. When bound to a lesion, XPC flips two nucleotide pairs that include the lesion out of the DNA duplex, yielding a productively bound complex that can lead to successful lesion excision. Interestingly, the efficiencies of NER vary greatly among different lesions, influencing their toxicity and mutagenicity in cells. Though differences in XPC binding may influence NER efficiency, it is not understood whether XPC utilizes different mechanisms to achieve productive binding with different lesions. Here, we investigated the well-repaired 10R-(+)-cis-anti-benzo[a]pyrene-N 2 -dG (cis-B[a]P-dG) DNA adduct in a duplex containing normal partner C opposite the lesion. This adduct is derived from the environmental pro-carcinogen benzo[a]pyrene and is likely to be encountered by NER in the cell. We have extensively investigated its binding to the yeast XPC orthologue, Rad4, using umbrella sampling with restrained molecular dynamics simulations and free energy calculations. The NMR solution structure of this lesion in duplex DNA has shown that the dC complementary to the adducted dG is flipped out of the DNA duplex in the absence of XPC. However, it is not known whether the "pre-flipped" base would play a role in its recognition by XPC. Our results show that Rad4 first captures the displaced dC, which is followed by a tightly coupled lesion-extruding pathway for productive binding. This binding path differs significantly from the one deduced for the small cis-syn cyclobutane pyrimidine dimer lesion opposite mismatched thymines [ Mu , H. , ( 2015 ) Biochemistry , 54 ( 34 ), 5263 - 7 ]. The possibility of multiple paths that lead to productive binding to XPC is consistent with the versatile lesion recognition by XPC that is required for successful NER.

  13. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    OpenAIRE

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1-2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand brea...

  14. X-ray crystal structure of the N-terminal region of Moloney murine leukemia virus integrase and its implications for viral DNA recognition: N-Terminal Region of M-MuLV Integrase

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Rongjin [Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Aiyer, Sriram [Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Cote, Marie L. [Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway New Jersey 08854; Xiao, Rong [Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Jiang, Mei [Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Acton, Thomas B. [Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Roth, Monica J. [Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Montelione, Gaetano T. [Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway New Jersey 08854

    2017-02-03

    The retroviral integrase (IN) carries out the integration of a dsDNA copy of the viral genome into the host DNA, an essential step for viral replication. All IN proteins have three general domains, the N-terminal domain (NTD), the catalytic core domain, and the C-terminal domain. The NTD includes an HHCC zinc finger-like motif, which is conserved in all retroviral IN proteins. Two crystal structures of Moloney murine leukemia virus (M-MuLV) IN N-terminal region (NTR) constructs that both include an N-terminal extension domain (NED, residues 1–44) and an HHCC zinc-finger NTD (residues 45–105), in two crystal forms are reported. The structures of IN NTR constructs encoding residues 1–105 (NTR1–105) and 8–105 (NTR8–105) were determined at 2.7 and 2.15 Å resolution, respectively and belong to different space groups. While both crystal forms have similar protomer structures, NTR1–105 packs as a dimer and NTR8–105 packs as a tetramer in the asymmetric unit. The structure of the NED consists of three anti-parallel β-strands and an α-helix, similar to the NED of prototype foamy virus (PFV) IN. These three β-strands form an extended β-sheet with another β-strand in the HHCC Zn2+ binding domain, which is a unique structural feature for the M-MuLV IN. The HHCC Zn2+ binding domain structure is similar to that in HIV and PFV INs, with variations within the loop regions. Differences between the PFV and MLV IN NEDs localize at regions identified to interact with the PFV LTR and are compared with established biochemical and virological data for M-MuLV. Proteins 2017; 85:647–656.

  15. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases: Poxvirus Uracil-DNA Glycosylase

    Energy Technology Data Exchange (ETDEWEB)

    Schormann, Norbert [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294; Zhukovskaya, Natalia [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Bedwell, Gregory [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Nuth, Manunya [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Gillilan, Richard [MacCHESS (Macromolecular Diffraction Facility at CHESS) Cornell University, Ithaca New York 14853; Prevelige, Peter E. [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Ricciardi, Robert P. [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Abramson Cancer Center, School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Banerjee, Surajit [Department of Chemistry and Chemical Biology, Cornell University, and NE-CAT Argonne Illinois 60439; Chattopadhyay, Debasish [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294

    2016-11-02

    We report that uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymatic function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. In conclusion, the adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. We provide an overview of the current state of the knowledge on the structure-function relationship of D4.

  16. Proteopedia: 3D Visualization and Annotation of Transcription Factor-DNA Readout Modes

    Science.gov (United States)

    Dantas Machado, Ana Carolina; Saleebyan, Skyler B.; Holmes, Bailey T.; Karelina, Maria; Tam, Julia; Kim, Sharon Y.; Kim, Keziah H.; Dror, Iris; Hodis, Eran; Martz, Eric; Compeau, Patricia A.; Rohs, Remo

    2012-01-01

    3D visualization assists in identifying diverse mechanisms of protein-DNA recognition that can be observed for transcription factors and other DNA binding proteins. We used Proteopedia to illustrate transcription factor-DNA readout modes with a focus on DNA shape, which can be a function of either nucleotide sequence (Hox proteins) or base pairing…

  17. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities.

    Science.gov (United States)

    Wu, Yushu; Yan, Ping; Xu, Xiaowen; Jiang, Wei

    2016-03-07

    Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses.

  18. Sequence-dependent DNA deformability studied using molecular dynamics simulations.

    Science.gov (United States)

    Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori

    2007-01-01

    Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.

  19. DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Ocsoy, Ismail; Yusufbeyoglu, Sadi; Yılmaz, Vedat; McLamore, Eric S; Ildız, Nilay; Ülgen, Ahmet

    2017-11-01

    In this work, we report the development of DNA aptamer-functionalized gold nanoparticles (Apt@Au NPs) and gold nanorods (Apt@Au NRs) for inactivation of Methicillin-resistant Staphylococcus aureus (MRSA) with targeted photothermal therapy (PTT). Although both Apt@Au NPs and Apt@Au NRs specifically bind to MRSA cells, Apt@Au NPs and Apt@Au NRs inactivated ∼5% and over 95% of the cells,respectively through PTT. This difference in inactivation was based on the relatively high longitudinal absorption of near-infrared (NIR) radiation and strong photothermal conversion capability for the Apt@Au NRs compared to the Apt@Au NPs. The Au NRs served as a nanoplatform for the loading of thiolated aptamer and also provided multivalent effects for increasing binding strength and affinity to MRSA. Our results indicate that the type of aptamer and the degree of multivalent effect(s) are important factors for MRSA inactivation efficiency in PTT. We show that the Apt@Au NRs are a very effective and promising nanosystem for specific cell recognition and in vitro PTT. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. DNA-nanoparticle assemblies go organic : Macroscopic polymeric materials with nanosized features

    NARCIS (Netherlands)

    Mentovich, Elad D.; Livanov, Konstantin; Prusty, Deepak K.; Sowwan, Mukules; Richter, Shachar

    2012-01-01

    Background: One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can

  1. B chromosome in the beetle Coprophanaeus cyanescens (Scarabaeidae: emphasis in the organization of repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Gomes de Oliveira Sarah

    2012-11-01

    Full Text Available Abstract Background To contribute to the knowledge of coleopteran cytogenetics, especially with respect to the genomic content of B chromosomes, we analyzed the composition and organization of repetitive DNA sequences in the Coprophanaeus cyanescens karyotype. We used conventional staining and the application of fluorescence in situ hybridization (FISH mapping using as probes C0t-1 DNA fraction, the 18S and 5S rRNA genes, and the LOA-like non-LTR transposable element (TE. Results The conventional analysis detected 3 individuals (among 50 analyzed carrying one small metacentric and mitotically unstable B chromosome. The FISH analysis revealed a pericentromeric block of C0t-1 DNA in the B chromosome but no 18S or 5S rDNA clusters in this extra element. Using the LOA-like TE probe, the FISH analysis revealed large pericentromeric blocks in eight autosomal bivalents and in the B chromosome, and a pericentromeric block extending to the short arm in one autosomal pair. No positive hybridization signal was observed for the LOA-like element in the sex chromosomes. Conclusions The results indicate that the origin of the B chromosome is associated with the autosomal elements, as demonstrated by the hybridization with C0t-1 DNA and the LOA-like TE. The present study is the first report on the cytogenetic mapping of a TE in coleopteran chromosomes. These TEs could have been involved in the origin and evolution of the B chromosome in C. cyanescens.

  2. Molecular Recognition in the Colloidal World.

    Science.gov (United States)

    Elacqua, Elizabeth; Zheng, Xiaolong; Shillingford, Cicely; Liu, Mingzhu; Weck, Marcus

    2017-11-21

    Colloidal self-assembly is a bottom-up technique to fabricate functional nanomaterials, with paramount interest stemming from programmable assembly of smaller building blocks into dynamic crystalline domains and photonic materials. Multiple established colloidal platforms feature diverse shapes and bonding interactions, while achieving specific orientations along with short- and long-range order. A major impediment to their universal use as building blocks for predesigned architectures is the inability to precisely dictate and control particle functionalization and concomitant reversible self-assembly. Progress in colloidal self-assembly necessitates the development of strategies that endow bonding specificity and directionality within assemblies. Methodologies that emulate molecular and polymeric three-dimensional (3D) architectures feature elements of covalent bonding, while high-fidelity molecular recognition events have been installed to realize responsive reconfigurable assemblies. The emergence of anisotropic 'colloidal molecules', coupled with the ability to site-specifically decorate particle surfaces with supramolecular recognition motifs, has facilitated the formation of superstructures via directional interactions and shape recognition. In this Account, we describe supramolecular assembly routes to drive colloidal particles into precisely assembled architectures or crystalline lattices via directional noncovalent molecular interactions. The design principles are based upon the fabrication of colloidal particles bearing surface-exposed functional groups that can undergo programmable conjugation to install recognition motifs with high fidelity. Modular and versatile by design, our strategy allows for the introduction and integration of molecular recognition principles into the colloidal world. We define noncovalent molecular interactions as site-specific forces that are predictable (i.e., feature selective and controllable complementary bonding partners

  3. DNA barcode goes two-dimensions: DNA QR code web server.

    Science.gov (United States)

    Liu, Chang; Shi, Linchun; Xu, Xiaolan; Li, Huan; Xing, Hang; Liang, Dong; Jiang, Kun; Pang, Xiaohui; Song, Jingyuan; Chen, Shilin

    2012-01-01

    The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications.

  4. DNA barcode goes two-dimensions: DNA QR code web server.

    Directory of Open Access Journals (Sweden)

    Chang Liu

    Full Text Available The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications.

  5. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1.

    Science.gov (United States)

    Harrison, Joseph S; Cornett, Evan M; Goldfarb, Dennis; DaRosa, Paul A; Li, Zimeng M; Yan, Feng; Dickson, Bradley M; Guo, Angela H; Cantu, Daniel V; Kaustov, Lilia; Brown, Peter J; Arrowsmith, Cheryl H; Erie, Dorothy A; Major, Michael B; Klevit, Rachel E; Krajewski, Krzysztof; Kuhlman, Brian; Strahl, Brian D; Rothbart, Scott B

    2016-09-06

    The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance.

  6. Site-specific DNA transesterification catalyzed by a restriction enzyme

    OpenAIRE

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2007-01-01

    Most restriction endonucleases use Mg2+ to hydrolyze phosphodiester bonds at specific DNA sites. We show here that BfiI, a metal-independent restriction enzyme from the phospholipase D superfamily, catalyzes both DNA hydrolysis and transesterification reactions at its recognition site. In the presence of alcohols such as ethanol or glycerol, it attaches the alcohol covalently to the 5′ terminus of the cleaved DNA. Under certain conditions, the terminal 3′-OH of one DNA strand can attack the t...

  7. Double-check probing of DNA bending and unwinding by XPA-RPA: an architectural function in DNA repair

    Czech Academy of Sciences Publication Activity Database

    Missura, M.; Buterin, T.; Hindges, R.; Hübscher, U.; Kašpárková, Jana; Brabec, Viktor; Naegeli, H.

    2001-01-01

    Roč. 20, č. 13 (2001), s. 3554-3564 ISSN 0261-4189 Institutional research plan: CEZ:AV0Z5004920 Keywords : damage recognition * DNA repair * xeroderma pigmentosum Subject RIV: BO - Biophysics Impact factor: 12.450, year: 2001

  8. enDNA-Prot: Identification of DNA-Binding Proteins by Applying Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Ruifeng Xu

    2014-01-01

    Full Text Available DNA-binding proteins are crucial for various cellular processes, such as recognition of specific nucleotide, regulation of transcription, and regulation of gene expression. Developing an effective model for identifying DNA-binding proteins is an urgent research problem. Up to now, many methods have been proposed, but most of them focus on only one classifier and cannot make full use of the large number of negative samples to improve predicting performance. This study proposed a predictor called enDNA-Prot for DNA-binding protein identification by employing the ensemble learning technique. Experiential results showed that enDNA-Prot was comparable with DNA-Prot and outperformed DNAbinder and iDNA-Prot with performance improvement in the range of 3.97–9.52% in ACC and 0.08–0.19 in MCC. Furthermore, when the benchmark dataset was expanded with negative samples, the performance of enDNA-Prot outperformed the three existing methods by 2.83–16.63% in terms of ACC and 0.02–0.16 in terms of MCC. It indicated that enDNA-Prot is an effective method for DNA-binding protein identification and expanding training dataset with negative samples can improve its performance. For the convenience of the vast majority of experimental scientists, we developed a user-friendly web-server for enDNA-Prot which is freely accessible to the public.

  9. Recognition of base J in duplex DNA by J-binding protein

    NARCIS (Netherlands)

    Sabatini, Robert; Meeuwenoord, Nico; van Boom, Jacques H.; Borst, Piet

    2002-01-01

    beta-d-Glucosylhydroxymethyluracil, also called base J, is an unusual modified DNA base conserved among Kinetoplastida. Base J is found predominantly in repetitive DNA and correlates with epigenetic silencing of telomeric variant surface glycoprotein genes. We have previously found a J-binding

  10. CpG methylation controls reactivation of HIV from latency.

    Directory of Open Access Journals (Sweden)

    Jana Blazkova

    2009-08-01

    Full Text Available DNA methylation of retroviral promoters and enhancers localized in the provirus 5' long terminal repeat (LTR is considered to be a mechanism of transcriptional suppression that allows retroviruses to evade host immune responses and antiretroviral drugs. However, the role of DNA methylation in the control of HIV-1 latency has never been unambiguously demonstrated, in contrast to the apparent importance of transcriptional interference and chromatin structure, and has never been studied in HIV-1-infected patients. Here, we show in an in vitro model of reactivable latency and in a latent reservoir of HIV-1-infected patients that CpG methylation of the HIV-1 5' LTR is an additional epigenetic restriction mechanism, which controls resistance of latent HIV-1 to reactivation signals and thus determines the stability of the HIV-1 latency. CpG methylation acts as a late event during establishment of HIV-1 latency and is not required for the initial provirus silencing. Indeed, the latent reservoir of some aviremic patients contained high proportions of the non-methylated 5' LTR. The latency controlled solely by transcriptional interference and by chromatin-dependent mechanisms in the absence of significant promoter DNA methylation tends to be leaky and easily reactivable. In the latent reservoir of HIV-1-infected individuals without detectable plasma viremia, we found HIV-1 promoters and enhancers to be hypermethylated and resistant to reactivation, as opposed to the hypomethylated 5' LTR in viremic patients. However, even dense methylation of the HIV-1 5'LTR did not confer complete resistance to reactivation of latent HIV-1 with some histone deacetylase inhibitors, protein kinase C agonists, TNF-alpha, and their combinations with 5-aza-2deoxycytidine: the densely methylated HIV-1 promoter was most efficiently reactivated in virtual absence of T cell activation by suberoylanilide hydroxamic acid. Tight but incomplete control of HIV-1 latency by Cp

  11. A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT.

    Directory of Open Access Journals (Sweden)

    Pengfei Ding

    2015-06-01

    Full Text Available Bacterial xenogeneic silencing proteins selectively bind to and silence expression from many AT rich regions of the chromosome. They serve as master regulators of horizontally acquired DNA, including a large number of virulence genes. To date, three distinct families of xenogeneic silencers have been identified: H-NS of Proteobacteria, Lsr2 of the Actinomycetes, and MvaT of Pseudomonas sp. Although H-NS and Lsr2 family proteins are structurally different, they all recognize the AT-rich DNA minor groove through a common AT-hook-like motif, which is absent in the MvaT family. Thus, the DNA binding mechanism of MvaT has not been determined. Here, we report the characteristics of DNA sequences targeted by MvaT with protein binding microarrays, which indicates that MvaT prefers binding flexible DNA sequences with multiple TpA steps. We demonstrate that there are clear differences in sequence preferences between MvaT and the other two xenogeneic silencer families. We also determined the structure of the DNA-binding domain of MvaT in complex with a high affinity DNA dodecamer using solution NMR. This is the first experimental structure of a xenogeneic silencer in complex with DNA, which reveals that MvaT recognizes the AT-rich DNA both through base readout by an "AT-pincer" motif inserted into the minor groove and through shape readout by multiple lysine side chains interacting with the DNA sugar-phosphate backbone. Mutations of key MvaT residues for DNA binding confirm their importance with both in vitro and in vivo assays. This novel DNA binding mode enables MvaT to better tolerate GC-base pair interruptions in the binding site and less prefer A tract DNA when compared to H-NS and Lsr2. Comparison of MvaT with other bacterial xenogeneic silencers provides a clear picture that nature has evolved unique solutions for different bacterial genera to distinguish foreign from self DNA.

  12. The Coding of Biological Information: From Nucleotide Sequence to Protein Recognition

    Science.gov (United States)

    Štambuk, Nikola

    The paper reviews the classic results of Swanson, Dayhoff, Grantham, Blalock and Root-Bernstein, which link genetic code nucleotide patterns to the protein structure, evolution and molecular recognition. Symbolic representation of the binary addresses defining particular nucleotide and amino acid properties is discussed, with consideration of: structure and metric of the code, direct correspondence between amino acid and nucleotide information, and molecular recognition of the interacting protein motifs coded by the complementary DNA and RNA strands.

  13. Recognition of chromatin by the plant alkaloid, ellipticine as a dual binder

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Amrita; Sanyal, Sulagna; Majumder, Parijat [Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal (India); Chakraborty, Payal [Bionivid Technology Pvt Ltd, Kasturi Nagar, Bangalore 560043 (India); Jana, Kuladip [Division of Molecular Medicine, Centre for Translational Animal Research, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal (India); Das, Chandrima, E-mail: chandrima.das@saha.ac.in [Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal (India); Dasgupta, Dipak, E-mail: dipak.dasgupta@saha.ac.in [Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal (India)

    2015-07-10

    Recognition of core histone components of chromatin along with chromosomal DNA by a class of small molecule modulators is worth examining to evaluate their intracellular mode of action. A plant alkaloid ellipticine (ELP) which is a putative anticancer agent has so far been reported to function via DNA intercalation, association with topoisomerase II and binding to telomere region. However, its effect upon the potential intracellular target, chromatin is hitherto unreported. Here we have characterized the biomolecular recognition between ELP and different hierarchical levels of chromatin. The significant result is that in addition to DNA, it binds to core histone(s) and can be categorized as a ‘dual binder’. As a sequel to binding with histone(s) and core octamer, it alters post-translational histone acetylation marks. We have further demonstrated that it has the potential to modulate gene expression thereby regulating several key biological processes such as nuclear organization, transcription, translation and histone modifications. - Highlights: • Ellipticine acts a dual binder binding to both DNA and core histone(s). • It induces structural perturbations in chromatin, chromatosome and histone octamer. • It alters histones acetylation and affects global gene expression.

  14. Recognition of chromatin by the plant alkaloid, ellipticine as a dual binder

    International Nuclear Information System (INIS)

    Banerjee, Amrita; Sanyal, Sulagna; Majumder, Parijat; Chakraborty, Payal; Jana, Kuladip; Das, Chandrima; Dasgupta, Dipak

    2015-01-01

    Recognition of core histone components of chromatin along with chromosomal DNA by a class of small molecule modulators is worth examining to evaluate their intracellular mode of action. A plant alkaloid ellipticine (ELP) which is a putative anticancer agent has so far been reported to function via DNA intercalation, association with topoisomerase II and binding to telomere region. However, its effect upon the potential intracellular target, chromatin is hitherto unreported. Here we have characterized the biomolecular recognition between ELP and different hierarchical levels of chromatin. The significant result is that in addition to DNA, it binds to core histone(s) and can be categorized as a ‘dual binder’. As a sequel to binding with histone(s) and core octamer, it alters post-translational histone acetylation marks. We have further demonstrated that it has the potential to modulate gene expression thereby regulating several key biological processes such as nuclear organization, transcription, translation and histone modifications. - Highlights: • Ellipticine acts a dual binder binding to both DNA and core histone(s). • It induces structural perturbations in chromatin, chromatosome and histone octamer. • It alters histones acetylation and affects global gene expression

  15. Mechanisms of bacterial DNA replication restart

    Science.gov (United States)

    Windgassen, Tricia A; Wessel, Sarah R; Bhattacharyya, Basudeb

    2018-01-01

    Abstract Multi-protein DNA replication complexes called replisomes perform the essential process of copying cellular genetic information prior to cell division. Under ideal conditions, replisomes dissociate only after the entire genome has been duplicated. However, DNA replication rarely occurs without interruptions that can dislodge replisomes from DNA. Such events produce incompletely replicated chromosomes that, if left unrepaired, prevent the segregation of full genomes to daughter cells. To mitigate this threat, cells have evolved ‘DNA replication restart’ pathways that have been best defined in bacteria. Replication restart requires recognition and remodeling of abandoned replication forks by DNA replication restart proteins followed by reloading of the replicative DNA helicase, which subsequently directs assembly of the remaining replisome subunits. This review summarizes our current understanding of the mechanisms underlying replication restart and the proteins that drive the process in Escherichia coli (PriA, PriB, PriC and DnaT). PMID:29202195

  16. Sequence specificity and biological consequences of drugs that bind covalently in the minor groove of DNA

    International Nuclear Information System (INIS)

    Hurley, L.H.; Needham-VanDevanter, D.R.

    1986-01-01

    DNA ligands which bind within the minor groove of DNA exhibit varying degrees of sequence selectivity. Factors which contribute to nucleotide sequence recognition by minor groove ligands have been extensively investigated. Electrostatic interactions, ligand and DNA dehydration energies, hydrophobic interactions and steric factors all play significant roles in sequence selectivity in the minor groove. Interestingly, ligand recognition of nucleotide sequence in the minor groove does not involve significant hydrogen bonding. This is in sharp contrast to cellular enzyme and protein recognition of nucleotide sequence, which is achieved in the major groove via specific hydrogen bond formation between individual bases and the ligand. The ability to read nucleotide sequence via hydrogen bonding allows precise binding of proteins to specific DNA sequences. Minor groove ligands examined to date exhibit a much lower sequence specificity, generally binding to a subset of possible sequences, rather than a single sequence. 19 refs., 7 figs

  17. Automated Processing of 2-D Gel Electrophoretograms of Genomic DNA for Hunting Pathogenic DNA Molecular Changes.

    Science.gov (United States)

    Takahashi; Nakazawa; Watanabe; Konagaya

    1999-01-01

    We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.

  18. SUN2 Modulates HIV-1 Infection and Latency through Association with Lamin A/C To Maintain the Repressive Chromatin.

    Science.gov (United States)

    Sun, Wei-Wei; Jiao, Shi; Sun, Li; Zhou, Zhaocai; Jin, Xia; Wang, Jian-Hua

    2018-05-01

    The postintegrational latency of HIV-1 is characterized by reversible silencing of long terminal repeat (LTR)-driven transcription of the HIV genome. It is known that the formation of repressive chromatin at the 5'-LTR of HIV-1 proviral DNA impedes viral transcription by blocking the recruitment of positive transcription factors. How the repressive chromatin is formed and modulated during HIV-1 infection remains elusive. Elucidation of which chromatin reassembly factor mediates the reorganization of chromatin is likely to facilitate the understanding of the host's modulation of HIV-1 transcription and latency. Here we revealed that "Sad1 and UNC84 domain containing 2" (SUN2), an inner nuclear membrane protein, maintained the repressive chromatin and inhibited HIV LTR-driven transcription of proviral DNA through an association with lamin A/C. Specifically, lamin A/C tethered SUN2 to the nucleosomes 1 and 2 of the HIV-1 5'-LTR to block the initiation and elongation of HIV-1 transcription. SUN2 knockdown converted chromatin to an active form and thus enhanced the phosphorylation of RNA polymerase II and its recruitment to the 5'-LTR HIV-1 proviral DNA, leading to reactivation of HIV-1 from latency. Conversely, the exogenous factors such as tumor necrosis factor alpha (TNF-α) induced reactivation, and the replication of HIV-1 led to the disassociation between SUN2 and lamin A/C, suggesting that disruption of the association between SUN2 and lamin A/C to convert the repressive chromatin to the active form might be a prerequisite for the initiation of HIV-1 transcription and replication. Together, our findings indicate that SUN2 is a novel chromatin reassembly factor that helps to maintain chromatin in a repressive state and consequently inhibits HIV-1 transcription. IMPORTANCE Despite the successful use of scores of antiretroviral drugs, HIV latency poses a major impediment to virus eradication. Elucidation of the mechanism of latency facilitates the discovery of new

  19. Origin of the diversity in DNA recognition domains in phasevarion associated modA genes of pathogenic Neisseria and Haemophilus influenzae.

    Science.gov (United States)

    Gawthorne, Jayde A; Beatson, Scott A; Srikhanta, Yogitha N; Fox, Kate L; Jennings, Michael P

    2012-01-01

    Phase variable restriction-modification (R-M) systems have been identified in a range of pathogenic bacteria. In some it has been demonstrated that the random switching of the mod (DNA methyltransferase) gene mediates the coordinated expression of multiple genes and constitutes a phasevarion (phase variable regulon). ModA of Neisseria and Haemophilus influenzae contain a highly variable, DNA recognition domain (DRD) that defines the target sequence that is modified by methylation and is used to define modA alleles. 18 distinct modA alleles have been identified in H. influenzae and the pathogenic Neisseria. To determine the origin of DRD variability, the 18 modA DRDs were used to search the available databases for similar sequences. Significant matches were identified between several modA alleles and mod gene from distinct bacterial species, indicating one source of the DRD variability was via horizontal gene transfer. Comparison of DRD sequences revealed significant mosaicism, indicating exchange between the Neisseria and H. influenzae modA alleles. Regions of high inter- and intra-allele similarity indicate that some modA alleles had undergone recombination more frequently than others, generating further diversity. Furthermore, the DRD from some modA alleles, such as modA12, have been transferred en bloc to replace the DRD from different modA alleles.

  20. DNA modifications by platinum antitumor drugs and its recognition by DNA-binding proteins

    Czech Academy of Sciences Publication Activity Database

    Brabec, Viktor

    2004-01-01

    Roč. 271, Suppl. 1 (2004), s. 90 ISSN 0014-2956. [Meeting of the Federation of the European Biochemical Societies /29./. 26.06.2004-01.07.2004, Warsaw] R&D Projects: GA ČR GA305/02/1552 Keywords : platinum drugs * DNA-protein interaction * NF-kappaB Subject RIV: BO - Biophysics

  1. A multistep damage recognition mechanism for global genomic nucleotide excision repair.

    Science.gov (United States)

    Sugasawa, K; Okamoto, T; Shimizu, Y; Masutani, C; Iwai, S; Hanaoka, F

    2001-03-01

    A mammalian nucleotide excision repair (NER) factor, the XPC-HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC-HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC-HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC-HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC-HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC-HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER.

  2. Re-evaluating the kinetics of ATP hydrolysis during initiation of DNA sliding by Type III restriction enzymes.

    Science.gov (United States)

    Tóth, Júlia; Bollins, Jack; Szczelkun, Mark D

    2015-12-15

    DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This 'DNA sliding' is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions

    Science.gov (United States)

    Sprengel, Andreas; Lill, Pascal; Stegemann, Pierre; Bravo-Rodriguez, Kenny; Schöneweiß, Elisa-C.; Merdanovic, Melisa; Gudnason, Daniel; Aznauryan, Mikayel; Gamrad, Lisa; Barcikowski, Stephan; Sanchez-Garcia, Elsa; Birkedal, Victoria; Gatsogiannis, Christos; Ehrmann, Michael; Saccà, Barbara

    2017-02-01

    The self-organizational properties of DNA have been used to realize synthetic hosts for protein encapsulation. However, current strategies of DNA-protein conjugation still limit true emulation of natural host-guest systems, whose formation relies on non-covalent bonds between geometrically matching interfaces. Here we report one of the largest DNA-protein complexes of semisynthetic origin held in place exclusively by spatially defined supramolecular interactions. Our approach is based on the decoration of the inner surface of a DNA origami hollow structure with multiple ligands converging to their corresponding binding sites on the protein surface with programmable symmetry and range-of-action. Our results demonstrate specific host-guest recognition in a 1:1 stoichiometry and selectivity for the guest whose size guarantees sufficient molecular diffusion preserving short intermolecular distances. DNA nanocontainers can be thus rationally designed to trap single guest molecules in their native form, mimicking natural strategies of molecular recognition and anticipating a new method of protein caging.

  4. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.

    Science.gov (United States)

    Yamano, Takashi; Zetsche, Bernd; Ishitani, Ryuichiro; Zhang, Feng; Nishimasu, Hiroshi; Nureki, Osamu

    2017-08-17

    The RNA-guided Cpf1 (also known as Cas12a) nuclease associates with a CRISPR RNA (crRNA) and cleaves the double-stranded DNA target complementary to the crRNA guide. The two Cpf1 orthologs from Acidaminococcus sp. (AsCpf1) and Lachnospiraceae bacterium (LbCpf1) have been harnessed for eukaryotic genome editing. Cpf1 requires a specific nucleotide sequence, called a protospacer adjacent motif (PAM), for target recognition. Besides the canonical TTTV PAM, Cpf1 recognizes suboptimal C-containing PAMs. Here, we report four crystal structures of LbCpf1 in complex with the crRNA and its target DNA containing either TTTA, TCTA, TCCA, or CCCA as the PAM. These structures revealed that, depending on the PAM sequences, LbCpf1 undergoes conformational changes to form altered interactions with the PAM-containing DNA duplexes, thereby achieving the relaxed PAM recognition. Collectively, the present structures advance our mechanistic understanding of the PAM-dependent, crRNA-guided DNA cleavage by the Cpf1 family nucleases. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death

    International Nuclear Information System (INIS)

    Tomita, Masanori

    2010-01-01

    Exposure to ionizing radiation and hyperthermia results in important biological consequences, e.g. cell death, chromosomal aberrations, mutations, and DNA strand breaks. There is good evidence that the nucleus, specifically cellular DNA, is the principal target for radiation-induced cell lethality. DNA double-strand breaks (DSBs) are considered to be the most serious type of DNA damage induced by ionizing radiation. On the other hand, verifiable mechanisms which can lead to heat-induced cell death are damage to the plasma membrane and/or inactivation of heat-labile proteins caused by protein denaturation and subsequent aggregation. Recently, several reports have suggested that DSBs can be induced after hyperthermia because heat-induced phosphorylated histone H2AX (γ-H2AX) foci formation can be observed in several mammalian cell lines. In mammalian cells, DSBs are repaired primarily through two distinct and complementary mechanisms: non-homologous end joining (NHEJ), and homologous recombination (HR) or homology-directed repair (HDR). DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) are key players in the initiation of DSB repair and phosphorylate and/or activate many substrates, including themselves. These phosphorylated substrates have important roles in the functioning of cell cycle checkpoints and in cell death, as well as in DSB repair. Apoptotic cell death is a crucial cell suicide mechanism during development and in the defense of homeostasis. If DSBs are unrepaired or misrepaired, apoptosis is a very important system which can protect an organism against carcinogenesis. This paper reviews recently obtained results and current topics concerning the role of DNA-PK and ATM in heat- or radiation-induced apoptotic cell death. (author)

  6. Determination of the recognition site for adenine-specific methylase of Shigella sonnei 47 by hydazinolysis of DNA, followed by separation of the purine oligonucleotides by thin-layer chromatography on DEAE-cellulose

    International Nuclear Information System (INIS)

    Lopatina, N.G.; Kirnos, M.D.; Suchkov, S.V.; Vanyushin, B.F.; Nikol'skaya, I.I.; Debov, S.S.

    1985-01-01

    A method has been developed for the separation of oligopurine units according to length and composition by two-dimensional thin-layer chromatography on plates with DEAE-cellulose, permitting a comparative analysis of the content of various purine isopliths in DNA of different origin. In the case of the analysis of methylated DNA, the method permits a comparison of the substrate specificity of various enzymes of methylation of the adenine residues in DNA. In conjunction with enzymatic treatment of labeled methylated isopliths, the method permits determination of the methylatable sequence and in a number of cases an ascertainment of the recognition site for adenine-specific methylase as a whole. The proposed method was used to establish the fact that the methylase Ssol recognizes the sequence 5'...G-A-A-T-T-C...3' and methylates the adenine residue closest to its 5'-end

  7. ICRPfinder: a fast pattern design algorithm for coding sequences and its application in finding potential restriction enzyme recognition sites

    Directory of Open Access Journals (Sweden)

    Stafford Phillip

    2009-09-01

    Full Text Available Abstract Background Restriction enzymes can produce easily definable segments from DNA sequences by using a variety of cut patterns. There are, however, no software tools that can aid in gene building -- that is, modifying wild-type DNA sequences to express the same wild-type amino acid sequences but with enhanced codons, specific cut sites, unique post-translational modifications, and other engineered-in components for recombinant applications. A fast DNA pattern design algorithm, ICRPfinder, is provided in this paper and applied to find or create potential recognition sites in target coding sequences. Results ICRPfinder is applied to find or create restriction enzyme recognition sites by introducing silent mutations. The algorithm is shown capable of mapping existing cut-sites but importantly it also can generate specified new unique cut-sites within a specified region that are guaranteed not to be present elsewhere in the DNA sequence. Conclusion ICRPfinder is a powerful tool for finding or creating specific DNA patterns in a given target coding sequence. ICRPfinder finds or creates patterns, which can include restriction enzyme recognition sites, without changing the translated protein sequence. ICRPfinder is a browser-based JavaScript application and it can run on any platform, in on-line or off-line mode.

  8. (Some) Cellular Mechanisms Influencing the Transcription of Human Endogenous Retrovirus, HERV-Fc1

    DEFF Research Database (Denmark)

    Laska, Magdalena Janina; Nissen, Kari Konstantin; Nexø, Bjørn Andersen

    2013-01-01

    DNA methylation and histone acetylation are epigenetic modifications that act as regulators of gene expression. DNA methylation is considered an important mechanism for silencing of retroelements in the mammalian genome. However, the methylation of human endogenous retroviruses (HERVs) is not well...... investigated. The aim of this study was to investigate the transcriptional potential of HERV-Fc1 proviral 5'LTR in more detail, and examined the specific influence of CpG methylation on this LTR in number of cell lines. Specifically, the role of demethylating chemicals e.g. 5-aza-2' deoxycytidine...... and Trichostatin-A, in inducing or reactivating expression of HERV-Fc1 specific sequences and the mechanisms were investigated. In our present study, 5-aza-dC is shown to be a powerful inducer of HERV-Fc1, and at the same time it strongly inhibits methylation of DNA. Treatment with this demethylating agent 5-aza...

  9. [Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment].

    Science.gov (United States)

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2016-01-01

    Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibody-dsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage.

  10. Antibiosis functions during interactions of Trichoderma afroharzianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium.

    Science.gov (United States)

    Zhang, Xinjian; Harvey, Paul R; Stummer, Belinda E; Warren, Rosemary A; Zhang, Guangzhi; Guo, Kai; Li, Jishun; Yang, Hetong

    2015-09-01

    Trichoderma afroharzianum is one of the best characterized Trichoderma species, and strains have been utilized as plant disease suppressive inoculants. In contrast, Trichoderma gamsii has only recently been described, and there is limited knowledge of its disease suppressive efficacies. Comparative studies of changes in gene expression during interactions of these species with their target plant pathogens will provide fundamental information on pathogen antibiosis functions. In the present study, we used complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis to investigate changes in transcript profiling of T. afroharzianum strain LTR-2 and T. gamsii strain Tk7a during in vitro interactions with plant pathogenic Rhizoctonia solani and Pythium irregulare. Considerable differences were resolved in the overall expression profiles of strains LTR-2 and Tk7a when challenged with either plant pathogen. In strain LTR-2, previously reported mycoparasitism-related genes such as chitinase, polyketide synthase, and non-ribosomal peptide synthetase were found to be differentially expressed. This was not so for strain Tk7a, with the only previously reported antibiosis-associated genes being small secreted cysteine-rich proteins. Although only one differentially expressed gene was common to both strains LTR-2 and Tk7a, numerous genes reportedly associated with pathogen antibiosis processes were differentially expressed in both strains, including degradative enzymes and membrane transport proteins. A number of novel potential antibiosis-related transcripts were found from strains LTR-2 and Tk7a and remain to be identified. The expression kinetics of 20 Trichoderma (10 from strain LTR-2, 10 from strain Tk7a) transcript-derived fragments (TDFs) were quantified by quantitative reverse transcription PCR (RT-qPCR) at pre- and post-mycelia contact stages of Trichoderma-prey interactions, thereby confirming differential gene expression. Collectively, this research

  11. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions.

    Directory of Open Access Journals (Sweden)

    Mu Gao

    2009-03-01

    Full Text Available DNA-protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA-protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA-protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA-protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA-protein interaction modes exhibit some similarity to specific DNA-protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Calpha deviation from native is up to 5 A from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA-protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein.

  12. Two high-mobility group box domains act together to underwind and kink DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Giraldo, R.; Acosta-Reyes, F. J. [Universitat Politecnica de Catalunya, 08028 Barcelona (Spain); Malarkey, C. S. [University of Colorado School of Medicine, Aurora, CO 80045 (United States); Saperas, N. [Universitat Politecnica de Catalunya, 08028 Barcelona (Spain); Churchill, M. E. A., E-mail: mair.churchill@ucdenver.edu [University of Colorado School of Medicine, Aurora, CO 80045 (United States); Campos, J. L., E-mail: mair.churchill@ucdenver.edu [Universitat Politecnica de Catalunya, 08028 Barcelona (Spain)

    2015-06-30

    The crystal structure of HMGB1 box A bound to an unmodified AT-rich DNA fragment is reported at a resolution of 2 Å. A new mode of DNA recognition for HMG box proteins is found in which two box A domains bind in an unusual configuration generating a highly kinked DNA structure. High-mobility group protein 1 (HMGB1) is an essential and ubiquitous DNA architectural factor that influences a myriad of cellular processes. HMGB1 contains two DNA-binding domains, box A and box B, which have little sequence specificity but have remarkable abilities to underwind and bend DNA. Although HMGB1 box A is thought to be responsible for the majority of HMGB1–DNA interactions with pre-bent or kinked DNA, little is known about how it recognizes unmodified DNA. Here, the crystal structure of HMGB1 box A bound to an AT-rich DNA fragment is reported at a resolution of 2 Å. Two box A domains of HMGB1 collaborate in an unusual configuration in which the Phe37 residues of both domains stack together and intercalate the same CG base pair, generating highly kinked DNA. This represents a novel mode of DNA recognition for HMGB proteins and reveals a mechanism by which structure-specific HMG boxes kink linear DNA.

  13. Two high-mobility group box domains act together to underwind and kink DNA

    International Nuclear Information System (INIS)

    Sánchez-Giraldo, R.; Acosta-Reyes, F. J.; Malarkey, C. S.; Saperas, N.; Churchill, M. E. A.; Campos, J. L.

    2015-01-01

    The crystal structure of HMGB1 box A bound to an unmodified AT-rich DNA fragment is reported at a resolution of 2 Å. A new mode of DNA recognition for HMG box proteins is found in which two box A domains bind in an unusual configuration generating a highly kinked DNA structure. High-mobility group protein 1 (HMGB1) is an essential and ubiquitous DNA architectural factor that influences a myriad of cellular processes. HMGB1 contains two DNA-binding domains, box A and box B, which have little sequence specificity but have remarkable abilities to underwind and bend DNA. Although HMGB1 box A is thought to be responsible for the majority of HMGB1–DNA interactions with pre-bent or kinked DNA, little is known about how it recognizes unmodified DNA. Here, the crystal structure of HMGB1 box A bound to an AT-rich DNA fragment is reported at a resolution of 2 Å. Two box A domains of HMGB1 collaborate in an unusual configuration in which the Phe37 residues of both domains stack together and intercalate the same CG base pair, generating highly kinked DNA. This represents a novel mode of DNA recognition for HMGB proteins and reveals a mechanism by which structure-specific HMG boxes kink linear DNA

  14. Solvated protein-DNA docking using HADDOCK

    NARCIS (Netherlands)

    van Dijk, Marc; Visscher, Koen M; Bonvin, Alexandre M.J.J; Kastritis, Panagiotis L.

    2013-01-01

    Interfacial water molecules play an important role in many aspects of protein-DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the

  15. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review

    Directory of Open Access Journals (Sweden)

    Jahwarhar Izuan Abdul Rashid

    2017-11-01

    Full Text Available In recent years, electrochemical deoxyribonucleic acid (DNA sensor has recently emerged as promising alternative clinical diagnostic devices especially for infectious disease by exploiting DNA recognition events and converting them into an electrochemical signal. This is because the existing DNA diagnostic method possesses certain drawbacks such as time-consuming, expensive, laborious, low selectivity and sensitivity. DNA immobilization strategies and mechanism of electrochemical detection are two the most important aspects that should be considered before developing highly selective and sensitive electrochemical DNA sensor. Here, we focus on some recent strategies for DNA probes immobilization on the surface of electrochemical transducer such as adsorption, covalent bonding and Avidin/Streptavidin-Biotin interaction on the electrode surface for specific interaction with its complementary DNA target. A numerous approach for DNA hybridization detection based electrochemical technique that frequently used including direct DNA electrochemical detection and label based electrochemical (redox-active indicator, enzyme label and nanoparticles were also discussed in aiming to provide general guide for the design of electrochemical DNA sensor. We also discussed the challenges and suggestions to improve the application of electrochemical DNA sensor at point-care setting. Keywords: Electrochemical DNA sensor, DNA immobilization, DNA hybridization, Electrochemical mechanism

  16. Predicting Variation of DNA Shape Preferences in Protein-DNA Interaction in Cancer Cells with a New Biophysical Model.

    Science.gov (United States)

    Batmanov, Kirill; Wang, Junbai

    2017-09-18

    DNA shape readout is an important mechanism of transcription factor target site recognition, in addition to the sequence readout. Several machine learning-based models of transcription factor-DNA interactions, considering DNA shape features, have been developed in recent years. Here, we present a new biophysical model of protein-DNA interactions by integrating the DNA shape properties. It is based on the neighbor dinucleotide dependency model BayesPI2, where new parameters are restricted to a subspace spanned by the dinucleotide form of DNA shape features. This allows a biophysical interpretation of the new parameters as a position-dependent preference towards specific DNA shape features. Using the new model, we explore the variation of DNA shape preferences in several transcription factors across various cancer cell lines and cellular conditions. The results reveal that there are DNA shape variations at FOXA1 (Forkhead Box Protein A1) binding sites in steroid-treated MCF7 cells. The new biophysical model is useful for elucidating the finer details of transcription factor-DNA interaction, as well as for predicting cancer mutation effects in the future.

  17. Preferential recognition of auto-antibodies against 4-hydroxynonenal modified DNA in the cancer patients.

    Science.gov (United States)

    Faisal, Mohammad; Shahab, Uzma; Alatar, Abdulrahman A; Ahmad, Saheem

    2017-11-01

    The structural perturbations in DNA molecule may be caused by a break in a strand, a missing base from the backbone, or a chemically changed base. These alterations in DNA that occurs naturally can result from metabolic or hydrolytic processes. DNA damage plays a major role in the mutagenesis, carcinogenesis, aging and various other patho-physiological conditions. DNA damage can be induced through hydrolysis, exposure to reactive oxygen species (ROS) and other reactive carbonyl metabolites including 4-hydroxynonenal (HNE). 4-HNE is an important lipid peroxidation product which has been implicated in the mutagenesis and carcinogenesis processes. The present study examines to probe the presence of auto-antibodies against 4-hydroxynonenal damaged DNA (HNE-DNA) in various cancer subjects. In this study, the purified calf thymus DNA was damaged by the action of 4-HNE. The DNA was incubated with 4-HNE for 24 h at 37°C temperature. The binding characteristics of cancer auto-antibodies were assessed by direct binding and competitive inhibition ELISA. DNA modifications produced hyperchromicity in UV spectrum and decreased fluorescence intensity. Cancer sera exhibited enhanced binding with the 4-HNE modified calf thymus DNA as compared to its native conformer. The 4-HNE modified DNA presents unique epitopes which may be one of the factors for the auto-antibody induction in cancer patients. The HNE modified DNA presents unique epitopes which may be one of the factors for the autoantibody induction in cancer patients. © 2017 Wiley Periodicals, Inc.

  18. Full-length cDNA sequences from Rhesus monkey placenta tissue: analysis and utility for comparative mapping

    Directory of Open Access Journals (Sweden)

    Lee Sang-Rae

    2010-07-01

    Full Text Available Abstract Background Rhesus monkeys (Macaca mulatta are widely-used as experimental animals in biomedical research and are closely related to other laboratory macaques, such as cynomolgus monkeys (Macaca fascicularis, and to humans, sharing a last common ancestor from about 25 million years ago. Although rhesus monkeys have been studied extensively under field and laboratory conditions, research has been limited by the lack of genetic resources. The present study generated placenta full-length cDNA libraries, characterized the resulting expressed sequence tags, and described their utility for comparative mapping with human RefSeq mRNA transcripts. Results From rhesus monkey placenta full-length cDNA libraries, 2000 full-length cDNA sequences were determined and 1835 rhesus placenta cDNA sequences longer than 100 bp were collected. These sequences were annotated based on homology to human genes. Homology search against human RefSeq mRNAs revealed that our collection included the sequences of 1462 putative rhesus monkey genes. Moreover, we identified 207 genes containing exon alterations in the coding region and the untranslated region of rhesus monkey transcripts, despite the highly conserved structure of the coding regions. Approximately 10% (187 of all full-length cDNA sequences did not represent any public human RefSeq mRNAs. Intriguingly, two rhesus monkey specific exons derived from the transposable elements of AluYRa2 (SINE family and MER11B (LTR family were also identified. Conclusion The 1835 rhesus monkey placenta full-length cDNA sequences described here could expand genomic resources and information of rhesus monkeys. This increased genomic information will greatly contribute to the development of evolutionary biology and biomedical research.

  19. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data

    Science.gov (United States)

    Tetreault, Hannah M.; Ungerer, Mark C.

    2016-01-01

    The most abundant transposable elements (TEs) in plant genomes are Class I long terminal repeat (LTR) retrotransposons represented by superfamilies gypsy and copia. Amplification of these superfamilies directly impacts genome structure and contributes to differential patterns of genome size evolution among plant lineages. Utilizing short-read Illumina data and sequence information from a panel of Helianthus annuus (sunflower) full-length gypsy and copia elements, we explore the contribution of these sequences to genome size variation among eight diploid Helianthus species and an outgroup taxon, Phoebanthus tenuifolius. We also explore transcriptional dynamics of these elements in both leaf and bud tissue via RT-PCR. We demonstrate that most LTR retrotransposon sublineages (i.e., families) display patterns of similar genomic abundance across species. A small number of LTR retrotransposon sublineages exhibit lineage-specific amplification, particularly in the genomes of species with larger estimated nuclear DNA content. RT-PCR assays reveal that some LTR retrotransposon sublineages are transcriptionally active across all species and tissue types, whereas others display species-specific and tissue-specific expression. The species with the largest estimated genome size, H. agrestis, has experienced amplification of LTR retrotransposon sublineages, some of which have proliferated independently in other lineages in the Helianthus phylogeny. PMID:27233667

  20. Studying DNA looping by single-molecule FRET.

    Science.gov (United States)

    Le, Tung T; Kim, Harold D

    2014-06-28

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.

  1. Identification of genes in anonymous DNA sequences. Annual performance report, February 1, 1991--January 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Fields, C.A.

    1996-06-01

    The objective of this project is the development of practical software to automate the identification of genes in anonymous DNA sequences from the human, and other higher eukaryotic genomes. A software system for automated sequence analysis, gm (gene modeler) has been designed, implemented, tested, and distributed to several dozen laboratories worldwide. A significantly faster, more robust, and more flexible version of this software, gm 2.0 has now been completed, and is being tested by operational use to analyze human cosmid sequence data. A range of efforts to further understand the features of eukaryoyic gene sequences are also underway. This progress report also contains papers coming out of the project including the following: gm: a Tool for Exploratory Analysis of DNA Sequence Data; The Human THE-LTR(O) and MstII Interspersed Repeats are subfamilies of a single widely distruted highly variable repeat family; Information contents and dinucleotide compostions of plant intron sequences vary with evolutionary origin; Splicing signals in Drosophila: intron size, information content, and consensus sequences; Integration of automated sequence analysis into mapping and sequencing projects; Software for the C. elegans genome project.

  2. Novel DNA materials and their applications.

    Science.gov (United States)

    Yang, Dayong; Campolongo, Michael J; Nhi Tran, Thua Nguyen; Ruiz, Roanna C H; Kahn, Jason S; Luo, Dan

    2010-01-01

    The last two decades have witnessed the exponential development of DNA as a generic material instead of just a genetic material. The biological function, nanoscale geometry, biocompatibility, biodegradability, and molecular recognition capacity of DNA make it a promising candidate for the construction of novel functional nanomaterials. As a result, DNA has been recognized as one of the most appealing and versatile nanomaterial building blocks. Scientists have used DNA in this way to construct various amazing nanostructures, such as ordered lattices, origami, supramolecular assemblies, and even three-dimensional objects. In addition, DNA has been utilized as a guide and template to direct the assembly of other nanomaterials including nanowires, free-standing membranes, and crystals. Furthermore, DNA can also be used as structural components to construct bulk materials such as DNA hydrogels, demonstrating its ability to behave as a unique polymer. Overall, these novel DNA materials have found applications in various areas in the biomedical field in general, and nanomedicine in particular. In this review, we summarize the development of DNA assemblies, describe the innovative progress of multifunctional and bulk DNA materials, and highlight some real-world nanomedical applications of these DNA materials. We also show our insights throughout this article for the future direction of DNA materials. © 2010 John Wiley & Sons, Inc.

  3. Salicylic acid inhibits UV- and Cis-Pt-induced human immunodeficiency virus expression

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Panozzo, J.; Libertin, C.R.; Schreck, S.; South Carolina Univ., Columbia, SC

    1994-01-01

    Previous studies have shown that exposure of HeLa cells stably transfected with a human immunodeficiency virus-long terminal repeat-chloramphenicol acetyl transferase (HIV-LTR-CAT) construct to UV light-induced expression from the HIV LTR. By culturing the cells with salicylic acid we demonstrated dose-dependent repression of this induced HIV expression. Repression was evident if salicylic acid was administered 2 h before, at the same time as, or up to 6 h after exposure to the DNA-damaging agent. The kinetics were similar for UV- and for cis-Pt-induced HIV expression, and induction was dependent on the UV dose or cis-Pt concentration added to the culture. These results suggest a role for the prostaglandins or the cyclooxygenase pathway or both in HIV induction mediated by DNA-damaging agents

  4. Identification of DNA-binding protein target sequences by physical effective energy functions: free energy analysis of lambda repressor-DNA complexes.

    Directory of Open Access Journals (Sweden)

    Caselle Michele

    2007-09-01

    Full Text Available Abstract Background Specific binding of proteins to DNA is one of the most common ways gene expression is controlled. Although general rules for the DNA-protein recognition can be derived, the ambiguous and complex nature of this mechanism precludes a simple recognition code, therefore the prediction of DNA target sequences is not straightforward. DNA-protein interactions can be studied using computational methods which can complement the current experimental methods and offer some advantages. In the present work we use physical effective potentials to evaluate the DNA-protein binding affinities for the λ repressor-DNA complex for which structural and thermodynamic experimental data are available. Results The binding free energy of two molecules can be expressed as the sum of an intermolecular energy (evaluated using a molecular mechanics forcefield, a solvation free energy term and an entropic term. Different solvation models are used including distance dependent dielectric constants, solvent accessible surface tension models and the Generalized Born model. The effect of conformational sampling by Molecular Dynamics simulations on the computed binding energy is assessed; results show that this effect is in general negative and the reproducibility of the experimental values decreases with the increase of simulation time considered. The free energy of binding for non-specific complexes, estimated using the best energetic model, agrees with earlier theoretical suggestions. As a results of these analyses, we propose a protocol for the prediction of DNA-binding target sequences. The possibility of searching regulatory elements within the bacteriophage λ genome using this protocol is explored. Our analysis shows good prediction capabilities, even in absence of any thermodynamic data and information on the naturally recognized sequence. Conclusion This study supports the conclusion that physics-based methods can offer a completely complementary

  5. Visualization of DNA in highly processed botanical materials.

    Science.gov (United States)

    Lu, Zhengfei; Rubinsky, Maria; Babajanian, Silva; Zhang, Yanjun; Chang, Peter; Swanson, Gary

    2018-04-15

    DNA-based methods have been gaining recognition as a tool for botanical authentication in herbal medicine; however, their application in processed botanical materials is challenging due to the low quality and quantity of DNA left after extensive manufacturing processes. The low amount of DNA recovered from processed materials, especially extracts, is "invisible" by current technology, which has casted doubt on the presence of amplifiable botanical DNA. A method using adapter-ligation and PCR amplification was successfully applied to visualize the "invisible" DNA in botanical extracts. The size of the "invisible" DNA fragments in botanical extracts was around 20-220 bp compared to fragments of around 600 bp for the more easily visualized DNA in botanical powders. This technique is the first to allow characterization and visualization of small fragments of DNA in processed botanical materials and will provide key information to guide the development of appropriate DNA-based botanical authentication methods in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Improving Probe Immobilization for Label-Free Capacitive Detection of DNA Hybridization on Microfabricated Gold Electrodes

    Directory of Open Access Journals (Sweden)

    Sandro Carrara

    2008-02-01

    Full Text Available Alternative approaches to labeled optical detection for DNA arrays are actively investigated for low-cost point-of-care applications. In this domain, label-free capacitive detection is one of the most intensely studied techniques. It is based on the idea to detect the Helmholtz ion layer displacements when molecular recognition occurs at the electrodes/solution interface. The sensing layer is usually prepared by using thiols terminated DNA single-strength oligonucleotide probes on top of the sensor electrodes. However, published data shows evident time drift, which greatly complicates signal conditioning and processing and ultimately increases the uncertainty in DNA recognition sensing. The aim of this work is to show that newly developed ethylene-glycol functionalized alkanethiols greatly reduce time drift, thereby significantly improving capacitance based label-free detection of DNA.

  7. Cytosolic DNA Sensor Upregulation Accompanies DNA Electrotransfer in B16.F10 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Katarina Znidar

    2016-01-01

    Full Text Available In several preclinical tumor models, antitumor effects occur after intratumoral electroporation, also known as electrotransfer, of plasmid DNA devoid of a therapeutic gene. In mouse melanomas, these effects are preceded by significant elevation of several proinflammatory cytokines. These observations implicate the binding and activation of intracellular DNA-specific pattern recognition receptors or DNA sensors in response to DNA electrotransfer. In tumors, IFNβ mRNA and protein levels significantly increased. The mRNAs of several DNA sensors were detected, and DAI, DDX60, and p204 tended to be upregulated. These effects were accompanied with reduced tumor growth and increased tumor necrosis. In B16.F10 cells in culture, IFNβ mRNA and protein levels were significantly upregulated. The mRNAs for several DNA sensors were present in these cells; DNA-dependent activator of interferon regulatory factor (DAI, DEAD (Asp-Glu-Ala-Asp box polypeptide 60 (DDX60, and p204 were significantly upregulated while DDX60 protein levels were coordinately upregulated. Upregulation of DNA sensors in tumors could be masked by the lower transfection efficiency compared to in vitro or to dilution by other tumor cell types. Mirroring the observation of tumor necrosis, cells underwent a significant DNA concentration-dependent decrease in proliferation and survival. Taken together, these results indicate that DNA electrotransfer may cause the upregulation of several intracellular DNA sensors in B16.F10 cells, inducing effects in vitro and potentially in vivo.

  8. DNA-Based Single-Molecule Electronics: From Concept to Function

    Science.gov (United States)

    2018-01-01

    Beyond being the repository of genetic information, DNA is playing an increasingly important role as a building block for molecular electronics. Its inherent structural and molecular recognition properties render it a leading candidate for molecular electronics applications. The structural stability, diversity and programmability of DNA provide overwhelming freedom for the design and fabrication of molecular-scale devices. In the past two decades DNA has therefore attracted inordinate amounts of attention in molecular electronics. This review gives a brief survey of recent experimental progress in DNA-based single-molecule electronics with special focus on single-molecule conductance and I–V characteristics of individual DNA molecules. Existing challenges and exciting future opportunities are also discussed. PMID:29342091

  9. DNA-Based Single-Molecule Electronics: From Concept to Function.

    Science.gov (United States)

    Wang, Kun

    2018-01-17

    Beyond being the repository of genetic information, DNA is playing an increasingly important role as a building block for molecular electronics. Its inherent structural and molecular recognition properties render it a leading candidate for molecular electronics applications. The structural stability, diversity and programmability of DNA provide overwhelming freedom for the design and fabrication of molecular-scale devices. In the past two decades DNA has therefore attracted inordinate amounts of attention in molecular electronics. This review gives a brief survey of recent experimental progress in DNA-based single-molecule electronics with special focus on single-molecule conductance and I-V characteristics of individual DNA molecules. Existing challenges and exciting future opportunities are also discussed.

  10. Local gene regulation details a recognition code within the LacI transcriptional factor family.

    Directory of Open Access Journals (Sweden)

    Francisco M Camas

    2010-11-01

    Full Text Available The specific binding of regulatory proteins to DNA sequences exhibits no clear patterns of association between amino acids (AAs and nucleotides (NTs. This complexity of protein-DNA interactions raises the question of whether a simple set of wide-coverage recognition rules can ever be identified. Here, we analyzed this issue using the extensive LacI family of transcriptional factors (TFs. We searched for recognition patterns by introducing a new approach to phylogenetic footprinting, based on the pervasive presence of local regulation in prokaryotic transcriptional networks. We identified a set of specificity correlations--determined by two AAs of the TFs and two NTs in the binding sites--that is conserved throughout a dominant subgroup within the family regardless of the evolutionary distance, and that act as a relatively consistent recognition code. The proposed rules are confirmed with data of previous experimental studies and by events of convergent evolution in the phylogenetic tree. The presence of a code emphasizes the stable structural context of the LacI family, while defining a precise blueprint to reprogram TF specificity with many practical applications.

  11. Molecular models for DNA damaged by photoreaction

    International Nuclear Information System (INIS)

    Pearlman, D.A.; Holbrook, S.R.; Pirkle, D.H.; Kim, S.H.

    1985-01-01

    Structural models of a DNA molecule containing a radiation-induced psoralen cross-link and of a DNA containing a thymine photodimer were constructed by applying energy-minimization techniques and model-building procedures to data from x-ray crystallographic studies. The helical axes of the models show substantial kinking and unwinding at the sites of the damage, which may have long-range as well as local effects arising from the concomitant changes in the supercoiling and overall structure of the DNA. The damaged areas may also serve as recognition sites for repair enzymes. These results should help in understanding the biologic effects of radiation-induced damage on cells

  12. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers

    DEFF Research Database (Denmark)

    Schwertman, Petra; Bekker-Jensen, Simon; Mailand, Niels

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs...

  13. Identification of the DNA-Binding Domains of Human Replication Protein A That Recognize G-Quadruplex DNA

    Directory of Open Access Journals (Sweden)

    Aishwarya Prakash

    2011-01-01

    Full Text Available Replication protein A (RPA, a key player in DNA metabolism, has 6 single-stranded DNA-(ssDNA- binding domains (DBDs A-F. SELEX experiments with the DBDs-C, -D, and -E retrieve a 20-nt G-quadruplex forming sequence. Binding studies show that RPA-DE binds preferentially to the G-quadruplex DNA, a unique preference not observed with other RPA constructs. Circular dichroism experiments show that RPA-CDE-core can unfold the G-quadruplex while RPA-DE stabilizes it. Binding studies show that RPA-C binds pyrimidine- and purine-rich sequences similarly. This difference between RPA-C and RPA-DE binding was also indicated by the inability of RPA-CDE-core to unfold an oligonucleotide containing a TC-region 5′ to the G-quadruplex. Molecular modeling studies of RPA-DE and telomere-binding proteins Pot1 and Stn1 reveal structural similarities between the proteins and illuminate potential DNA-binding sites for RPA-DE and Stn1. These data indicate that DBDs of RPA have different ssDNA recognition properties.

  14. Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.

    Science.gov (United States)

    Nishimasu, Hiroshi; Yamano, Takashi; Gao, Linyi; Zhang, Feng; Ishitani, Ryuichiro; Nureki, Osamu

    2017-07-06

    The RNA-guided Cpf1 nuclease cleaves double-stranded DNA targets complementary to the CRISPR RNA (crRNA), and it has been harnessed for genome editing technologies. Recently, Acidaminococcus sp. BV3L6 (AsCpf1) was engineered to recognize altered DNA sequences as the protospacer adjacent motif (PAM), thereby expanding the target range of Cpf1-mediated genome editing. Whereas wild-type AsCpf1 recognizes the TTTV PAM, the RVR (S542R/K548V/N552R) and RR (S542R/K607R) variants can efficiently recognize the TATV and TYCV PAMs, respectively. However, their PAM recognition mechanisms remained unknown. Here we present the 2.0 Å resolution crystal structures of the RVR and RR variants bound to a crRNA and its target DNA. The structures revealed that the RVR and RR variants primarily recognize the PAM-complementary nucleotides via the substituted residues. Our high-resolution structures delineated the altered PAM recognition mechanisms of the AsCpf1 variants, providing a basis for the further engineering of CRISPR-Cpf1. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A DNA Structural Alphabet Distinguishes Structural Features of DNA Bound to Regulatory Proteins and in the Nucleosome Core Particle

    Czech Academy of Sciences Publication Activity Database

    Schneider, Bohdan; Bozikova, Paulina; Čech, P.; Svozil, D.; Černý, Jiří

    2017-01-01

    Roč. 8, č. 10 (2017), č. článku 278. ISSN 2073-4425 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:GA MŠk(CZ) EF16_013/0001777 Institutional support: RVO:86652036 Keywords : DNA * DNA-protein recognition * transcription factors Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 3.600, year: 2016

  16. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli.

    Science.gov (United States)

    Hayes, Robert P; Xiao, Yibei; Ding, Fran; van Erp, Paul B G; Rajashankar, Kanagalaghatta; Bailey, Scott; Wiedenheft, Blake; Ke, Ailong

    2016-02-25

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and the cas (CRISPR-associated) operon form an RNA-based adaptive immune system against foreign genetic elements in prokaryotes. Type I accounts for 95% of CRISPR systems, and has been used to control gene expression and cell fate. During CRISPR RNA (crRNA)-guided interference, Cascade (CRISPR-associated complex for antiviral defence) facilitates the crRNA-guided invasion of double-stranded DNA for complementary base-pairing with the target DNA strand while displacing the non-target strand, forming an R-loop. Cas3, which has nuclease and helicase activities, is subsequently recruited to degrade two DNA strands. A protospacer adjacent motif (PAM) sequence flanking target DNA is crucial for self versus foreign discrimination. Here we present the 2.45 Å crystal structure of Escherichia coli Cascade bound to a foreign double-stranded DNA target. The 5'-ATG PAM is recognized in duplex form, from the minor groove side, by three structural features in the Cascade Cse1 subunit. The promiscuity inherent to minor groove DNA recognition rationalizes the observation that a single Cascade complex can respond to several distinct PAM sequences. Optimal PAM recognition coincides with wedge insertion, initiating directional target DNA strand unwinding to allow segmented base-pairing with crRNA. The non-target strand is guided along a parallel path 25 Å apart, and the R-loop structure is further stabilized by locking this strand behind the Cse2 dimer. These observations provide the structural basis for understanding the PAM-dependent directional R-loop formation process.

  17. KSHV strategies for host dsDNA sensing machinery.

    Science.gov (United States)

    Gao, Hang; Song, Yanyan; Liu, Chengrong; Liang, Qiming

    2016-12-01

    The innate immune system utilizes pattern recognition receptors cyclic GMP-AMP synthase (cGAS) to sense cytosolic double-stranded (ds) DNA and initiate type 1 interferon signaling and autophagy pathway, which collaborate to limit pathogen infections as well as alarm the adaptive immune response. The genomes of herpesviruses are large dsDNA, which represent a major class of pathogen signatures recognized by cellular DNA sensor cGAS. However, to successfully establish the persistent infection, herpesviruses have evolved their viral genes to modulate different aspects of host immune signaling. This review summarizes the evasion strategies of host cGAS DNA sensing pathway by Kaposi's Sarcoma-associated Herpesvirus (KSHV) and their contributions to KSHV life cycles.

  18. Dissociation from DNA of Type III Restriction–Modification enzymes during helicase-dependent motion and following endonuclease activity

    Science.gov (United States)

    Tóth, Júlia; van Aelst, Kara; Salmons, Hannah; Szczelkun, Mark D.

    2012-01-01

    DNA cleavage by the Type III Restriction–Modification (RM) enzymes requires the binding of a pair of RM enzymes at two distant, inversely orientated recognition sequences followed by helicase-catalysed ATP hydrolysis and long-range communication. Here we addressed the dissociation from DNA of these enzymes at two stages: during long-range communication and following DNA cleavage. First, we demonstrated that a communicating species can be trapped in a DNA domain without a recognition site, with a non-specific DNA association lifetime of ∼200 s. If free DNA ends were present the lifetime became too short to measure, confirming that ends accelerate dissociation. Secondly, we observed that Type III RM enzymes can dissociate upon DNA cleavage and go on to cleave further DNA molecules (they can ‘turnover’, albeit inefficiently). The relationship between the observed cleavage rate and enzyme concentration indicated independent binding of each site and a requirement for simultaneous interaction of at least two enzymes per DNA to achieve cleavage. In light of various mechanisms for helicase-driven motion on DNA, we suggest these results are most consistent with a thermally driven random 1D search model (i.e. ‘DNA sliding’). PMID:22523084

  19. Epigenetic telomere protection by Drosophila DNA damage response pathways.

    Science.gov (United States)

    Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H

    2006-05-01

    Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms.

  20. Recognition of Local DNA Structures by p53 Protein

    Czech Academy of Sciences Publication Activity Database

    Brázda, Václav; Coufal, Jan

    2017-01-01

    Roč. 18, č. 2 (2017), č. článku 375. E-ISSN 1422-0067 R&D Projects: GA ČR GA15-21855S Institutional support: RVO:68081707 Keywords : tumor-suppressor protein * c-terminal domain * non-b dna Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.226, year: 2016

  1. Flanking bases influence the nature of DNA distortion by platinum 1,2-intrastrand (GG cross-links.

    Directory of Open Access Journals (Sweden)

    Debadeep Bhattacharyya

    Full Text Available The differences in efficacy and molecular mechanisms of platinum anti-cancer drugs cisplatin (CP and oxaliplatin (OX are thought to be partially due to the differences in the DNA conformations of the CP and OX adducts that form on adjacent guanines on DNA, which in turn influence the binding of damage-recognition proteins that control downstream effects of the adducts. Here we report a comprehensive comparison of the structural distortion of DNA caused by CP and OX adducts in the TGGT sequence context using nuclear magnetic resonance (NMR spectroscopy and molecular dynamics (MD simulations. When compared to our previous studies in other sequence contexts, these structural studies help us understand the effect of the sequence context on the conformation of Pt-GG DNA adducts. We find that both the sequence context and the type of Pt-GG DNA adduct (CP vs. OX play an important role in the conformation and the conformational dynamics of Pt-DNA adducts, possibly explaining their influence on the ability of many damage-recognition proteins to bind to Pt-DNA adducts.

  2. Solvated protein–DNA docking using HADDOCK

    International Nuclear Information System (INIS)

    Dijk, Marc van; Visscher, Koen M.; Kastritis, Panagiotis L.; Bonvin, Alexandre M. J. J.

    2013-01-01

    Interfacial water molecules play an important role in many aspects of protein–DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the docking of protein–DNA complexes and demonstrate its feasibility on a benchmark of 30 high-resolution protein–DNA complexes containing crystallographically-determined water molecules at their interfaces. Our protocol is capable of reproducing the solvation pattern at the interface and recovers hydrogen-bonded water-mediated contacts in many of the benchmark cases. Solvated docking leads to an overall improvement in the quality of the generated protein–DNA models for cases with limited conformational change of the partners upon complex formation. The applicability of this approach is demonstrated on real cases by docking a representative set of 6 complexes using unbound protein coordinates, model-built DNA and knowledge-based restraints. As HADDOCK supports the inclusion of a variety of NMR restraints, solvated docking is also applicable for NMR-based structure calculations of protein–DNA complexes.

  3. Solvated protein-DNA docking using HADDOCK

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, Marc van; Visscher, Koen M.; Kastritis, Panagiotis L.; Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands)

    2013-05-15

    Interfacial water molecules play an important role in many aspects of protein-DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the docking of protein-DNA complexes and demonstrate its feasibility on a benchmark of 30 high-resolution protein-DNA complexes containing crystallographically-determined water molecules at their interfaces. Our protocol is capable of reproducing the solvation pattern at the interface and recovers hydrogen-bonded water-mediated contacts in many of the benchmark cases. Solvated docking leads to an overall improvement in the quality of the generated protein-DNA models for cases with limited conformational change of the partners upon complex formation. The applicability of this approach is demonstrated on real cases by docking a representative set of 6 complexes using unbound protein coordinates, model-built DNA and knowledge-based restraints. As HADDOCK supports the inclusion of a variety of NMR restraints, solvated docking is also applicable for NMR-based structure calculations of protein-DNA complexes.

  4. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    International Nuclear Information System (INIS)

    Sahu, Geetaram; Farley, Kalamo; El-Hage, Nazira; Aiamkitsumrit, Benjamas; Fassnacht, Ryan; Kashanchi, Fatah; Ochem, Alex; Simon, Gary L.; Karn, Jonathan; Hauser, Kurt F.; Tyagi, Mudit

    2015-01-01

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. - Highlights: • Cocaine induces the initiation phase of HIV transcription by activating NF-ĸB. • Cocaine induced NF-ĸB phosphorylation promotes its interaction with P300. • Cocaine enhances the elongation phase of HIV transcription by stimulating MSK1. • Cocaine activated MSK1 catalyzes the phosphorylation of histone H3 at its Ser10. • Cocaine induced H3S10 phosphorylation facilitates the recruitment of P-TEFb at LTR

  5. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Geetaram; Farley, Kalamo [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); El-Hage, Nazira [Virginia Commonwealth University, Richmond, VA (United States); Aiamkitsumrit, Benjamas; Fassnacht, Ryan [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Kashanchi, Fatah [George Mason University, Manassas, VA (United States); Ochem, Alex [ICGEB, Wernher and Beit Building, Anzio Road, Observatory, 7925 Cape Town (South Africa); Simon, Gary L. [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Karn, Jonathan [Case Western Reserve University, Cleveland, OH (United States); Hauser, Kurt F. [Virginia Commonwealth University, Richmond, VA (United States); Tyagi, Mudit, E-mail: tmudit@email.gwu.edu [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037 (United States)

    2015-09-15

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. - Highlights: • Cocaine induces the initiation phase of HIV transcription by activating NF-ĸB. • Cocaine induced NF-ĸB phosphorylation promotes its interaction with P300. • Cocaine enhances the elongation phase of HIV transcription by stimulating MSK1. • Cocaine activated MSK1 catalyzes the phosphorylation of histone H3 at its Ser10. • Cocaine induced H3S10 phosphorylation facilitates the recruitment of P-TEFb at LTR.

  6. Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1)

    Science.gov (United States)

    Takeshita, Kohei; Suetake, Isao; Yamashita, Eiki; Suga, Michihiro; Narita, Hirotaka; Nakagawa, Atsushi; Tajima, Shoji

    2011-01-01

    Methylation of cytosine in DNA plays a crucial role in development through inheritable gene silencing. The DNA methyltransferase Dnmt1 is responsible for the propagation of methylation patterns to the next generation via its preferential methylation of hemimethylated CpG sites in the genome; however, how Dnmt1 maintains methylation patterns is not fully understood. Here we report the crystal structure of the large fragment (291–1620) of mouse Dnmt1 and its complexes with cofactor S-adenosyl-L-methionine and its product S-adenosyl-L-homocystein. Notably, in the absence of DNA, the N-terminal domain responsible for targeting Dnmt1 to replication foci is inserted into the DNA-binding pocket, indicating that this domain must be removed for methylation to occur. Upon binding of S-adenosyl-L-methionine, the catalytic cysteine residue undergoes a conformation transition to a catalytically competent position. For the recognition of hemimethylated DNA, Dnmt1 is expected to utilize a target recognition domain that overhangs the putative DNA-binding pocket. Taking into considerations the recent report of a shorter fragment structure of Dnmt1 that the CXXC motif positions itself in the catalytic pocket and prevents aberrant de novo methylation, we propose that maintenance methylation is a multistep process accompanied by structural changes. PMID:21518897

  7. Model for how type I restriction enzymes select cleavage sites in DNA

    International Nuclear Information System (INIS)

    Studier, F.W.; Bandyopadhyay, P.K.

    1988-01-01

    Under appropriate conditions, digestion of phage T7 DNA by the type I restriction enzyme EcoK produces an orderly progression of discrete DNA fragments. All details of the fragmentation pattern can be explained on the basis of the known properties of type I enzymes, together with two further assumptions: (i) in the ATP-stimulated translocation reaction, the enzyme bound at the recognition sequence translocates DNA toward itself from both directions simultaneously; and (ii) when translocation causes neighboring enzymes to meet, they cut the DNA between them. The kinetics of digestion at 37 degree C indicates that the rate of translocation of DNA from each side of a bound enzyme is about 200 base pairs per second, and the cuts are completed within 15-25 sec of the time neighboring enzymes meet. The resulting DNA fragments each contain a single recognition site with an enzyme (or subunit) remaining bound to it. At high enzyme concentrations, such fragments can bu further degraded, apparently by cooperation between the specifically bound and excess enzymes. This model is consistent with a substantial body of previous work on the nuclease activity of EcoB and EcoK, and it explains in a simple way how cleavage sites are selected

  8. Modular Nuclease-Responsive DNA Three-Way Junction-Based Dynamic Assembly of a DNA Device and Its Sensing Application.

    Science.gov (United States)

    Zhu, Jing; Wang, Lei; Xu, Xiaowen; Wei, Haiping; Jiang, Wei

    2016-04-05

    Here, we explored a modular strategy for rational design of nuclease-responsive three-way junctions (TWJs) and fabricated a dynamic DNA device in a "plug-and-play" fashion. First, inactivated TWJs were designed, which contained three functional domains: the inaccessible toehold and branch migration domains, the specific sites of nucleases, and the auxiliary complementary sequence. The actions of different nucleases on their specific sites in TWJs caused the close proximity of the same toehold and branch migration domains, resulting in the activation of the TWJs and the formation of a universal trigger for the subsequent dynamic assembly. Second, two hairpins (H1 and H2) were introduced, which could coexist in a metastable state, initially to act as the components for the dynamic assembly. Once the trigger initiated the opening of H1 via TWJs-driven strand displacement, the cascade hybridization of hairpins immediately switched on, resulting in the formation of the concatemers of H1/H2 complex appending numerous integrated G-quadruplexes, which were used to obtain label-free signal readout. The inherent modularity of this design allowed us to fabricate a flexible DNA dynamic device and detect multiple nucleases through altering the recognition pattern slightly. Taking uracil-DNA glycosylase and CpG methyltransferase M.SssI as models, we successfully realized the butt joint between the uracil-DNA glycosylase and M.SssI recognition events and the dynamic assembly process. Furthermore, we achieved ultrasensitive assay of nuclease activity and the inhibitor screening. The DNA device proposed here will offer an adaptive and flexible tool for clinical diagnosis and anticancer drug discovery.

  9. Atomistic details of the molecular recognition of DNA-RNA hybrid ...

    Indian Academy of Sciences (India)

    conformations corresponding to typical A- and B-type nucleic acids and the .... protein chains and five base pairs in DNA-RNA hybrid ... employed to treat the long range electrostatic interac- .... The solvent accessible surface areas (SASA) of.

  10. Transcriptional Modulation of Human Endogenous Retroviruses in Primary CD4+ T Cells Following Vorinostat Treatment

    Directory of Open Access Journals (Sweden)

    Cory H. White

    2018-04-01

    Full Text Available The greatest obstacle to a cure for HIV is the provirus that integrates into the genome of the infected cell and persists despite antiretroviral therapy. A “shock and kill” approach has been proposed as a strategy for an HIV cure whereby drugs and compounds referred to as latency-reversing agents (LRAs are used to “shock” the silent provirus into active replication to permit “killing” by virus-induced pathology or immune recognition. The LRA most utilized to date in clinical trials has been the histone deacetylase (HDAC inhibitor—vorinostat. Potentially, pathological off-target effects of vorinostat may result from the activation of human endogenous retroviruses (HERVs, which share common ancestry with exogenous retroviruses including HIV. To explore the effects of HDAC inhibition on HERV transcription, an unbiased pharmacogenomics approach (total RNA-Seq was used to evaluate HERV expression following the exposure of primary CD4+ T cells to a high dose of vorinostat. Over 2,000 individual HERV elements were found to be significantly modulated by vorinostat, whereby elements belonging to the ERVL family (e.g., LTR16C and LTR33 were predominantly downregulated, in contrast to LTR12 elements of the HERV-9 family, which exhibited the greatest signal, with the upregulation of 140 distinct elements. The modulation of three different LTR12 elements by vorinostat was confirmed by droplet digital PCR along a dose–response curve. The monitoring of LTR12 expression during clinical trials with vorinostat may be indicated to assess the impact of this HERV on the human genome and host immunity.

  11. Development of 5 ' LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals

    Czech Academy of Sciences Publication Activity Database

    Trejbalová, Kateřina; Kovářová, Denisa; Blažková, Jana; Machala, L.; Jilich, D.; Weber, J.; Kučerová, Dana; Vencálek, O.; Hirsch, Ivan; Hejnar, Jiří

    2016-01-01

    Roč. 8, zima (2016), č. článku 19. ISSN 1868-7083 R&D Projects: GA ČR GAP304/12/1736 Institutional support: RVO:68378050 Keywords : HIV-1 * latent reservoir * DNA methylation * chromatin conformation * latent HIV-1 provirus reactivation * HIV-1-infected individuals Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.987, year: 2016

  12. Host-Guest Recognition-Assisted Electrochemical Release: Its Reusable Sensing Application Based on DNA Cross Configuration-Fueled Target Cycling and Strand Displacement Reaction Amplification.

    Science.gov (United States)

    Chang, Yuanyuan; Zhuo, Ying; Chai, Yaqin; Yuan, Ruo

    2017-08-15

    In this work, an elegantly designed host-guest recognition-assisted electrochemical release was established and applied in a reusable electrochemical biosensor for the detection of microRNA-182-5p (miRNA-182-5p), a prostate cancer biomarker in prostate cancer, based on the DNA cross configuration-fueled target cycling and strand displacement reaction (SDR) amplification. With such a design, the single target miRNA input could be converted to large numbers of single-stranded DNA (S1-Trp and S2-Trp) output, which could be trapped by cucurbit[8]uril methyl viologen (CB-8-MV 2+ ) based on the host-guest recognition, significantly enhancing the sensitivity for miRNA detection. Moreover, the nucleic acids products obtained from the process of cycling amplification could be utilized sufficiently, avoiding the waste and saving the experiment cost. Impressively, by resetting a settled voltage, the proposed biosensor could release S1-Trp and S2-Trp from the electrode surface, attributing that the guest ion methyl viologen (MV 2+ ) was reduced to MV +· under this settled voltage and formed a more-stable CB-8-MV +· -MV +· complex. Once O 2 was introduced in this system, MV +· could be oxidized to MV 2+ , generating the complex of CB-8-MV 2+ for capturing S1-Trp and S2-Trp again in only 5 min. As a result, the simple and fast regeneration of biosensor for target detection was realized on the base of electrochemical redox-driven assembly and release, overcoming the challenges of time-consuming, burdensome operations and expensive experimental cost in traditional reusable biosensors and updating the construction method for a reusable bisensor. Furthermore, the biosensor could be reused for more than 10 times with a regeneration rate of 93.20%-102.24%. After all, the conception of this work provides a novel thought for the construction of effective reusable biosensor to detect miRNA and other biomarkers and has great potential application in the area requiring the release of

  13. Molecular design of sequence specific DNA alkylating agents.

    Science.gov (United States)

    Minoshima, Masafumi; Bando, Toshikazu; Shinohara, Ken-ichi; Sugiyama, Hiroshi

    2009-01-01

    Sequence-specific DNA alkylating agents have great interest for novel approach to cancer chemotherapy. We designed the conjugates between pyrrole (Py)-imidazole (Im) polyamides and DNA alkylating chlorambucil moiety possessing at different positions. The sequence-specific DNA alkylation by conjugates was investigated by using high-resolution denaturing polyacrylamide gel electrophoresis (PAGE). The results showed that polyamide chlorambucil conjugates alkylate DNA at flanking adenines in recognition sequences of Py-Im polyamides, however, the reactivities and alkylation sites were influenced by the positions of conjugation. In addition, we synthesized conjugate between Py-Im polyamide and another alkylating agent, 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). DNA alkylation reactivies by both alkylating polyamides were almost comparable. In contrast, cytotoxicities against cell lines differed greatly. These comparative studies would promote development of appropriate sequence-specific DNA alkylating polyamides against specific cancer cells.

  14. DNAzyme-Based Logic Gate-Mediated DNA Self-Assembly.

    Science.gov (United States)

    Zhang, Cheng; Yang, Jing; Jiang, Shuoxing; Liu, Yan; Yan, Hao

    2016-01-13

    Controlling DNA self-assembly processes using rationally designed logic gates is a major goal of DNA-based nanotechnology and programming. Such controls could facilitate the hierarchical engineering of complex nanopatterns responding to various molecular triggers or inputs. Here, we demonstrate the use of a series of DNAzyme-based logic gates to control DNA tile self-assembly onto a prescribed DNA origami frame. Logic systems such as "YES," "OR," "AND," and "logic switch" are implemented based on DNAzyme-mediated tile recognition with the DNA origami frame. DNAzyme is designed to play two roles: (1) as an intermediate messenger to motivate downstream reactions and (2) as a final trigger to report fluorescent signals, enabling information relay between the DNA origami-framed tile assembly and fluorescent signaling. The results of this study demonstrate the plausibility of DNAzyme-mediated hierarchical self-assembly and provide new tools for generating dynamic and responsive self-assembly systems.

  15. Sequence Dependent Interactions Between DNA and Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Roxbury, Daniel

    It is known that single-stranded DNA adopts a helical wrap around a single-walled carbon nanotube (SWCNT), forming a water-dispersible hybrid molecule. The ability to sort mixtures of SWCNTs based on chirality (electronic species) has recently been demonstrated using special short DNA sequences that recognize certain matching SWCNTs of specific chirality. This thesis investigates the intricacies of DNA-SWCNT sequence-specific interactions through both experimental and molecular simulation studies. The DNA-SWCNT binding strengths were experimentally quantified by studying the kinetics of DNA replacement by a surfactant on the surface of particular SWCNTs. Recognition ability was found to correlate strongly with measured binding strength, e.g. DNA sequence (TAT)4 was found to bind 20 times stronger to the (6,5)-SWCNT than sequence (TAT)4T. Next, using replica exchange molecular dynamics (REMD) simulations, equilibrium structures formed by (a) single-strands and (b) multiple-strands of 12-mer oligonucleotides adsorbed on various SWCNTs were explored. A number of structural motifs were discovered in which the DNA strand wraps around the SWCNT and 'stitches' to itself via hydrogen bonding. Great variability among equilibrium structures was observed and shown to be directly influenced by DNA sequence and SWCNT type. For example, the (6,5)-SWCNT DNA recognition sequence, (TAT)4, was found to wrap in a tight single-stranded right-handed helical conformation. In contrast, DNA sequence T12 forms a beta-barrel left-handed structure on the same SWCNT. These are the first theoretical indications that DNA-based SWCNT selectivity can arise on a molecular level. In a biomedical collaboration with the Mayo Clinic, pathways for DNA-SWCNT internalization into healthy human endothelial cells were explored. Through absorbance spectroscopy, TEM imaging, and confocal fluorescence microscopy, we showed that intracellular concentrations of SWCNTs far exceeded those of the incubation

  16. Genetic determinants of mate recognition in Brachionus manjavacas (Rotifera).

    Science.gov (United States)

    Snell, Terry W; Shearer, Tonya L; Smith, Hilary A; Kubanek, Julia; Gribble, Kristin E; Welch, David B Mark

    2009-09-09

    Mate choice is of central importance to most animals, influencing population structure, speciation, and ultimately the survival of a species. Mating behavior of male brachionid rotifers is triggered by the product of a chemosensory gene, a glycoprotein on the body surface of females called the mate recognition pheromone. The mate recognition pheromone has been biochemically characterized, but little was known about the gene(s). We describe the isolation and characterization of the mate recognition pheromone gene through protein purification, N-terminal amino acid sequence determination, identification of the mate recognition pheromone gene from a cDNA library, sequencing, and RNAi knockdown to confirm the functional role of the mate recognition pheromone gene in rotifer mating. A 29 kD protein capable of eliciting rotifer male circling was isolated by high-performance liquid chromatography. Two transcript types containing the N-terminal sequence were identified in a cDNA library; further characterization by screening a genomic library and by polymerase chain reaction revealed two genes belonging to each type. Each gene begins with a signal peptide region followed by nearly perfect repeats of an 87 to 92 codon motif with no codons between repeats and the final motif prematurely terminated by the stop codon. The two Type A genes contain four and seven repeats and the two Type B genes contain three and five repeats, respectively. Only the Type B gene with three repeats encodes a peptide with a molecular weight of 29 kD. Each repeat of the Type B gene products contains three asparagines as potential sites for N-glycosylation; there are no asparagines in the Type A genes. RNAi with Type A double-stranded RNA did not result in less circling than in the phosphate-buffered saline control, but transfection with Type B double-stranded RNA significantly reduced male circling by 17%. The very low divergence between repeat units, even at synonymous positions, suggests that the

  17. Inability of Kaplan radiation leukemia virus to replicate on mouse fibroblasts is conferred by its long terminal repeat

    International Nuclear Information System (INIS)

    Rassart, E.; Paquette, Y.; Jolicoeur, P.

    1988-01-01

    The molecularly cloned infectious Kaplan radiation leukemia virus has previously been shown to be unable to replicate on mouse fibroblasts. To map the viral sequences responsible for this, we constructed chimeric viral DNA genomes in vitro with parental cloned infectious viral DNAs from the nonfibrotropic (F-) BL/VL3 V-13 radiation leukemia virus and the fibrotropic (F+) endogenous BALB/c or Moloney murine leukemia viruses (MuLV). Infectious chimeric MuLVs, recovered after transfection of Ti-6 lymphocytes with these recombinant DNAs, were tested for capacity to replicate on mouse fibroblasts in vitro. We found that chimeric MuLVs harboring the long terminal repeat (LTR) of a fibrotropic MuLV replicated well on mouse fibroblasts. Conversely, chimeric MuLVs harboring the LTR of a nonfibrotropic MuLV were restricted on mouse fibroblasts. These results indicate that the LTR of BL/VL3 radiation leukemia virus harbors the primary determinant responsible for its inability to replicate on mouse fibroblasts in vitro. Our results also show that the primary determinant allowing F+ MuLVs (endogenous BALB/c and Moloney MuLVs) to replicate on mouse fibroblasts in vitro resides within the LTR

  18. Localized frustration and binding-induced conformational change in recognition of 5S RNA by TFIIIA zinc finger.

    Science.gov (United States)

    Tan, Cheng; Li, Wenfei; Wang, Wei

    2013-12-19

    Protein TFIIIA is composed of nine tandemly arranged Cys2His2 zinc fingers. It can bind either to the 5S RNA gene as a transcription factor or to the 5S RNA transcript as a chaperone. Although structural and biochemical data provided valuable information on the recognition between the TFIIIIA and the 5S DNA/RNA, the involved conformational motions and energetic factors contributing to the binding affinity and specificity remain unclear. In this work, we conducted MD simulations and MM/GBSA calculations to investigate the binding-induced conformational changes in the recognition of the 5S RNA by the central three zinc fingers of TFIIIA and the energetic factors that influence the binding affinity and specificity at an atomistic level. Our results revealed drastic interdomain conformational changes between these three zinc fingers, involving the exposure/burial of several crucial DNA/RNA binding residues, which can be related to the competition between DNA and RNA for the binding of TFIIIA. We also showed that the specific recognition between finger 4/finger 6 and the 5S RNA introduces frustrations to the nonspecific interactions between finger 5 and the 5S RNA, which may be important to achieve optimal binding affinity and specificity.

  19. Foundations for a syntatic pattern recognition system for genomic DNA sequences

    Energy Technology Data Exchange (ETDEWEB)

    Searles, D.B.

    1993-03-01

    The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.

  20. Development of 5' LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals

    Czech Academy of Sciences Publication Activity Database

    Trejbalová, K.; Kovářová, D.; Blažková, J.; Machala, L.; Jilich, D.; Weber, Jan; Kučerová, D.; Vencálek, O.; Hirsch, Ivan; Hejnar, J.

    2016-01-01

    Roč. 8, Feb 19 (2016), č. článku 19. ISSN 1868-7083 Institutional support: RVO:61388963 Keywords : HIV-1 * latent reservoir * DNA methylation * chromatin conformation * latent HIV-1 provirus reactivation * HIV-1-infected individuals Subject RIV: EE - Microbiology, Virology Impact factor: 4.987, year: 2016 http://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-016-0185-6

  1. Footprinting of Chlorella virus DNA ligase bound at a nick in duplex DNA.

    Science.gov (United States)

    Odell, M; Shuman, S

    1999-05-14

    The 298-amino acid ATP-dependent DNA ligase of Chlorella virus PBCV-1 is the smallest eukaryotic DNA ligase known. The enzyme has intrinsic specificity for binding to nicked duplex DNA. To delineate the ligase-DNA interface, we have footprinted the enzyme binding site on DNA and the DNA binding site on ligase. The size of the exonuclease III footprint of ligase bound a single nick in duplex DNA is 19-21 nucleotides. The footprint is asymmetric, extending 8-9 nucleotides on the 3'-OH side of the nick and 11-12 nucleotides on the 5'-phosphate side. The 5'-phosphate moiety is essential for the binding of Chlorella virus ligase to nicked DNA. Here we show that the 3'-OH moiety is not required for nick recognition. The Chlorella virus ligase binds to a nicked ligand containing 2',3'-dideoxy and 5'-phosphate termini, but cannot catalyze adenylation of the 5'-end. Hence, the 3'-OH is important for step 2 chemistry even though it is not itself chemically transformed during DNA-adenylate formation. A 2'-OH cannot substitute for the essential 3'-OH in adenylation at a nick or even in strand closure at a preadenylated nick. The protein side of the ligase-DNA interface was probed by limited proteolysis of ligase with trypsin and chymotrypsin in the presence and absence of nicked DNA. Protease accessible sites are clustered within a short segment from amino acids 210-225 located distal to conserved motif V. The ligase is protected from proteolysis by nicked DNA. Protease cleavage of the native enzyme prior to DNA addition results in loss of DNA binding. These results suggest a bipartite domain structure in which the interdomain segment either comprises part of the DNA binding site or undergoes a conformational change upon DNA binding. The domain structure of Chlorella virus ligase inferred from the solution experiments is consistent with the structure of T7 DNA ligase determined by x-ray crystallography.

  2. 8 CFR 1292.2 - Organizations qualified for recognition; requests for recognition; withdrawal of recognition...

    Science.gov (United States)

    2010-01-01

    ...; requests for recognition; withdrawal of recognition; accreditation of representatives; roster. 1292.2...; requests for recognition; withdrawal of recognition; accreditation of representatives; roster. (a) Qualifications of organizations. A non-profit religious, charitable, social service, or similar organization...

  3. Restriction enzyme cleavage of ultraviolet-damaged Simian virus 40 and pBR322 DNA

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1983-01-01

    Cleavage of specific DNA sequences by the restriction enzymes EcoRI, HindIII and TaqI was prevented when the DNA was irradiated with ultraviolet light. Most of the effects were attributed to cyclobutane pyrimidine dimers in the recognition sequences; the effectiveness of irradiation was directly proportional to the number of potential dimer sites in the DNA. Combining EcoRI with dimer-specific endonuclease digestion revealed that pyrimidine dimers blocked cleavage within one base-pair on the strand opposite to the dimer but did not block cleavage three to four base-pairs away on the same strand. These are the probable limits for the range of influence of pyrimidine dimers along the DNA, at least for this enzyme. The effect of irradiation on cleavage by TaqI seemed far greater than expected for the cyclobutane dimer yield, possibly because of effects from photoproducts flanking the tetranucleotide recognition sequence and the effect of non-cyclobutane (6-4)pyrimidine photoproducts involving adjacent T and C bases. (author)

  4. Threshold models of recognition and the recognition heuristic

    Directory of Open Access Journals (Sweden)

    Edgar Erdfelder

    2011-02-01

    Full Text Available According to the recognition heuristic (RH theory, decisions follow the recognition principle: Given a high validity of the recognition cue, people should prefer recognized choice options compared to unrecognized ones. Assuming that the memory strength of choice options is strongly correlated with both the choice criterion and recognition judgments, the RH is a reasonable strategy that approximates optimal decisions with a minimum of cognitive effort (Davis-Stober, Dana, and Budescu, 2010. However, theories of recognition memory are not generally compatible with this assumption. For example, some threshold models of recognition presume that recognition judgments can arise from two types of cognitive states: (1 certainty states in which judgments are almost perfectly correlated with memory strength and (2 uncertainty states in which recognition judgments reflect guessing rather than differences in memory strength. We report an experiment designed to test the prediction that the RH applies to certainty states only. Our results show that memory states rather than recognition judgments affect use of recognition information in binary decisions.

  5. Molecular recognition of live methicillin-resistant staphylococcus aureus cells using DNA aptamers.

    Science.gov (United States)

    Turek, Diane; Van Simaeys, Dimitri; Johnson, Judith; Ocsoy, Ismail; Tan, Weihong

    2013-01-01

    To generate DNA-aptamers binding to Methicillin-resistant Staphylococcus aureus (MRSA) . The Cell-Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology was used to run the selection against MRSA bacteria and develop target-specific aptamers. MRSA bacteria were targeted while Enterococcus faecalis bacteria were used for counter selection during that process. Binding assays to determine the right aptamer candidates as well as binding assays on clinical samples were performed through flow cytometry and analyzed using the FlowJo software. The characterization of the aptamers was done by determination of their K d values and determined by analysis of flow data at different aptamer concentration using SigmaPlot. Finally, the recognition of the complex Gold-nanoparticle-aptamer to the bacteria cells was observed using transmission electron microscopy (TEM). During the cell-SELEX selection process, 17 rounds were necessary to generate enrichment of the pool. While the selection was run using fixed cells, it was shown that the binding of the pools with live cells was giving similar results. After sequencing and analysis of the two last pools, four sequences were identified to be aptamer candidates. The characterization of those aptamers showed that based on their K d values, DTMRSA4 presented the best binding with a K d value of 94.61 ± 18.82 nmol/L. A total of ten clinical samples of MRSA , S. aureus and Enterococcus faecalis were obtained to test those aptamers and determine their binding on a panel of samples. DTMRSA1 and DTMRSA3 showed the best results regarding their specificity to MRSA , DTMRSA1 being the most specific of all. Finally, those aptamers were coupled with gold-nanoparticle and their binding to MRSA cells was visualized through TEM showing that adduction of nanoparticles on the aptamers did not change their binding property. A total of four aptamers that bind to MRSA were obtained with K d values ranking from 94 to 200 nmol/L.

  6. A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons

    Czech Academy of Sciences Publication Activity Database

    Steinbauerová, Veronika; Neumann, Pavel; Novák, Petr; Macas, Jiří

    2011-01-01

    Roč. 139, 11-12 (2011), s. 1543-1555 ISSN 0016-6707 Institutional research plan: CEZ:AV0Z50510513 Keywords : Additional ORFs * LTR retrotransposons * Repetitive DNA * Plant genome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.148, year: 2011

  7. Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7

    KAUST Repository

    Lee, Seung-Joo

    2010-03-28

    DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical interactions of the primase with the DNA template to explain the basis of specificity have not been demonstrated. Using a combination of surface plasmon resonance and biochemical assays, we show that T7 DNA primase has only a slightly higher affinity for DNA containing the primase recognition sequence (5\\'-TGGTC-3\\') than for DNA lacking the recognition site. However, this binding is drastically enhanced by the presence of the cognate Nucleoside triphosphates (NTPs), Adenosine triphosphate (ATP) and Cytosine triphosphate (CTP) that are incorporated into the primer, pppACCA. Formation of the dimer, pppAC, the initial step of sequence-specific primer synthesis, is not sufficient for the stable binding. Preformed primers exhibit significantly less selective binding than that observed with ATP and CTP. Alterations in subdomains of the primase result in loss of selective DNA binding. We present a model in which conformational changes induced during primer synthesis facilitate contact between the zinc-binding domain and the polymerase domain. The Author(s) 2010. Published by Oxford University Press.

  8. Conserved XPB Core Structure and Motifs for DNA Unwinding:Implications for Pathway Selection of Transcription or ExcisionRepair

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Li; Arval, Andrew S.; Cooper, Priscilla K.; Iwai, Shigenori; Hanaoka, Fumio; Tainer, John A.

    2005-04-01

    The human xeroderma pigmentosum group B (XPB) helicase is essential for transcription, nucleotide excision repair, and TFIIH functional assembly. Here, we determined crystal structures of an Archaeoglobus fulgidus XPB homolog (AfXPB) that characterize two RecA-like XPB helicase domains and discover a DNA damage recognition domain (DRD), a unique RED motif, a flexible thumb motif (ThM), and implied conformational changes within a conserved functional core. RED motif mutations dramatically reduce helicase activity, and the DRD and ThM, which flank the RED motif, appear structurally as well as functionally analogous to the MutS mismatch recognition and DNA polymerase thumb domains. Substrate specificity is altered by DNA damage, such that AfXPB unwinds dsDNA with 3' extensions, but not blunt-ended dsDNA, unless it contains a lesion, as shown for CPD or (6-4) photoproducts. Together, these results provide an unexpected mechanism of DNA unwinding with Implications for XPB damage verification in nucleotide excision repair.

  9. Conformational Smear Characterization and Binning of Single-Molecule Conductance Measurements for Enhanced Molecular Recognition.

    Science.gov (United States)

    Korshoj, Lee E; Afsari, Sepideh; Chatterjee, Anushree; Nagpal, Prashant

    2017-11-01

    Electronic conduction or charge transport through single molecules depends primarily on molecular structure and anchoring groups and forms the basis for a wide range of studies from molecular electronics to DNA sequencing. Several high-throughput nanoelectronic methods such as mechanical break junctions, nanopores, conductive atomic force microscopy, scanning tunneling break junctions, and static nanoscale electrodes are often used for measuring single-molecule conductance. In these measurements, "smearing" due to conformational changes and other entropic factors leads to large variances in the observed molecular conductance, especially in individual measurements. Here, we show a method for characterizing smear in single-molecule conductance measurements and demonstrate how binning measurements according to smear can significantly enhance the use of individual conductance measurements for molecular recognition. Using quantum point contact measurements on single nucleotides within DNA macromolecules, we demonstrate that the distance over which molecular junctions are maintained is a measure of smear, and the resulting variance in unbiased single measurements depends on this smear parameter. Our ability to identify individual DNA nucleotides at 20× coverage increases from 81.3% accuracy without smear analysis to 93.9% with smear characterization and binning (SCRIB). Furthermore, merely 7 conductance measurements (7× coverage) are needed to achieve 97.8% accuracy for DNA nucleotide recognition when only low molecular smear measurements are used, which represents a significant improvement over contemporary sequencing methods. These results have important implications in a broad range of molecular electronics applications from designing robust molecular switches to nanoelectronic DNA sequencing.

  10. Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth.

    Directory of Open Access Journals (Sweden)

    Maja Kiselinova

    2016-03-01

    Full Text Available The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4-2.6 between time point 1 and 2; and median of 31 days (IQR: 28-36 between time point 2 and 3. Patients were median of 6 years (IQR: 3-12 on ART, and plasma viral load (<50 copies/ml was suppressed for median of 4 years (IQR: 2-8. Total HIV-1 DNA, unspliced (us and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (p<0.001, R² = 0.85, us HIV-1 RNA (p = 0.029, R² = 0.40, and VOA (p = 0.041, R2 = 0.44. Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54. The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1. Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the

  11. (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition.

    Science.gov (United States)

    Owen, Barbara A L; Yang, Zungyoon; Lai, Maoyi; Gajec, Maciej; Gajek, Maciez; Badger, John D; Hayes, Jeffrey J; Edelmann, Winfried; Kucherlapati, Raju; Wilson, Teresa M; McMurray, Cynthia T

    2005-08-01

    Cells have evolved sophisticated DNA repair systems to correct damaged DNA. However, the human DNA mismatch repair protein Msh2-Msh3 is involved in the process of trinucleotide (CNG) DNA expansion rather than repair. Using purified protein and synthetic DNA substrates, we show that Msh2-Msh3 binds to CAG-hairpin DNA, a prime candidate for an expansion intermediate. CAG-hairpin binding inhibits the ATPase activity of Msh2-Msh3 and alters both nucleotide (ADP and ATP) affinity and binding interfaces between protein and DNA. These changes in Msh2-Msh3 function depend on the presence of A.A mispaired bases in the stem of the hairpin and on the hairpin DNA structure per se. These studies identify critical functional defects in the Msh2-Msh3-CAG hairpin complex that could misdirect the DNA repair process.

  12. The Variation Analysis of DNA Methylation in Wheat Carrying Gametocidal Chromosome 3C from Aegilops triuncialis.

    Science.gov (United States)

    Wang, Dan; Zhao, Jieyu; Bai, Yan; Ao, You; Guo, Changhong

    2017-08-10

    Gametocidal (Gc) chromosomes can ensure their preferential transmission by killing the gametes without themselves through causing chromosome breakage and therefore have been exploited as an effective tool for genetic breeding. However, to date very little is known about the molecular mechanism of Gc action. In this study, we used methylation-sensitive amplified polymorphism (MSAP) technique to assess the extent and pattern of cytosine methylation alterations at the whole genome level between two lines of wheat Gc addition line and their common wheat parent. The results indicated that the overall levels of cytosine methylation of two studied Gc addition lines (CS-3C and CS-3C3C, 48.68% and 48.65%, respectively) were significantly increased when compared to common wheat CS (41.31%) and no matter fully methylated or hemimethylated rates enhanced in Gc addition lines. A set of 30 isolated fragments that showed different DNA methylation or demethylation patterns between the three lines were sequenced and the results indicated that 8 fragments showed significant homology to known sequences, of which three were homologous to MITE transposon (Miniature inverted-repeat transposable elements), LTR-retrotransposon WIS-1p and retrotransposon Gypsy , respectively. Overall, our results showed that DNA methylation could play a role in the Gc action.

  13. The Variation Analysis of DNA Methylation in Wheat Carrying Gametocidal Chromosome 3C from Aegilops triuncialis

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2017-08-01

    Full Text Available Gametocidal (Gc chromosomes can ensure their preferential transmission by killing the gametes without themselves through causing chromosome breakage and therefore have been exploited as an effective tool for genetic breeding. However, to date very little is known about the molecular mechanism of Gc action. In this study, we used methylation-sensitive amplified polymorphism (MSAP technique to assess the extent and pattern of cytosine methylation alterations at the whole genome level between two lines of wheat Gc addition line and their common wheat parent. The results indicated that the overall levels of cytosine methylation of two studied Gc addition lines (CS–3C and CS–3C3C, 48.68% and 48.65%, respectively were significantly increased when compared to common wheat CS (41.31% and no matter fully methylated or hemimethylated rates enhanced in Gc addition lines. A set of 30 isolated fragments that showed different DNA methylation or demethylation patterns between the three lines were sequenced and the results indicated that 8 fragments showed significant homology to known sequences, of which three were homologous to MITE transposon (Miniature inverted–repeat transposable elements, LTR-retrotransposon WIS-1p and retrotransposon Gypsy, respectively. Overall, our results showed that DNA methylation could play a role in the Gc action.

  14. Colorimetric and dynamic light scattering detection of DNA sequences by using positively charged gold nanospheres: a comparative study with gold nanorods

    Science.gov (United States)

    Pylaev, T. E.; Khanadeev, V. A.; Khlebtsov, B. N.; Dykman, L. A.; Bogatyrev, V. A.; Khlebtsov, N. G.

    2011-07-01

    We introduce a new genosensing approach employing CTAB (cetyltrimethylammonium bromide)-coated positively charged colloidal gold nanoparticles (GNPs) to detect target DNA sequences by using absorption spectroscopy and dynamic light scattering. The approach is compared with a previously reported method employing unmodified CTAB-coated gold nanorods (GNRs). Both approaches are based on the observation that whereas the addition of probe and target ssDNA to CTAB-coated particles results in particle aggregation, no aggregation is observed after addition of probe and nontarget DNA sequences. Our goal was to compare the feasibility and sensitivity of both methods. A 21-mer ssDNA from the human immunodeficiency virus type 1 HIV-1 U5 long terminal repeat (LTR) sequence and a 23-mer ssDNA from the Bacillus anthracis cryptic protein and protective antigen precursor (pagA) genes were used as ssDNA models. In the case of GNRs, unexpectedly, the colorimetric test failed with perfect cigar-like particles but could be performed with dumbbell and dog-bone rods. By contrast, our approach with cationic CTAB-coated GNPs is easy to implement and possesses excellent feasibility with retention of comparable sensitivity—a 0.1 nM concentration of target cDNA can be detected with the naked eye and 10 pM by dynamic light scattering (DLS) measurements. The specificity of our method is illustrated by successful DLS detection of one-three base mismatches in cDNA sequences for both DNA models. These results suggest that the cationic GNPs and DLS can be used for genosensing under optimal DNA hybridization conditions without any chemical modifications of the particle surface with ssDNA molecules and signal amplification. Finally, we discuss a more than two-three-order difference in the reported estimations of the detection sensitivity of colorimetric methods (0.1 to 10-100 pM) to show that the existing aggregation models are inconsistent with the detection limits of about 0.1-1 pM DNA and that

  15. Formation of (DNA)2-LNA triplet with recombinant base recognition: A quantum mechanical study

    Science.gov (United States)

    Mall, Vijaya Shri; Tiwari, Rakesh Kumar

    2018-05-01

    The formation of DNA triple helix offers the verity of new possibilities in molecular biology. However its applications are limited to purine and pyrimidine rich sequences recognized by forming Hoogsteen/Reverse Hoogsteen triplets in major groove sites of DNA duplex. To overcome this drawback modification in bases backbone and glucose of nucleotide unit of DNA have been proposed so that the third strand base recognized by both the bases of DNA duplex by forming Recombinant type(R-type) of bonding in mixed sequences. Here we performed Quanrum Mechanical (Hartree-Fock and DFT) methodology on natural DNA and Locked Nucleic Acids(LNA) triplets using 6-31G and some other new advance basis sets. Study suggests energetically stable conformation has been observed for recombinant triplets in order of G-C*G > A-T*A > G-C*C > T-A*T for both type of triplets. Interestingly LNA leads to more stable conformation in all set of triplets, clearly suggests an important biological tool to overcome above mentioned drawbacks.

  16. Molecular mechanisms of DNA repair inhibition by caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Selby, C.P.; Sancar, A. (Univ. of North Carolina School of Medicine, Chapel Hill (USA))

    1990-05-01

    Caffeine potentiates the mutagenic and lethal effects of genotoxic agents. It is thought that this is due, at least in some organisms, to inhibition of DNA repair. However, direct evidence for inhibition of repair enzymes has been lacking. Using purified Escherichia coli DNA photolyase and (A)BC excinuclease, we show that the drug inhibits photoreactivation and nucleotide excision repair by two different mechanisms. Caffeine inhibits photoreactivation by interfering with the specific binding of photolyase to damaged DNA, and it inhibits nucleotide excision repair by promoting nonspecific binding of the damage-recognition subunit, UvrA, of (A)BC excinuclease. A number of other intercalators, including acriflavin and ethidium bromide, appear to inhibit the excinuclease by a similar mechanism--that is, by trapping the UvrA subunit in nonproductive complexes on undamaged DNA.

  17. LQG/LTR optimal attitude control of small flexible spacecraft using free-free boundary conditions

    Science.gov (United States)

    Fulton, Joseph M.

    Due to the volume and power limitations of a small satellite, careful consideration must be taken while designing an attitude control system for 3-axis stabilization. Placing redundancy in the system proves difficult and utilizing power hungry, high accuracy, active actuators is not a viable option. Thus, it is customary to find dependable, passive actuators used in conjunction with small scale active control components. This document describes the application of Elastic Memory Composite materials in the construction of a flexible spacecraft appendage, such as a gravity gradient boom. Assumed modes methods are used with Finite Element Modeling information to obtain the equations of motion for the system while assuming free-free boundary conditions. A discussion is provided to illustrate how cantilever mode shapes are not always the best assumption when modeling small flexible spacecraft. A key point of interest is first resonant modes may be needed in the system design plant in spite of these modes being greater than one order of magnitude in frequency when compared to the crossover frequency of the controller. LQG/LTR optimal control techniques are implemented to compute attitude control gains while controller robustness considerations determine appropriate reduced order controllers and which flexible modes to include in the design model. Key satellite designer concerns in the areas of computer processor sizing, material uncertainty impacts on the system model, and system performance variations resulting from appendage length modifications are addressed.

  18. LNA effects on DNA binding and conformation

    DEFF Research Database (Denmark)

    Pabon-Martinez, Y Vladimir; Xu, You; Villa, Alessandra

    2017-01-01

    -substitution in the duplex pyrimidine strand alters the double helix structure, affecting x-displacement, slide and twist favoring triplex formation through enhanced TFO major groove accommodation. Collectively, these findings should facilitate the design of potent anti-gene ONs.......The anti-gene strategy is based on sequence-specific recognition of double-strand DNA by triplex forming (TFOs) or DNA strand invading oligonucleotides to modulate gene expression. To be efficient, the oligonucleotides (ONs) should target DNA selectively, with high affinity. Here we combined...... hybridization analysis and electrophoretic mobility shift assay with molecular dynamics (MD) simulations to better understand the underlying structural features of modified ONs in stabilizing duplex- and triplex structures. Particularly, we investigated the role played by the position and number of locked...

  19. A cargo-sorting DNA robot.

    Science.gov (United States)

    Thubagere, Anupama J; Li, Wei; Johnson, Robert F; Chen, Zibo; Doroudi, Shayan; Lee, Yae Lim; Izatt, Gregory; Wittman, Sarah; Srinivas, Niranjan; Woods, Damien; Winfree, Erik; Qian, Lulu

    2017-09-15

    Two critical challenges in the design and synthesis of molecular robots are modularity and algorithm simplicity. We demonstrate three modular building blocks for a DNA robot that performs cargo sorting at the molecular level. A simple algorithm encoding recognition between cargos and their destinations allows for a simple robot design: a single-stranded DNA with one leg and two foot domains for walking, and one arm and one hand domain for picking up and dropping off cargos. The robot explores a two-dimensional testing ground on the surface of DNA origami, picks up multiple cargos of two types that are initially at unordered locations, and delivers them to specified destinations until all molecules are sorted into two distinct piles. The robot is designed to perform a random walk without any energy supply. Exploiting this feature, a single robot can repeatedly sort multiple cargos. Localization on DNA origami allows for distinct cargo-sorting tasks to take place simultaneously in one test tube or for multiple robots to collectively perform the same task. Copyright © 2017, American Association for the Advancement of Science.

  20. Photoluminescence Enhancement of Poly(3-methylthiophene Nanowires upon Length Variable DNA Hybridization

    Directory of Open Access Journals (Sweden)

    Jingyuan Huang

    2018-01-01

    Full Text Available The use of low-dimensional inorganic or organic nanomaterials has advantages for DNA and protein recognition due to their sensitivity, accuracy, and physical size matching. In this research, poly(3-methylthiophene (P3MT nanowires (NWs are electrochemically prepared with dopant followed by functionalization with probe DNA (pDNA sequence through electrostatic interaction. Various lengths of pDNA sequences (10-, 20- and 30-mer are conjugated to the P3MT NWs respectively followed with hybridization with their complementary target DNA (tDNA sequences. The nanoscale photoluminescence (PL properties of the P3MT NWs are studied throughout the whole process at solid state. In addition, the correlation between the PL enhancement and the double helix DNA with various lengths is demonstrated.

  1. Enzymatic Incorporation of Modified Purine Nucleotides in DNA.

    Science.gov (United States)

    Abu El Asrar, Rania; Margamuljana, Lia; Abramov, Mikhail; Bande, Omprakash; Agnello, Stefano; Jang, Miyeon; Herdewijn, Piet

    2017-12-14

    A series of nucleotide analogues, with a hypoxanthine base moiety (8-aminohypoxanthine, 1-methyl-8-aminohypoxanthine, and 8-oxohypoxanthine), together with 5-methylisocytosine were tested as potential pairing partners of N 8 -glycosylated nucleotides with an 8-azaguanine or 8-aza-9-deazaguanine base moiety by using DNA polymerases (incorporation studies). The best results were obtained with the 5-methylisocytosine nucleotide followed by the 1-methyl-8-aminohypoxanthine nucleotide. The experiments demonstrated that small differences in the structure (8-azaguanine versus 8-aza-9-deazaguanine) might lead to significant differences in recognition efficiency and selectivity, base pairing by Hoogsteen recognition at the polymerase level is possible, 8-aza-9-deazaguanine represents a self-complementary base pair, and a correlation exists between in vitro incorporation studies and in vivo recognition by natural bases in Escherichia coli, but this recognition is not absolute (exceptions were observed). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once.

    Science.gov (United States)

    Tsutakawa, Susan E; Lafrance-Vanasse, Julien; Tainer, John A

    2014-07-01

    To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by James Watson and Francis Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure

  3. Structural analysis of DNA binding by C.Csp231I, a member of a novel class of R-M controller proteins regulating gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Shevtsov, M. B.; Streeter, S. D.; Thresh, S.-J.; Swiderska, A.; McGeehan, J. E.; Kneale, G. G., E-mail: geoff.kneale@port.ac.uk [University of Portsmouth, Portsmouth PO1 2DY (United Kingdom)

    2015-02-01

    The structure of the new class of controller proteins (exemplified by C.Csp231I) in complex with its 21 bp DNA-recognition sequence is presented, and the molecular basis of sequence recognition in this class of proteins is discussed. An unusual extended spacer between the dimer binding sites suggests a novel interaction between the two C-protein dimers. In a wide variety of bacterial restriction–modification systems, a regulatory ‘controller’ protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class of controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Å resolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal.

  4. Structural analysis of DNA binding by C.Csp231I, a member of a novel class of R-M controller proteins regulating gene expression

    International Nuclear Information System (INIS)

    Shevtsov, M. B.; Streeter, S. D.; Thresh, S.-J.; Swiderska, A.; McGeehan, J. E.; Kneale, G. G.

    2015-01-01

    The structure of the new class of controller proteins (exemplified by C.Csp231I) in complex with its 21 bp DNA-recognition sequence is presented, and the molecular basis of sequence recognition in this class of proteins is discussed. An unusual extended spacer between the dimer binding sites suggests a novel interaction between the two C-protein dimers. In a wide variety of bacterial restriction–modification systems, a regulatory ‘controller’ protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class of controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Å resolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal

  5. Evasion of Cytosolic DNA-Stimulated Innate Immune Responses by Herpes Simplex Virus 1.

    Science.gov (United States)

    Zheng, Chunfu

    2018-03-15

    Recognition of virus-derived nucleic acids by host pattern recognition receptors (PRRs) is crucial for early defense against viral infections. Recent studies revealed that PRRs also include several newly identified DNA sensors, most of which could activate the downstream adaptor stimulator of interferon genes (STING) and lead to the production of host antiviral factors. Herpes simplex virus 1 (HSV-1) is extremely successful in establishing effective infections, due to its capacity to counteract host innate antiviral responses. In this Gem, I summarize the most recent findings on the molecular mechanisms utilized by HSV-1 to target different steps of the cellular DNA-sensor-mediated antiviral signal pathway. Copyright © 2018 American Society for Microbiology.

  6. Selective histonedeacetylase inhibitor M344 intervenes in HIV-1 latency through increasing histone acetylation and activation of NF-kappaB.

    Directory of Open Access Journals (Sweden)

    Hao Ying

    Full Text Available Histone deacetylase (HDAC inhibitors present an exciting new approach to activate HIV production from latently infected cells to potentially enhance elimination of these cells and achieve a cure. M344, a novel HDAC inhibitor, shows robust activity in a variety of cancer cells and relatively low toxicity compared to trichostatin A (TSA. However, little is known about the effects and action mechanism of M344 in inducing HIV expression in latently infected cells.Using the Jurkat T cell model of HIV latency, we demonstrate that M344 effectively reactivates HIV-1 gene expression in latently infected cells. Moreover, M344-mediated activation of the latent HIV LTR can be strongly inhibited by a NF-κB inhibitor aspirin. We further show that M344 acts by increasing the acetylation of histone H3 and histone H4 at the nucleosome 1 (nuc-1 site of the HIV-1 long terminal repeat (LTR and by inducing NF-κB p65 nuclear translocation and direct RelA DNA binding at the nuc-1 region of the HIV-1 LTR. We also found that M344 synergized with prostratin to activate the HIV-1 LTR promoter in latently infected cells.These results suggest the potential of M344 in anti-latency therapies and an important role for histone modifications and NF-κB transcription factors in regulating HIV-1 LTR gene expression.

  7. Comparative Methylation of ERVWE1/Syncytin-1 and Other Human Endogenous Retrovirus LTRs in Placenta Tissues

    Science.gov (United States)

    Gimenez, Juliette; Montgiraud, Cécile; Oriol, Guy; Pichon, Jean-Philippe; Ruel, Karine; Tsatsaris, Vassilis; Gerbaud, Pascale; Frendo, Jean-Louis; Evain-Brion, Danièle; Mallet, François

    2009-01-01

    Human endogenous retroviruses (HERVs) are globally silent in somatic cells. However, some HERVs display high transcription in physiological conditions. In particular, ERVWE1, ERVFRDE1 and ERV3, three proviruses of distinct families, are highly transcribed in placenta and produce envelope proteins associated with placenta development. As silencing of repeated elements is thought to occur mainly by DNA methylation, we compared the methylation of ERVWE1 and related HERVs to appreciate whether HERV methylation relies upon the family, the integration site, the tissue, the long terminal repeat (LTR) function or the associated gene function. CpG methylation of HERV-W LTRs in placenta-associated tissues was heterogeneous but a joint epigenetic control was found for ERVWE1 5′LTR and its juxtaposed enhancer, a mammalian apparent LTR retrotransposon. Additionally, ERVWE1, ERVFRDE1 and ERV3 5′LTRs were all essentially hypomethylated in cytotrophoblasts during pregnancy, but showed distinct and stage-dependent methylation profiles. In non-cytotrophoblastic cells, they also exhibited different methylation profiles, compatible with their respective transcriptional activities. Comparative analyses of transcriptional activity and LTR methylation in cell lines further sustained a role for methylation in the control of functional LTRs. These results suggest that HERV methylation might not be family related but copy-specific, and related to the LTR function and the tissue. In particular, ERVWE1 and ERV3 could be developmentally epigenetically regulated HERVs. PMID:19561344

  8. Analysis of DNA interactions using single-molecule force spectroscopy.

    Science.gov (United States)

    Ritzefeld, Markus; Walhorn, Volker; Anselmetti, Dario; Sewald, Norbert

    2013-06-01

    Protein-DNA interactions are involved in many biochemical pathways and determine the fate of the corresponding cell. Qualitative and quantitative investigations on these recognition and binding processes are of key importance for an improved understanding of biochemical processes and also for systems biology. This review article focusses on atomic force microscopy (AFM)-based single-molecule force spectroscopy and its application to the quantification of forces and binding mechanisms that lead to the formation of protein-DNA complexes. AFM and dynamic force spectroscopy are exciting tools that allow for quantitative analysis of biomolecular interactions. Besides an overview on the method and the most important immobilization approaches, the physical basics of the data evaluation is described. Recent applications of AFM-based force spectroscopy to investigate DNA intercalation, complexes involving DNA aptamers and peptide- and protein-DNA interactions are given.

  9. Pattern recognition

    CERN Document Server

    Theodoridis, Sergios

    2003-01-01

    Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to ""learn"" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10

  10. Association of thymine glycol lesioned DNA with repair enzyme endonuclease III-molecular dynamics study

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    2001-07-01

    The 2 nanoseconds molecular dynamics (MD) simulation has been performed for the system consisting of repair enzyme and DNA 30-mer with native thymine at position 16 replaced by thymine glycol (TG) solvated in water environment. After 950 picoseconds of MD the enzyme and DNA associated together to form complex that lasted stable up to 2 ns when simulation was terminated. At the contact area of enzyme and DNA there is glutamic acid located as close as 1.6 A to the C3' atom of phosphodiester bond of TG. Initial B-DNA molecule was bent and kinked at the TG during MD. This distortion caused that phosphodiester bond was easier accessible by amino acids of enzyme. The negative value of electrostatic energy (-26 kcal/mol) discriminates TG from nearly neutral native thymine and contributes to the specific recognition of this lesion. Higher number of close water molecules at TG site before formation of complex (compared with other nucleotides) indicates that glycosyl bond of the lesion is easily approached by repair enzyme during scanning of DNA surface and suggests the importance of specific hydration at the lesion during recognition process. (author)

  11. Association of thymine glycol lesioned DNA with repair enzyme endonuclease III-molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, Miroslav [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-07-01

    The 2 nanoseconds molecular dynamics (MD) simulation has been performed for the system consisting of repair enzyme and DNA 30-mer with native thymine at position 16 replaced by thymine glycol (TG) solvated in water environment. After 950 picoseconds of MD the enzyme and DNA associated together to form complex that lasted stable up to 2 ns when simulation was terminated. At the contact area of enzyme and DNA there is glutamic acid located as close as 1.6 A to the C3' atom of phosphodiester bond of TG. Initial B-DNA molecule was bent and kinked at the TG during MD. This distortion caused that phosphodiester bond was easier accessible by amino acids of enzyme. The negative value of electrostatic energy (-26 kcal/mol) discriminates TG from nearly neutral native thymine and contributes to the specific recognition of this lesion. Higher number of close water molecules at TG site before formation of complex (compared with other nucleotides) indicates that glycosyl bond of the lesion is easily approached by repair enzyme during scanning of DNA surface and suggests the importance of specific hydration at the lesion during recognition process. (author)

  12. An effective HIV-1 integrase inhibitor screening platform: Rationality validation of drug screening, conformational mobility and molecular recognition analysis for PFV integrase complex with viral DNA.

    Science.gov (United States)

    Du, Wenyi; Zuo, Ke; Sun, Xin; Liu, Wei; Yan, Xiao; Liang, Li; Wan, Hua; Chen, Fengzheng; Hu, Jianping

    2017-11-01

    As an important target for the development of novel anti-AIDS drugs, HIV-1 integrase (IN) has been widely concerned. However, the lack of a complete accurate crystal structure of HIV-1 IN greatly blocks the discovery of novel inhibitors. In this work, an effective HIV-1 IN inhibitor screening platform, namely PFV IN, was filtered from all species of INs. Next, the 40.8% similarity with HIV-1 IN, as well as the high efficiency of virtual screening and the good agreement between calculated binding free energies and experimental ones all proved PFV IN is a promising screening platform for HIV-1 IN inhibitors. Then, the molecular recognition mechanism of PFV IN by its substrate viral DNA and six naphthyridine derivatives (NRDs) inhibitors was investigated through molecular docking, molecular dynamics simulations and water-mediated interactions analyses. The functional partition of NRDs IN inhibitors could be divided into hydrophobic and hydrophilic ones, and the Mg 2+ ions, water molecules and conserved DDE motif residues all interacted with the hydrophilic partition, while the bases in viral DNA and residues like Tyr212, Pro214 interacted with the hydrophobic one. Finally, the free energy landscape (FEL) and cluster analyses were performed to explore the molecular motion of PFV IN-DNA system. It is found that the association with NRDs inhibitors would obviously decrease the motion amplitude of PFV IN-DNA, which may be one of the most potential mechanisms of IN inhibitors. This work will provide a theoretical basis for the inhibitor design based on the structure of HIV-1 IN. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Genetic determinants of mate recognition in Brachionus manjavacas (Rotifera

    Directory of Open Access Journals (Sweden)

    Kubanek Julia

    2009-09-01

    Full Text Available Abstract Background Mate choice is of central importance to most animals, influencing population structure, speciation, and ultimately the survival of a species. Mating behavior of male brachionid rotifers is triggered by the product of a chemosensory gene, a glycoprotein on the body surface of females called the mate recognition pheromone. The mate recognition pheromone has been biochemically characterized, but little was known about the gene(s. We describe the isolation and characterization of the mate recognition pheromone gene through protein purification, N-terminal amino acid sequence determination, identification of the mate recognition pheromone gene from a cDNA library, sequencing, and RNAi knockdown to confirm the functional role of the mate recognition pheromone gene in rotifer mating. Results A 29 kD protein capable of eliciting rotifer male circling was isolated by high-performance liquid chromatography. Two transcript types containing the N-terminal sequence were identified in a cDNA library; further characterization by screening a genomic library and by polymerase chain reaction revealed two genes belonging to each type. Each gene begins with a signal peptide region followed by nearly perfect repeats of an 87 to 92 codon motif with no codons between repeats and the final motif prematurely terminated by the stop codon. The two Type A genes contain four and seven repeats and the two Type B genes contain three and five repeats, respectively. Only the Type B gene with three repeats encodes a peptide with a molecular weight of 29 kD. Each repeat of the Type B gene products contains three asparagines as potential sites for N-glycosylation; there are no asparagines in the Type A genes. RNAi with Type A double-stranded RNA did not result in less circling than in the phosphate-buffered saline control, but transfection with Type B double-stranded RNA significantly reduced male circling by 17%. The very low divergence between repeat units

  14. A Real Time PCR Platform for the Simultaneous Quantification of Total and Extrachromosomal HIV DNA Forms in Blood of HIV-1 Infected Patients

    Science.gov (United States)

    Canovari, Benedetta; Scotti, Maddalena; Acetoso, Marcello; Valentini, Massimo; Petrelli, Enzo; Magnani, Mauro

    2014-01-01

    Background The quantitative measurement of various HIV-1 DNA forms including total, unintegrated and integrated provirus play an increasingly important role in HIV-1 infection monitoring and treatment-related research. We report the development and validation of a SYBR Green real time PCR (TotUFsys platform) for the simultaneous quantification of total and extrachromosomal HIV-1 DNA forms in patients. This innovative technique makes it possible to obtain both measurements in a single PCR run starting from frozen blood employing the same primers and standard curve. Moreover, due to identical amplification efficiency, it allows indirect estimation of integrated level. To specifically detect 2-LTR a qPCR method was also developed. Methodology/Findings Primers used for total HIV-1 DNA quantification spanning a highly conserved region were selected and found to detect all HIV-1 clades of group M and the unintegrated forms of the same. A total of 195 samples from HIV-1 patients in a wide range of clinical conditions were analyzed with a 100% success rate, even in patients with suppressed plasma viremia, regardless of CD4+ or therapy. No significant correlation was observed between the two current prognostic markers, CD4+ and plasma viremia, while a moderate or high inverse correlation was found between CD4+ and total HIV DNA, with strong values for unintegrated HIV DNA. Conclusions/Significance Taken together, the results support the use of HIV DNA as another tool, in addition to traditional assays, which can be used to estimate the state of viral infection, the risk of disease progression and to monitor the effects of ART. The TotUFsys platform allowed us to obtain a final result, expressed as the total and unintegrated HIV DNA copy number per microgram of DNA or 104 CD4+, for 12 patients within two working days. PMID:25364909

  15. Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA

    International Nuclear Information System (INIS)

    Guzder, S.N.; Sung, P.; Prakash, S.; Prakash, L.

    1993-01-01

    Xeroderma pigmentosum (XP) patients suffer from a high incidence of skin cancers due to a defect in excision repair of UV light-damaged DNA. Of the seven XP complementation groups, A--G, group A represents a severe and frequent form of the disease. The Saccharomyces cerevisiae RAD14 gene is a homolog of the XP-A correcting (XPAC) gene. Like XP-A cells, rad14-null mutants are defective in the incision step of excision repair of UV-damaged DNA. The authors have purified RAD14 protein to homogeneity from extract of a yeast strain genetically tailored to overexpress RAD14. As determined by atomic emission spectroscopy, RAD14 contains one zinc atom. They also show in vitro that RAD14 binds zinc but does not bind other divalent metal ions. In DNA mobility-shift assays, RAD14 binds specifically to UV-damaged DNA. Removal of cyclobutane pyrimidine dimers from damaged DNA by enzymatic photoreactivation has no effect on binding, strongly suggesting that RAD14 recognizes pyrimidine(6-4)pyrimidone photoproduct sites. These findings indicate that RAD14 functions in damage recognition during excision repair. 37 refs., 4 figs

  16. Transposable elements and G-quadruplexes

    Czech Academy of Sciences Publication Activity Database

    Kejnovský, Eduard; Tokan, Viktor; Lexa, M.

    2015-01-01

    Roč. 23, č. 3 (2015), s. 615-623 ISSN 0967-3849 R&D Projects: GA ČR(CZ) GA15-02891S Institutional support: RVO:68081707 Keywords : TRINUCLEOTIDE REPEAT DNA * LTR RETROTRANSPOSONS * BINDING PROTEIN Subject RIV: BO - Biophysics Impact factor: 2.590, year: 2015

  17. Damaging the Integrated HIV Proviral DNA with TALENs.

    Directory of Open Access Journals (Sweden)

    Christy L Strong

    Full Text Available HIV-1 integrates its proviral DNA genome into the host genome, presenting barriers for virus eradication. Several new gene-editing technologies have emerged that could potentially be used to damage integrated proviral DNA. In this study, we use transcription activator-like effector nucleases (TALENs to target a highly conserved sequence in the transactivation response element (TAR of the HIV-1 proviral DNA. We demonstrated that TALENs cleave a DNA template with the HIV-1 proviral target site in vitro. A GFP reporter, under control of HIV-1 TAR, was efficiently inactivated by mutations introduced by transfection of TALEN plasmids. When infected cells containing the full-length integrated HIV-1 proviral DNA were transfected with TALENs, the TAR region accumulated indels. When one of these mutants was tested, the mutated HIV-1 proviral DNA was incapable of producing detectable Gag expression. TALEN variants engineered for degenerate recognition of select nucleotide positions also cleaved proviral DNA in vitro and the full-length integrated proviral DNA genome in living cells. These results suggest a possible design strategy for the therapeutic considerations of incomplete target sequence conservation and acquired resistance mutations. We have established a new strategy for damaging integrated HIV proviral DNA that may have future potential for HIV-1 proviral DNA eradication.

  18. Structural basis for sequence-specific recognition of DNA by TAL effectors

    KAUST Repository

    Deng, Dong; Yan, Chuangye; Pan, Xiaojing; Mahfouz, Magdy M.; Wang, Jiawei; Zhu, Jiankang; Shi, Yi Gong; Yan, Nieng

    2012-01-01

    TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair

  19. Avatar DNA Nanohybrid System in Chip-on-a-Phone

    Science.gov (United States)

    Park, Dae-Hwan; Han, Chang Jo; Shul, Yong-Gun; Choy, Jin-Ho

    2014-05-01

    Long admired for informational role and recognition function in multidisciplinary science, DNA nanohybrids have been emerging as ideal materials for molecular nanotechnology and genetic information code. Here, we designed an optical machine-readable DNA icon on microarray, Avatar DNA, for automatic identification and data capture such as Quick Response and ColorZip codes. Avatar icon is made of telepathic DNA-DNA hybrids inscribed on chips, which can be identified by camera of smartphone with application software. Information encoded in base-sequences can be accessed by connecting an off-line icon to an on-line web-server network to provide message, index, or URL from database library. Avatar DNA is then converged with nano-bio-info-cogno science: each building block stands for inorganic nanosheets, nucleotides, digits, and pixels. This convergence could address item-level identification that strengthens supply-chain security for drug counterfeits. It can, therefore, provide molecular-level vision through mobile network to coordinate and integrate data management channels for visual detection and recording.

  20. Strip biosensor for amplified detection of nerve growth factor-beta based on a molecular translator and catalytic DNA circuit.

    Science.gov (United States)

    Liu, Jun; Lai, Ting; Mu, Kejie; Zhou, Zheng

    2014-10-07

    We have demonstrated a new visual detection approach based on a molecular translator and a catalytic DNA circuit for the detection of nerve growth factor-beta (NGF-β). In this assay, a molecular translator based on the binding-induced DNA strand-displacement reaction was employed to convert the input protein to an output DNA signal. The molecular translator is composed of a target recognition element and a signal output element. Target recognition is achieved by the binding of the anti-NGF-β antibody to the target protein. Polyclonal anti-NGF-β antibody is conjugated to DNA1 and DNA2. The antibody conjugated DNA1 is initially hybridized to DNA3 to form a stable DNA1/DNA3 duplex. In the presence of NGF-β, the binding of the same target protein brings DNA1 and DNA2 into close proximity, resulting in an increase in their local effective concentration. This process triggers the strand-displacement reaction between DNA2 and DNA3 and releases the output DNA3. The released DNA3 is further amplified by a catalytic DNA circuit. The product of the catalytic DNA circuit is detected by a strip biosensor. This proposed assay has high sensitivity and selectivity with a dynamic response ranging from 10 fM to 10 pM, and its detection limit is 10 fM of NGF-β. This work provides a sensitive, enzyme-free, and universal strategy for the detection of other proteins.

  1. 8 CFR 292.2 - Organizations qualified for recognition; requests for recognition; withdrawal of recognition...

    Science.gov (United States)

    2010-01-01

    ...; requests for recognition; withdrawal of recognition; accreditation of representatives; roster. 292.2...; withdrawal of recognition; accreditation of representatives; roster. (a) Qualifications of organizations. A non-profit religious, charitable, social service, or similar organization established in the United...

  2. New Highly Sensitive Real-Time PCR Assay for HIV-2 Group A and Group B DNA Quantification.

    Science.gov (United States)

    Bertine, Mélanie; Gueudin, Marie; Mélard, Adeline; Damond, Florence; Descamps, Diane; Matheron, Sophie; Collin, Fidéline; Rouzioux, Christine; Plantier, Jean-Christophe; Avettand-Fenoel, Véronique

    2017-09-01

    HIV-2 infection is characterized by a very low replication rate in most cases and low progression. This necessitates an approach to patient monitoring that differs from that for HIV-1 infection. Here, a new highly specific and sensitive method for HIV-2 DNA quantification was developed. The new test is based on quantitative real-time PCR targeting the long terminal repeat (LTR) and gag regions and using an internal control. Analytical performance was determined in three laboratories, and clinical performance was determined on blood samples from 63 patients infected with HIV-2 group A ( n = 35) or group B ( n = 28). The specificity was 100%. The 95% limit of detection was three copies/PCR and the limit of quantification was six copies/PCR. The within-run coefficients of variation were between 1.03% at 3.78 log 10 copies/PCR and 27.02% at 0.78 log 10 copies/PCR. The between-run coefficient of variation was 5.10%. Both manual and automated nucleic acid extraction methods were validated. HIV-2 DNA loads were detectable in blood cells from all 63 patients. When HIV-2 DNA was quantifiable, median loads were significantly higher in antiretroviral-treated than in naive patients and were similar for groups A and B. HIV-2 DNA load was correlated with HIV-2 RNA load ( r = 0.68; 95% confidence interval [CI], 0.4 to 0.8; P < 0.0001). Our data show that this new assay is highly sensitive and quantifies the two main HIV-2 groups, making it useful for the diagnosis of HIV-2 infection and for pathogenesis studies on HIV-2 reservoirs. Copyright © 2017 American Society for Microbiology.

  3. Micropatterning stretched and aligned DNA for sequence-specific nanolithography

    Science.gov (United States)

    Petit, Cecilia Anna Paulette

    Techniques for fabricating nanostructured materials can be categorized as either "top-down" or "bottom-up". Top-down techniques use lithography and contact printing to create patterned surfaces and microfluidic channels that can corral and organize nanoscale structures, such as molecules and nanorods in contrast; bottom-up techniques use self-assembly or molecular recognition to direct the organization of materials. A central goal in nanotechnology is the integration of bottom-up and top-down assembly strategies for materials development, device design; and process integration. With this goal in mind, we have developed strategies that will allow this integration by using DNA as a template for nanofabrication; two top-down approaches allow the placement of these templates, while the bottom-up technique uses the specific sequence of bases to pattern materials along each strand of DNA. Our first top-down approach, termed combing of molecules in microchannels (COMMIC), produces microscopic patterns of stretched and aligned molecules of DNA on surfaces. This process consists of passing an air-water interface over end adsorbed molecules inside microfabricated channels. The geometry of the microchannel directs the placement of the DNA molecules, while the geometry of the airwater interface directs the local orientation and curvature of the molecules. We developed another top-down strategy for creating micropatterns of stretched and aligned DNA using surface chemistry. Because DNA stretching occurs on hydrophobic surfaces, this technique uses photolithography to pattern vinyl-terminated silanes on glass When these surface-, are immersed in DNA solution, molecules adhere preferentially to the silanized areas. This approach has also proven useful in patterning protein for cell adhesion studies. Finally, we describe the use of these stretched and aligned molecules of DNA as templates for the subsequent bottom-up construction of hetero-structures through hybridization

  4. Context influences on TALE-DNA binding revealed by quantitative profiling.

    Science.gov (United States)

    Rogers, Julia M; Barrera, Luis A; Reyon, Deepak; Sander, Jeffry D; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L

    2015-06-11

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000-20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE-DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design.

  5. Context influences on TALE–DNA binding revealed by quantitative profiling

    Science.gov (United States)

    Rogers, Julia M.; Barrera, Luis A.; Reyon, Deepak; Sander, Jeffry D.; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L.

    2015-01-01

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE–DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000–20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE–DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design. PMID:26067805

  6. Recognition of damaged DNA by Escherichia coli Fpg protein: insights from structural and kinetic data

    International Nuclear Information System (INIS)

    Zharkov, Dmitry O.; Ishchenko, Alexander A.; Douglas, Kenneth T.; Nevinsky, Georgy A.

    2003-01-01

    Formamidopyrimidine-DNA glycosylase (Fpg) excises oxidized purines from damaged DNA. The recent determination of the three-dimensional structure of the covalent complex of DNA with Escherichia coli Fpg, obtained by reducing the Schiff base intermediate formed during the reaction [Gilboa et al., J. Biol. Chem. 277 (2002) 19811] has revealed a number of potential specific and non-specific interactions between Fpg and DNA. We analyze the structural data for Fpg in the light of the kinetic and thermodynamic data obtained by the method of stepwise increase in ligand complexity to estimate relative contributions of individual nucleotide units of lesion-containing DNA to its total affinity for this enzyme [Ishchenko et al., Biochemistry 41 (2002) 7540]. Stopped-flow kinetic analysis that has allowed the dissection of Fpg catalysis in time [Fedorova et al., Biochemistry 41 (2002) 1520] is also correlated with the structural data

  7. Production and processing of siRNA precursor transcripts from the highly repetitive maize genome.

    Directory of Open Access Journals (Sweden)

    Christopher J Hale

    2009-08-01

    Full Text Available Mutations affecting the maintenance of heritable epigenetic states in maize identify multiple RNA-directed DNA methylation (RdDM factors including RMR1, a novel member of a plant-specific clade of Snf2-related proteins. Here we show that RMR1 is necessary for the accumulation of a majority of 24 nt small RNAs, including those derived from Long-Terminal Repeat (LTR retrotransposons, the most common repetitive feature in the maize genome. A genetic analysis of DNA transposon repression indicates that RMR1 acts upstream of the RNA-dependent RNA polymerase, RDR2 (MOP1. Surprisingly, we show that non-polyadenylated transcripts from a sampling of LTR retrotransposons are lost in both rmr1 and rdr2 mutants. In contrast, plants deficient for RNA Polymerase IV (Pol IV function show an increase in polyadenylated LTR RNA transcripts. These findings support a model in which Pol IV functions independently of the small RNA accumulation facilitated by RMR1 and RDR2 and support that a loss of Pol IV leads to RNA Polymerase II-based transcription. Additionally, the lack of changes in general genome homeostasis in rmr1 mutants, despite the global loss of 24 nt small RNAs, challenges the perceived roles of siRNAs in maintaining functional heterochromatin in the genomes of outcrossing grass species.

  8. Control of DNA hybridization by photoswitchable molecular glue.

    Science.gov (United States)

    Dohno, Chikara; Nakatani, Kazuhiko

    2011-12-01

    Hybridization of DNA is one of the most intriguing events in molecular recognition and is essential for living matter to inherit life beyond generations. In addition to the function of DNA as genetic material, DNA hybridization is a key to control the function of DNA-based materials in nanoscience. Since the hybridization of two single stranded DNAs is a thermodynamically favorable process, dissociation of the once formed DNA duplex is normally unattainable under isothermal conditions. As the progress of DNA-based nanoscience, methodology to control the DNA hybridization process has become increasingly important. Besides many reports using the chemically modified DNA for the regulation of hybridization, we focused our attention on the use of a small ligand as the molecular glue for the DNA. In 2001, we reported the first designed molecule that strongly and specifically bound to the mismatched base pairs in double stranded DNA. Further studies on the mismatch binding molecules provided us a key discovery of a novel mode of the binding of a mismatch binding ligand that induced the base flipping. With these findings we proposed the concept of molecular glue for DNA for the unidirectional control of DNA hybridization and, eventually photoswitchable molecular glue for DNA, which enabled the bidirectional control of hybridization under photoirradiation. In this tutorial review, we describe in detail how we integrated the mismatch binding ligand into photoswitchable molecular glue for DNA, and the application and perspective in DNA-based nanoscience.

  9. Crystal structure and DNA binding of the homeodomain of the stem cell transcription factor Nanog.

    Science.gov (United States)

    Jauch, Ralf; Ng, Calista Keow Leng; Saikatendu, Kumar Singh; Stevens, Raymond C; Kolatkar, Prasanna R

    2008-02-22

    The transcription factor Nanog is an upstream regulator in early mammalian development and a key determinant of pluripotency in embryonic stem cells. Nanog binds to promoter elements of hundreds of target genes and regulates their expression by an as yet unknown mechanism. Here, we report the crystal structure of the murine Nanog homeodomain (HD) and analysis of its interaction with a DNA element derived from the Tcf3 promoter. Two Nanog amino acid pairs, unique among HD sequences, appear to affect the mechanism of nonspecific DNA recognition as well as maintain the integrity of the structural scaffold. To assess selective DNA recognition by Nanog, we performed electrophoretic mobility shift assays using a panel of modified DNA binding sites and found that Nanog HD preferentially binds the TAAT(G/T)(G/T) motif. A series of rational mutagenesis experiments probing the role of six variant residues of Nanog on its DNA binding function establish their role in affecting binding affinity but not binding specificity. Together, the structural and functional evidence establish Nanog as a distant member of a Q50-type HD despite having considerable variation at the sequence level.

  10. Crystal Structure and DNA Binding of the Homeodomain of the Stem Cell Transcription Factor Nanog

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Ralf; Ng, Calista Keow Leng; Saikatendu, Kumar Singh; Stevens, Raymond C.; Kolatkar, Prasanna R. (GI-Singapore); (Scripps)

    2010-02-08

    The transcription factor Nanog is an upstream regulator in early mammalian development and a key determinant of pluripotency in embryonic stem cells. Nanog binds to promoter elements of hundreds of target genes and regulates their expression by an as yet unknown mechanism. Here, we report the crystal structure of the murine Nanog homeodomain (HD) and analysis of its interaction with a DNA element derived from the Tcf3 promoter. Two Nanog amino acid pairs, unique among HD sequences, appear to affect the mechanism of nonspecific DNA recognition as well as maintain the integrity of the structural scaffold. To assess selective DNA recognition by Nanog, we performed electrophoretic mobility shift assays using a panel of modified DNA binding sites and found that Nanog HD preferentially binds the TAAT(G/T)(G/T) motif. A series of rational mutagenesis experiments probing the role of six variant residues of Nanog on its DNA binding function establish their role in affecting binding affinity but not binding specificity. Together, the structural and functional evidence establish Nanog as a distant member of a Q50-type HD despite having considerable variation at the sequence level.

  11. Pathogenic and Epiphenomenal Anti-DNA Antibodies in SLE

    Directory of Open Access Journals (Sweden)

    Mirjana Pavlovic

    2010-01-01

    Full Text Available The discoveries of natural and the development of manufactured highly efficient catalytic antibodies (abzymes opens the door to many practical applications. One of the most fascinating is the use of such antibodies in human therapy and prevention (vaccination, of cancer, AIDS, autoimmune diseases. A special entity of naturally occurring DNA hydrolytic anti-DNA antibodies is emerging within past decades linked to autoimmune and lymphoproliferative disorders, such as systemic lupus erythematosus (SLE, multiple sclerosis (MS, Sjogren Syndrome (SS, B - Chronic lymphocytic leucosis (B-CLL, and Multiple Myeloma (MM. The origin of the antibodies is unknown. The underlying mechanisms of these activities are suggested to be penetration into the living cells and translocation in the nucleus, with recognition of the specific binding sites at particular (ss or ds DNA. There are controversies in the literature whether hydrolysis is a sequence-specific event. The interplay between anti-DNA antibodies and DNA is not yet elucidated. This molecular “twist” also suggests that anti-DNA antibodies with DNA hydrolytic capacity could be the organism's immune response to a microbial attack, with microbial DNA, or specific genes within microbial DNA sequence, as a target for neutralization. The catalytic antibody-based approach can become a key tool in selective chemotherapeutic strategies.

  12. Structures of DNA containing psoralen crosslink and thymine dimer

    International Nuclear Information System (INIS)

    Kim, S.H.; Pearlman, D.A.; Holbrook, S.R.; Pirkle, D.

    1985-01-01

    UV irradiation by itself or in conjunction with other chemicals can cause covalent damages to DNA in living cells. To overcome the detrimental effect of DNA damage, cells developed a repair mechanism by which damaged DNA is repaired. In the absence of such repair, cell malfunction or cell death can occur. Two most studied radiation-induced DNA damage are thymine dimer formation by UV irradiation and psoralen crosslink by combination of psoralens and UV: In the former, two adjacent thymine bases on a strand of DNA are fused by forming cyclobutane ring, and in the latter, one pyrimidine on one DNA strand is crosslinked to another pyrimidine on the other strand via a psoralen. The authors' objective is to deduce the structure of DNA segment which contains a psoralen crosslink or a thymine dimer using the combination of results of X-ray crystallographic studies, molecular model building, and energy minimization. These structural features may be important for understanding the biological effects of such damages and for the recognition by the repair enzymes

  13. Promoter scanning of the human COX-2 gene with 8-ring polyamides: unexpected weakening of polyamide-DNA binding and selectivity by replacing an internal N-Me-pyrrole with β-alanine.

    Science.gov (United States)

    Bashkin, James K; Aston, Karl; Ramos, Joseph P; Koeller, Kevin J; Nanjunda, Rupesh; He, Gaofei; Dupureur, Cynthia M; David Wilson, W

    2013-02-01

    Rules for polyamide-DNA recognition have proved invaluable for the design of sequence-selective DNA binding agents in cell-free systems. However, these rules are not fully transferrable to predicting activity in cells, tissues or animals, and additional refinements to our understanding of DNA recognition would help biomedical studies. Similar complexities are encountered when using internal β-alanines as polyamide building blocks in place of N-methylpyrrole; β-alanines were introduced in polyamide designs to maintain good hydrogen bonding registry with the target DNA, especially for long polyamides or those with several GC bp (P.B. Dervan, A.R. Urbach, Essays Contemp. Chem. (2001) 327-339). Thus, to clarify important subtleties of molecular recognition, we studied the effects of replacing a single pyrrole with β-alanine in 8-ring polyamides designed against the Ets-1 transcription factor. Replacement of a single internal N-methylpyrrole with β-alanine to generate a β/Im pairing in two 8-ring polyamides causes a decrease in DNA binding affinity by two orders of magnitude and decreases DNA binding selectivity, contrary to expectations based on the literature. Measurements were made by fluorescence spectroscopy, quantitative DNA footprinting and surface plasmon resonance, with these vastly different techniques showing excellent agreement. Furthermore, results were validated for a range of DNA substrates from small hairpins to long dsDNA sequences. Docking studies helped show that β-alanine does not make efficient hydrophobic contacts with the rest of the polyamide or nearby DNA, in contrast to pyrrole. These results help refine design principles and expectations for polyamide-DNA recognition. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Quantitative analysis of TALE-DNA interactions suggests polarity effects.

    Science.gov (United States)

    Meckler, Joshua F; Bhakta, Mital S; Kim, Moon-Soo; Ovadia, Robert; Habrian, Chris H; Zykovich, Artem; Yu, Abigail; Lockwood, Sarah H; Morbitzer, Robert; Elsäesser, Janett; Lahaye, Thomas; Segal, David J; Baldwin, Enoch P

    2013-04-01

    Transcription activator-like effectors (TALEs) have revolutionized the field of genome engineering. We present here a systematic assessment of TALE DNA recognition, using quantitative electrophoretic mobility shift assays and reporter gene activation assays. Within TALE proteins, tandem 34-amino acid repeats recognize one base pair each and direct sequence-specific DNA binding through repeat variable di-residues (RVDs). We found that RVD choice can affect affinity by four orders of magnitude, with the relative RVD contribution in the order NG > HD ≈ NN > NI > NK. The NN repeat preferred the base G over A, whereas the NK repeat bound G with 10(3)-fold lower affinity. We compared AvrBs3, a naturally occurring TALE that recognizes its target using some atypical RVD-base combinations, with a designed TALE that precisely matches 'standard' RVDs with the target bases. This comparison revealed unexpected differences in sensitivity to substitutions of the invariant 5'-T. Another surprising observation was that base mismatches at the 5' end of the target site had more disruptive effects on affinity than those at the 3' end, particularly in designed TALEs. These results provide evidence that TALE-DNA recognition exhibits a hitherto un-described polarity effect, in which the N-terminal repeats contribute more to affinity than C-terminal ones.

  15. ATM signaling and genomic stability in response to DNA damage

    International Nuclear Information System (INIS)

    Lavin, Martin F.; Birrell, Geoff; Chen, Philip; Kozlov, Sergei; Scott, Shaun; Gueven, Nuri

    2005-01-01

    DNA double strand breaks represent the most threatening lesion to the integrity of the genome in cells exposed to ionizing radiation and radiomimetic chemicals. Those breaks are recognized, signaled to cell cycle checkpoints and repaired by protein complexes. The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) plays a central role in the recognition and signaling of DNA damage. ATM is one of an ever growing number of proteins which when mutated compromise the stability of the genome and predispose to tumour development. Mechanisms for recognising double strand breaks in DNA, maintaining genome stability and minimizing risk of cancer are discussed

  16. Active Site Sharing and Subterminal Hairpin Recognition in a New Class of DNA Transposases

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Donald R.; Guynet, Catherine; Ton-Hoang, Bao; Perez, Zhanita N.; Ghirlando, Rodolfo; Chandler, Michael; Dyda, Fred (Centre Nat); (NIH)

    2010-07-20

    Many bacteria harbor simple transposable elements termed insertion sequences (IS). In Helicobacter pylori, the chimeric IS605 family elements are particularly interesting due to their proximity to genes encoding gastric epithelial invasion factors. Protein sequences of IS605 transposases do not bear the hallmarks of other well-characterized transposases. We have solved the crystal structure of full-length transposase (TnpA) of a representative member, ISHp608. Structurally, TnpA does not resemble any characterized transposase; rather, it is related to rolling circle replication (RCR) proteins. Consistent with RCR, Mg{sup 2+} and a conserved tyrosine, Tyr127, are essential for DNA nicking and the formation of a covalent intermediate between TnpA and DNA. TnpA is dimeric, contains two shared active sites, and binds two DNA stem loops representing the conserved inverted repeats near each end of ISHp608. The cocrystal structure with stem-loop DNA illustrates how this family of transposases specifically recognizes and pairs ends, necessary steps during transposition.

  17. Nuclear translocation contributes to regulation of DNA excision repair activities

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Andersen, Sofie Dabros; Lützen, Anne

    2009-01-01

    for regulation of nuclear import that is necessary for proper localization of the repair proteins. This review summarizes the current knowledge on nuclear import mechanisms of DNA excision repair proteins and provides a model that categorizes the import by different mechanisms, including classical nuclear import......DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA......, it is evident that proteins from the different DNA repair pathways interact [Y. Wang, D. Cortez, P. Yazdi, N. Neff, S.J. Elledge, J. Qin, BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14 (2000) 927-939; M. Christmann, M...

  18. Noncovalent DNA Binding Drives DNA Alkylation by Leinamycin. Evidence That the Z,E-5-(Thiazol-4-yl)-penta-2,4-dienone Moiety of the Natural Product Serves As An Atypical DNA Intercalator

    Science.gov (United States)

    Fekry, Mostafa I.; Szekely, Jozsef; Dutta, Sanjay; Breydo, Leonid; Zang, Hong; Gates, Kent S.

    2012-01-01

    Molecular recognition and chemical modification of DNA are important in medicinal chemistry, toxicology, and biotechnology. Historically, natural products have revealed many interesting and unexpected mechanisms for noncovalent DNA binding and covalent DNA modification. The studies reported here characterize the molecular mechanisms underlying the efficient alkylation of duplex DNA by the Streptomyces-derived natural product leinamycin. Previous studies suggested that alkylation of duplex DNA by activated leinamycin (2) is driven by noncovalent association of the natural product with the double helix. This is striking because leinamycin does not contain a classical noncovalent DNA-binding motif such as an intercalating unit, a groove binder, or a polycation. The experiments described here provide evidence that leinamycin is an atypical DNA-intercalating agent. A competition binding assay involving daunomycin-mediated inhibition of DNA alkylation by leinamycin provided evidence that activated leinamycin binds to duplex DNA with an apparent binding constant of approximately 4.3 ± 0.4 × 103 M−1. Activated leinamycin caused duplex unwinding and hydrodynamic changes in DNA-containing solutions that are indicative of DNA intercalation. Characterization of the reaction of activated leinamycin with palindromic duplexes containing 5'-CG and 5'-GC target sites, bulge-containing duplexes, and 5-methylcytosine-containing duplexes provided evidence regarding the orientation of leinamycin with respect to target guanine residues. The data allows construction of a model for the leinamycin-DNA complex suggesting how a modest DNA-binding constant combines with proper positioning of the natural product to drive efficient alkylation of guanine residues in the major groove of duplex DNA. PMID:21954957

  19. Sequence-specific electrochemical recognition of multiple species using nanoparticle labels

    International Nuclear Information System (INIS)

    Cai Hong; Shang, Chii; Hsing, I.-Ming

    2004-01-01

    In this work, we report an electrochemical methodology that enables the rapid identification of different DNA sequences on the microfabricated electrodes. Our approach starts with an electropolymerization process on a patterned indium tin oxide (ITO)-coated glass electrode, followed by a selective immobilization of biotin-tagged probes on individually addressable spots via the biotin-streptavidin linkage. An exemplary target mixture containing E. coli and Stachybotrys Chartarum, an airborne pathogen, is then introduced. Recognition of the DNA hybridization event of the immobilized probes with the target pathogen PCR products or synthetic oligonucleotides is achieved by a novel electrochemistry-based technique utilizing the preferential catalytic silver electrodeposition process on the DNA-linked nanogold shells. The ability to selectively immobilize different oligonucleotide probes together with a sensitive electrochemistry-based detection for multiple species, as demonstrated in this study, is an important step forward for the realization of a portable bioanalytical microdevice for the rapid detection of pathogens

  20. The interferon response to intracellular DNA: why so many receptors?

    Science.gov (United States)

    Unterholzner, Leonie

    2013-11-01

    The detection of intracellular DNA has emerged to be a key event in the innate immune response to viruses and intracellular bacteria, and during conditions of sterile inflammation and autoimmunity. One of the consequences of the detection of DNA as a 'stranger' and a 'danger' signal is the production of type I interferons and pro-inflammatory cytokines. Much work has been dedicated to the elucidation of the signalling cascades that activate this DNA-induced gene expression programme. However, while many proteins have been proposed to act as sensors for intracellular DNA in recent years, none has been met with universal acceptance, and a theory linking all the recent observations is, as yet, lacking. This review presents the evidence for the various interferon-inducing DNA receptors proposed to date, and examines the hypotheses that might explain why so many different receptors appear to be involved in the innate immune recognition of intracellular DNA. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. DNA binding properties of the small cascade subunit Csa5.

    Directory of Open Access Journals (Sweden)

    Michael Daume

    Full Text Available CRISPR-Cas systems provide immunity against viral attacks in archaeal and bacterial cells. Type I systems employ a Cas protein complex termed Cascade, which utilizes small CRISPR RNAs to detect and degrade the exogenic DNA. A small sequence motif, the PAM, marks the foreign substrates. Previously, a recombinant type I-A Cascade complex from the archaeon Thermoproteus tenax was shown to target and degrade DNA in vitro, dependent on a native PAM sequence. Here, we present the biochemical analysis of the small subunit, Csa5, of this Cascade complex. T. tenax Csa5 preferentially bound ssDNA and mutants that showed decreased ssDNA-binding and reduced Cascade-mediated DNA cleavage were identified. Csa5 oligomerization prevented DNA binding. Specific recognition of the PAM sequence was not observed. Phylogenetic analyses identified Csa5 as a universal member of type I-A systems and revealed three distinct groups. A potential role of Csa5 in R-loop stabilization is discussed.

  2. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate.

    Science.gov (United States)

    Nandakumar, Jayakrishnan; Nair, Pravin A; Shuman, Stewart

    2007-04-27

    NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria and essential for growth. Their distinctive substrate specificity and domain organization vis-a-vis human ATP-dependent ligases make them outstanding targets for anti-infective drug discovery. We report here the 2.3 A crystal structure of Escherichia coli LigA bound to an adenylylated nick, which captures LigA in a state poised for strand closure and reveals the basis for nick recognition. LigA envelopes the DNA within a protein clamp. Large protein domain movements and remodeling of the active site orchestrate progression through the three chemical steps of the ligation reaction. The structure inspires a strategy for inhibitor design.

  3. Detecting Release of Bacterial dsDNA into the Host Cytosol Using Fluorescence Microscopy.

    Science.gov (United States)

    Dreier, Roland Felix; Santos, José Carlos; Broz, Petr

    2018-01-01

    Recognition of pathogens by the innate immune system relies on germline-encoded pattern recognition receptors (PRRs) that recognize unique microbial molecules, so-called pathogen-associated molecular patterns (PAMPs). Nucleic acids and their derivatives are one of the most important groups of PAMPs, and are recognized by a number of surface-associated as well as cytosolic PRRs. Cyclic GMP-AMP synthase (cGAS) recognizes the presence of pathogen- or host-derived dsDNA in the cytosol and initiates type-I-IFN production. Here, we describe a methodology that allows for evaluating the association of cGAS with released bacterial dsDNA during Francisella novicida infection of macrophages, by fluorescence confocal microscopy. This method can be adapted to the study of cGAS-dependent responses elicited by other intracellular bacterial pathogens and in other cell types.

  4. DNA based radiological dosimetry technology

    International Nuclear Information System (INIS)

    Diaz Quijada, Gerardo A.; Roy, Emmanuel; Veres, Teodor; Dumoulin, Michel M.; Vachon, Caroline; Blagoeva, Rosita; Pierre, Martin

    2008-01-01

    Full text: The purpose of this project is to develop a personal and wearable dosimeter using a highly-innovative approach based on the specific recognition of DNA damage with a polymer hybrid. Our biosensor will be sensitive to breaks in nucleic acid macromolecules and relevant to mixed-field radiation. The dosimeter proposed will be small, field deployable and will sense damages for all radiation types at the DNA level. The generalized concept for the novel-based radiological dosimeter: 1) Single or double stranded oligonucleotide is immobilized on surface; 2) Single stranded has higher cross-section for fragmentation; 3) Double stranded is more biological relevant; 4) Radiation induces fragmentation; 5) Ultra-sensitive detection of fragments provides radiation dose. Successful efforts have been made towards a proof-of-concept personal wearable DNA-based dosimeter that is appropriate for mixed-field radiation. The covalent immobilization of oligonucleotides on large areas of plastic surfaces has been demonstrated and corroborated spectroscopically. The surface concentration of DNA was determined to be 8 x 1010 molecules/cm 2 from a Ce(IV) catalyzed hydrolysis study of a fluorescently labelled oligonucleotide. Current efforts are being directed at studying radiation induced fragmentation of DNA followed by its ultra-sensitive detection via a novel method. In addition, proof-of-concept wearable personal devices and a detection platform are presently being fabricated. (author)

  5. Sequence-specific DNA alkylation by tandem Py-Im polyamide conjugates.

    Science.gov (United States)

    Taylor, Rhys Dylan; Kawamoto, Yusuke; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi

    2014-09-01

    Tandem N-methylpyrrole-N-methylimidazole (Py-Im) polyamides with good sequence-specific DNA-alkylating activities have been designed and synthesized. Three alkylating tandem Py-Im polyamides with different linkers, which each contained the same moiety for the recognition of a 10 bp DNA sequence, were evaluated for their reactivity and selectivity by DNA alkylation, using high-resolution denaturing gel electrophoresis. All three conjugates displayed high reactivities for the target sequence. In particular, polyamide 1, which contained a β-alanine linker, displayed the most-selective sequence-specific alkylation towards the target 10 bp DNA sequence. The tandem Py-Im polyamide conjugates displayed greater sequence-specific DNA alkylation than conventional hairpin Py-Im polyamide conjugates (4 and 5). For further research, the design of tandem Py-Im polyamide conjugates could play an important role in targeting specific gene sequences. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Simultaneous detection of multiple DNA targets by integrating dual-color graphene quantum dot nanoprobes and carbon nanotubes.

    Science.gov (United States)

    Qian, Zhaosheng; Shan, Xiaoyue; Chai, Lujing; Chen, Jianrong; Feng, Hui

    2014-12-01

    Simultaneous detection of multiple DNA targets was achieved based on a biocompatible graphene quantum dots (GQDs) and carbon nanotubes (CNTs) platform through spontaneous assembly between dual-color GQD-based probes and CNTs and subsequently self-recognition between DNA probes and targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Optical Pattern Recognition

    Science.gov (United States)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  8. Intrinsic Stability of Episomal Circles Formed during Human Immunodeficiency Virus Type 1 Replication

    Science.gov (United States)

    Pierson, TheodoreC.; Kieffer, Tara L.; Ruff, Christian T.; Buck, Christopher; Gange, Stephen J.; Siliciano, Robert F.

    2002-01-01

    The development of surrogate markers capable of detecting residual ongoing human immunodeficiency virus type 1 (HIV-1) replication in patients receiving highly active antiretroviral therapy is an important step in understanding viral dynamics and in developing new treatment strategies. In this study, we evaluated the utility of circular forms of the viral genome for the detection of recent infection of cells by HIV-1. We measured the fate of both one-long terminal repeat (1-LTR) and 2-LTR circles following in vitro infection of logarithmically growing CD4+ T cells under conditions in which cell death was not a significant contributing factor. Circular forms of the viral genome were found to be highly stable and to decrease in concentration only as a function of dilution resulting from cell division. We conclude that these DNA circles are not intrinsically unstable in all cell types and suggest that the utility of 2-LTR circle assays in measuring recent HIV-1 infection of susceptible cells in vivo needs to be reevaluated. PMID:11907256

  9. DNA looping by FokI: the impact of synapse geometry on loop topology at varied site orientations

    Science.gov (United States)

    Rusling, David A.; Laurens, Niels; Pernstich, Christian; Wuite, Gijs J. L.; Halford, Stephen E.

    2012-01-01

    Most restriction endonucleases, including FokI, interact with two copies of their recognition sequence before cutting DNA. On DNA with two sites they act in cis looping out the intervening DNA. While many restriction enzymes operate symmetrically at palindromic sites, FokI acts asymmetrically at a non-palindromic site. The directionality of its sequence means that two FokI sites can be bridged in either parallel or anti-parallel alignments. Here we show by biochemical and single-molecule biophysical methods that FokI aligns two recognition sites on separate DNA molecules in parallel and that the parallel arrangement holds for sites in the same DNA regardless of whether they are in inverted or repeated orientations. The parallel arrangement dictates the topology of the loop trapped between sites in cis: the loop from inverted sites has a simple 180° bend, while that with repeated sites has a convoluted 360° turn. The ability of FokI to act at asymmetric sites thus enabled us to identify the synapse geometry for sites in trans and in cis, which in turn revealed the relationship between synapse geometry and loop topology. PMID:22362745

  10. A new selective developmental deficit: Impaired object recognition with normal face recognition.

    Science.gov (United States)

    Germine, Laura; Cashdollar, Nathan; Düzel, Emrah; Duchaine, Bradley

    2011-05-01

    Studies of developmental deficits in face recognition, or developmental prosopagnosia, have shown that individuals who have not suffered brain damage can show face recognition impairments coupled with normal object recognition (Duchaine and Nakayama, 2005; Duchaine et al., 2006; Nunn et al., 2001). However, no developmental cases with the opposite dissociation - normal face recognition with impaired object recognition - have been reported. The existence of a case of non-face developmental visual agnosia would indicate that the development of normal face recognition mechanisms does not rely on the development of normal object recognition mechanisms. To see whether a developmental variant of non-face visual object agnosia exists, we conducted a series of web-based object and face recognition tests to screen for individuals showing object recognition memory impairments but not face recognition impairments. Through this screening process, we identified AW, an otherwise normal 19-year-old female, who was then tested in the lab on face and object recognition tests. AW's performance was impaired in within-class visual recognition memory across six different visual categories (guns, horses, scenes, tools, doors, and cars). In contrast, she scored normally on seven tests of face recognition, tests of memory for two other object categories (houses and glasses), and tests of recall memory for visual shapes. Testing confirmed that her impairment was not related to a general deficit in lower-level perception, object perception, basic-level recognition, or memory. AW's results provide the first neuropsychological evidence that recognition memory for non-face visual object categories can be selectively impaired in individuals without brain damage or other memory impairment. These results indicate that the development of recognition memory for faces does not depend on intact object recognition memory and provide further evidence for category-specific dissociations in visual

  11. Specificity and function of Archaeal DNA replication initiator proteins

    DEFF Research Database (Denmark)

    Samson, Rachel Y.; Xu, Yanqun; Gadelha, Catarina

    2013-01-01

    Chromosomes with multiple DNA replication origins are a hallmark of Eukaryotes and some Archaea. All eukaryal nuclear replication origins are defined by the origin recognition complex (ORC) that recruits the replicative helicase MCM(2-7) via Cdc6 and Cdt1. We find that the three origins...... to investigate the role of ATP binding and hydrolysis in initiator function in vivo and in vitro. We find that the ATP-bound form of Orc1-1 is proficient for replication and implicates hydrolysis of ATP in downregulation of origin activity. Finally, we reveal that ATP and DNA binding by Orc1-1 remodels...

  12. Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors.

    Science.gov (United States)

    Li, Jianfeng; Lee, Eun-Cheol

    2015-09-15

    All-solution-processed, easily-made, flexible multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS)-based electrodes were fabricated and used for electrochemical DNA sensors. These electrodes could serve as a recognition layer for DNA, without any surface modification, through π-π interactions between the MWCNTs and DNA, greatly simplifying the fabrication process for DNA sensors. The electrodes were directly connected to an electrochemical analyzer in the differential pulse voltammetry (DPV) and cyclic voltammetry (CV) measurements, where methylene blue was used as a redox indicator. Since neither functional groups nor probe DNA were immobilized on the surfaces of the electrodes, the sensor can be easily regenerated by washing these electrodes with water. The limit of detection was found to be 1.3 × 10(2)pM (S/N=3), with good DNA sequence differentiation ability. Fast fabrication of a DNA sensor was also achieved by cutting and attaching the MWCNT-PDMS composite electrodes at an analyte solution-containable region. Our results pave the way for developing user-fabricated easily attached DNA sensors at low costs. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Complete cDNA sequence coding for human docking protein

    Energy Technology Data Exchange (ETDEWEB)

    Hortsch, M; Labeit, S; Meyer, D I

    1988-01-11

    Docking protein (DP, or SRP receptor) is a rough endoplasmic reticulum (ER)-associated protein essential for the targeting and translocation of nascent polypeptides across this membrane. It specifically interacts with a cytoplasmic ribonucleoprotein complex, the signal recognition particle (SRP). The nucleotide sequence of cDNA encoding the entire human DP and its deduced amino acid sequence are given.

  14. Genetic characterization and phylogeny of human T-cell lymphotropic virus type I from Chile.

    Science.gov (United States)

    Ramirez, E; Cartier, L; Villota, C; Fernandez, J

    2002-03-20

    Infection with Human T-Cell Lymphotropic Virus type I (HTLV-I) have been associated with the development of the HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP). Phylogenetic analyses of HTLV-I isolates have revealed that HTLV-I can be classified into three major groups: the Cosmopolitan, Central African and Melanesian. In the present study, we analyzed the tax, 5' ltr, gag, pol, and env sequences of proviruses of PBMC from ten HAM/TSP patients to investigate the phylogenetic characterization of HTLV-I in Chilean patients. HTLV-I provirus in PBMC from ten Chilean patients with HAM/TSP were amplified by PCR using primers of tax, 5' ltr, gag, pol, and env genes. Amplified products of the five genes were purified and nucleotide sequence was determined by the dideoxy termination procedure. DNA sequences were aligned with the CLUSTAL W program. The results of this study showed that the tax, 5' ltr, gag, pol, and env gene of the Chilean HTLV-I strains had a nucleotide homology ranged from 98.1 to 100%, 95 to 97%, 98.9 to 100%, 94 to 98%, and 94.2 to 98.5% respect to ATK-1 clone, respectively. According to molecular phylogeny with 5' ltr gene, the Chilean HTLV-I strains were grouped with each other suggesting one cluster included in Transcontinental subgroup.

  15. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP.

    NARCIS (Netherlands)

    P. Vichi; F. Coin (Frédéric); J-P. Renaud (Jean-Paul); W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan); D. Moras; J-M. Egly (Jean-Marc)

    1997-01-01

    textabstractA connection between transcription and DNA repair was demonstrated previously through the characterization of TFIIH. Using filter binding as well as in vitro transcription challenge competition assays, we now show that the promoter recognition factor TATA box-binding protein (TBP)/TFIID

  16. Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA.

    Science.gov (United States)

    Pedersen, Hege Lynum; Johnson, Kenneth A; McVey, Colin E; Leiros, Ingar; Moe, Elin

    2015-10-01

    in the N-terminus of a symmetry-related molecule and the complementary DNA strand facing away from the active site were also observed which seem to stabilize the enzyme-DNA complex. However, the significance of this observation remains to be investigated. The results provide new insights into the current knowledge about DNA damage recognition and repair by uracil-DNA glycosylases.

  17. Robust Bioinformatics Recognition with VLSI Biochip Microsystem

    Science.gov (United States)

    Lue, Jaw-Chyng L.; Fang, Wai-Chi

    2006-01-01

    A microsystem architecture for real-time, on-site, robust bioinformatic patterns recognition and analysis has been proposed. This system is compatible with on-chip DNA analysis means such as polymerase chain reaction (PCR)amplification. A corresponding novel artificial neural network (ANN) learning algorithm using new sigmoid-logarithmic transfer function based on error backpropagation (EBP) algorithm is invented. Our results show the trained new ANN can recognize low fluorescence patterns better than the conventional sigmoidal ANN does. A differential logarithmic imaging chip is designed for calculating logarithm of relative intensities of fluorescence signals. The single-rail logarithmic circuit and a prototype ANN chip are designed, fabricated and characterized.

  18. Applications of statistical physics and information theory to the analysis of DNA sequences

    Science.gov (United States)

    Grosse, Ivo

    2000-10-01

    DNA carries the genetic information of most living organisms, and the of genome projects is to uncover that genetic information. One basic task in the analysis of DNA sequences is the recognition of protein coding genes. Powerful computer programs for gene recognition have been developed, but most of them are based on statistical patterns that vary from species to species. In this thesis I address the question if there exist universal statistical patterns that are different in coding and noncoding DNA of all living species, regardless of their phylogenetic origin. In search for such species-independent patterns I study the mutual information function of genomic DNA sequences, and find that it shows persistent period-three oscillations. To understand the biological origin of the observed period-three oscillations, I compare the mutual information function of genomic DNA sequences to the mutual information function of stochastic model sequences. I find that the pseudo-exon model is able to reproduce the mutual information function of genomic DNA sequences. Moreover, I find that a generalization of the pseudo-exon model can connect the existence and the functional form of long-range correlations to the presence and the length distributions of coding and noncoding regions. Based on these theoretical studies I am able to find an information-theoretical quantity, the average mutual information (AMI), whose probability distributions are significantly different in coding and noncoding DNA, while they are almost identical in all studied species. These findings show that there exist universal statistical patterns that are different in coding and noncoding DNA of all studied species, and they suggest that the AMI may be used to identify genes in different living species, irrespective of their taxonomic origin.

  19. Correlation of bistranded clustered abasic DNA lesion processing with structural and dynamic DNA helix distortion

    Science.gov (United States)

    Bignon, Emmanuelle; Gattuso, Hugo; Morell, Christophe; Dehez, François; Georgakilas, Alexandros G.; Monari, Antonio; Dumont, Elise

    2016-01-01

    Clustered apurinic/apyrimidinic (AP; abasic) DNA lesions produced by ionizing radiation are by far more cytotoxic than isolated AP lesion entities. The structure and dynamics of a series of seven 23-bp oligonucleotides featuring simple bistranded clustered damage sites, comprising of two AP sites, zero, one, three or five bases 3′ or 5′ apart from each other, were investigated through 400 ns explicit solvent molecular dynamics simulations. They provide representative structures of synthetically engineered multiply damage sites-containing oligonucleotides whose repair was investigated experimentally (Nucl. Acids Res. 2004, 32:5609-5620; Nucl. Acids Res. 2002, 30: 2800–2808). The inspection of extrahelical positioning of the AP sites, bulge and non Watson–Crick hydrogen bonding corroborates the experimental measurements of repair efficiencies by bacterial or human AP endonucleases Nfo and APE1, respectively. This study provides unprecedented knowledge into the structure and dynamics of clustered abasic DNA lesions, notably rationalizing the non-symmetry with respect to 3′ to 5′ position. In addition, it provides strong mechanistic insights and basis for future studies on the effects of clustered DNA damage on the recognition and processing of these lesions by bacterial or human DNA repair enzymes specialized in the processing of such lesions. PMID:27587587

  20. Analysis of transposable elements in the genome of Asparagus officinalis from high coverage sequence data.

    Science.gov (United States)

    Li, Shu-Fen; Gao, Wu-Jun; Zhao, Xin-Peng; Dong, Tian-Yu; Deng, Chuan-Liang; Lu, Long-Dou

    2014-01-01

    Asparagus officinalis is an economically and nutritionally important vegetable crop that is widely cultivated and is used as a model dioecious species to study plant sex determination and sex chromosome evolution. To improve our understanding of its genome composition, especially with respect to transposable elements (TEs), which make up the majority of the genome, we performed Illumina HiSeq2000 sequencing of both male and female asparagus genomes followed by bioinformatics analysis. We generated 17 Gb of sequence (12×coverage) and assembled them into 163,406 scaffolds with a total cumulated length of 400 Mbp, which represent about 30% of asparagus genome. Overall, TEs masked about 53% of the A. officinalis assembly. Majority of the identified TEs belonged to LTR retrotransposons, which constitute about 28% of genomic DNA, with Ty1/copia elements being more diverse and accumulated to higher copy numbers than Ty3/gypsy. Compared with LTR retrotransposons, non-LTR retrotransposons and DNA transposons were relatively rare. In addition, comparison of the abundance of the TE groups between male and female genomes showed that the overall TE composition was highly similar, with only slight differences in the abundance of several TE groups, which is consistent with the relatively recent origin of asparagus sex chromosomes. This study greatly improves our knowledge of the repetitive sequence construction of asparagus, which facilitates the identification of TEs responsible for the early evolution of plant sex chromosomes and is helpful for further studies on this dioecious plant.

  1. Molecular evidence of inefficient transduction of proliferating human B lymphocytes by VSV-pseudotyped HIV-1-derived lentivectors

    International Nuclear Information System (INIS)

    Serafini, M.; Naldini, L.; Introna, M.

    2004-01-01

    Lentiviral vectors are attractive tools to transduce dividing and nondividing cells. Human tonsillar B lymphocytes have been purified and induced to proliferate by the addition of anti-CD40 + IL-4 or anti-CD40 + anti-μ signals and transduced at high MOI with a VSV pseudotyped lentivector carrying the eGFP gene under the control of the PGK promoter. Parallel cultures of PHA-stimulated T lymphocytes containing a comparable amount of cycling cells during the infection reached over 70% eGFP transduction. By contrast, only less than 3% B lymphocytes became eGFP positive after 7 days from transduction. Molecular analysis of the viral life cycle shows that cytoplasmic retrotranscribed cDNA and nuclear 2LTR circles are detectable at lower levels and for a shorter period of time in proliferating B cells with respect to proliferating T lymphocytes. Moreover, FACS-sorted eGFP-positive and negative B cell populations were both positive for the presence of retrotranscribed cDNA and 2LTR circles nuclear forms. By contrast, nested Alu-LTR PCR allowed us to detect an integrated provirus in FACS-sorted eGFP-positive cells only. Together with the demonstration that infection in saturation conditions led to an increase in the percentage of transduced cells (reaching 9%), these findings suggest that in proliferating B lymphocytes, lentiviral transduction is an inefficient process blocked at the early steps of the viral life cycle possibly involving partially saturable restriction factors

  2. A comprehensive approach to ascertain the binding mode of curcumin with DNA

    Science.gov (United States)

    Haris, P.; Mary, Varughese; Aparna, P.; Dileep, K. V.; Sudarsanakumar, C.

    2017-03-01

    Curcumin is a natural phytochemical from the rhizoma of Curcuma longa, the popular Indian spice that exhibits a wide range of pharmacological properties like antioxidant, anticancer, anti-inflammatory, antitumor, and antiviral activities. In the published literatures we can see different studies and arguments on the interaction of curcumin with DNA. The intercalative binding, groove binding and no binding of curcumin with DNA were reported. In this context, we conducted a detailed study to understand the mechanism of recognition of dimethylsulfoxide-solubilized curcumin by DNA. The interaction of curcumin with calf thymus DNA (ctDNA) was confirmed by agarose gel electrophoresis. The nature of binding and energetics of interaction were studied by Isothermal Titration Calorimetry (ITC), Differential Scanning Calorimetry (DSC), UV-visible, fluorescence and melting temperature (Tm) analysis. The experimental data were compared with molecular modeling studies. Our investigation confirmed that dimethylsulfoxide-solubilized curcumin binds in the minor groove of the ctDNA without causing significant structural alteration to the DNA.

  3. Chromatin structure influence the sensitivity of DNA to ionizing radiation induced DNA damage

    International Nuclear Information System (INIS)

    Gupta, Sanjay

    2016-01-01

    Chromatin acts as a natural hindrance in DNA-damage recognition, repair and recovery. Histone and their variants undergo differential post-translational modification(s) and regulate chromatin structure to facilitate DNA damage response (DDR). During the presentation we will discuss the importance of chromatin organization and histone modification(s) during IR-induced DNA damage response in human liver cells. Our data shows G1-phase specific decrease of H3 serine10 phosphorylation in response to DNA damage is coupled with chromatin compaction in repair phase of DDR. The loss of H3Ser10P during DNA damage shows an inverse correlation with gain of γH2AX from a same mono-nucleosome in a dose-dependent manner. The loss of H3Ser10P is a universal phenomenon as it is independent of origin of cell lines and nature of genotoxic agents in G1 phase cells. The reversible reduction of H3Ser10P is mediated by opposing activities of phosphatase, MKP1 and kinase, MSK1 of the MAP kinase pathway. The present study suggests distinct reversible histone marks are associated with G1-phase of cell cycle and plays a critical role in chromatin organization which may facilitate differential sensitivity against radiation. Thus, the study raises the possibility of combinatorial modulation of H3Ser10P and histone acetylation with specific inhibitors to target the radio-resistant cancer cells in G1-phase and thus may serve as promising targets for cancer therapy. (author)

  4. Radiation and non-radiation damage to DNA. Onset of molecular instability and carcinogenesis. Theoretical explorations on DNA damage and repair

    International Nuclear Information System (INIS)

    Pinak, Miroslay; Bunta, J.K.

    2006-01-01

    The current work is focused on results of molecular dynamics simulations performed on two DNA damages: 8-oxoguanine as the most significant oxidative damage leading to transversion mutation cytosine-guanine→adenine-thymine', which is common mutation found in human cancer cells; and on the DNA strand break, the type of damage that is considered to be one of the most significant damage leading to genetic instability that may result in enhanced cell proliferation or carcinogenesis. Except the structural changes induced by these two lesions the role and importance of electrostatic energy in recognition process in which a respective repair enzyme recognizes damaged DNA site is also described. Among the significant results can be included the fact, that most of the damages on DNA alternate locally electronic state by modifying chemical and electron orbital configuration. This modified configuration may be represented outside DNA molecule as an enhanced electrostatic interaction with surrounding environment, that may signal the presence of the damaged site toward the repair enzyme. Work on the DNA strand break shows that open valences at broken strand ends are quickly filled by the electrons generated during radiolysis. Results of simulation indicate a local instability of hydrogen bonds between complementary bases. (author)

  5. Coulomb and CH-π interactions in (6-4) photolyase-DNA complex dominate DNA binding and repair abilities.

    Science.gov (United States)

    Terai, Yuma; Sato, Ryuma; Yumiba, Takahiro; Harada, Ryuhei; Shimizu, Kohei; Toga, Tatsuya; Ishikawa-Fujiwara, Tomoko; Todo, Takeshi; Iwai, Shigenori; Shigeta, Yasuteru; Yamamoto, Junpei

    2018-05-14

    (6-4) Photolyases ((6-4)PLs) are flavoenzymes that repair the carcinogenic UV-induced DNA damage, pyrimidine(6-4)pyrimidone photoproducts ((6-4)PPs), in a light-dependent manner. Although the reaction mechanism of DNA photorepair by (6-4)PLs has been intensively investigated, the molecular mechanism of the lesion recognition remains obscure. We show that a well-conserved arginine residue in Xenopus laevis (6-4)PL (Xl64) participates in DNA binding, through Coulomb and CH-π interactions. Fragment molecular orbital calculations estimated attractive interaction energies of -80-100 kcal mol-1 for the Coulomb interaction and -6 kcal mol-1 for the CH-π interaction, and the loss of either of them significantly reduced the affinity for (6-4)PP-containing oligonucleotides, as well as the quantum yield of DNA photorepair. From experimental and theoretical observations, we formulated a DNA binding model of (6-4)PLs. Based on the binding model, we mutated this Arg in Xl64 to His, which is well conserved among the animal cryptochromes (CRYs), and found that the CRY-type mutant exhibited reduced affinity for the (6-4)PP-containing oligonucleotides, implying the possible molecular origin of the functional diversity of the photolyase/cryptochrome superfamily.

  6. Spreadsheet-based program for alignment of overlapping DNA sequences.

    Science.gov (United States)

    Anbazhagan, R; Gabrielson, E

    1999-06-01

    Molecular biology laboratories frequently face the challenge of aligning small overlapping DNA sequences derived from a long DNA segment. Here, we present a short program that can be used to adapt Excel spreadsheets as a tool for aligning DNA sequences, regardless of their orientation. The program runs on any Windows or Macintosh operating system computer with Excel 97 or Excel 98. The program is available for use as an Excel file, which can be downloaded from the BioTechniques Web site. Upon execution, the program opens a specially designed customized workbook and is capable of identifying overlapping regions between two sequence fragments and displaying the sequence alignment. It also performs a number of specialized functions such as recognition of restriction enzyme cutting sites and CpG island mapping without costly specialized software.

  7. Structural changes of ultraviolet-irradiated DNA derived from hydrodynamic measurements

    International Nuclear Information System (INIS)

    Triebel, H.; Reinert, K.E.; Baeer, H.; Lang, H.

    1979-01-01

    The paper reports on sedimentation and viscosity measurements performed on ultraviolet-irradiated DNA from T7 phage and calf thymus. From the hydrodynamic data the relative changes in the mean molecular weight, radius of gyration, and effective Kuhn statistical segment length were calculated. The results show that ultraviolet irradiation (254 nm) leads to a significant decrease of the effective statistical segment length of DNA which may be due to small local helix kinks (produced by the generation of photodimers) and a local increase of chain flexibility. Alterations in the overall DNA conformation may be observed even at low fluence where the mean molecular weight almost stays constant. The locally distorted helix regions possibly may serve as recognition sites in the first step of excision repair. (Auth.)

  8. Real sequence effects on the search dynamics of transcription factors on DNA

    DEFF Research Database (Denmark)

    Bauer, Maximilian; Rasmussen, Emil S.; Lomholt, Michael A.

    2015-01-01

    Recent experiments show that transcription factors (TFs) indeed use the facilitated diffusion mechanism to locate their target sequences on DNA in living bacteria cells: TFs alternate between sliding motion along DNA and relocation events through the cytoplasm. From simulations and theoretical...... analysis we study the TF-sliding motion for a large section of the DNA-sequence of a common E. coli strain, based on the two-state TF-model with a fast-sliding search state and a recognition state enabling target detection. For the probability to detect the target before dissociating from DNA the TF...... on the underlying nucleotide sequence is varied. A moderate dependence maximises the capability to distinguish between the main operator and similar sequences. Moreover, these auxiliary operators serve as starting points for DNA looping with the main operator, yielding a spectrum of target detection times spanning...

  9. Speech Recognition

    Directory of Open Access Journals (Sweden)

    Adrian Morariu

    2009-01-01

    Full Text Available This paper presents a method of speech recognition by pattern recognition techniques. Learning consists in determining the unique characteristics of a word (cepstral coefficients by eliminating those characteristics that are different from one word to another. For learning and recognition, the system will build a dictionary of words by determining the characteristics of each word to be used in the recognition. Determining the characteristics of an audio signal consists in the following steps: noise removal, sampling it, applying Hamming window, switching to frequency domain through Fourier transform, calculating the magnitude spectrum, filtering data, determining cepstral coefficients.

  10. Structural properties of replication origins in yeast DNA sequences

    International Nuclear Information System (INIS)

    Cao Xiaoqin; Zeng Jia; Yan Hong

    2008-01-01

    Sequence-dependent DNA flexibility is an important structural property originating from the DNA 3D structure. In this paper, we investigate the DNA flexibility of the budding yeast (S. Cerevisiae) replication origins on a genome-wide scale using flexibility parameters from two different models, the trinucleotide and the tetranucleotide models. Based on analyzing average flexibility profiles of 270 replication origins, we find that yeast replication origins are significantly rigid compared with their surrounding genomic regions. To further understand the highly distinctive property of replication origins, we compare the flexibility patterns between yeast replication origins and promoters, and find that they both contain significantly rigid DNAs. Our results suggest that DNA flexibility is an important factor that helps proteins recognize and bind the target sites in order to initiate DNA replication. Inspired by the role of the rigid region in promoters, we speculate that the rigid replication origins may facilitate binding of proteins, including the origin recognition complex (ORC), Cdc6, Cdt1 and the MCM2-7 complex

  11. A conserved motif in the linker domain of STAT1 transcription factor is required for both recognition and release from high-affinity DNA-binding sites.

    Science.gov (United States)

    Hüntelmann, Bettina; Staab, Julia; Herrmann-Lingen, Christoph; Meyer, Thomas

    2014-01-01

    Binding to specific palindromic sequences termed gamma-activated sites (GAS) is a hallmark of gene activation by members of the STAT (signal transducer and activator of transcription) family of cytokine-inducible transcription factors. However, the precise molecular mechanisms involved in the signal-dependent finding of target genes by STAT dimers have not yet been very well studied. In this study, we have characterized a sequence motif in the STAT1 linker domain which is highly conserved among the seven human STAT proteins and includes surface-exposed residues in close proximity to the bound DNA. Using site-directed mutagenesis, we have demonstrated that a lysine residue in position 567 of the full-length molecule is required for GAS recognition. The substitution of alanine for this residue completely abolished both binding to high-affinity GAS elements and transcriptional activation of endogenous target genes in cells stimulated with interferon-γ (IFNγ), while the time course of transient nuclear accumulation and tyrosine phosphorylation were virtually unchanged. In contrast, two glutamic acid residues (E559 and E563) on each monomer are important for the dissociation of dimeric STAT1 from DNA and, when mutated to alanine, result in elevated levels of tyrosine-phosphorylated STAT1 as well as prolonged IFNγ-stimulated nuclear accumulation. In conclusion, our data indicate that the kinetics of signal-dependent GAS binding is determined by an array of glutamic acid residues located at the interior surface of the STAT1 dimer. These negatively charged residues appear to align the long axis of the STAT1 dimer in a position perpendicular to the DNA, thereby facilitating the interaction between lysine 567 and the phosphodiester backbone of a bound GAS element, which is a prerequisite for transient gene induction.

  12. Structural Mechanisms of Nucleosome Recognition by Linker Histones.

    Science.gov (United States)

    Zhou, Bing-Rui; Jiang, Jiansheng; Feng, Hanqiao; Ghirlando, Rodolfo; Xiao, T Sam; Bai, Yawen

    2015-08-20

    Linker histones bind to the nucleosome and regulate the structure of chromatin and gene expression. Despite more than three decades of effort, the structural basis of nucleosome recognition by linker histones remains elusive. Here, we report the crystal structure of the globular domain of chicken linker histone H5 in complex with the nucleosome at 3.5 Å resolution, which is validated using nuclear magnetic resonance spectroscopy. The globular domain sits on the dyad of the nucleosome and interacts with both DNA linkers. Our structure integrates results from mutation analyses and previous cross-linking and fluorescence recovery after photobleach experiments, and it helps resolve the long debate on structural mechanisms of nucleosome recognition by linker histones. The on-dyad binding mode of the H5 globular domain is different from the recently reported off-dyad binding mode of Drosophila linker histone H1. We demonstrate that linker histones with different binding modes could fold chromatin to form distinct higher-order structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Recognition and Toleration

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2010-01-01

    Recognition and toleration are ways of relating to the diversity characteristic of multicultural societies. The article concerns the possible meanings of toleration and recognition, and the conflict that is often claimed to exist between these two approaches to diversity. Different forms...... or interpretations of recognition and toleration are considered, confusing and problematic uses of the terms are noted, and the compatibility of toleration and recognition is discussed. The article argues that there is a range of legitimate and importantly different conceptions of both toleration and recognition...

  14. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    Science.gov (United States)

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

  15. The application of strand invasion phenomenon, directed by peptide nucleic acid (PNA) and single-stranded DNA binding protein (SSB) for the recognition of specific sequences of human endogenous retroviral HERV-W family.

    Science.gov (United States)

    Machnik, Grzegorz; Bułdak, Łukasz; Ruczyński, Jarosław; Gąsior, Tomasz; Huzarska, Małgorzata; Belowski, Dariusz; Alenowicz, Magdalena; Mucha, Piotr; Rekowski, Piotr; Okopień, Bogusław

    2017-05-01

    The HERV-W family of human endogenous retroviruses represents a group of numerous sequences that show close similarity in genetic composition. It has been documented that some members of HERV-W-derived expression products are supposed to play significant role in humans' pathology, such as multiple sclerosis or schizophrenia. Other members of the family are necessary to orchestrate physiological processes (eg, ERVWE1 coding syncytin-1 that is engaged in syncytiotrophoblast formation). Therefore, an assay that would allow the recognition of particular form of HERV-W members is highly desirable. A peptide nucleic acid (PNA)-mediated technique for the discrimination between multiple sclerosis-associated retrovirus and ERVWE1 sequence has been developed. The assay uses a PNA probe that, being fully complementary to the ERVWE1 but not to multiple sclerosis-associated retrovirus (MSRV) template, shows high selective potential. Single-stranded DNA binding protein facilitates the PNA-mediated, sequence-specific formation of strand invasion complex and, consequently, local DNA unwinding. The target DNA may be then excluded from further analysis in any downstream process such as single-stranded DNA-specific exonuclease action. Finally, the reaction conditions have been optimized, and several PNA probes that are targeted toward distinct loci along whole HERV-W env sequences have been evaluated. We believe that PNA/single-stranded DNA binding protein-based application has the potential to selectively discriminate particular HERV-W molecules as they are at least suspected to play pathogenic role in a broad range of medical conditions, from psycho-neurologic disorders (multiple sclerosis and schizophrenia) and cancers (breast cancer) to that of an auto-immunologic background (psoriasis and lupus erythematosus). Copyright © 2016 John Wiley & Sons, Ltd.

  16. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition

    Science.gov (United States)

    Junicke, Henrik; Hart, Jonathan R.; Kisko, Jennifer; Glebov, Oleg; Kirsch, Ilan R.; Barton, Jacqueline K.

    2003-01-01

    A rhodium(III) complex, rac-[Rh(bpy)2phzi]3+ (bpy, 2,2′-bipyridine; phzi, benzo[a]phenazine-5,6-quinone diimine) has been designed as a sterically demanding intercalator targeted to destabilized mismatched sites in double-helical DNA. The complex is readily synthesized by condensation of the phenazine quinone with the corresponding diammine complex. Upon photoactivation, the complex promotes direct strand scission at single-base mismatch sites within the DNA duplex. As with the parent mismatch-specific reagent, [Rh(bpy)2(chrysi)]3+ [chrysene-5,6-quinone diimine (chrysi)], mismatch selectivity depends on the helix destabilization associated with mispairing. Unlike the parent chrysi complex, the phzi analogue binds and cleaves with high affinity and efficiency. The specific binding constants for CA, CC, and CT mismatches within a 31-mer oligonucleotide duplex are 0.3, 1, and 6 × 107 M−1, respectively; site-specific photocleavage is evident at nanomolar concentrations. Moreover, the specificity, defined as the ratio in binding affinities for mispaired vs. well paired sites, is maintained. The increase in affinity is attributed to greater stability in the mismatched site associated with stacking by the heterocyclic aromatic ligand. The high-affinity complex is also applied in the differential cleavage of DNA obtained from cell lines deficient in mismatch repair vs. those proficient in mismatch repair. Agreement is found between photocleavage by the mismatch-specific probes and deficiency in mismatch repair. This mismatch-specific targeting, therefore, offers a potential strategy for new chemotherapeutic design. PMID:12610209

  17. Effects of ionizing radiations on DNA-protein complexes

    International Nuclear Information System (INIS)

    Gillard, N.

    2005-11-01

    The radio-induced destruction of DNA-protein complexes may have serious consequences for systems implicated in important cellular functions. The first system which has been studied is the lactose operon system, that regulates gene expression in Escherichia coli. First of all, the repressor-operator complex is destroyed after irradiation of the complex or of the protein alone. The damaging of the domain of repressor binding to DNA (headpiece) has been demonstrated and studied from the point of view of peptide chain integrity, conformation and amino acids damages. Secondly, dysfunctions of the in vitro induction of an irradiated repressor-unirradiated DNA complex have been observed. These perturbations, due to a decrease of the number of inducer binding sites, are correlated to the damaging of tryptophan residues. Moreover, the inducer protects the repressor when they are irradiated together, both by acting as a scavenger in the bulk, and by the masking of its binding site on the protein. The second studied system is formed by Fpg (for Formamido pyrimidine glycosylase), a DNA repair protein and a DNA with an oxidative lesion. The results show that irradiation disturbs the repair both by decreasing its efficiency of DNA lesion recognition and binding, and by altering its enzymatic activity. (author)

  18. Inclusion of Moloney murine leukemia virus elements upstream of the transgene cassette in an E1-deleted adenovirus leads to an unusual genomic integration in epithelial cells

    International Nuclear Information System (INIS)

    Zheng Changyu; O'Connell, Brian C.; Baum, Bruce J.

    2003-01-01

    Classically, the 5' and 3' long terminal repeats (LTRs) are considered necessary but not sufficient for retroviral integration. Recently, we reported that inclusion of these and additional elements from Moloney murine leukemia virus (MoMLV) facilitated transgene integration, without retroviral integrase, when placed in an adenoviral context (AdLTR-luc vector) (Nat. Biotech. 18 (2000), 176; Biochem. Biophys. Res. Commun. 300 (2003), 115). To help understand this nonhomologous DNA recombination event, we constructed another vector, AdELP-luc, with 2.7 kb of MoMLV elements identically placed into an E1-deleted adenovirus type 5 backbone upstream of a luciferase cDNA reporter gene. Unlike AdLTR-luc, no MoMLV elements were placed downstream of the expression cassette. AdELP-luc readily infected epithelial cells in vitro. Southern hybridizations with DNA from cloned cells showed that disruption of the MoMLV sequences occurred. One cell clone, grown in vitro without any special selection medium for 9 months, exhibited stable vector integration and luciferase activity. Importantly, both Southern hybridization and FISH analyses showed that in addition to the MoMLV elements and expression cassette, substantial adenoviral sequence downstream of the luciferase cDNA was genomically integrated. These results suggest that the 2.7 kb of MoMLV sequence included in AdELP-luc have cis-acting functions and mediates an unusual integration event

  19. From milk to diet: feed recognition for milk authenticity.

    Science.gov (United States)

    Ponzoni, E; Gianì, S; Mastromauro, F; Breviario, D

    2009-11-01

    The presence of plastidial DNA fragments of plant origin in animal milk samples has been confirmed. An experimental plan was arranged with 4 groups of goats, each provided with a different monophytic diet: 3 fresh forages (oats, ryegrass, and X-triticosecale) and one 2-wk-old silage (X-triticosecale). Feed-derived rubisco (ribulose bisphosphate carboxylase, rbcL) DNA fragments were detected in 100% of the analyzed goat milk samples, and the nucleotide sequence of the PCR-amplified fragments was found to be 100% identical to the corresponding fragments amplified from the plant species consumed in the diet. Two additional chloroplast-based molecular markers were used to set up an assay for distinctiveness, conveniently based on a simple PCR. In one case, differences in single nucleotides occurring within the gene encoding for plant maturase K (matK) were exploited. In the other, plant species recognition was based on the difference in the length of the intron present within the transfer RNA leucine (trnL) gene. The presence of plastidial plant DNA, ascertained by the PCR-based amplification of the rbcL fragment, was also assessed in raw cow milk samples collected directly from stock farms or taken from milk sold on the commercial market. In this case, the nucleotide sequence of the amplified DNA fragments reflected the multiple forages present in the diet fed to the animals.

  20. Ultrasensitive electrochemical detection of DNA based on Zn²⁺ assistant DNA recycling followed with hybridization chain reaction dual amplification.

    Science.gov (United States)

    Qian, Yong; Wang, Chunyan; Gao, Fenglei

    2015-01-15

    A new strategy to combine Zn(2+) assistant DNA recycling followed with hybridization chain reaction dual amplification was designed for highly sensitive electrochemical detection of target DNA. A gold electrode was used to immobilize molecular beacon (MB) as the recognition probe and perform the amplification procedure. In the presence of the target DNA, the hairpin probe 1 was opened, and the DNAzyme was liberated from the caged structure. The activated DNAzyme hybridized with the MB and catalyzed its cleavage in the presence of Zn(2+) cofactor and resulting in a free DNAzyme strand. Finally, each target-induced activated DNAzyme underwent many cycles triggering the cleavage of MB, thus forming numerous MB fragments. The MB fragments triggered the HCR and formed a long double-helix DNA structure. Because both H1 and H2 were labeled by biotin, a lot of SA-ALP was captured on the electrode surface, thus catalyzing a silver deposition process for electrochemical stripping analysis. This novel cascade signal amplification strategy can detect target DNA down to the attomolar level with a dynamic range spanning 6 orders of magnitude. This highly sensitive and specific assay has a great potential to become a promising DNA quantification method in biomedical research and clinical diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Dragon polya spotter: Predictor of poly(A) motifs within human genomic DNA sequences

    KAUST Repository

    Kalkatawi, Manal M.

    2011-11-15

    Motivation: Recognition of poly(A) signals in mRNA is relatively straightforward due to the presence of easily recognizable polyadenylic acid tail. However, the task of identifying poly(A) motifs in the primary genomic DNA sequence that correspond to poly(A) signals in mRNA is a far more challenging problem. Recognition of poly(A) signals is important for better gene annotation and understanding of the gene regulation mechanisms. In this work, we present one such poly(A) motif prediction method based on properties of human genomic DNA sequence surrounding a poly(A) motif. These properties include thermodynamic, physico-chemical and statistical characteristics. For predictions, we developed Artificial Neural Network and Random Forest models. These models are trained to recognize 12 most common poly(A) motifs in human DNA. Our predictors are available as a free web-based tool accessible at http://cbrc.kaust.edu.sa/dps. Compared with other reported predictors, our models achieve higher sensitivity and specificity and furthermore provide a consistent level of accuracy for 12 poly(A) motif variants. The Author(s) 2011. Published by Oxford University Press. All rights reserved.

  2. Dynamics of viral replication in blood and lymphoid tissues during SIVmac251 infection of macaques

    Directory of Open Access Journals (Sweden)

    Mannioui Abdelkrim

    2009-01-01

    Full Text Available Abstract Background Extensive studies of primary infection are crucial to our understanding of the course of HIV disease. In SIV-infected macaques, a model closely mimicking HIV pathogenesis, we used a combination of three markers -- viral RNA, 2LTR circles and viral DNA -- to evaluate viral replication and dissemination simultaneously in blood, secondary lymphoid tissues, and the gut during primary and chronic infections. Subsequent viral compartmentalization in the main target cells of the virus in peripheral blood during the chronic phase of infection was evaluated by cell sorting and viral quantification with the three markers studied. Results The evolutions of viral RNA, 2LTR circles and DNA levels were correlated in a given tissue during primary and early chronic infection. The decrease in plasma viral load principally reflects a large decrease in viral replication in gut-associated lymphoid tissue (GALT, with viral RNA and DNA levels remaining stable in the spleen and peripheral lymph nodes. Later, during chronic infection, a progressive depletion of central memory CD4+ T cells from the peripheral blood was observed, accompanied by high levels of viral replication in the cells of this subtype. The virus was also found to replicate at this point in the infection in naive CD4+ T cells. Viral RNA was frequently detected in monocytes, but no SIV replication appeared to occur in these cells, as no viral DNA or 2LTR circles were detected. Conclusion We demonstrated the persistence of viral replication and dissemination, mostly in secondary lymphoid tissues, during primary and early chronic infection. During chronic infection, the central memory CD4+ T cells were the major site of viral replication in peripheral blood, but viral replication also occurred in naive CD4+ T cells. The role of monocytes seemed to be limited to carrying the virus as a cargo because there was an observed lack of replication in these cells. These data may have important

  3. Next-generation detection of antigen-responsive T cells using DNA barcode-labeled peptide-major histocompatibility complex I multimers

    DEFF Research Database (Denmark)

    Bentzen, Amalie Kai; Marquard, Andrea Marion; Lyngaa, Rikke Birgitte

    2016-01-01

    sample using >1000 different peptide-MHC multimers labeled with individual DNA barcodes.After isolation of MHC multimer binding T cells their recognition are revealed by amplification andsequencing of the MHC multimer-associated DNA barcodes. The relative frequency of the sequencedDNA barcodes...... originating from a given peptide-MHC motif relates to the size of the antigenresponsiveT cell population. We have demonstrated the use of large panels of >1000 DNA barcodedMHC multimers for detection of rareT cell populations of virus and cancer-restricted origin in various tissues and compared...

  4. Efficient representation of DNA data for pattern recognition using failure factor oracles

    NARCIS (Netherlands)

    Cleophas, Loek; Kourie, Derrick G.; Watson, Bruce W.

    2013-01-01

    In indexing of and pattern matching on DNA sequences, representing all factors of a sequence is important. One efficient, compact representation is the factor oracle (FO). At the same time, any classical deterministic finite automata (DFA) can be transformed to a so-called failure one (FDFA), which

  5. DNA modifications by antitumor platinum and ruthenium compounds: Their recognition and repair

    Czech Academy of Sciences Publication Activity Database

    Brabec, Viktor

    2002-01-01

    Roč. 71, - (2002), s. 1-68 ISSN 0079-6603 R&D Projects: GA AV ČR IAA5004101 Institutional research plan: CEZ:AV0Z5004920 Keywords : interstrand cross-link * cisplatin -demaged DNA * anticancer drug cisplatin Subject RIV: BO - Biophysics Impact factor: 4.839, year: 2002

  6. DNA/RNA hybrid substrates modulate the catalytic activity of purified AID.

    Science.gov (United States)

    Abdouni, Hala S; King, Justin J; Ghorbani, Atefeh; Fifield, Heather; Berghuis, Lesley; Larijani, Mani

    2018-01-01

    Activation-induced cytidine deaminase (AID) converts cytidine to uridine at Immunoglobulin (Ig) loci, initiating somatic hypermutation and class switching of antibodies. In vitro, AID acts on single stranded DNA (ssDNA), but neither double-stranded DNA (dsDNA) oligonucleotides nor RNA, and it is believed that transcription is the in vivo generator of ssDNA targeted by AID. It is also known that the Ig loci, particularly the switch (S) regions targeted by AID are rich in transcription-generated DNA/RNA hybrids. Here, we examined the binding and catalytic behavior of purified AID on DNA/RNA hybrid substrates bearing either random sequences or GC-rich sequences simulating Ig S regions. If substrates were made up of a random sequence, AID preferred substrates composed entirely of DNA over DNA/RNA hybrids. In contrast, if substrates were composed of S region sequences, AID preferred to mutate DNA/RNA hybrids over substrates composed entirely of DNA. Accordingly, AID exhibited a significantly higher affinity for binding DNA/RNA hybrid substrates composed specifically of S region sequences, than any other substrates composed of DNA. Thus, in the absence of any other cellular processes or factors, AID itself favors binding and mutating DNA/RNA hybrids composed of S region sequences. AID:DNA/RNA complex formation and supporting mutational analyses suggest that recognition of DNA/RNA hybrids is an inherent structural property of AID. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Translocation, switching and gating: potential roles for ATP in long-range communication on DNA by Type III restriction endonucleases.

    Science.gov (United States)

    Szczelkun, Mark D

    2011-04-01

    To cleave DNA, the Type III RM (restriction-modification) enzymes must communicate the relative orientation of two recognition sequences, which may be separated by many thousands of base pairs. This long-range interaction requires ATP hydrolysis by a helicase domain, and both active (DNA translocation) and passive (DNA sliding) modes of motion along DNA have been proposed. Potential roles for ATP binding and hydrolysis by the helicase domains are discussed, with a focus on bipartite ATPases that act as molecular switches.

  8. Gene Therapy for Fracture Repair

    Science.gov (United States)

    2007-05-01

    modulator-1; c-myc binding protein [ Homo sapiens ]. regulation of transcription, DNA dependent NM_012488 1.55 2.53 Rattus norvegicus α-2-macroglobulin...myc binding protein [ Homo sapiens ] Regulation of transcription, DNA dependent NM_012488 1.55 2.53 Rattus norvegicus α-2-macroglobulin (A2m) Protease...1-HIV LTR-MLV Promoter EG FP -C el l N um be r (M ea n) 10 ul Vector 50 ul Vector 7 Periosteal/Endosteal Cell Transduction 0 200 400 600 800

  9. Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA

    Science.gov (United States)

    Ziach, Krzysztof; Chollet, Céline; Parissi, Vincent; Prabhakaran, Panchami; Marchivie, Mathieu; Corvaglia, Valentina; Bose, Partha Pratim; Laxmi-Reddy, Katta; Godde, Frédéric; Schmitter, Jean-Marie; Chaignepain, Stéphane; Pourquier, Philippe; Huc, Ivan

    2018-05-01

    Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.

  10. Re-thinking employee recognition: understanding employee experiences of recognition

    OpenAIRE

    Smith, Charlotte

    2013-01-01

    Despite widespread acceptance of the importance of employee recognition for both individuals and organisations and evidence of its increasing use in organisations, employee recognition has received relatively little focused attention from academic researchers. Particularly lacking is research exploring the lived experience of employee recognition and the interpretations and meanings which individuals give to these experiences. Drawing on qualitative interviews conducted as part of my PhD rese...

  11. Hybridogenesis and a potential case of R2 non-LTR retrotransposon horizontal transmission in Bacillus stick insects (Insecta Phasmida).

    Science.gov (United States)

    Scavariello, Claudia; Luchetti, Andrea; Martoni, Francesco; Bonandin, Livia; Mantovani, Barbara

    2017-02-06

    Horizontal transfer (HT) is an event in which the genetic material is transferred from one species to another, even if distantly related, and it has been demonstrated as a possible essential part of the lifecycle of transposable elements (TEs). However, previous studies on the non-LTR R2 retrotransposon, a metazoan-wide distributed element, indicated its vertical transmission since the Radiata-Bilateria split. Here we present the first possible instances of R2 HT in stick insects of the genus Bacillus (Phasmida). Six R2 elements were characterized in the strictly bisexual subspecies B. grandii grandii, B. grandii benazzii and B. grandii maretimi and in the obligatory parthenogenetic taxon B. atticus. These elements were compared with those previously retrieved in the facultative parthenogenetic species B. rossius. Phylogenetic inconsistencies between element and host taxa, and age versus divergence analyses agree and support at least two HT events. These HT events can be explained by taking into consideration the complex Bacillus reproductive biology, which includes also hybridogenesis, gynogenesis and androgenesis. Through these non-canonical reproductive modes, R2 elements may have been transferred between Bacillus genomes. Our data suggest, therefore, a possible role of hybridization for TEs survival and the consequent reshaping of involved genomes.

  12. Cytosolic sensing of immuno-stimulatory DNA, the enemy within.

    Science.gov (United States)

    Dhanwani, Rekha; Takahashi, Mariko; Sharma, Sonia

    2018-02-01

    In the cytoplasm, DNA is sensed as a universal danger signal by the innate immune system. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor/enzyme that catalyzes formation of 2'-5'-cGAMP, an atypical cyclic di-nucleotide second messenger that binds and activates the Stimulator of Interferon Genes (STING), resulting in recruitment of Tank Binding Kinase 1 (TBK1), activation of the transcription factor Interferon Regulatory Factor 3 (IRF3), and trans-activation of innate immune response genes, including type I Interferon cytokines (IFN-I). Activation of the pro-inflammatory cGAS-STING-IRF3 response is triggered by direct recognition of the DNA genomes of bacteria and viruses, but also during RNA virus infection, neoplastic transformation, tumor immunotherapy and systemic auto-inflammatory diseases. In these circumstances, the source of immuno-stimulatory DNA has often represented a fundamental yet poorly understood aspect of the response. This review focuses on recent findings related to cGAS activation by an array of self-derived DNA substrates, including endogenous retroviral elements, mitochondrial DNA (mtDNA) and micronuclei generated as a result of genotoxic stress and DNA damage. These findings emphasize the role of the cGAS axis as a cell-intrinsic innate immune response to a wide variety of genomic insults. Copyright © 2017. Published by Elsevier Ltd.

  13. Profiling of glycan receptors for minute virus of mice in permissive cell lines towards understanding the mechanism of cell recognition.

    Directory of Open Access Journals (Sweden)

    Sujata Halder

    Full Text Available The recognition of sialic acids by two strains of minute virus of mice (MVM, MVMp (prototype and MVMi (immunosuppressive, is an essential requirement for successful infection. To understand the potential for recognition of different modifications of sialic acid by MVM, three types of capsids, virus-like particles, wild type empty (no DNA capsids, and DNA packaged virions, were screened on a sialylated glycan microarray (SGM. Both viruses demonstrated a preference for binding to 9-O-methylated sialic acid derivatives, while MVMp showed additional binding to 9-O-acetylated and 9-O-lactoylated sialic acid derivatives, indicating recognition differences. The glycans recognized contained a type-2 Galβ1-4GlcNAc motif (Neu5Acα2-3Galβ1-4GlcNAc or 3'SIA-LN and were biantennary complex-type N-glycans with the exception of one. To correlate the recognition of the 3'SIA-LN glycan motif as well as the biantennary structures to their natural expression in cell lines permissive for MVMp, MVMi, or both strains, the N- and O-glycans, and polar glycolipids present in three cell lines used for in vitro studies, A9 fibroblasts, EL4 T lymphocytes, and the SV40 transformed NB324K cells, were analyzed by MALDI-TOF/TOF mass spectrometry. The cells showed an abundance of the sialylated glycan motifs recognized by the viruses in the SGM and previous glycan microarrays supporting their role in cellular recognition by MVM. Significantly, the NB324K showed fucosylation at the non-reducing end of their biantennary glycans, suggesting that recognition of these cells is possibly mediated by the Lewis X motif as in 3'SIA-Le(X identified in a previous glycan microarray screen.

  14. Repetitive DNA Reeling by the Cascade-Cas3 Complex in Nucleotide Unwinding Steps

    NARCIS (Netherlands)

    Loeff, Luuk; Brouns, Stan J.J.; Joo, Chirlmin

    2018-01-01

    CRISPR-Cas provides RNA-guided adaptive immunity against invading genetic elements. Interference in type I systems relies on the RNA-guided Cascade complex for target DNA recognition and the Cas3 helicase/nuclease protein for target degradation. Even though the biochemistry of CRISPR interference

  15. PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Gao, Pu; Rajashankar, Kanagalaghatta R.; Patel, Dinshaw J. (MSKCC); (Cornell); (Chinese Aca. Sci.)

    2016-12-01

    C2c1 is a newly identified guide RNA-mediated type V-B CRISPR-Cas endonuclease that site-specifically targets and cleaves both strands of target DNA. We have determined crystal structures of Alicyclobacillus acidoterrestris C2c1 (AacC2c1) bound to sgRNA as a binary complex and to target DNAs as ternary complexes, thereby capturing catalytically competent conformations of AacC2c1 with both target and non-target DNA strands independently positioned within a single RuvC catalytic pocket. Moreover, C2c1-mediated cleavage results in a staggered seven-nucleotide break of target DNA. crRNA adopts a pre-ordered five-nucleotide A-form seed sequence in the binary complex, with release of an inserted tryptophan, facilitating zippering up of 20-bp guide RNA:target DNA heteroduplex on ternary complex formation. Notably, the PAM-interacting cleft adopts a “locked” conformation on ternary complex formation. Structural comparison of C2c1 ternary complexes with their Cas9 and Cpf1 counterparts highlights the diverse mechanisms adopted by these distinct CRISPR-Cas systems, thereby broadening and enhancing their applicability as genome editing tools.

  16. Further details of a hypothesis for the initiation of genetic recombination from recognition sites

    Energy Technology Data Exchange (ETDEWEB)

    Markham, P [Queen Elizabeth College, London (G.B.)

    1982-01-01

    Consideration of the initiation of genetic recombination from fixed sites recognised by an initiation complex, has provided more details of the envisaged mechanism and implications of a recent hypothesis. It has been shown that the hypothesis allows for more than one recombinogenic-event to result from a single binding of the recombination initiation complex to a recognition site in a DNA duplex. This capacity can explain data from fungal systems which are apparently inconsistent with the Meselson-Radding model of genetic recombination with respect to the positional relationship between tracts of hybrid DNA and sites of crossing-over. A mechanism for conversion, involving hybrid DNA formation, but without mismatch correction has also been proposed on the basis of this capacity. It is suggested that the hypothesis may apply generally to genetic recombination, in prokaryotes as well as eukaryotes.

  17. Use of the recognition heuristic depends on the domain's recognition validity, not on the recognition validity of selected sets of objects.

    Science.gov (United States)

    Pohl, Rüdiger F; Michalkiewicz, Martha; Erdfelder, Edgar; Hilbig, Benjamin E

    2017-07-01

    According to the recognition-heuristic theory, decision makers solve paired comparisons in which one object is recognized and the other not by recognition alone, inferring that recognized objects have higher criterion values than unrecognized ones. However, success-and thus usefulness-of this heuristic depends on the validity of recognition as a cue, and adaptive decision making, in turn, requires that decision makers are sensitive to it. To this end, decision makers could base their evaluation of the recognition validity either on the selected set of objects (the set's recognition validity), or on the underlying domain from which the objects were drawn (the domain's recognition validity). In two experiments, we manipulated the recognition validity both in the selected set of objects and between domains from which the sets were drawn. The results clearly show that use of the recognition heuristic depends on the domain's recognition validity, not on the set's recognition validity. In other words, participants treat all sets as roughly representative of the underlying domain and adjust their decision strategy adaptively (only) with respect to the more general environment rather than the specific items they are faced with.

  18. Genome-Derived Cytosolic DNA Mediates Type I Interferon-Dependent Rejection of B Cell Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Yu J. Shen

    2015-04-01

    Full Text Available The DNA damage response (DDR induces the expression of type I interferons (IFNs, but the underlying mechanisms are poorly understood. Here, we show the presence of cytosolic DNA in different mouse and human tumor cells. Treatment of cells with genotoxic agents increased the levels of cytosolic DNA in a DDR-dependent manner. Cloning of cytosolic DNA molecules from mouse lymphoma cells suggests that cytosolic DNA is derived from unique genomic loci and has the potential to form non-B DNA structures, including R-loops. Overexpression of Rnaseh1, which resolves R-loops, reduced the levels of cytosolic DNA, type I Ifn transcripts, and type I IFN-dependent rejection of lymphoma cells. Live-cell imaging showed a dynamic contact of cytosolic DNA with mitochondria, an important organelle for innate immune recognition of cytosolic nucleotides. In summary, we found that cytosolic DNA is present in many tumor cells and contributes to the immunogenicity of tumor cells.

  19. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing.

    Science.gov (United States)

    Seo, Gil Ju; Kim, Charlotte; Shin, Woo-Jin; Sklan, Ella H; Eoh, Hyungjin; Jung, Jae U

    2018-02-09

    Intracellular nucleic acid sensors often undergo sophisticated modifications that are critical for the regulation of antimicrobial responses. Upon recognition of DNA, the cytosolic sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) produces the second messenger cGAMP, which subsequently initiates downstream signaling to induce interferon-αβ (IFNαβ) production. Here we report that TRIM56 E3 ligase-induced monoubiquitination of cGAS is important for cytosolic DNA sensing and IFNαβ production to induce anti-DNA viral immunity. TRIM56 induces the Lys335 monoubiquitination of cGAS, resulting in a marked increase of its dimerization, DNA-binding activity, and cGAMP production. Consequently, TRIM56-deficient cells are defective in cGAS-mediated IFNαβ production upon herpes simplex virus-1 (HSV-1) infection. Furthermore, TRIM56-deficient mice show impaired IFNαβ production and high susceptibility to lethal HSV-1 infection but not to influenza A virus infection. This adds TRIM56 as a crucial component of the cytosolic DNA sensing pathway that induces anti-DNA viral innate immunity.

  20. No Evidence of XMRV or MuLV Sequences in Prostate Cancer, Diffuse Large B-Cell Lymphoma, or the UK Blood Donor Population

    Directory of Open Access Journals (Sweden)

    Mark James Robinson

    2011-01-01

    Full Text Available Xenotropic murine leukaemia virus-related virus (XMRV is a recently described retrovirus which has been claimed to infect humans and cause associated pathology. Initially identified in the US in patients with prostate cancer and subsequently in patients with chronic fatigue syndrome, doubt now exists that XMRV is a human pathogen. We studied the prevalence of genetic sequences of XMRV and related MuLV sequences in human prostate cancer, from B cell lymphoma patients and from UK blood donors. Nucleic acid was extracted from fresh prostate tissue biopsies, formalin-fixed paraffin-embedded (FFPE prostate tissue and FFPE B-cell lymphoma. The presence of XMRV-specific LTR or MuLV generic gag-like sequences was investigated by nested PCR. To control for mouse DNA contamination, a PCR that detected intracisternal A-type particle (IAP sequences was included. In addition, DNA and RNA were extracted from whole blood taken from UK blood donors and screened for XMRV sequences by real-time PCR. XMRV or MuLV-like sequences were not amplified from tissue samples. Occasionally MuLV gag and XMRV-LTR sequences were amplified from Indian prostate cancer samples, but were always detected in conjunction with contaminating murine genomic DNA. We found no evidence of XMRV or MuLV infection in the UK blood donors.

  1. Graphical symbol recognition

    OpenAIRE

    K.C. , Santosh; Wendling , Laurent

    2015-01-01

    International audience; The chapter focuses on one of the key issues in document image processing i.e., graphical symbol recognition. Graphical symbol recognition is a sub-field of a larger research domain: pattern recognition. The chapter covers several approaches (i.e., statistical, structural and syntactic) and specially designed symbol recognition techniques inspired by real-world industrial problems. It, in general, contains research problems, state-of-the-art methods that convey basic s...

  2. Single-Molecule View of Small RNA-Guided Target Search and Recognition.

    Science.gov (United States)

    Globyte, Viktorija; Kim, Sung Hyun; Joo, Chirlmin

    2018-05-20

    Most everyday processes in life involve a necessity for an entity to locate its target. On a cellular level, many proteins have to find their target to perform their function. From gene-expression regulation to DNA repair to host defense, numerous nucleic acid-interacting proteins use distinct target search mechanisms. Several proteins achieve that with the help of short RNA strands known as guides. This review focuses on single-molecule advances studying the target search and recognition mechanism of Argonaute and CRISPR (clustered regularly interspaced short palindromic repeats) systems. We discuss different steps involved in search and recognition, from the initial complex prearrangement into the target-search competent state to the final proofreading steps. We focus on target search mechanisms that range from weak interactions, to one- and three-dimensional diffusion, to conformational proofreading. We compare the mechanisms of Argonaute and CRISPR with a well-studied target search system, RecA.

  3. Effect of point substitutions within the minimal DNA-binding domain of xeroderma pigmentosum group A protein on interaction with DNA intermediates of nucleotide excision repair.

    Science.gov (United States)

    Maltseva, E A; Krasikova, Y S; Naegeli, H; Lavrik, O I; Rechkunova, N I

    2014-06-01

    Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the interaction of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E > K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.

  4. An Internet-Accessible DNA Sequence Database for Identifying Fusaria from Human and Animal Infections

    Science.gov (United States)

    Because less than one-third of clinically relevant fusaria can be accurately identified to species level using phenotypic data (i.e., morphological species recognition), we constructed a three-locus DNA sequence database to facilitate molecular identification of the 69 Fusarium species associated wi...

  5. "DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.

    Science.gov (United States)

    Walter, Heidi-Kristin; Bauer, Jens; Steinmeyer, Jeannine; Kuzuya, Akinori; Niemeyer, Christof M; Wagenknecht, Hans-Achim

    2017-04-12

    A split aptamer for adenosine triphosphate (ATP) was embedded as a recognition unit into two levers of a nanomechanical DNA origami construct by extension and modification of selected staple strands. An additional optical module in the stem of the split aptamer comprised two different cyanine-styryl dyes that underwent an energy transfer from green (donor) to red (acceptor) emission if two ATP molecules were bound as target molecule to the recognition module and thereby brought the dyes in close proximity. As a result, the ATP as a target triggered the DNA origami shape transition and yielded a fluorescence color change from green to red as readout. Conventional atomic force microscopy (AFM) images confirmed the topology change from the open form of the DNA origami in the absence of ATP into the closed form in the presence of the target molecule. The obtained closed/open ratios in the absence and presence of target molecules tracked well with the fluorescence color ratios and thereby validated the bicolor fluorescence readout. The correct positioning of the split aptamer as the functional unit farthest away from the fulcrum of the DNA origami was crucial for the aptasensing by fluorescence readout. The fluorescence color change allowed additionally to follow the topology change of the DNA origami aptasensor in real time in solution. The concepts of fluorescence energy transfer for bicolor readout in a split aptamer in solution, and AFM on surfaces, were successfully combined in a single DNA origami construct to obtain a bimodal readout. These results are important for future custom DNA devices for chemical-biological and bioanalytical purposes because they are not only working as simple aptamers but are also visible by AFM on the single-molecule level.

  6. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response

    DEFF Research Database (Denmark)

    Poulsen, Sara L; Hansen, Rebecca K; Wagner, Sebastian A

    2013-01-01

    nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV...

  7. Cascade DNA nanomachine and exponential amplification biosensing.

    Science.gov (United States)

    Xu, Jianguo; Wu, Zai-Sheng; Shen, Weiyu; Xu, Huo; Li, Hongling; Jia, Lee

    2015-11-15

    DNA is a versatile scaffold for the assembly of multifunctional nanostructures, and potential applications of various DNA nanodevices have been recently demonstrated for disease diagnosis and treatment. In the current study, a powerful cascade DNA nanomachine was developed that can execute the exponential amplification of p53 tumor suppressor gene. During the operation of the newly-proposed DNA nanomachine, dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) was ingeniously introduced, where the target trigger is repeatedly used as the fuel molecule and the nicked fragments are dramatically accumulated. Moreover, each displaced nicked fragment is able to activate the another type of cyclical strand-displacement amplification, increasing exponentially the value of fluorescence intensity. Essentially, one target binding event can induce considerable number of subsequent reactions, and the nanodevice was called cascade DNA nanomachine. It can implement several functions, including recognition element, signaling probe, polymerization primer and template. Using the developed autonomous operation of DNA nanomachine, the p53 gene can be quantified in the wide concentration range from 0.05 to 150 nM with the detection limit of 50 pM. If taking into account the final volume of mixture, the detection limit is calculated as lower as 6.2 pM, achieving an desirable assay ability. More strikingly, the mutant gene can be easily distinguished from the wild-type one. The proof-of-concept demonstrations reported herein is expected to promote the development and application of DNA nanomachine, showing great potential value in basic biology and medical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Ku recruits XLF to DNA double-strand breaks.

    Science.gov (United States)

    Yano, Ken-ichi; Morotomi-Yano, Keiko; Wang, Shih-Ya; Uematsu, Naoya; Lee, Kyung-Jong; Asaithamby, Aroumougame; Weterings, Eric; Chen, David J

    2008-01-01

    XRCC4-like factor (XLF)--also known as Cernunnos--has recently been shown to be involved in non-homologous end-joining (NHEJ), which is the main pathway for the repair of DNA double-strand breaks (DSBs) in mammalian cells. XLF is likely to enhance NHEJ by stimulating XRCC4-ligase IV-mediated joining of DSBs. Here, we report mechanistic details of XLF recruitment to DSBs. Live cell imaging combined with laser micro-irradiation showed that XLF is an early responder to DSBs and that Ku is essential for XLF recruitment to DSBs. Biochemical analysis showed that Ku-XLF interaction occurs on DNA and that Ku stimulates XLF binding to DNA. Unexpectedly, XRCC4 is dispensable for XLF recruitment to DSBs, although photobleaching analysis showed that XRCC4 stabilizes the binding of XLF to DSBs. Our observations showed the direct involvement of XLF in the dynamic assembly of the NHEJ machinery and provide mechanistic insights into DSB recognition.

  9. Functionalization of Fatty Acid Vesicles through Newly Synthesized Bolaamphiphile-DNA Conjugates

    DEFF Research Database (Denmark)

    Wamberg, M. C.; Wieczorek, R.; Brier, S. B.

    2014-01-01

    The surface functionalization of fatty acid vesicles will allow their use as nanoreactors for complex chemistry. In this report, the tethering of several DNA conjugates to decanoic acid vesicles for molecular recognition and synthetic purposes was explored. Due to the highly dynamic nature......), and consists of a single hydrocarbon chain of 20 carbons having on one end a triazole group linked to the S'-phosphate of the nucleic acid and on the other side a hydroxyl-group. Its insertion was so effective that a fluorescent label on the DNA complementary to the conjugate could be used to visualize fatty...... acid structures....

  10. Base Flip in DNA Studied by Molecular Dynamics Simulationsof Differently-Oxidized Forms of Methyl-Cytosine

    Directory of Open Access Journals (Sweden)

    Mahdi Bagherpoor Helabad

    2014-07-01

    Full Text Available Distortions in the DNA sequence, such as damage or mispairs, are specifically recognized and processed by DNA repair enzymes. Many repair proteins and, in particular, glycosylases flip the target base out of the DNA helix into the enzyme’s active site. Our molecular dynamics simulations of DNA with intact and damaged (oxidized methyl-cytosine show that the probability of being flipped is similar for damaged and intact methyl-cytosine. However, the accessibility of the different 5-methyl groups allows direct discrimination of the oxidized forms. Hydrogen-bonded patterns that vary between methyl-cytosine forms carrying a carbonyl oxygen atom are likely to be detected by the repair enzymes and may thus help target site recognition.

  11. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor.

    Science.gov (United States)

    Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang

    2015-11-09

    A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis.

  12. DNA Nanotechnology for Precise Control over Drug Delivery and Gene Therapy.

    Science.gov (United States)

    Angell, Chava; Xie, Sibai; Zhang, Liangfang; Chen, Yi

    2016-03-02

    Nanomedicine has been growing exponentially due to its enhanced drug targeting and reduced drug toxicity. It uses the interactions where nanotechnological components and biological systems communicate with each other to facilitate the delivery performance. At this scale, the physiochemical properties of delivery systems strongly affect their capacities. Among current delivery systems, DNA nanotechnology shows many advantages because of its unprecedented engineering abilities. Through molecular recognition, DNA nanotechnology can be used to construct a variety of nanostructures with precisely controllable size, shape, and surface chemistry, which can be appreciated in the delivery process. In this review, different approaches that are currently used for the construction of DNA nanostructures are reported. Further, the utilization of these DNA nanostructures with the well-defined parameters for the precise control in drug delivery and gene therapy is discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection

    KAUST Repository

    Loan, Phan Thi Kim

    2017-07-19

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1 pM – 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition.

  14. Induced-fit recognition of DNA by organometallic complexes with dynamic stereogenic centers

    Czech Academy of Sciences Publication Activity Database

    Chen, H.; Parkinson, J. A.; Nováková, Olga; Bella, J.; Wang, F.; Dawson, A.; Gould, R.; Parsons, S.; Brabec, Viktor; Sadler, P. J.

    2003-01-01

    Roč. 100, č. 25 (2003), s. 14623-14628 ISSN 0027-8424 R&D Projects: GA ČR GA305/02/1552; GA ČR GA305/01/0418; GA AV ČR IAA5004101 Institutional research plan: CEZ:AV0Z5004920 Keywords : organometallic complexes * platinum * DNA Subject RIV: BO - Biophysics Impact factor: 10.272, year: 2003

  15. Statistical Pattern Recognition

    CERN Document Server

    Webb, Andrew R

    2011-01-01

    Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions.  It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques. This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields,

  16. Two dimensional molecular electronics spectroscopy for molecular fingerprinting, DNA sequencing, and cancerous DNA recognition.

    Science.gov (United States)

    Rajan, Arunkumar Chitteth; Rezapour, Mohammad Reza; Yun, Jeonghun; Cho, Yeonchoo; Cho, Woo Jong; Min, Seung Kyu; Lee, Geunsik; Kim, Kwang S

    2014-02-25

    Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.

  17. Non-Enzymatic Detection of Bacterial Genomic DNA Using the Bio-Barcode Assay

    Science.gov (United States)

    Hill, Haley D.; Vega, Rafael A.; Mirkin, Chad A.

    2011-01-01

    The detection of bacterial genomic DNA through a non-enzymatic nanomaterials based amplification method, the bio-barcode assay, is reported. The assay utilizes oligonucleotide functionalized magnetic microparticles to capture the target of interest from the sample. A critical step in the new assay involves the use of blocking oligonucleotides during heat denaturation of the double stranded DNA. These blockers bind to specific regions of the target DNA upon cooling, and prevent the duplex DNA from re-hybridizing, which allows the particle probes to bind. Following target isolation using the magnetic particles, oligonucleotide functionalized gold nanoparticles act as target recognition agents. The oligonucleotides on the nanoparticle (barcodes) act as amplification surrogates. The barcodes are then detected using the Scanometric method. The limit of detection for this assay was determined to be 2.5 femtomolar, and this is the first demonstration of a barcode type assay for the detection of double stranded, genomic DNA. PMID:17927207

  18. Computational Recognition of RNA Splice Sites by Exact Algorithms for the Quadratic Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Anja Fischer

    2015-06-01

    Full Text Available One fundamental problem of bioinformatics is the computational recognition of DNA and RNA binding sites. Given a set of short DNA or RNA sequences of equal length such as transcription factor binding sites or RNA splice sites, the task is to learn a pattern from this set that allows the recognition of similar sites in another set of DNA or RNA sequences. Permuted Markov (PM models and permuted variable length Markov (PVLM models are two powerful models for this task, but the problem of finding an optimal PM model or PVLM model is NP-hard. While the problem of finding an optimal PM model or PVLM model of order one is equivalent to the traveling salesman problem (TSP, the problem of finding an optimal PM model or PVLM model of order two is equivalent to the quadratic TSP (QTSP. Several exact algorithms exist for solving the QTSP, but it is unclear if these algorithms are capable of solving QTSP instances resulting from RNA splice sites of at least 150 base pairs in a reasonable time frame. Here, we investigate the performance of three exact algorithms for solving the QTSP for ten datasets of splice acceptor sites and splice donor sites of five different species and find that one of these algorithms is capable of solving QTSP instances of up to 200 base pairs with a running time of less than two days.

  19. Crystallization of a self-assembled three-dimensional DNA nanostructure

    International Nuclear Information System (INIS)

    Rendek, Kimberly N.; Fromme, Raimund; Grotjohann, Ingo; Fromme, Petra

    2013-01-01

    In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The powerful and specific molecular-recognition system present in the base-pairing of DNA allows for the design of a plethora of nanostructures. In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The DNA nanostructure consists of six single-stranded oligonucleotides that hybridize to form a three-dimensional tetrahedron of 80 kDa in molecular mass and 20 bp on each edge. Crystals of the tetrahedron have been successfully produced and characterized. These crystals may form the basis for an X-ray structure of the tetrahedron in the future. Nucleotide crystallography poses many challenges, leading to the fact that only 1352 X-ray structures of nucleic acids have been solved compared with more than 80 000 protein structures. In this work, the crystallization optimization for three-dimensional tetrahedra is also described, with the eventual goal of producing nanocrystals to overcome the radiation-damage obstacle by the use of free-electron laser technology in the future

  20. A Dynamic Combinatorial Approach for Identifying Side Groups that Stabilize DNA-Templated Supramolecular Self-Assemblies

    Directory of Open Access Journals (Sweden)

    Delphine Paolantoni

    2015-02-01

    Full Text Available DNA-templated self-assembly is an emerging strategy for generating functional supramolecular systems, which requires the identification of potent multi-point binding ligands. In this line, we recently showed that bis-functionalized guanidinium compounds can interact with ssDNA and generate a supramolecular complex through the recognition of the phosphodiester backbone of DNA. In order to probe the importance of secondary interactions and to identify side groups that stabilize these DNA-templated self-assemblies, we report herein the implementation of a dynamic combinatorial approach. We used an in situ fragment assembly process based on reductive amination and tested various side groups, including amino acids. The results reveal that aromatic and cationic side groups participate in secondary supramolecular interactions that stabilize the complexes formed with ssDNA.

  1. Proximity hybridization-regulated catalytic DNA hairpin assembly for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles

    International Nuclear Information System (INIS)

    Zhou, Fuyi; Yao, Yao; Luo, Jianjun; Zhang, Xing; Zhang, Yu; Yin, Dengyang; Gao, Fenglei; Wang, Po

    2017-01-01

    Novel hybridization proximity-regulated catalytic DNA hairpin assembly strategy has been proposed for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles as signal label. The DNA template-synthesized Pd nanoparticles were characterized with atomic force microscopic and X-ray photoelectron spectroscopy. The highly efficient electrocatalysis by DNA template synthesized Pd nanoparticles for NaBH 4 oxidation produced an intense detection signal. The label-free electrochemical method achieved the detection of carcinoembryonic antigen (CEA) with a linear range from 10 −15 to 10 −11  g mL −1 and a detection limit of 0.43 × 10 −15  g mL −1 . Through introducing a supersandwich reaction to increase the DNA length, the electrochemical signal was further amplified, leading to a detection limit of 0.52 × 10 −16  g mL −1 . And it rendered satisfactory analytical performance for the determination of CEA in serum samples. Furthermore, it exhibited good reproducibility and stability; meanwhile, it also showed excellent specificity due to the specific recognition of antigen by antibody. Therefore, the DNA template synthesized Pd nanoparticles based signal amplification approach has great potential in clinical applications and is also suitable for quantification of biomarkers at ultralow level. - Graphical abstract: A novel label-free and enzyme-free electrochemical immunoassay based on proximity hybridization-regulated catalytic DNA hairpin assemblies for recycling of the CEA. - Highlights: • A novel enzyme-free electrochemical immunosensor was developed for detection of CEA. • The signal amplification was based on catalytic DNA hairpin assembly and DNA-template-synthesized Pd nanoparticles. • The biosensor could detect CEA down to 0.52 × 10 −16  g mL −1 level with a dynamic range spanning 5 orders of magnitude.

  2. Monoclonal antibodies to DNA modified with cis- or trans-diamminedichloroplatinum(II)

    International Nuclear Information System (INIS)

    Sundquist, W.I.; Lippard, S.J.; Stollar, B.D.

    1987-01-01

    Murine monoclonal antibodies that bind selectively to adducts formed on DNA by the antitumor drug cis-diamminedichloroplatinum(II), cis-DDP, or to the chemothrapeutically inactive trans isomer trans-DDP were elicited by immunization with calf thymus DNA modified with either cis- or trans-DDP at ratios of bound platinum per nucleotide, (D/N)/sub b/, of 0.06-0.08. The binding of two monoclonal antibodies to cis-DDP-modified DNA was competitively inhibited in an enzyme-linked immunosorbent assay (ELISA) by 4-6 nM concentrations of cis-DDP bound to DNA. Adducts formed by cis-DDP on other synthetic DNA polymers did not inhibit antibody binding to cis-DDP-DNA. The biologically active compounds [Pt(en)Cl 2 ], [Pt(dach)Cl 2 ], and [Pt(NH 3 ) 2 (cbdca)] (carboplatin) all formed antibody-detectable adducts on DNA, whereas the inactive platinum complexes trans-DDP and [Pt(dien)Cl]Cl (dien, diethylenetriamine) did not. The monoclonal antibodies therefore recognize a bifunctional Pt-DNA adduct with cis stereochemistry in which platinum is coordinated by two adjacent guanines or, to a lesser degree, by adjacent adenine and guanine. A monoclonal antibody raised against trans-DDP-DNA was competitively inhibited in an ELISA by 40 nM trans-DDP bound to DNA. This antibody crossreacted with unmodified, denatured DNA. The recognition of cis- or trans-DDP-modified DNAs by monoclonal antibodies thus parallels the known modes of DNA binding of these compounds and may correlate with their biological activities

  3. Rotation-invariant neural pattern recognition system with application to coin recognition.

    Science.gov (United States)

    Fukumi, M; Omatu, S; Takeda, F; Kosaka, T

    1992-01-01

    In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.

  4. TALENs: customizable molecular DNA scissors for genome engineering of plants.

    Science.gov (United States)

    Chen, Kunling; Gao, Caixia

    2013-06-20

    Precise genome modification with engineered nucleases is a powerful tool for studying basic biology and applied biotechnology. Transcription activator-like effector nucleases (TALENs), consisting of an engineered specific (TALE) DNA binding domain and a Fok I cleavage domain, are newly developed versatile reagents for genome engineering in different organisms. Because of the simplicity of the DNA recognition code and their modular assembly, TALENs can act as customizable molecular DNA scissors inducing double-strand breaks (DSBs) at given genomic location. Thus, they provide a valuable approach to targeted genome modifications such as mutations, insertions, replacements or chromosome rearrangements. In this article, we review the development of TALENs, and summarize the principles and tools for TALEN-mediated gene targeting in plant cells, as well as current and potential strategies for use in plant research and crop improvement. Copyright © 2013. Published by Elsevier Ltd.

  5. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications.

    Science.gov (United States)

    Zhu, Guizhi; Hu, Rong; Zhao, Zilong; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2013-11-06

    DNA nanotechnology has been extensively explored to assemble various functional nanostructures for versatile applications. Mediated by Watson-Crick base-pairing, these DNA nanostructures have been conventionally assembled through hybridization of many short DNA building blocks. Here we report the noncanonical self-assembly of multifunctional DNA nanostructures, termed as nanoflowers (NFs), and the versatile biomedical applications. These NFs were assembled from long DNA building blocks generated via rolling circle replication (RCR) of a designer template. NF assembly was driven by liquid crystallization and dense packaging of building blocks, without relying on Watson-Crick base-pairing between DNA strands, thereby avoiding the otherwise conventional complicated DNA sequence design. NF sizes were readily tunable in a wide range, by simply adjusting such parameters as assembly time and template sequences. NFs were exceptionally resistant to nuclease degradation, denaturation, or dissociation at extremely low concentration, presumably resulting from the dense DNA packaging in NFs. The exceptional biostability is critical for biomedical applications. By rational design, NFs can be readily incorporated with myriad functional moieties. All these properties make NFs promising for versatile applications. As a proof-of-principle demonstration, in this study, NFs were integrated with aptamers, bioimaging agents, and drug loading sites, and the resultant multifunctional NFs were demonstrated for selective cancer cell recognition, bioimaging, and targeted anticancer drug delivery.

  6. Graphene oxide directed in-situ deposition of electroactive silver nanoparticles and its electrochemical sensing application for DNA analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ningning [College of Chemistry and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000 (China); Gao, Feng, E-mail: fgao1981@mnnu.edu.cn [College of Chemistry and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000 (China); Department of Chemistry, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504 (Japan); He, Suyu; Zhu, Qionghua; Huang, Jiafu [College of Chemistry and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000 (China); Tanaka, Hidekazu [Department of Chemistry, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504 (Japan); Wang, Qingxiang, E-mail: axiang236@126.com [College of Chemistry and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000 (China)

    2017-01-25

    The development of high-performance biosensing platform is heavily dependent on the recognition property of the sensing layer and the output intensity of the signal probe. Herein, we present a simple and highly sensitive biosensing interface for DNA detection on the basis of graphene oxide nanosheets (GONs) directed in-situ deposition of silver nanoparticles (AgNPs). The fabrication process and electrochemical properties of the biosensing interface were probed by electrochemical techniques and scanning electron microscopy. The results indicate that GONs can specifically adsorb at the single-stranded DNA probe surface, and induces the deposition of highly electroactive AgNPs. Upon hybridization with complementary oligonucleotides to generate the duplex DNA on the electrode surface, the GONs with the deposited AgNPs will be liberated from the sensing interface due to the inferior affinity of GONs and duplex DNA, resulting in the reduction of the electrochemical signal. Such a strategy combines the superior recognition of GONs toward single-stranded DNA and double-stranded DNA, and the strong electrochemical response of in-situ deposited AgNPs. Under optimal conditions, the biosensor can detect target DNA over a wide range from 10 fM to 10 nM with a detection limit of 7.6 fM. Also, the developed biosensor shows outstanding discriminating ability toward oligonucleotides with different mismatching degrees. - Highlights: • An novel DNA biosensor was constructed based on GONs with deposited AgNPs. • GONs catalyze the in-situ deposition of AgNPs on the sensing interface. • Unique π-stacking of GONs with probe DNA contributes high selectivity of the biosensor. • High electroactivity of AgNPs leads to low detection limit (7.6 fM) for target DNA.

  7. Single-molecule mechanics of protein-labelled DNA handles

    Directory of Open Access Journals (Sweden)

    Vivek S. Jadhav

    2016-01-01

    Full Text Available DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA–protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD imaging control experiments revealed that quantum dot–streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein–DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular

  8. Structural Basis for DNA Recognition by the Two-Component Response Regulator RcsB.

    Science.gov (United States)

    Filippova, Ekaterina V; Zemaitaitis, Bozena; Aung, Theint; Wolfe, Alan J; Anderson, Wayne F

    2018-02-27

    RcsB is a highly conserved transcription regulator of the Rcs phosphorelay system, a complex two-component signal transduction system (N. Majdalani and S. Gottesman, Annu Rev Microbiol 59:379-405, 2005; A. J. Wolfe, Curr Opin Microbiol 13:204-209, 2010, https://doi.org/10.1016/j.mib.2010.01.002; D. J. Clarke, Future Microbiol 5:1173-1184, 2010, https://doi.org/10.2217/fmb.10.83). RcsB plays an important role in virulence and pathogenicity in human hosts by regulating biofilm formation. RcsB can regulate transcription alone or together with its auxiliary transcription regulators by forming heterodimers. This complexity allows RcsB to regulate transcription of more than 600 bacterial genes in response to different stresses (D. Wang et al., Mol Plant Microbe Interact 25:6-17, 2012, https://doi.org/10.1094/MPMI-08-11-0207). Despite increasing knowledge of RcsB importance, molecular mechanisms that drive the ability of RcsB to control transcription of a large number of genes remain unclear. Here, we present crystal structures of unphosphorylated RcsB in complex with the consensus DNA-binding sequence of 22-mer (DNA22) and 18-mer (DNA18) of the flhDC operon from Escherichia coli determined at 3.15- and 3.37-Å resolution, respectively. The results of our structural analysis combined with the results of in vitro binding assays provide valuable insights to the protein regulatory mechanism, demonstrate how RcsB recognizes target DNA sequences, and reveal a unique oligomeric state that allows RcsB to form homo- and heterodimers. This information will help us understand the complex mechanisms of transcriptional regulation by RcsB in bacteria. IMPORTANCE RcsB is a well-studied two-component response regulator of the Rcs phosphorelay system, conserved within the family Enterobacteriaceae , which includes many pathogens. It is a global regulator, controlling more than 5% of bacterial genes associated with capsule biosynthesis, flagellar biogenesis, cell wall biosynthesis

  9. RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA.

    Science.gov (United States)

    Wolf, Christine; Rapp, Alexander; Berndt, Nicole; Staroske, Wolfgang; Schuster, Max; Dobrick-Mattheuer, Manuela; Kretschmer, Stefanie; König, Nadja; Kurth, Thomas; Wieczorek, Dagmar; Kast, Karin; Cardoso, M Cristina; Günther, Claudia; Lee-Kirsch, Min Ae

    2016-05-27

    Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA.

  10. Concordant and opposite roles of DNA-PK and the "facilitator of chromatin transcription" (FACT in DNA repair, apoptosis and necrosis after cisplatin

    Directory of Open Access Journals (Sweden)

    Calkins Anne S

    2011-06-01

    Full Text Available Abstract Background Platinum-containing chemotherapy produces specific DNA damage and is used to treat several human solid tumors. Tumors initially sensitive to platinum-based drugs frequently become resistant. Inhibition of DNA repair is a potential strategy to enhance cisplatin effectiveness. After cisplatin treatment, a balance between repair and apoptosis determines whether cancer cells proliferate or die. DNA-dependent protein kinase (DNA-PK binds to DNA double strand breaks (DSBs through its Ku subunits and initiates non-homologous end joining. Inhibition of DNA-PK sensitizes cancer cells to cisplatin killing. The goal of this study is to elucidate the mechanism underlying the effects of DNA-PK on cisplatin sensitivity. Results Silencing the expression of the catalytic subunit of DNA-PK (DNA-PKcs increased sensitivity to cisplatin and decreased the appearance of γH2AX after cisplatin treatment. We purified DNA-PK by its Ku86 subunit and identified interactors by tandem mass spectrometry before and after cisplatin treatment. The structure specific recognition protein 1 (SSRP1, Spt16 and γH2AX appeared in the Ku86 complex 5 hours after cisplatin treatment. SSRP1 and Spt16 form the facilitator of chromatin transcription (FACT. The cisplatin-induced association of FACT with Ku86 and γH2AX was abrogated by DNase treatment. In living cells, SSRP1 and Ku86 were recruited at sites of DSBs induced by laser beams. Silencing SSRP1 expression increased sensitivity to cisplatin and decreased γH2AX appearance. However, while silencing SSRP1 in cisplatin-treated cells increased both apoptosis and necrosis, DNA-PKcs silencing, in contrast, favored necrosis over apoptosis. Conclusions DNA-PK and FACT both play roles in DNA repair. Therefore both are putative targets for therapeutic inhibition. Since DNA-PK regulates apoptosis, silencing DNA-PKcs redirects cells treated with cisplatin toward necrosis. Silencing FACT however, allows both apoptosis and

  11. Molecular dynamics simulation of a DNA containing a single strand break

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H.; Siebers, G.; Furukawa, A.; Otagiri, N.; Osman, R

    2002-07-01

    Molecular dynamics simulations were performed for a dodecamer DNA containing a single strand break (SSB), which has been represented by a 3'-OH deoxyribose and 5'-OH phosphate in the middle of the strand. Molecular force field parameters of the 5'-OH phosphate region were determined from an ab initio calculation at the HF/6-31G level using the program package GAMESS. The DNA was placed in a periodic boundary box with water molecules and Na+ counter-ions to produce a neutralised system. After minimisation, the system was heated to 300 K, equilibrated and a production run at constant NTP was executed for 1 ns using AMBER 4.1. Snapshots of the SSB-containing DNA and a detailed analysis of the equilibriated average structure revealed surprisingly small conformational changes compared to normal DNA. However, dynamic properties calculated using the essential dynamics method showed some features that may be important for the recognition of this damage by repair enzymes. (author)

  12. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    Science.gov (United States)

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D.

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1–2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855

  13. Dideoxynucleoside triphosphate-sensitive DNA polymerase from rice is involved in base excision repair and immunologically similar to mammalian DNA pol beta.

    Science.gov (United States)

    Sarkar, Sailendra Nath; Bakshi, Sankar; Mokkapati, Sanath K; Roy, Sujit; Sengupta, Dibyendu N

    2004-07-16

    A single polypeptide with ddNTP-sensitive DNA polymerase activity was purified to near homogeneity from the shoot tips of rice seedlings and analysis of the preparations by SDS-PAGE followed by silver staining showed a polypeptide of 67 kDa size. The DNA polymerase activity was found to be inhibitory by ddNTP in both in vitro DNA polymerase activity assay and activity gel analysis. Aphidicolin, an inhibitor of other types of DNA polymerases, had no effect on plant enzyme. The 67 kDa rice DNA polymerase was found to be recognized by the polyclonal antibody (purified IgG) made against rat DNA polymerase beta (pol beta) both in solution and also on Western blot. The recognition was found to be very specific as the activity of Klenow enzyme was unaffected by the antibody. The ability of rice nuclear extract to correct G:U mismatch of oligo-duplex was observed when oligo-duplex with 32P-labeled lower strand containing U (at 22nd position) was used as substrate. Differential appearance of bands at 21-mer, 22-mer, and 51-mer position in presence of dCTP was visible only with G:U mismatch oligo-duplex, but not with G:C oligo-duplex. While ddCTP or polyclonal antibody against rat-DNA pol beta inhibits base excision repair (BER), aphidicolin had no effect. These results for the first time clearly demonstrate the ability of rice nuclear extract to run BER and the involvement of ddNTP-sensitive pol beta type DNA polymerase. Immunological similarity of the ddNTP-sensitive DNA polymerase beta of rice and rat and its involvement in BER revealed the conservation of structure and function of ddNTP-sensitive DNA pol beta in plant and animal.

  14. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing.

    Science.gov (United States)

    Chen, Qi; Sun, Lijun; Chen, Zhijian J

    2016-09-20

    The recognition of microbial nucleic acids is a major mechanism by which the immune system detects pathogens. Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that activates innate immune responses through production of the second messenger cGAMP, which activates the adaptor STING. The cGAS-STING pathway not only mediates protective immune defense against infection by a large variety of DNA-containing pathogens but also detects tumor-derived DNA and generates intrinsic antitumor immunity. However, aberrant activation of the cGAS pathway by self DNA can also lead to autoimmune and inflammatory disease. Thus, the cGAS pathway must be properly regulated. Here we review the recent advances in understanding of the cGAS-STING pathway, focusing on the regulatory mechanisms and roles of this pathway in heath and disease.

  15. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins.

    Science.gov (United States)

    Zdżalik, Daria; Domańska, Anna; Prorok, Paulina; Kosicki, Konrad; van den Born, Erwin; Falnes, Pål Ø; Rizzo, Carmelo J; Guengerich, F Peter; Tudek, Barbara

    2015-06-01

    AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno(ɛ)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ɛ-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ɛ-adducts, 1,N(6)-ethenoadenine (ɛA), 3,N(4)-ethenocytosine (ɛC) and 1,N(2)-ethenoguanine (1,N(2)-ɛG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ɛ-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed ɛA and ɛC from ds and ssDNA but were inactive toward 1,N(2)-ɛG. SC-1A repaired only ɛA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ɛ-adducts in dsDNA, while only ɛA and ɛC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only ɛC in ssDNA. Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N(2)-ɛG and that ALKBH3 removes only ɛC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins. Copyright © 2015 Elsevier B

  16. Regulated eukaryotic DNA replication origin firing with purified proteins.

    Science.gov (United States)

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.

  17. Accurate and sensitive quantification of protein-DNA binding affinity.

    Science.gov (United States)

    Rastogi, Chaitanya; Rube, H Tomas; Kribelbauer, Judith F; Crocker, Justin; Loker, Ryan E; Martini, Gabriella D; Laptenko, Oleg; Freed-Pastor, William A; Prives, Carol; Stern, David L; Mann, Richard S; Bussemaker, Harmen J

    2018-04-17

    Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes. Copyright © 2018 the Author(s). Published by PNAS.

  18. Familiar Person Recognition: Is Autonoetic Consciousness More Likely to Accompany Face Recognition Than Voice Recognition?

    Science.gov (United States)

    Barsics, Catherine; Brédart, Serge

    2010-11-01

    Autonoetic consciousness is a fundamental property of human memory, enabling us to experience mental time travel, to recollect past events with a feeling of self-involvement, and to project ourselves in the future. Autonoetic consciousness is a characteristic of episodic memory. By contrast, awareness of the past associated with a mere feeling of familiarity or knowing relies on noetic consciousness, depending on semantic memory integrity. Present research was aimed at evaluating whether conscious recollection of episodic memories is more likely to occur following the recognition of a familiar face than following the recognition of a familiar voice. Recall of semantic information (biographical information) was also assessed. Previous studies that investigated the recall of biographical information following person recognition used faces and voices of famous people as stimuli. In this study, the participants were presented with personally familiar people's voices and faces, thus avoiding the presence of identity cues in the spoken extracts and allowing a stricter control of frequency exposure with both types of stimuli (voices and faces). In the present study, the rate of retrieved episodic memories, associated with autonoetic awareness, was significantly higher from familiar faces than familiar voices even though the level of overall recognition was similar for both these stimuli domains. The same pattern was observed regarding semantic information retrieval. These results and their implications for current Interactive Activation and Competition person recognition models are discussed.

  19. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor

    Science.gov (United States)

    Zhao, Wei; Jardine, Paul J.

    2015-01-01

    molecular motor that translocates the viral DNA into a preformed viral shell. A key event in DNA packaging is recognition of the viral DNA among other nucleic acids in the host cell. Commonly, a DNA-binding protein mediates the interaction of viral DNA with the motor/head shell. Here we show that for the bacteriophage ϕ29, this essential step of genome recognition is mediated by a viral genome-encoded RNA rather than a protein. A domain of the prohead RNA (pRNA) imparts specificity and stringency to the motor by ensuring the correct orientation of DNA packaging and restricting initiation to a single event. Since this assembly step is unique to the virus, DNA packaging is a novel target for the development of antiviral drugs. PMID:26423956

  20. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor.

    Science.gov (United States)

    Zhao, Wei; Jardine, Paul J; Grimes, Shelley

    2015-12-01

    that translocates the viral DNA into a preformed viral shell. A key event in DNA packaging is recognition of the viral DNA among other nucleic acids in the host cell. Commonly, a DNA-binding protein mediates the interaction of viral DNA with the motor/head shell. Here we show that for the bacteriophage ϕ29, this essential step of genome recognition is mediated by a viral genome-encoded RNA rather than a protein. A domain of the prohead RNA (pRNA) imparts specificity and stringency to the motor by ensuring the correct orientation of DNA packaging and restricting initiation to a single event. Since this assembly step is unique to the virus, DNA packaging is a novel target for the development of antiviral drugs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. DNA-binding determinants promoting NHEJ by human Polμ.

    Science.gov (United States)

    Martin, Maria Jose; Juarez, Raquel; Blanco, Luis

    2012-12-01

    Non-homologous end-joining (NHEJ), the preferred pathway to repair double-strand breaks (DSBs) in higher eukaryotes, relies on a collection of molecular tools to process the broken ends, including specific DNA polymerases. Among them, Polµ is unique as it can catalyze DNA synthesis upon connection of two non-complementary ends. Here, we demonstrate that this capacity is intrinsic to Polµ, not conferred by other NHEJ factors. To understand the molecular determinants of its specific function in NHEJ, the interaction of human Polµ with DNA has been directly visualized by electromobility shift assay and footprinting assays. Stable interaction with a DNA gap requires the presence of a recessive 5'-P, thus orienting the catalytic domain for primer and nucleotide binding. Accordingly, recognition of the 5'-P is crucial to align the two DNA substrates of the NHEJ reaction. Site-directed mutagenesis demonstrates the relevance of three specific residues (Lys(249), Arg(253) and Arg(416)) in stabilizing the primer strand during end synapsis, allowing a range of microhomology-induced distortions beneficial for NHEJ. Moreover, our results suggest that the Polµ BRCT domain, thought to be exclusively involved in interaction with NHEJ core factors, has a direct role in binding the DNA region neighbor to the 5'-P, thus boosting Polµ-mediated NHEJ reactions.

  2. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations

    Science.gov (United States)

    Zuo, Zhicheng; Liu, Jin

    2016-11-01

    The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (spCas9) along with a single guide RNA (sgRNA) has emerged as a versatile toolbox for genome editing. Despite recent advances in the mechanism studies on spCas9-sgRNA-mediated double-stranded DNA (dsDNA) recognition and cleavage, it is still unclear how the catalytic Mg2+ ions induce the conformation changes toward the catalytic active state. It also remains controversial whether Cas9 generates blunt-ended or staggered-ended breaks with overhangs in the DNA. To investigate these issues, here we performed the first all-atom molecular dynamics simulations of the spCas9-sgRNA-dsDNA system with and without Mg2+ bound. The simulation results showed that binding of two Mg2+ ions at the RuvC domain active site could lead to structurally and energetically favorable coordination ready for the non-target DNA strand cleavage. Importantly, we demonstrated with our simulations that Cas9-catalyzed DNA cleavage produces 1-bp staggered ends rather than generally assumed blunt ends.

  3. Structural and electrostatic regularities in interactions of homeodomains with operator DNA

    International Nuclear Information System (INIS)

    Chirgadze, Yu.N.; Ivanov, V.V.; Polozov, R.V.; Zheltukhin, E.I.; Sivozhelezov, V.S.

    2008-01-01

    Interfaces of five DNA-homeodomain complexes, selected by similarity of structures and patterns of contacting residues, were compared. The long-range stage of the recognition process was characterized by electrostatic potentials about 5 Angstroem away from molecular surfaces of both protein and DNA. For proteins, clear positive potential is displayed only at the side contacting DNA, while grooves of DNA display a strong negative potential. Thus, one functional role of electrostatics is guiding the protein into the DNA major groove. At the close-range stage, neutralization of the phosphate charges by positively charged residues is necessary for decreasing the strong electrostatic potential of DNA, allowing nucleotide bases to participate in formation of protein-DNA atomic contacts in the interface. The protein's recognizing α-helix was shown to form both invariant and variable contacts with DNA by means of the certain specific side groups, with water molecules participating in some of the contacts. The invariant contacts included the highly specific Asn-Ade hydrogen bonds, nonpolar contacts of hydrophobic amino acids serving as barriers for fixing the protein on DNA, and interface water molecule cluster providing local mobility necessary for the dissociation of the protein-DNA complex. One of the water molecules is invariant and located at the center of the interface. Invariant contacts of the proteins are mostly formed with the TAAT motive of promoter DNA's forward strand. They distinguish the homeodomain family from other DNA-binding proteins. Variable contacts are formed with the reverse strand and are responsible for the binding specificity within the homeodomain family

  4. Structure-function relationships governing activity and stability of a DNA alkylation damage repair thermostable protein.

    Science.gov (United States)

    Perugino, Giuseppe; Miggiano, Riccardo; Serpe, Mario; Vettone, Antonella; Valenti, Anna; Lahiri, Samarpita; Rossi, Franca; Rossi, Mosè; Rizzi, Menico; Ciaramella, Maria

    2015-10-15

    Alkylated DNA-protein alkyltransferases repair alkylated DNA bases, which are among the most common DNA lesions, and are evolutionary conserved, from prokaryotes to higher eukaryotes. The human ortholog, hAGT, is involved in resistance to alkylating chemotherapy drugs. We report here on the alkylated DNA-protein alkyltransferase, SsOGT, from an archaeal species living at high temperature, a condition that enhances the harmful effect of DNA alkylation. The exceptionally high stability of SsOGT gave us the unique opportunity to perform structural and biochemical analysis of a protein of this class in its post-reaction form. This analysis, along with those performed on SsOGT in its ligand-free and DNA-bound forms, provides insights in the structure-function relationships of the protein before, during and after DNA repair, suggesting a molecular basis for DNA recognition, catalytic activity and protein post-reaction fate, and giving hints on the mechanism of alkylation-induced inactivation of this class of proteins. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. The regiochemical distribution of positive charges along cholesterol polyamine carbamates plays significant roles in modulating DNA binding affinity and lipofection.

    Science.gov (United States)

    Geall, A J; Eaton, M A; Baker, T; Catterall, C; Blagbrough, I S

    1999-10-15

    We have quantified the effects of the regiochemical distribution of positive charges along the polyamine moiety in lipopolyamines for DNA molecular recognition. High affinity binding leads to charge neutralisation, DNA condensation and ultimately to lipofection. Binding affinities for calf thymus DNA were determined using an ethidium bromide displacement assay and condensation was detected by changes in turbidity using light scattering. The in vitro transfection competence of cholesterol polyamine carbamates was measured in CHO cells. In the design of DNA condensing and transfecting agents for non-viral gene therapy, the interrelationship of ammonium ions, not just their number, must be considered.

  6. Mutations of amino acids in the DNA-recognition domain of Epstein-Barr virus ZEBRA protein alter its sub-nuclear localization and affect formation of replication compartments

    International Nuclear Information System (INIS)

    Park, Richard; Heston, Lee; Shedd, Duane; Delecluse, Henri-Jacques; Miller, George

    2008-01-01

    ZEBRA, a transcription factor and DNA replication protein encoded by the Epstein-Barr virus (EBV) BZLF1 gene, plays indispensable roles in the EBV lytic cycle. We recently described the phenotypes of 46 single amino acid substitutions introduced into the DNA-recognition region of ZEBRA [Heston, L., El-Guindy, A., Countryman, J., Dela Cruz, C., Delecluse, H.J., and Miller, G. 2006]. The 27 DNA-binding-proficient mutants exhibited distinct defects in their ability to activate expression of the kinetic classes of viral genes. Four phenotypic variants could be discerned: wild-type, defective at activating Rta, defective at activating early genes, and defective at activating late genes. Here we analyze the distribution of ZEBRA within the nucleus and the localization of EA-D (the viral DNA polymerase processivity factor), an indicator of the development of replication compartments, in representatives of each phenotypic group. Plasmids encoding wild-type (WT) and mutant ZEBRA were transfected into 293 cells containing EBV-bacmids. WT ZEBRA protein was diffusely and smoothly distributed throughout the nucleus, sparing nucleoli, and partially recruited to globular replication compartments. EA-D induced by WT ZEBRA was present diffusely in some cells and concentrated in globular replication compartments in other cells. The distribution of ZEBRA and EA-D proteins was identical to WT following transfection of K188R, a mutant with a conservative change. The distribution of S186A mutant ZEBRA protein, defective for activation of Rta and EA-D, was identical to WT, except that the mutant ZEBRA was never found in globular compartments. Co-expression of Rta with S186A mutant rescued diffuse EA-D but not globular replication compartments. The most striking observation was that several mutant ZEBRA proteins defective in activating EA-D (R179A, K181A and A185V) and defective in activating lytic viral DNA replication and late genes (Y180E and K188A) were localized to numerous punctate

  7. Inhibition of DNA glycosylases via small molecule purine analogs.

    Directory of Open Access Journals (Sweden)

    Aaron C Jacobs

    Full Text Available Following the formation of oxidatively-induced DNA damage, several DNA glycosylases are required to initiate repair of the base lesions that are formed. Recently, NEIL1 and other DNA glycosylases, including OGG1 and NTH1 were identified as potential targets in combination chemotherapeutic strategies. The potential therapeutic benefit for the inhibition of DNA glycosylases was validated by demonstrating synthetic lethality with drugs that are commonly used to limit DNA replication through dNTP pool depletion via inhibition of thymidylate synthetase and dihydrofolate reductase. Additionally, NEIL1-associated synthetic lethality has been achieved in combination with Fanconi anemia, group G. As a prelude to the development of strategies to exploit the potential benefits of DNA glycosylase inhibition, it was necessary to develop a reliable high-throughput screening protocol for this class of enzymes. Using NEIL1 as the proof-of-principle glycosylase, a fluorescence-based assay was developed that utilizes incision of site-specifically modified oligodeoxynucleotides to detect enzymatic activity. This assay was miniaturized to a 1536-well format and used to screen small molecule libraries for inhibitors of the combined glycosylase/AP lyase activities. Among the top hits of these screens were several purine analogs, whose postulated presence in the active site of NEIL1 was consistent with the paradigm of NEIL1 recognition and excision of damaged purines. Although a subset of these small molecules could inhibit other DNA glycosylases that excise oxidatively-induced DNA adducts, they could not inhibit a pyrimidine dimer-specific glycosylase.

  8. [Prosopagnosia and facial expression recognition].

    Science.gov (United States)

    Koyama, Shinichi

    2014-04-01

    This paper reviews clinical neuropsychological studies that have indicated that the recognition of a person's identity and the recognition of facial expressions are processed by different cortical and subcortical areas of the brain. The fusiform gyrus, especially the right fusiform gyrus, plays an important role in the recognition of identity. The superior temporal sulcus, amygdala, and medial frontal cortex play important roles in facial-expression recognition. Both facial recognition and facial-expression recognition are highly intellectual processes that involve several regions of the brain.

  9. Epigenetic regulation of transcription and possible functions of mammalian short interspersed elements, SINEs.

    Science.gov (United States)

    Ichiyanagi, Kenji

    2013-01-01

    Short interspersed elements (SINEs) are a class of retrotransposons, which amplify their copy numbers in their host genomes by retrotransposition. More than a million copies of SINEs are present in a mammalian genome, constituting over 10% of the total genomic sequence. In contrast to the other two classes of retrotransposons, long interspersed elements (LINEs) and long terminal repeat (LTR) elements, SINEs are transcribed by RNA polymerase III. However, like LINEs and LTR elements, the SINE transcription is likely regulated by epigenetic mechanisms such as DNA methylation, at least for human Alu and mouse B1. Whereas SINEs and other transposable elements have long been thought as selfish or junk DNA, recent studies have revealed that they play functional roles at their genomic locations, for example, as distal enhancers, chromatin boundaries and binding sites of many transcription factors. These activities imply that SINE retrotransposition has shaped the regulatory network and chromatin landscape of their hosts. Whereas it is thought that the epigenetic mechanisms were originated as a host defense system against proliferation of parasitic elements, this review discusses a possibility that the same mechanisms are also used to regulate the SINE-derived functions.

  10. Recognition and cleavage of 5-methylcytosine DNA by bacterial SRA-HNH proteins

    OpenAIRE

    Han, Tiesheng; Yamada-Mabuchi, Megumu; Zhao, Gong; Li, Li; liu, Guang; Ou, Hong-Yu; Deng, Zixin; Zheng, Yu; He, Xinyi

    2015-01-01

    SET and RING-finger-associated (SRA) domain is involved in establishment and maintenance of DNA methylation in eukaryotes. Proteins containing SRA domains exist in mammals, plants, even microorganisms. It has been established that mammalian SRA domain recognizes 5-methylcytosine (5mC) through a base-flipping mechanism. Here, we identified and characterized two SRA domain-containing proteins with the common domain architecture of N-terminal SRA domain and C-terminal HNH nuclease domain, Sco533...

  11. T cell recognition of breast cancer antigens

    DEFF Research Database (Denmark)

    Petersen, Nadia Viborg; Andersen, Sofie Ramskov; Andersen, Rikke Sick

    Recent studies are encouraging research of breast cancer immunogenicity to evaluate the applicability ofimmunotherapy as a treatment strategy. The epitope landscape in breast cancer is minimally described, thus it is necessary to identify T cell targets to develop immune mediated therapies.......This project investigates four proteins commonly upregulated in breast cancer and thus probable tumor associated antigens (TAAs). Aromatase, prolactin, NEK3, and PIAS3 contribute to increase growth, survival, and motility of malignant cells. Aspiring to uncover novel epitopes for cytotoxic T cells, a reverse...... recognition utilizing DNA barcode labeled MHC multimers to screen peripheral blood lymphocytes from breast cancer patients and healthy donor samples. Signif-icantly more TAA specific T cell responses were detected in breast cancer patients than healthy donors for both HLA-A*0201 (P

  12. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches.

    Science.gov (United States)

    Idili, Andrea; Plaxco, Kevin W; Vallée-Bélisle, Alexis; Ricci, Francesco

    2013-12-23

    Naturally occurring chemoreceptors almost invariably employ structure-switching mechanisms, an observation that has inspired the use of biomolecular switches in a wide range of artificial technologies in the areas of diagnostics, imaging, and synthetic biology. In one mechanism for generating such behavior, clamp-based switching, binding occurs via the clamplike embrace of two recognition elements onto a single target molecule. In addition to coupling recognition with a large conformational change, this mechanism offers a second advantage: it improves both affinity and specificity simultaneously. To explore the physics of such switches we have dissected here the thermodynamics of a clamp-switch that recognizes a target DNA sequence through both Watson-Crick base pairing and triplex-forming Hoogsteen interactions. When compared to the equivalent linear DNA probe (which relies solely on Watson-Crick interactions), the extra Hoogsteen interactions in the DNA clamp-switch increase the probe's affinity for its target by ∼0.29 ± 0.02 kcal/mol/base. The Hoogsteen interactions of the clamp-switch likewise provide an additional specificity check that increases the discrimination efficiency toward a single-base mismatch by 1.2 ± 0.2 kcal/mol. This, in turn, leads to a 10-fold improvement in the width of the "specificity window" of this probe relative to that of the equivalent linear probe. Given these attributes, clamp-switches should be of utility not only for sensing applications but also, in the specific field of DNA nanotechnology, for applications calling for a better control over the building of nanostructures and nanomachines.

  13. High-throughput discovery of T cell epitopes in type 1 diabetes using DNA barcode labelledpeptide-MHC multimers

    DEFF Research Database (Denmark)

    Lyngaa, Rikke Birgitte; Bentzen, Amalie Kai; Overgaard, A. Julie

    2016-01-01

    applying a novel technology where the selection of MHC-multimer binding T cells is followed by amplification and sequencing of MHC multimer-associated DNA barcodes revealing their recognition. This technique enables simultaneous detection of >1000 specificities. Identifying post translational modifications...

  14. Involvement of the DNA mismatch repair system in cisplatin sensitivity of testicular germ cell tumours

    DEFF Research Database (Denmark)

    Rudolph, Christiane; Melau, Cecilie; Nielsen, John E.

    2017-01-01

    in the majority of tumours, although the underlying mechanism largely remains to be elucidated. The aim of this study was to investigate the role of the DNA mismatch repair (MMR) system in the cisplatin sensitivity of TGCT. MethodsThe expression pattern of key MMR proteins, including MSH2, MSH6, MLH1 and PMS2...... proteins, in particular MSH2 and MLH1, which are involved in the recognition of cisplatin adducts and in activation of the DNA damage response pathway to initiate apoptosis....

  15. Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays

    Science.gov (United States)

    Rossi, Stefano; Calabretta, Alessandro; Tedeschi, Tullia; Sforza, Stefano; Arcioni, Sergio; Baldoni, Luciana; Corradini, Roberto; Marchelli, Rosangela

    2012-01-01

    PNA probes for the specific detection of DNA from olive oil samples by microarray technology were developed. The presence of as low as 5% refined hazelnut (Corylus avellana) oil in extra-virgin olive oil (Olea europaea L.) could be detected by using a PNA microarray. A set of two single nucleotide polymorphisms (SNPs) from the Actin gene of Olive was chosen as a model for evaluating the ability of PNA probes for discriminating olive cultivars. Both unmodified and C2-modified PNAs bearing an arginine side-chain were used, the latter showing higher sequence specificity. DNA extracted from leaves of three different cultivars (Ogliarola leccese, Canino and Frantoio) could be easily discriminated using a microarray with unmodified PNA probes, whereas discrimination of DNA from oil samples was more challenging, and could be obtained only by using chiral PNA probes. PMID:22772038

  16. Pupil dilation during recognition memory: Isolating unexpected recognition from judgment uncertainty.

    Science.gov (United States)

    Mill, Ravi D; O'Connor, Akira R; Dobbins, Ian G

    2016-09-01

    Optimally discriminating familiar from novel stimuli demands a decision-making process informed by prior expectations. Here we demonstrate that pupillary dilation (PD) responses during recognition memory decisions are modulated by expectations, and more specifically, that pupil dilation increases for unexpected compared to expected recognition. Furthermore, multi-level modeling demonstrated that the time course of the dilation during each individual trial contains separable early and late dilation components, with the early amplitude capturing unexpected recognition, and the later trailing slope reflecting general judgment uncertainty or effort. This is the first demonstration that the early dilation response during recognition is dependent upon observer expectations and that separate recognition expectation and judgment uncertainty components are present in the dilation time course of every trial. The findings provide novel insights into adaptive memory-linked orienting mechanisms as well as the general cognitive underpinnings of the pupillary index of autonomic nervous system activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Initiation of DNA replication: functional and evolutionary aspects

    Science.gov (United States)

    Bryant, John A.; Aves, Stephen J.

    2011-01-01

    Background The initiation of DNA replication is a very important and highly regulated step in the cell division cycle. It is of interest to compare different groups of eukaryotic organisms (a) to identify the essential molecular events that occur in all eukaryotes, (b) to start to identify higher-level regulatory mechanisms that are specific to particular groups and (c) to gain insights into the evolution of initiation mechanisms. Scope This review features a wide-ranging literature survey covering replication origins, origin recognition and usage, modification of origin usage (especially in response to plant hormones), assembly of the pre-replication complex, loading of the replisome, genomics, and the likely origin of these mechanisms and proteins in Archaea. Conclusions In all eukaryotes, chromatin is organized for DNA replication as multiple replicons. In each replicon, replication is initiated at an origin. With the exception of those in budding yeast, replication origins, including the only one to be isolated so far from a plant, do not appear to embody a specific sequence; rather, they are AT-rich, with short tracts of locally bent DNA. The proteins involved in initiation are remarkably similar across the range of eukaryotes. Nevertheless, their activity may be modified by plant-specific mechanisms, including regulation by plant hormones. The molecular features of initiation are seen in a much simpler form in the Archaea. In particular, where eukaryotes possess a number of closely related proteins that form ‘hetero-complexes’ (such as the origin recognition complex and the MCM complex), archaeans typically possess one type of protein (e.g. one MCM) that forms a homo-complex. This suggests that several eukaryotic initiation proteins have evolved from archaeal ancestors by gene duplication and divergence. PMID:21508040

  18. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L. genome

    Directory of Open Access Journals (Sweden)

    González Leonardo Galindo

    2012-11-01

    Full Text Available Abstract Background Flax (Linum usitatissimum L. is an important crop for the production of bioproducts derived from its seed and stem fiber. Transposable elements (TEs are widespread in plant genomes and are a key component of their evolution. The availability of a genome assembly of flax (Linum usitatissimum affords new opportunities to explore the diversity of TEs and their relationship to genes and gene expression. Results Four de novo repeat identification algorithms (PILER, RepeatScout, LTR_finder and LTR_STRUC were applied to the flax genome assembly. The resulting library of flax repeats was combined with the RepBase Viridiplantae division and used with RepeatMasker to identify TEs coverage in the genome. LTR retrotransposons were the most abundant TEs (17.2% genome coverage, followed by Long Interspersed Nuclear Element (LINE retrotransposons (2.10% and Mutator DNA transposons (1.99%. Comparison of putative flax TEs to flax transcript databases indicated that TEs are not highly expressed in flax. However, the presence of recent insertions, defined by 100% intra-element LTR similarity, provided evidence for recent TE activity. Spatial analysis showed TE-rich regions, gene-rich regions as well as regions with similar genes and TE density. Monte Carlo simulations for the 71 largest scaffolds (≥ 1 Mb each did not show any regional differences in the frequency of TE overlap with gene coding sequences. However, differences between TE superfamilies were found in their proximity to genes. Genes within TE-rich regions also appeared to have lower transcript expression, based on EST abundance. When LTR elements were compared, Copia showed more diversity, recent insertions and conserved domains than the Gypsy, demonstrating their importance in genome evolution. Conclusions The calculated 23.06% TE coverage of the flax WGS assembly is at the low end of the range of TE coverages reported in other eudicots, although this estimate does not include

  19. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome.

    Science.gov (United States)

    González, Leonardo Galindo; Deyholos, Michael K

    2012-11-21

    Flax (Linum usitatissimum L.) is an important crop for the production of bioproducts derived from its seed and stem fiber. Transposable elements (TEs) are widespread in plant genomes and are a key component of their evolution. The availability of a genome assembly of flax (Linum usitatissimum) affords new opportunities to explore the diversity of TEs and their relationship to genes and gene expression. Four de novo repeat identification algorithms (PILER, RepeatScout, LTR_finder and LTR_STRUC) were applied to the flax genome assembly. The resulting library of flax repeats was combined with the RepBase Viridiplantae division and used with RepeatMasker to identify TEs coverage in the genome. LTR retrotransposons were the most abundant TEs (17.2% genome coverage), followed by Long Interspersed Nuclear Element (LINE) retrotransposons (2.10%) and Mutator DNA transposons (1.99%). Comparison of putative flax TEs to flax transcript databases indicated that TEs are not highly expressed in flax. However, the presence of recent insertions, defined by 100% intra-element LTR similarity, provided evidence for recent TE activity. Spatial analysis showed TE-rich regions, gene-rich regions as well as regions with similar genes and TE density. Monte Carlo simulations for the 71 largest scaffolds (≥ 1 Mb each) did not show any regional differences in the frequency of TE overlap with gene coding sequences. However, differences between TE superfamilies were found in their proximity to genes. Genes within TE-rich regions also appeared to have lower transcript expression, based on EST abundance. When LTR elements were compared, Copia showed more diversity, recent insertions and conserved domains than the Gypsy, demonstrating their importance in genome evolution. The calculated 23.06% TE coverage of the flax WGS assembly is at the low end of the range of TE coverages reported in other eudicots, although this estimate does not include TEs likely found in unassembled repetitive regions of

  20. Mitochondrial DNA, chloroplast DNA and the origins of development in eukaryotic organisms

    Directory of Open Access Journals (Sweden)

    Bendich Arnold J

    2010-06-01

    Full Text Available Abstract Background Several proposals have been made to explain the rise of multicellular life forms. An internal environment can be created and controlled, germ cells can be protected in novel structures, and increased organismal size allows a "division of labor" among cell types. These proposals describe advantages of multicellular versus unicellular organisms at levels of organization at or above the individual cell. I focus on a subsequent phase of evolution, when multicellular organisms initiated the process of development that later became the more complex embryonic development found in animals and plants. The advantage here is realized at the level of the mitochondrion and chloroplast. Hypothesis The extreme instability of DNA in mitochondria and chloroplasts has not been widely appreciated even though it was first reported four decades ago. Here, I show that the evolutionary success of multicellular animals and plants can be traced to the protection of organellar DNA. Three stages are envisioned. Sequestration allowed mitochondria and chloroplasts to be placed in "quiet" germ line cells so that their DNA is not exposed to the oxidative stress produced by these organelles in "active" somatic cells. This advantage then provided Opportunity, a period of time during which novel processes arose for signaling within and between cells and (in animals for cell-cell recognition molecules to evolve. Development then led to the enormous diversity of animals and plants. Implications The potency of a somatic stem cell is its potential to generate cell types other than itself, and this is a systems property. One of the biochemical properties required for stemness to emerge from a population of cells might be the metabolic quiescence that protects organellar DNA from oxidative stress. Reviewers This article was reviewed by John Logsdon, Arcady Mushegian, and Patrick Forterre.

  1. Investigation of arc repressor DNA-binding specificity by comparative molecular dynamics simulations.

    Science.gov (United States)

    Song, Wei; Guo, Jun-Tao

    2015-01-01

    Transcription factors regulate gene expression through binding to specific DNA sequences. How transcription factors achieve high binding specificity is still not well understood. In this paper, we investigated the role of protein flexibility in protein-DNA-binding specificity by comparative molecular dynamics (MD) simulations. Protein flexibility has been considered as a key factor in molecular recognition, which is intrinsically a dynamic process involving fine structural fitting between binding components. In this study, we performed comparative MD simulations on wild-type and F10V mutant P22 Arc repressor in both free and complex conformations. The F10V mutant has lower DNA-binding specificity though both the bound and unbound main-chain structures between the wild-type and F10V mutant Arc are highly similar. We found that the DNA-binding motif of wild-type Arc is structurally more flexible than the F10V mutant in the unbound state, especially for the six DNA base-contacting residues in each dimer. We demonstrated that the flexible side chains of wild-type Arc lead to a higher DNA-binding specificity through forming more hydrogen bonds with DNA bases upon binding. Our simulations also showed a possible conformational selection mechanism for Arc-DNA binding. These results indicate the important roles of protein flexibility and dynamic properties in protein-DNA-binding specificity.

  2. Sequence-specific RNA Photocleavage by Single-stranded DNA in Presence of Riboflavin

    Science.gov (United States)

    Zhao, Yongyun; Chen, Gangyi; Yuan, Yi; Li, Na; Dong, Juan; Huang, Xin; Cui, Xin; Tang, Zhuo

    2015-10-01

    Constant efforts have been made to develop new method to realize sequence-specific RNA degradation, which could cause inhibition of the expression of targeted gene. Herein, by using an unmodified short DNA oligonucleotide for sequence recognition and endogenic small molecue, vitamin B2 (riboflavin) as photosensitizer, we report a simple strategy to realize the sequence-specific photocleavage of targeted RNA. The DNA strand is complimentary to the target sequence to form DNA/RNA duplex containing a G•U wobble in the middle. The cleavage reaction goes through oxidative elimination mechanism at the nucleoside downstream of U of the G•U wobble in duplex to obtain unnatural RNA terminal, and the whole process is under tight control by using light as switch, which means the cleavage could be carried out according to specific spatial and temporal requirements. The biocompatibility of this method makes the DNA strand in combination with riboflavin a promising molecular tool for RNA manipulation.

  3. Signal Recognition Particle 54 kD Protein (SRP54 from the Marine Sponge Geodia cydonium

    Directory of Open Access Journals (Sweden)

    Sonja Durajlija-Žinić

    2002-01-01

    Full Text Available In the systematic search for phylogenetically conserved proteins in the simplest and most ancient extant metazoan phylum – Porifera, we have identified and analyzed a cDNA encoding the signal recognition particle 54 kD protein (SRP54 from the marine sponge Geodia cydonium (Demospongiae. The signal recognition particle (SRP is a universally conserved ribonucleoprotein complex of a very ancient origin, comprising SRP RNA and several proteins (six in mammals. The nucleotide sequence of the sponge cDNA predicts a protein of 499 amino acid residues with a calculated Mr of 55175. G. cydonium SRP54 displays unusually high overall similarity (90 % with human/mammalian SRP54 proteins, higher than with Drosophila melanogaster (88 %, or Caenorhabditis elegans (82 %. The same was found for the majority of known and phylogenetically conserved proteins from sponges, indicating that the molecular evolutionary rates in protein coding genes in Porifera as well as in highly developed mammals (vertebrates are slower, when compared with the rates in homologous genes from invertebrates (insects, nematodes. Therefore, genes/proteins from sponges might be the best candidates for the reconstruction of ancient structures of proteins and genome/proteome complexity in the ancestral organism, common to all multicellular animals.

  4. Kernel learning algorithms for face recognition

    CERN Document Server

    Li, Jun-Bao; Pan, Jeng-Shyang

    2013-01-01

    Kernel Learning Algorithms for Face Recognition covers the framework of kernel based face recognition. This book discusses the advanced kernel learning algorithms and its application on face recognition. This book also focuses on the theoretical deviation, the system framework and experiments involving kernel based face recognition. Included within are algorithms of kernel based face recognition, and also the feasibility of the kernel based face recognition method. This book provides researchers in pattern recognition and machine learning area with advanced face recognition methods and its new

  5. Electrophoretic mobility shift assay reveals a novel recognition sequence for Setaria italica NAC protein.

    Science.gov (United States)

    Puranik, Swati; Kumar, Karunesh; Srivastava, Prem S; Prasad, Manoj

    2011-10-01

    The NAC (NAM/ATAF1,2/CUC2) proteins are among the largest family of plant transcription factors. Its members have been associated with diverse plant processes and intricately regulate the expression of several genes. Inspite of this immense progress, knowledge of their DNA-binding properties are still limited. In our recent publication,1 we reported isolation of a membrane-associated NAC domain protein from Setaria italica (SiNAC). Transactivation analysis revealed that it was a functionally active transcription factor as it could stimulate expression of reporter genes in vivo. Truncations of the transmembrane region of the protein lead to its nuclear localization. Here we describe expression and purification of SiNAC DNA-binding domain. We further report identification of a novel DNA-binding site, [C/G][A/T][T/A][G/C]TC[C/G][A/T][C/G][G/C] for SiNAC by electrophoretic mobility shift assay. The SiNAC-GST protein could bind to the NAC recognition sequence in vitro as well as to sequences where some bases had been reshuffled. The results presented here contribute to our understanding of the DNA-binding specificity of SiNAC protein.

  6. Analyte-Triggered DNA-Probe Release from a Triplex Molecular Beacon for Nanopore Sensing.

    Science.gov (United States)

    Guo, Bingyuan; Sheng, Yingying; Zhou, Ke; Liu, Quansheng; Liu, Lei; Wu, Hai-Chen

    2018-03-26

    A new nanopore sensing strategy based on triplex molecular beacon was developed for the detection of specific DNA or multivalent proteins. The sensor is composed of a triplex-forming molecular beacon and a stem-forming DNA component that is modified with a host-guest complex. Upon target DNA hybridizing with the molecular beacon loop or multivalent proteins binding to the recognition elements on the stem, the DNA probe is released and produces highly characteristic current signals when translocated through α-hemolysin. The frequency of current signatures can be used to quantify the concentrations of the target molecules. This sensing approach provides a simple, quick, and modular tool for the detection of specific macromolecules with high sensitivity and excellent selectivity. It may find useful applications in point-of-care diagnostics with a portable nanopore kit in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Anti-HIV Antibody Responses and the HIV Reservoir Size during Antiretroviral Therapy.

    Directory of Open Access Journals (Sweden)

    Sulggi A Lee

    Full Text Available A major challenge to HIV eradication strategies is the lack of an accurate measurement of the total burden of replication-competent HIV (the "reservoir". We assessed the association of anti-HIV antibody responses and the estimated size of the reservoir during antiretroviral therapy (ART.We evaluated anti-HIV antibody profiles using luciferase immunoprecipitation systems (LIPS assay in relation to several blood-based HIV reservoir measures: total and 2-LTR DNA (rtPCR or droplet digital PCR; integrated DNA (Alu PCR; unspliced RNA (rtPCR, multiply-spliced RNA (TILDA, residual plasma HIV RNA (single copy PCR, and replication-competent virus (outgrowth assay. We also assessed total HIV DNA and RNA in gut-associated lymphoid tissue (rtPCR. Spearman correlations and linear regressions were performed using log-transformed blood- or tissue-based reservoir measurements as predictors and log-transformed antibody levels as outcome variables.Among 51 chronically HIV-infected ART-suppressed participants (median age = 57, nadir CD4+ count = 196 cells/mm3, ART duration = 9 years, the most statistically significant associations were between antibody responses to integrase and HIV RNA in gut-associated lymphoid tissue (1.17 fold-increase per two-fold RNA increase, P = 0.004 and between antibody responses to matrix and integrated HIV DNA in resting CD4+ T cells (0.35 fold-decrease per two-fold DNA increase, P = 0.003. However, these associations were not statistically significant after a stringent Bonferroni-adjustment of P<0.00045. Multivariate models including age and duration of ART did not markedly alter results.Our findings suggest that anti-HIV antibody responses may reflect the size of the HIV reservoir during chronic treated HIV disease, possibly via antigen recognition in reservoir sites. Larger, prospective studies are needed to validate the utility of antibody levels as a measure of the total body burden of HIV during treatment.

  8. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP).

    Science.gov (United States)

    Peraza-Echeverria, S; Herrera-Valencia, V A.; Kay, A -J.

    2001-07-01

    The extent of DNA methylation polymorphisms was evaluated in micropropagated banana (Musa AAA cv. 'Grand Naine') derived from either the vegetative apex of the sucker or the floral apex of the male inflorescence using the methylation-sensitive amplification polymorphism (MSAP) technique. In all, 465 fragments, each representing a recognition site cleaved by either or both of the isoschizomers were amplified using eight combinations of primers. A total of 107 sites (23%) were found to be methylated at cytosine in the genome of micropropagated banana plants. In plants micropropagated from the male inflorescence explant 14 (3%) DNA methylation events were polymorphic, while plants micropropagated from the sucker explant produced 8 (1.7%) polymorphisms. No DNA methylation polymorphisms were detected in conventionally propagated banana plants. These results demonstrated the usefulness of MSAP to detect DNA methylation events in micropropagated banana plants and indicate that DNA methylation polymorphisms are associated with micropropagation.

  9. Design of polymer motifs for nucleic acid recognition and assembly stabilization

    Science.gov (United States)

    Zhou, Zhun

    This dissertation describes the synthesis and assembly of bio-functional polymers and the applications of these polymers to drug encapsulation, delivery, and multivalent biomimetic macromolecular recognition between synthetic polymer and nucleic acids. The main content is divided into three parts: (1) polyacidic domains as strongly stabilizing design elements for aqueous phase polyacrylate diblock assembly; (2) small molecule/polymer recognition triggered macromolecular assembly and drug encapsulation; (3) trizaine derivatized polymer as a novel class of "bifacial polymer nucleic acid" (bPoNA) and applications of bPoNA to nanoparticle loading of DNA/RNA, silencing delivery as well as control of aptamer function. Through the studies in part (1) and part (2), it was demonstrated that well-designed polymer motifs are not only able to enhance assemblies driven by non-specific hydrophobic effect, but are also able to direct assemblies based on specific recognitions. In part (3) of this dissertation, this concept was further extended by the design of polyacrylate polymers that are capable of discrete and robust hybridization with nucleic acids. This surprising finding demonstrated both fundamental and practical applications. Overall, these studies provided insights into the rational design elements for improving the bio-functions of synthetic polymers, and significantly expanded the scope of biological applications in which polymers synthesized via controlled radical polymerization may play a role.

  10. Diamond-coated field-effect sensor for DNA recognition - influence of material and morphology

    Czech Academy of Sciences Publication Activity Database

    Ižák, Tibor; Sakata, T.; Miyazawa, Y.; Kajisa, T.; Kromka, Alexander; Rezek, Bohuslav

    2015-01-01

    Roč. 60, Nov (2015), 87-93 ISSN 0925-9635 R&D Projects: GA ČR(CZ) GBP108/12/G108 Grant - others:AVČR(CZ) M100101209 Institutional support: RVO:68378271 Keywords : diamond * field effect device * DNA * C-V characteristics * fluorescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.125, year: 2015

  11. Proximity hybridization-regulated catalytic DNA hairpin assembly for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fuyi [School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116 (China); Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical College, 221004, Xuzhou (China); Yao, Yao; Luo, Jianjun; Zhang, Xing; Zhang, Yu; Yin, Dengyang [Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical College, 221004, Xuzhou (China); Gao, Fenglei, E-mail: jsxzgfl@sina.com [Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical College, 221004, Xuzhou (China); Wang, Po, E-mail: wangpo@jsnu.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116 (China)

    2017-05-29

    Novel hybridization proximity-regulated catalytic DNA hairpin assembly strategy has been proposed for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles as signal label. The DNA template-synthesized Pd nanoparticles were characterized with atomic force microscopic and X-ray photoelectron spectroscopy. The highly efficient electrocatalysis by DNA template synthesized Pd nanoparticles for NaBH{sub 4} oxidation produced an intense detection signal. The label-free electrochemical method achieved the detection of carcinoembryonic antigen (CEA) with a linear range from 10{sup −15} to 10{sup −11} g mL{sup −1} and a detection limit of 0.43 × 10{sup −15} g mL{sup −1}. Through introducing a supersandwich reaction to increase the DNA length, the electrochemical signal was further amplified, leading to a detection limit of 0.52 × 10{sup −16} g mL{sup −1}. And it rendered satisfactory analytical performance for the determination of CEA in serum samples. Furthermore, it exhibited good reproducibility and stability; meanwhile, it also showed excellent specificity due to the specific recognition of antigen by antibody. Therefore, the DNA template synthesized Pd nanoparticles based signal amplification approach has great potential in clinical applications and is also suitable for quantification of biomarkers at ultralow level. - Graphical abstract: A novel label-free and enzyme-free electrochemical immunoassay based on proximity hybridization-regulated catalytic DNA hairpin assemblies for recycling of the CEA. - Highlights: • A novel enzyme-free electrochemical immunosensor was developed for detection of CEA. • The signal amplification was based on catalytic DNA hairpin assembly and DNA-template-synthesized Pd nanoparticles. • The biosensor could detect CEA down to 0.52 × 10{sup −16} g mL{sup −1} level with a dynamic range spanning 5 orders of magnitude.

  12. EGNAS: an exhaustive DNA sequence design algorithm

    Directory of Open Access Journals (Sweden)

    Kick Alfred

    2012-06-01

    Full Text Available Abstract Background The molecular recognition based on the complementary base pairing of deoxyribonucleic acid (DNA is the fundamental principle in the fields of genetics, DNA nanotechnology and DNA computing. We present an exhaustive DNA sequence design algorithm that allows to generate sets containing a maximum number of sequences with defined properties. EGNAS (Exhaustive Generation of Nucleic Acid Sequences offers the possibility of controlling both interstrand and intrastrand properties. The guanine-cytosine content can be adjusted. Sequences can be forced to start and end with guanine or cytosine. This option reduces the risk of “fraying” of DNA strands. It is possible to limit cross hybridizations of a defined length, and to adjust the uniqueness of sequences. Self-complementarity and hairpin structures of certain length can be avoided. Sequences and subsequences can optionally be forbidden. Furthermore, sequences can be designed to have minimum interactions with predefined strands and neighboring sequences. Results The algorithm is realized in a C++ program. TAG sequences can be generated and combined with primers for single-base extension reactions, which were described for multiplexed genotyping of single nucleotide polymorphisms. Thereby, possible foldback through intrastrand interaction of TAG-primer pairs can be limited. The design of sequences for specific attachment of molecular constructs to DNA origami is presented. Conclusions We developed a new software tool called EGNAS for the design of unique nucleic acid sequences. The presented exhaustive algorithm allows to generate greater sets of sequences than with previous software and equal constraints. EGNAS is freely available for noncommercial use at http://www.chm.tu-dresden.de/pc6/EGNAS.

  13. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection.

    Science.gov (United States)

    Loan, Phan Thi Kim; Wu, Dongqin; Ye, Chen; Li, Xiaoqing; Tra, Vu Thanh; Wei, Qiuping; Fu, Li; Yu, Aimin; Li, Lain-Jong; Lin, Cheng-Te

    2018-01-15

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1pM to 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons

    Czech Academy of Sciences Publication Activity Database

    Lexa, M.; Kejnovský, Eduard; Šteflová, Pavlína; Konvalinová, H.; Vorlíčková, Michaela; Vyskot, Boris

    2014-01-01

    Roč. 42, č. 2 (2014), s. 968-978 ISSN 0305-1048 R&D Projects: GA ČR(CZ) GAP205/12/0466; GA ČR(CZ) GAP305/10/0930; GA ČR(CZ) GAP501/10/0102; GA ČR(CZ) GA522/09/0083; GA ČR GPP501/10/P483 Institutional support: RVO:68081707 Keywords : INTRAMOLECULAR DNA QUADRUPLEXES * VIRUS TYPE-1 RNA * CIRCULAR-DICHROISM Subject RIV: BO - Biophysics Impact factor: 9.112, year: 2014

  15. Coactivator-associated arginine methyltransferase 1 enhances transcriptional activity of the human T-cell lymphotropic virus type 1 long terminal repeat through direct interaction with Tax.

    Science.gov (United States)

    Jeong, Soo-Jin; Lu, Hanxin; Cho, Won-Kyung; Park, Hyeon Ung; Pise-Masison, Cynthia; Brady, John N

    2006-10-01

    In this study, we demonstrate that the coactivator-associated arginine methyltransferase 1 (CARM1), which methylates histone H3 and other proteins such as p300/CBP, is positively involved in the regulation of Tax transactivation. First, transfection studies demonstrated that overexpression of CARM1 wild-type protein resulted in increased Tax transactivation of the human T-cell lymphotropic virus type 1 (HTLV-1) long terminal repeat (LTR). In contrast, transfection of a catalytically inactive CARM1 methyltransferase mutant did not enhance Tax transactivation. CARM1 facilitated Tax transactivation of the CREB-dependent cellular GEM promoter. A direct physical interaction between HTLV-1 Tax and CARM1 was demonstrated using in vitro glutathione S-transferase-Tax binding assays, in vivo coimmunoprecipitation, and confocal microscopy experiments. Finally, chromatin immunoprecipitation analysis of the activated HTLV-1 LTR promoter showed the association of CARM1 and methylated histone H3 with the template DNA. In vitro, Tax facilitates the binding of CARM1 to the transcription complex. Together, our data provide evidence that CARM1 enhances Tax transactivation of the HTLV-1 LTR through a direct interaction between CARM1 and Tax and this binding promotes methylation of histone H3 (R2, R17, and R26).

  16. Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition.

    Science.gov (United States)

    Bahal, Raman; Quijano, Elias; McNeer, Nicole A; Liu, Yanfeng; Bhunia, Dinesh C; Lopez-Giraldez, Francesco; Fields, Rachel J; Saltzman, William M; Ly, Danith H; Glazer, Peter M

    2014-01-01

    Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction.

  17. Superior induction of T cell responses to conserved HIV-1 regions by electroporated alphavirus replicon DNA compared to that with conventional plasmid DNA vaccine.

    Science.gov (United States)

    Knudsen, Maria L; Mbewe-Mvula, Alice; Rosario, Maximillian; Johansson, Daniel X; Kakoulidou, Maria; Bridgeman, Anne; Reyes-Sandoval, Arturo; Nicosia, Alfredo; Ljungberg, Karl; Hanke, Tomás; Liljeström, Peter

    2012-04-01

    Vaccination using "naked" DNA is a highly attractive strategy for induction of pathogen-specific immune responses; however, it has been only weakly immunogenic in humans. Previously, we constructed DNA-launched Semliki Forest virus replicons (DREP), which stimulate pattern recognition receptors and induce augmented immune responses. Also, in vivo electroporation was shown to enhance immune responses induced by conventional DNA vaccines. Here, we combine these two approaches and show that in vivo electroporation increases CD8(+) T cell responses induced by DREP and consequently decreases the DNA dose required to induce a response. The vaccines used in this study encode the multiclade HIV-1 T cell immunogen HIVconsv, which is currently being evaluated in clinical trials. Using intradermal delivery followed by electroporation, the DREP.HIVconsv DNA dose could be reduced to as low as 3.2 ng to elicit frequencies of HIV-1-specific CD8(+) T cells comparable to those induced by 1 μg of a conventional pTH.HIVconsv DNA vaccine, representing a 625-fold molar reduction in dose. Responses induced by both DREP.HIVconsv and pTH.HIVconsv were further increased by heterologous vaccine boosts employing modified vaccinia virus Ankara MVA.HIVconsv and attenuated chimpanzee adenovirus ChAdV63.HIVconsv. Using the same HIVconsv vaccines, the mouse observations were supported by an at least 20-fold-lower dose of DNA vaccine in rhesus macaques. These data point toward a strategy for overcoming the low immunogenicity of DNA vaccines in humans and strongly support further development of the DREP vaccine platform for clinical evaluation.

  18. Sudden Event Recognition: A Survey

    Directory of Open Access Journals (Sweden)

    Mohd Asyraf Zulkifley

    2013-08-01

    Full Text Available Event recognition is one of the most active research areas in video surveillance fields. Advancement in event recognition systems mainly aims to provide convenience, safety and an efficient lifestyle for humanity. A precise, accurate and robust approach is necessary to enable event recognition systems to respond to sudden changes in various uncontrolled environments, such as the case of an emergency, physical threat and a fire or bomb alert. The performance of sudden event recognition systems depends heavily on the accuracy of low level processing, like detection, recognition, tracking and machine learning algorithms. This survey aims to detect and characterize a sudden event, which is a subset of an abnormal event in several video surveillance applications. This paper discusses the following in detail: (1 the importance of a sudden event over a general anomalous event; (2 frameworks used in sudden event recognition; (3 the requirements and comparative studies of a sudden event recognition system and (4 various decision-making approaches for sudden event recognition. The advantages and drawbacks of using 3D images from multiple cameras for real-time application are also discussed. The paper concludes with suggestions for future research directions in sudden event recognition.

  19. Structural dynamics and interactions of Xeroderma pigmentosum complementation group A (XPA98-210) with damaged DNA.

    Science.gov (United States)

    Pradhan, Sushmita; Mattaparthi, Venkata Satish Kumar

    2017-10-25

    Nucleotide excision repair (NER) in higher organisms repair massive DNA abrasions caused by ultraviolet rays, and various mutagens, where Xeroderma pigmentosum group A (XPA) protein is known to be involved in damage recognition step. Any mutations in XPA cause classical Xeroderma pigmentosum disease. The extent to which XPA is required in the NER is still unclear. Here, we present the comparative study on the structural and conformational changes in globular DNA binding domain of XPA 98-210 in DNA bound and DNA free state. Atomistic molecular dynamics simulation was carried out for both XPA 98-210 systems using AMBER force fields. We observed that XPA 98-210 in presence of damaged DNA exhibited more structural changes compared to XPA 98-210 in its free form. When XPA is in contact with DNA, we found marked stability of the complex due to the formation of characteristic longer antiparallel β-sheets consisting mainly lysine residues.

  20. Sequence-specific protection of duplex DNA against restriction and methylation enzymes by pseudocomplementary PNAs

    DEFF Research Database (Denmark)

    Izvolsky, K I; Demidov, V V; Nielsen, P E

    2000-01-01

    I restriction endonuclease and dam methylase. The pcPNA-assisted protection against enzymatic methylation is more efficient when the PNA-binding site embodies the methylase-recognition site rather than overlaps it. We conclude that pcPNAs may provide the robust tools allowing to sequence-specifically manipulate...... DNA duplexes in a virtually sequence-unrestricted manner....