WorldWideScience

Sample records for lps-induced d2 response

  1. Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.

    Science.gov (United States)

    Jeong, Chang Hee; Cheng, Wei Nee; Bae, Hyojin; Lee, Kyung Woo; Han, Sang Mi; Petriello, Michael C; Lee, Hong Gu; Seo, Han Geuk; Han, Sung Gu

    2017-10-28

    The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides ( e.g. , melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS (1 μg/ml) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and 5 μg/ml) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-α. Activation of NF-κB, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species ( e.g. , superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-κB, ERK1/2, and COX-2 signaling.

  2. The inhibition of LPS-induced splenocyte proliferation by ortho-substituted and microbially dechlorinated polychlorinated biphenyls is associated with a decreased expression of cyclin D2

    International Nuclear Information System (INIS)

    Smithwick, L. Ashley; Quensen, John F.; Smith, Andrew; Kurtz, David T.; London, Lucille; Morris, Pamela J.

    2004-01-01

    Immunological effects of polychlorinated biphenyls (PCBs) have been demonstrated in our laboratories with the preferential inhibition of lipopolysaccharide (LPS)-induced splenocyte proliferation by ortho-substituted PCB congeners. An investigation of the mechanism behind this immunotoxicity revealed an interruption in the progression of murine lymphocytes from G 0 /G 1 into S phase by Aroclor 1242 and the di-ortho-substituted congener, 2,2'-chlorobiphenyl (CB), whereas, a non-ortho-substituted congener, 4,4'-CB, did not affect cell cycle progression. This interruption of cell cycle progression by 2,2'-CB and Aroclor 1242 was associated with a decreased expression of the cell cycle regulatory protein, cyclin D2, while expression was not affected by exposure to the non-ortho-substituted 4,4'-CB. These results suggest the preferential inhibition of LPS-induced splenocyte proliferation by ortho-substituted congeners is a result of a decreased expression of cyclin D2, which leads to an interruption in cell cycle progression. In addition, PCB mixtures with an increased percentage of chlorines in the ortho position following an environmentally occurring degradation process inhibited LPS-induced proliferation, interrupted cell cycle progression, and decreased cyclin D2 expression. This study provides evidence for a mechanism of action of the immunological effects of ortho-substituted individual congeners as well as environmentally relevant mixtures enriched in congeners with this substitution pattern

  3. Deubiquitinase USP12 promotes LPS induced macrophage responses through inhibition of IκBα

    International Nuclear Information System (INIS)

    Nayak, Tapan Kumar Singh; Alamuru-Yellapragada, Neeraja P.; Parsa, Kishore V.L.

    2017-01-01

    Post translational modifications, ubiquitination and its reversal by deubiquitination play an important role in regulating innate immune system. USP12 is a poorly studied deubiquitinase reported to regulate T-cell receptor signalling however the functional role of USP12 in macrophages, the principal architects of inflammation, is unknown. Thus, in this study we probed the involvement of USP12 in macrophage mediated inflammatory responses using bacterial endotoxin, LPS, as the model system. Here, we observed that the expression of USP12 was altered in time dependent manner in LPS stimulated RAW 264.7 macrophages at both mRNA and protein levels as revealed by qPCR and western blot analysis, respectively. Further analysis showed that LPS reduced the levels of Sp1 which enhanced the transcriptional levels of USP12. We observed that siRNA mediated ablation of USP12 expression in mouse macrophages suppressed the induction of LPS-induced iNOS and IL-6 expression but failed to alter IFN-β synthesis, oxidative stress and phagocytic ability of macrophages. Mechanistic analysis suggest that USP12 may be required for the activation of NFκB pathway as knockdown of USP12 reduced the inhibitory phosphorylation of IκBα, a well characterized inhibitor of NFκB nuclear translocation. Further, USP12 was observed to be required for LPS elicited phosphorylation of ERK1/2 and p38. Collectively, our data suggest that USP12 may be a key mediator of LPS stimulated macrophage responses. - Highlights: • USP12 levels are significantly altered in LPS stimulated macrophages. • USP12 is required for LPS induced iNOS and IL6 expression. • USP12 is crucial for LPS induced phosphorylation of IκBα, ERK1/2, p38.

  4. Suppression of LPS-induced inflammatory responses in macrophages infected with Leishmania

    Directory of Open Access Journals (Sweden)

    Kelly Ben L

    2010-02-01

    Full Text Available Abstract Background Chronic inflammation activated by macrophage innate pathogen recognition receptors such as TLR4 can lead to a range of inflammatory diseases, including atherosclerosis, Crohn's disease, arthritis and cancer. Unlike many microbes, the kinetoplastid protozoan pathogen Leishmania has been shown to avoid and even actively suppress host inflammatory cytokine responses, such as LPS-induced IL-12 production. The nature and scope of Leishmania-mediated inflammatory cytokine suppression, however, is not well characterized. Advancing our knowledge of such microbe-mediated cytokine suppression may provide new avenues for therapeutic intervention in inflammatory disease. Methods We explored the kinetics of a range of cytokine and chemokine responses in primary murine macrophages stimulated with LPS in the presence versus absence of two clinically distinct species of Leishmania using sensitive multiplex cytokine analyses. To confirm that these effects were parasite-specific, we compared the effects of Leishmania uptake on LPS-induced cytokine expression with uptake of inert latex beads. Results Whilst Leishmania uptake alone did not induce significant levels of any cytokine analysed in this study, Leishmania uptake in the presence of LPS caused parasite-specific suppression of certain LPS-induced pro-inflammatory cytokines, including IL-12, IL-17 and IL-6. Interestingly, L. amazonensis was generally more suppressive than L. major. We also found that other LPS-induced proinflammatory cytokines, such as IL-1α, TNF-α and the chemokines MIP-1α and MCP-1 and also the anti-inflammatory cytokine IL-10, were augmented during Leishmania uptake, in a parasite-specific manner. Conclusions During uptake by macrophages, Leishmania evades the activation of a broad range of cytokines and chemokines. Further, in the presence of a strong inflammatory stimulus, Leishmania suppresses certain proinflammatory cytokine responses in a parasite

  5. Caffeoyl glucosides from Nandina domestica inhibit LPS-induced endothelial inflammatory responses.

    Science.gov (United States)

    Kulkarni, Roshan R; Lee, Wonhwa; Jang, Tae Su; Lee, JungIn; Kwak, Soyoung; Park, Mi Seon; Lee, Hyun-Shik; Bae, Jong-Sup; Na, MinKyun

    2015-11-15

    Endothelial dysfunction is a key pathological feature of many inflammatory diseases, including sepsis. In the present study, a new caffeoyl glucoside (1) and two known caffeoylated compounds (2 and 3) were isolated from the fruits of Nandina domestica Thunb. (Berberidaceae). The compounds were investigated for their effects against lipopolysaccharide (LPS)-mediated endothelial inflammatory responses. At 20 μM, 1 and 2 inhibited LPS-induced hyperpermeability, adhesion, and migration of leukocytes across a human endothelial cell monolayer in a dose-dependent manner suggesting that 1 and 2 may serve as potential scaffolds for the development of therapeutic agents to treat vascular inflammatory disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Modulation of LPS induced inflammatory response by Lawsonyl monocyclic terpene from the marine derived Streptomyces sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Ali, A.; Khajuria, A.; Sidiq, T.; AshokKumar; Thakur, N.L.; Naik, D.; Vishwakarma, R.A.

    . The effect of Lawsonone (1) was elucidated on the immune cells (splenocytes and macrophages) collected from BALB/c mice. Study was carried out to find the effect of Lawsonone (1) on Con-A and LPS stimulated splenocyte proliferation, LPS-induced NO, IL-1beta...

  7. Skeletal muscle PGC-1a is required for maintaining an acute LPS-induced TNFa response

    DEFF Research Database (Denmark)

    Olesen, Jesper; Larsson, Signe; Iversen, Ninna

    2012-01-01

    Many lifestyle-related diseases are associated with low-grade inflammation and peroxisome proliferator activated receptor ¿ coactivator (PGC)-1a has been suggested to be protective against low-grade inflammation. However, whether these anti-inflammatory properties affect acute inflammation is not...... does not exert anti-inflammatory effects during acute inflammation. Lack of skeletal muscle PGC-1a seems however to impair the acute TNFa response, which may reflect a phenotype more susceptible to infections as also observed in type 2 diabetes patients....

  8. Pseudane-VII Isolated from Pseudoalteromonas sp. M2 Ameliorates LPS-Induced Inflammatory Response In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Mi Eun Kim

    2017-11-01

    Full Text Available The ocean is a rich resource of flora, fauna, food, and biological products. We found a wild-type bacterial strain, Pseudoalteromonas sp. M2, from marine water and isolated various secondary metabolites. Pseudane-VII is a compound isolated from the Pseudoalteromonas sp. M2 metabolite that possesses anti-melanogenic activity. Inflammation is a response of the innate immune system to microbial infections. Macrophages have a critical role in fighting microbial infections and inflammation. Recent studies reported that various compounds derived from natural products can regulate immune responses including inflammation. However, the anti-inflammatory effects and mechanism of pseudane-VII in macrophages are still unknown. In this study, we investigated the anti-inflammatory effects of pseudane-VII. In present study, lipopolysaccharide (LPS-induced nitric oxide (NO production was significantly decreased by pseudane-VII treatment at 6 μM. Moreover, pseudane-VII treatment dose-dependently reduced mRNA levels of pro-inflammatory cytokines including inos, cox-2, il-1β, tnf-α, and il-6 in LPS-stimulated macrophages. Pseudane-VII also diminished iNOS protein levels and IL-1β secretion. In addition, Pseudane-VII elicited anti-inflammatory effects by inhibiting ERK, JNK, p38, and nuclear factor (NF-κB-p65 phosphorylation. Consistently, pseudane-VII was also shown to inhibit the LPS-stimulated release of IL-1β and expression of iNOS in mice. These results suggest that pseudane-VII exerted anti-inflammatory effects on LPS-stimulated macrophage activation via inhibition of ERK, JNK, p38 MAPK phosphorylation, and pro-inflammatory gene expression. These findings may provide new approaches in the effort to develop anti-inflammatory therapeutics.

  9. Pseudane-VII Isolated from Pseudoalteromonas sp. M2 Ameliorates LPS-Induced Inflammatory Response In Vitro and In Vivo.

    Science.gov (United States)

    Kim, Mi Eun; Jung, Inae; Lee, Jong Suk; Na, Ju Yong; Kim, Woo Jung; Kim, Young-Ok; Park, Yong-Duk; Lee, Jun Sik

    2017-11-01

    The ocean is a rich resource of flora, fauna, food, and biological products. We found a wild-type bacterial strain, Pseudoalteromonas sp. M2, from marine water and isolated various secondary metabolites. Pseudane-VII is a compound isolated from the Pseudoalteromonas sp. M2 metabolite that possesses anti-melanogenic activity. Inflammation is a response of the innate immune system to microbial infections. Macrophages have a critical role in fighting microbial infections and inflammation. Recent studies reported that various compounds derived from natural products can regulate immune responses including inflammation. However, the anti-inflammatory effects and mechanism of pseudane-VII in macrophages are still unknown. In this study, we investigated the anti-inflammatory effects of pseudane-VII. In present study, lipopolysaccharide (LPS)-induced nitric oxide (NO) production was significantly decreased by pseudane-VII treatment at 6 μM. Moreover, pseudane-VII treatment dose-dependently reduced mRNA levels of pro-inflammatory cytokines including inos , cox-2 , il-1β , tnf-α , and il-6 in LPS-stimulated macrophages. Pseudane-VII also diminished iNOS protein levels and IL-1β secretion. In addition, Pseudane-VII elicited anti-inflammatory effects by inhibiting ERK, JNK, p38, and nuclear factor (NF)-κB-p65 phosphorylation. Consistently, pseudane-VII was also shown to inhibit the LPS-stimulated release of IL-1β and expression of iNOS in mice. These results suggest that pseudane-VII exerted anti-inflammatory effects on LPS-stimulated macrophage activation via inhibition of ERK, JNK, p38 MAPK phosphorylation, and pro-inflammatory gene expression. These findings may provide new approaches in the effort to develop anti-inflammatory therapeutics.

  10. Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs.

    Science.gov (United States)

    Zhu, Jun; Tang, Haoyu; Zhang, Zhenhua; Zhang, Yong; Qiu, Chengfeng; Zhang, Ling; Huang, Pinge; Li, Feng

    2017-02-01

    Intervertebral disc (IVD) degeneration is a common disease that represents a significant cause of socio-economic problems. Bone marrow-derived mesenchymal stem cells (BMSCs) are a potential autologous stem cell source for the nucleus pulposus regeneration. Kaempferol has been reported to exert protective effects against both osteoporosis and obesity. This study explored the effect of kaempferol on BMSCs differentiation and inflammation. The results demonstrated that kaempferol did not show any cytotoxicity at concentrations of 20, 60 and 100μM. Kaempferol enhanced cell viability by counteracting the lipopolysaccharide (LPS)-induced cell apoptosis and increasing cell proliferation. Western blot analysis of mitosis-associated nuclear antigen (Ki67) and proliferation cell nuclear antigen (PCNA) further confirmed the increased effect of kaempferol on LPS-induced decreased viability of BMSCs. Besides, kaempferol elevated LPS-induced reduced level of chondrogenic markers (SOX-9, Collagen II and Aggrecan), decreased the level of matrix-degrading enzymes, i.e., matrix metalloprotease (MMP)-3 and MMP-13, suggesting the osteogenesis of BMSC under kaempferol treatment. On the other hand, kaempferol enhanced LPS-induced decreased expression of lipid catabolism-related genes, i.e., carnitine palmitoyl transferase-1 (CPT-1). Kaempferol also suppressed the expression of lipid anabolism-related genes, i.e., peroxisome proliferators-activated receptor-γ (PPAR-γ). The Oil red O staining further convinced the inhibition effect of kaempferol on BMSCs adipogenesis. In addition, kaempferol alleviated inflammatory by reducing the level of pro-inflammatory cytokines (i.e., interleukin (IL)-6) and increasing anti-inflammatory cytokine (IL-10) via inhibiting the nucleus translocation of nuclear transcription factor (NF)-κB p65. Taken together, our research indicated that kaempferol may serve as a novel target for treatment of IVD degeneration. Copyright © 2016 Elsevier B.V. All rights

  11. Soluble β-(1,3)-glucans enhance LPS-induced response in the monocyte activation test, but inhibit LPS-mediated febrile response in rabbits: Implications for pyrogenicity tests.

    Science.gov (United States)

    Pardo-Ruiz, Zenia; Menéndez-Sardiñas, Dalia E; Pacios-Michelena, Anabel; Gabilondo-Ramírez, Tatiana; Montero-Alejo, Vivian; Perdomo-Morales, Rolando

    2016-01-01

    In the present study, we aimed to determine the influence of β-(1,3)-d-glucans on the LPS-induced pro-inflammatory cytokine response in the Monocyte Activation Test (MAT) for pyrogens, and on the LPS-induced febrile response in the Rabbit Pyrogen Test (RPT), thus evaluating the resulting effect in the outcome of each test. It was found that β-(1,3)-d-glucans elicited the production of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, also known as endogenous pyrogens, but not enough to classify them as pyrogenic according to MAT. The same β-(1,3)-d-glucans samples were non-pyrogenic by RPT. However, β-(1,3)-d-glucans significantly enhanced the LPS-induced pro-inflammatory cytokines response in MAT, insomuch that samples containing non-pyrogenic concentrations of LPS become pyrogenic. On the other hand, β-(1,3)-d-glucans had no effect on sub-pyrogenic LPS doses in the RPT, but surprisingly, inhibited the LPS-induced febrile response of pyrogenic LPS concentrations. Thus, while β-(1,3)-d-glucans could mask the LPS pyrogenic activity in the RPT, they exerted an overstimulation of pro-inflammatory cytokines in the MAT. Hence, MAT provides higher safety since it evidences an unwanted biological response, which is not completely controlled and is overlooked by the RPT. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Intervention of Dietary Dipeptide Gamma-l-Glutamyl-l-Valine (γ-EV) Ameliorates Inflammatory Response in a Mouse Model of LPS-Induced Sepsis.

    Science.gov (United States)

    Chee, MacKenzie E; Majumder, Kaustav; Mine, Yoshinori

    2017-07-26

    Sepsis, the systemic inflammatory response syndrome (SIRS) with infection is one of the leading causes of death in critically ill patients in the developed world due to the lack of effective antisepsis treatments. This study examined the efficacy of dietary dipeptide gamma-l-glutamyl-l-valine (γ-EV), which was characterized previously as an anti-inflammatory peptide, in an LPS-induced mouse model of sepsis. BALB/c mice were administered γ-EV via oral gavage followed by an intraperitoneal injection of LPS to induce sepsis. The γ-EV exhibited antisepsis activity by reducing the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in plasma and small intestine. γ-EV also reduced the phosphorylation of the signaling proteins JNK and IκBα. We concluded that γ-EV could possess an antisepsis effect against bacterial infection in intestine. This study proposes a signaling mechanism whereby the calcium-sensing receptor (CaSR) allosterically activated by γ-EV stimulates the interaction of β-arrestin2 with the TIR(TLR/IL-1R) signaling proteins TRAF6, TAB1, and IκBα to suppress inflammatory signaling.

  13. Pseudane-VII Isolated from Pseudoalteromonas sp. M2 Ameliorates LPS-Induced Inflammatory Response In Vitro and In Vivo

    OpenAIRE

    Mi Eun Kim; Inae Jung; Jong Suk Lee; Ju Yong Na; Woo Jung Kim; Young-Ok Kim; Yong-Duk Park; Jun Sik Lee

    2017-01-01

    The ocean is a rich resource of flora, fauna, food, and biological products. We found a wild-type bacterial strain, Pseudoalteromonas sp. M2, from marine water and isolated various secondary metabolites. Pseudane-VII is a compound isolated from the Pseudoalteromonas sp. M2 metabolite that possesses anti-melanogenic activity. Inflammation is a response of the innate immune system to microbial infections. Macrophages have a critical role in fighting microbial infections and inflammation. Recent...

  14. Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression.

    Science.gov (United States)

    Layé, S; Gheusi, G; Cremona, S; Combe, C; Kelley, K; Dantzer, R; Parnet, P

    2000-07-01

    The present study was designed to determine the role of endogenous brain interleukin (IL)-1 in the anorexic response to lipopolysaccharide (LPS). Intraperitoneal administration of LPS (5-10 microgram/mouse) induced a dramatic, but transient, decrease in food intake, associated with an enhanced expression of proinflammatory cytokine mRNA (IL-1beta, IL-6, and tumor necrosis factor-alpha) in the hypothalamus. This dose of LPS also increased plasma levels of IL-1beta. Intracerebroventricular pretreatment with IL-1 receptor antagonist (4 microgram/mouse) attenuated LPS-induced depression of food intake and totally blocked the LPS-induced enhanced expression of proinflammatory cytokine mRNA measured in the hypothalamus 1 h after treatment. In contrast, LPS-induced increases in plasma levels of IL-1beta were not altered. These findings indicate that endogenous brain IL-1 plays a pivotal role in the development of the hypothalamic cytokine response to a systemic inflammatory stimulus.

  15. Aqueous Extract of Oldenlandia diffusa Suppresses LPS-Induced ...

    African Journals Online (AJOL)

    ... potential transcriptional factor for regulating the expression of iNOS, COX-2 and TNF-α. As expected, AEOD suppressed the LPS-induced degradation and phosphorylation of IκBα and sustained the expression of p65 in the cytosol. Furthermore, AEOD substantially inhibited the LPS-induced DNA binding activity of NF-κB.

  16. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice.

    Science.gov (United States)

    Zhang, Zhengping; Luo, Zhaowen; Bi, Aijing; Yang, Weidong; An, Wenji; Dong, Xiaoliang; Chen, Rong; Yang, Shibao; Tang, Huifang; Han, Xiaodong; Luo, Lan

    2017-09-15

    Acute lung injury (ALI) represents an unmet medical need with an urgency to develop effective pharmacotherapies. Compound edaravone, a combination of edaravone and borneol, has been developed for treatment of ischemia stroke in clinical phase III study. The purpose of the present study is to investigate the anti-inflammatory effect of compound edaravone on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and the therapeutic efficacy on LPS-induced ALI in mice. Edaravone and compound edaravone concentration-dependently decreased LPS-induced interleukin-6 (IL-6) production and cyclooxygenase-2 (COX-2) expression in RAW264.7 cells. The efficiency of compound edaravone was stronger than edaravone alone. In the animal study, compound edaravone was injected intravenously to mice after intratracheal instillation of LPS. It remarkably alleviated LPS-induced lung injury including pulmonary histological abnormalities, polymorphonuclear leukocyte (PMN) infiltration and extravasation. Further study demonstrated that compound edaravone suppressed LPS-induced TNF-α and IL-6 increase in mouse serum and bronchoalveolar lavage (BAL) fluid, and inhibited LPS-induced nuclear factor-κB (NF-κB) activation and COX-2 expression in mice lung tissues. Importantly, our findings demonstrated that the compound edaravone showed a stronger protective effect against mouse ALI than edaravone alone, which suggested the synergies between edaravone and borneol. In conclusion, compound edaravone could be a potential novel therapeutic drug for ALI treatment and borneol might produce a synergism with edaravone. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Hyperin protects against LPS-induced acute kidney injury by inhibiting TLR4 and NLRP3 signaling pathways

    Science.gov (United States)

    Chunzhi, Gong; Zunfeng, Li; Chengwei, Qin; Xiangmei, Bu; Jingui, Yu

    2016-01-01

    Hyperin is a flavonoid compound derived from Ericaceae, Guttifera, and Celastraceae that has been shown to have various biological effects, such as anti-inflammatory and anti-oxidant effects. However, there is no evidence to show the protective effects of hyperin on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). Therefore, we investigated the protective effects and mechanism of hyperin on LPS-induced AKI in mice. The levels of TNF-α, IL-6, and IL-1β were tested by ELISA. The effects of hyperin on blood urea nitrogen (BUN) and serum creatinine were also detected. In addition, the expression of TLR4, NF-κB, and NLRP3 were detected by western blot analysis. The results showed that hyperin significantly inhibited LPS-induced TNF-α, IL-6, and IL-1β production. The levels of BUN and creatinine were also suppressed by hyperin. Furthermore, LPS-induced TLR4 expression and NF-κB activation were also inhibited by hyperin. In addition, treatment of hyperin dose-dependently inhibited LPS-induced NLRP3 signaling pathway. In conclusion, the results showed that hyperin inhibited LPS-induced inflammatory response by inhibiting TLR4 and NLRP3 signaling pathways. Hyperin has potential application prospects in the treatment of sepsis-induced AKI. PMID:27813491

  18. The anti-inflammatory effect of TR6 on LPS-induced mastitis in mice.

    Science.gov (United States)

    Hu, Xiaoyu; Fu, Yunhe; Tian, Yuan; Zhang, Zecai; Zhang, Wenlong; Gao, Xuejiao; Lu, Xiaojie; Cao, Yongguo; Zhang, Naisheng

    2016-01-01

    [TRIAP]-derived decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRIAP-derived decoy peptide (TR6) containing, the N-terminal portion of the third helical region of the [TIRAP] TIR domain (sequence "N"-RQIKIWFQNRRMKWK and -KPGFLRDPWCKYQML-"C"). We evaluated the effects of TR6 on lipopolysaccharide-induced mastitis in mice. In vivo, the mastitis model was induced by LPS administration for 24h, and TR6 treatment was initiated 1h before or after induction of LPS. In vitro, primary mouse mammary epithelial cells and neutrophils were used to investigate the effects of TR6 on LPS-induced inflammatory responses. The results showed that TR6 significantly inhibited mammary gland hisopathologic changes, MPO activity, and LPS-induced production of TNF-α, IL-1β and IL-6. In vitro, TR6 significantly inhibited LPS-induced TNF-α and IL-6 production and phosphorylation of NF-κB and MAPKs. In conclusion, this study demonstrated that the anti-inflammatory effect of TR6 against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB and MAPK signaling pathways. TR6 may be a promising therapeutic reagent for mastitis treatment. Copyright © 2015. Published by Elsevier B.V.

  19. Inhibition of LPS-induced splenocyte proliferation by ortho-substituted polychlorinated biphenyl congeners

    International Nuclear Information System (INIS)

    Smithwick, L. Ashley; Smith, Andrew; Quensen, John F.; Stack, Allison; London, Lucille; Morris, Pamela J.

    2003-01-01

    Polychlorinated biphenyls (PCBs) are persistent environmental contaminants, and their ubiquitous nature has prompted studies of their potential health hazards. As a result of their lipophilic nature, PCBs accumulate in breast milk and subsequently affect the health of offspring of exposed individuals. Biological effects of PCBs in animals have mostly been attributed to coplanar congeners, although effects of ortho congeners also have been demonstrated. To investigate the relationship of immunotoxicity and chlorine substitution pattern, the effects of PCB congeners and mixtures of ortho and non-ortho-substituted constituents of Aroclor 1242 on splenocytes from C57B1/6 mice were examined. The immunotoxic endpoints investigated included splenocyte viability, lipopolysaccharide (LPS)-induced splenocyte proliferation, and LPS-induced antibody secretion. Congeners with multiple ortho chlorines preferentially inhibited splenocyte proliferation as compared with non- or mono-ortho-substituted congeners. However, mixtures of non- and mono-ortho-substituted congeners and multi-ortho-substituted congeners inhibited LPS-induced splenocyte proliferation and antibody secretion at similar concentrations. Exposure of splenocytes to these mixtures did not activate the aryl hydrocarbon receptor (AhR) signal transduction pathway. These results suggest individual multi-ortho-substituted congeners preferentially inhibit LPS-induced splenocyte proliferation, while congeners not exhibiting an effect individually may have additive effects in a mixture to produce an immunotoxic response through an AhR-independent pathway

  20. Edaravone abrogates LPS-induced behavioral anomalies, neuroinflammation and PARP-1.

    Science.gov (United States)

    Sriram, Chandra Shaker; Jangra, Ashok; Gurjar, Satendra Singh; Mohan, Pritam; Bezbaruah, Babul Kumar

    2016-02-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA nick-sensor enzyme that functions at the center of cellular stress response and affects the immune system at several key points, and thus modulates inflammatory diseases. Our previous study demonstrated that lipopolysaccharide (LPS)-induced depressive-like behavior in mice can be ameliorated by 3-aminobenzamide, which is a PARP-1 inhibitor. In the present study we've examined the effect of a free radical scavenger, edaravone pretreatment against LPS-induced anxiety and depressive-like behavior as well as various hippocampal biochemical parameters including PARP-1. Male Swiss albino mice were treated with edaravone (3 & 10mg/kgi.p.) once daily for 14days. On the 14th day 30min after edaravone treatment mice were challenged with LPS (1mg/kgi.p.). After 3h and 24h of LPS administration we've tested mice for anxiety and depressive-like behaviors respectively. Western blotting analysis of PARP-1 in hippocampus was carried out after 12h of LPS administration. Moreover, after 24h of LPS administration serum corticosterone, hippocampal BDNF, oxido-nitrosative stress and pro-inflammatory cytokines were estimated by ELISA. Results showed that pretreatment of edaravone (10mg/kg) ameliorates LPS-induced anxiety and depressive-like behavior. Western blotting analysis showed that LPS-induced anomalous expression of PARP-1 significantly reverses by the pretreatment of edaravone (10mg/kg). Biochemical analyses revealed that LPS significantly diminishes BDNF, increases pro-inflammatory cytokines and oxido-nitrosative stress in the hippocampus. However, pretreatment with edaravone (10mg/kg) prominently reversed all these biochemical alterations. Our study emphasized that edaravone pretreatment prevents LPS-induced anxiety and depressive-like behavior, mainly by impeding the inflammation, oxido-nitrosative stress and PARP-1 overexpression. Copyright © 2015. Published by Elsevier Inc.

  1. Involvement of mitogen-activated protein kinases and NFκB in LPS-induced CD40 expression on human monocytic cells

    International Nuclear Information System (INIS)

    Wu Weidong; Alexis, Neil E.; Chen Xian; Bromberg, Philip A.; Peden, David B.

    2008-01-01

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NFκB were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NFκB activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NFκB activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NFκB activation, and CD40 expression. Moreover, blockage of MAPK and NFκB activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NFκB

  2. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  3. Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms.

    Science.gov (United States)

    Radl, Daniela; Chiacchiaretta, Martina; Lewis, Robert G; Brami-Cherrier, Karen; Arcuri, Ludovico; Borrelli, Emiliana

    2018-01-02

    The dopamine D2 receptor (D2R) is a major component of the dopamine system. D2R-mediated signaling in dopamine neurons is involved in the presynaptic regulation of dopamine levels. Postsynaptically, i.e., in striatal neurons, D2R signaling controls complex functions such as motor activity through regulation of cell firing and heterologous neurotransmitter release. The presence of two isoforms, D2L and D2S, which are generated by a mechanism of alternative splicing of the Drd2 gene, raises the question of whether both isoforms may equally control presynaptic and postsynaptic events. Here, we addressed this question by comparing behavioral and cellular responses of mice with the selective ablation of either D2L or D2S isoform. We establish that the presence of either D2L or D2S can support postsynaptic functions related to the control of motor activity in basal conditions. On the contrary, absence of D2S but not D2L prevents the inhibition of tyrosine hydroxylase phosphorylation and, thereby, of dopamine synthesis, supporting a major presynaptic role for D2S. Interestingly, boosting dopamine signaling in the striatum by acute cocaine administration reveals that absence of D2L, but not of D2S, strongly impairs the motor and cellular response to the drug, in a manner similar to the ablation of both isoforms. These results suggest that when the dopamine system is challenged, D2L signaling is required for the control of striatal circuits regulating motor activity. Thus, our findings show that D2L and D2S share similar functions in basal conditions but not in response to stimulation of the dopamine system.

  4. Resolution of LPS-induced airway inflammation and goblet cell hyperplasia is independent of IL-18

    Directory of Open Access Journals (Sweden)

    Lyons C Rick

    2007-03-01

    Full Text Available Abstract Background The resolution of inflammatory responses in the lung has not been described in detail and the role of specific cytokines influencing the resolution process is largely unknown. Methods The present study was designed to describe the resolution of inflammation from 3 h through 90 d following an acute injury by a single intratracheal instillation of F344/N rats with LPS. We documented the inflammatory cell types and cytokines found in the bronchoalveolar lavage fluid (BALF, and epithelial changes in the axial airway and investigated whether IL-18 may play a role in the resolution process by reducing its levels with anti-IL-18 antibodies. Results Three major stages of inflammation and resolution were observed in the BALF during the resolution. The first stage was characterized by PMNs that increased over 3 h to 1 d and decreased to background levels by d 6–8. The second stage of inflammation was characterized by macrophage influx reaching maximum numbers at d 6 and decreasing to background levels by d 40. A third stage of inflammation was observed for lymphocytes which were elevated over d 3–6. Interestingly, IL-18 and IL-9 levels in the BALF showed a cyclic pattern with peak levels at d 4, 8, and 16 while decreasing to background levels at d 1–2, 6, and 12. Depletion of IL-18 caused decreased PMN numbers at d 2, but no changes in inflammatory cell number or type at later time points. Conclusion These data suggest that IL-18 plays a role in enhancing the LPS-induced neutrophilic inflammation of the lung, but does not affect the resolution of inflammation.

  5. Long-term nicotine exposure dampens LPS-induced nerve-mediated airway hyperreactivity in murine airways.

    Science.gov (United States)

    Xu, Yuan; Cardell, Lars-Olaf

    2017-09-01

    Nicotine is a major component of cigarette smoke. It causes addiction and is used clinically to aid smoke cessation. The aim of the present study is to investigate the effect of nicotine on lipopolysaccharide (LPS)-induced airway hyperreactivity (AHR) and to explore the potential involvement of neuronal mechanisms behind nicotine's effects in murine models in vivo and in vitro. BALB/c mice were exposed to nicotine in vivo via subcutaneous Alzet osmotic minipumps containing nicotine tartate salt solution (24 mg·kg -1 ·day -1 ) for 28 days. LPS (0.1 mg/ml, 20 µl) was administered intranasally for 3 consecutive days during the end of this period. Lung functions were measured with flexiVent. For the in vitro experiments, mice tracheae were organcultured with either nicotine (10 μM) or vehicle (DMSO, 0.1%) for 4 days. Contractile responses of the tracheal segments were measured in myographs following electric field stimulation (EFS; increasing frequencies of 0.2 to 12.8 Hz) before and after incubation with 10 µg/ml LPS for 1 h. Results showed that LPS induced AHR to methacholine in vivo and increased contractile responses to EFS in vitro. Interestingly, long-term nicotine exposure markedly dampened this LPS-induced AHR both in vitro and in vivo. Tetrodotoxin (TTX) inhibited LPS-induced AHR but did not further inhibit nicotine-suppressed AHR in vivo. In conclusion, long-term nicotine exposure dampened LPS-induced AHR. The effect of nicotine was mimicked by TTX, suggesting the involvement of neuronal mechanisms. This information might be used for evaluating the long-term effects of nicotine and further exploring of how tobacco products interact with bacterial airway infections. Copyright © 2017 the American Physiological Society.

  6. Thalidomide protects mice against LPS-induced shock

    Directory of Open Access Journals (Sweden)

    Moreira A.L.

    1997-01-01

    Full Text Available Thalidomide has been shown to selectively inhibit TNF-a production in vitro by lipopolysaccharide (LPS-stimulated monocytes. TNF-a has been shown to play a pivotal role in the pathophysiology of endotoxic shock. Using a mouse model of LPS-induced shock, we investigated the effects of thalidomide on the production of TNF-a and other cytokines and on animal survival. After injection of 100-350 µg LPS into mice, cytokines including TNF-a, IL-6, IL-10, IL-1ß, GM-CSF and IFN-g were measured in the serum. Administration of 200 mg/kg thalidomide to mice before LPS challenge modified the profile of LPS-induced cytokine secretion. Serum TNF-a levels were reduced by 93%, in a dose-dependent manner, and TNF-a mRNA expression in the spleens of mice was reduced by 70%. Serum IL-6 levels were also inhibited by 50%. Thalidomide induced a two-fold increase in serum IL-10 levels. Thalidomide treatment did not interfere with the production of GM-CSF, IL-1ß or IFN-g. The LD50 of LPS in this model was increased by thalidomide pre-treatment from 150 µg to 300 µg in 72 h. Thus, at otherwise lethal doses of LPS, thalidomide treatment was found to protect animals from death

  7. NF-κB regulation of endothelial cell function during LPS-induced toxemia and cancer

    Science.gov (United States)

    Kisseleva, Tatiana; Song, Li; Vorontchikhina, Marina; Feirt, Nikki; Kitajewski, Jan; Schindler, Christian

    2006-01-01

    The transcription factor NF-κB is an important regulator of homeostatic growth and inflammation. Although gene-targeting studies have revealed important roles for NF-κB, they have been complicated by component redundancy and lethal phenotypes. To examine the role of NF-κB in endothelial tissues, Tie2 promoter/enhancer–IκBαS32A/S36A transgenic mice were generated. These mice grew normally but exhibited enhanced sensitivity to LPS-induced toxemia, notable for an increase in vascular permeability and apoptosis. Moreover, B16-BL6 tumors grew significantly more aggressively in transgenic mice, underscoring a new role for NF-κB in the homeostatic response to cancer. Tumor vasculature in transgenic mice was extensive and disorganized. This correlated with a marked loss in tight junction formation and suggests that NF-κB plays an important role in the maintenance of vascular integrity and response to stress. PMID:17053836

  8. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition.

    Science.gov (United States)

    Jia, Zhuqing; Wang, Jiaji; Shi, Qiong; Liu, Siyu; Wang, Weiping; Tian, Yuyao; Lu, Qin; Chen, Ping; Ma, Kangtao; Zhou, Chunyan

    2016-02-01

    Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation.

  9. Impact of training status on LPS-induced acute inflammation in humans

    DEFF Research Database (Denmark)

    Olesen, Jesper; Biensø, Rasmus Sjørup; Meinertz, S.

    2015-01-01

    The aim of the present study was to examine the impact of training status on the ability to induce a lipopolysaccharide (LPS)-induced inflammatory response systemically as well as in skeletal muscle (SkM) and adipose tissue (AT) in human subjects. Methods: Seventeen young (23.8 ± 2.5 years of age......) healthy male subjects were included in the study with eight subjects assigned to a trained (T) group and nine subjects assigned to an untrained (UT) group. On the experimental day, catheters were inserted in the femoral artery and vein of one leg for blood sampling and a bolus of 0.3 ng LPS•kg-1 body...... weight was injected into an antecubital vein in the forearm. Femoral arterial blood flow was measured before (Pre) the LPS injection and continuously throughout the experiment by Ultrasound Doppler and arterial and venous blood samples were drawn Pre and 30, 60, 90 and 120 min after the LPS injection...

  10. Intermedin attenuates LPS-induced inflammation in the rat testis.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available First reported as a vasoactive peptide in the cardiovascular system, intermedin (IMD, also known as adrenomedullin 2 (ADM2, is a hormone with multiple potent roles, including its antioxidant action on the pulmonary, central nervous, cardiovascular and renal systems. Though IMD may play certain roles in trophoblast cell invasion, early embryonic development and cumulus cell-oocyte interaction, the role of IMD in the male reproductive system has yet to be investigated. This paper reports our findings on the gene expression of IMD, its receptor components and its protein localization in the testes. In a rat model, bacterial lippolysaccharide (LPS induced atypical orchitis, and LPS treatment upregulated the expression of IMD and one of its receptor component proteins, i.e. receptor activity modifying protein 2 (RAMP2. IMD decreased both plasma and testicular levels of reactive oxygen species (ROS production, attenuated the increase in the gene expression of the proinflammatory cytokines tumor necrosis factor alpha (TNFα, interleukin 6 (IL6 and interleukin 1 beta (IL1β, rescued spermatogenesis, and prevented the decrease in plasma testosterone levels caused by LPS. The restorative effect of IMD on steroidogenesis was also observed in hydrogen peroxide-treated rat primary Leydig cells culture. Our results indicate IMD plays an important protective role in spermatogenesis and steroidogenesis, suggesting therapeutic potential for IMD in pathological conditions such as orchitis.

  11. Probiotics and Probiotic Metabolic Product Improved Intestinal Function and Ameliorated LPS-Induced Injury in Rats.

    Science.gov (United States)

    Deng, Bo; Wu, Jie; Li, Xiaohui; Men, Xiaoming; Xu, Ziwei

    2017-11-01

    In the present study, we sought to determine the effects of Bacillus subtilis (BAS) and Bacillus licheniformis (BAL) in rats after lipopolysaccharide (LPS)-induced acute intestinal inflammation. We also determined whether the B. subtilis metabolic product (BASM) is as effective as the live-cell probiotic. 60 male SD rats were randomly assigned to five groups and administered a diet containing 0.05% B. licheniformis (BAL group), 0.05% B. subtilis (BAS group), 0.5% B. subtilis metabolic product (BASM group), or a basic diet (PC group and NC group) for 40 days. On day 40, BAL, BAS, BASM, and NC groups were injected with 4 mg/kg body weight LPS. 4 h later, all rats were anesthetized and sacrificed. The results showed that the administration of B. licheniformis and B. subtilis improved intestinal function as evidenced by histology, increased enzyme activity, and mucosal thickness. They also increased the number of intraepithelial lymphocytes and decreased mucosal myeloperoxidase activity and plasma TNF-α. In addition, the cecal content of B. subtilis-treated rats had significantly increased microbial diversity, decreased numbers of Firmicutes, and increased numbers of Bacteroidetes as compared to rats fed basic diets. Similar to BAS group, the cecal content of B. licheniformis-treated rats decreased the number of Firmicutes. Administration of B. subtilis metabolic product had similar effects on intestinal function, inflammation response, and microbial diversity as B. subtilis but these effects were attenuated. In conclusion, administration of probiotic strains B. licheniformis or B. subtilis improved intestinal function, ameliorated the inflammation response, and modulated microflora after LPS-induced acute inflammation in rats. Non-living cells also exerted probiotic properties but live cells tended to function better.

  12. GSK621 activates AMPK signaling to inhibit LPS-induced TNFα production

    International Nuclear Information System (INIS)

    Wu, Yong-hong; Li, Quan; Li, Ping; Liu, Bei

    2016-01-01

    LPS stimulation in macrophages/monocytes induces TNFα production. We here tested the potential effect of GSK621, a novel AMP-activated protein kinase (AMPK) activator, against the process. In RAW264.7 macrophages, murine bone marrow-derived macrophages (BMDMs), and chronic obstructive pulmonary disease (COPD) patients' monocytes, GSK621 significantly inhibited LPS-induced TNFα protein secretion and mRNA synthesis. Inhibition of AMPK, through AMPKα shRNA knockdown or dominant negative mutation (T172A), almost abolished GSK621's suppression on TNFα in RAW264.7 cells. Reversely, forced-expression of a constitutively-active AMPKα (T172D) mimicked GSK621 actions and reduced LPS-induced TNFα production. Molecularly, GSK621 suppressed LPS-induced reactive oxygen species (ROS) production and nuclear factor kappa B (NFκB) activation. In vivo, GSK621 oral administration inhibited LPS-induced TNFα production and endotoxin shock in mice. In summary, GSK621 activates AMPK signaling to inhibit LPS-induced TNFα production in macrophages/monocytes. - Highlights: • GSK621 inhibits LPS-induced TNFα production/expression in RAW264.7 cells and BMDMs. • GSK621 inhibits LPS-induced TNFα production/expression in COPD patients' PBMCs. • GSK621's inhibition on TNFα production by LPS requires AMPK activation. • GSK621 inhibits LPS-induced ROS production and NFκB activation, dependent on AMPK. • GSK621 oral administration inhibits LPS-induced TNFα production and endotoxin shock in mice.

  13. LPS-induced systemic inflammation is more severe in P2Y12 null mice.

    Science.gov (United States)

    Liverani, Elisabetta; Rico, Mario C; Yaratha, Laxmikausthubha; Tsygankov, Alexander Y; Kilpatrick, Laurie E; Kunapuli, Satya P

    2014-02-01

    Thienopyridines are a class of antiplatelet drugs that are metabolized in the liver to several metabolites, of which only one active metabolite can irreversibly antagonize the platelet P2Y12 receptor. Possible effects of these drugs and the role of activated platelets in inflammatory responses have also been investigated in a variety of animal models, demonstrating that thienopyridines could alter inflammation. However, it is not clear whether it is caused only by the P2Y12 antagonism or whether off-target effects of other metabolites also intervene. To address this question, we investigated P2Y12 KO mice during a LPS-induced model of systemic inflammation, and we treated these KO mice with a thienopyridine drug (clopidogrel). Contrary to the reported effects of clopidogrel, numbers of circulating WBCs and plasma levels of cytokines were increased in LPS-exposed KO mice compared with WT in this inflammation model. Moreover, both spleen and bone marrow show an increase in cell content, suggesting a role for P2Y12 in regulation of bone marrow and spleen cellular composition. Finally, the injury was more severe in the lungs of KO mice compared with WT. Interestingly, clopidogrel treatments also exerted protective effects in KO mice, suggesting off-target effects for this drug. In conclusion, the P2Y12 receptor plays an important role during LPS-induced inflammation, and this signaling pathway may be involved in regulating cell content in spleen and bone marrow during LPS systemic inflammation. Furthermore, clopidogrel may have effects that are independent of P2Y12 receptor blockade.

  14. MiR-125b Inhibits LPS-Induced Inflammatory Injury via Targeting MIP-1α in Chondrogenic Cell ATDC5

    Directory of Open Access Journals (Sweden)

    Jinling Jia

    2018-03-01

    Full Text Available Background/Aims: Chondrocyte apoptosis is largely responsible for cartilage degeneration in osteoarthritis (OA. MicroRNAs (miRNAs play an important role in chondrogenesis and cartilage remodeling. This study explored the effect of miR-125b on inflammatory injury in chondrogenic cells. Methods: LPS was used to simulate inflammatory injury in murine chondrogenic ATDC5 cell lines. Targeting effect of miR-125b on MIP-1α 3’UTR was assessed by dual luciferase activity assay. Regulatory effect of miR-125b on MIP-1α expression and the potential regulatory mechanism on inflammatory injury were assessed by Western blot. Results: miR-125b expression was decreased in LPS-induced ATDC5 cells and overexpression of miR-125b inhibited LPS-induced cell viability decline, the rise of apoptosis and inflammatory factors’ productions. MIP-1α expression was negatively related to miR-125b, and miR-125b directly targeted with 3’UTR of MIP-1α. Knockdown of miR-125b promoted LPS-induced inflammatory response via upregulation of MIP-1α. miR-125b expression in LPS-induced ATDC5 cells was negatively related with activations of NF-κB and JNK signaling pathways. Overexpression of miR-125b inhibited LPS-induced inflammation injury via suppressing MIP-1α expression and inhibiting activations of NF-κB and JNK signaling pathways. Conclusion: miR-125b could play an important role in inflammatory injury of chondrogenic cells and miR-125b affected inflammatory injury of ATDC5 cells via regulating expression of MIP-1α and regulating NF-κB and JNK signaling pathways.

  15. Acute and chronic effects of treatment with mesenchymal stromal cells on LPS-induced pulmonary inflammation, emphysema and atherosclerosis development.

    Directory of Open Access Journals (Sweden)

    P Padmini S J Khedoe

    Full Text Available COPD is a pulmonary disorder often accompanied by cardiovascular disease (CVD, and current treatment of this comorbidity is suboptimal. Systemic inflammation in COPD triggered by smoke and microbial exposure is suggested to link COPD and CVD. Mesenchymal stromal cells (MSC possess anti-inflammatory capacities and MSC treatment is considered an attractive treatment option for various chronic inflammatory diseases. Therefore, we investigated the immunomodulatory properties of MSC in an acute and chronic model of lipopolysaccharide (LPS-induced inflammation, emphysema and atherosclerosis development in APOE*3-Leiden (E3L mice.Hyperlipidemic E3L mice were intranasally instilled with 10 μg LPS or vehicle twice in an acute 4-day study, or twice weekly during 20 weeks Western-type diet feeding in a chronic study. Mice received 0.5x106 MSC or vehicle intravenously twice after the first LPS instillation (acute study or in week 14, 16, 18 and 20 (chronic study. Inflammatory parameters were measured in bronchoalveolar lavage (BAL and lung tissue. Emphysema, pulmonary inflammation and atherosclerosis were assessed in the chronic study.In the acute study, intranasal LPS administration induced a marked systemic IL-6 response on day 3, which was inhibited after MSC treatment. Furthermore, MSC treatment reduced LPS-induced total cell count in BAL due to reduced neutrophil numbers. In the chronic study, LPS increased emphysema but did not aggravate atherosclerosis. Emphysema and atherosclerosis development were unaffected after MSC treatment.These data show that MSC inhibit LPS-induced pulmonary and systemic inflammation in the acute study, whereas MSC treatment had no effect on inflammation, emphysema and atherosclerosis development in the chronic study.

  16. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats

    Directory of Open Access Journals (Sweden)

    Li Jianjun

    2012-09-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs possess potent immunomodulatory properties and simultaneously lack the ability to illicit immune responses. Hence, MSCs have emerged as a promising candidate for cellular therapeutics for inflammatory diseases. Within the context of this study, we investigated whether human umbilical cord-derived mesenchymal stem cells (UC-MSCs could ameliorate lipopolysaccharide- (LPS- induced acute lung injury (ALI in a rat model. Methods ALI was induced via injection of LPS. Rats were divided into three groups: (1 saline group(control, (2 LPS group, and (3 MSC + LPS group. The rats were sacrificed at 6, 24, and 48 hours after injection. Serum, bronchoalveolar lavage fluid (BALF, and lungs were collected for cytokine concentration measurements, assessment of lung injury, and histology. Results UC-MSCs increased survival rate and suppressed LPS-induced increase of serum concentrations of pro-inflammatory mediators TNF-α, IL-1β, and IL-6 without decreasing the level of anti-inflammatory cytokine IL-10. The MSC + LPS group exhibited significant improvements in lung inflammation, injury, edema, lung wet/dry ratio, protein concentration, and neutrophil counts in the BALF, as well as improved myeloperoxidase (MPO activity in the lung tissue. Furthermore, UC-MSCs decreased malondialdehyde (MDA production and increased Heme Oxygenase-1 (HO-1 protein production and activity in the lung tissue. Conclusion UC-MSCs noticeably increased the survival rate of rats suffering from LPS-induced lung injury and significantly reduced systemic and pulmonary inflammation. Promoting anti-inflammatory homeostasis and reducing oxidative stress might be the therapeutic basis of UC-MSCs.

  17. Protective Effect of Phillyrin on Lethal LPS-Induced Neutrophil Inflammation in Zebrafish

    Directory of Open Access Journals (Sweden)

    Liling Yang

    2017-10-01

    Full Text Available Background/Aims: Forsythia suspensa Vahl. (Oleaceae fruits are widely used in traditional Chinese medicine to treat pneumonia, typhoid, dysentery, ulcers and oedema. Antibacterial and anti-inflammatory activities have been reported for phillyrin (PHN, the main ingredient in Forsythia suspensa Vahl fruits, in vitro. However, the underlying mechanisms in vivo remain poorly defined. In this study, we discovered that PHN exerted potent anti-inflammatory effects in lethal LPS-induced neutrophil inflammation by suppressing the MyD88-dependent signalling pathway in zebrafish. Methods: LPS-yolk microinjection was used to induce a lethal LPS-infected zebrafish model. The effect of PHN on the survival of zebrafish challenged with lethal LPS was evaluated using survival analysis. The effect of PHN on neutrophil inflammation grading in vivo was assessed by tracking neutrophils with a transgenic line. The effects of PHN on neutrophil production and migration were analysed by SB+ cell counts during consecutive hours after modelling. Additionally, key cytokines and members of the MyD88 signalling pathway that are involved in inflammatory response were detected using quantitative RT-PCR. To assess gene expression changes during consecutive hours after modelling, the IL-1β, IL-6, TNF-α, MyD88, TRIF, ERK1/2, JNK, IκBa and NF-κB expression levels were measured. Results: PHN could protect zebrafish against a lethal LPS challenge in a dose-dependent manner, as indicated by decreased neutrophil infltration, reduced tissue necrosis and increased survival rates. Up-regulated IL-1β, IL-6 and TNF-α expression also showed the same tendencies of depression by PHN. Critically, PHN significantly inhibited the LPS-induced activation of MyD88, IκBa, and NF-κB but did not affect the expression of ERK1/2 MAPKs or JNK MAPKs in LPS-stimulated zebrafish. Additionally, PHN regulated the MyD88/IκBα/NF-κB signalling pathway by controlling IκBα, IL-1β, IL-6, and TNF

  18. Prevention of LPS-Induced Acute Lung Injury in Mice by Progranulin

    Directory of Open Access Journals (Sweden)

    Zhongliang Guo

    2012-01-01

    Full Text Available The acute respiratory distress syndrome (ARDS, a clinical complication of severe acute lung injury (ALI in humans, is a leading cause of morbidity and mortality in critically ill patients. Despite decades of research, few therapeutic strategies for clinical ARDS have emerged. Here we carefully evaluated the effect of progranulin (PGRN in treatment of ARDS using the murine model of lipopolysaccharide (LPS-induced ALI. We reported that administration of PGRN maintained the body weight and survival of ALI mice. We revealed that administration of PGRN significantly reduced LPS-induced pulmonary inflammation, as reflected by reductions in total cell and neutrophil counts, proinflammatory cytokines, as well as chemokines in bronchoalveolar lavage (BAL fluid. Furthermore, administration of PGRN resulted in remarkable reversal of LPS-induced increases in lung permeability as assessed by reductions in total protein, albumin, and IgM in BAL fluid. Consistently, we revealed a significant reduction of histopathology changes of lung in mice received PGRN treatment. Finally, we showed that PGRN/TNFR2 interaction was crucial for the protective effect of PGRN on the LPS-induced ALI. Our findings strongly demonstrated that PGRN could effectively ameliorate the LPS-induced ALI in mice, suggesting a potential application for PGRN-based therapy to treat clinical ARDS.

  19. Salidroside Reduces Cell Mobility via NF-κB and MAPK Signaling in LPS-Induced BV2 Microglial Cells

    Directory of Open Access Journals (Sweden)

    Haixia Hu

    2014-01-01

    Full Text Available The unregulated activation of microglia following stroke results in the production of toxic factors that propagate secondary neuronal injury. Salidroside has been shown to exhibit protective effects against neuronal death induced by different insults. However, the molecular mechanisms responsible for the anti-inflammatory activity of salidroside have not been elucidated clearly in microglia. In the present study, we investigated the molecular mechanism underlying inhibiting LPS-stimulated BV2 microglial cell mobility of salidroside. The protective effect of salidroside was investigated in microglial BV2 cell, subjected to stretch injury. Moreover, transwell migration assay demonstrated that salidroside significantly reduced cell motility. Our results also indicated that salidroside suppressed LPS-induced chemokines production in a dose-dependent manner, without causing cytotoxicity in BV2 microglial cells. Moreover, salidroside suppressed LPS-induced activation of nuclear factor kappa B (NF-κB by blocking degradation of IκBα and phosphorylation of MAPK (p38, JNK, ERK1/2, which resulted in inhibition of chemokine expression. These results suggest that salidroside possesses a potent suppressive effect on cell migration of BV2 microglia and this compound may offer substantial therapeutic potential for treatment of ischemic strokes that are accompanied by microglial activation.

  20. Isoalantolactone inhibits LPS-induced inflammation via NF-κB inactivation in peritoneal macrophages and improves survival in sepsis.

    Science.gov (United States)

    He, Guodong; Zhang, Xu; Chen, Yanhua; Chen, Jing; Li, Li; Xie, Yubo

    2017-06-01

    Sepsis, a clinical syndrome occurring in patients following infection or injury, is a leading cause of mortality worldwide. It involves uncontrolled inflammatory response resulting in multi-organ failure and even death. Isoalantolactone (IAL), a sesquiterpene lactone, is known for its anti-cancer effects. Nevertheless, little is known about the anti-inflammatory effects of IAL, and the role of IAL in sepsis is unclear. In this study, we demonstrated that IAL decreased lipopolysaccharide (LPS)-mediated production of nitric oxide, PEG 2 and cytokines (IL-6, TNF-α) in peritoneal macrophages and RAW 264.7 macrophages. Moreover, molecular mechanism studies indicated that IAL plays an anti-inflammatory role by inhibiting LPS-induced activation of NF-κB pathway in peritoneal macrophages. In vivo, IAL reduced the secretion of IL-6 and TNF-α in serum, and increased the survival rate of mice with LPS-induced sepsis. In addition, IAL attenuated the activation of NF-κB pathway in liver. Taken together, our data suggest that IAL may represent a potentially new drug candidate for the treatment of sepsis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Effect of 60Co γ-rays on PWM and LPS induced lymphocytes

    International Nuclear Information System (INIS)

    Su Liaoyuan; Liu Keliang; Liu Fenju

    1987-01-01

    The relationship between lymphocytes induced by PWM (pokeweed mitogen) and LPS (lipopolysaccharide) was investigated by means of 3 H-TdR incorporation. The study showed that, in vitro, PWM-induced cells were able to promote the stimulating effect of LPS to B lymphocytes. The stimulating effect of PWM-induced cells was obviously weakened after PWM cells being irradiated with γ-rays. When PWM-induced cells and LPS-induced cells were incubated together, with one kind of cells exposed to 60 Co γ-ray, incorporation value of 3 H-TdR became much smaller and the synergetic function disappeared, especially, when PWM-induced cells were irradiated. For patients suffering from carcinoma of nasopharynx, while treated with 60 Co γ-rays, the incorporation value in LPS-induced cells approached normal level, meanwhile, the incorporation value in PEM-induced cells reduced significantly and the stimulating effect of PWM-induced cells on LPS-induced cells became much weaker. The facts described above demonstrated that PWM-induced cells have the function of T-helper cells and play more important role in the synergy than LPS-induced cells

  2. Tanshinone IIA Sodium Sulfonate Attenuates LPS-Induced Intestinal Injury in Mice

    Directory of Open Access Journals (Sweden)

    Xin-Jing Yang

    2018-01-01

    Full Text Available Background. Tanshinone IIA sodium sulfonate (TSS is known to possess anti-inflammatory effects and has exhibited protective effects in various inflammatory conditions; however, its role in lipopolysaccharide- (LPS- induced intestinal injury is still unknown. Objective. The present study is designed to explore the role and possible mechanism of TSS in LPS-induced intestinal injury. Methods. Male C57BL/6J mice, challenged with intraperitoneal LPS injection, were treated with or without TSS 0.5 h prior to LPS exposure. At 1, 6, and 12 h after LPS injection, mice were sacrificed, and the small intestine was excised. The intestinal tissue injury was analyzed by HE staining. Inflammatory factors (TNF-α, IL-1β, and IL-6 in the intestinal tissue were examined by ELISA and RT-PCR. In addition, expressions of autophagy markers (microtubule-associated light chain 3 (LC3 and Beclin-1 were detected by western blot and RT-PCR. A number of autophagosomes were also observed under electron microscopy. Results. TSS treatment significantly attenuated small intestinal epithelium injury induced by LPS. LPS-induced release of inflammatory mediators, including TNF-α, IL-1β, and IL-6, were markedly inhibited by TSS. Furthermore, TSS treatment could effectively upregulate LPS-induced decrease of autophagy levels, as evidenced by the increased expression of LC3 and Beclin-1, and more autophagosomes. Conclusion. The protective effect of TSS on LPS-induced small intestinal injury may be attributed to the inhibition of inflammatory factors and promotion of autophagy levels. The present study may provide novel insight into the molecular mechanisms of TSS on the treatment of intestinal injury.

  3. 3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity.

    Science.gov (United States)

    Zhang, Wei; Qin, Liya; Wang, Tongguang; Wei, Sung-Jen; Gao, Hui-ming; Liu, Jie; Wilson, Belinda; Liu, Bin; Zhang, Wanqin; Kim, Hyoung-Chun; Hong, Jau-Shyong

    2005-03-01

    (s) from astroglia, which in turn was responsible for the neurotrophic effect. Second, the anti-inflammatory mechanism was also important for the neuroprotective activity of 3-HM because the more microglia were added back to the neuron-enriched cultures, the more significant neuroprotective effect was observed. The anti-inflammatory mechanism of 3-HM was attributed to its inhibition of LPS-induced production of an array of pro-inflammatory and neurotoxic factors, including nitric oxide (NO), tumor necrosis factor alpha (TNF-alpha), prostaglandin E2 (PGE2) and reactive oxygen species (ROS). In conclusion, this study showed that 3-HM exerted potent neuroprotection by acting on two different targets: a neurotrophic effect mediated by astroglia and an anti-inflammatory effect mediated by the inhibition of microglial activation. 3-HM thus possesses these two important features necessary for an effective neuroprotective agent. In view of the well-documented very low toxicity of DM and its analogs, this report may provide an important new direction for the development of therapeutic interventions for inflammation-related diseases such as PD.

  4. Reversible Chromatic Response of Polydiacetylene Derivative Vesicles in D2O Solvent.

    Science.gov (United States)

    Shin, Min Jae; Kim, Jong-Duk

    2016-01-26

    The thermal chromatic sensitivity of polydiacetylenes (PDAs) with 10,12-pentacosadiynoic acid (PCDA) derivatives, which have a hydroxyl group (HEEPCDA) and an amine group (APPCDA), were investigated using D2O and H2O as solvents. The vesicle solution with polymerized HEEPCDA exhibited a reversible chromatic response during the heating and cooling cycle in D2O, but not in H2O. On the other hand, the vesicle solution with the polymerized APPCDA exhibited a reversible chromatic response in H2O during the heating and cooling cycle, but the color of the solution did not change much in D2O. The critical vesicle concentration of HEEPCDA was lower in D2O than in H2O, and the chromatic sensitivity of the polymerized vesicles to temperature was slower in D2O than in H2O. We think that it is due to D2O being a more highly structured solvent than H2O with the hydrogen bonding in D2O stronger than that in H2O.

  5. Inhibition of TNF-alpha production contributes to the attenuation of LPS-induced hypophagia by pentoxifylline.

    Science.gov (United States)

    Porter, M H; Hrupka, B J; Altreuther, G; Arnold, M; Langhans, W

    2000-12-01

    Cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) are assumed to mediate anorexia during bacterial infections. To improve our understanding of the role that these two cytokines serve in mediating infection during anorexia, we investigated the ability of pentoxifylline (PTX), a potent inhibitor of TNF-alpha production, to block the anorectic effects of the bacterial products lipopolysaccharide (LPS) and muramyl dipeptide (MDP) in rats. Intraperitoneally injected PTX (100 mg/kg body wt) completely eliminated the anorectic effect of intraperitoneally injected LPS (100 microg/kg body wt) and attenuated the anorectic effect of a higher dose of intraperitoneally injected LPS (250 microg/kg body wt). Concurrently, PTX pretreatment suppressed low-dose LPS-induced TNF-alpha production by more than 95% and IL-1beta production 39%, as measured by ELISA. Similarly, high-dose LPS-induced TNF-alpha production was reduced by approximately 90%. PTX administration also attenuated the tolerance that is normally observed with a second injection of LPS. In addition, PTX pretreatment attenuated the hypophagic effect of intraperitoneally injected MDP (2 mg/kg body wt) but had no effect on the anorectic response to intraperitoneally injected recombinant human TNF-alpha (150 ug/kg body wt). The results suggest that suppression of TNF-alpha production is sufficient to attenuate LPS- and MDP-induced anorexia. This is consistent with the hypothesis that TNF-alpha plays a major role in the anorexia associated with bacterial infection.

  6. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages.

    Science.gov (United States)

    Budai, Marietta M; Varga, Aliz; Milesz, Sándor; Tőzsér, József; Benkő, Szilvia

    2013-12-01

    Aloe vera has been used in traditional herbal medicine as an immunomodulatory agent inducing anti-inflammatory effects. However, its role on the IL-1β inflammatory cytokine production has not been studied. IL-1β production is strictly regulated both at transcriptional and posttranslational levels through the activity of Nlrp3 inflammasome. In this study we aimed to determine the effect of Aloe vera on the molecular mechanisms of Nlrp3 inflammasome-mediated IL-1β production in LPS-activated human THP-1 cells and monocyte-derived macrophages. Our results show that Aloe vera significantly reduced IL-8, TNFα, IL-6 and IL-1β cytokine production in a dose dependent manner. The inhibitory effect was substantially more pronounced in the primary cells. We found that Aloe vera inhibited the expression of pro-IL-1β, Nlrp3, caspase-1 as well as that of the P2X7 receptor in the LPS-induced primary macrophages. Furthermore, LPS-induced activation of signaling pathways like NF-κB, p38, JNK and ERK were inhibited by Aloe vera in these cells. Altogether, we show for the first time that Aloe vera-mediated strong reduction of IL-1β appears to be the consequence of the reduced expression of both pro-IL-1β as well as Nlrp3 inflammasome components via suppressing specific signal transduction pathways. Furthermore, we show that the expression of the ATP sensor P2X7 receptor is also downregulated by Aloe vera that could also contribute to the attenuated IL-1β cytokine secretion. These results may provide a new therapeutic approach to regulate inflammasome-mediated responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. LPS-induced lung inflammation in marmoset monkeys - an acute model for anti-inflammatory drug testing.

    Directory of Open Access Journals (Sweden)

    Sophie Seehase

    Full Text Available Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS-induced inflammation model was established in marmoset monkeys (Callithrix jacchus to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4 inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α and macrophage inflammatory protein-1 beta (MIP-1β were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC(50. LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs.

  8. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    Science.gov (United States)

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. PTEN gene and phosphorylation of Akt protein expression in the LPS-induced lung fibroblast

    Directory of Open Access Journals (Sweden)

    Mao-lin HUANG

    2014-09-01

    Full Text Available Objective: To investigate PTEN gene expression and the Akt phosphorylation of protein expression in the LPS-induced lung fibroblast, to initially reveal the relation between PTEN gene and the Akt phosphorylated proteins to LPS-induced lung fibroblast proliferation mechanism. Methods: BrdU experiments was performed to evaluate the LPS-induced lung fibroblast proliferation,  RT-PCR and Western Blot analysis were used to analyze the PTEN gene expression and Western blot was performed to analyze Akt phosphorylated protein expression. Results: PTEN mRNA level of the experimental group were significantly lower than the control group (P<0.05 with LPS simulation for 24h and 72h , and there were no significant difference between the experimental group and control group the experimental group and control group (P>0.05 . PTEN protein expression levels of the experimental group were significantly lower than the control group (P<0.05 , at 72h, and PTEN mRNA levels had no significant differences between these of the experimental and control group at 6h,12h and 24h(p>0.05. Phosphorylation Akt protein level (relative to total Akt protein was significantly higer than the control group (P<0.05 at 24h and 72h, and phosphorylation Akt protein levels had no significant differences between these of the experimental and control group at 6h and 12h (P>0.05 .Conclusion: PTEN gene and phosphorylation Akt protein involve in LPS-induced lung fibroblast proliferation signal transduction pathway.

  10. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination

    OpenAIRE

    Zhao, Xibao; Pu, Debing; Zhao, Zizhao; Zhu, Huihui; Li, Hongrui; Shen, Yaping; Zhang, Xingjie; Zhang, Ruihan; Shen, Jianzhong; Xiao, Weilie; Chen, Weilin

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)?induced pro-inflamm...

  11. Piracetam Attenuates LPS-Induced Neuroinflammation and Cognitive Impairment in Rats.

    Science.gov (United States)

    Tripathi, Alok; Paliwal, Pankaj; Krishnamurthy, Sairam

    2017-11-01

    The present study was performed to investigate the effect of piracetam on neuroinflammation induced by lipopolysaccharide (LPS) and resulting changes in cognitive behavior. Neuroinflammation was induced by a single dose of LPS solution infused into each of the lateral cerebral ventricles in concentrations of 1 μg/μl, at a rate of 1 μl/min over a 5-min period, with a 5-min waiting period between the two infusions. Piracetam in doses of 50, 100, and 200 mg/kg i.p. was administered 30 min before LPS infusion and continued for 9 days. On ninth day, the behavioral test for memory and anxiety was done followed by blood collection and microdissection of the hippocampus (HIP) and prefrontal cortex brain regions. Piracetam attenuated the LPS-induced decrease in coping strategy to novel environment indicating anxiolytic activity. It also reversed the LPS-induced changes in the known arm and novel arm entries in the Y-maze test indicating amelioration of spatial memory impairment. Further, piracetam moderated LPS-induced decrease in the mitochondrial complex enzyme activities (I, II, IV, and V) and mitochondrial membrane potential. It ameliorated changes in hippocampal lipid peroxidation and nitrite levels including the activity of superoxide dismutase. Piracetam region specifically ameliorated LPS-induced increase in the level of IL-6 in HIP indicating anti-neuroinflammatory effect. Further, piracetam reduced HIP Aβ (1-40) and increased blood Aβ level suggesting efflux of Aβ from HIP to blood. Therefore, the present study indicates preclinical evidence for the use of piracetam in the treatment of neuroinflammatory disorders.

  12. Anti-Inflammatory Effects of Berberine Hydrochloride in an LPS-Induced Murine Model of Mastitis

    Directory of Open Access Journals (Sweden)

    Xichun Wang

    2018-01-01

    Full Text Available Berberine hydrochloride is an isoquinoline type alkaloid extracted from Berberidaceae, Rutaceae, and other plants. Previous reports have shown that berberine hydrochloride has anti-inflammatory properties. However, the underlying molecular mechanisms remain unclear. In this study, a lipopolysaccharide- (LPS- induced murine model of mastitis was established to explore the anti-inflammatory action of berberine hydrochloride. Sixty mice that had been lactating for 5–7 days were randomly divided into six groups, including control, LPS, three berberine hydrochloride treatment groups (5, 10, and 20 mg/kg, and a dexamethasone (DEX (5 mg/kg group. Berberine hydrochloride was administered intraperitoneally 1 h before and 12 h after LPS-induced mastitis, and all mice were sacrificed 24 h after LPS induction. The pathological and histopathological changes of the mammary glands were observed. The concentrations and mRNA expressions of TNF-α, IL-1β, and IL-6 were measured by ELISA and qRT-PCR. The activation of TLR4 and NF-κB signaling pathways was analyzed by Western blot. Results indicated that berberine hydrochloride significantly attenuated neutrophil infiltration and dose-dependently decreased the secretion and mRNA expressions of TNF-α, IL-1β, and IL-6 within a certain range. Furthermore, berberine hydrochloride suppressed LPS-induced TLR4 and NF-κB p65 activation and the phosphorylation of I-κB. Berberine hydrochloride can provide mice robust protection from LPS-induced mastitis, potentially via the TLR4 and NF-κB pathway.

  13. Anti-Inflammatory Effects of Berberine Hydrochloride in an LPS-Induced Murine Model of Mastitis

    Science.gov (United States)

    Feng, Shibin; Ding, Nana; He, Yanting; Li, Cheng; Li, Manman; Ding, Xuedong; Ding, Hongyan; Li, Jinchun

    2018-01-01

    Berberine hydrochloride is an isoquinoline type alkaloid extracted from Berberidaceae, Rutaceae, and other plants. Previous reports have shown that berberine hydrochloride has anti-inflammatory properties. However, the underlying molecular mechanisms remain unclear. In this study, a lipopolysaccharide- (LPS-) induced murine model of mastitis was established to explore the anti-inflammatory action of berberine hydrochloride. Sixty mice that had been lactating for 5–7 days were randomly divided into six groups, including control, LPS, three berberine hydrochloride treatment groups (5, 10, and 20 mg/kg), and a dexamethasone (DEX) (5 mg/kg) group. Berberine hydrochloride was administered intraperitoneally 1 h before and 12 h after LPS-induced mastitis, and all mice were sacrificed 24 h after LPS induction. The pathological and histopathological changes of the mammary glands were observed. The concentrations and mRNA expressions of TNF-α, IL-1β, and IL-6 were measured by ELISA and qRT-PCR. The activation of TLR4 and NF-κB signaling pathways was analyzed by Western blot. Results indicated that berberine hydrochloride significantly attenuated neutrophil infiltration and dose-dependently decreased the secretion and mRNA expressions of TNF-α, IL-1β, and IL-6 within a certain range. Furthermore, berberine hydrochloride suppressed LPS-induced TLR4 and NF-κB p65 activation and the phosphorylation of I-κB. Berberine hydrochloride can provide mice robust protection from LPS-induced mastitis, potentially via the TLR4 and NF-κB pathway.

  14. A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice.

    Science.gov (United States)

    Yue, Yunshuang; Wang, Yi; Li, Dan; Song, Zhigang; Jiao, Hongchao; Lin, Hai

    2015-01-01

    Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTOR(Ser2448) and p70S6K(Thr389). We also showed that LPS administration increased the phosphorylation of FOXO1(Ser256), the p65 subunit of nuclear factor kappa B (Panorexia by decreasing the phosphorylation of p70S6K(Thr389), FOXO1(Ser256), and FOXO1/3a(Thr) (24) (/) (32). These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia. © 2015 Society for Endocrinology.

  15. The Protective Effect of Melatonin on Neural Stem Cell against LPS-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Juhyun Song

    2015-01-01

    Full Text Available Stem cell therapy for tissue regeneration has several limitations in the fact that transplanted cells could not survive for a long time. For solving these limitations, many studies have focused on the antioxidants to increase survival rate of neural stem cells (NSCs. Melatonin, an antioxidant synthesized in the pineal gland, plays multiple roles in various physiological mechanisms. Melatonin exerts neuroprotective effects in the central nervous system. To determine the effect of melatonin on NSCs which is in LPS-induced inflammatory stress state, we first investigated nitric oxide (NO production and cytotoxicity using Griess reagent assays, LDH assay, and neurosphere counting. Also, we investigated the effect of melatonin on NSCs by measuring the mRNA levels of SOX2, TLX, and FGFR-2. In addition, western blot analyses were performed to examine the activation of PI3K/Akt/Nrf2 signaling in LPS-treated NSCs. In the present study, we suggested that melatonin inhibits NO production and protects NSCs against LPS-induced inflammatory stress. In addition, melatonin promoted the expression of SOX2 and activated the PI3K/Akt/Nrf2 signaling under LPS-induced inflammation condition. Based on our results, we conclude that melatonin may be an important factor for the survival and proliferation of NSCs in neuroinflammatory diseases.

  16. Effects and mechanisms of cavidine protecting mice against LPS-induced endotoxic shock

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Zhang, Hailin; Niu, Xiaofeng, E-mail: niuxf@mail.xjtu.edu.cn; Wang, Xiumei; Wang, Yu; He, Zehong; Yao, Huan

    2016-08-15

    LPS sensitized mice are usually considered as an experimental model of endotoxin shock. The present study aims to evaluate effects of cavidine on LPS-induced endotoxin shock. Mice were intraperitoneally administrated with cavidine (1, 3 and 10 mg/kg) or DEX (5 mg/kg) at 1 and 12 h before injecting LPS (30 mg/kg) intraperitoneally. Blood samples, liver, lung and kidney tissues were harvested after LPS injection. The study demonstrated that pretreatment with cavidine reduced the mortality of mice during 72 h after endotoxin injection. In addition, cavidine administration significantly attenuated histological pathophysiology features of LPS-induced injury in lung, liver and kidney. Furthermore, cavidine administration inhibited endotoxin-induced production of pro-inflammatory cytokines including TNF-α, IL-6 and HMGB1. Moreover, cavidine pretreatment attenuated the phosphorylation of mitogen-activated protein kinase primed by LPS. In summary, cavidine protects mice against LPS-induced endotoxic shock via inhibiting early pro-inflammatory cytokine TNF-α, IL-6 and late-phase cytokine HMGB1, and the modulation of HMGB1 may be related with MAPK signal pathway. - Highlights: • Cavidine significantly reduced mortality in mice during 72 h after LPS injection. • Cavidine attenuated histopathological changes in lung, liver and kidney. • Cavidine decreased the level of early inflammatory cytokine TNF-α, IL-6 in LPS- stimulated mice. • Cavidine inhibited late inflammatory cytokine HMGB1 through MAPK pathway.

  17. The NALP3/Cryopyrin-Inflammasome Complex is Expressed in LPS-Induced Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    José F. González-Benítez

    2008-01-01

    Full Text Available In the inflammosome complex, NALP3 or NALP1 binds to ASC and activates caspase-1 which induces IL-1β. In murine LPS-induced ocular inflammation, the production of IL-1β is increased. We suggest that NALP3- or NALP1-inflammasome complex can be participating in the LPS-induced ocular inflammation. In this work, eye, brain, testis, heart, spleen, and lung were obtained from C3H/HeN mice treated with LPS for 3 to 48 hours, and the expression of NALP1b, NALP3, ASC, caspase-1, IL-1β, and IL-18 was determined. Infiltrated leukocytes producing IL-1β in the anterior chamber were found at 12-hour posttreatment. A high upregulated expression of NALP3, ASC, caspase-1, IL-1β, and IL-18 was found at the same time when infiltrated leukocytes were observed. NALP1b was not detected in the eye of treated mice. NALP3 was also overexpressed in heart and lung. These results suggest that NALP3-, but not NALP1-inflammosome complex, is participating in the murine LPS-induced ocular inflammation.

  18. Dopamine D2 receptors preferentially regulate the development of light responses of the inner retina

    Science.gov (United States)

    Tian, Ning; Xu, Hong-ping; Wang, Ping

    2014-01-01

    Retinal light responsiveness measured via electroretinography undergoes developmental modulation and is thought to be critically regulated by both visual experience and dopamine. The primary goal of this study is to determine whether the dopamine D2 receptor regulates the visual experience-dependent functional development of the retina. Accordingly, we recorded electroretinograms from wild type mice and mice with a genetic deletion of the gene that encodes the dopamine D2 receptor raised under normal cyclic light conditions and constant darkness. Our results demonstrate that mutation of the dopamine D2 receptors preferentially increases the amplitude of the inner retinal light responses evoked by high intensity light measured as oscillatory potentials in adult mice. During postnatal development, all three major components of electroretinograms, the a-wave, b-wave and oscillatory potentials, increase with age. Comparatively, mutation of the dopamine D2 receptors preferentially reduces the age-dependent increase of b-waves evoked by low intensity light. Light deprivation from birth reduces the amplitude of b-waves and completely diminishes the increased amplitude of oscillatory potentials. Taken together, these results demonstrate that the dopamine D2 receptor plays an important role in the activity-dependent functional development of the mouse retina. PMID:25393815

  19. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    International Nuclear Information System (INIS)

    Park, Sung-Dong; Cheon, So Yeong; Park, Tae-Yoon; Shin, Bo-Young; Oh, Hyunju; Ghosh, Sankar; Koo, Bon-Nyeo; Lee, Sang-Kyou

    2015-01-01

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model

  20. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Dong [Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Cheon, So Yeong [Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Park, Tae-Yoon; Shin, Bo-Young [Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Oh, Hyunju; Ghosh, Sankar [Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Koo, Bon-Nyeo, E-mail: koobn@yuhs.ac [Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Lee, Sang-Kyou, E-mail: sjrlee@yonsei.ac.kr [Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-08-28

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model.

  1. Dose-Response Effect of Sunlight on Vitamin D2 Production in Agaricus bisporus Mushrooms

    DEFF Research Database (Denmark)

    Urbain, Paul; Jakobsen, Jette

    2015-01-01

    The dose response effect of UV-B irradiation from sunlight on vitamin D2 content of sliced Agaricus bisporus (white button mushroom) during the process of sun-drying was investigated.Real-time UV-B and UV-A data were obtained using a high-performance spectroradiometer. During the first hour...

  2. Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice.

    Directory of Open Access Journals (Sweden)

    Stefan Spulber

    Full Text Available Molecular hydrogen has been shown to have neuroprotective effects in mouse models of acute neurodegeneration. The effect was suggested to be mediated by its free-radical scavenger properties. However, it has been shown recently that molecular hydrogen alters gene expression and protein phosphorylation. The aim of this study was to test whether chronic ad libitum consumption of molecular hydrogen-enriched electrochemically reduced water (H-ERW improves the outcome of lipopolysaccharide (LPS-induced neuroinflammation. Seven days after the initiation of H-ERW treatment, C57Bl/6 mice received a single injection of LPS (0.33 mg/kg i.p. or an equivalent volume of vehicle. The LPS-induced sickness behaviour was assessed 2 h after the injection, and recovery was assessed by monitoring the spontaneous locomotor activity in the homecage for 72 h after the administration of LPS. The mice were killed in the acute or recovery phase, and the expression of pro- and antiinflammatory cytokines in the hippocampus was assessed by real-time PCR. We found that molecular hydrogen reduces the LPS-induced sickness behaviour and promotes recovery. These effects are associated with a shift towards anti-inflammatory gene expression profile at baseline (downregulation of TNF- α and upregulation of IL-10. In addition, molecular hydrogen increases the amplitude, but shortens the duration and promotes the extinction of neuroinflammation. Consistently, molecular hydrogen modulates the activation and gene expression in a similar fashion in immortalized murine microglia (BV-2 cell line, suggesting that the effects observed in vivo may involve the modulation of microglial activation. Taken together, our data point to the regulation of cytokine expression being an additional critical mechanism underlying the beneficial effects of molecular hydrogen.

  3. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-κB translocation

    International Nuclear Information System (INIS)

    Jawan, Bruno; Kao, Y.-H.; Goto, Shigeru; Pan, M.-C.; Lin, Y.-C.; Hsu, L.-W.; Nakano, Toshiaki; Lai, C.-Y.; Sun, C.-K.; Cheng, Y.-F.; Tai, M.-H.

    2008-01-01

    Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 μM after 48 h incubation. Pretreatment with 100 μM PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstrated that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and IκBα, as well as the nuclear translocation of NF-κB primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-κB nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers

  4. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-κB, p38MAPK and Akt inhibition

    International Nuclear Information System (INIS)

    Essafi-Benkhadir, Khadija; Refai, Amira; Riahi, Ichrak; Fattouch, Sami; Karoui, Habib; Essafi, Makram

    2012-01-01

    Highlights: ► Quince peel polyphenols inhibit LPS-induced secretion of TNF-α and IL-8. ► Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. ► Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-α is partially mediated by IL-6. ► The anti-inflammatory effects of quince polyphenols pass through NF-κB, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-α and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-α secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-κB), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince-rich regimen may help to prevent and improve the treatment of such diseases.

  5. Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hong; Roh, Eunmiri [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Hyun Soo [Pharmaceutical R and D Center, Huons Co., Ltd., Anyang (Korea, Republic of); Baek, Seung-Il [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Choi, Nam Song [Pharmaceutical R and D Center, Huons Co., Ltd., Anyang (Korea, Republic of); Kim, Narae; Hwang, Bang Yeon; Han, Sang-Bae [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Youngsoo, E-mail: youngsoo@chungbuk.ac.kr [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2013-12-13

    Highlights: •Lonicerae flos extract (HS-23) is a clinical candidate, Phase I for sepsis treatment. •Here, HS-23 or its major constituents rescued LPS-induced septic mortality in mice. •As a mechanism, they directly inhibited IRAK-4-catalyzed kinase activity. •Thus, they suppressed LPS-induced expression of NF-κB/AP-1-target inflammatory genes. -- Abstract: Lonicerae flos extract (HS-23) is a clinical candidate currently undergoing Phase I trial in lipopolysaccharide (LPS)-injected healthy human volunteers, but its molecular basis remains to be defined. Here, we investigated protective effects of HS-23 or its major constituents on Escherichia coli LPS-induced septic mortality in mice. Intravenous treatment with HS-23 rescued LPS-intoxicated C57BL/6J mice under septic conditions, and decreased the levels of cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β and high-mobility group box-1 (HMGB-1) in the blood. Chlorogenic acid (CGA) and its isomers were assigned as major constituents of HS-23 in the protection against endotoxemia. As a molecular mechanism, HS-23 or CGA isomers inhibited endotoxin LPS-induced autophosphorylation of the IL-1 receptor-associated kinase 4 (IRAK-4) in mouse peritoneal macrophages as well as the kinase activity of IRAK-4 in cell-free reactions. HS-23 consequently suppressed downstream pathways critical for LPS-induced activation of nuclear factor (NF)-κB or activating protein 1 (AP-1) in the peritoneal macrophages. HS-23 also inhibited various toll-like receptor agonists-induced nitric oxide (NO) production, and down-regulated LPS-induced expression of NF-κB/AP-1-target inflammatory genes in the cells. Taken together, HS-23 or CGA isomers exhibited anti-inflammatory therapy against LPS-induced septic mortality in mice, at least in part, mediated through the inhibition of IRAK-4.

  6. Attenuated effects of chitosan-capped gold nanoparticles on LPS-induced toxicity in laboratory rats

    International Nuclear Information System (INIS)

    Stefan, Marius; Melnig, Viorel; Pricop, Daniela; Neagu, Anca; Mihasan, Marius; Tartau, Liliana; Hritcu, Lucian

    2013-01-01

    The impact of nanoparticles in medicine and biology has increased rapidly in recent years. Gold nanoparticles (AuNP) have advantageous properties such as chemical stability, high electron density and affinity to biomolecules. However, the effects of AuNP on human body after repeated administration are still unclear. Therefore, the purpose of the present study was to evaluate the effects of gold-11.68 nm (AuNP1, 9.8 μg) and gold-22.22 nm (AuNP2, 19.7 μg) nanoparticles capped with chitosan on brain and liver tissue reactivity in male Wistar rats exposed to lipopolysaccharide (LPS from Escherichia coli serotype 0111:B4, 250 μg) upon 8 daily sessions of intraperitoneal administration. Our results suggest that the smaller size of chitosan-capped AuNP shows the protective effects against LPS-induced toxicity, suggesting a very high potential for biomedical applications. - Highlights: ► Smaller size of chitosan-capped gold nanoparticles acts against LPS-induced toxicity. ► Larger size of chitosan-capped gold nanoparticles agglomerated inside neurons and induced toxicity in combination with LPS. ► Chitosan has excellent biocompatible proprieties. ► Smaller size of chitosan-capped gold nanoparticles demonstrates great potential in biomedical applications.

  7. Endogenous PGI2 signaling through IP inhibits neutrophilic lung inflammation in LPS-induced acute lung injury mice model.

    Science.gov (United States)

    Toki, Shinji; Zhou, Weisong; Goleniewska, Kasia; Reiss, Sara; Dulek, Daniel E; Newcomb, Dawn C; Lawson, William E; Peebles, R Stokes

    2018-04-13

    Endogenous prostaglandin I 2 (PGI 2 ) has inhibitory effects on immune responses against pathogens or allergens; however, the immunomodulatory activity of endogenous PGI 2 signaling in endotoxin-induced inflammation is unknown. To test the hypothesis that endogenous PGI 2 down-regulates endotoxin-induced lung inflammation, C57BL/6 wild type (WT) and PGI 2 receptor (IP) KO mice were challenged intranasally with LPS. Urine 6-keto-PGF 1α , a stable metabolite of PGI 2, was significantly increased following the LPS-challenge, suggesting that endogenous PGI 2 signaling modulates the host response to LPS-challenge. IPKO mice had a significant increase in neutrophils in the BAL fluid as well as increased proteins of KC, LIX, and TNF-α in lung homogenates compared with WT mice. In contrast, IL-10 was decreased in LPS-challenged IPKO mice compared with WT mice. The PGI 2 analog cicaprost significantly decreased LPS-induced KC, and TNF-α, but increased IL-10 and AREG in bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived macrophages (BMMs) compared with vehicle-treatment. These results indicated that endogenous PGI 2 signaling attenuated neutrophilic lung inflammation through the reduced inflammatory cytokine and chemokine and enhanced IL-10. Copyright © 2018. Published by Elsevier Inc.

  8. Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling.

    Science.gov (United States)

    Ishii, Masakazu; Nakahara, Tatsuo; Araho, Daisuke; Murakami, Juri; Nishimura, Masahiro

    2017-07-01

    Glycolipids are the major constituent of the thylakoid membrane of higher plants and have a variety of biological and pharmacological activities. However, anti-inflammatory effects of glycolipids on vascular endothelial cells have not been elucidated. Here, we investigated the effect of glycolipids extracted from spinach on lipopolysaccharides (LPS)-induced endothelial inflammation and evaluated the underlying molecular mechanisms. Treatment with glycolipids from spinach had no cytotoxic effects on cultured human umbilical vein endothelial cells (HUVECs) and significantly blocked the expression of LPS-induced interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and intracellular adhesion molecule-1 (ICAM-1) in them. Glycolipids treatment also effectively suppressed monocyte adhesion to HUVECs. Treatment with glycolipids inhibited LPS-induced NF-κB phosphorylation and nuclear translocation. In addition, glycolipids treatment significantly promoted endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production in HUVECs. Furthermore, glycolipids treatment blocked LPS-induced inducible NOS (iNOS) expression in HUVECs. Pretreatment with a NOS inhibitor attenuated glycolipids-induced suppression of NF-κB activation and adhesion molecule expression, and abolished the glycolipids-mediated suppression of monocyte adhesion to HUVECs. These results indicate that glycolipids suppress LPS-induced vascular inflammation through attenuation of the NF-κB pathway by increasing NO production in endothelial cells. These findings suggest that glycolipids from spinach may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Inhibitory mechanism of chroman compound on LPS-induced nitric oxide production and nuclear factor-κB activation

    International Nuclear Information System (INIS)

    Kim, Byung Hak; Reddy, Alavala Matta; Lee, Kum-Ho; Chung, Eun Yong; Cho, Sung Min; Lee, Heesoon; Min, Kyung Rak; Kim, Youngsoo

    2004-01-01

    6-Hydroxy-7-methoxychroman-2-carboxylic acid phenylamide (KL-1156) is a novel chemically synthetic compound. In the present study, the chroman KL-1156 compound was found to inhibit lipopolysaccharide (LPS)-induced nitric oxide production in macrophages RAW 264.7. KL-1156 compound attenuated LPS-induced synthesis of both mRNA and protein of inducible nitric oxide synthase (iNOS), in parallel, and inhibited LPS-induced iNOS promoter activity, indicating that the chroman compound down-regulated iNOS expression at transcription level. As a mechanism of the anti-inflammatory action shown by KL-1156 compound, suppression of nuclear factor (NF)-κB has been documented. KL-1156 compound exhibited a dose-dependent inhibitory effect on LPS-induced NF-κB transcriptional activity in macrophages RAW 264.7. Furthermore, the compound inhibited LPS-induced nuclear translocation of NF-κB p65 and DNA binding activity of NF-κB complex, in parallel, but did not affect IκBα degradation. Taken together, this study demonstrated that chroman KL-1156 compound interfered with nuclear translocation step of NF-κB p65, which was attributable to its anti-inflammatory action

  10. Design Concepts of Emergency Response Robot Platform K-R2D2

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sun Young; Jeong, Kyungmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    From the analysis for various mobile robots competed in DARPA Robotics Challenge, there are some drawbacks in using two or four legs because bipedal locomotion is not yet suitable for maintaining stability and quadrupedal locomotion is difficult to go through narrow aisles. Motivated by the above observations, we propose a K-R2D2 robot platform with three legs arranged in the form of a triangle like as R2-D2 robot which is a fictional robot character in the Star Wars movies. This robot has 3 legs with tracks in each sole of the leg. It is statically stable since there are three contact points to ground. In addition, three legs are also possible to design a structure walking stairs that can expand and contract in the vertical direction. This paper has presented the conceptual design, it is developed on the purpose of quick response instead of emergent workers to the extreme conditions disasters. This robot is emergency response robot platform KR2D2 with three legs, which is statically stable to walk or wheel depending on the terrains and move quickly as possible as on uneven terrain or stairs.

  11. Design Concepts of Emergency Response Robot Platform K-R2D2

    International Nuclear Information System (INIS)

    Noh, Sun Young; Jeong, Kyungmin

    2016-01-01

    From the analysis for various mobile robots competed in DARPA Robotics Challenge, there are some drawbacks in using two or four legs because bipedal locomotion is not yet suitable for maintaining stability and quadrupedal locomotion is difficult to go through narrow aisles. Motivated by the above observations, we propose a K-R2D2 robot platform with three legs arranged in the form of a triangle like as R2-D2 robot which is a fictional robot character in the Star Wars movies. This robot has 3 legs with tracks in each sole of the leg. It is statically stable since there are three contact points to ground. In addition, three legs are also possible to design a structure walking stairs that can expand and contract in the vertical direction. This paper has presented the conceptual design, it is developed on the purpose of quick response instead of emergent workers to the extreme conditions disasters. This robot is emergency response robot platform KR2D2 with three legs, which is statically stable to walk or wheel depending on the terrains and move quickly as possible as on uneven terrain or stairs

  12. Alliin, a Garlic (Allium sativum Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Saray Quintero-Fabián

    2013-01-01

    Full Text Available Garlic (Allium sativum L. has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide, a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS- stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.

  13. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Honglei Chen

    Full Text Available Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI. However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran intranasally.For the mouse model of direct ALI, lipopolysaccharide (LPS was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model.In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.

  14. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury.

    Science.gov (United States)

    Chen, Honglei; Wu, Shaoping; Lu, Rong; Zhang, Yong-guo; Zheng, Yuanyuan; Sun, Jun

    2014-01-01

    Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI). However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran) intranasally. For the mouse model of direct ALI, lipopolysaccharide (LPS) was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model. In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.

  15. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway.

    Science.gov (United States)

    Cheng, Xiao; Yang, Ying-Lin; Yang, Huan; Wang, Yue-Hua; Du, Guan-Hua

    2018-03-01

    Kaempferol is a natural flavonoid with many biological activities including anti-oxidation and anti-inflammation. Nevertheless, its anti-neuroinflammation role and the relevant mechanism remain unclear. The present study was to investigate effects of kaempferol against LPS-induced neuroinflammation and blood-brain barrier dysfunction as well as the mechanism in mice. BALB/c mice were treated with LPS 5mg/kg to induce inflammation after pre-treatment with kaempferol 25, 50, or 100mg/kg for 7days. The results showed that kaempferol reduced the production of various pro-inflammatory factors and inflammatory proteins including IL-1β, IL-6, TNF-α, MCP-1, COX-2 and iNOS in brain tissues. In addition, kaempferol also protected BBB integrity and increased BBB related proteins including occludin-1, claudin-1 and CX43 in brain of LPS-induced mice. Furthermore, kaempferol significantly reduced HMGB1 level and suppressed TLR4/MyD88 inflammatory pathway in both transcription level and translation level. These results collectively suggested that kaempferol might be a promising neuroprotective agent for alleviating inflammatory responses and BBB dysfunction by inhibiting HMGB1 release and down-regulating TLR4/MyD88 inflammatory pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. GSK-3β Inhibition Attenuates LPS-Induced Death but Aggravates Radiation-Induced Death via Down-Regulation of IL-6

    Directory of Open Access Journals (Sweden)

    Bailong Li

    2013-12-01

    Full Text Available Background: Exposure of high dose ionizing radiation is lethal. Signal pathways involved in radiation biology reaction still remain illdefined. Lipopolysaccharides (LPS, the ligands of Toll-like receptor 4(TLR4, could elicit strong immune responses. Glycogen synthase kinase-3β(GSK-3β promotes the production of inflammatory molecules and cell migration. Inhibition of GSK-3β provides protection against inflammation in animal models. The aim of the study was to investigate role of GSK-3β in LPS shock and ionizing radiation. Methods: WT or IL-6-/-mice or cells were pretreated with SB216763, a GSK-3β inhibitor, and survival of the mice was determined. Cell viability was assayed by Cell Counting Kit. Apoptosis was assayed by Annexin V-PI double staining. Serum concentrations of IL-6 and TNF-α were determined by ELISA. Results: SB216763 attenuated LPS induced mice or cell death but aggravated radiation induced mice or cell death. SB216763 reduced IL-6, but not TNF-α levels in vivo. IL-6-/- mice were more resistant to LPS-induced death but less resistant to radiation-induced death than wild type mice. Conclusions: Inhibition of GSK-3β conferred resistance to LPS shock but fostered death induced by ionizing radiation. Inhibition of GSK-3β was effective by reducing IL-6.

  17. Lignans from Arctium lappa and their inhibition of LPS-induced nitric oxide production.

    Science.gov (United States)

    Park, So Young; Hong, Seong Su; Han, Xiang Hua; Hwang, Ji Sang; Lee, Dongho; Ro, Jai Seup; Hwang, Bang Yeon

    2007-01-01

    A new butyrolactone sesquilignan, isolappaol C (1), together with four known lignans, lappaol C (2), lappaol D (3), lappaol F (4), and diarctigenin (5), were isolated from the methanolic extract of the seeds from the Arctium lappa plant. The structure of isolappaol C (1) was determined by spectral analysis including 1D- and 2D-NMR. All the isolates were evaluated for their inhibitory effects on the LPS-induced nitric oxide production using murine macrophage RAW264.7 cells. Lappaol F (4) and diarctigenin (5) strongly inhibited NO production in the LPS-stimulated RAW264.7 cells with IC(50) values of 9.5 and 9.6 microM, respectively.

  18. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-κB.

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    Full Text Available Nuclear factor-κB (NF-κB is a central transcriptional factor and a pleiotropic regulator of many genes involved in acute lung injury. Andrographolide is found in the plant of Andrographis paniculata and widely used in Traditional Chinese Medicine, exhibiting potently anti-inflammatory property by inhibiting NF-κB activity. The purpose of our investigation was designed to reveal the effect of andrographolide on various aspects of LPS induced inflammation in vivo and in vitro.In vivo, BALB/C mice were subjected to LPS injection with or without andrographolide treatments to induce ALI model. In vitro, MLE-12 cells were stimulated with LPS in the presence and absence of andrographolide. In vivo, pulmonary inflammation, pulmonary edema, ultrastructure changes of type II alveolar epithelial cells, MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6 and IL-1β in BALF, along with the expression of VCAM-1 and VEGF were dose-dependently attenuated by andrographolide. Meanwhile, in vitro, the expression of VCAM-1 and VEGF was also reduced by andrographolide. Moreover, our data showed that andrographolide significantly inhibited the ratios of phospho-IKKβ/total IKKβ, phospho-IκBα/total IκBα and phospho-NF-κB p65/total NF-κB p65, and NF-κB p65 DNA binding activities, both in vivo and in vitro.These results indicate that andrographolide dose-dependently suppressed the severity of LPS-induced ALI, more likely by virtue of andrographolide-mediated NF-κB inhibition at the level of IKKβ activation. These results suggest andrographolide may be considered as an effective and safe drug for the potential treatment of ALI.

  19. Andrographolide Protects against LPS-Induced Acute Lung Injury by Inactivation of NF-κB

    Science.gov (United States)

    Zhu, Tao; Wang, Dao-xin; Zhang, Wei; Liao, Xiu-qing; Guan, Xian; Bo, Hong; Sun, Jia-yang; Huang, Ni-wen; He, Jing; Zhang, Yun-kun; Tong, Jing; Li, Chang-yi

    2013-01-01

    Background Nuclear factor-κB (NF-κB) is a central transcriptional factor and a pleiotropic regulator of many genes involved in acute lung injury. Andrographolide is found in the plant of Andrographis paniculata and widely used in Traditional Chinese Medicine, exhibiting potently anti-inflammatory property by inhibiting NF-κB activity. The purpose of our investigation was designed to reveal the effect of andrographolide on various aspects of LPS induced inflammation in vivo and in vitro. Methods and Results In vivo, BALB/C mice were subjected to LPS injection with or without andrographolide treatments to induce ALI model. In vitro, MLE-12 cells were stimulated with LPS in the presence and absence of andrographolide. In vivo, pulmonary inflammation, pulmonary edema, ultrastructure changes of type II alveolar epithelial cells, MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6 and IL-1β in BALF, along with the expression of VCAM-1 and VEGF were dose-dependently attenuated by andrographolide. Meanwhile, in vitro, the expression of VCAM-1 and VEGF was also reduced by andrographolide. Moreover, our data showed that andrographolide significantly inhibited the ratios of phospho-IKKβ/total IKKβ, phospho-IκBα/total IκBα and phospho-NF-κB p65/total NF-κB p65, and NF-κB p65 DNA binding activities, both in vivo and in vitro. Conclusions These results indicate that andrographolide dose-dependently suppressed the severity of LPS-induced ALI, more likely by virtue of andrographolide-mediated NF-κB inhibition at the level of IKKβ activation. These results suggest andrographolide may be considered as an effective and safe drug for the potential treatment of ALI. PMID:23437127

  20. IGF-1 attenuates LPS induced pro-inflammatory cytokines expression in buffalo (Bubalus bubalis) granulosa cells.

    Science.gov (United States)

    Onnureddy, K; Ravinder; Onteru, Suneel Kumar; Singh, Dheer

    2015-03-01

    Interaction between immune and endocrine system is a diverse process influencing cellular function and homeostasis in animals. Negative energy balance (NEB) during postpartum period in dairy animals usually suppresses these systems resulting in reproductive tract infection and infertility. These negative effects could be due to competition among endocrine and immune signaling pathways for common signaling molecules. The present work studied the effect of IGF-1 (50 ng/ml) on LPS (1 μg/ml) mediated pro-inflammatory cytokine expression (IL-1β, TNF-α, IL-6) and aromatase (CYP19A1) genes' expressions as well as proliferation of buffalo granulosa cells. The crosstalk between LPS and IGF-1 was also demonstrated through studying the activities of downstream signaling molecules (ERK1/2, Akt, NF-κB) by western blot and immunostaining. Gene expression analysis showed that IGF-1 significantly reduced the LPS induced expression of IL-1β, TNF-α and IL-6. LPS alone inhibited the CYP19A1 expression. However, co-treatment with IGF-1 reversed the inhibitory effect of LPS on CYP19A1 expression. LPS alone did not affect granulosa cell proliferation, but co-treatment with IGF-1, and IGF-1 alone enhanced the proliferation. Western blot results demonstrated that LPS caused the nuclear translocation of the NF-κB and increased the phosphorylation of ERK1/2 and Akt maximum at 15 min and 60 min, respectively. Nonetheless, co-treatment with IGF-1 delayed LPS induced phosphorylation of ERK1/2 (peak at 120 min), while promoting early Akt phosphorylation (peak at 5 min) with no effect on NF-κB translocation. Overall, IGF-1 delayed and reversed the effects of LPS, suggesting that high IGF-1 levels may combat infection during critical periods like NEB in postpartum dairy animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. 75 FR 18925 - Program for Allocation of Regulatory Responsibilities Pursuant to Rule 17d-2; Notice of Filing of...

    Science.gov (United States)

    2010-04-13

    ... Plan from interested persons. \\1\\ 15 U.S.C. 78q(d). \\2\\ 17 CFR 240.17d-2. I. Introduction Section 19(g... complaints. 10. Advertising. FINRA shall assume responsibility to review the advertising of Inbound Router... advertising of Inbound Router Members shall be subject only to compliance with appropriate FINRA Rules and...

  2. Andrographolide Attenuates LPS-Induced Cardiac Malfunctions Through Inhibition of IκB Phosphorylation and Apoptosis in Mice

    Directory of Open Access Journals (Sweden)

    Jinlong Zhang

    2015-11-01

    Full Text Available Background/Aims: Cardiac malfunction is a common complication in sepsis and significantly increases the mortality of patients in septic shock. However, no studies have examined whether andrographolide (And reduces LPS-induced myocardial malfunction. Methods: Left ventricular systolic and diastolic functions were examined using echocardiography. TNF-a and IL-1ß protein levels were detected by an enzyme-linked immunosorbent assay (ELISA. NO oxidation products were determined using Griess reagent. Protein expression levels of inhibitors of NF-κBa (IκB and phospho-IκB were determined via Western blot. Oxidative injury was determined by measuring myocardial lipid peroxidation and superoxide dismutase activity. Cardiac apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP nickend-labeling (TUNEL and cardiac caspase 3/7 activity. Results: And blunted LPS-induced myocardial malfunctions in mice. LPS induced TNF-a, IL-1ß, and NO production as well as I-κB phosphorylation. Cardiac apoptosis was attenuated via incubation with And, but the extent of oxidative injury remained unaffected. Conclusion: And prevents LPS-induced cardiac malfunctions in mice by inhibiting TNF-a, IL-1ß, and NO production, IκB phosphorylation, and cardiac apoptosis, indicating that And may be a potential agent for preventing myocardial malfunction during sepsis.

  3. Ilexgenin A, a novel pentacyclic triterpenoid extracted from Aquifoliaceae shows reduction of LPS-induced peritonitis in mice.

    Science.gov (United States)

    Sun, Weidong; Liu, Chang; Zhang, Yaqi; Qiu, Xia; Zhang, Li; Zhao, Hongxia; Rong, Yi; Sun, Yun

    2017-02-15

    Ilexgenin A (IA) is a novel pentacyclic triterpenoid, which extracted from leaves of Ilex hainanensis Merr. In the present study, we aim to explore anti-inflammatory activity of IA on LPS-induced peritonitis and its underlying molecular mechanism. The results determined that IA was capable of suppressing peritonitis in mice induced by intraperitoneal (i.p.) injection of lipopolysaccaride (LPS). Furthermore, the results showed that IA dramatically inhibited levels of inflammatory cells infiltration in peritoneal cavity and serum in LPS-induced mice peritonitis model. Besides, IA could dramatically inhibit levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) in peritoneal cavity in LPS-induced mice peritonitis model. In vitro study, the results showed that IA inhibited production of IL-1β, IL-6 and TNF-α at transcriptional and translational levels in RAW 264.7 cells induced by LPS. Furthermore, IA could suppress the LPS-induced activation of Akt and downstream degradation and phosphorylation of kappa B-α (IκB-α). Moreover, IA could significantly inhibit ERK 1/2 phosphorylation in RAW 264.7 cells induced by LPS. These results were concurrent with molecular docking which revealed ERK1/2 inhibition. These results demonstrated that IA might as an anti-inflammatory agent candidate for inflammatory disease therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects.

    Science.gov (United States)

    Robertson, Chelsea L; Ishibashi, Kenji; Mandelkern, Mark A; Brown, Amira K; Ghahremani, Dara G; Sabb, Fred; Bilder, Robert; Cannon, Tyrone; Borg, Jacqueline; London, Edythe D

    2015-04-15

    Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D1- and D2-type receptors are unclear. Although evidence supports dissociable contributions of D1- and D2-type receptors to response inhibition in rats and associations of D2-type receptors to response inhibition in humans, the relationship between D1-type receptors and response inhibition has not been evaluated in humans. Here, we tested whether individual differences in striatal D1- and D2-type receptors are related to response inhibition in human subjects, possibly in opposing ways. Thirty-one volunteers participated. Response inhibition was indexed by stop-signal reaction time on the stop-signal task and commission errors on the continuous performance task, and tested for association with striatal D1- and D2-type receptor availability [binding potential referred to nondisplaceable uptake (BPND)], measured using positron emission tomography with [(11)C]NNC-112 and [(18)F]fallypride, respectively. Stop-signal reaction time was negatively correlated with D1- and D2-type BPND in whole striatum, with significant relationships involving the dorsal striatum, but not the ventral striatum, and no significant correlations involving the continuous performance task. The results indicate that dopamine D1- and D2-type receptors are associated with response inhibition, and identify the dorsal striatum as an important locus of dopaminergic control in stopping. Moreover, the similar contribution of both receptor subtypes suggests the importance of a relative balance between phasic and tonic dopaminergic activity subserved by D1- and D2-type receptors, respectively, in support of response inhibition. The results also suggest that the stop-signal task and the continuous performance task use different neurochemical mechanisms subserving motor response inhibition. Copyright © 2015 the authors 0270-6474/15/355990-08$15.00/0.

  5. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10

    International Nuclear Information System (INIS)

    Olgun, Nicole S.; Hanna, Nazeeh; Reznik, Sandra E.

    2015-01-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11–12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ET A receptor. We have previously shown that antagonism of the ET A receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS + BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12 h. We discovered that BQ-123, when administered 10 h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ET A receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ET A receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. - Highlights: • The pro-inflammatory response to LPS in the uterus and placenta is ET-1 dependent. • ET A blockade triggers up-regulation of IL-10 in uterus and placenta. • A positive feedback loop drives ET-1 expression in gestational tissue

  6. Involvement of JNK and NF-κB pathways in lipopolysaccharide (LPS)-induced BAG3 expression in human monocytic cells.

    Science.gov (United States)

    Wang, Hua-Qin; Meng, Xin; Liu, Bao-Qin; Li, Chao; Gao, Yan-Yan; Niu, Xiao-Fang; Li, Ning; Guan, Yifu; Du, Zhen-Xian

    2012-01-01

    Lipopolysaccharide (LPS) is an outer-membrane glycolipid component of Gram-negative bacteria known for its fervent ability to activate monocytic cells and for its potent proinflammatory capabilities. Bcl-2-associated athanogene 3 (BAG3) is a survival protein that has been shown to be stimulated during cell response to stressful conditions, such as exposure to high temperature, heavy metals, proteasome inhibition, and human immunodeficiency virus 1 (HIV-1) infection. In addition, BAG3 regulates replication of Varicella-Zoster Virus (VZV) and Herpes Simplex Virus (HSV) replication, suggesting that BAG3 could participate in the host response to infection. In the current study, we found that LPS increased the expression of BAG3 in a dose- and time-dependent manner. Actinomycin D completely blocked the LPS-induced BAG3 accumulation, as well as LPS activated the proximal promoter of BAG3 gene, supported that the induction by LPS occurred at the level of gene transcription. LPS-induced BAG3 expression was blocked by JNK or NF-κB inhibition, suggesting that JNK and NF-κB pathways participated in BAG3 induction by LPS. In addition, we also found that induction of BAG3 was implicated in monocytic cell adhesion to extracellular matrix induced by LPS. Overall, the data support that BAG3 is induced by LPS via JNK and NF-κB-dependent signals, and involved in monocytic cell-extracellular matrix interaction, suggesting that BAG3 may have a role in the host response to LPS stimulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Essafi-Benkhadir, Khadija [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Refai, Amira [Laboratoire de Recherche sur la Transmission, le Controle et l' immunobiologie des Infections, Institut Pasteur de Tunis (Tunisia); Riahi, Ichrak [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Fattouch, Sami [Laboratory LIP-MB National Institute of Applied Sciences and Technology, Tunis (Tunisia); Karoui, Habib [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Essafi, Makram, E-mail: makram.essafi@pasteur.rns.tn [Laboratoire de Recherche sur la Transmission, le Controle et l' immunobiologie des Infections, Institut Pasteur de Tunis (Tunisia)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince

  8. Indomethacin causes prostaglandin D(2)-like and eotaxin-like selective responses in eosinophils and basophils.

    Science.gov (United States)

    Stubbs, Victoria E L; Schratl, Petra; Hartnell, Adele; Williams, Timothy J; Peskar, Bernhard A; Heinemann, Akos; Sabroe, Ian

    2002-07-19

    We investigated the actions of a panel of nonsteroidal anti-inflammatory drugs on eosinophils, basophils, neutrophils, and monocytes. Indomethacin alone was a potent and selective inducer of eosinophil and basophil shape change. In eosinophils, indomethacin induced chemotaxis, CD11b up-regulation, respiratory burst, and L-selectin shedding but did not cause up-regulation of CD63 expression. Pretreatment of eosinophils with indomethacin also enhanced subsequent eosinophil shape change induced by eotaxin, although treatment with higher concentrations of indomethacin resulted in a decrease in the expression of the major eosinophil chemokine receptor, CCR3. Indomethacin activities and cell selectivity closely resembled those of prostaglandin D(2) (PGD(2)). Eosinophil shape change in response to eotaxin was inhibited by pertussis toxin, but indomethacin- and PGD(2)-induced shape change responses were not. Treatment of eosinophils with specific inhibitors of phospholipase C (U-73122), phosphatidylinositol 3-kinase (LY-294002), and p38 mitogen-activated protein kinase (SB-202190) revealed roles for these pathways in indomethacin signaling. Indomethacin and its analogues may therefore provide a structural basis from which selective PGD(2) receptor small molecule antagonists may be designed and which may have utility in the treatment of allergic inflammatory disease.

  9. Suppressor of cytokine signaling 1 expression during LPS-induced inflammation and bone loss in rats

    Directory of Open Access Journals (Sweden)

    João Antonio Chaves de SOUZA

    2017-10-01

    Full Text Available Abstract This study aimed to characterize the dynamics of suppressor of cytokine signaling (SOCS1 expression in a rat model of lipopolysaccharide-induced periodontitis. Wistar rats in the experimental groups were injected three times/week with LPS from Escherichia coli on the palatal aspect of the first molars, and control animals were injected with vehicle (phosphate-buffered saline. Animals were sacrificed 7, 15, and 30 days after the first injection to analyze inflammation (stereometric analysis, bone loss (macroscopic analysis, gene expression (qRT-PCR, and protein expression/activation (Western blotting. The severity of inflammation and bone loss associated with LPS-induced periodontitis increased from day 7 to day 15, and it was sustained through day 30. Significant (p < 0.05 increases in SOCS1, RANKL, OPG, and IFN-γ gene expression were observed in the experimental group versus the control group at day 15. SOCS1 protein expression and STAT1 and NF-κB activation were increased throughout the 30-day experimental period. Gingival tissues affected by experimental periodontitis express SOCS1, indicating that this protein may potentially downregulate signaling events involved in inflammatory reactions and bone loss and thus may play a relevant role in the development and progression of periodontal disease.

  10. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis

    Science.gov (United States)

    González-Terán, Bárbara; Cortés, José R.; Manieri, Elisa; Matesanz, Nuria; Verdugo, ρngeles; Rodríguez, María E.; González-Rodríguez, ρgueda; Valverde, ρngela; Martín, Pilar; Davis, Roger J.; Sabio, Guadalupe

    2012-01-01

    Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved. PMID:23202732

  11. Constitutive role of the Fanconi anemia D2 gene in the replication stress response.

    Science.gov (United States)

    Tian, Yanyan; Shen, Xi; Wang, Rui; Klages-Mundt, Naeh L; Lynn, Erica J; Martin, Sara K; Ye, Yin; Gao, Min; Chen, Junjie; Schlacher, Katharina; Li, Lei

    2017-12-08

    In response to DNA cross-linking damage, the Fanconi anemia (FA) core complex activates the FA pathway by monoubiquitinating Fanconi anemia complementation group D2 (FANCD2) for the initiation of the nucleolytic processing of the DNA cross-links and stabilization of stalled replication forks. Given that all the classic FA proteins coordinately monoubiquitinate FANCD2, it is unclear why losses of individual classic FA genes yield varying cellular sensitivities to cross-linking damage. To address this question, we generated cellular knock-out models of FA core complex components and FANCD2 and found that FANCD2-null mutants display higher levels of spontaneous chromosomal damage and hypersensitivity to replication-blocking lesions than Fanconi anemia complementation group L (FANCL)-null mutants, suggesting that FANCD2 provides a basal level of DNA protection countering endogenous lesions in the absence of monoubiquitination. FANCD2's ubiquitination-independent function is likely involved in optimized recruitment of nucleolytic activities for the processing and protection of stressed replication forks. Our results reveal that FANCD2 has a ubiquitination-independent role in countering endogenous levels of replication stress, a function that is critical for the maintenance of genomic stability. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Progesterone is essential for protecting against LPS-induced pregnancy loss. LIF as a potential mediator of the anti-inflammatory effect of progesterone.

    Directory of Open Access Journals (Sweden)

    Julieta Aisemberg

    Full Text Available Lipopolysaccharide (LPS administration to mice on day 7 of gestation led to 100% embryonic resorption after 24 h. In this model, nitric oxide is fundamental for the resorption process. Progesterone may be responsible, at least in part, for a Th2 switch in the feto-maternal interface, inducing active immune tolerance against fetal antigens. Th2 cells promote the development of T cells, producing leukemia inhibitory factor (LIF, which seems to be important due to its immunomodulatory action during early pregnancy. Our aim was to evaluate the involvement of progesterone in the mechanism of LPS-induced embryonic resorption, and whether LIF can mediate hormonal action. Using in vivo and in vitro models, we provide evidence that circulating progesterone is an important component of the process by which infection causes embryonic resorption in mice. Also, LIF seems to be a mediator of the progesterone effect under inflammatory conditions. We found that serum progesterone fell to very low levels after 24 h of LPS exposure. Moreover, progesterone supplementation prevented embryonic resorption and LPS-induced increase of uterine nitric oxide levels in vivo. Results show that LPS diminished the expression of the nuclear progesterone receptor in the uterus after 6 and 12 h of treatment. We investigated the expression of LIF in uterine tissue from pregnant mice and found that progesterone up-regulates LIF mRNA expression in vitro. We observed that LIF was able to modulate the levels of nitric oxide induced by LPS in vitro, suggesting that it could be a potential mediator of the inflammatory action of progesterone. Our observations support the view that progesterone plays a critical role in a successful pregnancy as an anti-inflammatory agent, and that it could have possible therapeutic applications in the prevention of early reproductive failure associated with inflammatory disorders.

  13. Effect of curcumin (Curcuma longa extract) on LPS-induced acute lung injury is mediated by the activation of AMPK.

    Science.gov (United States)

    Kim, Joungmin; Jeong, Seong-Wook; Quan, Hui; Jeong, Cheol-Won; Choi, Jeong-Il; Bae, Hong-Beom

    2016-02-01

    Curcumin, a biphenolic compound extracted from turmeric (Curcuma longa), possesses potent anti-inflammatory activity. The present study investigated whether curcumin could increase 5' adenosine monophosphate-activated protein kinase (AMPK) activity in macrophages and modulate the severity of lipopolysaccharide (LPS)-induced acute lung injury. Macrophages were treated with curcumin and then exposed (or not) to LPS. Acute lung injury was induced by intratracheal administration of LPS in BALB/c mice. Curcumin increased phosphorylation of AMPK and acetyl-CoA carboxylase (ACC), a downstream target of AMPK, in a time- and concentration-dependent manner. Curcumin did not increase phosphorylation of liver kinase B1, a primary kinase upstream of AMPK. STO-609, an inhibitor of calcium(2+)/calmodulin-dependent protein kinase kinase, diminished curcumin-induced AMPK phosphorylation, but transforming growth factor-beta-activated kinase 1 inhibitor did not. Curcumin also diminished the LPS-induced increase in phosphorylation of inhibitory κB-alpha and the production of tumor necrosis factor alpha (TNF-α), macrophage inflammatory protein (MIP)-2, and interleukin (IL)-6 by macrophages. Systemic administration of curcumin significantly decreased the production of TNF-α, MIP-2, and IL-6 as well as neutrophil accumulation in bronchoalveolar lavage fluid, and also decreased pulmonary myeloperoxidase levels and the wet/dry weight ratio in mice subjected to LPS treatment. These results suggest that the protective effect of curcumin on LPS-induced acute lung injury is associated with AMPK activation.

  14. Niclosamide suppresses RANKL-induced osteoclastogenesis and prevents LPS-induced bone loss

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Yoon-Hee [Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Ju-Young [Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Baek, Jong Min; Ahn, Sung-Jun [Department of Anatomy, School of Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); So, Hong-Seob, E-mail: jeanso@wku.ac.kr [Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Oh, Jaemin, E-mail: jmoh@wku.ac.kr [Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Department of Anatomy, School of Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2016-02-05

    Niclosamide (5-chloro-salicyl-(2-chloro-4-nitro) anilide) is an oral anthelmintic drug used for treating intestinal infection of most tapeworms. Recently, niclosamide was shown to have considerable efficacy against some tumor cell lines, including colorectal, prostate, and breast cancers, and acute myelogenous leukemia. Specifically, the drug was identified as a potent inhibitor of signal transducer and activator of transcription 3 (STAT3), which is associated with osteoclast differentiation and function. In this study, we assessed the effect of niclosamide on osteoclastogenesis in vitro and in vivo. Our in vitro study showed that receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation was inhibited by niclosamide, due to inhibition of serine–threonine protein kinase (Akt) phosphorylation, inhibitor of nuclear factor-kappaB (IκB), and STAT3 serine{sup 727}. Niclosamide decreased the expression of the major transcription factors c-Fos and NFATc1, and thereafter abrogated the mRNA expression of osteoclast-specific genes, including TRAP, OSCAR, αv/β3 integrin (integrin αv, integrin β3), and cathepsin K (CtsK). In an in vivo model, niclosamide prevented lipopolysaccharide-induced bone loss by diminishing osteoclast activity. Taken together, our results show that niclosamide is effective in suppressing osteoclastogenesis and may be considered as a new and safe therapeutic candidate for the clinical treatment of osteoclast-related diseases such as osteoporosis. - Highlights: • We first investigated the anti-osteoclastogenic effects of niclosamide in vitro and in vivo. • Niclosamide impairs the activation of the Akt-IκB-STAT3 ser{sup 727} signaling axis. • Niclosamide acts a negative regulator of actin ring formation during osteoclast differentiation. • Niclosamide suppresses LPS-induced bone loss in vivo. • Niclosamide deserves new evaluation as a potential treatment target in various bone diseases.

  15. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo

    Science.gov (United States)

    Li, Peng; Chen, Dan; Huang, Yang

    2018-01-01

    Acute otitis media is one of the most common infectious diseases worldwide in spite of the widespread vaccination. The present study was conducted to explore the effects of fisetin on mouse acute otitis media models. The animal models were established by lipopolysaccharide (LPS) injection into the middle ear of mice via the tympanic membrane. Fisetin was administered to mice for ten days through intragastric administration immediate after LPS application. Hematoxylin and eosin (H&E) staining was performed and the pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and VEGF, were measured through enzyme-linked immunosorbent assay (ELISA) method and RT-qPCR analysis. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was detected by immunoblotting assays. Reactive oxygen species (ROS) generated levels were determined through assessment of anti-oxidants, and TXNIP/MAPKs signaling pathways were explored to reveal the possible molecular mechanism for acute otitis media progression and the function of fisetin. Fisetin reduced mucosal thickness caused by LPS. In fisetin-treated animals, pro-inflammatory cytokine release was downregulated accompanied with TLR4/NF-κB inactivation. ROS production was significantly decreased in comparison to the LPS-treated group. The TXNIP/MAPKs signaling pathway was inactivated for fisetin treatment in LPS-induced mice with acute otitis media. The above results indicated that fisetin improved acute otitis media through inflammation and ROS suppression via inactivating TLR4/NF-κB and TXNIP/MAPKs signaling pathways. PMID:29568876

  16. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo.

    Science.gov (United States)

    Li, Peng; Chen, Dan; Huang, Yang

    2018-07-01

    Acute otitis media is one of the most common infectious diseases worldwide in spite of the widespread vaccination. The present study was conducted to explore the effects of fisetin on mouse acute otitis media models. The animal models were established by lipopolysaccharide (LPS) injection into the middle ear of mice via the tympanic membrane. Fisetin was administered to mice for ten days through intragastric administration immediate after LPS application. Hematoxylin and eosin (H&E) staining was performed and the pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and VEGF, were measured through enzyme-linked immunosorbent assay (ELISA) method and RT-qPCR analysis. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was detected by immunoblotting assays. Reactive oxygen species (ROS) generated levels were determined through assessment of anti-oxidants, and TXNIP/MAPKs signaling pathways were explored to reveal the possible molecular mechanism for acute otitis media progression and the function of fisetin. Fisetin reduced mucosal thickness caused by LPS. In fisetin-treated animals, pro-inflammatory cytokine release was downregulated accompanied with TLR4/NF-κB inactivation. ROS production was significantly decreased in comparison to the LPS-treated group. The TXNIP/MAPKs signaling pathway was inactivated for fisetin treatment in LPS-induced mice with acute otitis media. The above results indicated that fisetin improved acute otitis media through inflammation and ROS suppression via inactivating TLR4/NF-κB and TXNIP/MAPKs signaling pathways.

  17. Striatal dopamine D2/3 receptor-mediated neurotransmission in major depression: Implications for anhedonia, anxiety and treatment response.

    Science.gov (United States)

    Peciña, Marta; Sikora, Magdalena; Avery, Erich T; Heffernan, Joseph; Peciña, Susana; Mickey, Brian J; Zubieta, Jon-Kar

    2017-10-01

    Dopamine (DA) neurotransmission within the brain's reward circuit has been implicated in the pathophysiology of depression and in both, cognitive and pharmacological mechanisms of treatment response. Still, a direct relationship between measures of DA neurotransmission and reward-related deficits in patients with depression has not been demonstrated. To gain insight into the symptom-specific alterations in the DA system in patients with depression, we used positron emission tomography (PET) and the D 2/3 receptor-selective radiotracer [ 11 C]raclopride in twenty-three non-smoking un-medicated Major Depressive Disorder (MDD) patients and sixteen healthy controls (HC). We investigated the relationship between D 2/3 receptor availability and baseline measures of depression severity, anxiety, anhedonia, and cognitive and pharmacological mechanisms of treatment response. We found that, compared to controls, patients with depression showed greater D 2/3 receptor availability in several striatal regions, including the bilateral ventral pallidum/nucleus accumbens (vPAL/NAc), and the right ventral caudate and putamen. In the depressed sample, D 2/3 receptor availability in the caudal portion of the ventral striatum (NAc/vPAL) correlated with higher anxiety symptoms, whereas D 2/3 receptor availability in the rostral area of the ventral striatum correlated negatively with the severity of motivational anhedonia. Finally, MDD non-remitters showed greater baseline anxiety, greater D 2/3 availability in the NAc/vPAL, and greater placebo-induced DA release in the bilateral NAc. Our results demonstrate abnormally high D 2/3 receptor availability in the ventral striatum of patients with MDD, which seem to be associated with comorbid anxiety symptoms and lack of response to antidepressants. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  18. Effects of lipopolysaccharide (LPS) induced inflammatory response on early embryo survival in ewes

    Science.gov (United States)

    Early pregnant ewes were used to determine the effects of endogenous (through LPS activation) and exogenous TNF-alpha tumor necrosis factor-alpha (TNF-alpha) on embryonic loss. Thirty-eight Dorset x Texel ewes were synchronized for estrus and bred to fertile rams (d0). On d5/6, ewes were assigned t...

  19. Ginkgolide A Ameliorates LPS-Induced Inflammatory Responses In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-04-01

    Full Text Available Ginkgolide A (GA is a natural compound isolated from Ginkgo biloba and has been used to treat cardiovascular diseases and diabetic vascular complications. However, only a few studies have been conducted on the anti-inflammatory effects of GA. In particular, no related reports have been published in a common inflammation model of lipopolysaccharide (LPS-stimulated macrophages, and the anti-inflammatory mechanisms of GA have not been fully elucidated. In the present study, we extensively investigated the anti-inflammatory potential of GA in vitro and in vivo. We showed that GA could suppress the expression of pro-inflammatory mediators (cyclooxygenase-2 (COX-2 and nitric oxide (NO and pro-inflammatory cytokines (tumor necrosis factor (TNF-α, interleukin (IL-6 and IL-1β in LPS-treated mouse peritoneal macrophages, mouse macrophage RAW264.7 cells, and differentiated human monocytes (dTHP-1 in vitro. These effects were partially carried out via downregulating Nuclear factor kappa-B (NF-κB, Mitogen-activated protein kinases (MAPKs (p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (ERK, but not c-Jun N-terminal kinase (JNK, and activating the AMP-activated protein kinase (AMPK signaling pathway also seems to be important. Consistently, GA was also shown to inhibit the LPS-stimulated release of TNF-α and IL-6 in mice. Taken together, these findings suggest that GA can serve as an effective inflammatory inhibitor in vitro and in vivo.

  20. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10

    Energy Technology Data Exchange (ETDEWEB)

    Olgun, Nicole S., E-mail: Nicole.olgun02@stjohns.edu [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Jamaica, NY, 11439 (United States); Women and Children' s Research Laboratory, Winthrop University Hospital, 259 1st Street, Mineola, NY, 11501 (United States); Hanna, Nazeeh, E-mail: Nhanna@winthrop.org [Women and Children' s Research Laboratory, Winthrop University Hospital, 259 1st Street, Mineola, NY, 11501 (United States); Department of Pediatrics, Winthrop University Hospital, 259 1st Street, Mineola, NY, 11501 (United States); Reznik, Sandra E., E-mail: Rezniks@stjohns.edu [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Jamaica, NY, 11439 (United States); Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Department of Obstetrics and Gynecology and Women' s Health, Albert Einstein College of Medicine, Bronx, NY 10461 (United States)

    2015-02-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11–12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ET{sub A} receptor. We have previously shown that antagonism of the ET{sub A} receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS + BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12 h. We discovered that BQ-123, when administered 10 h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ET{sub A} receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ET{sub A} receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. - Highlights: • The pro-inflammatory response to LPS in the uterus and placenta is ET-1 dependent. • ET{sub A} blockade triggers up-regulation of IL-10 in uterus and placenta. • A positive feedback loop drives ET-1 expression in gestational tissue.

  1. Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons.

    Science.gov (United States)

    Winland, Carissa D; Welsh, Nora; Sepulveda-Rodriguez, Alberto; Vicini, Stefano; Maguire-Zeiss, Kathleen A

    2017-11-01

    Neuroinflammation precedes neuronal loss in striatal neurodegenerative diseases and can be exacerbated by the release of proinflammatory molecules by microglia. These molecules can affect trafficking of AMPARs. The preferential trafficking of calcium-permeable versus impermeable AMPARs can result in disruptions of [Ca 2+ ] i and alter cellular functions. In striatal neurodegenerative diseases, changes in [Ca 2+ ] i and L-type voltage-gated calcium channels (VGCCs) have been reported. Therefore, this study sought to determine whether a proinflammatory environment alters AMPA-stimulated [Ca 2+ ] i through calcium-permeable AMPARs and/or L-type VGCCs in dopamine-2- and dopamine-1-expressing striatal spiny projection neurons (D2 and D1 SPNs) in the dorsal striatum. Mice expressing the calcium indicator protein, GCaMP in D2 or D1 SPNs, were utilized for calcium imaging. Microglial activation was assessed by morphology analyses. To induce inflammation, acute mouse striatal slices were incubated with lipopolysaccharide (LPS). Here we report that LPS treatment potentiated AMPA responses only in D2 SPNs. When a nonspecific VGCC blocker was included, we observed a decrease of AMPA-stimulated calcium fluorescence in D2 but not D1 SPNs. The remaining agonist-induced [Ca 2+ ] i was mediated by calcium-permeable AMPARs because the responses were completely blocked by a selective calcium-permeable AMPAR antagonist. We used isradipine, the highly selective L-type VGCC antagonist to determine the role of L-type VGCCs in SPNs treated with LPS. Isradipine decreased AMPA-stimulated responses selectively in D2 SPNs after LPS treatment. Our findings suggest that dorsal striatal D2 SPNs are specifically targeted in proinflammatory conditions and that L-type VGCCs and calcium-permeable AMPARs are important mediators of this effect. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex.

    Science.gov (United States)

    Khan, Muhammad Sohail; Ali, Tahir; Kim, Min Woo; Jo, Myeung Hoon; Jo, Min Gi; Badshah, Haroon; Kim, Myeong Ok

    2016-11-01

    Several studies provide evidence that reactive oxygen species (ROS) are key mediators of various neurological disorders. Anthocyanins are polyphenolic compounds and are well known for their anti-oxidant and neuroprotective effects. In this study, we investigated the neuroprotective effects of anthocyanins (extracted from black soybean) against lipopolysaccharide (LPS)-induced ROS-mediated neuroinflammation and neurodegeneration in the adult mouse cortex. Intraperitoneal injection of LPS (250 μg/kg) for 7 days triggers elevated ROS and oxidative stress, which induces neuroinflammation and neurodegeneration in the adult mouse cortex. Treatment with 24 mg/kg/day of anthocyanins for 14 days in LPS-injected mice (7 days before and 7 days co-treated with LPS) attenuated elevated ROS and oxidative stress compared to mice that received LPS-injection alone. The immunoblotting results showed that anthocyanins reduced the level of the oxidative stress kinase phospho-c-Jun N-terminal Kinase 1 (p-JNK). The immunoblotting and morphological results showed that anthocyanins treatment significantly reduced LPS-induced-ROS-mediated neuroinflammation through inhibition of various inflammatory mediators, such as IL-1β, TNF-α and the transcription factor NF- k B. Anthocyanins treatment also reduced activated astrocytes and microglia in the cortex of LPS-injected mice, as indicated by reductions in GFAP and Iba-1, respectively. Anthocyanins also prevent overexpression of various apoptotic markers, i.e., Bax, cytosolic cytochrome C, cleaved caspase-3 and PARP-1. Immunohistochemical fluoro-jade B (FJB) and Nissl staining indicated that anthocyanins prevent LPS-induced neurodegeneration in the mouse cortex. Our results suggest that dietary flavonoids, such as anthocyanins, have antioxidant and neuroprotective activities that could be beneficial to various neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The LPS-induced neutrophil recruitment into rat air pouches is mediated by TNFα: likely macrophage origin

    Directory of Open Access Journals (Sweden)

    C-D. Arreto

    1997-01-01

    Full Text Available The role of resident cells during the lipopolysaccharide (LPS-induced neutrophil recruitment into rat air pouches was investigated. In this model, LPS (Escherichia coli, O55: B5 strain; 2–2000 ng induced a dose– and time-dependent neutrophil recruitment accompanied by the generation of a tumour necrosis factor-α (TNFα-like activity. Dexamethasone (0.05–5 mug and cycloheximide (6 ng, injected 2 h before LPS into the pouches, inhibited the neutrophil recruitment and the generation of the TNFα-like activity, while the H1-receptor antagonist mepyramine (1 and 4 mg/kg, i.p., 0.5 h before LPS and the PAF-receptor antagonist WEB 2170 (0.05 and 1 mg/kg, i.p., 0.5 h before LPS had no effect. Purified alveolar macrophages (AM were used to replenish the pouches of cycloheximide-treated recipient rats. AM provided by PBS-treated animals led to the recovery of the LPS-induced neutrophil recruitment and of the TNFα-like formation contrasting with those from cycloheximide-treated animals (1 mg/kg, i.p.. When delivered in situ, liposome-encapsulated clodronate, a macrophage depletor, significantly impaired both the LPSinduced neutrophil recruitment and the TNFα-like activity. An anti-murine TNFα polyclonal antibody (0.5 h before LPS was also effective. These results emphasize the pivotal role of macrophages for LPS-induced neutrophil recruitment via the formation of TNFα.

  4. Protective Effect of Argan and Olive Oils against LPS-Induced Oxidative Stress and Inflammation in Mice Livers

    Directory of Open Access Journals (Sweden)

    Soufiane El Kamouni

    2017-10-01

    Full Text Available Sepsis causes severe dysregulation of organ functions, via the development of oxidative stress and inflammation. These pathophysiological mechanisms are mimicked in mice injected with bacterial lipopolysaccharide (LPS. Here, protective properties of argan oil against LPS-induced oxidative stress and inflammation are explored in the murine model. Mice received standard chow, supplemented with argan oil (AO or olive oil (OO for 25 days, before septic shock was provoked with a single intraperitoneal injection of LPS, 16 hours prior to animal sacrifice. In addition to a rise in oxidative stress and inflammatory markers, injected LPS also caused hepatotoxicity, accompanied by hyperglycemia, hypercholesterolemia and hyperuremia. These LPS-associated toxic effects were blunted by AO pretreatment, as corroborated by normal plasma parameters and cell stress markers (glutathione: GSH and antioxidant enzymology (catalase, CAT; superoxide dismutase, SOD and glutathione peroxidase, GPx. Hematoxylin–eosin staining revealed that AO can protect against acute liver injury, maintaining a normal status, which is pointed out by absent or reduced LPS-induced hepatic damage markers (i.e., alanine aminotransferase (ALT and aspartate transaminase (AST. Our work also indicated that AO displayed anti-inflammatory activity, due to down-regulations of genes encoding pro-inflammatory cytokines Interleukin-6 (IL-6 and Tumor Necrosis Factor-α (TNF-α and in up-regulations of the expression of anti-inflammatory genes encoding Interleukin-4 (IL-4 and Interleukin-10 (IL-10. OO provided animals with similar, though less extensive, protective changes. Collectively our work adds compelling evidence to the protective mechanisms of AO against LPS-induced liver injury and hence therapeutic potentialities, in regard to the management of human sepsis. Activations of IL-4/Peroxisome Proliferator-Activated Receptors (IL-4/PPARs signaling and, under LPS, an anti-inflammatory IL-10/Liver

  5. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons

    Science.gov (United States)

    Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C.; Striessnig, Joerg

    2014-01-01

    Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson’s disease. Their selective loss causes the major motor symptoms of Parkinson’s disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson’s disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca2+ channels both contribute to Parkinson’s disease pathology. L-type Ca2+ channel blockers protect SN DA neurons from degeneration in Parkinson’s disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson’s disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson’s disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson’s disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson’s disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological

  6. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata

    Directory of Open Access Journals (Sweden)

    Kott Laima S

    2010-05-01

    Full Text Available Abstract Background A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM with wild-type control M. spicata (CM, and c to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA, caffeic acid (CA, coumaric acid (CO] to anti-inflammatory activity of HRAM. Methods HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim and CM (CMsim were determined (HPLC and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine were cultured with LPS (0 or 3 μg/mL and test article [HRAMsim (0, 8, 40, 80, 240, or 400 μg/mL, or CMsim (0, 1, 5 or 10 mg/mL, or RA (0.640 μg/mL, or CA (0.384 μg/mL, or CO (0.057 μg/mL or FA (0.038 μg/mL] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2, interleukin 1β (IL-1, glycosaminoglycan (GAG, nitric oxide (NO and cell viability (differential live-dead cell staining. Results RA concentration of HRAMsim and CMsim was 49.3 and 0.4 μg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (≥ 8 μg/mL inhibited LPS-induced PGE2 and NO; HRAMsim (≥ 80 μg/mL inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Conclusions Our biological extraction procedure produces

  7. Pyrrolizidine alkaloids from Liparis nervosa with inhibitory activities against LPS-induced NO production in RAW264.7 macrophages.

    Science.gov (United States)

    Huang, Shuai; Zhou, Xian-li; Wang, Cui-juan; Wang, You-song; Xiao, Feng; Shan, Lian-hai; Guo, Zhi-yun; Weng, Jie

    2013-09-01

    Six pyrrolizidine alkaloids were isolated from the whole herb of Liparis nervosa together with two previously known ones. Their structures were elucidated by extensive spectroscopic analyses and chemical reactions. The cytotoxicity of the isolates was evaluated against A549, HepG2, and MCF-7 human cancer cell lines; however, no significant growth inhibition was observed. All compounds were evaluated for the inhibition of LPS-induced nitric oxide (NO) production in RAW264.7 macrophages, and most significantly inhibited NO production with IC50 values in the range of 2.16-38.25 μM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Functional responses of pre- and postsynaptic dopamine D2 receptors in rat brain striatum

    OpenAIRE

    Ma, Guofen

    2014-01-01

    El sistema dopaminèrgic has estat molt estudiat en els darrers anys, principalment degut a la seva implicació en diverses patologies com la malaltia de Parkinson, la esquizofrènia o la síndrome de Tourette, així com també en l'abús de drogues. S'han descrit cinc subtipus de receptors per la dopamina (DA), tots els quals pertanyen a la família de receptors acoblats a proteïnes G (GPCRs). D'aquests cinc subtipus, els receptors D2 son la diana principal dels antipsicòtics (antagonistes) i també ...

  9. N-linked oligosaccharides are responsible for rat striatal dopamine D2 receptor heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Clagett-Dame, M.; McKelvy, J.F. (Abbott Laboratories, Abbott Park, IL (USA))

    1989-10-01

    The glycoprotein nature of the binding subunit of the dopamine D2 receptor in rat striatum has been examined by photoaffinity labeling receptor preparations with N-(p-azido-m-(125I)iodophenethyl)spiperone followed by treatment of crude membrane receptor or receptor fractions isolated from sodium dodecyl sulfate (SDS) polyacrylamide gels with endo- and exoglycosidases. The major photoaffinity labeled protein migrates as a heterogeneous species on 10% SDS polyacrylamide gels and ranges from 130,000 to 75,000 relative molecular mass (Mr). This heterogeneity can be explained by glycosylation of the receptor by complex-type N-linked oligosaccharides. Three fractions of labeled receptor were isolated from SDS polyacrylamide gels over a range of 130,000 to 75,000 Mr; after digestion with peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase, all fractions yielded a single peptide approximately 40,000 Mr. Treatment of photoaffinity labeled membranes with alpha-mannosidase was without effect. The dopamine D2 receptor appears to contain substantial amounts of sialic acid as treatment of photoaffinity labeled membranes with neuraminidase increased the receptor mobility on SDS polyacrylamide gels to a species of 50,000-54,000 Mr. Treatment of the receptor with neuraminidase followed by endo-alpha-N-acetylgalactosaminidase did not change the electrophoretic migration pattern from that seen after neuraminidase treatment alone, suggesting that the binding peptide contains no serine- or threonine-linked oligosaccharides. A smaller binding peptide of approximately 31,000 Mr is also apparent in crude photoaffinity labeled membranes. This material also contains N-linked oligosaccharide.

  10. N-linked oligosaccharides are responsible for rat striatal dopamine D2 receptor heterogeneity

    International Nuclear Information System (INIS)

    Clagett-Dame, M.; McKelvy, J.F.

    1989-01-01

    The glycoprotein nature of the binding subunit of the dopamine D2 receptor in rat striatum has been examined by photoaffinity labeling receptor preparations with N-(p-azido-m-[125I]iodophenethyl)spiperone followed by treatment of crude membrane receptor or receptor fractions isolated from sodium dodecyl sulfate (SDS) polyacrylamide gels with endo- and exoglycosidases. The major photoaffinity labeled protein migrates as a heterogeneous species on 10% SDS polyacrylamide gels and ranges from 130,000 to 75,000 relative molecular mass (Mr). This heterogeneity can be explained by glycosylation of the receptor by complex-type N-linked oligosaccharides. Three fractions of labeled receptor were isolated from SDS polyacrylamide gels over a range of 130,000 to 75,000 Mr; after digestion with peptide-N4-[N-acetyl-beta-glucosaminyl] asparagine amidase, all fractions yielded a single peptide approximately 40,000 Mr. Treatment of photoaffinity labeled membranes with alpha-mannosidase was without effect. The dopamine D2 receptor appears to contain substantial amounts of sialic acid as treatment of photoaffinity labeled membranes with neuraminidase increased the receptor mobility on SDS polyacrylamide gels to a species of 50,000-54,000 Mr. Treatment of the receptor with neuraminidase followed by endo-alpha-N-acetylgalactosaminidase did not change the electrophoretic migration pattern from that seen after neuraminidase treatment alone, suggesting that the binding peptide contains no serine- or threonine-linked oligosaccharides. A smaller binding peptide of approximately 31,000 Mr is also apparent in crude photoaffinity labeled membranes. This material also contains N-linked oligosaccharide

  11. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    International Nuclear Information System (INIS)

    Schnabl, Bernd; Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-01-01

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NFκB and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo

  12. Apigenin inhibits d-galactosamine/LPS-induced liver injury through upregulation of hepatic Nrf-2 and PPARγ expressions in mice.

    Science.gov (United States)

    Zhou, Rui-Jun; Ye, Hua; Wang, Feng; Wang, Jun-Long; Xie, Mei-Lin

    2017-11-04

    Apigenin is a natural flavonoid compound widely distributed in a variety of vegetables, medicinal plants and health foods. This study aimed to examine the protective effect of apigenin against d-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced mouse liver injury and to investigate the potential biochemical mechanisms. The results showed that after oral administration of apigenin 100-200 mg/kg for 7 days, the levels of serum alanine aminotransferase and aspartate aminotransferase were decreased, and the severity of liver injury was alleviated. Importantly, apigenin pretreatment increased the levels of hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) and peroxisome proliferator-activated receptor γ (PPARγ) protein expressions as well as superoxide dismutase, catalase, glutathione S-transferase and glutathione reductase activities, decreased the levels of hepatic nuclear factor-κB (NF-κB) protein expression and tumor necrosis factor-α. These findings demonstrated that apigenin could prevent the D-GalN/LPS-induced liver injury in mice, and its mechanisms might be associated with the increments of Nrf-2-mediated antioxidative enzymes and modulation of PPARγ/NF-κB-mediated inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Adrenaline stimulates the proliferation and migration of mesenchymal stem cells towards the LPS-induced lung injury.

    Science.gov (United States)

    Wu, Xiaodan; Wang, Zhiming; Qian, Mengjia; Wang, Lingyan; Bai, Chunxue; Wang, Xiangdong

    2014-08-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) could modulate inflammation in experimental lung injury. On the other hand, adrenergic receptor agonists could increase DNA synthesis of stem cells. Therefore, we investigated the therapeutic role of adrenaline-stimulated BMSCs on lipopolysaccharide (LPS)-induced lung injury. BMSCs were cultured with adrenergic receptor agonists or antagonists. Suspensions of lung cells or sliced lung tissue from animals with or without LPS-induced injury were co-cultured with BMSCs. LPS-stimulated alveolar macrophages were co-cultured with BMSCs (with adrenaline stimulation or not) in Transwell for 6 hrs. A preliminary animal experiment was conducted to validate the findings in ex vivo study. We found that adrenaline at 10 μM enhanced proliferation of BMSCs through both α- and β-adrenergic receptors. Adrenaline promoted the migration of BMSCs towards LPS-injured lung cells or lung tissue. Adrenaline-stimulated BMSCs decreased the inflammation of LPS-stimulated macrophages, probably through the expression and secretion of several paracrine factors. Adrenaline reduced the extent of injury in LPS-injured rats. Our data indicate that adrenaline-stimulated BMSCs might contribute to the prevention from acute lung injury through the activation of adrenergic receptors, promotion of proliferation and migration towards injured lung, and modulation of inflammation. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    International Nuclear Information System (INIS)

    Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei

    2015-01-01

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β 2 -adrenergic receptor (β 2 -AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β 2 -AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β 2 -AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β 2 -AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production

  15. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [Department of Respiratory Medicine, Peking University Third Hospital, Beijing (China); Department of Infectious Diseases, Peking University Third Hospital, Beijing (China); Zhang, Yuan [Department of Respiratory Medicine, Peking University Third Hospital, Beijing (China); Xu, Ming; Zhang, You-Yi [Department of Institute of Vascular Medicine and Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing (China); He, Bei, E-mail: puh3_hb@bjmu.edu.cn [Department of Respiratory Medicine, Peking University Third Hospital, Beijing (China)

    2015-06-26

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.

  16. Evidence for CB2 receptor involvement in LPS-induced reduction of cAMP intracellular levels in uterine explants from pregnant mice: pathophysiological implications.

    Science.gov (United States)

    Salazar, Ana Inés; Carozzo, Alejandro; Correa, Fernando; Davio, Carlos; Franchi, Ana María

    2017-07-01

    What is the role of the endocannabinoid system (eCS) on the lipopolysaccharide (LPS) effects on uterine explants from 7-day pregnant mice in a murine model of endotoxin-induced miscarriage? We found evidence for cannabinoid receptor type2 (CB2) involvement in LPS-induced increased prostaglandin-F2α (PGF2α) synthesis and diminished cyclic adenosine monophosphate (cAMP) intracellular content in uterine explants from early pregnant mice. Genital tract infections by Gram-negative bacteria are a common complication of human pregnancy that results in an increased risk of pregnancy loss. LPS, the main component of the Gram-negative bacterial wall, elicits a strong maternal inflammatory response that results in embryotoxicity and embryo resorption in a murine model endotoxin-induced early pregnancy loss. We have previously shown that the eCS mediates the embryotoxic effects of LPS, mainly via CB1 receptor activation. An in vitro study of mice uterine explants was performed to investigate the eCS in mediating the effects of LPS on PGF2α production and cAMP intracellular content. Eight to 12-week-old virgin female BALB/c or CD1 (wild-type [WT] or CB1-knockout [CB1-KO]) mice were paired with 8- to 12-week-old BALB/c or CD1 (WT or CB1-KO) males, respectively. On day 7 of pregnancy, BALB/c, CD1 WT or CD1 CB1-KO mice were euthanized, the uteri were excised, implantation sites were removed and the uterine tissues were separated from decidual and embryo tissues. Uterine explants were cultured and exposed for an appropriate amount of time to different pharmacological treatments. The tissues were then collected for cAMP assay and PGF2α content determination by radioimmunoassay. In vitro treatment of uteri explants from 7-day pregnant BALB/c or CD1 (WT or CB1-KO) mice with LPS induced an increased production of PGF2α (P Investigaciones Científicas y Técnicas (PIP 2012/0061). Dr Carlos Davio was funded by Agencia Nacional para la Promoción Científica y Tecnológica (PICT 2013

  17. Emu Oil Reduces LPS-Induced Production of Nitric Oxide and TNF-α but not Phagocytosis in RAW 264 Macrophages.

    Science.gov (United States)

    Miyashita, Tadayoshi; Minami, Kazuhiro; Ito, Minoru; Koizumi, Ryosuke; Sagane, Yoshimasa; Watanabe, Toshihiro; Niwa, Koichi

    2018-04-01

    Emu is the second-largest extant bird native to Australia. Emu oil, obtained from the emu's fat deposits, is used as an ingredient in cosmetic skincare products. Emu oil has been reported to improve several inflammatory symptoms; however, the mechanisms of these anti-inflammatory effects are largely unknown. This study investigated the effects of emu oil on the inflammatory macrophage response in vitro. A murine macrophage cell line, RAW 264, was incubated in culture media supplemented with or without emu oil and stimulated with lipopolysaccharide (LPS). We determined phagocytic activity by measuring the number of fluorescent microspheres taken up by the cells. The phagocytic activity of RAW 264 cells in the presence of LPS was unaffected by emu oil. We also determined production of nitric oxide (NO) and tumor necrosis factor (TNF)-α in the culture medium using the Griess reaction and an enzyme-linked immunosorbent assay, respectively, and the protein expression of inducible NO synthase (iNOS) using western blotting. The results indicated that emu oil reduced the LPS-induced production of NO, TNF-α, and iNOS expression in a dose-dependent manner. The results suggested that emu oil does not reduce the phagocytic clearance rate of inflammatory matter; however, it does reduce the production of NO and TNF-α in macrophages. These latter products enhance the inflammatory response and emu oil thereby demonstrated anti-inflammatory properties.

  18. Predicting treatment response in Schizophrenia: the role of stratal and frontal dopamine D2/D3 receptor binding potential

    DEFF Research Database (Denmark)

    Wulff, Sanne; Nørbak-Emig, Henrik; Nielsen, Mette Ødegaard

    2014-01-01

    Background One of the best validated findings in schizophrenia is an association between increased presynaptic striatal dopaminergic activity and psychotic symptoms. We have previously reported an association between positive symptoms and dopamine D2 receptor binding potentials (BPs) in frontal...... cortex in antipsychotic-naïve first-episode male schizophrenia patients(1). Preclinical studies suggest an inverse relationship between frontal and striatal dopamine activity. This activity can indirectly be expressed by the BP of dopamine receptors using Single Photon Emission Computed Tomography (SPECT......) where low striatal BP is believed to reflect high dopamine availability. We aim to assess the association between D2 receptor BPs in antipsychotic-naïve first-episode schizophrenia patients and their response to the first treatment with an antipsychotic compound. We hypothesise that patients with low...

  19. Chilean Strawberry Consumption Protects against LPS-Induced Liver Injury by Anti-Inflammatory and Antioxidant Capability in Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Sebastian Molinett

    2015-01-01

    Full Text Available The Chilean strawberry fruit has high content of antioxidants and polyphenols. Previous studies evidenced antioxidant properties by in vitro methods. However, the antioxidant effect and its impact as functional food on animal health have not been evaluated. In this study, rats were fed with a Chilean strawberry aqueous extract (4 g/kg of animal per day and then subjected to LPS-induced liver injury (5 mg/kg. Transaminases and histological studies revealed a reduction in liver injury in rats fed with strawberry aqueous extract compared with the control group. Additionally, white strawberry supplementation significantly reduced the serum levels and gene expression of TNF-α, IL-6, and IL-1β cytokines compared with nonsupplemented rats. The level of F2-isoprostanes and GSH/GSSG indicated a reduction in liver oxidative stress by the consumption of strawberry aqueous extract. Altogether, the evidence suggests that dietary supplementation of rats with a Chilean white strawberry aqueous extract favours the normalization of oxidative and inflammatory responses after a liver injury induced by LPS.

  20. Chilean Strawberry Consumption Protects against LPS-Induced Liver Injury by Anti-Inflammatory and Antioxidant Capability in Sprague-Dawley Rats.

    Science.gov (United States)

    Molinett, Sebastian; Nuñez, Francisca; Moya-León, María Alejandra; Zúñiga-Hernández, Jessica

    2015-01-01

    The Chilean strawberry fruit has high content of antioxidants and polyphenols. Previous studies evidenced antioxidant properties by in vitro methods. However, the antioxidant effect and its impact as functional food on animal health have not been evaluated. In this study, rats were fed with a Chilean strawberry aqueous extract (4 g/kg of animal per day) and then subjected to LPS-induced liver injury (5 mg/kg). Transaminases and histological studies revealed a reduction in liver injury in rats fed with strawberry aqueous extract compared with the control group. Additionally, white strawberry supplementation significantly reduced the serum levels and gene expression of TNF-α, IL-6, and IL-1β cytokines compared with nonsupplemented rats. The level of F2-isoprostanes and GSH/GSSG indicated a reduction in liver oxidative stress by the consumption of strawberry aqueous extract. Altogether, the evidence suggests that dietary supplementation of rats with a Chilean white strawberry aqueous extract favours the normalization of oxidative and inflammatory responses after a liver injury induced by LPS.

  1. Investigating the CYP2E1 Potential Role in the Mechanisms Behind INH/LPS-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Hozeifa M. Hassan

    2018-03-01

    Full Text Available Tuberculosis (TB is one of the oldest infectious diseases that affected humankind and remains one of the world’s deadliest communicable diseases that could be considered as global emergency, but the discovery and development of isoniazid (INH in the 1950s paved the way to an effective single and/or combined first-line anti-TB therapy. However, administration of INH induces severe hepatic toxicity in some patients. Previously, we establish a rat model of INH hepatotoxicity utilizing the inflammatory stress theory, in which bacterial lipopolysaccharide (LPS potentially enhanced INH toxicity. These enhancing activities ranged between augmenting the inflammatory stress, oxidative stress, alteration of bile acid homeostasis, and CYP2E1 over-expression. Although pre-treatment with dexamethasone (DEX helped overcome both inflammatory and oxidative stress which ended-up in alleviation of LPS augmenting effects, but still minor toxicities were being detected, alongside with CYP2E1 over expression. This finding positively indicated the corner-stone role played by CYP2E1 in the pathogenesis of INH/LPS-induced liver damage. Therefore, we examined whether INH/LPS co-treatment with CYP2E1 inhibitor diallyl sulfide (DAS and DEX can protect against the INH/LPS-induced hepatotoxicity. Our results showed that pre-administration of both DAS and DEX caused significant reduction in serum TBA, TBil, and gamma-glutamyl transferase levels. Furthermore, the histopathological analysis showed that DAS and DEX could effectively reverse the liver lesions seen following INH/LPS treatment and protect against hepatic steatosis as indicated by absence of lipid accumulation. Pre-treatment with DAS alone could not completely block the CYP2E1 protein expression following INH/LPS treatment, as appeared in the immunoblotting and immunohistochemistry results. This is probably due to the fact that the combined enhancement activities of both INH and LPS on CYP2E1 protein expression

  2. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    Science.gov (United States)

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Complement C1q regulates LPS-induced cytokine production in bone marrow-derived dendritic cells.

    Science.gov (United States)

    Yamada, Masahide; Oritani, Kenji; Kaisho, Tsuneyasu; Ishikawa, Jun; Yoshida, Hitoshi; Takahashi, Isao; Kawamoto, Shinichirou; Ishida, Naoko; Ujiie, Hidetoshi; Masaie, Hiroaki; Botto, Marina; Tomiyama, Yoshiaki; Matsuzawa, Yuji

    2004-01-01

    We show here that C1q suppresses IL-12p40 production in LPS-stimulated murine bone marrow-derived dendritic cells (BMDC). Serum IL-12p40 concentration of C1q-deficient mice was higher than that of wild-type mice after intraperitoneal LPS-injection. Because neither globular head of C1q (gC1q) nor collagen-like region of C1q (cC1q) failed to suppress LPS-induced IL-12p40 production, both gC1q and cC1q, and/or some specialized conformation of native C1q may be required for the inhibition. While C1q did not affect mRNA expression of Toll-like receptor 4 (TLR4), MD-2, and myeloid differentiation factor 88 (MyD88), BMDC treated with C1q showed the reduced activity of NF-kappaB and the delayed phosphorylation of p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase after LPS-stimulation. CpG oligodeoxynucleotide-induced IL-12p40 and TNF-alpha production, another MyD88-dependent TLR-mediated signal, was also suppressed by C1q treatment. Therefore, C1q is likely to suppress MyD88-dependent pathway in TLR-mediated signals. In contrast, C1q failed to suppress colony formation of B cells responding to LPS or LPS-induced CD40 and CD86 expression on BMDC in MyD88-deficient mice, indicating that inhibitory effects of C1q on MyD88-independent pathways may be limited. Taken together, C1q may regulate innate and adaptive immune systems via modification of signals mediated by interactions between invading pathogens and TLR.

  4. Low tidal volume ventilation ameliorates left ventricular dysfunction in mechanically ventilated rats following LPS-induced lung injury.

    Science.gov (United States)

    Cherpanath, Thomas G V; Smeding, Lonneke; Hirsch, Alexander; Lagrand, Wim K; Schultz, Marcus J; Groeneveld, A B Johan

    2015-10-07

    High tidal volume ventilation has shown to cause ventilator-induced lung injury (VILI), possibly contributing to concomitant extrapulmonary organ dysfunction. The present study examined whether left ventricular (LV) function is dependent on tidal volume size and whether this effect is augmented during lipopolysaccharide(LPS)-induced lung injury. Twenty male Wistar rats were sedated, paralyzed and then randomized in four groups receiving mechanical ventilation with tidal volumes of 6 ml/kg or 19 ml/kg with or without intrapulmonary administration of LPS. A conductance catheter was placed in the left ventricle to generate pressure-volume loops, which were also obtained within a few seconds of vena cava occlusion to obtain relatively load-independent LV systolic and diastolic function parameters. The end-systolic elastance / effective arterial elastance (Ees/Ea) ratio was used as the primary parameter of LV systolic function with the end-diastolic elastance (Eed) as primary LV diastolic function. Ees/Ea decreased over time in rats receiving LPS (p = 0.045) and high tidal volume ventilation (p = 0.007), with a lower Ees/Ea in the rats with high tidal volume ventilation plus LPS compared to the other groups (p tidal volume ventilation without LPS (p = 0.223). A significant interaction (p tidal ventilation and LPS for Ees/Ea and Eed, and all rats receiving high tidal volume ventilation plus LPS died before the end of the experiment. Low tidal volume ventilation ameliorated LV systolic and diastolic dysfunction while preventing death following LPS-induced lung injury in mechanically ventilated rats. Our data advocates the use of low tidal volumes, not only to avoid VILI, but to avert ventilator-induced myocardial dysfunction as well.

  5. Transient responses of SFG spectra of D 2O ice/CO/Pt(1 1 1) interface with irradiation of ultra-short NIR pump pulses

    Science.gov (United States)

    Kubota, Jun; Wada, Akihide; Domen, Kazunari; Kano, Satoru S.

    2002-08-01

    The behavior of D 2O ice on CO/Pt(1 1 1) and Pt(1 1 1) under the irradiation of near-IR pulses (NIR) was studied by sum-frequency generation (SFG) spectroscopy. The peaks assigned to the O-D stretching modes of ice were obtained for the first 30 molecular layers on Pt(1 1 1). When the D2O/ CO/ Pt(1 1 1) was irradiated, the signal of D 2O was weakened after 500 ps, but that of CO was weakened immediately after the pumping. A similar time response was observed for the D 2O peak in D2O/ Pt(1 1 1) . The weakening of SFG is attributed to the broadening of bands due to thermal excitation. This indicates that the energy of the pump pulse is deposited on the Pt(1 1 1) surface and diffused into the layers of D 2O ice in the 500 ps timescale.

  6. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    International Nuclear Information System (INIS)

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto; Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela; Gutiérrez, Silvina; Torres, Alicia Inés; De Paul, Ana Lucía

    2013-01-01

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  7. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina); Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela [Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Ciudad Universitaria, CP 5000, Córdoba (Argentina); Gutiérrez, Silvina; Torres, Alicia Inés [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina); De Paul, Ana Lucía, E-mail: adepaul@cmefcm.uncor.edu [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina)

    2013-11-15

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  8. Herbal medicine IMOD suppresses LPS-induced production of proinflammatory cytokines in human dendritic cells

    NARCIS (Netherlands)

    Mirzaee, Saeedeh; Drewniak, Agata; Sarrami-Forooshani, Ramin; Kaptein, Tanja M.; Gharibdoost, Farhad; Geijtenbeek, Teunis B. H.

    2015-01-01

    Traditional medicines that stimulate or modulate the immune system can be used as innovative approaches to treat immunological diseases. The herbal medicine IMOD has been shown to strongly modulate immune responses in several animal studies as well as in clinical trials. However, little is known

  9. Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later

    International Nuclear Information System (INIS)

    Asensio, S.; Goldstein, R.; Romero, M.J.; Romero, F.J.; Wong, C.T.; Alia-Klein, N.; Tomasi, D.; Wang, G.-J.; Telang, F.; Volkow, N.D.; Goldstein, R.Z.

    2010-01-01

    Low levels of dopamine (DA) D2 receptor availability at a resting baseline have been previously reported in drug addicted individuals and have been associated with reduced ventral and dorsal prefrontal metabolism. The reduction in DA D2 receptor availability along with the reduced ventral frontal metabolism is thought to underlie compromised sensitivity to nondrug reward, a core characteristic of drug addiction. We therefore hypothesized that variability in DA D2 receptor availability at baseline will covary with dynamic responses to monetary reward in addicted individuals. Striatal DA D2 receptor availability was measured with ( 11 C)raclopride and positron emission tomography and response to monetary reward was measured (an average of three years later) with functional magnetic resonance imaging in seven cocaine-addicted individuals. Results show that low DA D2 receptor availability in the dorsal striatum was associated with decreased thalamic response to monetary reward; while low availability in ventral striatum was associated with increased medial prefrontal (Brodmann Area 6/8/32) response to monetary reward. These preliminary results, that need to be replicated in larger sample sizes and validated with healthy controls, suggest that resting striatal DA D2 receptor availability predicts variability in functional responses to a nondrug reinforcer (money) in prefrontal cortex, implicated in behavioral monitoring, and in thalamus, implicated in conditioned responses and expectation, in cocaine-addicted individuals.

  10. Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later

    Energy Technology Data Exchange (ETDEWEB)

    Asensio, S.; Goldstein, R.; Asensio, S.; Romero, M.J.; Romero, F.J.; Wong, C.T.; Alia-Klein, N.; Tomasi, D.; Wang, G.-J.; Telang, F..; Volkow, N.D.; Goldstein, R.Z.

    2010-05-01

    Low levels of dopamine (DA) D2 receptor availability at a resting baseline have been previously reported in drug addicted individuals and have been associated with reduced ventral and dorsal prefrontal metabolism. The reduction in DA D2 receptor availability along with the reduced ventral frontal metabolism is thought to underlie compromised sensitivity to nondrug reward, a core characteristic of drug addiction. We therefore hypothesized that variability in DA D2 receptor availability at baseline will covary with dynamic responses to monetary reward in addicted individuals. Striatal DA D2 receptor availability was measured with [{sup 11}C]raclopride and positron emission tomography and response to monetary reward was measured (an average of three years later) with functional magnetic resonance imaging in seven cocaine-addicted individuals. Results show that low DA D2 receptor availability in the dorsal striatum was associated with decreased thalamic response to monetary reward; while low availability in ventral striatum was associated with increased medial prefrontal (Brodmann Area 6/8/32) response to monetary reward. These preliminary results, that need to be replicated in larger sample sizes and validated with healthy controls, suggest that resting striatal DA D2 receptor availability predicts variability in functional responses to a nondrug reinforcer (money) in prefrontal cortex, implicated in behavioral monitoring, and in thalamus, implicated in conditioned responses and expectation, in cocaine-addicted individuals.

  11. Cytosolic NADP(+)-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species.

    Science.gov (United States)

    Maeng, Oky; Kim, Yong Chan; Shin, Han-Jae; Lee, Jie-Oh; Huh, Tae-Lin; Kang, Kwang-il; Kim, Young Sang; Paik, Sang-Gi; Lee, Hayyoung

    2004-04-30

    Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.

  12. A rhodium(III) complex inhibits LPS-induced nitric oxide production and angiogenic activity in cellulo.

    Science.gov (United States)

    Liu, Li-Juan; Lin, Sheng; Chan, Daniel Shiu-Hin; Vong, Chi Teng; Hoi, Pui Man; Wong, Chun-Yuen; Ma, Dik-Lung; Leung, Chung-Hang

    2014-11-01

    Metal-containing complexes have arisen as viable alternatives to organic molecules as therapeutic agents. Metal complexes possess a number of advantages compared to conventional carbon-based compounds, such as distinct geometries, interesting electronic properties, variable oxidation states and the ability to arrange different ligands around the metal centre in a precise fashion. Meanwhile, nitric oxide (NO) plays key roles in the regulation of angiogenesis, vascular permeability and inflammation. We herein report a novel cyclometalated rhodium(III) complex as an inhibitor of lipopolysaccharides (LPS)-induced NO production in RAW264.7 macrophages. Experiments suggested that the inhibition of NO production in cells by complex 1 was mediated through the down-regulation of nuclear factor-κB (NF-κB) activity. Furthermore, complex 1 inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs) as revealed by an endothelial tube formation assay. This study demonstrates that kinetically inert rhodium(III) complexes may be potentially developed as effective anti-angiogenic agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Anti-neuroinflammatory Activity of Elephantopus scaber L. via Activation of Nrf2/HO-1 Signaling and Inhibition of p38 MAPK Pathway in LPS-Induced Microglia BV-2 Cells

    Directory of Open Access Journals (Sweden)

    Chim-Kei Chan

    2017-06-01

    Full Text Available Elephantopus scaber L. (family: Asteraceae has been traditionally utilized as a folkloric medicine and scientifically shown to exhibit anti-inflammatory activities in various in vivo inflammatory models. Given the lack of study on the effect of E. scaber in neuroinflammation, this study aimed to investigate the anti-neuroinflammatory effect and the underlying mechanisms of ethyl acetate fraction from the leaves of E. scaber (ESEAF on the release of pro-inflammatory mediators in lipopolysaccharide (LPS-induced microglia cells (BV-2. Present findings showed that ESEAF markedly attenuated the translocation of NF-κB to nucleus concomitantly with the significant mitigation on the LPS-induced production of NO, iNOS, COX-2, PGE2, IL-1β, and TNF-α. These inflammatory responses were reduced via the inhibition of p38. Besides, ESEAF was shown to possess antioxidant activities evident by the DPPH and SOD scavenging activities. The intracellular catalase enzyme activity was enhanced by ESEAF in the LPS-stimulated BV-2 cells. Furthermore, the formation of ROS induced by LPS in BV-2 cells was reduced upon the exposure to ESEAF. Intriguingly, the reduction of ROS was found in concerted with the activation of Nrf2 and HO-1. It is conceivable that the activation promotes the scavenging power of antioxidant enzymes as well as to ameliorate the inflammatory response in LPS-stimulated BV-2 cells. Finally, the safety profile analysis through oral administration of ESEAF at 2000 mg/kg did not result in any mortalities, adverse effects nor histopathologic abnormalities of organs in mice. Taken altogether, the cumulative findings suggested that ESEAF holds the potential to develop as nutraceutical for the intervention of neuroinflammatory disorders.

  14. LPS-induced genes in intestinal tissue of the sea cucumber Holothuria glaberrima.

    Directory of Open Access Journals (Sweden)

    Francisco Ramírez-Gómez

    2009-07-01

    Full Text Available Metazoan immunity is mainly associated with specialized cells that are directly involved with the immune response. Nevertheless, both in vertebrates and invertebrates other organs might respond to immune activation and participate either directly or indirectly in the ongoing immune process. However, most of what is known about invertebrate immunity has been restricted to immune effector cells and little information is available on the immune responses of other tissues or organs. We now focus on the immune reactions of the intestinal tissue of an echinoderm. Our study employs a non-conventional model, the echinoderm Holothuria glaberrima, to identify intestinal molecules expressed after an immune challenge presented by an intra-coelomic injection of lipopolysaccharides (LPS. The expression profiles of intestinal genes expressed differentially between LPS-injected animals and control sea water-injected animals were determined using a custom-made Agilent microarray with 7209 sea cucumber intestinal ESTs. Fifty (50 unique sequences were found to be differentially expressed in the intestine of LPS-treated sea cucumbers. Seven (7 of these sequences represented homologues of known proteins, while the remaining (43 had no significant similarity with any protein, EST or RNA database. The known sequences corresponded to cytoskeletal proteins (Actin and alpha-actinin, metabolic enzymes (GAPDH, Ahcy and Gnmt, metal ion transport/metabolism (major yolk protein and defense/recognition (fibrinogen-like protein. The expression pattern of 11 genes was validated using semi-quantitative RT-PCR. Nine of these corroborated the microarray results and the remaining two showed a similar trend but without statistical significance. Our results show some of the molecular events by which the holothurian intestine responds to an immune challenge and provide important information to the study of the evolution of the immune response.

  15. Sildenafil (Viagra(®)) prevents and restores LPS-induced inflammation in astrocytes.

    Science.gov (United States)

    de Santana Nunes, Ana Karolina; Rapôso, Catarina; Björklund, Ulrika; da Cruz-Höfling, Maria Alice; Peixoto, Christina Alves; Hansson, Elisabeth

    2016-09-06

    Astrocytes are effectively involved in the pathophysiological processes in the central nervous system (CNS) and may contribute to or protect against development of inflammatory and degenerative diseases. Sildenafil is a potent and selective phosphodiesterase-5 (PDE-5) inhibitor, which induces cyclic GMP accumulation. However, the mechanisms of actions on glial cells are not clear. The aim of the present work is to evaluate the role of sildenafil in lipopolysaccharide (LPS)-stimulated astrocytes. The cytoskeleton integrity and Ca(2+) waves were assessed as indicators of inflammatory state. Two main groups were done: (A) one prevention and (B) one restoration. Each of these groups: A1: control; A2: LPS for 24h; A3: sildenafil 1 or 10μM for 4h and then sildenafil 1 or 10μM+LPS for 24h. B1: control; B2: LPS for 24h; B3: LPS for 24h and then LPS+sildenafil 1 or 10μM for 24h. Cytoskeleton integrity was analyzed through GFAP immunolabeling and actin labeling with an Alexa 488-conjugated phalloidin probe. Calcium responses were assessed through a Ca(2+)-sensitive fluorophore Fura-2/AM. The results show that both preventive and restorative treatments with sildenafil (in both concentrations) reduced the Ca(2+) responses in intensity and induced a more organized actin fiber pattern, compared to LPS treated cells. This work demonstrated for the first time that astrocytes are a key part of the sildenafil protective effects in the CNS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Isolation of a novel LPS-induced component of the ML superfamily in Ciona intestinalis.

    Science.gov (United States)

    Vizzini, Aiti; Bonura, Angela; Longo, Valeria; Sanfratello, Maria Antonietta; Parrinello, Daniela; Cammarata, Matteo; Colombo, Paolo

    2015-11-01

    ML superfamily represents a group of proteins playing important roles in lipid metabolism and innate immune response. In this study, we report the identification of the first component of the ML superfamily in the invertebrate Ciona intestinalis by means of a subtractive hybridization strategy. Sequence homology and phylogenetic analysis showed that this protein forms a specific clade with vertebrate components of the Niemann-Pick type C2 protein and, for this reason, it has been named Ci-NPC2. The putative Ci-NPC2 is a 150 amino acids long protein with a short signal peptide, seven cysteine residues, three putative lipid binding site and a three-dimensional model showing a characteristic β-strand structure. Gene expression analysis demonstrated that the Ci-NPC2 protein is positively upregulated after LPS inoculum with a peak of expression 1 h after challenge. Finally, in-situ hybridization demonstrated that the Ci-NPC2 protein is preferentially expressed in hemocytes inside the vessel lumen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    Science.gov (United States)

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi

    Directory of Open Access Journals (Sweden)

    Peter M. Dracatos

    2016-09-01

    Full Text Available Nicotiana alata defensins 1 and 2 (NaD1 and NaD2 are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An O-mannosyltransferase (pmt knockout (KO mutants (An∆pmtA, An∆pmtB, and An∆pmtC. An∆pmtA was resistant to both defensins, while An∆pmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains. Further evidence of this difference in the antifungal mechanism was provided by the dissimilarity of the NaD1 and NaD2 sensitivities of the Fusarium oxysporum f. sp. lycopersici (Fol signalling knockout mutants from the cell wall integrity (CWI and high osmolarity glycerol (HOG mitogen-activated protein kinase (MAPK pathways. HOG pathway mutants were sensitive to both NaD1 and NaD2, while CWI pathway mutants only displayed sensitivity to NaD2.

  19. Lipoxin A4 and platelet activating factor are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Haiya Wu

    Full Text Available CFTR (cystic fibrosis transmembrane conductance regulator is expressed by both neutrophils and platelets. Lack of functional CFTR could lead to severe lung infection and inflammation. Here, we found that mutation of CFTR (F508del or inhibition of CFTR in mice led to more severe thrombocytopenia, alveolar neutrocytosis and bacteriosis, and lower lipoxin A4/MIP-2 (macrophage inhibitory protein-2 or lipoxin A4/neutrophil ratios in the BAL (bronchoalveolar lavage during acute E. coli pneumonia. In vitro, inhibition of CFTR promotes MIP-2 production in LPS-stimulated neutrophils; however, lipoxin A4 could dose-dependently suppress this effect. In LPS-induced acute lung inflammation, blockade of PSGL-1 (P-selectin glycoprotein ligand-1 or P-selectin, antagonism of PAF by WEB2086, or correction of mutated CFTR trafficking by KM11060 could significantly increase plasma lipoxin A4 levels in F508del relevant to wildtype mice. Concurrently, F508del mice had higher plasma platelet activating factor (PAF levels and PAF-AH activity compared to wildtype under LPS challenge. Inhibiting hydrolysis of PAF by a specific PAF-AH (PAF-acetylhydrolase inhibitor, MAFP, could worsen LPS-induced lung inflammation in F508del mice compared to vehicle treated F508del group. Particularly, depletion of platelets in F508del mice could significantly decrease plasma lipoxin A4 and PAF-AH activity and deteriorate LPS-induced lung inflammation compared to control F508del mice. Taken together, lipoxin A4 and PAF are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice, suggesting that lipoxin A4 and PAF might be therapeutic targets for ameliorating CFTR-deficiency deteriorated lung inflammation.

  20. Rhizoma Coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NF?B-Dependent Pathway

    OpenAIRE

    Remppis, Andrew; Bea, Florian; Greten, Henry Johannes; Buttler, Annette; Wang, Hongjie; Zhou, Qianxing; Preusch, Michael R.; Enk, Ronny; Ehehalt, Robert; Katus, Hugo; Blessing, Erwin

    2010-01-01

    Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFB was anal...

  1. Hydroxysafflor Yellow A Inhibits LPS-Induced NLRP3 Inflammasome Activation via Binding to Xanthine Oxidase in Mouse RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Xiaolong Xu

    2016-01-01

    Full Text Available Hydroxysafflor yellow A (HSYA is an effective therapeutic agent for inflammatory diseases and autoimmune disorders; however, its regulatory effect on NLRP3 inflammasome activation in macrophages has not been investigated. In this study, we predicted the potential interaction between HSYA and xanthine oxidase (XO via PharmMapper inverse docking and confirmed the binding inhibition via inhibitory test (IC50 = 40.04 μM. Computation docking illustrated that, in this HSYA-XO complex, HSYA was surrounded by Leu 648, Leu 712, His 875, Leu 873, Ser 876, Glu 879, Phe 649, and Asn 650 with a binding energy of −5.77 kcal/M and formed hydrogen bonds with the hydroxyl groups of HSYA at Glu 879, Asn 650, and His 875. We then found that HSYA significantly decreased the activity of XO in RAW264.7 macrophages and suppressed LPS-induced ROS generation. Moreover, we proved that HSYA markedly inhibited LPS-induced cleaved caspase-1 activation via suppressing the sensitization of NLRP3 inflammasome and prevented the mature IL-1β formation from pro-IL-1β form. These findings suggest that XO may be a potential target of HSYA via direct binding inhibition and the combination of HSYA-XO suppresses LPS-induced ROS generation, contributing to the depression of NLRP3 inflammasome and inhibition of IL-1β secretion in macrophages.

  2. Rhizoma coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NFB-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Andrew Remppis

    2010-01-01

    Full Text Available Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFB was analyzed in nuclear extracts, secretion of MCP-1/CCL2 was measured in supernatants. Results. Incubation with Rhizoma coptidis and berberine strongly inhibited LPS-induced monocyte chemoattractant protein (MCP-1 production in RAW cells. Activation of the transcription factors AP-1 and NFB was inhibited by Rhizoma coptidis in a dose- and time-dependent fashion. Conclusions. Rhizoma coptidis extract inhibits LPS-induced MCP-1/CCL2 production in vitro via an AP-1 and NFB-dependent pathway. Anti-inflammatory action of the extract is mediated mainly by its alkaloid compound berberine.

  3. Rhizoma Coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NFκB-Dependent Pathway

    Science.gov (United States)

    Remppis, Andrew; Bea, Florian; Greten, Henry Johannes; Buttler, Annette; Wang, Hongjie; Zhou, Qianxing; Preusch, Michael R.; Enk, Ronny; Ehehalt, Robert; Katus, Hugo; Blessing, Erwin

    2010-01-01

    Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFκB was analyzed in nuclear extracts, secretion of MCP-1/CCL2 was measured in supernatants. Results. Incubation with Rhizoma coptidis and berberine strongly inhibited LPS-induced monocyte chemoattractant protein (MCP)-1 production in RAW cells. Activation of the transcription factors AP-1 and NFκB was inhibited by Rhizoma coptidis in a dose- and time-dependent fashion. Conclusions. Rhizoma coptidis extract inhibits LPS-induced MCP-1/CCL2 production in vitro via an AP-1 and NFκB-dependent pathway. Anti-inflammatory action of the extract is mediated mainly by its alkaloid compound berberine. PMID:20652055

  4. Inhibition of miR-155 Protects Against LPS-induced Cardiac Dysfunction and Apoptosis in Mice

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2016-01-01

    Full Text Available Sepsis-induced myocardial dysfunction represents a major cause of death in intensive care units. Dysregulated microRNAs (miR-155 has been implicated in multiple cardiovascular diseases and miR-155 can be induced by lipopolysaccharide (LPS. However, the role of miR-155 in LPS-induced cardiac dysfunction is unclear. Septic cardiac dysfunction in mice was induced by intraperitoneal injection of LPS (5 mg/kg and miR-155 was found to be significantly increased in heart challenged with LPS. Pharmacological inhibition of miR-155 using antagomiR improved cardiac function and suppressed cardiac apoptosis induced by LPS in mice as determined by echocardiography, terminal deoxynucleotidyl transferase nick-end labeling (TUNEL assay, and Western blot for Bax and Bcl-2, while overexpression of miR-155 using agomiR had inverse effects. Pea15a was identified as a target gene of miR-155, mediating its effects in controlling apoptosis of cardiomyocytes as evidenced by luciferase reporter assays, quantitative real time-polymerase chain reaction, Western blot, and TUNEL staining. Noteworthy, miR-155 was also found to be upregulated in the plasma of patients with septic cardiac dysfunction compared to sepsis patients without cardiac dysfunction, indicating a potential clinical relevance of miR-155. The receiver-operator characteristic curve indicated that plasma miR-155 might be a biomarker for sepsis patients developing cardiac dysfunction. Therefore, inhibition of miR-155 represents a novel therapy for septic myocardial dysfunction.

  5. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10.

    Science.gov (United States)

    Olgun, Nicole S; Hanna, Nazeeh; Reznik, Sandra E

    2015-02-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11-12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ETA receptor. We have previously shown that antagonism of the ETA receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS+BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12h. We discovered that BQ-123, when administered 10h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ETA receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ETA receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. Copyright © 2014. Published by Elsevier Inc.

  6. Licofelone Attenuates LPS-induced Depressive-like Behavior in Mice: A Possible Role for Nitric Oxide.

    Science.gov (United States)

    Mousavi, Seyyedeh Elaheh; Saberi, Pegah; Ghasemkhani, Naeemeh; Fakhraei, Nahid; Mokhtari, Rezvan; Dehpour, Ahmad Reza

    2018-01-01

    Licofelone, a dual cyclooxygenase/5-lipoxygenase inhibitor, possesses antioxidant, antiapoptotic, neuroprotective, and anti-inflammatory properties. The aim of the present study was to investigate the effect of licofelone on lipopolysaccharide (LPS)-induced depression in a mouse model and also a possible role for nitric oxide (NO). To elucidate the role of NO on this effect of licofelone (5 and 20 mg/kg, i.p.), L-NAME, a non-specific NO synthase (NOS) inhibitor; aminoguanidine (AG), a specific inducible NOS (iNOS) inhibitor; 7-nitroindazole (7-NI) a preferential neuronal NOS inhibitor (nNOS) and; L-arginine (L-Arg), as a NO donor, were used. The animal's behaviors were evaluated employing forced swimming test (FST), tail suspension test (TST) and open field test (OFT). LPS (0.83 mg/kg, i.p.) induced depressive-like behavior increasing immobility time in FST and TST. Conversely, licofelone (20 mg/kg i.p.) reversed the depressive effect of LPS and lowered the immobility time in FST and TST. On the other hand, pretreatment with L-Arg also reversed the antidepressant-like effect of licofelone (20 mg/kg) in FST and TST. On the other hand, L-NAME (10 and 30 mg/kg), AG (50 and 100 mg/kg) and 7-NI (60 mg/kg) could potentiate licofelone (5 mg/kg) and lowered the immobility duration. NO down-regulation possibly through iNOS and nNOS inhibition may involve in the antidepressant property of licofelone. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  7. 75 FR 25004 - Program for Allocation of Regulatory Responsibilities Pursuant to Rule 17d-2; Order Approving and...

    Science.gov (United States)

    2010-05-06

    ... informational advantages that could place an affiliated member of an exchange at a competitive advantage vis... Member'').\\14\\ For purposes of the proposed 17d-2 Plan, Ballista would meet the definition of the term...

  8. Different effects of chronic THC on the neuroadaptive response of dopamine D2/3 receptor-mediated signaling in roman high- and roman low-avoidance rats.

    Science.gov (United States)

    Tournier, Benjamin B; Dimiziani, Andrea; Tsartsalis, Stergios; Millet, Philippe; Ginovart, Nathalie

    2018-04-01

    The Roman high (RHA)- and low (RLA)-avoidance rat sublines have been identified as an addiction-prone and addiction-resistant phenotype based on their high vs. low locomotor responsiveness to novelty and high vs. low ability to develop neurochemical and behavioral sensitization to psychostimulants, respectively. Most studies though have focused on psychostimulants and little is known about the neuroadaptive response of these two lines to cannabinoids. This study investigated the effects of chronic exposure to Δ 9 -tetrahydrocannabinol (THC) on dopamine D 2/3 receptor (D 2/3 R) availabilities and functional sensitivity in the mesostriatal system of RHA and RLA rats. At baseline, RLA rats exhibited higher densities of mesostriatal D2/3R but lower levels of striatal CB 1 R mRNA and displayed a lower locomotor response to acute THC as compared to RHAs. Following chronic THC treatment, striking changes in D 2/3 R signaling were observed in RLA but not in RHA rats, namely an increased availability and functional supersensitivity of striatal D 2/3 R, as evidenced by a supersensitive psychomotor response to the D 2/3 R agonist quinpirole. Moreover, in RLA rats, the lower was the locomotor response to acute THC, the higher was the psychomotor response to quinpirole following chronic THC. These results showing a greater neuroadaptive response of RLA vs. RHA rats to chronic THC thus contrast with previous studies showing a resistance to neuroadaptive response of RLAs to psychostimulants, This suggests that, contrasting with their low proneness to psychostimulant drug-seeking, RLAs may exhibit a heightened proneness to cannabinoid drug-seeking as compared to RHA rats. © 2017 Wiley Periodicals, Inc.

  9. LPS-induced release of IL-6 from glia modulates production of IL-1beta in a JAK2-dependent manner

    LENUS (Irish Health Repository)

    Minogue, Aedín M

    2012-06-14

    AbstractBackgroundCompelling evidence has implicated neuroinflammation in the pathogenesis of a number of neurodegenerative conditions. Chronic activation of both astrocytes and microglia leads to excessive secretion of proinflammatory molecules such as TNFα, IL-6 and IL-1β with potentially deleterious consequences for neuronal viability. Many signaling pathways involving the mitogen-activated protein kinases (MAPKs), nuclear factor κB (NFκB) complex and the Janus kinases (JAKs)\\/signal transducers and activators of transcription (STAT)-1 have been implicated in the secretion of proinflammatory cytokines from glia. We sought to identify signaling kinases responsible for cytokine production and to delineate the complex interactions which govern time-related responses to lipopolysaccharide (LPS).MethodsWe examined the time-related changes in certain signaling events and the release of proinflammatory cytokines from LPS-stimulated co-cultures of astrocytes and microglia isolated from neonatal rats.ResultsTNFα was detected in the supernatant approximately 1 to 2 hours after LPS treatment while IL-1β and IL-6 were detected after 2 to 3 and 4 to 6 hours, respectively. Interestingly, activation of NFκB signaling preceded release of all cytokines while phosphorylation of STAT1 was evident only after 2 hours, indicating that activation of JAK\\/STAT may be important in the up-regulation of IL-6 production. Additionally, incubation of glia with TNFα induced both phosphorylation of JAK2 and STAT1 and the interaction of JAK2 with the TNFα receptor (TNFR1). Co-treatment of glia with LPS and recombinant IL-6 protein attenuated the LPS-induced release of both TNFα and IL-1β while potentiating the effect of LPS on suppressor of cytokine signaling (SOCS)3 expression and IL-10 release.ConclusionsThese data indicate that TNFα may regulate IL-6 production through activation of JAK\\/STAT signaling and that the subsequent production of IL-6 may impact on the release of

  10. Nfkb1 inhibits LPS-induced IFN-β and IL-12 p40 production in macrophages by distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Xixing Zhao

    Full Text Available Nfkb1-deficient murine macrophages express higher levels of IFN-β and IL-12 p40 following LPS stimulation than control macrophages, but the molecular basis for this phenomenon has not been completely defined. Nfkb1 encodes several gene products including the NF-κB subunit p50 and its precursor p105. p50 is derived from the N-terminal of 105, and p50 homodimers can exhibit suppressive activity when overexpressed. The C-terminal region of p105 is necessary for LPS-induced ERK activation and it has been suggested that ERK activity inhibits both IFN-β and IL-12 p40 following LPS stimulation. However, the contributions of p50 and the C-terminal domain of p105 in regulating endogenous IFN-β(Ifnb and IL-12 p40 (Il12b gene expression in macrophages following LPS stimulation have not been directly compared.We have used recombinant retroviruses to express p105, p50, and the C-terminal domain of p105 (p105ΔN in Nfkb1-deficient murine bone marrow-derived macrophages at near endogenous levels. We found that both p50 and p105ΔN inhibited expression of Ifnb, and that inhibition of Ifnb by p105ΔN depended on ERK activation, because a mutant of p105ΔN (p105ΔNS930A that lacks a key serine necessary to support ERK activation failed to inhibit. In contrast, only p105ΔN but not p50 inhibited Il12b expression. Surprisingly, p105ΔNS930A retained inhibitory activity for Il12b, indicating that ERK activation was not necessary for inhibition. The differential effects of p105ΔNS930A on Ifnb and Il12b expression inversely correlated with the function of one of its binding partners, c-Rel. This raised the possibility that p105ΔNS930A influences gene expression by interfering with the function of c-Rel.These results demonstrate that Nfkb1 exhibits multiple gene-specific inhibitory functions following TLR stimulation of murine macrophages.

  11. 77 FR 73711 - Program for Allocation of Regulatory Responsibilities Pursuant to Rule 17d-2; Notice of Filing...

    Science.gov (United States)

    2012-12-11

    ... 240.17d-2. I. Introduction Section 19(g)(1) of the Act,\\3\\ among other things, requires every self... associated persons; (c) Discharge of its duties and obligations as a DEA; and (d) Evaluation of advertising... Customer Communications (Advertising) NYSE MKT [Amex] Rules 991 and 1106 BATS Rule 26.16 BOX Rule 4170 CBOE...

  12. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    Directory of Open Access Journals (Sweden)

    Smeding Lonneke

    2012-03-01

    Full Text Available Abstract Background Injurious mechanical ventilation (MV may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p. lipopolysaccharide (LPS-treated rats were ventilated with low (6 ml/kg and high (19 ml/kg tidal volumes (Vt under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP, central venous pressure (CVP, cardiac output (CO and pulmonary plateau pressure (Pplat were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.

  13. Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Tatiane Oliveira

    2015-01-01

    Full Text Available Objectives. We evaluated the in vitro modulatory effects of Allium cepa L. extract (AcE and quercetin (Qt on osteoclastogenesis under inflammatory conditions (LPS-induced. Methods. RAW 264.7 cells were differentiated with 30 ng/mL of RANKL, costimulated with PgLPS (1 µg/mL, and treated with AcE (50–1000 µg/mL or Qt (1.25, 2.5, or 5 µM. Cell viability was determined by alamarBlue and protein assays. Nuclei morphology was analysed by DAPI staining. TRAP assays were performed as follows: p-nitrophenyl phosphate was used to determine the acid phosphatase activity of the osteoclasts and TRAP staining was used to evaluate the number and size of TRAP-positive multinucleated osteoclast cells. Von Kossa staining was used to measure osteoclast resorptive activity. Cytokine levels were measured on osteoclast precursor cell culture supernatants. Using western blot analysis, p-IκBα and IκBα degradation, inhibitor of NF-kappaB, were evaluated. Results. Both AcE and Qt did not affect cell viability and significantly reduced osteoclastogenesis compared to control. We observed lower production of IL-6 and IL-1α and an increased production of IL-3 and IL-4. AcE and Qt downregulated NF-κB pathway. Conclusion. AcE and Qt may be inhibitors of osteoclastogenesis under inflammatory conditions (LPS-induced via attenuation of RANKL/PgLPS-induced NF-κB activation.

  14. Chilean Strawberry Consumption Protects against LPS-Induced Liver Injury by Anti-Inflammatory and Antioxidant Capability in Sprague-Dawley Rats

    OpenAIRE

    Molinett, Sebastian; Nuñez, Francisca; Moya-León, María Alejandra; Zúñiga-Hernández, Jessica

    2015-01-01

    The Chilean strawberry fruit has high content of antioxidants and polyphenols. Previous studies evidenced antioxidant properties by in vitro methods. However, the antioxidant effect and its impact as functional food on animal health have not been evaluated. In this study, rats were fed with a Chilean strawberry aqueous extract (4 g/kg of animal per day) and then subjected to LPS-induced liver injury (5 mg/kg). Transaminases and histological studies revealed a reduction in liver injury in rats...

  15. Anti-Inflammatory Activity of Heterocarpin from the Salt Marsh Plant Corydalis heterocarpa in LPS-Induced RAW 264.7 Macrophage Cells

    Directory of Open Access Journals (Sweden)

    You Ah Kim

    2015-08-01

    Full Text Available The inhibitory effect of three chromones 1–3 and two coumarins 4–5 on the production of nitric oxide (NO was evaluated in LPS-induced RAW 264.7 macrophage cells. Among the compounds tested heterocarpin (1, a furochromone, significantly inhibited its production in a dose-dependent manner. In addition, heterocarpin suppressed prostaglandin E2 (PGE2 production and expression of cytokines such as inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β and interleukin-6 (IL-6.

  16. Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the NF-κ B activation in RAW264.7 cells.

    Science.gov (United States)

    Lee, Hyo-Jin; Jeong, Yun-Jeong; Lee, Tae-Sung; Park, Yoon-Yub; Chae, Whi-Gun; Chung, Il-Kyung; Chang, Hyeun-Wook; Kim, Cheorl-Ho; Choi, Yung-Hyun; Kim, Wun-Jae; Moon, Sung-Kwon; Chang, Young-Chae

    2013-01-01

    In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.

  17. Therapeutic effect of methyl salicylate 2-O-β-d-lactoside on LPS-induced acute lung injury by inhibiting TAK1/NF-kappaB phosphorylation and NLRP3 expression.

    Science.gov (United States)

    Yang, Shengqian; Yu, Ziru; Yuan, Tianyi; Wang, Lin; Wang, Xue; Yang, Haiguang; Sun, Lan; Wang, Yuehua; Du, Guanhua

    2016-11-01

    Acute lung injury (ALI), characterized by pulmonary edema and inflammatory cell infiltration, is a common syndrome of acute hypoxemic respiratory failure. Methyl salicylate 2-O-β-d-lactoside (MSL), a natural derivative of salicylate extracted from Gaultheria yunnanensis (Franch.) Rehder, was reported to have potent anti-inflammatory effects on the progression of collagen or adjuvant-induced arthritis in vivo and in vitro. The aim of this study is to investigate the therapeutic effect of MSL on lipopolysaccharide (LPS)-induced acute lung injury and reveal underlying molecular mechanisms. Our results showed that MSL significantly ameliorated pulmonary edema and histological severities, and inhibited IL-6 and IL-1β production in LPS-induced ALI mice. MSL also reduced MPO activity in lung tissues and the number of inflammatory cells in BALF. Moreover, we found that MSL significantly inhibited LPS-induced TAK1 and NF-κB p65 phosphorylation, as well as the expression of NLRP3 protein in lung tissues. Furthermore, MSL significantly inhibited LPS-induced TAK1 and NF-κB p65 phosphorylation in Raw264.7 cells. In addition, MSL significantly inhibited nuclear translocation of NF-κB p65 in cells treated with LPS in vitro. Taken together, our results suggested that MSL exhibited a therapeutic effect on LPS-induced ALI by inhibiting TAK1/NF-κB phosphorylation and NLRP3 expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. 77 FR 29705 - Program for Allocation of Regulatory Responsibilities Pursuant to Rule 17d-2; Notice of Filing...

    Science.gov (United States)

    2012-05-18

    .... Generally, under the plan, the SRO participant responsible for conducting options-related sales practice... sales practice matters that would otherwise be performed by multiple SROs. The plan promotes efficiency... Declaring Effective an Amendment to the Plan for the Allocation of Regulatory Responsibilities Among the...

  19. 75 FR 9976 - Program for Allocation of Regulatory Responsibilities Pursuant to Rule 17d-2; Notice of Filing...

    Science.gov (United States)

    2010-03-04

    .... Generally, under the current plan, the SRO participant responsible for conducting options-related sales... Declaring Effective an Amendment to the Plan for the Allocation of Regulatory Responsibilities Among the... BX, Inc., and NASDAQ OMX PHLX, Inc. Concerning Options-Related Sales Practice Matters February 25...

  20. 75 FR 68632 - Program for Allocation of Regulatory Responsibilities Pursuant to Rule 17d-2; Notice of Filing of...

    Science.gov (United States)

    2010-11-08

    ... good faith and best effort basis and no warranties, express or implied, are made by any Participating... understood that the term ``Regulatory Responsibility'' does not include, and each of the Participating... responsibilities with respect to the regulatory activities being assumed by the DREA under the terms of this...

  1. 8-Hydroxyquinoline inhibits iNOS expression and nitric oxide production by down-regulating LPS-induced activity of NF-κB and C/EBPβ in Raw 264.7 cells

    International Nuclear Information System (INIS)

    Kim, Young-Ho; Woo, Kyung Jin; Lim, Jun Hee; Kim, Shin; Lee, Tae Jin; Jung, Eun Mi; Lee, Jin-Man; Park, Jong-Wook; Kwon, Taeg Kyu

    2005-01-01

    In activated macrophage, large amounts of nitric oxide (NO) are generated by inducible nitric oxide synthase (iNOS), resulting in acute or chronic inflammatory disorders. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, 8-hydroxyquinoline (8HQ) inhibited the LPS-induced expression of both iNOS protein and mRNA in a parallel dose-dependent manner. 8HQ did not enhance the degradation of iNOS mRNA. To investigate the mechanism by which 8HQ inhibits iNOS gene expression, we examined the activation of MAP kinases in Raw 264.7 cells. We did not observe any significant change in the phosphorylation of MAPKs between LPS alone and LPS plus 8HQ-treated cells. Moreover, 8HQ significantly inhibited the DNA-binding activity of nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding protein β (C/EBPβ), but not activator protein-1 and cAMP response element-binding protein. Taken together, these results suggest that 8HQ acts to inhibit inflammation through inhibition of NO production and iNOS expression through blockade of C/EBPβ DNA-binding activity and NF-κB activation

  2. Differential myelopoietic responsiveness of BALB/c (Itys) and C.D2 (Ityr) mice to lipopolysaccharide administration and Salmonella typhimurium infection.

    Science.gov (United States)

    Peterson, V M; Madonna, G S; Vogel, S N

    1992-04-01

    Inheritance of the Ityr or the Itys allele of the Ity murine gene confers resistance or increased susceptibility, respectively, to Salmonella typhimurium infection. Recent studies have documented that Ity gene expression may determine net intracellular replication of S. typhimurium by modulating macrophage function. The purpose of this study was to determine if Ity gene expression modulated macrophage stem cell proliferation as well. To detect possible Ity-associated alterations in macrophage stem cell proliferation during endotoxin challenge or S. typhimurium infection, the congenic strain pair BALB/c (Itys) and C.D2-Idh-1, Pep-3 N20F8 (Ityr) were injected intraperitoneally with 25 micrograms of bacterial lipopolysaccharide (LPS) or approximately 10(3) S. typhimurium, and myelopoiesis was evaluated. At 72 h after LPS injection, both BALB/c and C.D2 mice developed comparable degrees of bone marrow hypocellularity and splenomegaly, and cell sizing profiles indicated a normal response to a single injection of LPS in both strains of mice. Although an inhibitor to colony-stimulating factor activity was detected in the sera and plasma of C.D2 mice, the number of myeloid stem cells cultured from the bone marrow and spleen of each mouse strain were comparable. S. typhimurium infection resulted in earlier symptoms, a larger bacterial load, a higher mortality rate, and a greater bone marrow hypocellularity and splenomegaly in BALB/c mice compared with those in C.D2 mice. Despite a dramatic increase in bacterial load, a decrease in both bone marrow and splenic myeloid stem cell numbers was noted in BALB/c mice, while stem cell numbers remained constant in C.D2 mice between days 3 and 5 and increased dramatically at day 7 after infection. These data suggest that BALB/c and C.D2 mice may exhibit a divergent myelopoietic response to S. typhimurium infection. It appears that a paradoxical failure of myelopoiesis in Itys mice during S. typhimurium infection may contribute to the

  3. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation.

    Science.gov (United States)

    Tsukamoto, Hiroki; Takeuchi, Shino; Kubota, Kanae; Kobayashi, Yohei; Kozakai, Sao; Ukai, Ippo; Shichiku, Ayumi; Okubo, Misaki; Numasaki, Muneo; Kanemitsu, Yoshitomi; Matsumoto, Yotaro; Nochi, Tomonori; Watanabe, Kouichi; Aso, Hisashi; Tomioka, Yoshihisa

    2018-05-14

    Toll-like receptor 4 (TLR4) is an indispensable immune receptor for lipopolysaccharide (LPS), a major component of the Gram-negative bacterial cell wall. Following LPS stimulation, TLR4 transmits the signal from the cell surface and becomes internalized in an endosome. However, the spatial regulation of TLR4 signaling is not fully understood. Here, we investigated the mechanisms of LPS-induced TLR4 internalization and clarified the roles of the extracellular LPS-binding molecules, LPS-binding protein (LBP), and glycerophosphatidylinositol-anchored protein (CD14). LPS stimulation of CD14-expressing cells induced TLR4 internalization in the presence of serum, and an inhibitory anti-LBP mAb blocked its internalization. Addition of LBP to serum-free cultures restored LPS-induced TLR4 internalization to comparable levels of serum. The secretory form of the CD14 (sCD14) induced internalization but required a much higher concentration than LBP. An inhibitory anti-sCD14 mAb was ineffective for serum-mediated internalization. LBP lacking the domain for LPS transfer to CD14 and a CD14 mutant with reduced LPS binding both attenuated TLR4 internalization. Accordingly, LBP is an essential serum molecule for TLR4 internalization, and its LPS transfer to membrane-anchored CD14 (mCD14) is a prerequisite. LBP induced the LPS-stimulated phosphorylation of TBK1, IKKϵ, and IRF3, leading to IFN-β expression. However, LPS-stimulated late activation of NFκB or necroptosis were not affected. Collectively, our results indicate that LBP controls LPS-induced TLR4 internalization, which induces TLR adaptor molecule 1 (TRIF)-dependent activation of the TBK1-IKKϵ-IRF3-IFN-β pathway. In summary, we showed that LBP-mediated LPS transfer to mCD14 is required for serum-dependent TLR4 internalization and activation of the TRIF pathway. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.

  4. 75 FR 57998 - Program for Allocation of Regulatory Responsibilities Pursuant to Rule 17d-2; Notice of Filing of...

    Science.gov (United States)

    2010-09-23

    ... financial condition. BYX shall make available to FINRA any information coming to its attention that reflects... respect to such complaints. 10. Advertising. FINRA shall assume responsibility to review the advertising... Fraudulent Device Rule 3.5(a) Advertising Practices...... NASD Rule 2210(d)(1)(B) Communications with the...

  5. 75 FR 18915 - Program for Allocation of Regulatory Responsibilities Pursuant to Rule 17d-2; Notice of Filing of...

    Science.gov (United States)

    2010-04-13

    .... EDGA shall make available to FINRA any information coming to its attention that reflects adversely on.... Advertising. FINRA shall assume responsibility to review the advertising of Dual Members subject to the........ FINRA Rule 2020 Use of Manipulative, Deceptive or Other Fraudulent Device. Rule 3.5(a) Advertising...

  6. 75 FR 18920 - Program for Allocation of Regulatory Responsibilities Pursuant to Rule 17d-2; Notice of Filing of...

    Science.gov (United States)

    2010-04-13

    ... attention that reflects adversely on the financial condition of Dual Members or indicates possible... review and take appropriate action in respect to such complaints. 10. Advertising. FINRA shall assume responsibility to review the advertising of Dual Members subject to the Agreement, provided that such material is...

  7. 78 FR 46644 - Program for Allocation of Regulatory Responsibilities Pursuant to Rule 17d-2; Notice of Filing...

    Science.gov (United States)

    2013-08-01

    ... its duties and obligations as a DEA; and (d) Evaluation of advertising, responsibility for which shall... communication to each Participant entitled to receipt thereof, to the attention of the Participant's... 10. CUSTOMER COMMUNICATIONS (ADVERTISING) NYSE MKT Rules 991 and 1106. BATS Rule 26.16. BOX Rule 4170...

  8. 75 FR 49005 - Program for Allocation of Regulatory Responsibilities Pursuant to Rule 17d-2; Notice of Filing of...

    Science.gov (United States)

    2010-08-12

    ... of customer complaints, the review of dual members' advertising, and the arbitration of disputes... to FINRA any information coming to its attention that reflects adversely on the financial condition.... Advertising. FINRA shall assume responsibility to review the advertising of Dual Members subject to the...

  9. 78 FR 46665 - Program for Allocation of Regulatory Responsibilities Pursuant to Rule 17d-2; Notice of Filing...

    Science.gov (United States)

    2013-08-01

    ... directors, governors, officers, employees or representatives. No warranties, express or implied, are made by... participant.\\12\\ On October 9, 2008, the Commission approved an amendment to the Plan to clarify that the term... relieved of regulatory responsibility for that common member, pursuant to the terms of the Plan, with...

  10. Characterization of recombinant human HBP/CAP37/azurocidin, a pleiotropic mediator of inflammation-enhancing LPS-induced cytokine release from monocytes.

    Science.gov (United States)

    Rasmussen, P B; Bjørn, S; Hastrup, S; Nielsen, P F; Norris, K; Thim, L; Wiberg, F C; Flodgaard, H

    1996-07-15

    Neutrophil-derived heparin-binding protein (HBP) is a strong chemoattractant for monocytes. We report here for the first time the expression of recombinant HBP. A baculovirus containing the human HBP cDNA mediated in insect cells the secretion of a 7-residue N-terminally extended HBP form (pro-HBP). Deletion of the pro-peptide-encoding cDNA sequence resulted in correctly processed HBP at the N-terminus. Electrospray mass spectrum analysis of recombinant HBP yielded a molecular weight of 27.237 +/- 3 amu. Consistent with this mass is a HBP form of 225 amino acids (mature part +3 amino acid C-terminal extension). The biological activity of recombinant HBP was confirmed by its chemotactic action towards monocytes. Furthermore, we have shown that recombinant HBP stimulates in a dose-dependent manner the lipopolysaccharide (LPS)-induced cytokine release from human monocytes.

  11. Scandoside Exerts Anti-Inflammatory Effect Via Suppressing NF-κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Jingyu He

    2018-02-01

    Full Text Available The iridoids of Hedyotis diffusa Willd play an important role in the anti-inflammatory process, but the specific iridoid with anti-inflammatory effect and its mechanism has not be thoroughly studied. An iridoid compound named scandoside (SCA was isolated from H. diffusa and its anti-inflammatory effect was investigated in lipopolysaccharide (LPS-induced RAW 264.7 macrophages. Its anti-inflammatory mechanism was confirmed by in intro experiments and molecular docking analyses. As results, SCA significantly decreased the productions of nitric oxide (NO, prostaglandin E2 (PGE2, tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 and inhibited the levels of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, TNF-α and IL-6 messenger RNA (mRNA expression in LPS-induced RAW 264.7 macrophages. SCA treatment suppressed the phosphorylation of inhibitor of nuclear transcription factor kappa-B alpaha (IκB-α, p38, extracellular signal-regulated kinase (ERK and c-Jun N-terminal kinase (JNK. The docking data suggested that SCA had great binding abilities to COX-2, iNOS and IκB. Taken together, the results indicated that the anti-inflammatory effect of SCA is due to inhibition of pro-inflammatory cytokines and mediators via suppressing the nuclear transcription factor kappa-B (NF-κB and mitogen-activated protein kinase (MAPK signaling pathways, which provided useful information for its application and development.

  12. Xanthohumol ameliorates lipopolysaccharide (LPS-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis

    Directory of Open Access Journals (Sweden)

    Hongming Lv

    2017-08-01

    Full Text Available Abundant natural flavonoids can induce nuclear factor-erythroid 2 related factor 2 (Nrf2 and/or AMP-activated protein kinase (AMPK activation, which play crucial roles in the amelioration of various inflammation- and oxidative stress-induced diseases, including acute lung injury (ALI. Xanthohumol (Xn, a principal prenylflavonoid, possesses anti-inflammation and anti-oxidant activities. However, whether Xn could protect from LPS-induced ALI through inducing AMPK/Nrf2 activation and its downstream signals, are still poorly elucidated. Accordingly, we focused on exploring the protective effect of Xn in the context of ALI and the involvement of underlying molecular mechanisms. Our findings indicated that Xn effectively alleviated lung injury by reduction of lung W/D ratio and protein levels, neutrophil infiltration, MDA and MPO formation, and SOD and GSH depletion. Meanwhile, Xn significantly lessened histopathological changes, reactive oxygen species (ROS generation, several cytokines secretion, and iNOS and HMGB1 expression, and inhibited Txnip/NLRP3 inflammasome and NF-κB signaling pathway activation. Additionally, Xn evidently decreased t-BHP-stimulated cell apoptosis, ROS generation and GSH depletion but increased various anti-oxidative enzymes expression regulated by Keap1-Nrf2/ARE activation, which may be associated with AMPK and GSK3β phosphorylation. However, Xn-mediated inflammatory cytokines and ROS production, histopathological changes, Txnip/NLRP3 inflammasome and NF-κB signaling pathway in WT mice were remarkably abrogated in Nrf2-/- mice. Our experimental results firstly provided a support that Xn effectively protected LPS-induced ALI against oxidative stress and inflammation damage which are largely dependent upon upregulation of the Nrf2 pathway via activation of AMPK/GSK3β, thereby suppressing LPS-activated Txnip/NLRP3 inflammasome and NF-κB signaling pathway. Keywords: Xanthohumol, Acute lung injury, Oxidative stress

  13. Modelling and analysis of tool wear and surface roughness in hard turning of AISI D2 steel using response surface methodology

    Directory of Open Access Journals (Sweden)

    M. Junaid Mir

    2018-01-01

    Full Text Available The present work deals with some machinability studies on tool wear and surface roughness, in finish hard turning of AISI D2 steel using PCBN, Mixed ceramic and coated carbide inserts. The machining experiments are conducted based on the response surface methodology (RSM. Combined effects of three cutting parameters viz., cutting speed, cutting time and tool hardness on the two performance outputs (i.e. VB and Ra, are explored employing the analysis of variance (ANOVA.The relationship(s between input variables and the response parameters are determined using a quadratic regression model. The results show that the tool wear was influenced principally by the cutting time and in the second level by the cutting tool hardness. On the other hand, cutting time was the dominant factor affecting workpiece surface roughness followed by cutting speed. Finally, the multiple response optimizations of tool wear and surface roughness were carried out using the desirability function approach (DFA.

  14. Variation in Dopamine D2 and Serotonin 5-HT2A Receptor Genes is Associated with Working Memory Processing and Response to Treatment with Antipsychotics.

    Science.gov (United States)

    Blasi, Giuseppe; Selvaggi, Pierluigi; Fazio, Leonardo; Antonucci, Linda Antonella; Taurisano, Paolo; Masellis, Rita; Romano, Raffaella; Mancini, Marina; Zhang, Fengyu; Caforio, Grazia; Popolizio, Teresa; Apud, Jose; Weinberger, Daniel R; Bertolino, Alessandro

    2015-06-01

    Dopamine D2 and serotonin 5-HT2A receptors contribute to modulate prefrontal cortical physiology and response to treatment with antipsychotics in schizophrenia. Similarly, functional variation in the genes encoding these receptors is also associated with these phenotypes. In particular, the DRD2 rs1076560 T allele predicts a lower ratio of expression of D2 short/long isoforms, suboptimal working memory processing, and better response to antipsychotic treatment compared with the G allele. Furthermore, the HTR2A T allele is associated with lower 5-HT2A expression, impaired working memory processing, and poorer response to antipsychotics compared with the C allele. Here, we investigated in healthy subjects whether these functional polymorphisms have a combined effect on prefrontal cortical physiology and related cognitive behavior linked to schizophrenia as well as on response to treatment with second-generation antipsychotics in patients with schizophrenia. In a total sample of 620 healthy subjects, we found that subjects with the rs1076560 T and rs6314 T alleles have greater fMRI prefrontal activity during working memory. Similar results were obtained within the attentional domain. Also, the concomitant presence of the rs1076560 T/rs6314 T alleles also predicted lower behavioral accuracy during working memory. Moreover, we found that rs1076560 T carrier/rs6314 CC individuals had better responses to antipsychotic treatment in two independent samples of patients with schizophrenia (n=63 and n=54, respectively), consistent with the previously reported separate effects of these genotypes. These results indicate that DRD2 and HTR2A genetic variants together modulate physiological prefrontal efficiency during working memory and also modulate the response to antipsychotics. Therefore, these results suggest that further exploration is needed to better understand the clinical consequences of these genotype-phenotype relationships.

  15. Multi-Responses Optimization Of Edm Sinking Process Of Aisi D2 Tool Steel Using Taguchi Grey–Fuzzy Method

    Directory of Open Access Journals (Sweden)

    Bobby Oedy Pramoedyo Soepangkat

    2014-12-01

    Full Text Available Rough machining with Electro Discharge Machining (EDM process gives a large Material Removal Rate (MRR and high Surface Roughness (SR, while finish machining gives low SR and very slow MRR. In this study, Taguchi method coupled with Grey Relational Analysis (GRA and fuzzy logic has been applied for optimization of multiple performance characteristics. The EDM machining parameters (gap voltage, pulse current, on time and duty factor are optimized with considerations of multiple performance characteristics, i.e., MRR and SR. The quality characteristic of MRR is larger-is-better, while the quality characteristic of SR is smaller-is-better. Based on Taguchi method, an L18 mixed-orthogonal array is selected for the experiments. By using the combination of GRA and fuzzy logic, the optimization of complicated multiple performance characteristics was transformed into the optimization of a single response performance index. The most significant machining parameters which affect the multiple performance characteristics were gapvoltage and pulse current. Experimental results have also shown that machining performance characteristics of EDM process can be improved effectively through the combination of Taguchi method, GRA and fuzzy logic.

  16. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung

    Science.gov (United States)

    Jandl, Katharina; Stacher, Elvira; Bálint, Zoltán; Sturm, Eva Maria; Maric, Jovana; Peinhaupt, Miriam; Luschnig, Petra; Aringer, Ida; Fauland, Alexander; Konya, Viktoria; Dahlen, Sven-Erik; Wheelock, Craig E.; Kratky, Dagmar; Olschewski, Andrea; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos

    2016-01-01

    Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation. PMID:26792210

  17. D2-tree

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Sioutas, Spyros; Pantazos, Kostas

    2015-01-01

    We present a new overlay, called the Deterministic Decentralized tree (D2-tree). The D2-tree compares favorably to other overlays for the following reasons: (a) it provides matching and better complexities, which are deterministic for the supported operations; (b) the management of nodes (peers...

  18. DRD2/AKT1 interaction on D2 c-AMP independent signaling, attentional processing, and response to olanzapine treatment in schizophrenia.

    Science.gov (United States)

    Blasi, Giuseppe; Napolitano, Francesco; Ursini, Gianluca; Taurisano, Paolo; Romano, Raffaella; Caforio, Grazia; Fazio, Leonardo; Gelao, Barbara; Di Giorgio, Annabella; Iacovelli, Luisa; Sinibaldi, Lorenzo; Popolizio, Teresa; Usiello, Alessandro; Bertolino, Alessandro

    2011-01-18

    The D2/AKT1/GSK-3β signaling pathway has been involved in the downstream intracellular effects of dopamine, in the pathophysiology of cognitive deficits and related brain activity in schizophrenia, as well as in response to treatment with antipsychotics. Polymorphisms in the D2 (DRD2 rs1076560) and AKT1 (AKT1 rs1130233) genes have been associated with their respective protein expression and with higher-order cognition and brain function, including attention. Given the strong potential for their relationship, we investigated the interaction of these polymorphisms on multiple molecular and in vivo phenotypes associated with this signaling pathway. We measured AKT1 and GSK-3β proteins and phosphorylation in human peripheral blood mononuclear cells, functional MRI cingulate response during attentional control, behavioral accuracy during sustained attention, and response to 8 wk of treatment with olanzapine in a total of 190 healthy subjects and 66 patients with schizophrenia. In healthy subjects, we found that the interaction between the T allele of DRD2 rs1076560 and the A allele of AKT1 rs1130233 was associated with reduced AKT1 protein levels and reduced phosphorylation of GSK-3β, as well as with altered cingulate response and reduced behavioral accuracy during attentional processing. On the other hand, interaction of these two alleles was associated with greater improvement of Positive and Negative Syndrome Scale scores in patients with schizophrenia after treatment with olanzapine. The present results indicate that these functional polymorphisms are epistatically associated with multiple phenotypes of relevance to schizophrenia. Our results also lend support to further investigation of this downstream molecular pathway in the etiology and treatment of this disorder.

  19. Novel Mechanism of Attenuation of LPS-Induced NF-κB Activation by the Heat Shock Protein 90 Inhibitor, 17-N-allylamino-17-demethoxygeldanamycin, in Human Lung Microvascular Endothelial Cells

    Science.gov (United States)

    Thangjam, Gagan S.; Dimitropoulou, Chistiana; Joshi, Atul D.; Barabutis, Nektarios; Shaw, Mary C.; Kovalenkov, Yevgeniy; Wallace, Chistopher M.; Fulton, David J.; Patel, Vijay

    2014-01-01

    Heat shock protein (hsp) 90 inhibition attenuates NF-κB activation and blocks inflammation. However, the precise mechanism of NF-κB regulation by hsp90 in the endothelium is not clear. We investigated the mechanisms of hsp90 inhibition by 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) on NF-κB activation by LPS in primary human lung microvascular endothelial cells. Transcriptional activation of NF-κB was measured by luciferase reporter assay, gene expression by real-time RT-PCR, DNA binding of transcription factors by chromatin immunoprecipitation assay, protein–protein interaction by coimmunoprecipitation/immunoblotting, histone deacetylase (HDAC)/histone acetyltransferase enzyme activity by fluorometry, and nucleosome eviction by partial microccocal DNase digestion. In human lung microvascular endothelial cells, 17-AAG–induced degradation of IKBα was accomplished regardless of the phosphorylation/ubiquitination state of the protein. Hence, 17-AAG did not block LPS-induced NF-κB nuclear translocation and DNA binding activity. Instead, 17-AAG blocked the recruitment of the coactivator, cAMP response element binding protein binding protein, and prevented the assembly of a transcriptionally competent RNA polymerase II complex at the κB elements of the IKBα (an NF-κB–responsive gene) promoter. The effect of LPS on IKBα mRNA expression was associated with rapid deacetylation of histone-H3(Lys9) and a dramatic down-regulation of core histone H3 binding. Even though treatment with an HDAC inhibitor produced the same effect as hsp90 inhibition, the effect of 17-AAG was independent of HDAC. We conclude that hsp90 inhibition attenuates NF-κB transcriptional activation by preventing coactivator recruitment and nucleosome eviction from the target promoter in human lung endothelial cells. PMID:24303801

  20. p38 mitogen-activated protein kinase up-regulates LPS-induced NF-κB activation in the development of lung injury and RAW 264.7 macrophages

    International Nuclear Information System (INIS)

    Kim, Hee J.; Lee, Hui S.; Chong, Young H.; Kang, Jihee Lee

    2006-01-01

    Clarification of the key regulatory steps that lead to nuclear factor-kappa B (NF-κB) under cellular and pathological conditions is very important. The action of p38 mitogen-activated protein kinase (MAPK) on the upstream of NF-κB activation remains controversial. To examine this issue using an in vivo lung injury model, SB203580, a p38 MAPK inhibitor was given intraorally 1 h prior to lipopolysaccharide (LPS) treatment (intratracheally). The mice were sacrificed 4 h after LPS treatment. SB203580 substantially suppressed LPS-induced rises in p38 MAPK phosphorylation, neutrophil recruitment, total protein content in bronchoalveolar lavage fluid, and apoptosis of bronchoalveolar cells. Furthermore, SB203580 blocked LPS-induced NF-κB activation in lung tissue through down-regulation of serine phosphorylation, degradation of IκB-α, and consequent translocation of the p65 subunit of NF-κB to the nucleus. It is likely that, in cultured RAW 264.7 macrophages, SB203580 also blocked LPS-induced NF-κB activation in a dose-dependent manner. SB203580 inhibited LPS-induced serine phosphorylation, degradation of IκB-α, and tyrosine phosphorylation of p65 NF-κB. These data indicate that p38 MAPK acts upstream of LPS-induced NF-κB activation by modulating the phosphorylation of IκB-α and p65 NF-κB during acute lung injury. Because LPS-stimulated macrophages may contribute to inflammatory lung injury, the inhibition of the p38 MAPK-mediated intracellular signaling pathway leading to NF-κB activation represents a target for the attenuation of lung inflammation and parenchymal damage

  1. Glucose transport and milk secretion during manipulated plasma insulin and glucose concentrations and during LPS-induced mastitis in dairy cows.

    Science.gov (United States)

    Gross, J J; van Dorland, H A; Wellnitz, O; Bruckmaier, R M

    2015-08-01

    In dairy cows, glucose is essential as energy source and substrate for milk constituents. The objective of this study was to investigate effects of long-term manipulated glucose and insulin concentrations in combination with a LPS-induced mastitis on mRNA abundance of glucose transporters and factors involved in milk composition. Focusing on direct effects of insulin and glucose without influence of periparturient endocrine adaptations, 18 dairy cows (28 ± 6 weeks of lactation) were randomly assigned to one of three infusion treatments for 56 h (six animals each). Treatments included a hyperinsulinemic hypoglycaemic clamp (HypoG), a hyperinsulinemic euglycaemic clamp (EuG) and a control group (NaCl). After 48 h of infusions, an intramammary challenge with LPS from E. coli was performed and infusions continued for additional 8 h. Mammary gland biopsies were taken before, at 48 (before LPS challenge) and at 56 h (after LPS challenge) of infusion, and mRNA abundance of genes involved in mammary gland metabolism was measured by RT-qPCR. During the 48 h of infusions, mRNA abundance of glucose transporters GLUT1, 3, 4, 8, 12, SGLT1, 2) was not affected in HypoG, while they were downregulated in EuG. The mRNA abundance of alpha-lactalbumin, insulin-induced gene 1, κ-casein and acetyl-CoA carboxylase was downregulated in HypoG, but not affected in EuG. Contrary during the intramammary LPS challenge, most of the glucose transporters were downregulated in NaCl and HypoG, but not in EuG. The mRNA abundance of glucose transporters in the mammary gland seems not to be affected by a shortage of glucose, while enzymes and milk constituents directly depending on glucose as a substrate are immediately downregulated. During LPS-induced mastitis in combination with hypoglycaemia, mammary gland metabolism was more aligned to save glucose for the immune system compared to a situation without limited glucose availability during EuG. Journal of Animal Physiology and Animal

  2. ON SOFT D2-ALGEBRA AND SOFT D2-IDEALS

    OpenAIRE

    S. Subramanian; S. Seethalaksmi

    2018-01-01

    In this paper, we have studied some characterization of soft D2-algebra, kernel, intersection, image, quotient D2-algebra’s and relations ship between D2-algebra and D2-ideals with suitable examples.

  3. Attenuation of LPS-induced inflammation by ICT, a derivate of icariin, via inhibition of the CD14/TLR4 signaling pathway in human monocytes.

    Science.gov (United States)

    Wu, Jinfeng; Zhou, Junmin; Chen, Xianghong; Fortenbery, Nicole; Eksioglu, Erika A; Wei, Sheng; Dong, Jingcheng

    2012-01-01

    To evaluate the anti-inflammatory potential of ICT in LPS stimulated human innate immune cells. 3, 5, 7-Trihydroxy-4'-methoxy-8-(3-hydroxy-3- methylbutyl)-flavone (ICT) is a novel derivative of icariin, the major active ingredient of Herba Epimedii, an herb used in traditional Chinese medicine. We previously demonstrated its anti-inflammatory potential in a murine macrophage cell line as well as in mouse models. We measured TNF-α production by ELISA, TLR4/CD14 expression by flow cytometry, and NF-κB and MAPK activation by western blot all in LPS-stimulated PBMC, human monocytes, or THP-1 cells after treatment with ICT. ICT inhibited LPS-induced TNF-α production in THP-1 cells, PBMCs and human monocytes in a dose-dependent manner. ICT treatment resulted in down-regulation of the expression of CD14/TLR4 and attenuated NF-κB and MAPK activation induced by LPS. We illustrate the anti-inflammatory property of ICT in human immune cells, especially in monocytes. These effects were mediated, at least partially, via inhibition of the CD14/TLR4 signaling pathway. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. SOCS3 Expression Correlates with Severity of Inflammation, Expression of Proinflammatory Cytokines, and Activation of STAT3 and p38 MAPK in LPS-Induced Inflammation In Vivo

    Directory of Open Access Journals (Sweden)

    João Antônio Chaves de Souza

    2013-01-01

    Full Text Available SOCS3 is an inducible endogenous negative regulator of JAK/STAT pathway, which is relevant in inflammatory conditions. We used a model of LPS-induced periodontal disease in rats to correlate SOCS3 expression with the inflammatory status. In vitro we used a murine macrophage cell line to assess the physical interaction between SOCS3 and STAT3 by coimmunoprecipitation. 30 ug of LPS from Escherichia coli were injected in the gingival tissues on the palatal aspect of first molars of the animals 3x/week for up to 4 weeks. Control animals were injected with the vehicle (PBS. The rats were sacrificed at 7, 15, and 30 days. Inflammation and gene expression were assessed by stereometric analysis, immunohistochemistry, RT-qPCR, and western blot. LPS injections increased inflammation, paralleled by an upregulation of SOCS3, of the proinflammatory cytokines IL-1β, IL-6, and TNF-α and increased phosphorylation of STAT3 and p38 MAPK. SOCS3 expression accompanied the severity of inflammation and the expression of proinflammatory cytokines, as well as the activation status of STAT3 and p38 MAPK. LPS stimulation in a macrophage cell line in vitro induced transient STAT3 activation, which was inversely correlated with a dynamic physical interaction with SOCS3, suggesting that this may be a mechanism for SOCS3 regulatory function.

  5. Protective Effect of the Fruit Hull of Gleditsia sinensis on LPS-Induced Acute Lung Injury Is Associated with Nrf2 Activation

    Directory of Open Access Journals (Sweden)

    Jun-Young Choi

    2012-01-01

    Full Text Available The fruit hull of Gleditsia sinensis (FGS has been prescribed as a traditional eastern Asian medicinal remedy for the treatment of various respiratory diseases, but the efficacy and underlying mechanisms remain poorly characterized. Here, we explored a potential usage of FGS for the treatment of acute lung injury (ALI, a highly fatal inflammatory lung disease that urgently needs effective therapeutics, and investigated a mechanism for the anti-inflammatory activity of FGS. Pretreatment of C57BL/6 mice with FGS significantly attenuated LPS-induced neutrophilic lung inflammation compared to sham-treated, inflamed mice. Reporter assays, semiquantitative RT-PCR, and Western blot analyses show that while not affecting NF-κB, FGS activated Nrf2 and expressed Nrf2-regulated genes including GCLC, NQO-1, and HO-1 in RAW 264.7 cells. Furthermore, pretreatment of mice with FGS enhanced the expression of GCLC and HO-1 but suppressed that of proinflammatory cytokines in including TNF-α and IL-1β in the inflamed lungs. These results suggest that FGS effectively suppresses neutrophilic lung inflammation, which can be associated with, at least in part, FGS-activating anti-inflammatory factor Nrf2. Our results suggest that FGS can be developed as a therapeutic option for the treatment of ALI.

  6. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Science.gov (United States)

    Ling, Xiang; Linglong, Peng; Weixia, Du; Hong, Wei

    2016-01-01

    Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ). Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC). It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P zonulin release (P zonulin (P zonulin protein release and improvement of intestinal TJ integrity.

  7. Protective effects of total alkaloids from Dendrobium crepidatum against LPS-induced acute lung injury in mice and its chemical components.

    Science.gov (United States)

    Hu, Yang; Ren, Jie; Wang, Lei; Zhao, Xin; Zhang, Mian; Shimizu, Kuniyoshi; Zhang, Chaofeng

    2018-05-01

    Dendrobium crepidatum was one of the sources of Herba Dendrobii, a famous and precious traditional Chinese medicine. Indolizine-type alkaloids are the main characteristic ingredients of D. crepidatum, which possesses a variety of changeable skeletons. In the present study, we found that the total alkaloids of D. crepidatum (TAD) can inhibit the production of nitric oxide (NO) in lipopolysaccharide (LPS)-activated macrophages and showed protective effects against LPS-induced acute lung injury (ALI) in mice through downregulating the TLR4-mediated MyD88/MAPK signaling pathway. Further phytochemical study showed that six previously undescribed indolizine-type compounds, including a racemic mixture (dendrocrepidine A-E) were isolated from TAD. Meanwhile, dendrocrepidine F was separated into a pair of enantiomers by a chiral chromatography, and their absolute configurations were assigned by single-crystal X-ray diffraction analysis. The isomer (-)-dendrocrepidine F showed higher anti-inflammatory effects by inhibiting NO production in LPS-treated macrophages with an IC 50 value of 13.3 μM. Taken together, indolizine-type alkaloids are the active components of D. crepidatum through downregulating the TLR4-mediated pathway, indicating some kind of therapy of TAD for ALI treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    Science.gov (United States)

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  9. Carabrol suppresses LPS-induced nitric oxide synthase expression by inactivation of p38 and JNK via inhibition of I-κBα degradation in RAW 264.7 cells

    International Nuclear Information System (INIS)

    Lee, Hwa Jin; Lim, Hyo Jin; Lee, Da Yeon; Jung, Hyeyoun; Kim, Mi-Ran; Moon, Dong-Cheul; Kim, Keun Il; Lee, Myeong-Sok; Ryu, Jae-Ha

    2010-01-01

    Carabrol, isolated from Carpesium macrocephalum, showed anti-inflammatory potential in LPS-induced RAW 264.7 murine macrophages. In present study, carabrol demonstrated the inhibitory activity on pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. In addition, mRNA and protein levels of iNOS and COX-2 were reduced by carabrol. Molecular analysis revealed that these suppressive effects were correlated with the inactivation of p38 and JNK via inhibition of NF-κB activation. Immunoblotting showed that carabrol suppressed LPS-induced degradation of I-κBα and decreased nuclear translocation of p65. Taken together, these results suggest that carabrol can be a modulator of pro-inflammatory signal transduction pathway in RAW 264.7 cells.

  10. Predicting treatment response from dopamine D2/3 receptor bnding potential? - A study in antipsychotic-naïve patients with schizophrenia

    DEFF Research Database (Denmark)

    Wulff, Sanne; Pinborg, Lars Hageman; Svarer, Claus

    of antipsychotic compounds on the positive symptoms. Furthermore, blockade of striatal dopamine D2 receptors have in studies shown to associate negatively with subjective well-being. Our main aim was to explore a possible predictive value of striatal dopamine D2/3 receptor binding potential (BPp) for treatment...... of 29 antipsychotic-naïve patients with schizophrenia and 26 matched healthy controls, SPECT with [123l]-IBZM was used to examine the BPP of striatal dopamine D2/3 receptors. The participants were examined at baseline and after 6 weeks of treatment with a selective D2/3 receptor antagonist, amisulpride....... Results: We found a significant inverse correlation between the striatal BPp at baseline and improvement of positive symptoms (p=0.046; R squared = 0.152) after six weeks of treatment with amisulpride. There was no association between the blockade of the D2/3 receptors and improvement of positive symptoms...

  11. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways.

    Science.gov (United States)

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-10-10

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases.

  12. Enhanced Inhibitory Effect of Ultra-Fine Granules of Red Ginseng on LPS-induced Cytokine Expression in the Monocyte-Derived Macrophage THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Hong-Yeoul Kim

    2008-08-01

    Full Text Available Red ginseng is one of the most popular traditional medicines in Korea because its soluble hot-water extract is known to be very effective on enhancing immunity as well as inhibiting inflammation. Recently, we developed a new technique, called the HACgearshift system, which can pulverize red ginseng into the ultra-fine granules ranging from 0.2 to 7.0 μm in size. In this study, the soluble hot-water extract of those ultra-fine granules of red ginseng (URG was investigated and compared to that of the normal-sized granules of red ginseng (RG. The high pressure liquid chromatographic analyses of the soluble hot-water extracts of both URG and RG revealed that URG had about 2-fold higher amounts of the ginsenosides, the biologically active components in red ginseng, than RG did. Using quantitative RT-PCR, cytokine profiling against the Escherichia coli lipopolysaccharide (LPS in the monocyte-derived macrophage THP-1 cells demonstrated that the URG-treated cells showed a significant reduction in cytokine expression than the RG-treated ones. Transcription expression of the LPS-induced cytokines such as TNF-α, IL-1β, IL-6, IL-8, IL-10, and TGF-β was significantly inhibited by URG compared to RG. These results suggest that some biologically active and soluble components in red ginseng can be more effectively extracted from URG than RG by standard hot-water extraction.

  13. Mesenchymal Stem Cells Alleviate LPS-Induced Acute Lung Injury in Mice by MiR-142a-5p-Controlled Pulmonary Endothelial Cell Autophagy

    Directory of Open Access Journals (Sweden)

    Zichao Zhou

    2016-01-01

    Full Text Available Background/Aims: Damages of pulmonary endothelial cells (PECs represent a critical pathological process during acute lung injury (ALI, and precede pulmonary epithelial cell injury, and long-term lung dysfunction. Transplantation of mesenchymal stem cells (MSCs has proven therapeutic effects on ALI, whereas the underlying mechanisms remain ill-defined. Method: We transplanted MSCs in mice and then induced ALI using Lipopolysaccharides (LPS. We analyzed the changes in permeability index and lung histology. Mouse PECs were isolated by flow cytometry based on CD31 expression and then analyzed for autophagy-associated factors LC3 and Beclin-1 by Western blot. Beclin-1 mRNA was determined by RT-qPCR. In vitro, we performed bioinformatics analyses to identify the MSCs-regulated miRNAs that target Beclin-1, and confirmed that the binding was functional by 3'-UTR luciferase reporter assay. Results: We found that MSCs transplantation significantly reduced the severity of LPS-induced ALI in mice. MSCs increased autophagy of PECs to promote PEC survival. MSCs increased Beclin-1 protein but not mRNA. MiR-142a-5p was found to target the 3'-UTR of Beclin-1 mRNA to inhibit its protein translation in PECs. MSCs reduced the levels of miR-142a-5p in PECs from LPS-treated mice. Conclusion: MSCs may alleviate LPS-ALI through downregulation of miR-142a-5p, which allows PECs to increase Beclin-1-mediated cell autophagy.

  14. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation.

    Science.gov (United States)

    Straley, Megan E; Van Oeffelen, Wesley; Theze, Sarah; Sullivan, Aideen M; O'Mahony, Siobhain M; Cryan, John F; O'Keeffe, Gerard W

    2017-07-01

    The dopaminergic system is involved in motivation, reward and the associated motor activities. Mesodiencephalic dopaminergic neurons in the ventral tegmental area (VTA) regulate motivation and reward, whereas those in the substantia nigra (SN) are essential for motor control. Defective VTA dopaminergic transmission has been implicated in schizophrenia, drug addiction and depression whereas dopaminergic neurons in the SN are lost in Parkinson's disease. Maternal immune activation (MIA) leading to in utero inflammation has been proposed to be a risk factor for these disorders, yet it is unclear how this stimulus can lead to the diverse disturbances in dopaminergic-driven behaviors that emerge at different stages of life in affected offspring. Here we report that gestational age is a critical determinant of the subsequent alterations in dopaminergic-driven behavior in rat offspring exposed to lipopolysaccharide (LPS)-induced MIA. Behavioral analysis revealed that MIA on gestational day 16 but not gestational day 12 resulted in biphasic impairments in motor behavior. Specifically, motor impairments were evident in early life, which were resolved by adolescence, but subsequently re-emerged in adulthood. In contrast, reward seeking behaviors were altered in offspring exposed MIA on gestational day 12. These changes were not due to a loss of dopaminergic neurons per se in the postnatal period, suggesting that they reflect functional changes in dopaminergic systems. This highlights that gestational age may be a key determinant of how MIA leads to distinct alterations in dopaminergic-driven behavior across the lifespan of affected offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Regulation of ENaC-mediated alveolar fluid clearance by insulin via PI3K/Akt pathway in LPS-induced acute lung injury.

    Science.gov (United States)

    Deng, Wang; Li, Chang-Yi; Tong, Jin; Zhang, Wei; Wang, Dao-Xin

    2012-03-30

    Stimulation of epithelial sodium channel (ENaC) increases Na(+) transport, a driving force of alveolar fluid clearance (AFC) to keep alveolar spaces free of edema fluid that is beneficial for acute lung injury (ALI). It is well recognized that regulation of ENaC by insulin via PI3K pathway, but the mechanism of this signaling pathway to regulate AFC and ENaC in ALI remains unclear. The aim of this study was to investigate the effect of insulin on AFC in ALI and clarify the pathway in which insulin regulates the expression of ENaC in vitro and in vivo. A model of ALI (LPS at a dose of 5.0 mg/kg) with non-hyperglycemia was established in Sprague-Dawley rats receiving continuous exogenous insulin by micro-osmotic pumps and wortmannin. The lungs were isolated for measurement of bronchoalveolar lavage fluid(BALF), total lung water content(TLW), and AFC after ALI for 8 hours. Alveolar epithelial type II cells were pre-incubated with LY294002, Akt inhibitor and SGK1 inhibitor 30 minutes before insulin treatment for 2 hours. The expressions of α-,β-, and γ-ENaC were detected by immunocytochemistry, reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. In vivo, insulin decreased TLW, enchanced AFC, increased the expressions of α-,β-, and γ-ENaC and the level of phosphorylated Akt, attenuated lung injury and improved the survival rate in LPS-induced ALI, the effects of which were blocked by wortmannin. Amiloride, a sodium channel inhibitor, significantly reduced insulin-induced increase in AFC. In vitro, insulin increased the expressions of α-,β-, and γ-ENaC as well as the level of phosphorylated Akt but LY294002 and Akt inhibitor significantly prevented insulin-induced increase in the expression of ENaC and the level of phosphorylated Akt respectively. Immunoprecipitation studies showed that levels of Nedd4-2 binding to ENaC were decreased by insulin via PI3K/Akt pathway. Our study demonstrated that insulin alleviated pulmonary edema and

  16. Regulation of ENaC-mediated alveolar fluid clearance by insulin via PI3K/Akt pathway in LPS-induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Deng Wang

    2012-03-01

    Full Text Available Abstract Background Stimulation of epithelial sodium channel (ENaC increases Na+ transport, a driving force of alveolar fluid clearance (AFC to keep alveolar spaces free of edema fluid that is beneficial for acute lung injury (ALI. It is well recognized that regulation of ENaC by insulin via PI3K pathway, but the mechanism of this signaling pathway to regulate AFC and ENaC in ALI remains unclear. The aim of this study was to investigate the effect of insulin on AFC in ALI and clarify the pathway in which insulin regulates the expression of ENaC in vitro and in vivo. Methods A model of ALI (LPS at a dose of 5.0 mg/kg with non-hyperglycemia was established in Sprague-Dawley rats receiving continuous exogenous insulin by micro-osmotic pumps and wortmannin. The lungs were isolated for measurement of bronchoalveolar lavage fluid(BALF, total lung water content(TLW, and AFC after ALI for 8 hours. Alveolar epithelial type II cells were pre-incubated with LY294002, Akt inhibitor and SGK1 inhibitor 30 minutes before insulin treatment for 2 hours. The expressions of α-,β-, and γ-ENaC were detected by immunocytochemistry, reverse transcriptase polymerase chain reaction (RT-PCR and western blotting. Results In vivo, insulin decreased TLW, enchanced AFC, increased the expressions of α-,β-, and γ-ENaC and the level of phosphorylated Akt, attenuated lung injury and improved the survival rate in LPS-induced ALI, the effects of which were blocked by wortmannin. Amiloride, a sodium channel inhibitor, significantly reduced insulin-induced increase in AFC. In vitro, insulin increased the expressions of α-,β-, and γ-ENaC as well as the level of phosphorylated Akt but LY294002 and Akt inhibitor significantly prevented insulin-induced increase in the expression of ENaC and the level of phosphorylated Akt respectively. Immunoprecipitation studies showed that levels of Nedd4-2 binding to ENaC were decreased by insulin via PI3K/Akt pathway. Conclusions Our study

  17. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Directory of Open Access Journals (Sweden)

    Xiang Ling

    Full Text Available Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ. Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC. It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P < 0.01. Compared with the LPS group, bifidobacterium significantly decreased the production of IL-6 and TNF-α (P < 0.01 and suppressed zonulin release (P < 0.05. In addition, bifidobacterium pretreatment up-regulated occludin, claudin-3 and ZO-1 expression (P < 0.01 and also preserved these proteins localization at TJ compared with the LPS group. In the in vivo study, bifidobacterium decreased the incidence of NEC from 88 to 47% (P < 0.05 and reduced the severity in the NEC model. Increased levels of IL-6 and TNF-α in the ileum of NEC rats were normalized in bifidobacterium treated rats (P < 0.05. Moreover, administration of bifidobacterium attenuated the increase in intestinal permeability (P < 0.01, decreased the levels of serum zonulin (P < 0.05, normalized the expression and localization of TJ proteins in the ileum compared with animals with NEC. We concluded that bifidobacterium may

  18. Supersymmetric D2 anti-D2 Strings

    OpenAIRE

    Bak, Dongsu; Ohta, Nobuyoshi

    2001-01-01

    We consider the flat supersymmetric D2 and anti-D2 system, which follows from ordinary noncommutative D2 anti-D2 branes by turning on an appropriate worldvolume electric field describing dissolved fundamental strings. We study the strings stretched between D2 and anti-D2 branes and show explicitly that the would-be tachyonic states become massless. We compute the string spectrum and clarify the induced noncommutativity on the worldvolume. The results are compared with the matrix theory descri...

  19. PER2 is downregulated by the LPS-induced inflammatory response in synoviocytes in rheumatoid arthritis and is implicated in disease susceptibility.

    Science.gov (United States)

    Lee, Hwayoung; Nah, Seong-Su; Chang, Sung-Hae; Kim, Hyung-Ki; Kwon, Jun-Tack; Lee, Sanghyun; Cho, Ik-Hyun; Lee, Sang Won; Kim, Young Ock; Hong, Seung-Jae; Kim, Hak-Jae

    2017-07-01

    The clinical symptoms of rheumatoid arthritis (RA) present with circadian variation, with joint stiffness and pain more prominent in the early morning. The mammalian clock genes, which include circadian locomotor output cycles kaput, brain and muscle Arnt-like protein 1, period and cryptochrome, regulate circadian rhythms. In order to identify the association between genetic polymorphisms in the circadian clock gene period 2 (PER2) and RA, the present study genotyped three PER2 single nucleotide polymorphisms (SNPs), rs934945, rs6754875, and rs2304674, using genetic information from 256 RA patients and 499 control subjects. Primary cultured rheumatoid synovial cells were stimulated with 10 µM lipopolysaccharide (LPS). Total protein was then extracted from the synovial cells following 12 and 24 h, and PER2 protein expression was assayed by immunoblotting. The rs2304674 SNP demonstrated a significant association with susceptibility to RA following Bonferroni correction. However, statistical analysis indicated that the SNPs were not associated with any clinical features of patients with RA. Immunoblotting analysis demonstrated that PER2 protein expression was decreased by LPS‑induced inflammation in RA synovial cells; however, this was not observed in normal synovial cells. The results suggest that the PER2 gene may be a risk factor for RA, and expression of the PER2 protein may be affected by inflammation. Therefore, PER2 may contribute to the pathogenesis of RA.

  20. Skipjack tuna (Katsuwonus pelamis) eyeball oil exerts an anti-inflammatory effect by inhibiting NF-κB and MAPK activation in LPS-induced RAW 264.7 cells and croton oil-treated mice.

    Science.gov (United States)

    Jeong, Da-Hyun; Kim, Koth-Bong-Woo-Ri; Kim, Min-Ji; Kang, Bo-Kyeong; Ahn, Dong-Hyun

    2016-11-01

    The effect of tuna eyeball oil (TEO) on lipopolysaccharide (LPS)-induced inflammation in macrophage cells was investigated. TEO had no cytotoxicity in cell viability as compared to the control in LPS induced RAW 264.7 cells. TEO reduced the levels of NO and pro-inflammatory cytokines by up to 50% in a dose-dependent manner. The expression of NF-κB and MAPKs as well as iNOS and COX-2 proteins was reduced by TEO, which suggests that its anti-inflammatory activity is related to the suppression of the NF-κB and MAPK signaling pathways. The rate of formation of ear edema was reduced compared to that in the control at the highest dose tested. In an acute toxicity test, no mice were killed by TEO doses of up to 5000mg/kg body weight during the two week observation period. These results suggested that TEO may have a significant effect on inflammatory factors and be a potential anti-inflammatory therapeutic. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Synthesis and optimization of novel allylated mono-carbonyl analogs of curcumin (MACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI) in rats.

    Science.gov (United States)

    Zhu, Heping; Xu, Tingting; Qiu, Chenyu; Wu, Beibei; Zhang, Yali; Chen, Lingfeng; Xia, Qinqin; Li, Chenglong; Zhou, Bin; Liu, Zhiguo; Liang, Guang

    2016-10-04

    A series of novel symmetric and asymmetric allylated mono-carbonyl analogs of curcumin (MACs) were synthesized using an appropriate synthetic route and evaluated experimentally thru the LPS-induced expression of TNF-α and IL-6. Most of the obtained compounds exhibited improved water solubility as a hydrochloride salt compared to lead molecule 8f. The most active compound 7a was effective in reducing the Wet/Dry ratio in the lungs and protein concentration in bronchoalveolar lavage fluid. Meanwhile, 7a also inhibited mRNA expression of several inflammatory cytokines, including TNF-α, IL-6, IL-1β, and VCAM-1, in Beas-2B cells after Lipopolysaccharide (LPS) challenge. These results suggest that 7a could be therapeutically beneficial for use as an anti-inflammatory agent in the clinical treatment of acute lung injury (ALI). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    International Nuclear Information System (INIS)

    Xi, Feng; Liu, Yuan; Wang, Xiujuan; Kong, Wei; Zhao, Feng

    2016-01-01

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  3. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Liu, Yuan [Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing (China); Wang, Xiujuan; Kong, Wei [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Zhao, Feng, E-mail: taixingzhaofeng163@163.com [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China)

    2016-01-29

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  4. The dopamine D2/D3 receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: a novel possible model of OCD.

    Science.gov (United States)

    Eagle, Dawn M; Noschang, Cristie; d'Angelo, Laure-Sophie Camilla; Noble, Christie A; Day, Jacob O; Dongelmans, Marie Louise; Theobald, David E; Mar, Adam C; Urcelay, Gonzalo P; Morein-Zamir, Sharon; Robbins, Trevor W

    2014-05-01

    Excessive checking is a common, debilitating symptom of obsessive-compulsive disorder (OCD). In an established rodent model of OCD checking behaviour, quinpirole (dopamine D2/3-receptor agonist) increased checking in open-field tests, indicating dopaminergic modulation of checking-like behaviours. We designed a novel operant paradigm for rats (observing response task (ORT)) to further examine cognitive processes underpinning checking behaviour and clarify how and why checking develops. We investigated i) how quinpirole increases checking, ii) dependence of these effects on D2/3 receptor function (following treatment with D2/3 receptor antagonist sulpiride) and iii) effects of reward uncertainty. In the ORT, rats pressed an 'observing' lever for information about the location of an 'active' lever that provided food reinforcement. High- and low-checkers (defined from baseline observing) received quinpirole (0.5mg/kg, 10 treatments) or vehicle. Parametric task manipulations assessed observing/checking under increasing task demands relating to reinforcement uncertainty (variable response requirement and active-lever location switching). Treatment with sulpiride further probed the pharmacological basis of long-term behavioural changes. Quinpirole selectively increased checking, both functional observing lever presses (OLPs) and non-functional extra OLPs (EOLPs). The increase in OLPs and EOLPs was long-lasting, without further quinpirole administration. Quinpirole did not affect the immediate ability to use information from checking. Vehicle and quinpirole-treated rats (VEH and QNP respectively) were selectively sensitive to different forms of uncertainty. Sulpiride reduced non-functional EOLPs in QNP rats but had no effect on functional OLPs. These data have implications for treatment of compulsive checking in OCD, particularly for serotonin-reuptake-inhibitor treatment-refractory cases, where supplementation with dopamine receptor antagonists may be beneficial

  5. The dopamine D2/D3 receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: A novel possible model of OCD?

    Science.gov (United States)

    Eagle, Dawn M.; Noschang, Cristie; d’Angelo, Laure-Sophie Camilla; Noble, Christie A.; Day, Jacob O.; Dongelmans, Marie Louise; Theobald, David E.; Mar, Adam C.; Urcelay, Gonzalo P.; Morein-Zamir, Sharon; Robbins, Trevor W.

    2014-01-01

    Excessive checking is a common, debilitating symptom of obsessive-compulsive disorder (OCD). In an established rodent model of OCD checking behaviour, quinpirole (dopamine D2/3-receptor agonist) increased checking in open-field tests, indicating dopaminergic modulation of checking-like behaviours. We designed a novel operant paradigm for rats (observing response task (ORT)) to further examine cognitive processes underpinning checking behaviour and clarify how and why checking develops. We investigated i) how quinpirole increases checking, ii) dependence of these effects on D2/3 receptor function (following treatment with D2/3 receptor antagonist sulpiride) and iii) effects of reward uncertainty. In the ORT, rats pressed an ‘observing’ lever for information about the location of an ‘active’ lever that provided food reinforcement. High- and low-checkers (defined from baseline observing) received quinpirole (0.5 mg/kg, 10 treatments) or vehicle. Parametric task manipulations assessed observing/checking under increasing task demands relating to reinforcement uncertainty (variable response requirement and active-lever location switching). Treatment with sulpiride further probed the pharmacological basis of long-term behavioural changes. Quinpirole selectively increased checking, both functional observing lever presses (OLPs) and non-functional extra OLPs (EOLPs). The increase in OLPs and EOLPs was long-lasting, without further quinpirole administration. Quinpirole did not affect the immediate ability to use information from checking. Vehicle and quinpirole-treated rats (VEH and QNP respectively) were selectively sensitive to different forms of uncertainty. Sulpiride reduced non-functional EOLPs in QNP rats but had no effect on functional OLPs. These data have implications for treatment of compulsive checking in OCD, particularly for serotonin-reuptake-inhibitor treatment-refractory cases, where supplementation with dopamine receptor antagonists may be

  6. The Effect of the Aerial Part of Lindera akoensis on Lipopolysaccharides (LPS-Induced Nitric Oxide Production in RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yen-Hsueh Tseng

    2013-04-01

    Full Text Available Four new secondary metabolites, 3α-((E-Dodec-1-enyl-4β-hydroxy-5β-methyldihydrofuran-2-one (1, linderinol (6, 4'-O-methylkaempferol 3-O-α-L-(4''-E-p-coumaroylrhamnoside (11 and kaempferol 3-O-α-L-(4''-Z-p-coumaroylrhamnoside (12 with eleven known compounds—3-epilistenolide D1 (2, 3-epilistenolide D2 (3, (3Z,4α,5β-3-(dodec-11-ynylidene-4-hydroxy-5-methylbutanolide (4, (3E,4β,5β-3-(dodec-11-ynylidene-4-hydroxy-5-methylbutanolide (5, matairesinol (7, syringaresinol (8, (+-pinoresinol (9, salicifoliol (10, 4''-p-coumaroylafzelin (13, catechin (14 and epicatechin (15—were first isolated from the aerial part of Lindera akoensis. Their structures were determined by detailed analysis of 1D- and 2D-NMR spectroscopic data. All of the compounds isolated from Lindera akoensis showed that in vitro anti-inflammatory activity decreases the LPS-stimulated production of nitric oxide (NO in RAW 264.7 cell, with IC50 values of 4.1–413.8 µM.

  7. Enhancement of antinociception by coadminstration of minocycline and a non-steroidal anti-inflammatory drug indomethacin in naïve mice and murine models of LPS-induced thermal hyperalgesia and monoarthritis

    Directory of Open Access Journals (Sweden)

    Masocha Willias

    2010-12-01

    Full Text Available Abstract Background Minocycline and a non-steroidal anti-inflammatory drug (NSAID indomethacin, have anti-inflammatory activities and are both used in the management of rheumatoid arthritis. However, there are no reports on whether coadministration of these drugs could potentiate each other's activities in alleviating pain and weight bearing deficits during arthritis. Methods LPS was injected to BALB/c mice intraperitoneally (i.p. to induce thermal hyperalgesia. The hot plate test was used to study thermal nociception in naïve BALB/c and C57BL/6 mice and BALB/c mice with LPS-induced thermal hyperalgesia and to evaluate antinociceptive effects of drugs administered i.p. Monoarthritis was induced by injection of LPS intra-articularly into the right hind (RH limb ankle joint of C57BL/6 mice. Weight bearing changes and the effect of i.p. drug administration were analyzed in freely moving mice using the video-based CatWalk gait analysis system. Results In naïve mice indomethacin (5 to 50 mg/kg had no significant activity, minocycline (25 to 100 mg/kg produced hyperalgesia to thermal nociception, however, coadministration of minocycline 50 mg/kg with indomethacin 5 or 10 mg/kg produced significant antinociceptive effects in the hot plate test. A selective inhibitor of COX-1, FR122047 (10 mg/kg and a selective COX-2 inhibitor, CAY10404 (10 mg/kg had no significant antinociceptive activities to thermal nociception in naïve mice, however, coadministration of minocycline, with CAY10404 but not FR122047 produced significant antinociceptive effects. In mice with LPS-induced hyperalgesia vehicle, indomethacin (10 mg/kg or minocycline (50 mg/kg did not produce significant changes, however, coadministration of minocycline plus indomethacin resulted in antinociceptive activity. LPS-induced RH limb monoarthritis resulted in weight bearing (RH/left hind (LH limb paw pressure ratios and RH/LH print area ratios deficits. Treatment with indomethacin (1 mg/kg or

  8. Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens

    Science.gov (United States)

    The present study investigated the effects of B. subtilis-based probiotics on performance, modulation of host inflammatory responses and intestinal barrier integrity of broilers subjected to LPS challenge. Birds at day 0 of age were randomly allocated to one of the 3 dietary treatments - controls, ...

  9. The bovine acute phase response to endotoxin and Gram-negative bacteria

    DEFF Research Database (Denmark)

    Jacobsen, Stine

    The overall aims of the work presented in this thesis were to characterize bovine cytokine and acute phase protein (APP) responses to lipopolysaccharide (LPS) and to investigate how LPS-induced clinical and immunoinflammatory responses differed between individual cows. Two kinds of experimental e...

  10. Microarray and pathway analysis reveal distinct mechanisms underlying cannabinoid-mediated modulation of LPS-induced activation of BV-2 microglial cells.

    Directory of Open Access Journals (Sweden)

    Ana Juknat

    Full Text Available Cannabinoids are known to exert immunosuppressive activities. However, the mechanisms which contribute to these effects are unknown. Using lipopolysaccharide (LPS to activate BV-2 microglial cells, we examined how Δ(9-tetrahydrocannabinol (THC, the major psychoactive component of marijuana, and cannabidiol (CBD the non-psychoactive component, modulate the inflammatory response. Microarray analysis of genome-wide mRNA levels was performed using Illumina platform and the resulting expression patterns analyzed using the Ingenuity Pathway Analysis to identify functional subsets of genes, and the Ingenuity System Database to denote the gene networks regulated by CBD and THC. From the 5338 transcripts that were differentially expressed across treatments, 400 transcripts were found to be upregulated by LPS, 502 by CBD+LPS and 424 by THC+LPS, while 145 were downregulated by LPS, 297 by CBD+LPS and 149 by THC+LPS, by 2-fold or more (p≤0.005. Results clearly link the effects of CBD and THC to inflammatory signaling pathways and identify new cannabinoid targets in the MAPK pathway (Dusp1, Dusp8, Dusp2, cell cycle related (Cdkn2b, Gadd45a as well as JAK/STAT regulatory molecules (Socs3, Cish, Stat1. The impact of CBD on LPS-stimulated gene expression was greater than that of THC. We attribute this difference to the fact that CBD highly upregulated several genes encoding negative regulators of both NFκB and AP-1 transcriptional activities, such as Trib3 and Dusp1 known to be modulated through Nrf2 activation. The CBD-specific expression profile reflected changes associated with oxidative stress and glutathione depletion via Trib3 and expression of ATF4 target genes. Furthermore, the CBD affected genes were shown to be controlled by nuclear factors usually involved in regulation of stress response and inflammation, mainly via Nrf2/Hmox1 axis and the Nrf2/ATF4-Trib3 pathway. These observations indicate that CBD, and less so THC, induce a cellular stress

  11. Effects of aripiprazole and the Taq1A polymorphism in the dopamine D2 receptor gene on the clinical response and plasma monoamine metabolites level during the acute phase of schizophrenia.

    Science.gov (United States)

    Miura, Itaru; Takeuchi, Satoshi; Katsumi, Akihiko; Mori, Azuma; Kanno, Keiko; Yang, Qiaohui; Mashiko, Hirobumi; Numata, Yoshihiko; Niwa, Shin-Ichi

    2012-02-01

    The Taq1A polymorphism in the dopamine D2 receptor (DRD2) gene could be related to the response to antipsychotics. We examined the effects of the Taq1A polymorphism on the plasma monoamine metabolites during the treatment of schizophrenia with aripiprazole, a DRD2 partial agonist. Thirty Japanese patients with schizophrenia were treated with aripiprazole for 6 weeks. We measured plasma levels of homovanillic acid (pHVA) and 3-methoxy-4hydroxyphenylglycol (pMHPG) before and after treatment. The Taq1A polymorphism was genotyped with polymerase chain reaction. Aripiprazole improved the acute symptoms of schizophrenia and decreased pHVA in responders (P = 0.023) but not in nonresponders (P = 0.28). Although A1 allele carriers showed a tendency to respond to aripiprazole (61.5%) compared to A1 allele noncarriers (29.4%) (P = 0.078), there was not statistically significant difference in the response between the 2 genotype groups. There were significant effect for response (P = 0.013) and genotype × response interaction (P = 0.043) on the change of pHVA. The changes of pHVA differ between responders and nonresponders in A1 allele carriers but not in A1 allele noncarriers. There were no genotype or response effects or genotype × response interaction on the changes of the plasma levels of 3-methoxy-4hydroxyphenylglycol. Our preliminary results suggest that Taq1A polymorphism may be partly associated with changes in pHVA during acute schizophrenia.

  12. M2 to D2

    International Nuclear Information System (INIS)

    Mukhi, Sunil; Papageorgakis, Constantinos

    2008-01-01

    We examine the recently proposed ''3-algebra'' field theory for multiple M2-branes and show that when a scalar field valued in the 3-algebra develops a vacuum expectation value, the resulting Higgs mechanism has the novel effect of promoting topological (Chern-Simons) to dynamical (Yang-Mills) gauge fields. This leads to a precise derivation of the maximally supersymmetric Yang-Mills theory on multiple D2-branes and thereby provides a relationship between 3-algebras and Yang-Mills theories. We discuss the physical interpretation of this result.

  13. Profiling of cytosolic and mitochondrial H2O2 production using the H2O2-sensitive protein HyPer in LPS-induced microglia cells.

    Science.gov (United States)

    Park, Junghyung; Lee, Seunghoon; Lee, Hyun-Shik; Lee, Sang-Rae; Lee, Dong-Seok

    2017-07-27

    Dysregulation of the production of pro-inflammatory mediators in microglia exacerbates the pathologic process of neurodegenerative disease. ROS actively affect microglia activation by regulating transcription factors that control the expression of pro-inflammatory genes. However, accurate information regarding the function of ROS in different subcellular organelles has not yet been established. Here, we analyzed the pattern of cytosolic and mitochondrial H 2 O 2 formation in LPS-activated BV-2 microglia using the H 2 O 2- sensitive protein HyPer targeted to specific subcellular compartments. Our results show that from an early time, cytosolic H 2 O 2 started increasing constantly, whereas mitochondrial H 2 O 2 rapidly increased later. In addition, we found that MAPK affected cytosolic H 2 O 2 , but not mitochondrial H 2 O 2 . Consequently, our study provides the basic information about subcellular H 2 O 2 generation in activated microglia, and a useful tool for investigating molecular targets that can modulate neuroinflammatory responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Selenium Pretreatment Alleviated LPS-Induced Immunological Stress Via Upregulation of Several Selenoprotein Encoding Genes in Murine RAW264.7 Cells.

    Science.gov (United States)

    Wang, Longqiong; Jing, Jinzhong; Yan, Hui; Tang, Jiayong; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Tian, Gang; Cai, Jingyi; Shang, Haiying; Zhao, Hua

    2018-04-18

    This study was conducted to profile selenoprotein encoding genes in mouse RAW264.7 cells upon lipopolysaccharide (LPS) challenge and integrate their roles into immunological regulation in response to selenium (Se) pretreatment. LPS was used to develop immunological stress in macrophages. Cells were pretreated with different levels of Se (0, 0.5, 1.0, 1.5, 2.0 μmol Se/L) for 2 h, followed by LPS (100 ng/mL) stimulation for another 3 h. The mRNA expression of 24 selenoprotein encoding genes and 9 inflammation-related genes were investigated. The results showed that LPS (100 ng/mL) effectively induced immunological stress in RAW264.7 cells with induced inflammation cytokines, IL-6 and TNF-α, mRNA expression, and cellular secretion. LPS increased (P immunological stress in RAW264.7 cells accompanied with the global downregulation of selenoprotein encoding genes and Se pretreatment alleviated immunological stress via upregulation of a subset of selenoprotein encoding genes.

  15. Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo.

    Science.gov (United States)

    Stayte, Sandy; Rentsch, Peggy; Tröscher, Anna R; Bamberger, Maximilian; Li, Kong M; Vissel, Bryce

    2017-01-01

    Parkinson's disease is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta region and a subsequent loss of dopamine within the striatum. A promising avenue of research has been the administration of growth factors to promote the survival of remaining midbrain neurons, although the mechanism by which they provide neuroprotection is not understood. Activin A, a member of the transforming growth factor β superfamily, has been shown to be a potent anti-inflammatory following acute brain injury and has been demonstrated to play a role in the neuroprotection of midbrain neurons against MPP+-induced degeneration in vitro. We hypothesized that activin A may offer similar anti-inflammatory and neuroprotective effects in in vivo mouse models of Parkinson's disease. We found that activin A significantly attenuated the inflammatory response induced by both MPTP and intranigral administration of lipopolysaccharide in C57BL/6 mice. We found that administration of activin A promoted survival of dopaminergic and total neuron populations in the pars compacta region both 8 days and 8 weeks after MPTP-induced degeneration. Surprisingly, no corresponding protection of striatal dopamine levels was found. Furthermore, activin A failed to protect against loss of striatal dopamine transporter expression in the striatum, suggesting the neuroprotective action of activin A may be localized to the substantia nigra. Together, these results provide the first evidence that activin A exerts potent neuroprotection and anti-inflammatory effects in the MPTP and lipopolysaccharide mouse models of Parkinson's disease.

  16. SILAC-MS Based Characterization of LPS and Resveratrol Induced Changes in Adipocyte Proteomics - Resveratrol as Ameliorating Factor on LPS Induced Changes.

    Directory of Open Access Journals (Sweden)

    Mark K Nøhr

    Full Text Available Adipose tissue inflammation is believed to play a pivotal role in the development obesity-related morbidities such as insulin resistance. However, it is not known how this (low-grade inflammatory state develops. It has been proposed that the leakage of lipopolysaccharides (LPS, originating from the gut microbiota, through the gut epithelium could drive initiation of inflammation. To get a better understanding of which proteins and intracellular pathways are affected by LPS in adipocytes, we performed SILAC proteomic analysis and identified proteins that were altered in expression. Furthermore, we tested the anti-inflammatory compound resveratrol. A total of 927 proteins were quantified by the SILAC method and of these 57- and 64 were significantly up- and downregulated by LPS, respectively. Bioinformatic analysis (GO analysis revealed that the upregulated proteins were especially involved in the pathways of respiratory electron transport chain and inflammation. The downregulated proteins were especially involved in protein glycosylation. One of the latter proteins, GALNT2, has previously been described to regulate the expression of liver lipases such as ANGPTL3 and apoC-III affecting lipid metabolism. Furthermore, LPS treatment reduced the protein levels of the insulin sensitizing adipokine, adiponectin, and proteins participating in the final steps of triglyceride- and cholesterol synthesis. Generally, resveratrol opposed the effect induced by LPS and, as such, functioning as an ameliorating factor in disease state. Using an unbiased proteomic approach, we present novel insight of how the proteome is altered in adipocytes in response to LPS as seen in obesity. We suggest that LPS partly exerts its detrimental effects by altering glycosylation processes of the cell, which is starting to emerge as important posttranscriptional regulators of protein expression. Furthermore, resveratrol could be a prime candidate in ameliorating dysfunctioning

  17. Sulforaphane Inhibits Lipopolysaccharide-Induced Inflammation, Cytotoxicity, Oxidative Stress, and miR-155 Expression and Switches to Mox Phenotype through Activating Extracellular Signal-Regulated Kinase 1/2-Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway in Murine Microglial Cells.

    Science.gov (United States)

    Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin

    2018-01-01

    Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state.

  18. Transcriptional profiling of striatal neurons in response to single or concurrent activation of dopamine D2, adenosine A(2A) and metabotropic glutamate type 5 receptors: focus on beta-synuclein expression.

    Science.gov (United States)

    Canela, Laia; Selga, Elisabet; García-Martínez, Juan Manuel; Amaral, Olavo B; Fernández-Dueñas, Víctor; Alberch, Jordi; Canela, Enric I; Franco, Rafael; Noé, Véronique; Lluís, Carme; Ciudad, Carlos J; Ciruela, Francisco

    2012-10-25

    G protein-coupled receptor oligomerization is a concept which is changing the understanding of classical pharmacology. Both, oligomerization and functional interaction between adenosine A(2A,) dopamine D(2) and metabotropic glutamate type 5 receptors have been demonstrated in the striatum. However, the transcriptional consequences of receptors co-activation are still unexplored. We aim here to determine the changes in gene expression of striatal primary cultured neurons upon isolated or simultaneous receptor activation. Interestingly, we found that 95 genes of the total analyzed (15,866 transcripts and variants) changed their expression in response to simultaneous stimulation of all three receptors. Among these genes, we focused on the β-synuclein (β-Syn) gene (SCNB). Quantitative PCR verified the magnitude and direction of change in expression of SCNB. Since β-Syn belongs to the homologous synuclein family and may be considered a natural regulator of α-synuclein (α-Syn), it has been proposed that β-Syn might act protectively against α-Syn neuropathology. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Equine colostral carbohydrates reduce lipopolysaccharide-induced inflammatory responses in equine peripheral blood mononuclear cells.

    Science.gov (United States)

    Vendrig, J C; Coffeng, L E; Fink-Gremmels, J

    2012-12-01

    Increasing evidence suggests that reactions to lipopolysaccharide (LPS), particularly in the gut, can be partly or completely mitigated by colostrum- and milk-derived oligosaccharides. Confirmation of this hypothesis could lead to the development of new therapeutic concepts. To demonstrate the influence of equine colostral carbohydrates on the inflammatory response in an in vitro model with equine peripheral blood mononuclear cells (PBMCs). Carbohydrates were extracted from mare colostrum, and then evaluated for their influence on LPS-induced inflammatory responses in PBMCs isolated from the same mares, mRNA expression of tumour necrosis factor-alpha, interleukin-6 and interleukin-10 was measured as well as the protein levels of tumour necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10). Equine colostral carbohydrates significantly reduced LPS-induced TNF-alpha protein at both times measured and significantly reduced LPS-induced TNF-alpha, IL-6 and IL-10 mRNA expression by PBMCs. Moreover, cell viability significantly increased in the presence of high concentrations of colostral carbohydrates. Carbohydrates derived from equine colostrum reduce LPS-induced inflammatory responses of equine PBMCs. Colostrum and milk-derived carbohydrates are promising candidates for new concepts in preventive and regenerative medicine.

  20. 7 CFR 15d.2 - Discrimination prohibited.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Discrimination prohibited. 15d.2 Section 15d.2... THE UNITED STATES DEPARTMENT OF AGRICULTURE § 15d.2 Discrimination prohibited. (a) No agency, officer... participation in, deny the benefits of, or subject to discrimination any person in the United States under any...

  1. Do all the European surgeons perform the same D2? The need of D2 audit in Europe.

    Science.gov (United States)

    Bencivenga, Maria; Verlato, Giuseppe; Mengardo, Valentina; Weindelmayer, Jacopo; Allum, William H

    2018-06-04

    Although D2 lymphadenectomy is the standard of care for radical intent surgical treatment of gastric cancer, the real compliance with D2 dissection in Europe is still unknown. The aim of the present study is to analyze the variation in lymph-node harvesting reported after D2 dissection in European series and to present a European project aiming at evaluating the real compliance with D2 lymphadenectomy. A PubMed search for papers using the key words "D2 lymphadenectomy" and "gastric cancer" from 2008 to 2017 was undertaken. Only studies by European authors in English language reporting the number of retrieved lymph nodes after D2 lymphadenectomy were included. The results of literature review were descriptively reported. The literature survey yielded 16 studies: 2 RCTs, 3 observational multicentre studies, and 11 observational monocentric studies. A large variability was found in the number of retrieved nodes, which, overall, was the lowest in the surgical series from Eastern Europe (16.6 and 19.9 in the Lithuanian and Hungarian series, respectively) and the highest in an Italian RCT. The within-study variability was also quite high, especially in multicentre RCTs and observational studies. Sample size tended to have a larger effect on the variability of lymph nodes retrieved than on its actual value. However, in both cases, the relation was not significant, due to the low number of studies considered. There is a large variability in the number of retrieved nodes after D2 dissection in European series. This reflects, at least partly, different approaches to D2 lymphadenectomy by European surgeons and may be responsible of the different outcomes observed in patients with gastric cancer across Europe. Therefore, there is the need to standardize the practice of D2 gastrectomy in Europe and to define possible variations of D2 procedures according to tumour's characteristics.

  2. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor.

    Science.gov (United States)

    Bulwa, Zachary B; Sharlin, Jordan A; Clark, Peter J; Bhattacharya, Tushar K; Kilby, Chessa N; Wang, Yanyan; Rhodes, Justin S

    2011-11-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. TRAM-Derived Decoy Peptides inhibits the inflammatory response in mouse mammary epithelial cells and a mastitis model in mice.

    Science.gov (United States)

    Hu, Xiaoyu; Tian, Yuan; Wang, Tiancheng; Zhang, Wenlong; Wang, Wei; Gao, Xuejiao; Qu, Shihui; Cao, Yongguo; Zhang, Naisheng

    2015-10-05

    It has been proved that TRAM-Derived Decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRAM-Derived decoy peptide (TM6), belongs to TRAM TIR domain, of which sequence is "N"-RQIKIWFQNRRMKWK, KENFLRDTWCNFQFY-"C" and evaluated the effects of TM6 on lipopolysaccharide-induced mastitis in mice. In vivo, LPS-induced mice mastitis model was established by injection of LPS through the duct of mammary gland. TM6 was injected 1h before or after LPS treatment. In vitro, primary mouse mammary epithelial cells were used to investigate the effects of TM6 on LPS-induced inflammatory responses. The results showed that TM6 inhibited LPS-induced mammary gland histopathologic changes, MPO activity, and TNF-α, IL-1β and IL-6 production in mice. In vitro, TM6 significantly inhibited LPS-induced TNF-α and IL-6 production, as well as NF-κB and MAPKs activation. In conclusion, this study demonstrated that TM6 had protective effects on LPS-mastitis and may be a promising therapeutic reagent for mastitis treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. D2O-induced cell excitation

    International Nuclear Information System (INIS)

    Andjus, P.R.; Vucelic, D.

    1990-01-01

    The effects of deuterium oxide (D 2 O) on giant internodal cells of the fresh water alga Chara gymnophylla, were investigated. D 2 O causes membrane excitation followed by potassium leakage. The primary effect consists of an almost instantaneous membrane depolarization resembling an action potential with incomplete repolarization. A hypothesis was proposed which deals with an osmotic stress effect of D 2 O on membrane ion channels followed by the suppression of the electrogenic pump activity. The initial changes (potential spike and rapid K+ efflux) may represent the previously undetected link between the D 2 O-induced temporary arrest of protoplasmic streaming and the early events triggered at the plasma membrane level as the primary site of D 2 O action

  5. Genome-wide association study of genetic variants in LPS-stimulated IL-6, IL-8, IL-10, IL-1ra and TNF-α cytokine response in a Danish Cohort

    DEFF Research Database (Denmark)

    Larsen, Margit Hørup; Albrechtsen, Anders; Thørner, Lise Wegner

    2013-01-01

    Cytokine response plays a vital role in various human lipopolysaccharide (LPS) infectious and inflammatory diseases. This study aimed to find genetic variants that might affect the levels of LPS-induced interleukin (IL)-6, IL-8, IL-10, IL-1ra and tumor necrosis factor (TNF)-α cytokine production....

  6. Cocaine-induced adaptation of dopamine D2S, but not D2L autoreceptors.

    Science.gov (United States)

    Robinson, Brooks G; Condon, Alec F; Radl, Daniela; Borrelli, Emiliana; Williams, John T; Neve, Kim A

    2017-11-20

    The dopamine D2 receptor has two splice variants, D2S (Short) and D2L (Long). In dopamine neurons, both variants can act as autoreceptors to regulate neuronal excitability and dopamine release, but the roles of each variant are incompletely characterized. In a previous study we used viral receptor expression in D2 receptor knockout mice to show distinct effects of calcium signaling on D2S and D2L autoreceptor function (Gantz et al., 2015). However, the cocaine-induced plasticity of D2 receptor desensitization observed in wild type mice was not recapitulated with this method of receptor expression. Here we use mice with genetic knockouts of either the D2S or D2L variant to investigate cocaine-induced plasticity in D2 receptor signaling. Following a single in vivo cocaine exposure, the desensitization of D2 receptors from neurons expressing only the D2S variant was reduced. This did not occur in D2L-expressing neurons, indicating differential drug-induced plasticity between the variants.

  7. A novel imidazopyridine derivative, X22, attenuates sepsis-induced lung and liver injury by inhibiting the inflammatory response in vitro and in vivo.

    Science.gov (United States)

    Ge, Xiangting; Feng, Zhiguo; Xu, Tingting; Wu, Beibei; Chen, Hongjin; Xu, Fengli; Fu, Lili; Shan, Xiaoou; Dai, Yuanrong; Zhang, Yali; Liang, Guang

    2016-01-01

    Sepsis remains a leading cause of death worldwide. Despite years of extensive research, effective drugs to treat sepsis in the clinic are lacking. In this study, we found a novel imidazopyridine derivative, X22, which has powerful anti-inflammatory activity. X22 dose-dependently inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine production in mouse primary peritoneal macrophages and RAW 264.7 macrophages. X22 also downregulated the LPS-induced proinflammatory gene expression in vitro. In vivo, X22 exhibited a significant protection against LPS-induced death. Pretreatment or treatment with X22 attenuated the sepsis-induced lung and liver injury by inhibiting the inflammatory response. In addition, X22 showed protection against LPS-induced acute lung injury. We additionally found that pretreatment with X22 reduced the inflammatory pain in the acetic acid and formalin models and reduced the dimethylbenzene-induced ear swelling and acetic acid-increased vascular permeability. Together, these data confirmed that X22 has multiple anti-inflammatory effects and may be a potential therapeutic option in the treatment of inflammatory diseases.

  8. Peracetylated hydroxytyrosol, a new hydroxytyrosol derivate, attenuates LPS-induced inflammatory response in murine peritoneal macrophages via regulation of non-canonical inflammasome, Nrf2/HO1 and JAK/STAT signaling pathways.

    Science.gov (United States)

    Montoya, Tatiana; Aparicio-Soto, Marina; Castejón, María Luisa; Rosillo, María Ángeles; Sánchez-Hidalgo, Marina; Begines, Paloma; Fernández-Bolaños, José G; Alarcón-de-la-Lastra, Catalina

    2018-03-18

    The present study was designed to investigate the anti-inflammatory effects of a new derivative of hydroxytyrosol (HTy), peracetylated hydroxytyrosol (Per-HTy), compared with its parent, HTy, on lipopolysaccharide (LPS)-stimulated murine macrophages as well as potential signaling pathways involved. In particular, we attempted to characterize the role of the inflammasome underlying Per-HTy possible anti-inflammatory effects. Isolated murine peritoneal macrophages were treated with HTy or its derivative in the presence or absence of LPS (5 μg/ml) for 18 h. Cell viability was determined using sulforhodamine B (SRB) assay. Nitric oxide (NO) production was analyzed by Griess method. Production of pro-inflammatory cytokines was evaluated by enzyme-linked immunosorbent assay (ELISA) and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway (STAT3), haem oxigenase 1 (HO1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and mitogen-activated protein kinases (MAPKs) activation was determined by Western blot. Per-HTy significantly reduced the levels of NO and pro-inflammatory cytokines as well as both COX-2 and iNOS expressions. Furthermore, Per-HTy treatment inhibited STAT3 and increased Nrf2 and HO1 protein levels in murine macrophages exposed to LPS. In addition, Per-HTy anti-inflammatory activity was related with an inhibition of non-canonical nucleotide binding domain (NOD)-like receptor (NLRP3) inflammasome pathways by decreasing pro-inflammatory interleukin (IL)-1β and IL-18 cytokine levels as consequence of regulation of cleaved caspase-11 enzyme. These results support that this new HTy derivative may offer a new promising nutraceutical therapeutic strategy in the management of inflammatory-related pathologies. Copyright © 2018. Published by Elsevier Inc.

  9. A new synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-κB pathway in BV2 microglial cells.

    Science.gov (United States)

    Lee, Young Han; Jeon, Seung-Hyun; Kim, Se Hyun; Kim, Changyoun; Lee, Seung-Jae; Koh, Dongsoo; Lim, Yoongho; Ha, Kyooseob; Shin, Soon Young

    2012-06-30

    Microglial cells are the resident innate immune cells that sense pathogens and tissue injury in the central nervous system (CNS). Microglial activation is critical for neuroinflammatory responses. The synthetic compound 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139) is a novel chalcone-derived compound. In this study, we investigated the effects of DK-139 on Toll-like receptor 4 (TLR4)-mediated inflammatory responses in BV2 microglial cells. DK-139 inhibited lipopolysaccharide (LPS)-induced TLR4 activity, as determined using a cell-based assay. DK-139 blocked LPS-induced phosphorylation of IκB and p65/RelA NF-κB, resulting in inhibition of the nuclear translocation and trans-acting activity of NF-κB in BV2 microglial cells. We also found that DK-139 reduced the expression of NF-κB target genes, such as those for COX-2, iNOS, and IL-1β, in LPS-stimulated BV2 microglial cells. Interestingly, DK-139 blocked LPS-induced Akt phosphorylation. Inhibition of Akt abrogated LPS-induced phosphorylation of p65/RelA, while overexpression of dominant- active p110CAAX enhanced p65/RelA phosphorylation as well as iNOS and COX2 expression. These results suggest that DK-139 exerts an anti-inflammatory effect on microglial cells by inhibiting the Akt/IκB kinase (IKK)/NF-κB signaling pathway.

  10. Measurement of the hyperfine structure of the 31D2, 41D2, 51D2 levels of helium 3

    International Nuclear Information System (INIS)

    Lemery, H.; Hamel, J.; Barrat, J.-P.

    1981-01-01

    It is well known that, in a discharge in 3 He, the nuclear spins in the ground state can be oriented through metastability exchange, by optical pumping of the metastable 2 3 S 1 atoms. The orientation is transmitted to the other levels excited in the discharge. If the nuclear spins in the ground state are submitted to magnetic resonance, the light emitted from these excited states is modulated at the R.F. field frequency. The degree of modulation is important only near a level crossing, in zero field or in non-zero field. This method has been used to determine the hyperfine structure of the 3 1 D 2 , 4 1 D 2 , 5 1 D 2 levels. The results are in good agreement with those of previous measurements and with theoretical predictions [fr

  11. Evidence for genetic heterogeneity in D-2-hydroxyglutaric aciduria

    DEFF Research Database (Denmark)

    Kranendijk, Martijn; Struys, Eduard A; Gibson, K Michael

    2010-01-01

    We performed molecular, enzyme, and metabolic studies in 50 patients with D-2-hydroxyglutaric aciduria (D-2-HGA) who accumulated D-2-hydroxyglutarate (D-2-HG) in physiological fluids. Presumed pathogenic mutations were detected in 24 of 50 patients in the D-2-hydroxyglutarate dehydrogenase (D2HGD...

  12. Thyroid Hormone Signaling in Male Mouse Skeletal Muscle Is Largely Independent of D2 in Myocytes

    Science.gov (United States)

    Werneck-de-Castro, Joao P.; Fonseca, Tatiana L.; Ignacio, Daniele L.; Fernandes, Gustavo W.; Andrade-Feraud, Cristina M.; Lartey, Lattoya J.; Ribeiro, Marcelo B.; Ribeiro, Miriam O.; Gereben, Balazs

    2015-01-01

    The type 2 deiodinase (D2) activates the prohormone T4 to T3. D2 is expressed in skeletal muscle (SKM), and its global inactivation (GLOB-D2KO mice) reportedly leads to skeletal muscle hypothyroidism and impaired differentiation. Here floxed Dio2 mice were crossed with mice expressing Cre-recombinase under the myosin light chain 1f (cre-MLC) to disrupt D2 expression in the late developmental stages of skeletal myocytes (SKM-D2KO). This led to a loss of approximately 50% in D2 activity in neonatal and adult SKM-D2KO skeletal muscle and about 75% in isolated SKM-D2KO myocytes. To test the impact of Dio2 disruption, we measured soleus T3 content and found it to be normal. We also looked at the expression of T3-responsive genes in skeletal muscle, ie, myosin heavy chain I, α-actin, myosin light chain, tropomyosin, and serca 1 and 2, which was preserved in neonatal SKM-D2KO hindlimb muscles, at a time that coincides with a peak of D2 activity in control animals. In adult soleus the baseline level of D2 activity was about 6-fold lower, and in the SKM-D2KO soleus, the expression of only one of five T3-responsive genes was reduced. Despite this, adult SKM-D2KO animals performed indistinguishably from controls on a treadmill test, running for approximately 16 minutes and reached a speed of about 23 m/min; muscle strength was about 0.3 mN/m·g body weight in SKM-D2KO and control ankle muscles. In conclusion, there are multiple sources of D2 in the mouse SKM, and its role is limited in postnatal skeletal muscle fibers. PMID:26214036

  13. On d=2 Regge calculus without triangulation

    International Nuclear Information System (INIS)

    Foerster, D.

    1987-01-01

    The supersymmetric version of a previously developed Regge calculus for d=2 euclidean gravity is given. In the context of string theory, a continuum theory is likely to exist for D<2 external space-time dimensions, just like in the bosonic case and essentially in agreement with the weak coupling regime D≤1 found by Gervais and Neveu for Liouville theory and its supersymmetric extension. The techniques developed here are intended to be of use, eventually, in lowering the critical dimensions of string theories. (orig.)

  14. Favoring D2-Lymphadenectomy in Gastric Cancer.

    Science.gov (United States)

    Karavokyros, Ioannis; Michalinos, Adamantios

    2018-01-01

    The role of extended lymphadenectomy in the surgical treatment of gastric cancer has been debated for many years. So far six prospective randomized trials and a number of meta-analyses comparing D 1 - to D 2 -lymphadenectomy in open surgery have been published with contradicting results. The possible oncologic benefit of radical lymphadenectomy has been blurred by a number of reasons. In most of the trials the strategies under comparison were made similar after protocol violations. Imperfect design of the trials could not exclude the influence of cofounding factors. Inappropriate endpoints could not detect evidently the difference between the two surgical strategies. On the other hand radical lymphadenectomy was characterized by increased morbidity and mortality. This was mostly caused by the addition of pancreatico-splenectomy in all D 2 -dissections, even when not indicated. A careful analysis of the available evidence indicates that D 2 -lymphadenectomy performed by adequately trained surgeons without resection of the pancreas and/or spleen, unless otherwise indicated, decreases Gastric Cancer Related Deaths and increases Disease Specific Survival. This evidence is not compelling but cannot be ignored. D 2 -lymphadendctomy is nowadays considered to be the standard of care for resectable gastric cancer.

  15. Seasonal Variation of Provitamin D2 and Vitamin D2 in Perennial Ryegrass (Lolium perenne L.)

    DEFF Research Database (Denmark)

    Jäpelt, Rie Bak; Didion, Thomas; Smedsgaard, Jørn

    2011-01-01

    Ergosterol (provitamin D(2)) is converted to vitamin D(2) in grass by exposure to UV light. Six varieties of perennial ryegrass (Lolium perenne L.) were harvested four times during the season, and the contents of vitamin D(2) and ergosterol were analyzed by a sensitive and selective liquid...... chromatography tandem mass spectrometry method. Weather factors were recorded, and a principal component analysis was performed to study which factors were important for the formation of vitamin D(2). The results suggest that a combination of weather factors is involved and that the contents of ergosterol...... and vitamin D(2) change more than a factor of 10 during the season. These results demonstrate that grass potentially can be a significant source of vitamin D for grazing animals and animals fed on silage and hay....

  16. On the clinical impact of cerebral dopamine D2 receptor scintigraphy

    International Nuclear Information System (INIS)

    Larisch, R.; Klimke, A.

    1998-01-01

    The present review describes findings and clinical indications for the dopamine D 2 receptor scintigraphy. Methods for the examination of D 2 receptors are positron emission tomography (PET) using 11 C- or 18 F-labelled butyrophenones or benzamides or single photon emission tomography (SPECT) using 123 I-iodobenzamide (IBZM) respectively. The most important indication in neurology is the differential diagnosis of Parkinsonism: Patients with early Parkinson's disease show an increased D 2 receptor binding (D 2 -RB) compared to control subjects. However, patients suffering from Steele-Richardson-Olszewski-Syndrome or Multiple System Atrophy show a decreased D 2 -RB and are generally non-responsive to treatment. Postsynaptic blockade of D 2 receptors results in a drug induced Parkinsonian syndrome, which can be diagnosed by D 2 scintigraphy. Further possible indications occur in psychiatry: The assessment of receptor occupancy is useful in schizophrenic patients treated with neuroleptics. Additionally, D 2 receptor scintigraphy might help to clarify the differential diagnosis between neuroleptic malignant syndrome and lethal catatonia. The method might be useful for supervising neurobiochemical changes in drug dependency and during withdrawal. Assessment of dopamine D 2 receptor binding can simplify the choice of therapy in depressive disorder: Patients showing a low D 2 binding are likely to improve following an antidepressive drug treatment whereas sleep deprivation is promising in patients with high D 2 binding. (orig.) [de

  17. Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers

    Science.gov (United States)

    Navarro, Gemma; Moreno, Estefania; Bonaventura, Jordi; Brugarolas, Marc; Farré, Daniel; Aguinaga, David; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carmen; Ferre, Sergi

    2013-01-01

    Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor) can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain. PMID:23637801

  18. 24,25,28-Trihydroxyvitamin D2 and 24,25,26-trihydroxyvitamin D2: Novel metabolites of vitamin D2

    International Nuclear Information System (INIS)

    Reddy, G.S.; Tserng, K.

    1990-01-01

    Understanding of the inactivation pathways of 25-hydroxyvitamin D 2 and 24-hydroxyvitamin D 2 , the two physiologically significant monohydroxylated metabolites of vitamin D 2 , is of importance, especially during hypervitaminosis D 2 . At present, little information is available regarding the inactivation pathway of 25-hydroxyvitamin D 2 except its further metabolism into 24,25-dihydroxyvitamin D 2 . In our present study, the authors investigated the metabolic fate of 25-hydroxyvitamin D 2 in the isolated perfused rat kidney and demonstrated its conversion not only into 24,25-dihydroxyvitamin D 2 but also into two other new metabolites, namely, 24,25,28-trihydroxyvitamin D 2 and 24,25,26-trihydroxyvitamin D 2 . The structure identification of the new metabolites was established by the techniques of ultraviolet absorption spectrophotometry and mass spectrometry and by the characteristic nature of each new metabolite's susceptibility to sodium metaperiodate oxidation. In order to demonstrate the physiological significance of the two new trihydroxy metabolites of vitamin D 2 , induced hypervitaminosis D 2 in a rat using [3α- 3 H]vitamin D 2 and analyzed its plasma for the various [3α- 3 H]vitamin D 2 metabolites on two different high-pressure liquid chromatography systems. The results indicate that both 24,25,26-trihydroxyvitamin D 2 and 24,25,26-trihydroxyvitamin D 2 circulate in the vitamin D 2 intoxicated rat in significant amounts along with other previously identified monohydroxy and dihydroxy metabolites of vitamin D 2 , namely, 24-hydroxyvitamin D 2 , 25-hydroxyvitamin D 2 , and 24,25-dihydroxyvitamin D 2

  19. Neuroimmune response to endogenous and exogenous pyrogens is differently modulated by sex steroids.

    Science.gov (United States)

    Mouihate, A; Pittman, Q J

    2003-06-01

    The objective of this study was to explore whether and how ovarian hormones interact with the febrile response to pyrogens. Estrogen and progesterone treatment of ovariectomized rats was associated with a reduction in lipopolysaccharide (LPS)-induced fever, compared with ovariectomized controls. LPS-fever reduction was accompanied by reduced levels of the inducible cyclooxygenase-2 (COX-2) protein expression in the hypothalamus as well as reduced plasma levels of IL-1beta. The amount of LPS-induced IL-6 in the plasma was not affected by ovarian hormone replacement. In contrast, hypothalamic COX-2 expression in response to intraperitoneal injection of IL-1beta was potentiated by the ovarian hormone replacement. IL-1beta induced a moderate increase in plasma levels of IL-6 that was suppressed by ovarian hormone replacement. These data suggest that ovarian hormone replacement attenuated the proinflammatory response to LPS by suppressing the LPS-induced IL-1beta production and COX-2 expression in the hypothalamus. The markedly different action of ovarian hormones on IL-1beta and LPS effects suggests that this sex hormone modulation of the immune response is a function of the nature of infection and provides further evidence that LPS actions are different from those of IL-1beta.

  20. Dopamine-induced apoptosis of lactotropes is mediated by the short isoform of D2 receptor.

    Science.gov (United States)

    Radl, Daniela Betiana; Ferraris, Jimena; Boti, Valeria; Seilicovich, Adriana; Sarkar, Dipak Kumar; Pisera, Daniel

    2011-03-25

    Dopamine, through D2 receptor (D2R), is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L) and short (D2S), are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850). SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.

  1. Dopamine-induced apoptosis of lactotropes is mediated by the short isoform of D2 receptor.

    Directory of Open Access Journals (Sweden)

    Daniela Betiana Radl

    Full Text Available Dopamine, through D2 receptor (D2R, is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L and short (D2S, are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850. SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.

  2. The dosage of the neuroD2 transcription factor regulates amygdala development and emotional learning

    OpenAIRE

    Lin, Chin-Hsing; Hansen, Stacey; Wang, Zhenshan; Storm, Daniel R.; Tapscott, Stephen J.; Olson, James M.

    2005-01-01

    The amygdala is centrally involved in formation of emotional memory and response to fear or risk. We have demonstrated that the lateral and basolateral amygdala nuclei fail to form in neuroD2 null mice and neuroD2 heterozygotes have fewer neurons in this region. NeuroD2 heterozygous mice show profound deficits in emotional learning as assessed by fear conditioning. Unconditioned fear was also diminished in neuroD2 heterozygotes compared to wild-type controls. Several key molecular regulators ...

  3. Time resolved spectroscopic investigation of SiD2 + D2: kinetic study

    Science.gov (United States)

    Al-Rubaiey, Najem A.; Walsh, Robin

    2017-03-01

    Silylenes (silanediyls) have made an important impact on organosilicon chemistry even if it is of more recent foundation than carbenes in organic chemistry and much less complete. These species are highly reactive intermediates. They play a central role in the chemical vapour deposition (CVD) of various silicon-containing thin films which have a technological importance in microelectronics as well as in the dry etching processes of silicon wafers. Spectroscopic methods have been developed to observe these species, a necessary pre-requisite to their direct monitoring. In this work, deuterated phenylsilane precursor, PhSiD3 was chosen for SiD2 because its analogue phenylsilane, PhSiH3 proved to be a good precursor for SiH2 and the high quality decay signals observed revealed that SiD2 be readily detected from PhSiD3 and that if other decomposition pathways (e.g. PhSiD + D2) are occurring, they do not effect measurements of the rate constants for SiD2. The absorption spectrum of SiD2 formed from the flash photolysis of a mixture of PhSiD3 and SF6 at 193nm were found in the region 17384-17391 cm-1 with strong band at 17387.07 cm-1. This single rotational line of pQ1 was chosen to monitor SiD2 removal. Time-resolved studies of SiD2 have been carried out to obtain rate constants for its bimolecular reactions with D2. The reactions were studied over the pressure range 5-100 Torr (in SF6 bath gas) at four temperatures in the range 298-498K. Single decay from 10 photolysis laser shots were averaged and found to give reasonable first-order kinetics fits. Second order kinetics were obtained by pressure dependence of the pseudo first order decay constants and substance D2 pressures within experimental error. The reaction was found to be weakly pressure dependent at all temperatures, consistent with a third-body mediated association process. In addition, SiH2+ H2 reaction is approximately ca. 60% faster than SiD2+D2 reaction. Theoretical extrapolations (using Lindemann

  4. Time resolved spectroscopic investigation of SiD2 + D2: kinetic study

    Directory of Open Access Journals (Sweden)

    Al-Rubaiey Najem A.

    2017-01-01

    Full Text Available Silylenes (silanediyls have made an important impact on organosilicon chemistry even if it is of more recent foundation than carbenes in organic chemistry and much less complete. These species are highly reactive intermediates. They play a central role in the chemical vapour deposition (CVD of various silicon-containing thin films which have a technological importance in microelectronics as well as in the dry etching processes of silicon wafers. Spectroscopic methods have been developed to observe these species, a necessary pre-requisite to their direct monitoring. In this work, deuterated phenylsilane precursor, PhSiD3 was chosen for SiD2 because its analogue phenylsilane, PhSiH3 proved to be a good precursor for SiH2 and the high quality decay signals observed revealed that SiD2 be readily detected from PhSiD3 and that if other decomposition pathways (e.g. PhSiD + D2 are occurring, they do not effect measurements of the rate constants for SiD2. The absorption spectrum of SiD2 formed from the flash photolysis of a mixture of PhSiD3 and SF6 at 193nm were found in the region 17384-17391 cm-1 with strong band at 17387.07 cm-1. This single rotational line of pQ1 was chosen to monitor SiD2 removal. Time-resolved studies of SiD2 have been carried out to obtain rate constants for its bimolecular reactions with D2. The reactions were studied over the pressure range 5-100 Torr (in SF6 bath gas at four temperatures in the range 298-498K. Single decay from 10 photolysis laser shots were averaged and found to give reasonable first-order kinetics fits. Second order kinetics were obtained by pressure dependence of the pseudo first order decay constants and substance D2 pressures within experimental error. The reaction was found to be weakly pressure dependent at all temperatures, consistent with a third-body mediated association process. In addition, SiH2+ H2 reaction is approximately ca. 60% faster than SiD2+D2 reaction. Theoretical extrapolations (using

  5. Ficolins do not alter host immune responses to lipopolysaccharide-induced inflammation in vivo

    DEFF Research Database (Denmark)

    Genster, Ninette; Østrup, Olga; Schjalm, Camilla

    2017-01-01

    . Yet, the contribution of ficolins to inflammatory disease processes remains elusive. To address this, we investigated ficolin deficient mice during a lipopolysaccharide (LPS)-induced model of systemic inflammation. Although murine serum ficolin was shown to bind LPS in vitro, there was no difference...... an unaltered spleen transcriptome profile in ficolin deficient mice compared to wildtype mice. Collectively, results from this study demonstrate that ficolins are not involved in host response to LPS-induced systemic inflammation.......Ficolins are a family of pattern recognition molecules that are capable of activating the lectin pathway of complement. A limited number of reports have demonstrated a protective role of ficolins in animal models of infection. In addition, an immune modulatory role of ficolins has been suggested...

  6. Effect of Kramecyne on the Inflammatory Response in Lipopolysaccharide-Stimulated Peritoneal Macrophages

    Science.gov (United States)

    Sánchez-Miranda, E.; Lemus-Bautista, J.; Pérez, S.; Pérez-Ramos, J.

    2013-01-01

    Kramecyne is a new peroxide, it was isolated from Krameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases. PMID:23573152

  7. Low bioaccessibility of vitamin D2 from yeast-fortified bread compared to crystalline D2 bread and D3 from fluid milks.

    Science.gov (United States)

    Lipkie, Tristan E; Ferruzzi, Mario G; Weaver, Connie M

    2016-11-09

    The assessment of the efficacy of dietary and supplemental vitamin D tends to be confounded by differences in the serum 25-hydroxyvitamin D response between vitamin D 2 and vitamin D 3 . Serum response differences from these vitamers may be due to differences in bioavailability. To address this specifically, the bioaccessibility was assessed for vitamin D 2 from breads fortified with UV-treated yeast, and a benchmark against staple vitamin D 3 fortified foods including bovine milks and infant formula, as well as crystalline vitamin D 2 fortified bread. Fortified foods were subjected to a three-stage static in vitro digestion model, and vitamin D was analyzed by HPLC-MS. Vitamin D bioaccessibility was significantly greater from bovine milks and infant formula (71-85%) than from yeast-fortified sandwich breads (6-7%). Bioaccessibility was not different between whole wheat and white wheat bread (p > 0.05), but was ∼4× lower from yeast-fortified bread than from crystalline vitamin D 2 fortified bread (p yeast cells were observed in the digesta of yeast fortified bread. These results indicate that the low bioavailability of yeast D 2 in comparison to other vitamin D 2 sources is likely due to entrapment within a less digestible yeast matrix and not only to metabolic differences between vitamins D 2 and D 3 .

  8. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Beryl Wen

    Full Text Available Septic shock is a severe disease state characterised by the body's life threatening response to infection. Complex interactions between endothelial cells and circulating monocytes are responsible for microvasculature dysfunction contributing to the pathogenesis of this syndrome. Here, we intended to determine whether microparticles derived from activated monocytes contribute towards inflammatory processes and notably vascular permeability. We found that endotoxin stimulation of human monocytes enhances the release of microparticles of varying phenotypes and mRNA contents. Elevated numbers of LPS-induced monocytic microparticles (mMP expressed CD54 and contained higher levels of transcripts for pro-inflammatory cytokines such as TNF, IL-6 and IL-8. Using a prothrombin time assay, a greater reduction in plasma coagulation time was observed with LPS-induced mMP than with non-stimulated mMP. Co-incubation of mMP with the human brain endothelial cell line hCMEC/D3 triggered their time-dependent uptake and significantly enhanced endothelial microparticle release. Unexpectedly, mMP also modified signalling pathways by diminishing pSrc (tyr416 expression and promoted endothelial monolayer tightness, as demonstrated by endothelial impedance and permeability assays. Altogether, these data strongly suggest that LPS-induced mMP have contrasting effects on the intercellular communication network and display a dual potential: enhanced pro-inflammatory and procoagulant properties, together with protective function of the endothelium.

  9. The brain cytoplasmic RNA BC1 regulates dopamine D-2 receptor-mediated transmission in the striatum

    OpenAIRE

    Centonze, Diego; Rossi, Silvia; Napoli, Ilaria; Mercaldo, Valentina; Lacoux, Caroline; Ferrari, Francesca; Ciotti, Maria Teresa; De Chiara, Valentina; Prosperetti, Chiara; Maccarrone, Mauro; Fezza, Filomena; Calabresi, Paolo; Bernardi, Giorgio; Bagni, Claudia

    2007-01-01

    Dopamine D-2 receptor (D2DR)-mediated transmission in the striatum is remarkably flexible, and changes in its efficacy have been heavily implicated in a variety of physiological and pathological conditions. Although receptor-associated proteins are clearly involved in specific forms of synaptic plasticity, the molecular mechanisms regulating the sensitivity of D-2 receptors in this brain area are essentially obscure. We have studied the physiological responses of the D2DR stimulations in mice...

  10. Weighted linear regression using D2H and D2 as the independent variables

    Science.gov (United States)

    Hans T. Schreuder; Michael S. Williams

    1998-01-01

    Several error structures for weighted regression equations used for predicting volume were examined for 2 large data sets of felled and standing loblolly pine trees (Pinus taeda L.). The generally accepted model with variance of error proportional to the value of the covariate squared ( D2H = diameter squared times height or D...

  11. Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Cytotoxicity and inflammation-associated toxic responses have been observed to be induced by bacterial lipopolysaccharides (LPS in vitro and in vivo respectively. Use of nonsteroidal anti-inflammatory drugs (NSAIDs, such as aspirin, has been reported to be beneficial in inflammation-associated diseases like cancer, diabetes and cardiovascular disorders. Their precise molecular mechanisms, however, are not clearly understood. Our previous studies on aspirin treated HepG2 cells strongly suggest cell cycle arrest and induction of apoptosis associated with mitochondrial dysfunction. In the present study, we have further demonstrated that HepG2 cells treated with LPS alone or in combination with aspirin induces subcellular toxic responses which are accompanied by increase in reactive oxygen species (ROS production, oxidative stress, mitochondrial respiratory dysfunction and apoptosis. The LPS/Aspirin induced toxicity was attenuated by pre-treatment of cells with N-acetyl cysteine (NAC. Alterations in oxidative stress and glutathione-dependent redox-homeostasis were more pronounced in mitochondria compared to extra- mitochondrial cellular compartments. Pre-treatment of HepG2 cells with NAC exhibited a selective protection in redox homeostasis and mitochondrial dysfunction. Our results suggest that the altered redox metabolism, oxidative stress and mitochondrial function in HepG2 cells play a critical role in LPS/aspirin-induced cytotoxicity. These results may help in better understanding the pharmacological, toxicological and therapeutic properties of NSAIDs in cancer cells exposed to bacterial endotoxins.

  12. 21 CFR 172.379 - Vitamin D2.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vitamin D2. 172.379 Section 172.379 Food and Drugs... Dietary and Nutritional Additives § 172.379 Vitamin D2. Vitamin D2 may be used safely in foods as a... prescribed conditions: (a) Vitamin D2, also known as ergocalciferol, is the chemical 9,10-seco(5Z,7E,22E)-5,7...

  13. 26 CFR 31.3406(d)-2 - Payee certification failure.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Payee certification failure. 31.3406(d)-2 Section 31.3406(d)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED... SOURCE Collection of Income Tax at Source § 31.3406(d)-2 Payee certification failure. (a) Requirement to...

  14. 21 CFR 582.5950 - Vitamin D2.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Vitamin D2. 582.5950 Section 582.5950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5950 Vitamin D2. (a) Product. Vitamin D2. (b) Conditions of use. This substance is generally...

  15. Underground design Laxemar, Layout D2

    Energy Technology Data Exchange (ETDEWEB)

    2009-11-15

    Laxemar candidate area is located in the province of Smaaland, some 320 km south of Stockholm. The area is located close to the shoreline of the Baltic Sea and is within the municipality of Oskarshamn, and immediately west of the Oskarshamn nuclear power plant and the Central interim storage facility for spent fuel (Clab). The easternmost part (Simpevarp subarea) includes the Simpevarp peninsula, which hosts the power plants and the Clab facility. The island of Aespoe, containing the Aespoe Hard Rock Laboratory is located some three kilometres northeast of the central parts of Laxemar. The Laxemar subarea covers some 12.5 km2, compared with the Simepvarp subarea, which is approximately 6.6 km2. The Laxemar candidate area has been investigated in stages, referred to as the initial site investigations (ISI) and the complete site investigations (CSI). These investigations commenced in 2002 and were completed in 2008. During the site investigations, several studies and design steps (D0, D1 and D2) were carried out to ensure that sufficient space was available for the 6,000-canister layout within the target volume at a depth of approximately 500 m. The findings from design Step D2 for the underground facilities including the access ramp, shafts, rock caverns in a Central Area, transport tunnels, and deposition tunnels and deposition holes are contained in this report. The layout for these underground excavations at the deposition horizon requires an area of 5.7 km2, and the total rock volume to be excavated is 3,008 x 103 m3 using a total tunnel length of approximately 115 km. The behaviour of the underground openings associated with this layout is expected to be similar to the behaviour of other underground openings in the Scandinavian shield at similar depths. The dominant mode of instability is expected to be structurally controlled wedge failure. Stability of the openings will be achieved with traditional underground rock support and by orienting the openings

  16. In vitro histamine release from basophils of asthmatic and atopic individuals in D2O

    International Nuclear Information System (INIS)

    Tung, R.; Lichtenstein, L.M.

    1982-01-01

    It was found that spontaneous histamine release from human basophils in H 2 O-based buffers is negligible; in D 2 O-based buffers, however, release is observed with the cells of some donors. Analysis of this phenomenon revealed release from the basophils of 1 of 22 control individuals (5%), 15 of 47 patients with allergic rhinitis (32%), and 14 of 20 asthmatic patients (70%). The difference between both patient groups and controls and between atopics and asthmatics was highly significant. That D 2 O release was not cytotoxic is suggested by the finding that 37 0 was optimal, with inhibition at 4 0 C or 46 0 C as well as by EDTA, 2-deoxyglucose, and dibromoacetophenone, an inhibitor of phospholipase A 2 . The release mechanism was unusual in that dibutyryl cAMP and agonists that cause an increase in cAMP lead to no inhibition. No correlation was noted between the total serum IgE level (and thus the number of IgE receptors on the basophil surface) and the magnitude of D 2 O release. No increase in D 2 O release was observed in 17 ragweed-sensitive patients through a ragweed season. A unique property of D 2 O release was the loss of reactivity by preincubating cells at 37 0 C for 30 min before adding D 2 O. Non-D 2 O-reactive cells could be ''converted'' to D 2 O-reactive cells by incubation with antigen in the whole blood phase during leukocyte isolation; these cells showed the same loss of releaseability at 37 0 C and an inhibitor profile similar to D 2 O-responsive cells from ragweed allergic or asthmatic patients. We suggest that D 2 O-based buffers reveal, in atopic and asthmatic patients, in vivo basophil activation; whether this is due to IgE cross-links, to C split products, or to other stimuli is not yet clear

  17. Dietary l-threonine supplementation attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier damage of broiler chickens at an early age.

    Science.gov (United States)

    Chen, Yueping; Zhang, Hao; Cheng, Yefei; Li, Yue; Wen, Chao; Zhou, Yanmin

    2018-06-01

    This study was conducted to investigate the protective effects of l-threonine (l-Thr) supplementation on growth performance, inflammatory responses and intestinal barrier function of young broilers challenged with lipopolysaccharide (LPS). A total of 144 1-d-old male chicks were allocated to one of three treatments: non-challenged broilers fed a basal diet (control group), LPS-challenged broilers fed a basal diet without l-Thr supplementation and LPS-challenged broilers fed a basal diet supplemented with 3·0 g/kg l-Thr. LPS challenge was performed intraperitoneally at 17, 19 and 21 d of age, whereas the control group received physiological saline injection. Compared with the control group, LPS challenge impaired growth performance of broilers, and l-Thr administration reversed LPS-induced increase in feed/gain ratio. LPS challenge elevated blood cell counts related to inflammation, and pro-inflammatory cytokine concentrations in serum (IL-1β and TNF-α), spleen (IL-1β and TNF-α) and intestinal mucosa (jejunal interferon-γ (IFN-γ) and ileal IL-1β). The concentrations of intestinal cytokines in LPS-challenged broilers were reduced by l-Thr supplementation. LPS administration increased circulating d-lactic acid concentration, whereas it reduced villus height, the ratio between villus height and crypt depth and goblet density in both jejunum and ileum. LPS-induced decreases in jejunal villus height, intestinal villus height:crypt depth ratio and ileal goblet cell density were reversed with l-Thr supplementation. Similarly, LPS-induced alterations in the intestinal mRNA abundances of genes related to intestinal inflammation and barrier function (jejunal toll-like receptor 4, IFN- γ and claudin-3, and ileal IL-1 β and zonula occludens-1) were normalised with l-Thr administration. It can be concluded that l-Thr supplementation could attenuate LPS-induced inflammatory responses and intestinal barrier damage of young broilers.

  18. Spatial Frequency Selectivity Is Impaired in Dopamine D2 Receptor Knockout Mice

    Science.gov (United States)

    Souza, Bruno Oliveira Ferreira; Abou Rjeili, Mira; Quintana, Clémentine; Beaulieu, Jean M.; Casanova, Christian

    2018-01-01

    Dopamine is a neurotransmitter implicated in several brain functions, including vision. In the present study, we investigated the impacts of the lack of D2 dopamine receptors on the structure and function of the primary visual cortex (V1) of D2-KO mice using optical imaging of intrinsic signals. Retinotopic maps were generated in order to measure anatomo-functional parameters such as V1 shape, cortical magnification factor, scatter, and ocular dominance. Contrast sensitivity and spatial frequency selectivity (SF) functions were computed from responses to drifting gratings. When compared to control mice, none of the parameters of the retinotopic maps were affected by D2 receptor loss of function. While the contrast sensitivity function of D2-KO mice did not differ from their wild-type counterparts, SF selectivity function was significantly affected as the optimal SF and the high cut-off frequency (p D2-KO than in WT mice. These findings show that the lack of function of D2 dopamine receptors had no influence on cortical structure whereas it had a significant impact on the spatial frequency selectivity and high cut-off. Taken together, our results suggest that D2 receptors play a specific role on the processing of spatial features in early visual cortex while they do not seem to participate in its development. PMID:29379422

  19. Mechanism for Prenatal LPS-Induced DA Neuron Loss

    Science.gov (United States)

    2006-09-01

    Neurol 355:479–489. rooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited neurobehavioral syndrome caused by do...Stadler, J., Chandran, J., Klinefelter , G. R., Blackstone, C., and Cookson, M. R. (2003) J. Biol. Chem. 278, 36588–36595 4. Macedo, M. G., Anar, B...fluctuations Reserpine induced a parkinsonism-like syndrome in some PROGRESSION IN PD 241 Table 2. Comparison of Human PD Characteristics With Animal Models

  20. Aqueous Extract of Oldenlandia diffusa Suppresses LPS-Induced ...

    African Journals Online (AJOL)

    Erah

    Tropical Journal of Pharmaceutical Research August 2011; 10 (4): 403-411 ... expression of these inflammatory mediators at the transcriptional level. Therefore, we ..... multiple sclerosis, systemic lupus erythematosus, and insulin-dependent.

  1. Mechanism for Prenatal LPS-Induced DA Neuron Loss

    Science.gov (United States)

    2005-03-01

    Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chan- 26. drasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson Yurek DM, Fletcher- Tumer A...diethylstilbestrol-induced cancers . Ann. N. Y. Acad. Sci. Capobianco, L., Battaglia, G., De Blasi, A., Nicoletti, F., Paparelli, 983, 161-169. A., 2004

  2. The signaling pathway of dopamine D2 receptor (D2R) activation using normal mode analysis (NMA) and the construction of pharmacophore models for D2R ligands.

    Science.gov (United States)

    Salmas, Ramin Ekhteiari; Stein, Matthias; Yurtsever, Mine; Seeman, Philip; Erol, Ismail; Mestanoglu, Mert; Durdagi, Serdar

    2017-07-01

    G-protein-coupled receptors (GPCRs) are targets of more than 30% of marketed drugs. Investigation on the GPCRs may shed light on upcoming drug design studies. In the present study, we performed a combination of receptor- and ligand-based analysis targeting the dopamine D2 receptor (D2R). The signaling pathway of D2R activation and the construction of universal pharmacophore models for D2R ligands were also studied. The key amino acids, which contributed to the regular activation of the D2R, were in detail investigated by means of normal mode analysis (NMA). A derived cross-correlation matrix provided us an understanding of the degree of pair residue correlations. Although negative correlations were not observed in the case of the inactive D2R state, a high degree of correlation appeared between the residues in the active state. NMA results showed that the cytoplasmic side of the TM5 plays a significant role in promoting of residue-residue correlations in the active state of D2R. Tracing motions of the amino acids Arg219, Arg220, Val223, Asn224, Lys226, and Ser228 in the position of the TM5 are found to be critical in signal transduction. Complementing the receptor-based modeling, ligand-based modeling was also performed using known D2R ligands. The top-scored pharmacophore models were found as 5-sited (AADPR.671, AADRR.1398, AAPRR.3900, and ADHRR.2864) hypotheses from PHASE modeling from a pool consisting of more than 100 initial candidates. The constructed models using 38 D2R ligands (in the training set) were validated with 15 additional test set compounds. The resulting model correctly predicted the pIC 50 values of an additional test set compounds as true unknowns.

  3. A novel imidazopyridine derivative, X22, attenuates sepsis-induced lung and liver injury by inhibiting the inflammatory response in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Ge X

    2016-06-01

    Full Text Available Xiangting Ge,1,2,* Zhiguo Feng,1,* Tingting Xu,2 Beibei Wu,3 Hongjin Chen,1 Fengli Xu,3 Lili Fu,1 Xiaoou Shan,3 Yuanrong Dai,2 Yali Zhang,1 Guang Liang11Chemical Biology Research Center, School of Pharmaceutical Sciences, 2Department of Pulmonary Medicine, The 2nd Affiliated Hospital, 3Department of Pediatrics, The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou, People’s Republic of China*These authors contributed equally to this workAbstract: Sepsis remains a leading cause of death worldwide. Despite years of extensive research, effective drugs to treat sepsis in the clinic are lacking. In this study, we found a novel imidazopyridine derivative, X22, which has powerful anti-inflammatory activity. X22 dose-dependently inhibited lipopolysaccharide (LPS-induced proinflammatory cytokine production in mouse primary peritoneal macrophages and RAW 264.7 macrophages. X22 also downregulated the LPS-induced proinflammatory gene expression in vitro. In vivo, X22 exhibited a significant protection against LPS-induced death. Pretreatment or treatment with X22 attenuated the sepsis-induced lung and liver injury by inhibiting the inflammatory response. In addition, X22 showed protection against LPS-induced acute lung injury. We additionally found that pretreatment with X22 reduced the inflammatory pain in the acetic acid and formalin models and reduced the dimethylbenzene-induced ear swelling and acetic acid-increased vascular permeability. Together, these data confirmed that X22 has multiple anti-inflammatory effects and may be a potential therapeutic option in the treatment of inflammatory diseases.Keywords: LPS, imidazopyridine derivative, sepsis, acute lung injury, inflammation

  4. Examining the role of dopamine D2 and D3 receptors in Pavlovian conditioned approach behaviors.

    Science.gov (United States)

    Fraser, Kurt M; Haight, Joshua L; Gardner, Eliot L; Flagel, Shelly B

    2016-05-15

    Elucidating the neurobiological mechanisms underlying individual differences in the extent to which reward cues acquire the ability to act as incentive stimuli may contribute to the development of successful treatments for addiction and related disorders. We used the sign-tracker/goal-tracker animal model to examine the role of dopamine D2 and D3 receptors in the propensity to attribute incentive salience to reward cues. Following Pavlovian training, wherein a discrete lever-cue was paired with food reward, rats were classified as sign- or goal-trackers based on the resultant conditioned response. We examined the effects of D2/D3 agonists, 7-OH-DPAT (0.01-0.32mg/kg) or pramipexole (0.032-0.32mg/kg), the D2/D3 antagonist raclopride (0.1mg/kg), and the selective D3 antagonist, SB-277011A (6 or 24mg/kg), on the expression of sign- and goal-tracking conditioned responses. The lever-cue acquired predictive value and elicited a conditioned response for sign- and goal-trackers, but only for sign-trackers did it also acquire incentive value. Following administration of either 7-OH-DPAT, pramipexole, or raclopride, the performance of the previously acquired conditioned response was attenuated for both sign- and goal-trackers. For sign-trackers, the D2/D3 agonist, 7-OH-DPAT, also attenuated the conditioned reinforcing properties of the lever-cue. The selective D3 antagonist did not affect either conditioned response. Alterations in D2/D3 receptor signaling, but not D3 signaling alone, transiently attenuate a previously acquired Pavlovian conditioned response, regardless of whether the response is a result of incentive motivational processes. These findings suggest activity at the dopamine D2 receptor is critical for a reward cue to maintain either its incentive or predictive qualities. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Examining the Role of Dopamine D2 and D3 Receptors in Pavlovian Conditioned Approach Behaviors

    Science.gov (United States)

    Fraser, Kurt M.; Haight, Joshua L.; Gardner, Eliot L.; Flagel, Shelly B.

    2016-01-01

    Elucidating the neurobiological mechanisms underlying individual differences in the extent to which reward cues acquire the ability to act as incentive stimuli may contribute to the development of successful treatments for addiction and related disorders. We used the sign-tracker/goal-tracker animal model to examine the role of dopamine D2 and D3 receptors in the propensity to attribute incentive salience to reward cues. Following Pavlovian training, wherein a discrete lever-cue was paired with food reward, rats were classified as sign- or goal-trackers based on the resultant conditioned response. We examined the effects of D2/D3 agonists, 7-OH-DPAT (0.01–0.32 mg/kg) or pramipexole (0.032–0.32 mg/kg), the D2/D3 antagonist raclopride (0.1 mg/kg), and the selective D3 antagonist, SB-277011A (6 or 24 mg/kg), on the expression of sign- and goal-tracking conditioned responses. The lever-cue acquired predictive value and elicited a conditioned response for sign- and goal-trackers, but only for sign-trackers did it also acquire incentive value. Following administration of either 7-OH-DPAT, pramipexole, or raclopride, the performance of the previously acquired conditioned response was attenuated for both sign- and goal-trackers. For sign-trackers, the D2/D3 agonist, 7-OH-DPAT, also attenuated the conditioned reinforcing properties of the lever-cue. The selective D3 antagonist did not affect either conditioned response. Alterations in D2/D3 receptor signaling, but not D3 signaling alone, transiently attenuate a previously acquired Pavlovian conditioned response, regardless of whether the response is a result of incentive motivational processes. These findings suggest activity at the dopamine D2 receptor is critical for a reward cue to maintain either its incentive or predictive qualities. PMID:26909847

  6. Aberrant dopamine D2-like receptor function in a rodent model of schizophrenia.

    Science.gov (United States)

    Perez, Stephanie M; Lodge, Daniel J

    2012-11-01

    Based on the observation that antipsychotic medications display antagonist properties at dopamine D2-like receptors, aberrant dopamine signaling has been proposed to underlie psychosis in patients with schizophrenia. Thus, it is not surprising that considerable research has been devoted to understanding the mechanisms involved in the antipsychotic action of these compounds. It is important to note that the majority of these studies have been performed in "normal" experimental animals. Given that these animals do not possess the aberrant neuronal information processing typically associated with schizophrenia, the aim of the current study was to examine the dopamine D2 receptor system in a rodent model of schizophrenia. Here, we demonstrate that methylazoxymethanol acetate (MAM)-treated rats display an enhanced effect of quinpirole on dopamine neuron activity and an aberrant locomotor response to D2-like receptor activation, suggesting changes in postsynaptic D2-like receptor function. To better understand the mechanisms underlying the enhanced response to D2-like ligands in MAM-treated rats, we examined the expression of D2, D3, and dopamine transporter mRNA in the nucleus accumbens and ventral tegmental area by quantitative reverse transcription-polymerase chain reaction. MAM-treated rats displayed a significant increase in dopamine D3 receptor mRNA expression in the nucleus accumbens with no significant changes in the expression of the D2 receptor. Taken together, these data demonstrate robust alterations in dopamine D2-like receptor function in a rodent model of schizophrenia and provide evidence that preclinical studies examining the mechanisms of antipsychotic drug action should be performed in animal models that mirror aspects of the abnormal neuronal transmission thought to underlie symptoms of schizophrenia.

  7. M-theory solutions invariant under D(2,1; γ) + D(2,1;γ)

    International Nuclear Information System (INIS)

    Bachas, C.; D'Hoker, E.; Estes, J.; Krym, D.

    2014-01-01

    We simplify and extend the construction of half-BPS solutions to 11-dimensional supergravity, with isometry superalgebra D(2,1;γ) + D(2,1;γ). Their space-time has the form AdS 3 x S 3 x S 3 warped over a Riemann surface Σ. It describes near-horizon geometries of M2 branes ending on, or intersecting with, M5 branes along a common string. The general solution to the BPS equations is specified by a reduced set of data (γ, h, G), where γ is the real parameter of the isometry superalgebra, and h and G are functions on Σ whose differential equations and regularity conditions depend only on the sign of γ. The magnitude of γ enters only through the map of h,G onto the supergravity fields, thereby promoting all solutions into families parametrized by vertical stroke γ vertical stroke. By analyzing the regularity conditions for the supergravity fields, we prove two general theorems: (i) that the only solution with a 2-dimensional CFT dual is AdS 3 x S 3 x S 3 x R 2 , modulo discrete identifications of the flat R 2 , and (ii) that solutions with γ 4 /Z 2 or AdS 7 ' regions; highly-curved M5-branes; and a coordinate singularity called the ''cap''. By putting these ''Lego'' pieces together we recover all known global regular solutions with the above symmetry, including the self-dual strings on M5 for γ 0, but now promoted to families parametrized by vertical stroke γ vertical stroke. We also construct exactly new regular solutions which are asymptotic to AdS 4 /Z 2 for γ 0 solutions with highly curved M5-brane regions, which are the formal continuation of the self-dual string solutions across the decompactification point at γ = 0. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Amphetamine Self-Administration Attenuates Dopamine D2 Autoreceptor Function

    Science.gov (United States)

    Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong

    2014-01-01

    Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [35S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction. PMID:24513972

  9. M-theory solutions invariant under D(2,1; γ) + D(2,1;γ)

    Energy Technology Data Exchange (ETDEWEB)

    Bachas, C. [Laboratoire de Physique Theorique de l' Ecole Normale Superieure Unite mixte (UMR 8549) du CNRS et de l' ENS, Paris (France); D' Hoker, E. [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); Estes, J. [Blackett Laboratory, Imperial College, London (United Kingdom); Krym, D. [Physics Department, New York City College of Technology, The City University of New York, Brooklyn, NY (United States)

    2014-03-06

    We simplify and extend the construction of half-BPS solutions to 11-dimensional supergravity, with isometry superalgebra D(2,1;γ) + D(2,1;γ). Their space-time has the form AdS{sub 3} x S{sup 3} x S{sup 3} warped over a Riemann surface Σ. It describes near-horizon geometries of M2 branes ending on, or intersecting with, M5 branes along a common string. The general solution to the BPS equations is specified by a reduced set of data (γ, h, G), where γ is the real parameter of the isometry superalgebra, and h and G are functions on Σ whose differential equations and regularity conditions depend only on the sign of γ. The magnitude of γ enters only through the map of h,G onto the supergravity fields, thereby promoting all solutions into families parametrized by vertical stroke γ vertical stroke. By analyzing the regularity conditions for the supergravity fields, we prove two general theorems: (i) that the only solution with a 2-dimensional CFT dual is AdS{sub 3} x S{sup 3} x S{sup 3} x R {sup 2}, modulo discrete identifications of the flat R {sup 2}, and (ii) that solutions with γ < 0 cannot have more than one asymptotic higher-dimensional AdS region. We classify the allowed singularities of h and G near the boundary of Σ, and identify four local solutions: asymptotic AdS{sub 4}/Z{sub 2} or AdS{sub 7}' regions; highly-curved M5-branes; and a coordinate singularity called the ''cap''. By putting these ''Lego'' pieces together we recover all known global regular solutions with the above symmetry, including the self-dual strings on M5 for γ <0, and the Janus solution for γ > 0, but now promoted to families parametrized by vertical stroke γ vertical stroke. We also construct exactly new regular solutions which are asymptotic to AdS{sub 4}/Z{sub 2} for γ < 0, and conjecture that they are a different superconformal limit of the self-dual string. Finally, we construct exactly γ > 0 solutions with highly curved M5

  10. Effects of dopamine D2/D3 receptor antagonism on human planning and spatial working memory.

    Science.gov (United States)

    Naef, M; Müller, U; Linssen, A; Clark, L; Robbins, T W; Eisenegger, C

    2017-04-25

    Psychopharmacological studies in humans suggest important roles for dopamine (DA) D2 receptors in human executive functions, such as cognitive planning and spatial working memory (SWM). However, studies that investigate an impairment of such functions using the selective DA D2/3 receptor antagonist sulpiride have yielded inconsistent results, perhaps because relatively low doses were used. We believe we report for the first time, the effects of a higher (800 mg p.o.) single dose of sulpiride as well as of genetic variation in the DA receptor D2 gene (DA receptor D2 Taq1A polymorphism), on planning and working memory. With 78 healthy male volunteers, we apply a between-groups, placebo-controlled design. We measure outcomes in the difficult versions of the Cambridge Neuropsychological Test Automated Battery One-Touch Stockings of Cambridge and the self-ordered SWM task. Volunteers in the sulpiride group showed significant impairments in planning accuracy and, for the more difficult problems, in SWM. Sulpiride administration speeded response latencies in the planning task on the most difficult problems. Volunteers with at least one copy of the minor allele (A1+) of the DA receptor D2 Taq1A polymorphism showed better SWM capacity, regardless of whether they received sulpiride or placebo. There were no effects on blood pressure, heart rate or subjective sedation. In sum, a higher single dose of sulpiride impairs SWM and executive planning functions, in a manner independent of the DA receptor D2 Taq1A polymorphism.

  11. Such membranes are called “D2-branes”.

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Such membranes are called “D2-branes”. D is for “Dirichlet”, the boundary conditions which fix the ends of open strings onto a surface. 2 is for a 2-dimensional surface, a membrane. So we say that open string theory has D2-branes among its excitations. Notes:

  12. Dopamine D2 receptors in the pathophysiology of insulin resistance

    NARCIS (Netherlands)

    Leeuw van Weenen, Judith Elisabeth de

    2011-01-01

    Extensive literature links the dopamine receptor D2 to insulin resistance and diabetes mellitus type 2. However, many aspects of the functional relationship remain unclear. In this thesis we focused on unraveling the characteristics of the interplay between dopamine D2 receptors and glucose

  13. Lactic acid delays the inflammatory response of human monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Katrin, E-mail: katrin.peter@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Rehli, Michael, E-mail: michael.rehli@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); RCI Regensburg Center for Interventional Immunology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Singer, Katrin, E-mail: katrin.singer@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Renner-Sattler, Kathrin, E-mail: kathrin.renner-sattler@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Kreutz, Marina, E-mail: marina.kreutz@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); RCI Regensburg Center for Interventional Immunology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany)

    2015-02-13

    Lactic acid (LA) accumulates under inflammatory conditions, e.g. in wounds or tumors, and influences local immune cell functions. We previously noted inhibitory effects of LA on glycolysis and TNF secretion of human LPS-stimulated monocytes. Here, we globally analyze the influence of LA on gene expression during monocyte activation. To separate LA-specific from lactate- or pH-effects, monocytes were treated for one or four hours with LPS in the presence of physiological concentrations of LA, sodium lactate (NaL) or acidic pH. Analyses of global gene expression profiles revealed striking effects of LA during the early stimulation phase. Up-regulation of most LPS-induced genes was significantly delayed in the presence of LA, while this inhibitory effect was attenuated in acidified samples and not detected after incubation with NaL. LA targets included genes encoding for important monocyte effector proteins like cytokines (e.g. TNF and IL-23) or chemokines (e.g. CCL2 and CCL7). LA effects were validated for several targets by quantitative RT-PCR and/or ELISA. Further analysis of LPS-signaling pathways revealed that LA delayed the phosphorylation of protein kinase B (AKT) as well as the degradation of IκBα. Consistently, the LPS-induced nuclear accumulation of NFκB was also diminished in response to LA. These results indicate that the broad effect of LA on gene expression and function of human monocytes is at least partially caused by its interference with immediate signal transduction events after activation. This mechanism might contribute to monocyte suppression in the tumor environment. - Highlights: • Lactic acid broadly delays LPS-induced gene expression in human monocytes. • Expression of important monocyte effector molecules is affected by lactic acid. • Interference of lactic acid with TLR signaling causes the delayed gene expression. • The profound effect of lactic acid might contribute to immune suppression in tumors.

  14. Lactic acid delays the inflammatory response of human monocytes

    International Nuclear Information System (INIS)

    Peter, Katrin; Rehli, Michael; Singer, Katrin; Renner-Sattler, Kathrin; Kreutz, Marina

    2015-01-01

    Lactic acid (LA) accumulates under inflammatory conditions, e.g. in wounds or tumors, and influences local immune cell functions. We previously noted inhibitory effects of LA on glycolysis and TNF secretion of human LPS-stimulated monocytes. Here, we globally analyze the influence of LA on gene expression during monocyte activation. To separate LA-specific from lactate- or pH-effects, monocytes were treated for one or four hours with LPS in the presence of physiological concentrations of LA, sodium lactate (NaL) or acidic pH. Analyses of global gene expression profiles revealed striking effects of LA during the early stimulation phase. Up-regulation of most LPS-induced genes was significantly delayed in the presence of LA, while this inhibitory effect was attenuated in acidified samples and not detected after incubation with NaL. LA targets included genes encoding for important monocyte effector proteins like cytokines (e.g. TNF and IL-23) or chemokines (e.g. CCL2 and CCL7). LA effects were validated for several targets by quantitative RT-PCR and/or ELISA. Further analysis of LPS-signaling pathways revealed that LA delayed the phosphorylation of protein kinase B (AKT) as well as the degradation of IκBα. Consistently, the LPS-induced nuclear accumulation of NFκB was also diminished in response to LA. These results indicate that the broad effect of LA on gene expression and function of human monocytes is at least partially caused by its interference with immediate signal transduction events after activation. This mechanism might contribute to monocyte suppression in the tumor environment. - Highlights: • Lactic acid broadly delays LPS-induced gene expression in human monocytes. • Expression of important monocyte effector molecules is affected by lactic acid. • Interference of lactic acid with TLR signaling causes the delayed gene expression. • The profound effect of lactic acid might contribute to immune suppression in tumors

  15. Flibe-D2 Permeation Experiment and Analysis

    International Nuclear Information System (INIS)

    Fukada, S.; Anderl, R.A.; Pawelko, R.J.; Smolik, G.R.; Schuetz, S.T.; O'Brien, J.E.; Nishimura, H.; Hatano, Y.; Terai, T.; Petti, D.A.; Sze, D.-K.; Tanaka, S.

    2003-01-01

    Experiment of D 2 permeation through Ni facing with purified Flibe is being carried out under the Japan-US joint research project (JUPITER-II). The experiment is proceeding in the following phases; (i) fabrication and assembly of a dual-probe permeation apparatus, (ii) a single-probe Ni/D 2 permeation experiment without Flibe, (iii) a dual-probe Ni/D 2 permeation experiment without Flibe, (iv) Flibe chemical purification by HF/H 2 gas bubbling, (v) physical purification by Flibe transport through a porous Ni filter, (vi) Ni/Flibe/D 2 permeation experiment, and (vii) Ni/Flibe/HT permeation experiment. The present paper describes results of the single and dual Ni/D 2 permeation experiments in detail

  16. D2-40/podoplanin expression in the human placenta

    Science.gov (United States)

    Wang, Yuping; Sun, Jingxia; Gu, Yang; Zhao, Shuang; Groome, Lynn J.; Alexander, J. Steven

    2011-01-01

    Placental tissue expresses many lymphatic markers. The current study was undertaken to examine if D2-40/podoplanin, a lymphatic endothelial marker, was expressed in the human placentas, and how it is altered developmentally and pathologically. We studied D2-40/podoplanin and VEGFR-3 expressions in placentas from normotensive pregnancies at different gestational ages and in placentas from women with clinically defined preeclampsia. D2-40 expression in systemic lymphatic vessel endothelium served as a positive control. Protein expression for D2-40, VEGFR-3, and β-actin were determined by Western blot in placentas from normotensive (n=6) and preeclamptic (n=5) pregnancies. Our results show that D2-40/podoplanin was strongly expressed in the placenta, mainly as a network plexus pattern in the villous stroma throughout gestation. CD31 was limited to villous core fetal vessel endothelium and VEGFR-3 was found in both villous core fetal vessel endothelium and trophoblasts. D2-40/podoplanin expression was significantly decreased, and VEGFR-3 significantly increased in preeclamptic placental tissues compared to normotensive placental controls. Placental villous stroma is a reticular-like structure, and the localization of D2-40 to the stroma suggests that a lymphatic-like conductive network may exist in the human placenta. D2-40/podoplanin is an O-linked sialoglycoprotein. Although little is known regarding biological functions of sialylated glycoproteins within the placenta, placental D2-40/podoplanin may support fetal vessel angiogenesis during placenta development and reduced D2-40/podoplanin expression in preeclamptic placenta may contribute to altered interstitial fluid homeostasis and impaired angiogenesis in this pregnancy disorder. PMID:21095001

  17. Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors.

    Science.gov (United States)

    Jiang, Quan; Lian, Anji; He, Qi

    2016-07-01

    Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. 生椎茸中のプレビタミンD_2およびビタミンD_2の同定

    OpenAIRE

    高村, 一知; 星野, 浩子; 叶多, 謙蔵; タカムラ, カズノリ; ホシノ, ヒロコ; カノウタ, ケンゾウ; KAZUNORI, TAKAMURA; HIROKO, HOSHINO; KENZO, KANOHTA

    1993-01-01

    Pre-vitamin D_2(pre-D_2)and vitamin D_2(D_2)in raw shiitake mushroom were identified by liquid chromatography-mass spectrometry (LC-MS) with modified plasmaspray. 1. Pre-D_2 and D_2 in raw shiitake mushroom were separated by LC. 2. Pre-D_2 was confirmed parent ion(m/z 397 [M+H]^+)to scan number 259 of total ion chromatogram. 3. D_2 was cofirmed parent ion(m/z 397 [M+H]^+) to scan number 296 of total ion chromatogram. 4. We have succeeded in obtaining mass spectra of pre-D_2 and D_2 that does ...

  19. A photoaffinity ligand for dopamine D2 receptors: azidoclebopride.

    Science.gov (United States)

    Niznik, H B; Guan, J H; Neumeyer, J L; Seeman, P

    1985-02-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [3H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol. The degree of D2 dopamine receptor photoinduced inactivation by azidoclebopride was not significantly affected by scavengers such as p-aminobenzoic acid and dithiothreitol. Furthermore, irradiation of striatal membranes with a concentration of azidoclebopride sufficient to inactivate dopamine D2 receptors by 60% did not significantly reduce dopamine D1, serotonin (S2), benzodiazepine, alpha 1- or beta-noradrenergic receptors. This study describes the use of a novel and selective photoaffinity ligand for brain dopamine D2 receptors. The molecule, in radiolabeled form, may aid in the

  20. Study of the effects of D2O circulation

    International Nuclear Information System (INIS)

    Oblath, N.S.; Poon, A.W.P.

    2000-01-01

    The Sudbury Neutrino Observatory (SNO) has been collecting data since November 1999. The study of whether or not the D 2 O circulation affects the data is an important part of understanding how the SNO detector behaves. This report looks at several characteristics of the data to determine to what extent the D 2 O circulation affects the data. We found that there is no evidence for any dependence of event rates in the cleaned data sets on the state of D 2 O circulation

  1. Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons.

    Science.gov (United States)

    Yapo, Cedric; Nair, Anu G; Clement, Lorna; Castro, Liliana R; Hellgren Kotaleski, Jeanette; Vincent, Pierre

    2017-12-15

    Brief dopamine events are critical actors of reward-mediated learning in the striatum; the intracellular cAMP-protein kinase A (PKA) response of striatal medium spiny neurons to such events was studied dynamically using a combination of biosensor imaging in mouse brain slices and in silico simulations. Both D1 and D2 medium spiny neurons can sense brief dopamine transients in the sub-micromolar range. While dopamine transients profoundly change cAMP levels in both types of medium spiny neurons, the PKA-dependent phosphorylation level remains unaffected in D2 neurons. At the level of PKA-dependent phosphorylation, D2 unresponsiveness depends on protein phosphatase-1 (PP1) inhibition by DARPP-32. Simulations suggest that D2 medium spiny neurons could detect transient dips in dopamine level. The phasic release of dopamine in the striatum determines various aspects of reward and action selection, but the dynamics of the dopamine effect on intracellular signalling remains poorly understood. We used genetically encoded FRET biosensors in striatal brain slices to quantify the effect of transient dopamine on cAMP or PKA-dependent phosphorylation levels, and computational modelling to further explore the dynamics of this signalling pathway. Medium-sized spiny neurons (MSNs), which express either D 1 or D 2 dopamine receptors, responded to dopamine by an increase or a decrease in cAMP, respectively. Transient dopamine showed similar sub-micromolar efficacies on cAMP in both D1 and D2 MSNs, thus challenging the commonly accepted notion that dopamine efficacy is much higher on D 2 than on D 1 receptors. However, in D2 MSNs, the large decrease in cAMP level triggered by transient dopamine did not translate to a decrease in PKA-dependent phosphorylation level, owing to the efficient inhibition of protein phosphatase 1 by DARPP-32. Simulations further suggested that D2 MSNs can also operate in a 'tone-sensing' mode, allowing them to detect transient dips in basal dopamine

  2. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.; Pessin, J.E.; Volkow, N.D.; Thanos, P.K.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2R binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.

  3. Physical limit of stability in supercooled D2O and D2O+H2O mixtures

    Science.gov (United States)

    Kiselev, S. B.; Ely, J. F.

    2003-01-01

    The fluctuation theory of homogeneous nucleation was applied for calculating the physical boundary of metastable states, the kinetic spinodal, in supercooled D2O and D2O+H2O mixtures. The kinetic spinodal in our approach is completely determined by the surface tension and equation of state of the supercooled liquid. We developed a crossover equation of state for supercooled D2O, which predicts a second critical point of low density water-high density water equilibrium, CP2, and represents all available experimental data in supercooled D2O within experimental accuracy. Using Turnbull's expression for the surface tension we calculated with the crossover equation of state for supercooled D2O the kinetic spinodal, TKS, which lies below the homogeneous nucleation temperature, TH. We show that CP2 always lies inside in the so-called "nonthermodynamic habitat" and physically does not exist. However, the concept of a second "virtual" critical point is physical and very useful. Using this concept we have extended this approach to supercooled D2O+H2O mixtures. As an example, we consider here an equimolar D2O+H2O mixture in normal and supercooled states at atmospheric pressure, P=0.1 MPa.

  4. Reduced striatal D2 receptor binding in myoclonus-dystonia

    International Nuclear Information System (INIS)

    Beukers, R.J.; Weisscher, N.; Tijssen, M.A.J.; Booij, J.; Zijlstra, F.; Amelsvoort, T.A.M.J. van

    2009-01-01

    To study striatal dopamine D 2 receptor availability in DYT11 mutation carriers of the autosomal dominantly inherited disorder myoclonus-dystonia (M-D). Fifteen DYT11 mutation carriers (11 clinically affected) and 15 age- and sex-matched controls were studied using 123 I-IBZM SPECT. Specific striatal binding ratios were calculated using standard templates for striatum and occipital areas. Multivariate analysis with corrections for ageing and smoking showed significantly lower specific striatal to occipital IBZM uptake ratios (SORs) both in the left and right striatum in clinically affected patients and also in all DYT11 mutation carriers compared to control subjects. Our findings are consistent with the theory of reduced dopamine D 2 receptor (D2R) availability in dystonia, although the possibility of increased endogenous dopamine, and consequently, competitive D2R occupancy cannot be ruled out. (orig.)

  5. The melting curve of tetrahydrofuran hydrate in D2O

    International Nuclear Information System (INIS)

    Hanley, H.J.M.; Meyers, G.J.; White, J.W.; Sloan, E.D.

    1989-01-01

    Melting points for the tetrahydrofuran/D 2 O hydrate in equilibrium with the air-saturated liquid at atmospheric pressure are reported. The melting points were measured by monitoring the absorbance of the solution. Overall, the melting-point phase boundary curve is about 2.5 K greater than the corresponding curve for the H 2 O hydrate, with a congruent melting temperature of 281 ± 0.5 K at a D 2 O mole fraction of 0.936. The phase boundary is predicted to within 5% if the assumption is made that the THF occupancy in the D 2 O and H 2 O hydrates is the same. The authors measure an occupancy of 99.9%. The chemical potential of the empty lattice in D 2 O is estimated to be 5% greater than in H 2 O

  6. Dopamine D2 receptors photolabeled by iodo-azido-clebopride.

    Science.gov (United States)

    Niznik, H B; Dumbrille-Ross, A; Guan, J H; Neumeyer, J L; Seeman, P

    1985-04-19

    Iodo-azido-clebopride, a photoaffinity compound for dopamine D2 receptors, had high affinity for canine brain striatal dopamine D2 receptors with a dissociation constant (Kd) of 14 nM. Irradiation of striatal homogenate with iodo-azido-clebopride irreversibly inactivated 50% of dopamine D2 receptors at 20 nM (as indicated by subsequent [3H]spiperone binding). Dopamine agonists and antagonists prevented this photo-inactivation with the appropriate rank-order of potency. Striatal dopamine D1, serotonin (S2), alpha 1- and beta-adrenoceptors were not significantly inactivated following irradiation with iodo-azido-clebopride. Thus, iodo-azido-clebopride is a selective photoaffinity probe for dopamine D2 receptors, the radiolabelled form of which may aid in the molecular characterization of these proteins.

  7. Quantitative imaging of D-2-hydroxyglutarate (D2HG in selected histological tissue areas by a novel bioluminescence technique

    Directory of Open Access Journals (Sweden)

    Nadine Fabienne Voelxen

    2016-03-01

    Full Text Available AbstractPatients with malignant gliomas have a poor prognosis with average survival of less than one year. Whereas in other tumor entities the characteristics of tumor metabolism are successfully used for therapeutic approaches, such developments are very rare in brain tumors, notably in gliomas. One metabolic feature characteristic of gliomas, in particular diffuse astrocytomas and oligodendroglial tumors, is the variable content of D-2-hydroxyglutarate (D2HG, a metabolite, which was discovered first in this tumor entity. D2HG is generated in large amounts due to various gain-of–function mutations in the isocitrate dehydrogenases IDH-1 and IDH-2. Meanwhile, D2HG has been detected in several other tumor entities including intrahepatic bile-duct cancer, chondrosarcoma, acute myeloid leukemia, and angioimmunoblastic T-cell lymphoma. D2HG is barely detectable in healthy tissue (< 0.1 mM, but its concentration increases up to 35 mM in malignant tumor tissues. Consequently, the oncometabolite D2HG has gained increasing interest in the field of tumor metabolism. To facilitate its quantitative measurement without loss of spatial resolution at a microscopical level, we have developed a novel bioluminescence assay for determining D2HG in sections of snap-frozen tissue. The assay was verified independently by photometric tests and liquid chromatography / mass spectrometry (LC/MS. The novel technique allows the microscopically resolved determination of D2HG in a concentration range of 0 – 10 µmol/g tissue (wet weight. In combination with the already established bioluminescence imaging techniques for ATP, glucose, pyruvate, and lactate, the novel D2HG assay enables a comparative characterization of the metabolic profile of individual tumors in a further dimension.

  8. Dopamine D2 receptor radiotracers [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride are indistinguishably inhibited by D2 agonists and antagonists ex vivo

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Patrick N. [Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada)], E-mail: patrick.mccormick@camhpet.ca; Kapur, Shitij [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); PET Center, Center for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Seeman, Philip [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); Department of Pharmacology, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); Wilson, Alan A. [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); PET Center, Center for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada)

    2008-01-15

    Introduction: In vitro, the dopamine D2 receptor exists in two states, with high and low affinity for agonists. The high-affinity state is the physiologically active state thought to be involved in dopaminergic illnesses such as schizophrenia. The positron emission tomography radiotracer [{sup 11}C](+)-PHNO ([{sup 11}C](+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4] oxazin-9-o l), being a D2 agonist, should selectively label the high-affinity state at tracer dose and therefore be more susceptible to competition by agonist as compared to the antagonist [{sup 3}H]raclopride, which binds to both affinity states. Methods: We tested this prediction using ex vivo dual-radiotracer experiments in conscious rats. D2 antagonists (haloperidol or clozapine), a partial agonist (aripiprazole), a full agonist [(-)-NPA] or the dopamine-releasing drug amphetamine (AMPH) were administered to rats prior to an intravenous coinjection of [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride. Rats were sacrificed 60 min after radiotracer injection. Striatum, cerebellum and plasma samples were counted for {sup 11}C and {sup 3}H. The specific binding ratio {l_brace}SBR, i.e., [%ID/g (striatum)-%ID/g (cerebellum)]/(%ID/g (cerebellum){r_brace} was used as the outcome measure. Results: In response to D2 antagonists, partial agonist or full agonist, [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride SBRs responded indistinguishably in terms of both ED{sub 50} and Hill slope (e.g., (-)-NPA ED{sub 50} values are 0.027 and 0.023 mg/kg for [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride, respectively). In response to AMPH challenge, [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride SBRs were inhibited to the same degree. Conclusions: We have shown that the SBRs of [{sup 11}C](+)-PHNO- and [{sup 3}H]raclopride do not differ in their response to agonist challenge. These results do not support predictions of the in vivo binding behavior of a D2 agonist radiotracer and cast some doubt on the in vivo

  9. Dopamine D2 receptor radiotracers [11C](+)-PHNO and [3H]raclopride are indistinguishably inhibited by D2 agonists and antagonists ex vivo

    International Nuclear Information System (INIS)

    McCormick, Patrick N.; Kapur, Shitij; Seeman, Philip; Wilson, Alan A.

    2008-01-01

    Introduction: In vitro, the dopamine D2 receptor exists in two states, with high and low affinity for agonists. The high-affinity state is the physiologically active state thought to be involved in dopaminergic illnesses such as schizophrenia. The positron emission tomography radiotracer [ 11 C](+)-PHNO ([ 11 C](+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4] oxazin-9-o l), being a D2 agonist, should selectively label the high-affinity state at tracer dose and therefore be more susceptible to competition by agonist as compared to the antagonist [ 3 H]raclopride, which binds to both affinity states. Methods: We tested this prediction using ex vivo dual-radiotracer experiments in conscious rats. D2 antagonists (haloperidol or clozapine), a partial agonist (aripiprazole), a full agonist [(-)-NPA] or the dopamine-releasing drug amphetamine (AMPH) were administered to rats prior to an intravenous coinjection of [ 11 C](+)-PHNO and [ 3 H]raclopride. Rats were sacrificed 60 min after radiotracer injection. Striatum, cerebellum and plasma samples were counted for 11 C and 3 H. The specific binding ratio {SBR, i.e., [%ID/g (striatum)-%ID/g (cerebellum)]/(%ID/g (cerebellum)} was used as the outcome measure. Results: In response to D2 antagonists, partial agonist or full agonist, [ 11 C](+)-PHNO and [ 3 H]raclopride SBRs responded indistinguishably in terms of both ED 50 and Hill slope (e.g., (-)-NPA ED 50 values are 0.027 and 0.023 mg/kg for [ 11 C](+)-PHNO and [ 3 H]raclopride, respectively). In response to AMPH challenge, [ 11 C](+)-PHNO and [ 3 H]raclopride SBRs were inhibited to the same degree. Conclusions: We have shown that the SBRs of [ 11 C](+)-PHNO- and [ 3 H]raclopride do not differ in their response to agonist challenge. These results do not support predictions of the in vivo binding behavior of a D2 agonist radiotracer and cast some doubt on the in vivo applicability of the D2 two-state model, as described by in vitro binding experiments

  10. Photoaffinity ligand for dopamine D2 receptors: azidoclebopride

    International Nuclear Information System (INIS)

    Niznik, H.B.; Guan, J.H.; Neumeyer, J.L.; Seeman, P.

    1985-01-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [ 3 H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol

  11. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle.

    Science.gov (United States)

    Greba, Q; Gifkins, A; Kokkinidis, L

    2001-04-27

    Considerable advances have been made in understanding the neurocircuitry underlying the acquisition and expression of Pavlovian conditioned fear responses. Within the complex cellular and molecular processes mediating fearfulness, amygdaloid dopamine (DA), originating from cells in the ventral tegmental area (VTA) of the midbrain, is thought to contribute to fear-motivated responding. Considering that blockade of DA D(2) receptors is a common mechanism of action for antipsychotic agents, we hypothesized that inhibition of D(2) receptors in the amygdala may be involved in the antiparanoid effects of these drugs. To assess the role of amygdaloid DA D(2) receptors in aversive emotionality, the D(2) receptor antagonist raclopride was infused into the amygdala prior to Pavlovian fear conditioning. Potentiated startle was used as a behavioral indicator of fear and anxiety. Classical fear conditioning and acoustic startle testing were conducted in a single session allowing for the concomitant assessment of shock reactivity with startle enhancement. Depending on dose, the results found conditioned fear acquisition and retention to be impaired following administration of raclopride into the amygdala. Additionally, the learning deficit was dissociated from shock detection and from fear expression assessed with the shock sensitization of acoustic startle. These findings further refine the known neural mechanisms of amygdala-based emotional learning and memory and were interpreted to suggest that, along with D(1) receptors, D(2) receptors in the amygdala may mediate the formation and the retention of newly-acquired fear associations.

  12. Altered ratio of D1 and D2 dopamine receptors in mouse striatum is associated with behavioral sensitization to cocaine.

    Directory of Open Access Journals (Sweden)

    Dawn Thompson

    Full Text Available BACKGROUND: Drugs of abuse elevate brain dopamine levels, and, in vivo, chronic drug use is accompanied by a selective decrease in dopamine D2 receptor (D2R availability in the brain. Such a decrease consequently alters the ratio of D1R:D2R signaling towards the D1R. Despite a plethora of behavioral studies dedicated to the understanding of the role of dopamine in addiction, a molecular mechanism responsible for the downregulation of the D2R, in vivo, in response to chronic drug use has yet to be identified. METHODS AND FINDINGS: ETHICS STATEMENT: All animal work was approved by the Gallo Center IACUC committee and was performed in our AAALAC approved facility. In this study, we used wild type (WT and G protein coupled receptor associated sorting protein-1 (GASP-1 knock out (KO mice to assess molecular changes that accompany cocaine sensitization. Here, we show that downregulation of D2Rs or upregulation of D1Rs is associated with a sensitized locomotor response to an acute injection of cocaine. Furthermore, we demonstrate that disruption of GASP-1, that targets D2Rs for degradation after endocytosis, prevents cocaine-induced downregulation of D2Rs. As a consequence, mice with a GASP-1 disruption show a reduction in the sensitized locomotor response to cocaine. CONCLUSIONS: Together, our data suggests that changes in the ratio of the D1:D2R could contribute to cocaine-induced behavioral plasticity and demonstrates a role of GASP-1 in regulating both the levels of the D2R and cocaine sensitization.

  13. The brain cytoplasmic RNA BC1 regulates dopamine D2 receptor-mediated transmission in the striatum.

    Science.gov (United States)

    Centonze, Diego; Rossi, Silvia; Napoli, Ilaria; Mercaldo, Valentina; Lacoux, Caroline; Ferrari, Francesca; Ciotti, Maria Teresa; De Chiara, Valentina; Prosperetti, Chiara; Maccarrone, Mauro; Fezza, Filomena; Calabresi, Paolo; Bernardi, Giorgio; Bagni, Claudia

    2007-08-15

    Dopamine D(2) receptor (D(2)DR)-mediated transmission in the striatum is remarkably flexible, and changes in its efficacy have been heavily implicated in a variety of physiological and pathological conditions. Although receptor-associated proteins are clearly involved in specific forms of synaptic plasticity, the molecular mechanisms regulating the sensitivity of D(2) receptors in this brain area are essentially obscure. We have studied the physiological responses of the D(2)DR stimulations in mice lacking the brain cytoplasmic RNA BC1, a small noncoding dendritically localized RNA that is supposed to play a role in mRNA translation. We show that the efficiency of D(2)-mediated transmission regulating striatal GABA synapses is under the control of BC1 RNA, through a negative influence on D(2) receptor protein level affecting the functional pool of receptors. Ablation of the BC1 gene did not result in widespread dysregulation of synaptic transmission, because the sensitivity of cannabinoid CB(1) receptors was intact in the striatum of BC1 knock-out (KO) mice despite D(2) and CB(1) receptors mediated similar electrophysiological actions. Interestingly, the fragile X mental retardation protein FMRP, one of the multiple BC1 partners, is not involved in the BC1 effects on the D(2)-mediated transmission. Because D(2)DR mRNA is apparently equally translated in the BC1-KO and wild-type mice, whereas the protein level is higher in BC1-KO mice, we suggest that BC1 RNA controls D(2)DR indirectly, probably regulating translation of molecules involved in D(2)DR turnover and/or stability.

  14. Cyclin D2 is a critical mediator of exercise-induced cardiac hypertrophy.

    Science.gov (United States)

    Luckey, Stephen W; Haines, Chris D; Konhilas, John P; Luczak, Elizabeth D; Messmer-Kratzsch, Antke; Leinwand, Leslie A

    2017-12-01

    induced cardiac growth in all of the transgenic mice except for the mice deficient in cyclin D2. In the cyclin D2 null mice, cardiac function was not impacted even though the hypertrophic response was blunted and a number of signaling pathways are differentially regulated by exercise. These data provide the field with an understanding that cyclin D2 is a key mediator of physiological hypertrophy.

  15. 14-3-3γ Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-κB and MAPKs and Up-Regulating mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Lixin Liu

    2015-07-01

    Full Text Available As a protective factor for lipopolysaccharide (LPS-induced injury, 14-3-3γ has been the subject of recent research. Nevertheless, whether 14-3-3γ can regulate lactation in dairy cow mammary epithelial cells (DCMECs induced by LPS remains unknown. Here, the anti-inflammatory effect and lactation regulating ability of 14-3-3γ in LPS-induced DCMECs are investigated for the first time, and the molecular mechanisms responsible for their effects are explored. The results of qRT-PCR showed that 14-3-3γ overexpression significantly inhibited the mRNA expression of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, interleukin-1β (IL-1β and inducible nitric oxide synthase (iNOS. Enzyme-linked immunosorbent assay (ELISA analysis revealed that 14-3-3γ overexpression also suppressed the production of TNF-α and IL-6 in cell culture supernatants. Meanwhile, CASY-TT Analyser System showed that 14-3-3γ overexpression clearly increased the viability and proliferation of cells. The results of kit methods and western blot analysis showed that 14-3-3γ overexpression promoted the secretion of triglycerides and lactose and the synthesis of β-casein. Furthermore, the expression of genes relevant to nuclear factor-κB (NF-κB and mitogen-activated protein kinase (MAPKs and lactation-associated proteins were assessed by western blot, and the results suggested that 14-3-3γ overexpression inactivated the NF-κB and MAPK signaling pathways by down-regulating extracellular signal regulated protein kinase (ERK, p38 mitogen-activated protein kinase (p38MAPK and inhibitor of NF-κB (IκB phosphorylation levels, as well as by inhibiting NF-κB translocation. Meanwhile, 14-3-3γ overexpression enhanced the expression levels of β-casein, mammalian target of rapamycin (mTOR, ribosomal protein S6 kinase 1 (S6K1, serine/threonine protein kinase Akt 1 (AKT1, sterol regulatory element binding protein 1 (SREBP1 and peroxisome proliferator-activated receptor gamma

  16. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Wang, Xiaoxuan [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Zheng, Ming, E-mail: zhengm@bjmu.edu.cn [Department of Physiology and Pathophysiology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Luan, Qing Xian, E-mail: kqluanqx@126.com [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2016-09-10

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  17. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    International Nuclear Information System (INIS)

    Li, Xue; Wang, Xiaoxuan; Zheng, Ming; Luan, Qing Xian

    2016-01-01

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  18. Blockchain-Empowered Fair Computational Resource Sharing System in the D2D Network

    Directory of Open Access Journals (Sweden)

    Zhen Hong

    2017-11-01

    Full Text Available Device-to-device (D2D communication is becoming an increasingly important technology in future networks with the climbing demand for local services. For instance, resource sharing in the D2D network features ubiquitous availability, flexibility, low latency and low cost. However, these features also bring along challenges when building a satisfactory resource sharing system in the D2D network. Specifically, user mobility is one of the top concerns for designing a cooperative D2D computational resource sharing system since mutual communication may not be stably available due to user mobility. A previous endeavour has demonstrated and proven how connectivity can be incorporated into cooperative task scheduling among users in the D2D network to effectively lower average task execution time. There are doubts about whether this type of task scheduling scheme, though effective, presents fairness among users. In other words, it can be unfair for users who contribute many computational resources while receiving little when in need. In this paper, we propose a novel blockchain-based credit system that can be incorporated into the connectivity-aware task scheduling scheme to enforce fairness among users in the D2D network. Users’ computational task cooperation will be recorded on the public blockchain ledger in the system as transactions, and each user’s credit balance can be easily accessible from the ledger. A supernode at the base station is responsible for scheduling cooperative computational tasks based on user mobility and user credit balance. We investigated the performance of the credit system, and simulation results showed that with a minor sacrifice of average task execution time, the level of fairness can obtain a major enhancement.

  19. Musical Expression with the D2MMG Interface

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer; Graugaard, Lars

    2006-01-01

    Distribution in Multiple Musical Gestures (D2MMG) uses a robust interface for detecting simple drawing gestures. The gestures affect low- and high-level aspects of sound and music through inherent modes organized as primary and secondary gestures. This enables expressive live performance...... and improvisation with sequence creation where musical elements such as tonality, chromaticity, rhythm patterns, and melodical sequences can be affected in real-time. We introduce a utility for procedurally controlling note density and chordal alignment. Future papers will focus on D2MMG’s progressive learning......, multi-user, and unconventional performance usage as well as novel aspects of its methods for gesture detection and sound synthesis....

  20. Acute D2/D3 dopaminergic agonism but chronic D2/D3 antagonism prevents NMDA antagonist neurotoxicity.

    Science.gov (United States)

    Farber, Nuri B; Nemmers, Brian; Noguchi, Kevin K

    2006-09-15

    Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor, most likely by producing disinhibtion in complex circuits, acutely produce psychosis and cognitive disturbances in humans, and neurotoxicity in rodents. Studies examining NMDA Receptor Hypofunction (NRHypo) neurotoxicity in animals, therefore, may provide insights into the pathophysiology of psychotic disorders. Dopaminergic D2 and/or D3 agents can modify psychosis over days to weeks, suggesting involvement of these transmitter system(s). We studied the ability of D2/D3 agonists and antagonists to modify NRHypo neurotoxicity both after a one-time acute exposure and after chronic daily exposure. Here we report that D2/D3 dopamine agonists, probably via D3 receptors, prevent NRHypo neurotoxicity when given acutely. The protective effect with D2/D3 agonists is not seen after chronic daily dosing. In contrast, the antipsychotic haloperidol does not affect NRHypo neurotoxicity when given acutely at D2/D3 doses. However, after chronic daily dosing of 1, 3, or 5 weeks, haloperidol does prevent NRHypo neurotoxicity with longer durations producing greater protection. Understanding the changes that occur in the NRHypo circuit after chronic exposure to dopaminergic agents could provide important clues into the pathophysiology of psychotic disorders.

  1. The effect of D2 agonist versus D2 antagonist on the fear behavior in the male rats using plus-maze method: the prospective study

    Directory of Open Access Journals (Sweden)

    Sabzehkhah S

    2009-11-01

    Full Text Available "nBackground: Dopaminergic is the most important neurotransmitter is fear. The dopaminergic mesolimbic pathway has essential role in excitable behavior, and it's role in Parkinson disease. The aim of this research in study, the effect of dopaminergic pathway in fear response. "n"nMethods: The elevated plus maze was used in combination with the percentage of time spent in the open arms of the maze (OAT% and the percentage of entries into the open arms (OAE% to measure fear. Increases in the OAT% and OAE% indicate an anxiolytic effect (reduction in anxiety, whereas decreases in the OAE% and OAT% indicate an anxiogenic effect. After five days, the rats were injected with saline and different doses of sulpiride and Bromocriptine."n"nResults: Results showed that intracerebroventricular administration of sulpiride, in the doses of 5, 20μg/rat and bromocriptine, D2 agonist in doses 65, 95μg/rat produced a significant effect comparing to sham groups (p<0.05. While intracerebroventricular administration of sulpiride 15, 10μg/rat, and bromocriptine 70, 80μg/rat, did not show any significant effect comparing with sham group (p<0.05. In the current research intracerebroventricular administration of sulpiride, D2 antagonist at the doses of 5, 10, 15, 20μg/rat and Bromocriptine, D2 agonist in the doses of 65, 70, 80, 95μg/rat were used and theire effect on the fear behavior were studied. "n"nConclusions: The possible effect of Dopaminergic system in the fear process, especially D2 receptor increase fear.

  2. Multigenerational effects of adolescent morphine exposure on dopamine D2 receptor function.

    Science.gov (United States)

    Byrnes, John J; Johnson, Nicole L; Carini, Lindsay M; Byrnes, Elizabeth M

    2013-05-01

    The use and misuse of prescription opiates in adolescent populations, and in particular, adolescent female populations, has increased dramatically in the past two decades. Given the significant role that opioids play in neuroendocrine function, exposure to opiates during this critical developmental period could have significant consequences for the female, as well as her offspring. In the current set of studies, we utilized the female rat to model the transgenerational impact of adolescent opiate exposure. We examined locomotor sensitization in response to the dopamine D2/D3 receptor agonist quinpirole in the adult male progeny (F1 and F2 generations) of females exposed to morphine during adolescence. All females were drug-free for at least 3 weeks prior to conception, eliminating the possibility of direct fetal exposure to morphine. Both F1 and F2 progeny of morphine-exposed females demonstrated attenuated locomotor sensitization following repeated quinpirole administration. These behavioral effects were coupled with increased quinpirole-induced corticosterone secretion and upregulated kappa opioid receptor and dopamine D2 receptor (D2R) gene expression within the nucleus accumbens. These results suggest significant modifications in response to repeated D2R activation in the progeny of females exposed to opiates during adolescence. Given the significant role that the D2R plays in psychopathology, adolescent opiate exposure could shift the vulnerability of future offspring to psychological disorders, including addiction. Moreover, that effects are also observed in the F2 generation suggests that adolescent opiate exposure can trigger transgenerational epigenetic modifications impacting systems critical for motivated behavior.

  3. Surface tension of H2O and D2O

    International Nuclear Information System (INIS)

    Vargaftik, N.B.; Voljak, L.D.; Volkov, B.N.

    1975-01-01

    There is a great number of works on surface tension of clean water (H 2 O) at temperatures up to 100 deg C and very few above the boiling point. Works on surface tension of heavy water (D 2 O) are insufficient. A review of works on surface tension of both kinds of water is given

  4. ENVIRONMENTAL EFFECTS OF DREDGING AND DISPOSAL (E2-D2)

    Science.gov (United States)

    US Army Corps of Engineers public web site for the "Environmental Effects of Dredging and Disposal" ("E2-D2") searchable database of published reports and studies about environmental impacts associated with dredging and disposal operations. Many of the reports and studies are ava...

  5. On the sign of d2H/dt2

    International Nuclear Information System (INIS)

    Dipankar, R.

    1977-11-01

    For a system with a given energy that has N different possible states, the H function (of thermodynamics) satisfies d 2 H/dt 2 >0 if N( 2 H/dt 2 may be both positive and negative if N(>=)5. The case of N=4 remains undetermined

  6. Characterizing the D2 statistic: word matches in biological sequences.

    Science.gov (United States)

    Forêt, Sylvain; Wilson, Susan R; Burden, Conrad J

    2009-01-01

    Word matches are often used in sequence comparison methods, either as a measure of sequence similarity or in the first search steps of algorithms such as BLAST or BLAT. The D2 statistic is the number of matches of words of k letters between two sequences. Recent advances have been made in the characterization of this statistic and in the approximation of its distribution. Here, these results are extended to the case of approximate word matches. We compute the exact value of the variance of the D2 statistic for the case of a uniform letter distribution, and introduce a method to provide accurate approximations of the variance in the remaining cases. This enables the distribution of D2 to be approximated for typical situations arising in biological research. We apply these results to the identification of cis-regulatory modules, and show that this method detects such sequences with a high accuracy. The ability to approximate the distribution of D2 for both exact and approximate word matches will enable the use of this statistic in a more precise manner for sequence comparison, database searches, and identification of transcription factor binding sites.

  7. Study on dopamine D2 binding capacity in vascular parkinsonism

    International Nuclear Information System (INIS)

    Terashi, Hiroo; Nagata, Ken; Hirata, Yutaka; Hatazawa, Jun; Utsumi, Hiroya

    2001-01-01

    To investigate whether the striatal dopamine receptor function is involved in the development of vascular parkinsonism (VP), a positron emission tomography (PET) study was conducted on 9 patients with VP by using [ 11 C] N-methylspiperone as the tracer. The rate of binding availability in the striatal dopamine D 2 receptor (k 3 ) was determined semiquantitatively, and the values were compared to the predicted normal values based on the results from 7 normal volunteers. Of 9 patients with VP, the normalized D 2 receptor binding [%k 3 ] was more than 90% in 5 patients, 89 to 87% in 3, and 75% in one. These values showed no evident correlation with the Hoehn and Yahr stage. The laterality of the striatal %k 3 did not correspond to that of the parkinsonism. Thus, the striatal dopamine D 2 receptor binding was not severely impaired and did not correlate with the neurological status in patients with VP. This may indicate that striatal dopamine D 2 receptor function is not primarily associated with the development of the parkinsonism in VP. (author)

  8. Cellular modifications produced by D2O in yeast culture

    International Nuclear Information System (INIS)

    Mihancea, I.; Mircea, R.Al.

    1996-01-01

    The cellular cycle of the Saccharomyces Cerevisiae, chosen as experimental object, is unmodified by the presence in the culture medium of D 2 O at different concentrations. An increased concentration of D 2 O in the culture medium leads to a decrease of the number of budded cells, to metabolic alterations, to DNA structure modification as well as to enzymatic changes produced by blocking. Other anomalies appear, as a function of the cell defence capacity and of the influence of the factors from the nutrient substrate or exterior medium. Due to D 2 O, the medium's pH changes and modifications at the enzyme level and of the cell microstructure and morphology occur. The enzymatic reactions take place in D 2 O slower than in H 2 O. Three-dimensional modifications appear in the organic components of the live cell which, in turn, produce profound modifications in the cell growth and division. Due to the kinetic and isotopic effects, modifications of the biochemical reactions affecting the cell integrity happen

  9. 17 CFR 240.15d-2 - Special financial report.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Special financial report. 240....15d-2 Special financial report. (a) If the registration statement under the Securities Act of 1933 did... registration statement, file a special report furnishing certified financial statements for such last full...

  10. Development of uncoupling between D1- and D2-mediated motor behavior in rats depleted of dopamine as neonates.

    Science.gov (United States)

    Byrnes, E M; Bruno, J P

    1994-09-01

    The D1- and D2-mediation of stimulated motor behavior was studied in pups (Days 10-11) and weanlings (Days 20-21) that had been depleted of dopamine (DA) on postnatal Day 3. Administration of the D1-like agonist SKF 38393 (30.0 mg/kg) or the D2-like agonist quinpirole (3.0 mg/kg) increased the incidence of sniffing and locomotion in intact and DA-depleted animals tested at either age. However, the ability of selective DA antagonists to reduce these stimulated responses interacted with both the depletion and the age at the time of testing. When tested as pups, both the D1 antagonist SCH 23390 (0.2 or 0.4 mg/kg) and the D2 antagonist clebopride (10.0 mg/kg) suppressed the behaviors induced by either class of DA agonist. When tested as weanlings, intact animals exhibited the profile of pups (i.e., either antagonist blocked each agonist). In DA-depleted weanlings, however, only the D1 antagonist blocked the D1 agonist-induced responses and only the D2 antagonist blocked the D2 agonist-induced responses. These data demonstrate that the interactions between D1 and D2 receptors in the expression of stimulated motor behaviors are altered following DA depletions in neonates. Moreover, this change in receptor function occurs sometime between 7 and 13 days after the DA depletion.

  11. Vibrational excitation of D2 by low energy electrons

    International Nuclear Information System (INIS)

    Buckman, S.J.; Phelps, A.V.

    1985-01-01

    Excitation coefficients for the production of vibrationally exicted D 2 by low energy electrons have been determined from measurements of the intensity of infrared emission from mixtures of D 2 and small concentrations of CO 2 or CO. The measurements were made using the electron drift tube technique and covered electric field to gas density ratios (E/n) from (5 to 80) x 10 -21 V m 2 , corresponding to mean electron energies between 0.45 and 4.5 eV. The CO 2 and CO concentrations were chosen to allow efficient excitation transfer from the D 2 to the carbon containing molecule, but to minimize direct excitation of the CO 2 or CO. The measured infrared intensities were normalized to predicted values for N 2 --CO 2 and N 2 --CO mixtures at E/n where the efficiency of vibrational excitation is known to be very close to 100%. The experimental excitation coefficients are in satisfactory agreement with predictions based on electron--D 2 cross sections at mean electron energies below 1 eV, but are about 50% too high at mean energies above about 2 eV. Application of the technique to H 2 did not yield useful vibrational excitation coefficients. The effective coefficients in H 2 --CO 2 mixtures were a factor of about 3 times the predicted values. For our H 2 --CO mixtures the excitation of CO via excitation transfer from H 2 is small compared to direct electron excitation of CO molecules. Published experiments and theories on electron--H 2 and electron--D 2 collisions are reviewed to obtain the cross sections used in the predictions

  12. 17 CFR 270.12d2-1 - Definition of insurance company for purposes of sections 12(d)(2) and 12(g) of the Act.

    Science.gov (United States)

    2010-04-01

    ..., INVESTMENT COMPANY ACT OF 1940 § 270.12d2-1 Definition of insurance company for purposes of sections 12(d)(2... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Definition of insurance company for purposes of sections 12(d)(2) and 12(g) of the Act. 270.12d2-1 Section 270.12d2-1 Commodity...

  13. Isoliquiritigenin protects against sepsis-induced lung and liver injury by reducing inflammatory responses.

    Science.gov (United States)

    Chen, Xiong; Cai, Xueding; Le, Rongrong; Zhang, Man; Gu, Xuemei; Shen, Feixia; Hong, Guangliang; Chen, Zimiao

    2018-02-05

    Sepsis, one of the most fatal diseases worldwide, often leads to multiple organ failure, mainly due to uncontrolled inflammatory responses. Despite accumulating knowledge obtained in recent years, effective drugs to treat sepsis in the clinic are still urgently needed. Isoliquiritigenin (ISL), a chalcone compound, has been reported to exert anti-inflammatory properties. However, little is known about the effects of ISL on sepsis and its related complications. In this study, we investigated the potential protective effects of ISL on lipopolysaccharide (LPS)-induced injuries and identified the mechanisms underlying these effects. ISL inhibited inflammatory cytokine expression in mouse primary peritoneal macrophages (MPMs) exposed to LPS. In an acute lung injury (ALI) mouse model, ISL prevented LPS-induced structural damage and inflammatory cell infiltration. Additionally, pretreatment with ISL attenuated sepsis-induced lung and liver injury, accompanied by a reduction in inflammatory responses. Moreover, these protective effects were mediated by the nuclear factor kappa B (NF-κB) pathway-mediated inhibition of inflammatory responses in vitro and in vivo. Our study suggests that ISL may be a potential therapeutic agent for sepsis-induced injuries. Copyright © 2017. Published by Elsevier Inc.

  14. Fast, controlled stepping drive for D2 filament ejection

    International Nuclear Information System (INIS)

    Amenda, W.; Lang, R.S.

    1985-01-01

    Centrifugal pellet injectors are required to refuel plasma machines. The pellet feed into the centrifuge should, if possible, be direct to keep the exit angle divergence small. The D 2 filaments used are first stored in a cryostat and then rapidly transported to the intake region of the centrifuge. An intermittent drive for fast, controlled ejection of D 2 filaments is described here. Mean filament speed of up to 0.6 m/s per step (1.2 mm) are achieved for the centrifugal pellet injector which refuels the ASDEX tokamak at Garching. The timing of the (81) step shifts can be synchronized with the rotor motion. The drive allows rates of up to 50 pellets per second. The drive method also seems to be suitable for direct feeding of other known centrifugal pellet injectors

  15. The separation of U and Y by D2EHPA

    International Nuclear Information System (INIS)

    Dwi-Biyantoro; Subagiono, R.; Rosyidin; Kris-Tri-Basuki; Tri-Handini; Purwoto

    1996-01-01

    The separation of uranium and yttrium in hydrochloric acid was extracted by D 2 EHPA in dodecane. This process used liquid-liquid extraction method. The variables studied were the concentration of hydrochloric acid, the concentration of extractant, time of extraction, and the temperature of extraction. The data evaluation of the research showed that the optimum condition was as follows: the concentration of HCI = 0.2 M, the concentration of extractant = 0.15 M D 2 EHPA, the time of extraction = 15 minutes, and the temperature of extraction = 20 o C. It was found that the distribution coefficient of uranium was = 34.43, the distribution coefficient of yttrium was = 2.20, and the separation factor of U-Y= 15.65

  16. Adaptive Redox Response of Mesenchymal Stromal Cells to Stimulation with Lipopolysaccharide Inflammagen: Mechanisms of Remodeling of Tissue Barriers in Sepsis

    Directory of Open Access Journals (Sweden)

    Nikolai V. Gorbunov

    2013-01-01

    Full Text Available Acute bacterial inflammation is accompanied by excessive release of bacterial toxins and production of reactive oxygen and nitrogen species (ROS and RNS, which ultimately results in redox stress. These factors can induce damage to components of tissue barriers, including damage to ubiquitous mesenchymal stromal cells (MSCs, and thus can exacerbate the septic multiple organ dysfunctions. The mechanisms employed by MSCs in order to survive these stress conditions are still poorly understood and require clarification. In this report, we demonstrated that in vitro treatment of MSCs with lipopolysaccharide (LPS induced inflammatory responses, which included, but not limited to, upregulation of iNOS and release of RNS and ROS. These events triggered in MSCs a cascade of responses driving adaptive remodeling and resistance to a “self-inflicted” oxidative stress. Thus, while MSCs displayed high levels of constitutively present adaptogens, for example, HSP70 and mitochondrial Sirt3, treatment with LPS induced a number of adaptive responses that included induction and nuclear translocation of redox response elements such as NFkB, TRX1, Ref1, Nrf2, FoxO3a, HO1, and activation of autophagy and mitochondrial remodeling. We propose that the above prosurvival pathways activated in MSCs in vitro could be a part of adaptive responses employed by stromal cells under septic conditions.

  17. Ventral striatal D2/3 receptor availability is associated with impulsive choice behavior as well aslimbic corticostriatal connectivity.

    Science.gov (United States)

    Barlow, Rebecca L; Gorges, Martin; Wearn, Alfie; Niessen, Heiko G; Kassubek, Jan; Dalley, Jeffrey W; Pekcec, Anton

    2018-03-15

    Low dopamine D2/3 receptor availability in the nucleus accumbens (NAcb) shell is associated with highly-impulsive behavior in rats, as measured by premature responses in a cued attentional task. However, it is unclear whether dopamine D2/3 receptor availability in the NAcb is equally linked to intolerance for delayed rewards, a related form of impulsivity. We investigated the relationship between D2/3 receptor availability in the NAcb and impulsivity in a delay-discounting task (DDT) where animals must choose between immediate small-magnitude rewards and delayed larger-magnitude rewards. Corticostriatal D2/3 receptor availability was measured in rats stratified for high-, and low-impulsivity using in-vivo [18F]fallypride positron emission tomography (PET) and ex-vivo [3H]raclopride autoradiography. Resting-state functional connectivity in limbic corticostriatal networks was also assessed using fMRI. DDT impulsivity was inversely related to D2/3 receptor availability in the NAcb core but not the dorsal striatum with higher D2/3 binding in the NAcb shell of high-impulsive rats compared with low-impulsive rats. D2/3 receptor availability was associated with stronger connectivity between the cingulate cortex and hippocampus of high versus low impulsive rats. We conclude that DDT impulsivity is associated with low D2/3 receptor binding in the NAcb core. Thus two related forms of waiting impulsivity - premature responding and delay intolerance in a delay-of-reward task - implicate an involvement of D2/3 receptor availability in the NAcb shell and core, respectively. This dissociation may be causal or consequential to enhanced functional connectivity of limbic brain circuitry and hold relevance for attention-deficit/hyperactivity disorder, drug addiction and other psychiatric disorders.

  18. Electrochemical boriding and characterization of AISI D2 tool steel

    International Nuclear Information System (INIS)

    Sista, V.; Kahvecioglu, O.; Eryilmaz, O.L.; Erdemir, A.; Timur, S.

    2011-01-01

    D2 is an air-hardening tool steel and due to its high chromium content provides very good protection against wear and oxidation, especially at elevated temperatures. Boriding of D2 steel can further enhance its surface mechanical and tribological properties. Unfortunately, it has been very difficult to achieve a very dense and uniformly thick boride layers on D2 steel using traditional boriding processes. In an attempt to overcome such a deficiency, we explored the suitability and potential usefulness of electrochemical boriding for achieving thick and hard boride layers on this tool steel in a molten borax electrolyte at 850, 900, 950 and 1000 °C for durations ranging from 15 min to 1 h. The microstructural characterization and phase analysis of the resultant boride layers were performed using optical, scanning electron microscopy and X-ray diffraction methods. Our studies have confirmed that a single phase Fe 2 B layer or a composite layer consisting of FeB + Fe 2 B is feasible on the surface of D2 steel depending on the length of boriding time. The boride layers formed after shorter durations (i.e., 15 min) mainly consisted of Fe 2 B phase and was about 30 μm thick. The thickness of the layer formed in 60 min was about 60 μm and composed mainly of FeB and Fe 2 B. The cross sectional micro-hardness values of the boride layers varied between 14 and 22 GPa, depending on the phase composition.

  19. Microstructural investigation of D2 tool steel during rapid solidification

    Science.gov (United States)

    Delshad Khatibi, Pooya

    Solidification is considered as a key processing step in developing the microstructure of most metallic materials. It is, therefore, important that the solidification process can be designed and controlled in such a way so as to obtain the desirable properties in the final product. Rapid solidification refers to the system's high undercooling and high cooling rate, which can yield a microstructure with unique chemical composition and mechanical properties. An area of interest in rapid solidification application is high-chromium, high-carbon tool steels which experience considerable segregation of alloying elements during their solidification in a casting process. In this dissertation, the effect of rapid solidification (undercooling and cooling rate) of D2 tool steel on the microstructure and carbide precipitation during annealing was explored. A methodology is described to estimate the eutectic and primary phase undercooling of solidifying droplets. The estimate of primary phase undercooling was confirmed using an online measurement device that measured the radiation energy of the droplets. The results showed that with increasing primary phase and eutectic undercooling and higher cooling rate, the amount of supersaturation of alloying element in metastable retained austenite phase also increases. In the case of powders, the optimum hardness after heat treatment is achieved at different temperatures for constant periods of time. Higher supersaturation of austenite results in obtaining secondary hardness at higher annealing temperature. D2 steel ingots generated using spray deposition have high eutectic undercooling and, as a result, high supersaturation of alloying elements. This can yield near net shape D2 tool steel components with good mechanical properties (specifically hardness). The data developed in this work would assist in better understanding and development of near net shape D2 steel spray deposit products with good mechanical properties.

  20. 3D2 pairing in asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Alm, T.

    1996-01-01

    The superfluid 3 D 2 pairing instability in isospin-asymmetric nuclear matter is studied, using the Paris nucleon-nucleon interaction as an input. It is found that the critical temperature associated with the transition to the superfluid phase becomes strongly suppressed with increasing isospin asymmetry, and vanishes for asymmetry parameter values α (≡(n n -n p )/(n n +n p )) that are larger than several percent. It is shown that for neutron star models based on relativistic, field-theoretical equations of state, a large fraction of their interior may exist in a 3 D 2 -paired superfluid phase. The implications of such a 3 D 2 superfluid in massive neutron stars is discussed with respect to observable pulsar phenomena. Another interesting phenomenon, discussed in the paper, concerns the numerical finding of two critical superfluid temperatures for a given density in the case of isospin-asymmetric matter. Using the BCS cut-off ansatz, a mathematical expression for the critical temperature is derived which confirms this finding analytically. (orig.)

  1. Hyperdorsoanterior embryos from Xenopus eggs treated with D2O

    International Nuclear Information System (INIS)

    Scharf, S.R.; Rowning, B.; Wu, M.; Gerhart, J.C.

    1989-01-01

    Excessively dorsalized embryos of Xenopus laevis develop from eggs treated with 30-70% D 2 O for a few minutes within the first third of the cell cycle following fertilization. As the concentration of D 2 O and the duration of exposure are increased, the anatomy of these embryos shifts in the direction of enlarged dorsal and anterior structures and reduced ventral and posterior ones. Twinning of dorsoanterior structures is frequent. Intermediate forms include embryos with large heads but no trunks or tails. The limit form of the series has cylindrical symmetry, with circumferential bands of eye pigment and cement gland, a core of notochord-like tissue, and a centrally located beating heart. D 2 O treatment seems to increase the egg's sensitivity to the dorsalizing effects of cortical rotation and to stimulate the egg to initiate two or more directions of rotation. Such eggs probably establish thereafter a widened and/or duplicated Nieuwkoop center in the vegetal hemisphere, with the subsequent induction of a widened and/or duplicated Spemann organizer region in the marginal zone, which leads to excessive dorsal development. The existence of these anatomical forms indicates the potential of the egg to undertake dorsal development at all positions of its circumference and suggests that normal patterning depends on the limited and localized activation or disinhibition of this widespread potential

  2. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats.

    Science.gov (United States)

    Johnson, Paul M; Kenny, Paul J

    2010-05-01

    We found that development of obesity was coupled with emergence of a progressively worsening deficit in neural reward responses. Similar changes in reward homeostasis induced by cocaine or heroin are considered to be crucial in triggering the transition from casual to compulsive drug-taking. Accordingly, we detected compulsive-like feeding behavior in obese but not lean rats, measured as palatable food consumption that was resistant to disruption by an aversive conditioned stimulus. Striatal dopamine D2 receptors (D2Rs) were downregulated in obese rats, as has been reported in humans addicted to drugs. Moreover, lentivirus-mediated knockdown of striatal D2Rs rapidly accelerated the development of addiction-like reward deficits and the onset of compulsive-like food seeking in rats with extended access to palatable high-fat food. These data demonstrate that overconsumption of palatable food triggers addiction-like neuroadaptive responses in brain reward circuits and drives the development of compulsive eating. Common hedonic mechanisms may therefore underlie obesity and drug addiction.

  3. Does prostaglandin D2 hold the cure to male pattern baldness?

    Science.gov (United States)

    Nieves, Ashley; Garza, Luis A

    2014-04-01

    Lipids in the skin are the most diverse in the entire human body. Their bioactivity in health and disease is underexplored. Prostaglandin D2 has recently been identified as a factor which is elevated in the bald scalp of men with androgenetic alopecia (AGA) and has the capacity to decrease hair lengthening. An enzyme which synthesizes it, prostaglandin D2 synthase (PTGDS or lipocalin-PGDS), is hormone responsive in multiple other organs. PGD2 has two known receptors, GPR44 and PTGDR. GPR44 was found to be necessary for the decrease in hair growth by PGD2 . This creates an exciting opportunity to perhaps create novel treatments for AGA, which inhibit the activity of PTGDS, PGD2 or GPR44. This review discusses the current knowledge surrounding PGD2 , and future steps needed to translate these findings into novel therapies for patients with AGA. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Tool life and surface roughness of ceramic cutting tool when turning AISI D2 tool steel

    International Nuclear Information System (INIS)

    Wan Emri Wan Abdul Rahaman

    2007-01-01

    The tool life of physical vapor deposition (PVD) titanium nitride (TiN) coated ceramic when turning AISI D2 tool steel of hardness 54-55 HRC was investigated. The experiments were conducted at various cutting speed and feed rate combinations with constant depth of cut and under dry cutting condition. The tool life of the cutting tool for all cutting conditions was obtained. The tool failure mode and wear mechanism were also investigated. The wear mechanism that is responsible for the wear form is abrasion and diffusion. Flank wear and crater wear are the main wear form found when turning AISI D2 grade hardened steel with 54-55 HRC using KY 4400 ceramic cutting tool. Additionally catastrophic failure is observed at cutting speed of 183 m/min and feed rate of 0.16 mm/ rev. (author)

  5. Microstructure evolution and texture development in a friction stir-processed AISI D2 tool steel

    Science.gov (United States)

    Yasavol, N.; Abdollah-zadeh, A.; Vieira, M. T.; Jafarian, H. R.

    2014-02-01

    Crystallographic texture developments during friction stir processing (FSP) of AISI D2 tool were studied with respect to grain sizes in different tool rotation rates. Comparison of the grain sizes in various rotation rates confirmed that grain refinement occurred progressively in higher rotation rates by severe plastic deformation. It was found that the predominant mechanism during FSP should be dynamic recovery (DRV) happened concurrently with continuous dynamic recrystallization (CDRX) caused by particle-stimulated nucleation (PSN). The developed shear texture relates to the ideal shear textures of D1 and D2 in bcc metals. The prevalence of highly dense arrangement of close-packed planes of bcc and the lowest Taylor factor showed the lowest compressive residual stress which is responsible for better mechanical properties compared with the grain-precipitate refinement.

  6. Deer Bone Oil Extract Suppresses Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Cells.

    Science.gov (United States)

    Choi, Hyeon-Son; Im, Suji; Park, Yooheon; Hong, Ki-Bae; Suh, Hyung Joo

    2016-01-01

    The aim of this study was to investigate the effect of deer bone oil extract (DBOE) on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 cells. DBOE was fractionated by liquid-liquid extraction to obtain two fractions: methanol fraction (DBO-M) and hexane fraction (DBO-H). TLC showed that DBO-M had relatively more hydrophilic lipid complexes, including unsaturated fatty acids, than DBOE and DBO-H. The relative compositions of tetradecenoyl carnitine, α-linoleic acid, and palmitoleic acid increased in the DBO-M fraction by 61, 38, and 32%, respectively, compared with DBOE. The concentration of sugar moieties was 3-fold higher in the DBO-M fraction than DBOE and DBO-H. DBO-M significantly decreased LPS-induced nitric oxide (NO) production in RAW264.7 cells in a dose-dependent manner. This DBO-M-mediated decrease in NO production was due to downregulation of mRNA and protein levels of inducible nitric oxide synthase (iNOS). In addition, mRNA expression of pro-inflammatory mediators, such as cyclooxygenase (COX-2), interleukin (IL)-1β, and IL-12β, was suppressed by DBO-M. Our data showed that DBO-M, which has relatively higher sugar content than DBOE and DBO-H, could play an important role in suppressing inflammatory responses by controlling pro-inflammatory cytokines and mediators.

  7. Single-electron capture in He2+-D2 collisions

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, D.; Dagnac, R.

    1994-01-01

    Doubly differential cross sections of single-electron capture were measured for He 2+ impinging on a molecular deuterium target. The investigated collision energies are 4, 6 and 8 keV and the scattering angles range from 10' to 2 o 30' (laboratory frame). The exothermic capture leading to He + (1s) + D 2 +* was found to be the most important process at low energies and angles, whereas the endothermic channels leading to dissociative capture become the main processes at high scattering angles, i.e. at small impact parameters. (author)

  8. Uranium reextraction from D2EHPA-TOPO solvent

    International Nuclear Information System (INIS)

    Duarte Neto, J.

    1985-01-01

    A comparative study for recovering uranium from the solvent D 2 EHPA-TOPO (di-2-ethyl hexyl phosphoric acid - tri-n-octyl phosphine oxide) with ammonium carbonate and sodium carbonate solutions has been made. The paper discusses the precipitation of iron during stripping and the extracctant solubilization in the aqueous phases. Continuous tests showed that uranium is efficiently stripped from the solvent by using both solutions and that the choice of a specific system is dependent on the uranium precipitation mechanism to be employed. (Author) [pt

  9. Joint Secrecy for D2D Communications Underlying Cellular Networks

    KAUST Repository

    Hyadi, Amal

    2018-01-15

    In this work, we investigate the ergodic secrecy rate region of a block-fading spectrum-sharing system, where a D2D communication is underlying a cellular channel. We consider that both the primary and the secondary transmissions require their respective transmitted messages to be kept secret from a common eavesdropper under a joint secrecy constraint. The presented results are for three different scenarios, each corresponding to a particular requirement of the cellular system. First, we consider the case of a fair cellular system, and we show that the impact of jointly securing the transmissions can be balanced between the primary and the secondary systems. The second scenario examines the case when the primary network is demanding and requires the secondary transmission to be at a rate that is decodable by the primary receiver, while the last scenario assumes a joint transmission of artificial noise by the primary and the secondary transmitters. For each scenario, we present an achievable ergodic secrecy rate region that can be used as an indicator for the cellular and the D2D systems to agree under which terms the spectrum will be shared.

  10. Structure of solid H2-D2 mixtures

    International Nuclear Information System (INIS)

    Krupskij, I.N.; Kovalenko, S.I.; Krajnyukova, N.V.

    1978-01-01

    The structure of vapor deposited H 2 -D 2 solid mixtures is investigated. The electron-diffraction examination has been carried out in the temperature range from 2.3K up to the sample sublimation temperature, taking place in case of H 2 at T approximately 5K and D 2 -at T approximately 7K. On the basis of the difractogramm obtained it is shown that in solid films of pure components a FCC structure with parameters asub(Hsub(2))=5.310+-0.01A and asub(Osub(2))=5.100+-0.005A is realized, the structure being metastable in the temperature range. The existence of non-limitted solubility in solid two-component condensates is stated. The decay absence at T approximately 5K, when molecula mobility is enough for the transition of metastable FCC structure into HCP, is in good agreement with the results of experimental and theoretical estimations, according to which the decay critical temperature should not exceed 4K. The existance of the continuous series of solutions at lower temperatures is explained by a small coefficient value of a volumetric and surface diffusion of molecula as well

  11. Therapeutic window of dopamine D2/3 receptor occupancy to treat psychosis in Alzheimer's disease.

    Science.gov (United States)

    Reeves, Suzanne; McLachlan, Emma; Bertrand, Julie; Antonio, Fabrizia D; Brownings, Stuart; Nair, Akshay; Greaves, Suki; Smith, Alan; Taylor, David; Dunn, Joel; Marsden, Paul; Kessler, Robert; Howard, Robert

    2017-04-01

    See Caravaggio and Graff-Guerrero (doi:10.1093/awx023) for a scientific commentary on this article.Antipsychotic drugs, originally developed to treat schizophrenia, are used to treat psychosis, agitation and aggression in Alzheimer's disease. In the absence of dopamine D2/3 receptor occupancy data to inform antipsychotic prescribing for psychosis in Alzheimer's disease, the mechanisms underpinning antipsychotic efficacy and side effects are poorly understood. This study used a population approach to investigate the relationship between amisulpride blood concentration and central D2/3 occupancy in older people with Alzheimer's disease by combining: (i) pharmacokinetic data (280 venous samples) from a phase I single (50 mg) dose study in healthy older people (n = 20, 65-79 years); (ii) pharmacokinetic, 18F-fallypride D2/3 receptor imaging and clinical outcome data on patients with Alzheimer's disease who were prescribed amisulpride (25-75 mg daily) to treat psychosis as part of an open study (n = 28; 69-92 years; 41 blood samples, five pretreatment scans, 19 post-treatment scans); and (iii) 18F-fallypride imaging of an antipsychotic free Alzheimer's disease control group (n = 10, 78-92 years), to provide additional pretreatment data. Non-linear mixed effects modelling was used to describe pharmacokinetic-occupancy curves in caudate, putamen and thalamus. Model outputs were used to estimate threshold steady state blood concentration and occupancy required to elicit a clinically relevant response (>25% reduction in scores on delusions, hallucinations and agitation domains of the Neuropsychiatric Inventory) and extrapyramidal side effects (Simpson Angus Scale scores > 3). Average steady state blood levels were low (71 ± 30 ng/ml), and associated with high D2/3 occupancies (65 ± 8%, caudate; 67 ± 11%, thalamus; 52 ± 11%, putamen). Antipsychotic clinical response occurred at a threshold concentration of 20 ng/ml and D2/3 occupancies of 43% (caudate), 25% (putamen), 43

  12. Nigrostriatal and Mesolimbic D2/3 Receptor Expression in Parkinson's Disease Patients with Compulsive Reward-Driven Behaviors.

    Science.gov (United States)

    Stark, Adam J; Smith, Christopher T; Lin, Ya-Chen; Petersen, Kalen J; Trujillo, Paula; van Wouwe, Nelleke C; Kang, Hakmook; Donahue, Manus J; Kessler, Robert M; Zald, David H; Claassen, Daniel O

    2018-03-28

    The nigrostriatal and mesocorticolimbic dopamine networks regulate reward-driven behavior. Regional alterations to mesolimbic dopamine D 2/3 receptor expression are described in drug-seeking and addiction disorders. Parkinson's disease (PD) patients are frequently prescribed D 2 -like dopamine agonist (DAgonist) therapy for motor symptoms, yet a proportion develop clinically significant behavioral addictions characterized by impulsive and compulsive behaviors (ICBs). Until now, changes in D 2/3 receptor binding in both striatal and extrastriatal regions have not been concurrently quantified in this population. We identified 35 human PD patients (both male and female) receiving DAgonist therapy, with ( n = 17) and without ( n = 18) ICBs, matched for age, disease duration, disease severity, and dose of dopamine therapy. In the off-dopamine state, all completed PET imaging with [ 18 F]fallypride, a high affinity D 2 -like receptor ligand that can measure striatal and extrastriatal D 2/3 nondisplaceable binding potential (BP ND ). Striatal differences between ICB+/ICB- patients localized to the ventral striatum and putamen, where ICB+ subjects had reduced BP ND In this group, self-reported severity of ICB symptoms positively correlated with midbrain D 2/3 receptor BP ND Group differences in regional D 2/3 BP ND relationships were also notable: ICB+ (but not ICB-) patients expressed positive correlations between midbrain and caudate, putamen, globus pallidus, and amygdala BP ND s. These findings support the hypothesis that compulsive behaviors in PD are associated with reduced ventral and dorsal striatal D 2/3 expression, similar to changes in comparable behavioral disorders. The data also suggest that relatively preserved ventral midbrain dopaminergic projections throughout nigrostriatal and mesolimbic networks are characteristic of ICB+ patients, and may account for differential DAgonist therapeutic response. SIGNIFICANCE STATEMENT The biologic determinants of

  13. Pro-Resolving Effects of Resolvin D2 in LTD4 and TNF-α Pre-Treated Human Bronchi.

    Directory of Open Access Journals (Sweden)

    Rayan Khaddaj-Mallat

    Full Text Available Inflammation is a major burden in respiratory diseases, resulting in airway hyperresponsiveness. Our hypothesis is that resolution of inflammation may represent a long-term solution in preventing human bronchial dysfunctions. The aim of the present study was to assess the anti-inflammatory effects of RvD2, a member of the D-series resolving family, with concomitant effects on ASM mechanical reactivity. The role and mode of action of RvD2 were assessed in an in vitro model of human bronchi under pro-inflammatory conditions, induced either by 1 μM LTD4 or 10 ng/ml TNF-α pre-treatment for 48h. TNF-α and LTD4 both induced hyperreactivity in response to pharmacological stimuli. Enhanced 5-Lipoxygenase (5-LOX and cysteinyl leukotriene receptor 1 (CysLTR1 detection was documented in LTD4 or TNF-α pre-treated human bronchi when compared to control (untreated human bronchi. In contrast, RvD2 treatments reversed 5-LOX/β-actin and CysLTR1/β-actin ratios and decreased the phosphorylation levels of AP-1 subunits (c-Fos, c-Jun and p38-MAP kinase, while increasing the detection of the ALX/FPR2 receptor. Moreover, various pharmacological agents revealed the blunting effects of RvD2 on LTD4 or TNF-α induced hyper-responsiveness. Combined treatment with 300 nM RvD2 and 1 μM WRW4 (an ALX/FPR2 receptor inhibitor blunted the pro-resolving and broncho-modulatory effects of RvD2. The present data provide new evidence regarding the role of RvD2 in a human model of airway inflammation and hyperrresponsiveness.

  14. Infrared spectra and tunneling dynamics of the N2-D2O and OC-D2O complexes in the v2 bend region of D2O.

    Science.gov (United States)

    Zhu, Yu; Zheng, Rui; Li, Song; Yang, Yu; Duan, Chuanxi

    2013-12-07

    The rovibrational spectra of the N2-D2O and OC-D2O complexes in the v2 bend region of D2O have been measured in a supersonic slit jet expansion using a rapid-scan tunable diode laser spectrometer. Both a-type and b-type transitions were observed for these two complexes. All transitions are doubled, due to the heavy water tunneling within the complexes. Assuming the tunneling splittings are the same in K(a) = 0 and K(a) = 1, the band origins, all three rotational and several distortion constants of each tunneling state were determined for N2-D2O in the ground and excited vibrational states, and for OC-D2O in the excited vibrational state, respectively. The averaged band origin of OC-D2O is blueshifted by 2.241 cm(-1) from that of the v2 band of the D2O monomer, compared with 1.247 cm(-1) for N2-D2O. The tunneling splitting of N2-D2O in the ground state is 0.16359(28) cm(-1), which is about five times that of OC-D2O. The tunneling splittings decrease by about 26% for N2-D2O and 23% for OC-D2O, respectively, upon excitation of the D2O bending vibration, indicating an increase of the tunneling barrier in the excited vibrational state. The tunneling splittings are found to have a strong dependence on intramolecular vibrational excitation as well as a weak dependence on quantum number K(a).

  15. Oxidative stress and sodium methyldithiocarbamate-induced modulation of the macrophage response to lipopolysaccharide in vivo.

    Science.gov (United States)

    Pruett, Stephen B; Cheng, Bing; Fan, Ruping; Tan, Wei; Sebastian, Thomas

    2009-06-01

    Sodium methyldithiocarbamate (SMD) is the third most abundantly used conventional pesticide in the United States, and hundreds of thousands of persons are exposed to this compound or its major breakdown product, methylisothiocyanate, at levels greater than recommended by the Environmental Protection Agency. A previous study suggests three mechanisms of action involved to some degree in the inhibition of inflammation and decreased resistance to infection caused by exposure of mice to the compound. One of these mechanisms is oxidative stress. The purpose of the present study was to confirm that this mechanism is involved in the effects of SMD on cytokine production by peritoneal macrophages and to further characterize its role in altered cytokine production. Results indicated that SMD significantly decreased the intracellular concentration of reduced glutathione (GSH), suggesting oxidative stress. This was further indicated by the upregulation of genes involved in the "response to oxidative stress" as determined by microarray analysis. These effects were associated with the inhibition of lipopolysaccharide (LPS)-induced production of several proinflammatory cytokines. Experimental depletion of GSH with buthionine sulfoximine (BSO) partially prevented the decrease in LPS-induced interleukin (IL)-6 production caused by SMD and completely prevented the decrease in IL-12. In contrast, BSO plus SMD substantially enhanced the production of IL-10. These results along with results from a previous study are consistent with the hypothesis that SMD causes oxidative stress, which contributes to modulation of cytokine production. However, oxidative stress alone cannot explain the increased IL-10 production caused by SMD.

  16. Vitamin D inhibits lipopolysaccharide-induced inflammatory response potentially through the Toll-like receptor 4 signalling pathway in the intestine and enterocytes of juvenile Jian carp (Cyprinus carpio var. Jian).

    Science.gov (United States)

    Jiang, Jun; Shi, Dan; Zhou, Xiao-Qiu; Yin, Long; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Tang, Ling; Wu, Pei; Zhao, Ye

    2015-11-28

    The present study was conducted to investigate the anti-inflammatory effect of vitamin D both in juvenile Jian carp (Cyprinus carpio var. Jian) in vivo and in enterocytes in vitro. In primary enterocytes, exposure to 10 mg lipopolysaccharide (LPS)/l increased lactate dehydrogenase activity in the culture medium (P<0·05) and resulted in a significant loss of cell viability (P<0·05). LPS exposure increased (P<0·05) the mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-8), which was decreased by pre-treatment with 1,25-dihydroxyvitamin D (1,25D3) in a dose-dependent manner (P<0·05). Further results showed that pre-treatment with 1,25D3 down-regulated Toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (Myd88) and NF-κB p65 mRNA expression (P<0·05), suggesting potential mechanisms against LPS-induced inflammatory response. In vivo, intraperitoneal injection of LPS significantly increased TNF-α, IL-1β, IL-6 and IL-8 mRNA expression in the intestine of carp (P<0·05). Pre-treatment of fish with vitamin D3 protected the fish intestine from the LPS-induced increase of TNF-α, IL-1β, IL-6 and IL-8 mainly by downregulating TLR4, Myd88 and NF-κB p65 mRNA expression (P<0·05). These observations suggest that vitamin D could inhibit LPS-induced inflammatory response in juvenile Jian carp in vivo and in enterocytes in vitro. The anti-inflammatory effect of vitamin D is mediated at least in part by TLR4-Myd88 signalling pathways in the intestine and enterocytes of juvenile Jian carp.

  17. 16 CFR Appendix D2 to Part 305 - Water Heaters-Electric

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Electric D2 Appendix D2 to... PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. D2 Appendix D2 to Part 305—Water Heaters—Electric Range Information CAPACITY FIRST HOUR RATING Range of...

  18. Algebraization of Jaśkowski’s Paraconsistent Logic D2

    Directory of Open Access Journals (Sweden)

    Ciuciura Janusz

    2015-09-01

    Full Text Available The aim of this paper is to present an algebraic approach to Jaśkowski’s paraconsistent logic D2. We present: a D2-discursive algebra, Lindenbaum- Tarski algebra for D2 and D2-matrices. The analysis is mainly based on the results obtained by Jerzy Kotas in the 70s.

  19. SPECT imaging of D2 dopamine receptors and endogenous dopamine release in mice

    NARCIS (Netherlands)

    Jongen, C.; De Bruin, K.; Beekman, F.J.; Booij, J.

    2008-01-01

    Purpose: The dopamine D2 receptor (D2R) is important in the mediation of addiction. [123I]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [123I]IBZM

  20. New therapeutic activity of metabolic enhancer piracetam in treatment of neurodegenerative disease: Participation of caspase independent death factors, oxidative stress, inflammatory responses and apoptosis.

    Science.gov (United States)

    Verma, Dinesh Kumar; Gupta, Sonam; Biswas, Joyshree; Joshi, Neeraj; Singh, Abhishek; Gupta, Parul; Tiwari, Shubhangini; Sivarama Raju, K; Chaturvedi, Swati; Wahajuddin, M; Singh, Sarika

    2018-03-16

    Piracetam, a nootropic drug that has been clinically used for decades but remains enigmatic due to no distinct understanding of its mechanism of action. The present study aimed to investigate the role of caspase independent pathway in piracetam mediated neuroprotection. LPS administration caused significant alterations in oxidative stress related parameters like glutathione, glutathione reductase and increased lipid peroxidation. LPS administration also caused augmented expression of inflammatory cytokines and astrocytes activation. Piracetam treatment offered significant protection against LPS induced oxidative and inflammatory parameters and inhibited astrocytes activation. LPS administration caused augmented level of reactive oxygen species and depleted mitochondrial membrane potential which were attenuated with piracetam treatment. This study for the first time demonstrates the role of caspase independent death factors in piracetam induced neuroprotective effects in rat brain. Translocation of mitochondrial resident apoptosis inducing factor and endonuclease G to nucleus through cytosol after LPS administration was significantly blocked with piracetam treatment. Further, LPS induced DNA fragmentation along with up regulated Poly [ADP-ribose] polymerase 1 (PARP1) levels were also inhibited with piracetam treatment. Apoptotic death was confirmed by the cleavage of caspase 3 as well as histological alteration in rat brain regions. LPS administration caused significantly increased level of cleaved caspase 3, altered neuronal morphology and decreased neuronal density which were restored with piracetam treatment. Collectively our findings indicate that piracetam offered protection against LPS induced inflammatory responses and cellular death including its antioxidative antiapoptotic activity with its attenuation against mitochondria mediated caspase independent pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Frontline Science: ATF3 is responsible for the inhibition of TNF-α release and the impaired migration of acute ethanol-exposed monocytes and macrophages.

    Science.gov (United States)

    Hu, Chaojie; Meng, Xiaoming; Huang, Cheng; Shen, Chenlin; Li, Jun

    2017-03-01

    Binge drinking represses host innate immunity and leads to a high risk of infection. Acute EtOH-pretreated macrophages exhibit a decreased production of proinflammatory mediators in response to LPS. ATF3 is induced and counter-regulates the LPS/TLR4 inflammatory cascade. Here, we investigated the potential role of ATF3 in LPS tolerance in acute ethanol-pretreated macrophages. We found that there was an inverse correlation between ATF3 and LPS-induced TNF-α production in acute ethanol-pretreated murine monocytes and macrophages. The knockdown of ATF3 attenuated the inhibitory effects of acute ethanol treatment on LPS-induced TNF-α production. Furthermore, ChIP assays and co-IP demonstrated that ATF3, together with HDAC1, negatively modulated the transcription of TNF-α. In binge-drinking mice challenged with LPS, an up-regulation of ATF3 and HDAC1 and a concomitant decrease in TNF-α were observed. Given that HDAC1 was concomitantly induced in acute ethanol-exposed monocytes and macrophages, we used the HDACi TSA or silenced HDAC1 to explore the role of HDAC1 in acute ethanol-treated macrophages. Our results revealed that TSA treatment and HDAC1 knockdown prevented acute ethanol-induced ATF3 expression and the inhibition of TNF-α transcription. These data indicated a dual role for HDAC1 in acute ethanol-induced LPS tolerance. Furthermore, we showed that the induction of ATF3 led to the impaired migration of BM monocytes and macrophages. Overall, we present a novel role for ATF3 in the inhibition of LPS-induced TNF-α and in the impairment of monocyte and macrophage migration. © Society for Leukocyte Biology.

  2. Gas chromatographic analysis of Tri-N-Octyl-Phosphine oxide (Topo) in D2EHPA-Topo-Kerosene mixtures

    International Nuclear Information System (INIS)

    Perez Garcia, M.

    1973-01-01

    A study about the minimum limit of TOPO, detectable by gas chromatography in an organic phase formed by D2EHPA and kerosene is carried out. The retention time and response factor under the same conditions are also studied. Octacosane has been used as a reference hydrocarbon. (Author) 8 refs

  3. On relating multiple M2 and D2-branes

    International Nuclear Information System (INIS)

    Gran, U.; Nilsson, B.E.W; Petersson, C.

    2008-01-01

    Due to the difficulties of finding superconformal Lagrangian theories for multiple M2-branes, we will in this paper instead focus on the field equations. By relaxing the requirement of a Lagrangian formulation we can explore the possibility of having structure constants f ABC D satisfying the fundamental identity but which are not totally antisymmetric. We exemplify this discussion by making use of an explicit choice of a non-antisymmetric f ABC D constructed from the Lie algebra structure constants f ab c of an arbitrary gauge group. Although this choice of f ABC D does not admit an obvious Lagrangian description, it does reproduce the correct SYM theory for a stack of N D2-branes to leading order in g YM -1 upon reduction and, moreover, it sheds new light on the centre of mass coordinates for multiple M2-branes.

  4. Inoenue-Wigner contraction and D = 2 + 1 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Concha, P.K.; Rodriguez, E.K. [Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Vina del Mar (Chile); Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Fierro, O. [Universidad Catolica de la Santisima Concepcion, Departamento de Matematica y Fisica Aplicadas, Concepcion (Chile)

    2017-01-15

    We present a generalization of the standard Inoenue-Wigner contraction by rescaling not only the generators of a Lie superalgebra but also the arbitrary constants appearing in the components of the invariant tensor. The procedure presented here allows one to obtain explicitly the Chern-Simons supergravity action of a contracted superalgebra. In particular we show that the Poincare limit can be performed to a D = 2 + 1 (p,q) AdS Chern-Simons supergravity in presence of the exotic form. We also construct a new three-dimensional (2,0) Maxwell Chern-Simons supergravity theory as a particular limit of (2,0) AdS-Lorentz supergravity theory. The generalization for N = p + q gravitinos is also considered. (orig.)

  5. Thermodynamics of the localized D2-D6 system

    International Nuclear Information System (INIS)

    Gomez-Reino, Marta; Naculich, Stephen G.; Schnitzer, Howard J.

    2005-01-01

    An exact fully-localized extremal supergravity solution for N 2 D2-branes and N 6 D6-branes, which is dual to 3-dimensional supersymmetric SU(N 2 ) gauge theory with N 6 fundamentals, was found by Cherkis and Hashimoto. In order to consider the thermal properties of the gauge theory we present the non-extremal extension of this solution to first order in an expansion near the core of the D6-branes. We compute the Hawking temperature and the black-brane horizon area/entropy. The leading-order entropy, which is proportional to N 2 3/2 N 6 1/2 T H 2 , is not corrected to first order in the expansion. This result is consistent with the analogous weak-coupling result at the correspondence point N 2 similar to N 6

  6. Polarizability tensor invariants of H2, HD, and D2

    Science.gov (United States)

    Raj, Ankit; Hamaguchi, Hiro-o.; Witek, Henryk A.

    2018-03-01

    We report an exhaustive compilation of wavelength-dependent matrix elements over the mean polarizability (α ¯ ) and polarizability anisotropy (γ) operators for the rovibrational states of the H2, HD, and D2 molecules together with an accompanying computer program for their evaluation. The matrix elements can be readily evaluated using the provided codes for rovibrational states with J = 0-15 and v = 0-4 and for any laser wavelengths in the interval 182.25-1320.6 nm corresponding to popular, commercially available lasers. The presented results substantially extend the scope of the data available in the literature, both in respect of the rovibrational transitions analyzed and the range of covered laser frequencies. The presented detailed tabulation of accurate polarizability tensor invariants is essential for successful realization of our main long-term goal: developing a universal standard for determining absolute Raman cross sections and absolute Raman intensities in experimental Rayleigh and Raman scattering studies of molecules.

  7. Analysis of ν2 of D 2S

    Science.gov (United States)

    Gillis, James R.; Blatherwick, Ronald D.; Bonomo, Francis S.

    1985-11-01

    The infrared spectrum of ν2 of D 2S was recorded from 740 to 1100 cm -1 on the University of Denver 50-cm FTIR spectrometer system. We have assigned 655 transitions from D 232S and 129 from D 234S, and have analyzed them using Watson's A-reduced Hamiltonian evaluated in the I r representation. We used the recently published D 232S and D 234S ground state Hamiltonian constants [C. Camy-Peyret, J. M. Flaud, L. Lechuga-Fossat and J. W. C. Johns, J. Mol. Spectrosc.109, 300-333 (1985)]. Upper state Hamiltonian constants were obtained from a fit of the ν2 transitions, keeping the ground state constants fixed while varying the upper state constants. The standard deviation of the D 232S ν2 fit is 0.0025 cm -1. The standard deviation of the D 234S ν2 fit is 0.0041 cm -1.

  8. D2-H2 equilibration over γ-irradiated zeolites

    International Nuclear Information System (INIS)

    Novakova, J.; Wichterlova, B.

    1987-01-01

    D 2 -H 2 equilibration was studied at 77 and 298 K over HY, AlHY, HZSM-5 and Alsub(x)Osub(y)HZSM-5 zeolites which had been γ-irradiated at 77 and/or 298 K. The exchange rate was found to be higher at the lower temperature regardless of the temperature of irradiation. Moreover, at 77 K the exchange rates were similar and more stable over the individual zeolites than at 298 K, thus indicating a common reaction path at 77 K. The exchange rate at 298 K depended on the zeolite type: it was more stable and higher over HZSM-5 than over HY, and extra-lattice Al increased both these properties on HY as well as on HZSM-5. The reaction mechanism is discussed in connection with the nature of defects generated by γ-irradiation. (author)

  9. AWRK6, A Synthetic Cationic Peptide Derived from Antimicrobial Peptide Dybowskin-2CDYa, Inhibits Lipopolysaccharide-Induced Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Qiuyu Wang

    2018-02-01

    Full Text Available Lipopolysaccharides (LPS are major outer membrane components of Gram-negative bacteria and produce strong inflammatory responses in animals. Most antibiotics have shown little clinical anti-endotoxin activity while some antimicrobial peptides have proved to be effective in blocking LPS. Here, the anti-LPS activity of the synthetic peptide AWRK6, which is derived from antimicrobial peptide dybowskin-2CDYa, has been investigated in vitro and in vivo. The positively charged α-helical AWRK6 was found to be effective in blocking the binding of LBP (LPS binding protein with LPS in vitro using ELISA. In a murine endotoxemia model, AWRK6 offered satisfactory protection efficiency against endotoxemia death, and the serum levels of LPS, IL-1β, IL-6, and TNF-α were found to be attenuated using ELISA. Further, histopathological analysis suggested that AWRK6 could improve the healing of liver and lung injury in endotoxemia mice. The results of real-time PCR and Western blotting showed that AWRK6 significantly reversed LPS-induced TLR4 overexpression and IκB depression, as well as the enhanced IκB phosphorylation. Additionally, AWRK6 did not produce any significant toxicity in vivo and in vitro. In summary, AWRK6 showed efficacious protection from LPS challenges in vivo and in vitro, by blocking LPS binding to LBP, without obvious toxicity, providing a promising strategy against LPS-induced inflammatory responses.

  10. Dopamine D2 receptors mediate two-odor discrimination and reversal learning in C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Grandy David K

    2004-04-01

    Full Text Available Abstract Background Dopamine modulation of neuronal signaling in the frontal cortex, midbrain, and striatum is essential for processing and integrating diverse external sensory stimuli and attaching salience to environmental cues that signal causal relationships, thereby guiding goal-directed, adaptable behaviors. At the cellular level, dopamine signaling is mediated through D1-like or D2-like receptors. Although a role for D1-like receptors in a variety of goal-directed behaviors has been identified, an explicit involvement of D2 receptors has not been clearly established. To determine whether dopamine D2 receptor-mediated signaling contributes to associative and reversal learning, we compared C57Bl/6J mice that completely lack functional dopamine D2 receptors to wild-type mice with respect to their ability to attach appropriate salience to external stimuli (stimulus discrimination and disengage from inappropriate behavioral strategies when reinforcement contingencies change (e.g. reversal learning. Results Mildly food-deprived female wild-type and dopamine D2 receptor deficient mice rapidly learned to retrieve and consume visible food reinforcers from a small plastic dish. Furthermore, both genotypes readily learned to dig through the same dish filled with sterile sand in order to locate a buried food pellet. However, the dopamine D2 receptor deficient mice required significantly more trials than wild-type mice to discriminate between two dishes, each filled with a different scented sand, and to associate one of the two odors with the presence of a reinforcer (food. In addition, the dopamine D2 receptor deficient mice repeatedly fail to alter their response patterns during reversal trials where the reinforcement rules were inverted. Conclusions Inbred C57Bl/6J mice that develop in the complete absence of functional dopamine D2 receptors are capable of olfaction but display an impaired ability to acquire odor-driven reinforcement contingencies

  11. D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans.

    Science.gov (United States)

    Fazio, Leonardo; Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Romano, Raffaella; Gelao, Barbara; Ursini, Gianluca; Quarto, Tiziana; Lo Bianco, Luciana; Di Giorgio, Annabella; Mancini, Marina; Popolizio, Teresa; Rubini, Giuseppe; Bertolino, Alessandro

    2011-02-14

    Pre-synaptic D2 receptors regulate striatal dopamine release and DAT activity, key factors for modulation of motor pathways. A functional SNP of DRD2 (rs1076560 G>T) is associated with alternative splicing such that the relative expression of D2S (mainly pre-synaptic) vs. D2L (mainly post-synaptic) receptor isoforms is decreased in subjects with the T allele with a putative increase of striatal dopamine levels. To evaluate how DRD2 genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans, we have investigated the association of rs1076560 with BOLD fMRI activity during a motor task. To further evaluate the relationship of this circuitry with dopamine signaling, we also explored the correlation between genotype based differences in motor brain activity and pre-synaptic striatal DAT binding measured with [(123)I] FP-CIT SPECT. Fifty healthy subjects, genotyped for DRD2 rs1076560 were studied with BOLD-fMRI at 3T while performing a visually paced motor task with their right hand; eleven of these subjects also underwent [(123)I]FP-CIT SPECT. SPM5 random-effects models were used for statistical analyses. Subjects carrying the T allele had greater BOLD responses in left basal ganglia, thalamus, supplementary motor area, and primary motor cortex, whose activity was also negatively correlated with reaction time at the task. Moreover, left striatal DAT binding and activity of left supplementary motor area were negatively correlated. The present results suggest that DRD2 genetic variation was associated with focusing of responses in the whole motor network, in which activity of predictable nodes was correlated with reaction time and with striatal pre-synaptic dopamine signaling. Our results in humans may help shed light on genetic risk for neurobiological mechanisms involved in the pathophysiology of disorders with dysregulation of striatal dopamine like Parkinson's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Each individual isoform of the dopamine D2 receptor protects from lactotroph hyperplasia.

    Science.gov (United States)

    Radl, Daniela; De Mei, Claudia; Chen, Eric; Lee, Hyuna; Borrelli, Emiliana

    2013-06-01

    Dopamine acting through D2 receptors (D2Rs) controls lactotroph proliferation and prolactin (PRL) levels. Ablation of this receptor in mice results in lactotroph hyperplasia and prolactinomas in aged females. Alternative splicing of the Drd2 gene generates 2 independent isoforms, a long (D2L) and a short (D2S) isoform, which are present in all D2R-expressing cells. Here, we addressed the role of D2L and D2S on lactotroph physiology through the generation and analysis of D2S-null mice and their comparison with D2L-null animals. These mice represent a valuable tool with which to investigate dopamine-dependent isoform-specific signaling in the pituitary gland. We sought to assess the existence of a more prominent role of D2L or D2S in controlling PRL expression and lactotroph hyperplasia. Importantly, we found that D2L and D2S are specifically linked to independent transduction pathways in the pituitary. D2L-mediated signaling inhibits the AKT/protein kinase B kinase activity whereas D2S, in contrast, is required for the activation of the ERK 1/2 pathway. Under normal conditions, presence of only 1 of the 2 D2R isoforms in vivo prevents hyperprolactinemia, formation of lactotroph's hyperplasia, and tumorigenesis that is observed when both isoforms are deleted as in D2R-/- mice. However, the protective function of the single D2R isoforms is overridden when single isoform-knockout mice are challenged by chronic estrogen treatments as they show increased PRL production and lactotroph hyperplasia. Our study indicates that signaling from each of the D2R isoforms is sufficient to maintain lactotroph homeostasis in physiologic conditions; however, signaling from both is necessary in conditions simulating pathologic states.

  13. CYB5D2 requires heme-binding to regulate HeLa cell growth and confer survival from chemotherapeutic agents.

    Directory of Open Access Journals (Sweden)

    Anthony Bruce

    Full Text Available The cytochrome b5 domain containing 2 (CYB5D2; Neuferricin protein has been reported to bind heme, however, the critical residues responsible for heme-binding are undefined. Furthermore, the relationship between heme-binding and CYB5D2-mediated intracellular functions remains unknown. Previous studies examining heme-binding in two cytochrome b5 heme-binding domain-containing proteins, damage-associated protein 1 (Dap1; Saccharomyces cerevisiae and human progesterone receptor membrane component 1 (PGRMC1, have revealed that conserved tyrosine (Y 73, Y79, aspartic acid (D 86, and Y127 residues present in human CYB5D2 may be involved in heme-binding. CYB5D2 binds to type b heme, however, only the substitution of glycine (G at D86 (D86G within its cytochrome b5 heme-binding (cyt-b5 domain abolished its heme-binding ability. Both CYB5D2 and CYB5D2(D86G localize to the endoplasmic reticulum. Ectopic CYB5D2 expression inhibited cell proliferation and anchorage-independent colony growth of HeLa cells. Conversely, CYB5D2 knockdown and ectopic CYB5D2(D86G expression increased cell proliferation and colony growth. As PGRMC1 has been reported to regulate the expression and activities of cytochrome P450 proteins (CYPs, we examined the role of CYB5D2 in regulating the activities of CYPs involved in sterol synthesis (CYP51A1 and drug metabolism (CYP3A4. CYB5D2 co-localizes with cytochrome P450 reductase (CYPOR, while CYB5D2 knockdown reduced lanosterol demethylase (CYP51A1 levels and rendered HeLa cells sensitive to mevalonate. Additionally, knockdown of CYB5D2 reduced CYP3A4 activity. Lastly, CYB5D2 expression conferred HeLa cell survival from chemotherapeutic agents (paclitaxel, cisplatin and doxorubicin, with its ability to promote survival being dependent on its heme-binding ability. Taken together, this study provides evidence that heme-binding is critical for CYB5D2 in regulating HeLa cell growth and survival, with endogenous CYB5D2 being required to

  14. Acute effect of intravenously applied alcohol in the human striatal and extrastriatal D2 /D3 dopamine system.

    Science.gov (United States)

    Pfeifer, Philippe; Tüscher, Oliver; Buchholz, Hans Georg; Gründer, Gerhard; Vernaleken, Ingo; Paulzen, Michael; Zimmermann, Ulrich S; Maus, Stephan; Lieb, Klaus; Eggermann, Thomas; Fehr, Christoph; Schreckenberger, Mathias

    2017-09-01

    Investigations on the acute effects of alcohol in the human mesolimbic dopamine D 2 /D 3 receptor system have yielded conflicting results. With respect to the effects of alcohol on extrastriatal D 2 /D 3 dopamine receptors no investigations have been reported yet. Therefore we applied PET imaging using the postsynaptic dopamine D 2 /D 3 receptor ligand [ 18 F]fallypride addressing the question, whether intravenously applied alcohol stimulates the extrastriatal and striatal dopamine system. We measured subjective effects of alcohol and made correlation analyses with the striatal and extrastriatal D 2 /D 3 binding potential. Twenty-four healthy male μ-opioid receptor (OPRM1)118G allele carriers underwent a standardized intravenous and placebo alcohol administration. The subjective effects of alcohol were measured with a visual analogue scale. For the evaluation of the dopamine response we calculated the binding potential (BP ND ) by using the simplified reference tissue model (SRTM). In addition, we calculated distribution volumes (target and reference regions) in 10 subjects for which metabolite corrected arterial samples were available. In the alcohol condition no significant dopamine response in terms of a reduction of BP ND was observed in striatal and extrastriatal brain regions. We found a positive correlation for 'liking' alcohol and the BP ND in extrastriatal brain regions (Inferior frontal cortex (IFC) (r = 0.533, p = 0.007), orbitofrontal cortex (OFC) (r = 0.416, p = 0.043) and prefrontal cortex (PFC) (r = 0.625, p = 0.001)). The acute alcohol effects on the D 2 /D 3 dopamine receptor binding potential of the striatal and extrastriatal system in our experiment were insignificant. A positive correlation of the subjective effect of 'liking' alcohol with cortical D 2 /D 3 receptors may hint at an addiction relevant trait. © 2016 Society for the Study of Addiction.

  15. Use and acute toxicity associated with the novel psychoactive substances diphenylprolinol (D2PM) and desoxypipradrol (2-DPMP).

    Science.gov (United States)

    Wood, David M; Dargan, Paul I

    2012-09-01

    sympathomimetic features (hypertension and tachycardia). Five individuals with analytically confirmed acute D2PM toxicity developed agitation/anxiety and/or insomnia lasting 24-96 h in addition to sympathomimetic features (palpitations, anxiety and agitation). Reports of 49 enquiries relating to a 'legal high' product called 'Whack' (which on analysis was found to contain 2-DPMP and fluorotropacocaine) commonly described unwanted cardiovascular (hypertension in 10/49 and tachycardia in 12/49) and neuropsychiatric (agitation in 14/49 and psychosis in 13/49) effects; the neuropsychiatric effects were prolonged, and persisted for up to 5 days. No analysis of biological samples was undertaken so it is not possible to determine which of these agents if any was responsible for the clinical features. In a series of 26 cases related to the use of 'Ivory Wave' (analysis of a similar 'Ivory Wave' product showed that it contained 2-DPMP), 96% had neuropsychiatric features. Cases presented up to 1 week after use with tachycardia, dystonia, rhabdomyolysis, agitation, hallucinations and paranoia. Confirmatory biological sample analysis was either not available (85.3% of cases) or negative (2.9% of cases) for 2-DPMP; it was positive for 2-DPMP in four (11.8%) of the cases (80% of those where biological analysis was undertaken). D2PM AND 2-DPMP RELATED FATALITIES: Although 2-DPMP has been detected in three fatalities, its role in these deaths has not yet been established. There have been no reports of deaths directly attributed to either D2PM or 2-DPMP. There is emerging evidence of the use of D2PM and 2-DPMP in Europe. D2PM and 2-DPMP have sympathomimetic properties similar to cocaine and, in addition, prolonged and clinically significant neuropsychiatric symptoms have been reported.

  16. Thermodynamics of the localized D2-D6 system

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Reino, Marta [Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454 (United States)]. E-mail: marta@brandeis.edu; Naculich, Stephen G. [Department of Physics, Bowdoin College, Brunswick, ME 04011 (United States)]. E-mail: naculich@bowdoin.edu; Schnitzer, Howard J. [Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454 (United States)]. E-mail: schnitzer@brandeis.edu

    2005-05-02

    An exact fully-localized extremal supergravity solution for N{sub 2} D2-branes and N{sub 6} D6-branes, which is dual to 3-dimensional supersymmetric SU(N{sub 2}) gauge theory with N{sub 6} fundamentals, was found by Cherkis and Hashimoto. In order to consider the thermal properties of the gauge theory we present the non-extremal extension of this solution to first order in an expansion near the core of the D6-branes. We compute the Hawking temperature and the black-brane horizon area/entropy. The leading-order entropy, which is proportional to N{sub 2}{sup 3/2}N{sub 6}{sup 1/2}T{sub H}{sup 2}, is not corrected to first order in the expansion. This result is consistent with the analogous weak-coupling result at the correspondence point N{sub 2} similar to N{sub 6}.

  17. Determination of the evaporation coefficient of D2O

    Directory of Open Access Journals (Sweden)

    R. C. Cohen

    2008-11-01

    Full Text Available The evaporation rate of D2O has been determined by Raman thermometry of a droplet train (12–15 μm diameter injected into vacuum (~10-5 torr. The cooling rate measured as a function of time in vacuum was fit to a model that accounts for temperature gradients between the surface and the core of the droplets, yielding an evaporation coefficient (γe of 0.57±0.06. This is nearly identical to that found for H2O (0.62±0.09 using the same experimental method and model, and indicates the existence of a kinetic barrier to evaporation. The application of a recently developed transition-state theory (TST model suggests that the kinetic barrier is due to librational and hindered translational motions at the liquid surface, and that the lack of an isotope effect is due to competing energetic and entropic factors. The implications of these results for cloud and aerosol particles in the atmosphere are discussed.

  18. Color constancy in 3D-2D face recognition

    Science.gov (United States)

    Meyer, Manuel; Riess, Christian; Angelopoulou, Elli; Evangelopoulos, Georgios; Kakadiaris, Ioannis A.

    2013-05-01

    Face is one of the most popular biometric modalities. However, up to now, color is rarely actively used in face recognition. Yet, it is well-known that when a person recognizes a face, color cues can become as important as shape, especially when combined with the ability of people to identify the color of objects independent of illuminant color variations. In this paper, we examine the feasibility and effect of explicitly embedding illuminant color information in face recognition systems. We empirically examine the theoretical maximum gain of including known illuminant color to a 3D-2D face recognition system. We also investigate the impact of using computational color constancy methods for estimating the illuminant color, which is then incorporated into the face recognition framework. Our experiments show that under close-to-ideal illumination estimates, one can improve face recognition rates by 16%. When the illuminant color is algorithmically estimated, the improvement is approximately 5%. These results suggest that color constancy has a positive impact on face recognition, but the accuracy of the illuminant color estimate has a considerable effect on its benefits.

  19. Definitive difference among [DS-D2O], [DS-H2O] and [Bulk-D2O] cells in the deuterization and deuterium-reaction

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Zhang, Yue Chang

    2000-01-01

    We observed a new phenomena that the enormous amount of deuterium/hydrogen can be absorbed quickly as a 'solute-atom' into fine metal powders embedded inside a double-structure (DS) cathode in the electrolyses of D 2 O and H 2 O-electrolytes, respectively, but such highly deuterated powders can be produced only using DS-cathode immersed in D 2 O-electrolyte; [DS-D 2 O], and never generated in H 2 O-electrolyte even using the DS-cathode; [DS-H 2 O]. On the other hand, [Bulk-D 2 O] with bulk-cathode made by the bulk Pd metal never produces highly deuterated metal as mentioned above even though using D 2 O-electrolyte. In short, the deuterium-concentration generating in [Bulk-D 2 O] is found to be much lower than that in [DS-D 2 O]. As a result, because of reason mentioned above, in marked contrast to the case with the [DS-D 2 O], neither excess heat nor 4 He production are observed with both [DS-H 2 O] and [Bulk-D 2 O]. (author)

  20. Aloin Suppresses Lipopolysaccharide-Induced Inflammatory Response and Apoptosis by Inhibiting the Activation of NF-κB

    Directory of Open Access Journals (Sweden)

    Xuan Luo

    2018-02-01

    Full Text Available Numerous herbal-derived natural products are excellent anti-inflammatory agents. Several studies have reported that aloin, the major anthraquinone glycoside obtained from the Aloe species, exhibits anti-inflammatory activity. However, the molecular mechanism of this activity is not well understood. In this report, we found that aloin suppresses lipopolysaccharide-induced pro-inflammatory cytokine secretion and nitric oxide production, and downregulates the expression of tumor necrosis factor alpha (TNF-α, interleukin 6 (IL-6, inducible nitric oxide synthase (iNOS, and cyclooxygenase-2 (COX-2. Aloin inhibits the phosphorylation and acetylation of the NF-κB p65 subunit by suppressing the upstream kinases p38 and Msk1, preventing LPS-induced p65 translocation to the nucleus. We have also shown that aloin inhibits LPS-induced caspase-3 activation and apoptotic cell death. Collectively, these findings suggest that aloin effectively suppresses the inflammatory response, primarily through the inhibition of NF-κB signaling.

  1. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Laurence Madera

    Full Text Available Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression.

  2. Effect of Motor Impairment on Analgesic Efficacy of Dopamine D2/3 Receptors in a Rat Model of Neuropathy

    Directory of Open Access Journals (Sweden)

    Margarida Dourado

    2016-01-01

    Full Text Available Testing the clinical efficacy of drugs that also have important side effects on locomotion needs to be properly designed in order to avoid erroneous identification of positive effects when the evaluation depends on motor-related tests. One such example is the evaluation of analgesic role of drugs that act on dopaminergic receptors, since the pain perception tests used in animal models are based on motor responses that can also be compromised by the same substances. The apparent analgesic effect obtained by modulation of the dopaminergic system is still a highly disputed topic. There is a lack of acceptance of this effect in both preclinical and clinical settings, despite several studies showing that D2/3 agonists induce antinociception. Some authors raised the hypothesis that this antinociceptive effect is enhanced by dopamine-related changes in voluntary initiation of movement. However, the extent to which D2/3 modulation changes locomotion at analgesic effective doses is still an unresolved question. In the present work, we performed a detailed dose-dependent analysis of the changes that D2/3 systemic modulation have on voluntary locomotor activity and response to four separate tests of both thermal and mechanical pain sensitivity in adult rats. Using systemic administration of the dopamine D2/3 receptor agonist quinpirole, and of the D2/3 antagonist raclopride, we found that modulation of D2/3 receptors impairs locomotion and exploratory activity in a dose-dependent manner across the entire range of tested dosages. None of the drugs were able to consistently diminish either thermal or mechanical pain perception when administered at lower concentrations; on the other hand, the larger concentrations of raclopride (0.5–1.0 mg/kg strongly abolished pain responses, and also caused severe motor impairment. Our results show that administration of both agonists and antagonists of dopaminergic D2/3 receptors affects sensorimotor behaviors, with the

  3. Satisfactory surgical outcome of T2 gastric cancer after modified D2 lymphadenectomy.

    Science.gov (United States)

    Zhang, Shupeng; Wu, Liangliang; Wang, Xiaona; Ding, Xuewei; Liang, Han

    2017-04-01

    Though D2 lymphadenectomy has been increasingly regarded as standard surgical procedure for advanced gastric cancer (GC), the modified D2 (D1 + 7, 8a and 9) lymphadenectomy may be more suitable than D2 dissection for T2 stage GC. The purpose of this study is to elucidate whether the surgical outcome of modified D2 lymphadenectomy was comparable to that of standard D2 dissection in T2 stage GC patients. A retrospective cohort study with 77 cases and 77 controls matched for baseline characteristics was conducted. Patients were categorized into two groups according to the extent of lymphadenectomy: the modified D2 group (mD2) and the standard D2 group (D2). Surgical outcome and recurrence date were compared between the two groups. The 5-year overall survival (OS) rate was 71.4% for patients accepted mD2 lymphadenectomy and 70.1% for those accepted standard D2, respectively, and the difference was not statistically significant. Multivariate survival analysis revealed that curability, tumor size, TNM stage and postoperative complications were independently prognostic factors for T2 stage GC patients. Patients in the mD2 group tended to have less intraoperative blood loss (P=0.001) and shorter operation time (P<0.001) than those in the D2 group. While there were no significant differences in recurrence rate and types, especially lymph node recurrence, between the two groups. The surgical outcome of mD2 lymphadenectomy was equal to that of standard D2, and the use of mD2 instead of standard D2 can be a better option for T2 stage GC.

  4. Dopamine D2L receptor-interacting proteins regulate dopaminergic signaling

    Directory of Open Access Journals (Sweden)

    Norifumi Shioda

    2017-10-01

    Full Text Available Dopamine receptor family proteins include seven transmembrane and trimeric GTP-binding protein-coupled receptors (GPCRs. Among them, the dopamine D2 receptor (D2R is most extensively studied. All clinically used antipsychotic drugs serve as D2R antagonists in the mesolimbic dopamine system, and their ability to block D2R signaling is positively correlated with antipsychotic efficiency. Human genetic studies also show a significant association of DRD2 polymorphisms with disorders including schizophrenia and Parkinson's disease. D2R exists as two alternatively spliced isoforms, the long isoform (D2LR and the short isoform (D2SR, which differ in a 29-amino acid (AA insert in the third cytoplasmic loop. Importantly, previous reports demonstrate functional diversity between the two isoforms in humans. In this review, we focus on binding proteins that specifically interact with the D2LR 29AA insert. We discuss how D2R activities are mediated not only by heterotrimeric G proteins but by D2LR-interacting proteins, which in part regulate diverse D2R activities. Keywords: Dopamine D2L receptor, Antipsychotic drugs, DRD2 polymorphisms, Alternatively spliced isoforms, D2LR-interacting proteins

  5. Microstructural Quantification of Rapidly Solidified Undercooled D2 Tool Steel

    Science.gov (United States)

    Valloton, J.; Herlach, D. M.; Henein, H.; Sediako, D.

    2017-10-01

    Rapid solidification of D2 tool steel is investigated experimentally using electromagnetic levitation (EML) under terrestrial and reduced gravity conditions and impulse atomization (IA), a drop tube type of apparatus. IA produces powders 300 to 1400 μm in size. This allows the investigation of a large range of cooling rates ( 100 to 10,000 K/s) with a single experiment. On the other hand, EML allows direct measurements of the thermal history, including primary and eutectic nucleation undercoolings, for samples 6 to 7 mm in diameter. The final microstructures at room temperature consist of retained supersaturated austenite surrounded by eutectic of austenite and M7C3 carbides. Rapid solidification effectively suppresses the formation of ferrite in IA, while a small amount of ferrite is detected in EML samples. High primary phase undercoolings and high cooling rates tend to refine the microstructure, which results in a better dispersion of the eutectic carbides. Evaluation of the cell spacing in EML and IA samples shows that the scale of the final microstructure is mainly governed by coarsening. Electron backscattered diffraction (EBSD) analysis of IA samples reveals that IA powders are polycrystalline, regardless of the solidification conditions. EBSD on EML samples reveals strong differences between the microstructure of droplets solidified on the ground and in microgravity conditions. While the former ones are polycrystalline with many different grains, the EML sample solidified in microgravity shows a strong texture with few much larger grains having twinning relationships. This indicates that fluid flow has a strong influence on grain refinement in this system.

  6. Transfer of π- from hydrogen to deuterium in H2O + D2O mixtures

    International Nuclear Information System (INIS)

    Stanislaus, S.; Measday, D.F.; Vetterli, D.; Weber, P.; Aniol, K.A.; Harston, M.R.; Armstrong, D.S.

    1989-07-01

    The transfer of stopping π - mesons from hydrogen to deuterium has been investigated in mixtures of H 2 O+D 2 O as a function of D 2 O concentration. The concentration dependence of the transfer probability is similar to that observed for the gas mixtures of H 2 and D 2 but slightly more transfer is found for H 2 O+D 2 O. (Author) 17 refs., 2 tabs., 4 figs

  7. Insights into the molecular mechanism of dehalogenation catalyzed by D-2-haloacid dehalogenase from crystal structures.

    Science.gov (United States)

    Wang, Yayue; Feng, Yanbin; Cao, Xupeng; Liu, Yinghui; Xue, Song

    2018-01-23

    D-2-haloacid dehalogenases (D-DEXs) catalyse the hydrolytic dehalogenation of D-2-haloacids, releasing halide ions and producing the corresponding 2-hydroxyacids. A structure-guided elucidation of the catalytic mechanism of this dehalogenation reaction has not been reported yet. Here, we report the catalytic mechanism of a D-DEX, HadD AJ1 from Pseudomonas putida AJ1/23, which was elucidated by X-ray crystallographic analysis and the H 2 18 O incorporation experiment. HadD AJ1 is an α-helical hydrolase that forms a homotetramer with its monomer including two structurally axisymmetric repeats. The product-bound complex structure was trapped with L-lactic acid in the active site, which is framed by the structurally related helices between two repeats. Site-directed mutagenesis confirmed the importance of the residues lining the binding pocket in stabilizing the enzyme-substrate complex. Asp205 acts as a key catalytic residue and is responsible for activating a water molecule along with Asn131. Then, the hydroxyl group of the water molecule directly attacks the C2 atom of the substrate to release the halogen ion instead of forming an enzyme-substrate ester intermediate as observed in L-2-haloacid dehalogenases. The newly revealed structural and mechanistic information on D-DEX may inspire structure-based mutagenesis to engineer highly efficient haloacid dehalogenases.

  8. NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists.

    Science.gov (United States)

    Moore, N A; Blackman, A; Awere, S; Leander, J D

    1993-06-11

    In the present study, we investigated the ability of NMDA receptor antagonists to inhibit catalepsy induced by haloperidol, or SCH23390 and clebopride, selective dopamine D1 and D2 receptor antagonists respectively. Catalepsy was measured by recording the time the animal remained with its forepaws placed over a rod 6 cm above the bench. Pretreatment with either the non-competitive NMDA receptor antagonist, MK-801 (0.25-0.5 mg/kg i.p.) or the competitive antagonist, LY274614 (10-20 mg/kg i.p.) reduced the cataleptic response produced by haloperidol (10 mg/kg), SCH23390 (2.5-10 mg/kp i.p.) or clebopride (5-20 mg/kg i.p.). This demonstrates that NMDA receptor antagonists will reduce both dopamine D1 and D2 receptor antagonist-induced catalepsy. Muscle relaxant doses of chlordiazepoxide (10 mg/kg i.p.) failed to reduce the catalepsy induced by haloperidol, suggesting that the anticataleptic effect of the NMDA receptor antagonists was not due to a non-specific action. These results support the hypothesis that NMDA receptor antagonists may have beneficial effects in disorders involving reduced dopaminergic function, such as Parkinson's disease.

  9. For Earth into space: The German Spacelab Mission D-2

    Science.gov (United States)

    Sahm, P. R.; Keller, M. H.; Schiewe, B.

    The Spacelab Mission D-2 successfully lifted off from Kennedy Space Center on April 26, 1993. With 88 experiments on board covering eleven different research disciplines it was a very ambitious mission. Besides materials and life science subjects, the mission also encompassed astronomy, earth observation, radiation physics and biology, telecommunication, automation and robotics. Notable results were obtained in almost all cases. To give some examples of the scientific output, building upon results obtained in previous missions (FSLP, D1) diffusion in melts was broadly represented delivering most precise data on the atomic mobility within various liquids, and crystal growth experiments (the largest gallium arsenide crystal grown by the floating zone technique, so far obtained anywhere, was one of the results), biological cell growth experiments were continued (for example, beer yeast cultures, continuing their growth on earth, delivered a qualitatively superior brewery result), the human physiology miniclinic configuration ANTHRORACK gave novel insights concerning cardiovascular, pulmonary, and renal (fluid volume determining) factors. Astronomical experiments yielded insights into our own galaxy within the ultra violet spectrum, earth observation experiments delivered the most precise resolution data superimposed by thematic mapping of many areas of the Earth, and the robotics experiment brought a remarkable feature in that a flying object was caught by the space robot, which was only achieved through several innovative advances during the time of experiment preparation. The eight years of preparation were also beneficial in another sense. Several discoveries have been made, and various technology transfers into ground-based processes were verified. To name the outstanding ones, in the materials science a novel bearing materials production process was developped, a patent granted for an improved high temperature heating chamber; with life sciences a new hormone

  10. Verification experiment of EPR paradox by (d, 2He) reaction

    International Nuclear Information System (INIS)

    Sakai, Hideyuki

    2003-01-01

    FBR paradox which was brought forward by Einstein, Podolsky and Rosen is expressed by Bell's inequality of spin correlation theoretically. In principle it is possible to verify the inequality by measuring spin correlation between two particles having spin 1/2 from a decay of 1 S 0 experimentally. Most of the past experiments to verify the inequality, however, have been performed by using photons. On the other hand, only one experiment by using hadron system was carried out by Lamehi and Mitting, where the [ 1 S 0 ] state was produced by proton-proton scattering at first, and then the spin orientations after the scattering were measured. Unfortunately, there exit some sources of ambiguity to reach definite conclusion from their result because the experiment was done at rather high energy of 13.5 MeV. In the experiment planned by the present author it is designed to overcome the experimental difficulties, which Lamehi and Mitting encountered, by (1) generating high purity singlet [ 1 S 0 ] state of two protons by (d, 2 He) type nuclear reaction at intermediate energy range, and by (2) developing high performance spin-correlation polarimeter which can analyze spins of two protons simultaneously to minimize the systematic errors. The excitation energy of 2 He corresponding to the proton-proton relative energy can be experimentally controlled. An idea singlet is realized by choosing the state with sufficiently small relative energy. It is planned to measure the spin correlation function by using SMART (Swinger and Magnetic Analyzer with Rotator and Twister) at RIKEN Accelerator Research Facility. Einstein POLarimeter (EPOL) to be installed on the second focal plane of SMART is under development, with which high precision measurements of spin orientations of two high energy protons simultaneously coming into limited space from 2 He decay are made selecting the subject events from very many background events. Monte Carlo simulation predicts the possibility to verify the

  11. Exchange reaction of acetylene-d2 with hydrogen chloride

    International Nuclear Information System (INIS)

    Bopp, A.F.; Kern, R.D.

    1975-01-01

    A mixture containing 3 percent each of the reactants C 2 D 2 and HCl in an Ne--Ar diluent was studied over the temperature range 1650 to 2600 0 K utilizing a shock tube coupled to a time-of-flight mass spectrometer. Plots of the mole fractions f of the exchange products, DCl and C 2 HD, revealed two distinct regions of growth: (a) an initial low conversion region characterized by an induction period t/sub i/; and (b) a region of accelerated exchange during which exchange products were formed with a quadratic dependence of the reaction time. These two regions labeled a and b were combined using two empirical equations, 1 - f/sub a//f/sub eq,a/ = exp [-k/sub a/[M]t], where t less than or equal to t/sub i/, and 1 - f/sub b//f/sub eq,b/ = exp [-k/sub b/[M](t - t/sub i/) 2 ], in order to represent the entire reaction profile at any given temperature within the interval investigated. The Arrhenius parameters for k/sub a/ and k/sub b/ were determined to be 10 11 . 15+-0 . 30 exp (-19990 +- 2850/RT) and 10 16 . 40+-0 . 41 exp (-31480 +- 4200/RT), respectively, for DCl and 10 11 . 69+-0 . 29 exp (-19150 +- 2740/RT) and 10 15 . 24+-0 . 34 exp (-17620 +- 3480/RT) for C 2 HD. The units for k/sub a/ are cm 3 mol -1 sec -1 and cm 3 mol -1 sec -2 for k/sub b/. Activation energies are reported in cal mol -1 . Comparison with the profiles obtained for acetylene pyrolysis strongly suggests that the mechanism for the exchange is atomic. Furthermore, the exchange experiments indicate that the initial step in the pyrolysis of acetylene is the disproportionation reaction, 2C 2 H 2 → C 2 H + C 2 H 3

  12. VirD2 of Agrobacterium tumefaciens : functional domains and biotechnological applications

    NARCIS (Netherlands)

    Kregten, Maartje van

    2011-01-01

    Agrobacterium tumefaciens is a pathogenic bacterium, which can genetically transform plants and other organisms. It does so by translocating a part of its DNA, the T-strand, in complex with the relaxase protein VirD2. We have shown that VirD2 is the determinant of translocation of the VirD2-T-strand

  13. D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats

    Directory of Open Access Journals (Sweden)

    Ohtani N

    2016-10-01

    Full Text Available Norimasa Ohtani, Eiji Masaki Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan Background: Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neuropathic pain, which is one component of postoperative pain. The purpose of this study was to investigate whether impairment of D2-like receptors in the descending dopaminergic pathway in the spinal cord is involved in the decreased postoperative nociceptive threshold in rats.Methods: Male Sprague-Dawley rats (250–300 g were anesthetized with sevoflurane and an intrathecal (IT catheter was implanted. Six days later, a plantar incision was made. On the following day, saline, a D2-like receptor agonist (quinpirole, or a D2-like receptor antagonist (sulpiride was administered intrathecally. Thermal and mechanical nociceptive responses were assessed by exposure to infrared radiant heat and the von Frey filament test before and after plantar incision.Results: Plantar incision decreased both thermal latency and the mechanical nociceptive threshold. IT administration of quinpirole inhibited the nociceptive responses induced by plantar incision, but sulpiride had no effect.Conclusion: A D2-like receptor agonist had antinociceptive effects on the hypersensitivity response triggered by a surgical incision, but a D2-like receptor antagonist had no effect on this response. These results suggest that impairment and/or modification of D2-like receptors in the descending dopaminergic pathway in the spinal cord is not involved in the postoperative decrease in nociceptive threshold. Keywords: postoperative pain, descending pathway

  14. Acute Cocaine Induces Fast Activation of D1 Receptor and Progressive Deactivation of D2 Receptor Strial Neurons: In Vivo Optical Microprobe [Ca2+]i Imaging

    International Nuclear Information System (INIS)

    Du, C.; Luo, Z.; Volkow, N.D.; Heintz, N.; Pan, Y.; Du, C.

    2011-01-01

    Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine's reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca 2+ ] i ) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R- versus D2R-expressing neurons in striatum. Acute cocaine (8 mg/kg, i.p.) rapidly increased [Ca 2+ ] i in D1R-expressing neurons (10.6 ± 3.2%) in striatum within 8.3 ± 2.3 min after cocaine administration after which the increases plateaued; these fast [Ca 2+ ] i increases were blocked by pretreatment with a D1R antagonist (SCH23390). In contrast, cocaine induced progressive decreases in [Ca 2+ ] i in D2R-expressing neurons (10.4 ± 5.8%) continuously throughout the 30 min that followed cocaine administration; these slower [Ca 2+ ] i decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R-expressing neurons (direct-pathway) enhances cocaine reward, whereas activation of D2R expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine's rewarding effects entail both its fast stimulation ofD1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer-lasting deactivation of indirect-pathway neurons). We also provide direct in vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration.

  15. Separation of yttrium using carbon nanotube doped polymeric beads impregnated with D2EHPA

    International Nuclear Information System (INIS)

    Dasgupta, Kinshuk; Yadav, Kartikey K.; Singh, D.K.; Anitha, M.; Singh, H.

    2013-01-01

    Di-2-ethylhexyl phosphoric acid impregnated polyethersulfone based composite beads in combination with additives such as polyvinyl alcohol (PVA) and multiwalled carbon nanotube (MWCNT) has been prepared by non-solvent phase inversion method. The synthesized beads were characterized by scanning electron microscopy, thermogravimetry and infra-red spectroscopy. Effect of additives on bead morphology, solvent impregnation capacity, extractability and stability has been examined to compare their suitability for yttrium recovery from acidic medium. Microstructural investigation as well as experimental findings confirmed the role of additives in modifying the pore structures in beads, responsible for varied degree of yttrium extraction. Further the role of metal ion concentration in aqueous phase on its recovery by polymeric beads was also evaluated. Among the tested beads PES/D2EHPA/MWCNT/PVA beads were found to be superior for Y(Ill) extraction. (author)

  16. Dopamine D2 Receptor-Mediated Regulation of Pancreatic β Cell Mass

    Directory of Open Access Journals (Sweden)

    Daisuke Sakano

    2016-07-01

    Full Text Available Understanding the molecular mechanisms that regulate β cell mass and proliferation is important for the treatment of diabetes. Here, we identified domperidone (DPD, a dopamine D2 receptor (DRD2 antagonist that enhances β cell mass. Over time, islet β cell loss occurs in dissociation cultures, and this was inhibited by DPD. DPD increased proliferation and decreased apoptosis of β cells through increasing intracellular cAMP. DPD prevented β cell dedifferentiation, which together highly contributed to the increased β cell mass. DRD2 knockdown phenocopied the effects of domperidone and increased the number of β cells. Drd2 overexpression sensitized the dopamine responsiveness of β cells and increased apoptosis. Further analysis revealed that the adenosine agonist 5′-N-ethylcarboxamidoadenosine, a previously identified promoter of β cell proliferation, acted with DPD to increase the number of β cells. In humans, dopamine also modulates β cell mass through DRD2 and exerts an inhibitory effect on adenosine signaling.

  17. D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C]raclopride

    International Nuclear Information System (INIS)

    Farde, L.; Wiesel, F.A.; Stone-Elander, S.; Halldin, C.; Nordstroem, A.L.H.; Hall, H.; Sedvall, G.

    1990-01-01

    Several groups have reported increased densities of D2 dopamine receptors in the basal ganglia of schizophrenic brains postmortem. The significance of this finding has been questioned, since an upregulation of receptor number may be a neuronal response to neuroleptic drug treatment. We have used positron emission tomography and [ 11 C]raclopride to examine central D2 dopamine receptor binding in 20 healthy subjects and 18 newly admitted, young, neuroleptic-naive patients with schizophrenia. An in vivo saturation procedure was applied for quantitative determination of D2 dopamine receptor density (Bmax) and affinity (Kd). When the two groups were compared, no significant difference in Bmax or Kd values was found in the putamen or the caudate nucleus. The hypothesis of generally elevated central D2 dopamine receptor densities in schizophrenia was thus not supported by the present findings. In the patients but not in the healthy controls, significantly higher densities were found in the left than in the right putamen but not in the caudate nucleus

  18. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    Science.gov (United States)

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-03

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Antihypertensive effect of etamicastat in dopamine D2 receptor-deficient mice.

    Science.gov (United States)

    Armando, Ines; Asico, Laureano D; Wang, Xiaoyan; Jones, John E; Serrão, Maria Paula; Cuevas, Santiago; Grandy, David K; Soares-da-Silva, Patricio; Jose, Pedro A

    2018-04-13

    Abnormalities of the D 2 R gene (DRD2) play a role in the pathogenesis of human essential hypertension; variants of the DRD2 have been reported to be associated with hypertension. Disruption of Drd2 (D 2 -/- ) in mice increases blood pressure. The hypertension of D 2 -/- mice has been related, in part, to increased sympathetic activity, renal oxidative stress, and renal endothelin B receptor (ETBR) expression. We tested in D 2 -/- mice the effect of etamicastat, a reversible peripheral inhibitor of dopamine-β-hydroxylase that reduces the biosynthesis of norepinephrine from dopamine and decreases sympathetic nerve activity. Blood pressure was measured in anesthetized D 2 -/- mice treated with etamicastat by gavage, (10 mg/kg), conscious D 2 -/- mice, and D 2 +/+ littermates, and mice with the D 2 R selectively silenced in the kidney, treated with etamicastat in the drinking water (10 mg/kg per day). Tissue and urinary catecholamines and renal expression of selected G protein-coupled receptors, enzymes related to the production of reactive oxygen species, and sodium transporters were also measured. Etamicastat decreased blood pressure both in anesthetized and conscious D 2 -/- mice and mice with renal-selective silencing of D 2 R to levels similar or close to those measured in D 2 +/+ littermates. Etamicastat decreased cardiac and renal norepinephrine and increased cardiac and urinary dopamine levels in D 2 -/- mice. It also normalized the increased renal protein expressions of ETBR, NADPH oxidase isoenzymes, and urinary 8-isoprostane, as well as renal NHE3 and NCC, and increased the renal expression of D 1 R but not D 5 R in D 2 -/- mice. In conclusion, etamicastat is effective in normalizing the increased blood pressure and some of the abnormal renal biochemical alterations of D 2 -/- mice.

  20. The use of spinning-disk confocal microscopy for the intravital analysis of platelet dynamics in response to systemic and local inflammation.

    Directory of Open Access Journals (Sweden)

    Craig N Jenne

    Full Text Available Platelets are central players in inflammation and are an important component of the innate immune response. The ability to visualize platelets within the live host is essential to understanding their role in these processes. Past approaches have involved adoptive transfer of labelled platelets, non-specific dyes, or the use of fluorescent antibodies to tag platelets in vivo. Often, these techniques result in either the activation of the platelet, or blockade of specific platelet receptors. In this report, we describe two new methods for intravital visualization of platelet biology, intravenous administration of labelled anti-CD49b, which labels all platelets, and CD41-YFP transgenic mice, in which a percentage of platelets express YFP. Both approaches label endogenous platelets and allow for their visualization using spinning-disk confocal fluorescent microscopy. Following LPS-induced inflammation, we were able to measure a significant increase in both the number and size of platelet aggregates observed within the vasculature of a number of different tissues. Real-time observation of these platelet aggregates reveals them to be large, dynamic structures that are continually expanding and sloughing-off into circulation. Using these techniques, we describe for the first time, platelet recruitment to, and behaviour within numerous tissues of the mouse, both under control conditions and following LPS induced inflammation.

  1. Progressive supranuclear palsy dopamine D2 receptor tomoscintigraphy to detect L-dopamine efficiency. Paralysies supra-nucleaires progressives. Quantification des recepteurs dopaminergiques D2 par tomoscintigraphie

    Energy Technology Data Exchange (ETDEWEB)

    Tranquart, F; Henry Le Bras, F; Toffol, B de; Autret, A; Guilloteau, D; Baulieu, J L [Hopital Bretonneau, 37 - Tours (France)

    1994-09-01

    Progressive supranuclear palsy (PSP) may sometimes be misdiagnosed as Parkinson's disease in its early stages, hence an early positive diagnosis of PSP based on dopamine D2 receptor density could be extremely valuable. In the present case report, the absence of dopamine D2 receptors was clearly demonstrated in the striatum using [sup 123]I-iodobenzamide (IBZM) tomoscintigraphy. This illustrates the potential use of IBZM tomoscintigraphy to identify Parkinson-like's disease presenting with decreased dopamine D2 receptor density; and hence to predict L-Dopa effectiveness. Further studies are needed to evaluate the value of IBZM tomoscintigraphy in the different Parkinson's like diseases. (authors). 11 refs., 2 figs.

  2. Diminazene aceturate (Berenil modulates the host cellular and inflammatory responses to Trypanosoma congolense infection.

    Directory of Open Access Journals (Sweden)

    Shiby Kuriakose

    Full Text Available BACKGROUND: Trypanosoma congolense are extracellular and intravascular blood parasites that cause debilitating acute or chronic disease in cattle and other domestic animals. Diminazene aceturate (Berenil has been widely used as a chemotherapeutic agent for trypanosomiasis in livestock since 1955. As in livestock, treatment of infected highly susceptible BALB/c mice with Berenil leads to rapid control of parasitemia and survival from an otherwise lethal infection. The molecular and biochemical mechanisms of action of Berenil are still not very well defined and its effect on the host immune system has remained relatively unstudied. Here, we investigated whether Berenil has, in addition to its trypanolytic effect, a modulatory effect on the host immune response to Trypanosoma congolense. METHODOLOGY/PRINCIPAL FINDINGS: BALB/c and C57BL/6 mice were infected intraperitoneally with T. congolense, treated with Berenil and the expression of CD25 and FoxP3 on splenic cells was assessed directly ex vivo. In addition, serum levels and spontaneous and LPS-induced production of pro-inflammatory cytokines by splenic and hepatic CD11b⁺ cells were determined by ELISA. Berenil treatment significantly reduced the percentages of CD25⁺ cells, a concomitant reduction in the percentage of regulatory (CD4⁺Foxp3⁺ T cells and a striking reduction in serum levels of disease exacerbating pro-inflammatory cytokines including IL-6, IL-12, TNF and IFN-γ. Furthermore, Berenil treatment significantly suppressed spontaneous and LPS-induced production of inflammatory cytokines by splenic and liver macrophages and significantly ameliorated LPS-induced septic shock and the associated cytokine storm. CONCLUSIONS/SIGNIFICANCE: Collectively, these results provide evidence that in addition to its direct trypanolytic effect, Berenil also modulates the host immune response to the parasite in a manner that dampen excessive immune activation and production of pathology

  3. Nucleus Accumbens Microcircuit Underlying D2-MSN-Driven Increase in Motivation.

    Science.gov (United States)

    Soares-Cunha, Carina; Coimbra, Bárbara; Domingues, Ana Verónica; Vasconcelos, Nivaldo; Sousa, Nuno; Rodrigues, Ana João

    2018-01-01

    The nucleus accumbens (NAc) plays a central role in reinforcement and motivation. Around 95% of the NAc neurons are medium spiny neurons (MSNs), divided into those expressing dopamine receptor D1 (D1R) or dopamine receptor D2 (D2R). Optogenetic activation of D2-MSNs increased motivation, whereas inhibition of these neurons produced the opposite effect. Yet, it is still unclear how activation of D2-MSNs affects other local neurons/interneurons or input terminals and how this contributes for motivation enhancement. To answer this question, in this work we combined optogenetic modulation of D2-MSNs with in loco pharmacological delivery of specific neurotransmitter antagonists in rats. First, we showed that optogenetic activation of D2-MSNs increases motivation in a progressive ratio (PR) task. We demonstrated that this behavioral effect relies on cholinergic-dependent modulation of dopaminergic signalling of ventral tegmental area (VTA) terminals, which requires D1R and D2R signalling in the NAc. D2-MSN optogenetic activation decreased ventral pallidum (VP) activity, reducing the inhibitory tone to VTA, leading to increased dopaminergic activity. Importantly, optogenetic activation of D2-MSN terminals in the VP was sufficient to recapitulate the motivation enhancement. In summary, our data suggests that optogenetic stimulation of NAc D2-MSNs indirectly modulates VTA dopaminergic activity, contributing for increased motivation. Moreover, both types of dopamine receptors signalling in the NAc are required in order to produce the positive behavioral effects.

  4. Dopamine D2 receptors in striatal output neurons enable the psychomotor effects of cocaine.

    Science.gov (United States)

    Kharkwal, Geetika; Radl, Daniela; Lewis, Robert; Borrelli, Emiliana

    2016-10-11

    The psychomotor effects of cocaine are mediated by dopamine (DA) through stimulation of striatal circuits. Gabaergic striatal medium spiny neurons (MSNs) are the only output of this pivotal structure in the control of movements. The majority of MSNs express either the DA D1 or D2 receptors (D1R, D2R). Studies have shown that the motor effect of cocaine depends on the DA-mediated stimulation of D1R-expressing MSNs (dMSNs), which is mirrored at the cellular level by stimulation of signaling pathways leading to phosphorylation of ERKs and induction of c-fos Nevertheless, activation of dMSNs by cocaine is necessary but not sufficient, and D2R signaling is required for the behavioral and cellular effects of cocaine. Indeed, cocaine motor effects and activation of signaling in dMSNs are blunted in mice with the constitutive knockout of D2R (D2RKO). Using mouse lines with a cell-specific knockout of D2R either in MSNs (MSN-D2RKO) or in dopaminergic neurons (DA-D2RKO), we show that D2R signaling in MSNs is required and permissive for the motor stimulant effects of cocaine and the activation of signaling in dMSNs. MSN-D2RKO mice show the same phenotype as constitutive D2RKO mice both at the behavioral and cellular levels. Importantly, activation of signaling in dMSNs by cocaine is rescued by intrastriatal injection of the GABA antagonist, bicuculline. These results are in support of intrastriatal connections of D2R + -MSNs (iMSNs) with dMSNs and indicate that D2R signaling in MSNs is critical for the function of intrastriatal circuits.

  5. Cross sections for ion production in reactions of H+ with D2; Effects of vibrational and rotational excited states of D2

    OpenAIRE

    市原 晃; 岩本 修; 横山 啓一

    1998-01-01

    H+とD2の反応で生じるD2+,D+及びHD+イオン生成の断面積を、重心衝突エネルギーEcm=2.5-8.0eVの範囲内で、非経験的分子軌道計算で得られたH3+の3次元ポテンシャル面上でのトラジェクトリーサーフェスホッピング(TSH)法を用いることにより、評価した。反応物D2の初期状態が各イオン生成に与える影響を調べるために、D2の振動及び回転の量子数をv=0-3,j=1,5,10に設定して計算を行った。その結果、D2+イオンの生成は、D2の振動回転状態(v,j)が高くなるに従って著しく増大することが分かった。D2+生成の飛躍的な増大には、D2の振動励起が主要な役割を果たし、回転励起は補助的な効果を与えた。D2+生成と比較して、D2の振動状態がD+及びHD+イオンの生成に与える効果は一桁小さく、D2の回転状態に対する効果は殆ど無視しうる大きさであった。...

  6. Diet-Induced Obesity Reprograms the Inflammatory Response of the Murine Lung to Inhaled Endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, Monika K.; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures.

  7. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    International Nuclear Information System (INIS)

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, K. Monica; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-01-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  8. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C., E-mail: susan.tilton@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lee, K. Monica [Battelle Toxicology Northwest, Richland, WA 99352 (United States); Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  9. Specific inhibition of p97/VCP ATPase and kinetic analysis demonstrate interaction between D1 and D2 ATPase domains.

    Science.gov (United States)

    Chou, Tsui-Fen; Bulfer, Stacie L; Weihl, Conrad C; Li, Kelin; Lis, Lev G; Walters, Michael A; Schoenen, Frank J; Lin, Henry J; Deshaies, Raymond J; Arkin, Michelle R

    2014-07-29

    The p97 AAA (ATPase associated with diverse cellular activities), also called VCP (valosin-containing protein), is an important therapeutic target for cancer and neurodegenerative diseases. p97 forms a hexamer composed of two AAA domains (D1 and D2) that form two stacked rings and an N-terminal domain that binds numerous cofactor proteins. The interplay between the three domains in p97 is complex, and a deeper biochemical understanding is needed in order to design selective p97 inhibitors as therapeutic agents. It is clear that the D2 ATPase domain hydrolyzes ATP in vitro, but whether D1 contributes to ATPase activity is controversial. Here, we use Walker A and B mutants to demonstrate that D1 is capable of hydrolyzing ATP and show for the first time that nucleotide binding in the D2 domain increases the catalytic efficiency (kcat/Km) of D1 ATP hydrolysis 280-fold, by increasing kcat 7-fold and decreasing Km about 40-fold. We further show that an ND1 construct lacking D2 but including the linker between D1 and D2 is catalytically active, resolving a conflict in the literature. Applying enzymatic observations to small-molecule inhibitors, we show that four p97 inhibitors (DBeQ, ML240, ML241, and NMS-873) have differential responses to Walker A and B mutations, to disease-causing IBMPFD mutations, and to the presence of the N domain binding cofactor protein p47. These differential effects provide the first evidence that p97 cofactors and disease mutations can alter p97 inhibitor potency and suggest the possibility of developing context-dependent inhibitors of p97. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Time-dependent effects of repeated THC treatment on dopamine D2/3 receptor-mediated signalling in midbrain and striatum.

    Science.gov (United States)

    Tournier, Benjamin B; Tsartsalis, Stergios; Dimiziani, Andrea; Millet, Philippe; Ginovart, Nathalie

    2016-09-15

    This study examined the time-course of alterations in levels and functional sensitivities of dopamine D2/3 receptors (D2/3R) during the course and up to 6 weeks following cessation of chronic treatment with Delta(9)-Tetrahydrocannabinol (THC) in rats. THC treatment led to an increase in D2/3R levels in striatum, as assessed using [(3)H]-(+)-PHNO, that was readily observable after one week of treatment, remained stably elevated during the subsequent 2 weeks of treatment, but fully reversed within 2 weeks of THC discontinuation. THC-induced D2/3R alterations were more pronounced and longer lasting in the dopamine cell body regions of the midbrain, wherein [(3)H]-(+)-PHNO binding was still elevated at 2 weeks but back to control values at 6 weeks after THC cessation. Parallel analyses of the psychomotor effects of pre- and post-synaptic doses of quinpirole also showed a pattern of D2/3R functional supersensitivity indicative of more rapid subsidence in striatum than in midbrain following drug cessation. These results indicate that chronic THC is associated with a biochemical and functional sensitization of D2/3R signaling, that these responses show a region-specific temporal pattern and are fully reversible following drug discontinuation. These results suggest that an increased post-synaptic D2/3R function and a decreased DA presynaptic signaling, mediated by increased D2/3R autoinhibition, may predominate during distinct phases of withdrawal and may contribute both to the mechanisms leading to relapse and to cannabinoid withdrawal symptoms. The different rates of normalization of D2/3R function in striatum and midbrain may be critical information for the development of new pharmacotherapies for cannabis dependence. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Disruption of dopamine D1/D2 receptor complex is involved in the function of haloperidol in cardiac H9c2 cells.

    Science.gov (United States)

    Lencesova, L; Szadvari, I; Babula, P; Kubickova, J; Chovancova, B; Lopusna, K; Rezuchova, I; Novakova, Z; Krizanova, O; Novakova, M

    2017-12-15

    Haloperidol is an antipsychotic agent and acts as dopamine D2 receptor (D2R) antagonist, as a prototypical ligand of sigma1 receptors (Sig1R) and it increases expression of type 1 IP 3 receptors (IP 3 R1). However, precise mechanism of haloperidol action on cardiomyocytes through dopaminergic signaling was not described yet. This study investigated a role of dopamine receptors in haloperidol-induced increase in IP 3 R1 and Sig1R, and compared physiological effect of melperone and haloperidol on basic heart parameters in rats. We used differentiated NG-108 cells and H9c2 cells. Gene expression, Western blot and immunofluorescence were used to evaluate haloperidol-induced differences; proximity ligation assay (PLA) and immunoprecipitation to determine interactions of D1/D2 receptors. To evaluate cardiac parameters, Wistar albino male rats were used. We have shown that antagonism of D2R with either haloperidol or melperone results in upregulation of both, IP 3 R1 and Sig1R, which is associated with increased D2R, but reduced D1R expression. Immunofluorescence, immunoprecipitation and PLA support formation of heteromeric D1/D2 complexes in H9c2 cells. Treatment with haloperidol (but not melperone) caused decrease in systolic and diastolic blood pressure and significant increase in heart rate. Because D1R/D2R complexes can engage Gq-like signaling in other experimental systems, these results are consistent with the possibility that disruption of D1R/D2R complex in H9c2 cells might cause a decrease in IP 3 R1 activity, which in turn may account for the increase expression of IP 3 R and Sig1R. D2R is probably not responsible for changes in cardiac parameters, since melperone did not have any effect. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Homogeneous catalysis of deuterium transfer by potassium hydroxide and potassium methoxide D2-H2O and D2-CH3OH exchange

    International Nuclear Information System (INIS)

    Strathdee, G.G.; Garner, D.M.; Given, R.M.

    1977-01-01

    The kinetics and mechanism of exchange of deuterium between D 2 and water and between D 2 and methanol, catalyzed respectively by concentrated potassium hydroxide and potassium methoxide, has been studied between 348 and 398 K. In the D 2 -KOH-H 2 O case, the transfer of deuterium was found to be controlled by the rate of activation of the D 2 molecule by OH - . Rapid exchange of D + with the aqueous solution followed. From the D 2 -KOCH 3 -CH 3 OH studies, it was concluded that deuterium exchange depended upon the rates of both D 2 activation by methoxide and interaction of the solvent with the transition, or encounter, complex. The dependence of second-order rate constants on solvent activity for both systems was determined by normalization of the exchange reaction rates to unit reagent activity. Analysis of the kinetic isotope effects for each system suggested that their increase with base concentration or temperature was due to solvation effects. (author)

  13. Multiple D2 heteroreceptor complexes: new targets for treatment of schizophrenia

    Science.gov (United States)

    Borroto-Escuela, Dasiel O.; Pintsuk, Julia; Schäfer, Thorsten; Friedland, Kristina; Ferraro, Luca; Tanganelli, Sergio; Liu, Fang; Fuxe, Kjell

    2016-01-01

    The dopamine (DA) neuron system most relevant for schizophrenia is the meso-limbic-cortical DA system inter alia densely innervating subcortical limbic regions. The field of dopamine D2 receptors and schizophrenia changed markedly with the discovery of many types of D2 heteroreceptor complexes in subcortical limbic areas as well as the dorsal striatum. The results indicate that the D2 is a hub receptor which interacts not only with many other G protein-coupled receptors (GPCRs) including DA isoreceptors but also with ion-channel receptors, receptor tyrosine kinases, scaffolding proteins and DA transporters. Disturbances in several of these D2 heteroreceptor complexes may contribute to the development of schizophrenia through changes in the balance of diverse D2 homo- and heteroreceptor complexes mediating the DA signal, especially to the ventral striato-pallidal γ-aminobutyric acid (GABA) pathway. This will have consequences for the control of this pathway of the glutamate drive to the prefrontal cortex via the mediodorsal thalamic nucleus which can contribute to psychotic processes. Agonist activation of the A2A protomer in the A2A–D2 heteroreceptor complex inhibits D2 Gi/o mediated signaling but increases the D2 β-arrestin2 mediated signaling. Through this allosteric receptor–receptor interaction, the A2A agonist becomes a biased inhibitory modulator of the Gi/o mediated D2 signaling, which may the main mechanism for its atypical antipsychotic properties especially linked to the limbic A2A–D2 heterocomplexes. The DA and glutamate hypotheses of schizophrenia come together in the signal integration in D2–N-methyl-d-aspartate (NMDA) and A2A–D2–metabotropic glutamate receptor 5 (mGlu5) heteroreceptor complexes, especially in the ventral striatum. 5-Hydroxytryptamine 2A (5-HT2A)–D2 heteroreceptor complexes are special targets for atypical antipsychotics with high potency to block their 5-HT2A protomer signaling in view of the potential development of

  14. D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats.

    Science.gov (United States)

    Ohtani, Norimasa; Masaki, Eiji

    2016-01-01

    Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neuropathic pain, which is one component of postoperative pain. The purpose of this study was to investigate whether impairment of D2-like receptors in the descending dopaminergic pathway in the spinal cord is involved in the decreased postoperative nociceptive threshold in rats. Male Sprague-Dawley rats (250-300 g) were anesthetized with sevoflurane and an intrathecal (IT) catheter was implanted. Six days later, a plantar incision was made. On the following day, saline, a D2-like receptor agonist (quinpirole), or a D2-like receptor antagonist (sulpiride) was administered intrathecally. Thermal and mechanical nociceptive responses were assessed by exposure to infrared radiant heat and the von Frey filament test before and after plantar incision. Plantar incision decreased both thermal latency and the mechanical nociceptive threshold. IT administration of quinpirole inhibited the nociceptive responses induced by plantar incision, but sulpiride had no effect. A D2-like receptor agonist had antinociceptive effects on the hypersensitivity response triggered by a surgical incision, but a D2-like receptor antagonist had no effect on this response. These results suggest that impairment and/or modification of D2-like receptors in the descending dopaminergic pathway in the spinal cord is not involved in the postoperative decrease in nociceptive threshold.

  15. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    Science.gov (United States)

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  16. Accelerated degradation of the D2 protein of photosystem II under ultraviolet radiation

    International Nuclear Information System (INIS)

    Jansen, M.A.K.; Edelman, M.; Greenberg, B.M.; Gaba, V.

    1996-01-01

    The D2 protein of photosystem II is relatively stable in vivo under photosynthetic active radiation, but its degradation accelerates under UVB radiation. Little is known about accelerated D2 protein degradation. We characterized wavelength dependence and sensitivity toward photosystem II inhibitors. The in vivo D2 degradation spectrum resembles the pattern for the rapidly turning over D1 protein of photosystem II, with rates being maximal in the UVB region. We propose that D2 degradation, like D1 degradation, is activated by distinct photosensitizers in the UVB and visible regions of the spectrum. In both wavelength regions, photosystem II inhibitors that are known to be targeted to the D1 protein affect D2 degradation. This suggests that degradation of the two proteins is coupled, D2 degradation being influenced by events occurring at the Q B niche on the D1 protein. (Author)

  17. Working memory span capacity improved by a D2 but not D1 receptor family agonist.

    Science.gov (United States)

    Tarantino, Isadore S; Sharp, Richard F; Geyer, Mark A; Meves, Jessica M; Young, Jared W

    2011-06-01

    Patients with schizophrenia exhibit poor working memory (WM). Although several subcomponents of WM can be measured, evidence suggests the primary subcomponent affected in schizophrenia is span capacity (WMC). Indeed, the NIMH-funded MATRICS initiative recommended assaying the WMC when assessing the efficacy of a putative therapeutic for FDA approval. Although dopamine D1 receptor agonists improve delay-dependent memory in animals, evidence for improvements in WMC due to dopamine D1 receptor activation is limited. In contrast, the dopamine D2-family agonist bromocriptine improves WMC in humans. The radial arm maze (RAM) can be used to assess WMC, although complications due to ceiling effects or strategy confounds have limited its use. We describe a 12-arm RAM protocol designed to assess whether the dopamine D1-family agonist SKF 38393 (0, 1, 3, and 10 mg/kg) or bromocriptine (0, 1, 3, and 10 mg/kg) could improve WMC in C57BL/6N mice (n=12) in cross-over designs. WMC increased and strategy usage decreased with training. The dopamine D1 agonist SKF 38393 had no effect on WMC or long-term memory. Bromocriptine decreased WMC errors, without affecting long-term memory, consistent with human studies. These data confirm that WMC can be measured in mice and reveal drug effects that are consistent with reported effects in humans. Future research is warranted to identify the subtype of the D2-family of receptors responsible for the observed improvement in WMC. Finally, this RAM procedure may prove useful in developing animal models of deficient WMC to further assess putative treatments for the cognitive deficits in schizophrenia. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Alteration of CNS dopamine transporter and D2 receptor in aged and scopolamine induced amnestic rats

    International Nuclear Information System (INIS)

    Lin Yansong; Ding Shiyu; Chen Zhengping; Zhou Xiang; Fang Ping; Wang Bocheng; Zhang Manda

    2002-01-01

    Objective: To evaluate the effect of aging and scopolamine (Sco) induced amnesia on central dopamine transporter (DAT), D 2 receptor in rats. Methods: The 3 month old amnestic rat models were made by peritoneal injection of the muscarinic receptor antagonist Sco (5 mg/kg) for 10 d. Passive avoidance task was carried out to evaluate the recent learning and memory of rats. The biodistribution of 125 I-2-β-carbomethoxy-3-β(4-iodophenyl)-tropan ( 125 I-β-CIT) and 125 I-s-3-iodo-N-(1-ethyl-2-pyrolidinyl) methyl-2-hydroxy-6-methoxybenzamide (IBZM) in the brain was used to evaluate the DAT and D 2 receptor. Results: During 10 d passive avoidance task testing, no difference was found for the first day among 3 month control, 26 month old and Sco group rats, on the 10th day the entry number of aged and Sco group rats was (1.33 +- 0.82)/10 min, (3.00 +- 0.63)/10 min, respectively, higher than that of the control rats (t was 5.682 and 6.372, respectively, P 125 I-β-CIT binding were found in the striatum (ST), hippocampus (HIP) and frontal cortex (FC) of the aged and Sco group rats (t was 4.151, 5.416, 4.871, 6.922, 7.331 and 3.990, respectively, P 125 I-IBZM binding in ST was found in both Sco and old rats (t was 6.021 and 3.227, respectively, P 2 receptor, was found in ST, HIP and cortex of the aged and Sco group suggesting a gradual degeneration of dopaminergic neurons in aged rats. The decreased levels of 125 I-β-CIT and 125 I-IBZM binding in cortex area might be responsible for the amnesia in he Sco group through the dopaminergic pathway of midbrain-frontal cortex

  19. DRD2 genotype predicts prefrontal activity during working memory after stimulation of D2 receptors with bromocriptine.

    Science.gov (United States)

    Gelao, Barbara; Fazio, Leonardo; Selvaggi, Pierluigi; Di Giorgio, Annabella; Taurisano, Paolo; Quarto, Tiziana; Romano, Raffaella; Porcelli, Annamaria; Mancini, Marina; Masellis, Rita; Ursini, Gianluca; De Simeis, Giuseppe; Caforio, Grazia; Ferranti, Laura; Lo Bianco, Luciana; Rampino, Antonio; Todarello, Orlando; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro

    2014-06-01

    Pharmacological stimulation of D2 receptors modulates prefrontal neural activity associated with working memory (WM) processing. The T allele of a functional single-nucleotide polymorphism (SNP) within DRD2 (rs1076560 G > T) predicts reduced relative expression of the D2S receptor isoform and less efficient neural cortical responses during WM tasks. We used functional MRI to test the hypothesis that DRD2 rs1076560 genotype interacts with pharmacological stimulation of D2 receptors with bromocriptine on prefrontal responses during different loads of a spatial WM task (N-Back). Fifty-three healthy subjects (38 GG and 15 GT) underwent two 3-T functional MRI scans while performing the 1-, 2- and 3-Back versions of the N-Back WM task. Before the imaging sessions, either bromocriptine or placebo was administered to all subjects in a counterbalanced order. A factorial repeated-measures ANOVA within SPM8 (p < 0.05, family-wise error corrected) was used. On bromocriptine, GG subjects had reduced prefrontal activity at 3-Back together with a significant decrement in performance, compared with placebo. On the other hand, GT subjects had lower activity for the same level of performance at 1-Back but a trend for reduced behavioral performance in the face of unchanged activity at 2-Back. These results indicate that bromocriptine stimulation modulates prefrontal activity in terms of disengagement or of efficiency depending on DRD2 genotype and working memory load.

  20. The SH2D2A gene and susceptibility to multiple sclerosis

    DEFF Research Database (Denmark)

    Lorentzen, A.R.; Smestad, C.; Lie, B.A.

    2008-01-01

    We previously reported an association between the SH2D2A gene encoding TSAd and multiple sclerosis (MS). Here a total of 2128 Nordic MS patients and 2004 controls were genotyped for the SH2D2A promoter GA repeat polymorphism and rs926103 encoding a serine to asparagine substitution at amino acid...... that the SH2D2A gene may contribute to susceptibility to MS Udgivelsesdato: 2008/7/15...

  1. The Implementation of C-ID, R2D2 Model on Learning Reading Comprehension

    Science.gov (United States)

    Rayanto, Yudi Hari; Rusmawan, Putu Ngurah

    2016-01-01

    The purposes of this research are to find out, (1) whether C-ID, R2D2 model is effective to be implemented on learning Reading comprehension, (2) college students' activity during the implementation of C-ID, R2D2 model on learning Reading comprehension, and 3) college students' learning achievement during the implementation of C-ID, R2D2 model on…

  2. Translational Modeling in Schizophrenia: Predicting Human Dopamine D2 Receptor Occupancy.

    Science.gov (United States)

    Johnson, Martin; Kozielska, Magdalena; Pilla Reddy, Venkatesh; Vermeulen, An; Barton, Hugh A; Grimwood, Sarah; de Greef, Rik; Groothuis, Geny M M; Danhof, Meindert; Proost, Johannes H

    2016-04-01

    To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs. A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information. To predict the passive transport across the human blood-brain barrier, apparent permeability values were scaled based on rat and human brain endothelial surface area. Active efflux clearance in brain was scaled from rat to human using both human brain endothelial surface area and MDR1 expression. Binding constants at the D2 receptor were scaled based on the differences between in vitro and in vivo systems of the same species. The predictive power of this physiology-based approach was determined by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at clinically relevant doses. Predicted human D2RO was in good agreement with clinically observed D2RO for five antipsychotics. Models using in vitro information predicted human D2RO well for most of the compounds evaluated in this analysis. However, human D2RO was under-predicted for haloperidol. The rat hybrid PBPKPD model structure, integrated with in vitro information and human pharmacokinetic and physiological information, constitutes a scientific basis to predict the time course of D2RO in man.

  3. Men and women differ in inflammatory and neuroendocrine responses to endotoxin but not in the severity of sickness symptoms.

    Science.gov (United States)

    Engler, Harald; Benson, Sven; Wegner, Alexander; Spreitzer, Ingo; Schedlowski, Manfred; Elsenbruch, Sigrid

    2016-02-01

    Impaired mood and increased anxiety represent core symptoms of sickness behavior that are thought to be mediated by pro-inflammatory cytokines. Moreover, excessive inflammation seems to be implicated in the development of mood/affective disorders. Although women are known to mount stronger pro-inflammatory responses during infections and are at higher risk to develop depressive and anxiety disorders compared to men, experimental studies on sex differences in sickness symptoms are scarce. Thus, the present study aimed at comparing physiological and psychological responses to endotoxin administration between men and women. Twenty-eight healthy volunteers (14 men, 14 women) were intravenously injected with a low dose (0.4 ng/kg) of lipopolysaccharide (LPS) and plasma concentrations of cytokines and neuroendocrine factors as well as negative state emotions were measured before and until six hours after LPS administration. Women exhibited a more profound pro-inflammatory response with significantly higher increases in tumor necrosis factor (TNF)-α and interleukin (IL)-6. In contrast, the LPS-induced increase in anti-inflammatory IL-10 was significantly higher in men. The cytokine alterations were accompanied by changes in neuroendocrine factors known to be involved in inflammation regulation. Endotoxin injection induced a significant increase in noradrenaline, without evidence for sex differences. The LPS-induced increase in cortisol was significantly higher in woman, whereas changes in dehydroepiandrosterone were largely comparable. LPS administration also increased secretion of prolactin, but only in women. Despite these profound sex differences in inflammatory and neuroendocrine responses, men and women did not differ in endotoxin-induced alterations in mood and state anxiety or non-specific sickness symptoms. This suggests that compensatory mechanisms exist that counteract the more pronounced inflammatory response in women, preventing an exaggerated sickness

  4. Advective-diffusive transport of D2O in unsaturated media under evaporation condition

    International Nuclear Information System (INIS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Amano, Hikaru; Yamazawa, Hiromi; Iida, Takao

    2003-01-01

    Advective-diffusive transport of HTO in unsaturated media was investigated empirically using deuterated water (D 2 O) and columns filled with glass beads. The tortuosity factor was evaluated by numerical model calculations corresponding to first experiment for diffusion under no-evaporation condition. Temporal variations in depth profiles of D 2 O concentrations in the columns were observed by second experiment, which considers the transferring and spreading of D 2 O by pore-water flow caused by evaporation. Measurements and model calculations indicated that diffusion was about two times more efficient than dispersion for D 2 O spreading process under this evaporation condition. (author)

  5. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Hsu Anna

    2011-10-01

    Full Text Available Abstract Sulforaphane (SFN, an isothiocyanate derived from cruciferous vegetables, induces potent anti-proliferative effects in prostate cancer cells. One mechanism that may contribute to the anti-proliferative effects of SFN is the modulation of epigenetic marks, such as inhibition of histone deacetylase (HDAC enzymes. However, the effects of SFN on other common epigenetic marks such as DNA methylation are understudied. Promoter hyper-methylation of cyclin D2, a major regulator of cell cycle, is correlated with prostate cancer progression, and restoration of cyclin D2 expression exerts anti-proliferative effects on LnCap prostate cancer cells. Our study aimed to investigate the effects of SFN on DNA methylation status of cyclin D2 promoter, and how alteration in promoter methylation impacts cyclin D2 gene expression in LnCap cells. We found that SFN significantly decreased the expression of DNA methyltransferases (DNMTs, especially DNMT1 and DNMT3b. Furthermore, SFN significantly decreased methylation in cyclin D2 promoter regions containing c-Myc and multiple Sp1 binding sites. Reduced methlyation of cyclin D2 promoter corresponded to an increase in cyclin D2 transcript levels, suggesting that SFN may de-repress methylation-silenced cyclin D2 by impacting epigenetic pathways. Our results demonstrated the ability of SFN to epigenetically modulate cyclin D2 expression, and provide novel insights into the mechanisms by which SFN may regulate gene expression as a prostate cancer chemopreventive agent.

  6. Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response

    Science.gov (United States)

    Wang, Wei; Wang, Jing; Dong, Sheng-fu; Liu, Chun-hong; Italiani, Paola; Sun, Shu-hui; Xu, Jing; Boraschi, Diana; Ma, Shi-ping; Qu, Di

    2010-01-01

    Aim: To investigate the immunomodulatory effects of andrographolide on both innate and adaptive immune responses. Methods: Andrographolide (10 μg/mL in vitro or 1 mg/kg in vivo) was used to modulate LPS-induced classical activated (M1) or IL-4-induced alternative activated (M2) macrophages in vitro and humor immune response to HBsAg in vivo. Cytokine gene expression profile (M1 vs M2) was measured by real-time PCR, IL-12/IL-10 level was detected by ELISA, and surface antigen expression was evaluated by flow cytometry, whereas phosphorylation level of ERK 1/2 and AKT was determined by Western blot. The level of anti-HBs antibodies in HBsAg immunized mice was detected by ELISA, and the number of HBsAg specific IL-4-producing splenocyte was enumerated by ELISPOT. Results: Andrographolide treatment in vitro attenuated either LPS or IL-4 induced macrophage activation, inhibited both M1 and M2 cytokines expression and decreased IL-12/IL-10 ratio (the ratio of M1/M2 polarization). Andrographolide down-regulated the expression of mannose receptor (CD206) in IL-4 induced macrophages and major histocompability complex/costimulatory molecules (MHC I, CD40, CD80, CD86) in LPS-induced macrophages. Correspondingly, anti-HBs antibody production and the number of IL-4-producing splenocytes were reduced by in vivo administration of andrographolide. Reduced phosphorylation levels of ERK1/2 and AKT were observed in macrophages treated with andrographolide. Conclusion: Andrographolide can modulate the innate and adaptive immune responses by regulating macrophage phenotypic polarization and Ag-specific antibody production. MAPK and PI3K signaling pathways may participate in the mechanisms of andrographolide regulating macrophage activation and polarization. PMID:20139902

  7. Clebopride enhances contractility of the guinea pig stomach by blocking peripheral D2 dopamine receptor and alpha-2 adrenoceptor.

    Science.gov (United States)

    Takeda, K; Taniyama, K; Kuno, T; Sano, I; Ishikawa, T; Ohmura, I; Tanaka, C

    1991-05-01

    The mechanism of action of clebopride on the motility of guinea pig stomach was examined by the receptor binding assay for bovine brain membrane and by measuring gastric contractility and the release of acetylcholine from the stomach. The receptor binding assay revealed that clebopride bound to the D2 dopamine receptor with a high affinity and to the alpha-2 adrenoceptor and 5-HT2 serotonin receptor with relatively lower affinity, and not to D1 dopamine, alpha-1 adrenergic, muscarinic acetylcholine, H1 histamine, or opioid receptor. In strips of the stomach, clebopride at 10(-8) M to 10(-5) M enhanced the electrical transmural stimulation-evoked contraction and the release of acetylcholine. This enhancement was attributed to the blockade of the D2 dopamine receptor and alpha-2 adrenoceptor because: 1) Maximum responses obtained with specific D2 dopamine receptor antagonist, domperidone, and with specific alpha-2 adrenoceptor antagonist, yohimbine, were smaller than that with clebopride, and the sum of the effects of these two specific receptor antagonists is approximately equal to the effect of clebopride. 2) The facilitatory effect of clebopride was partially eliminated by pretreatment of the sample with domperidone or yohimbine, and the facilitatory effect of clebopride was not observed in preparations treated with the combination of domperidone and yohimbine. Clebopride also antagonized the inhibitory effects of dopamine and clonidine on the electrical transmural stimulation-evoked responses. These results indicate that clebopride acts on post ganglionic cholinergic neurons at D2 and alpha-2 receptors in this preparation to enhance enteric nervous system stimulated motility.

  8. Clebopride enhances contractility of the guinea pig stomach by blocking peripheral D2 dopamine receptor and alpha-2 adrenoceptor

    International Nuclear Information System (INIS)

    Takeda, K.; Taniyama, K.; Kuno, T.; Sano, I.; Ishikawa, T.; Ohmura, I.; Tanaka, C.

    1991-01-01

    The mechanism of action of clebopride on the motility of guinea pig stomach was examined by the receptor binding assay for bovine brain membrane and by measuring gastric contractility and the release of acetylcholine from the stomach. The receptor binding assay revealed that clebopride bound to the D2 dopamine receptor with a high affinity and to the alpha-2 adrenoceptor and 5-HT2 serotonin receptor with relatively lower affinity, and not to D1 dopamine, alpha-1 adrenergic, muscarinic acetylcholine, H1 histamine, or opioid receptor. In strips of the stomach, clebopride at 10 - 8 M to 10 - 5 M enhanced the electrical transmural stimulation-evoked contraction and the release of acetylcholine. This enhancement was attributed to the blockade of the D2 dopamine receptor and alpha-2 adrenoceptor because: (1) Maximum responses obtained with specific D2 dopamine receptor antagonist, domperidone, and with specific alpha-2 adrenoceptor antagonist, yohimbine, were smaller than that with clebopride, and the sum of the effects of these two specific receptor antagonists is approximately equal to the effect of clebopride. (2) The facilitatory effect of clebopride was partially eliminated by pretreatment of the sample with domperidone or yohimbine, and the facilitatory effect of clebopride was not observed in preparations treated with the combination of domperidone and yohimbine. Clebopride also antagonized the inhibitory effects of dopamine and clonidine on the electrical transmural stimulation-evoked responses. These results indicate that clebopride acts on post ganglionic cholinergic neurons at D2 and alpha-2 receptors in this preparation to enhance enteric nervous system stimulated motility

  9. The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation.

    Science.gov (United States)

    Pack, Thomas F; Orlen, Margo I; Ray, Caroline; Peterson, Sean M; Caron, Marc G

    2018-04-20

    The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) that is critical for many central nervous system functions. The D2R carries out these functions by signaling through two transducers: G proteins and β-arrestins (βarrs). Selectively engaging either the G protein or βarr pathway may be a way to improve drugs targeting GPCRs. The current model of GPCR signal transduction posits a chain of events where G protein activation ultimately leads to βarr recruitment. GPCR kinases (GRKs), which are regulated by G proteins and whose kinase action facilitates βarr recruitment, bridge these pathways. Therefore, βarr recruitment appears to be intimately tied to G protein activation via GRKs. Here we sought to understand how GRK2 action at the D2R would be disrupted when G protein activation is eliminated and the effect of this on βarr recruitment. We used two recently developed biased D2R mutants that can preferentially interact either with G proteins or βarrs as well as a βarr-biased D2R ligand, UNC9994. With these functionally selective tools, we investigated the mechanism whereby the βarr-preferring D2R achieves βarr pathway activation in the complete absence of G protein activation. We describe how direct, G protein-independent recruitment of GRK2 drives interactions at the βarr-preferring D2R and also contributes to βarr recruitment at the WT D2R. Additionally, we found an additive interaction between the βarr-preferring D2R mutant and UNC9994. These results reveal that the D2R can directly recruit GRK2 without G protein activation and that this mechanism may have relevance to achieving βarr-biased signaling. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance.

    Science.gov (United States)

    Bertolino, Alessandro; Taurisano, Paolo; Pisciotta, Nicola Marco; Blasi, Giuseppe; Fazio, Leonardo; Romano, Raffaella; Gelao, Barbara; Lo Bianco, Luciana; Lozupone, Madia; Di Giorgio, Annabella; Caforio, Grazia; Sambataro, Fabio; Niccoli-Asabella, Artor; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Rubini, Giuseppe

    2010-02-22

    Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known. Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory. Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT. Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.

  11. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance.

    Directory of Open Access Journals (Sweden)

    Alessandro Bertolino

    2010-02-01

    Full Text Available Variation of the gene coding for D2 receptors (DRD2 has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560 predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic and D2L (mainly post-synaptic. However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known.Thirty-seven healthy subjects were genotyped for rs1076560 (G>T and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors, as well as BOLD fMRI during N-Back working memory.Subjects carrying the T allele (previously associated with reduced D2S expression had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT.Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.

  12. Vibrational and rotational excitation effects of the N(2D) + D2(X1Σg +) → ND(X3Σ+) + D(2S) reaction

    Science.gov (United States)

    Zhu, Ziliang; Wang, Haijie; Wang, Xiquan; Shi, Yanying

    2018-05-01

    The effects of the rovibrational excitation of reactants in the N(2D) + D2(X1Σg+) → ND(X3Σ+) + D(2S) reaction are calculated in a collision energy range from the threshold to 1.0 eV using the time-dependent wave packet approach and a second-order split operator. The reaction probability, integral cross-section, differential cross-section and rate constant of the title reaction are calculated. The integral cross-section and rate constant of the initial states v = 0, j = 0, 1, are in good agreement with experimental data available in the literature. The rotational excitation of the D2 molecule has little effect on reaction probability, integral cross-section and the rate constant, but it increased the sideways and forward scattering signals. The vibrational excitation of the D2 molecule reduced the threshold and broke up the forward-backward symmetry of the differential cross-section; it also increased the forward scattering signals. This may be because the vibrational excitation of the D2 molecule reduced the lifetime of the intermediate complex.

  13. Modeling and protein engineering studies of active and inactive states of human dopamine D2 receptor (D2R) and investigation of drug/receptor interactions.

    Science.gov (United States)

    Salmas, Ramin Ekhteiari; Yurtsever, Mine; Stein, Matthias; Durdagi, Serdar

    2015-05-01

    Homology model structures of the dopamine D2 receptor (D2R) were generated starting from the active and inactive states of β2-adrenergic crystal structure templates. To the best of our knowledge, the active conformation of D2R was modeled for the first time in this study. The homology models are built and refined using MODELLER and ROSETTA programs. Top-ranked models have been validated with ligand docking simulations and in silico Alanine-scanning mutagenesis studies. The derived extra-cellular loop region of the protein models is directed toward the binding site cavity which is often involved in ligand binding. The binding sites of protein models were refined using induced fit docking to enable the side-chain refinement during ligand docking simulations. The derived models were then tested using molecular modeling techniques on several marketed drugs for schizophrenia. Alanine-scanning mutagenesis and molecular docking studies gave similar results for marketed drugs tested. We believe that these new D2 receptor models will be very useful for a better understanding of the mechanisms of action of drugs to be targeted to the binding sites of D2Rs and they will contribute significantly to drug design studies involving G-protein-coupled receptors in the future.

  14. Accumulation of deuterium oxide in body fluids after ingestion of D2O-labeled beverages

    International Nuclear Information System (INIS)

    Davis, J.M.; Lamb, D.R.; Burgess, W.A.; Bartoli, W.P.

    1987-01-01

    A simple low-cost procedure was developed to compare the temporal profiles of deuterium oxide (D 2 O) accumulation in body fluids after ingestion of D 2 O-labeled solutions. D 2 O concentration was measured in plasma and saliva samples taken at various intervals after ingestion of 20 ml of D 2 O mixed with five solutions differing in carbohydrate and electrolyte concentrations. An infrared spectrometer was used to measure D 2 O in purified samples obtained after a 48-h incubation period during which the water (D 2 O and H 2 O) in the sample was equilibrated with an equal volume of distilled water in a sealed diffusion dish. The procedure yields 100% recoveries of 60-500 ppm D 2 O with an average precision of 5%. When compared with values for distilled water, D 2 O accumulation in serial samples of plasma and saliva was slower for ingested solutions containing 40 and 15% glucose and faster for hypotonic saline and a 6% carbohydrate-electrolyte solution. These differences appear to reflect known differences in gastric emptying and intestinal absorption of these beverages. Therefore, this technique may provide a useful index of the rate of water uptake from ingested beverages into the body fluids

  15. Dopamine D2 receptor occupancy by olanzapine or risperidone in young patients with schizophrenia

    NARCIS (Netherlands)

    Lavalaye, J.; Linszen, D. H.; Booij, J.; Reneman, L.; Gersons, B. P.; van Royen, E. A.

    1999-01-01

    A crucial characteristic of antipsychotic medication is the occupancy of the dopamine (DA) D2 receptor. We assessed striatal DA D2 receptor occupancy by olanzapine and risperidone in 36 young patients [31 males, 5 females; mean age 21.1 years (16-28)] with first episode schizophrenia, using

  16. Striatal dopamine D2/3 receptor availability in treatment resistant depression.

    Directory of Open Access Journals (Sweden)

    Bart P de Kwaasteniet

    Full Text Available Several studies demonstrated improvement of depressive symptoms in treatment resistant depression (TRD after administering dopamine agonists which suggest abnormal dopaminergic neurotransmission in TRD. However, the role of dopaminergic signaling through measurement of striatal dopamine D(2/3 receptor (D2/3R binding has not been investigated in TRD subjects. We used [(123I]IBZM single photon emission computed tomography (SPECT to investigate striatal D2/3R binding in TRD. We included 6 severe TRD patients, 11 severe TRD patients on antipsychotics (TRD AP group and 15 matched healthy controls. Results showed no significant difference (p = 0.75 in striatal D2/3R availability was found between TRD patients and healthy controls. In the TRD AP group D2/3R availability was significantly decreased (reflecting occupancy of D2/3Rs by antipsychotics relative to TRD patients and healthy controls (p<0.001 but there were no differences in clinical symptoms between TRD AP and TRD patients. This preliminary study therefore does not provide evidence for large differences in D2/3 availability in severe TRD patients and suggests this TRD subgroup is not characterized by altered dopaminergic transmission. Atypical antipsychotics appear to have no clinical benefit in severe TRD patients who remain depressed, despite their strong occupancy of D2/3Rs.

  17. Dynamic Downlink Spectrum Access for D2D-Enabled Heterogeneous Networks

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh; Al-Qahtani, Fawaz S.; Celik, Abdulkadir; Alouini, Mohamed-Slim

    2018-01-01

    This paper proposes new approaches for underlay device- to-device (D2D) communication in spectrum-shared het- erogeneous cellular networks. It considers devices that share downlink resources and have an enabled D2D feature to improve coverage

  18. Cardioprotective effect of vitamin D2 on isoproterenol-induced myocardial infarction in diabetic rats.

    Science.gov (United States)

    El Agaty, Sahar M

    2018-03-08

    To assess the effect of vitamin D 2 and to elucidate the underlying mechanisms on acute myocardial injury induced by isoproterenol (ISO) in diabetic rats. Rats were divided into control rats, diabetic rats (DM), diabetic rats received ISO (DM-ISO), and diabetic rats pretreated with vitamin D 2 and received ISO (DM-D 2 -ISO). Vitamin D 2 pretreatment significantly decreased fasting glucose and myocardial malondialdehyde, associated with increased insulin, myocardial glutathione and superoxide dismutase in DM-D 2 -ISO versus DM-ISO. The serum triglycerides, total cholesterol, and LDL were significantly decreased, along with increased HDL and adiponectin. Poly-ADP ribose polymerase, cyclooxygenase-2, tumour necrosis factor alpha, interleukin-6, caspase-3, BAX, and p53 were significantly downregulated in myocardium of DM-D 2 -ISO versus DM-ISO. Histological studies showed diminished inflammatory cells infiltration in myocardium of DM-D 2 -ISO versus DM-ISO. Vitamin D 2 ameliorates hyperglycaemia, dyslipidaemia, redox imbalance, inflammatory and apoptotic processes, protecting the myocardium of diabetic rats against acute myocardial infarction.

  19. Functional coupling between heterologously expressed dopamine D(2) receptors and KCNQ channels

    DEFF Research Database (Denmark)

    Ljungstrom, Trine; Grunnet, Morten; Jensen, Bo Skaaning

    2003-01-01

    protein of the G(alphai/o) subtype. Cells of the human neuroblastoma line SH-SY5Y were co-transfected transiently with KCNQ4 and D(2L) receptors. Stimulation of D(2L) receptors increased the KCNQ4 current ( n=6) as determined in whole-cell patch-clamp recordings. The specificity of the dopaminergic...

  20. Stability of globular proteins in H2O and D2O

    NARCIS (Netherlands)

    Efimova, Y. M.; Haemers, S.; Wierczinski, B.; Norde, W.; van Well, A. A.

    2007-01-01

    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the

  1. Stability of globular proteins in H2O and in D2O

    NARCIS (Netherlands)

    Efimova, Y.M.; Haemers, S.; Wierczinsky, B.; Norde, W.; Well, van A.A.

    2007-01-01

    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the

  2. Modulatory Effects of Dopamine D2 Receptors on Spreading Depression in Rat Somatosensory Neocortex

    Directory of Open Access Journals (Sweden)

    Anna Maria Haarmann

    2014-11-01

    Full Text Available Introduction: Spreading depression (SD is a propagating wave of depolarization followed by depression of the neuroglial activities and can modulate extracellular dopamine concentrations in the neocortex. It has been shown that the dopaminergic system plays a role in migraine. SD has been suggested as a critical phenomenon in the pathophysiology of migraine. The aim of this study was to investigate the effect of dopamine D2 receptors on the characteristic features of SD in rat neocortical tissues. Methods: The effect of dopamine D2 receptor agonist quinpirole and D2 receptor antagonist sulpiride was tested on different characteristic features (amplitude, duration and velocity of KCl-induced SD in somatosensory neocortical slices of adult rats. The effect of above-mentioned substances on production of long-term potentiation (LTP in the neocortex was also evaluated. Results: The present data revealed a dose-dependent suppression of the amplitude and duration of SD in the presence of the dopamine D2 receptor antagonist sulpiride in the neocortex. D2 dopamine receptor agonist quinpirole dose-dependently enhanced the amplitude and duration of the neocortical SD. Furthermore, application of D2 receptor antagonist significantly suppressed induction of LTP. Discussion: These results indicate that D2 receptors modulate the initiation of SD in the neocortex. This finding refers to the potential role of D2 receptor antagonist in treatment of migraine pain.

  3. Matrix Isolation Spectroscopy of H2O2, D2O, and HDO in Solid Parahydrogen

    National Research Council Canada - National Science Library

    Fajardo, Mario

    2003-01-01

    ...) solids doped with H2O, D2O and HDO molecules. Analysis of the rovibrational spectra of the isolated H20, D2O and HDO monomers reveals their existence as very slightly hindered rotors, typically showing only 2 to 5...

  4. Direct trans-activation of the human cyclin D2 gene by the oncogene product Tax of human T-cell leukemia virus type I.

    Science.gov (United States)

    Huang, Y; Ohtani, K; Iwanaga, R; Matsumura, Y; Nakamura, M

    2001-03-01

    Cyclins are one of the pivotal determinants regulating cell cycle progression. We previously reported that the trans-activator Tax of human T-cell leukemia virus type I (HTLV-I) induces endogenous cyclin D2 expression along with cell cycle progression in a resting human T-cell line, Kit 225, suggesting a role of cyclin D2 in Tax-mediated cell cycle progression. The cyclin D2 gene has a typical E2F binding element, raising the possibility that induction of cyclin D2 expression is a consequence of cell cycle progression. In this study, we examined the role and molecular mechanism of induction of the endogenous human cyclin D2 gene by Tax. Introduction of p19(INK4d), a cyclin dependent kinase (CDK) inhibitor of the INK4 family specific for D-type CDK, inhibited Tax-mediated activation of E2F, indicating requirement of D-type CDK in Tax-mediated activation of E2F. Previously indicated E2F binding element and two NF-kappaB-like binding elements in the 1.6 kbp cyclin D2 promoter fragment had little, if any, effect on responsiveness to Tax. We found that trans-activation of the cyclin D2 promoter by Tax was mainly mediated by a newly identified NF-kappaB-like element with auxiliary contribution of a CRE-like element residing in sequences downstream of -444 which were by themselves sufficient for trans-activation by Tax. These results indicate that Tax directly trans-activates the cyclin D2 gene, resulting in growth promotion and perhaps leukemogenesis through activation of D-type CDK.

  5. Effects of social reorganization on dopamine D2/D3 receptor availability and cocaine self-administration in male cynomolgus monkeys.

    Science.gov (United States)

    Czoty, P W; Gould, R W; Gage, H D; Nader, M A

    2017-09-01

    Studies have demonstrated that brain dopamine D2/D3 receptors (D2/D3R) and the reinforcing effects of cocaine can be influenced by a monkey's position in the social dominance hierarchy. In this study, we manipulated the social ranks of monkeys by reorganizing social groups and assessed effects on D2/D3R availability and cocaine self-administration. Male cynomolgus monkeys (N = 12) had been trained to self-administer cocaine under a concurrent cocaine-food reinforcement schedule. Previously, PET measures of D2/D3R availability in the caudate nucleus and putamen had been obtained with [ 18 F]fluoroclebopride during cocaine abstinence, while monkeys lived in stable social groups of four monkeys/pen. For this study, monkeys were reorganized into groups that consisted of (1) four previously dominant, (2) four previously subordinate, and (3) a mix of previously dominant and subordinate monkeys. After 3 months, D2/D3R availability was redetermined and cocaine self-administration was reexamined. D2/D3R availability significantly increased after reorganization in monkeys who were formerly subordinate, with the greatest increases observed in those that became dominant. No consistent changes in D2/D3R availability were observed in formerly dominant monkeys. Cocaine self-administration did not vary according to rank after reorganization of social groups. However, when compared to their previous cocaine self-administration data, the potency of cocaine as a reinforcer decreased in 9 of 11 monkeys. These results indicate that changing the social conditions can alter D2/D3R availability in subordinate monkeys in a manner suggestive of environmental enrichment. In most monkeys, social reorganization shifted the cocaine dose-response curve to the right, also consistent with environmental enrichment.

  6. Reduced Slc6a15 in Nucleus Accumbens D2-Neurons Underlies Stress Susceptibility.

    Science.gov (United States)

    Chandra, Ramesh; Francis, T Chase; Nam, Hyungwoo; Riggs, Lace M; Engeln, Michel; Rudzinskas, Sarah; Konkalmatt, Prasad; Russo, Scott J; Turecki, Gustavo; Iniguez, Sergio D; Lobo, Mary Kay

    2017-07-05

    Previous research demonstrates that Slc6a15, a neutral amino acid transporter, is associated with depression susceptibility. However, no study examined Slc6a15 in the ventral striatum [nucleus accumbens (NAc)] in depression. Given our previous characterization of Slc6a15 as a striatal dopamine receptor 2 (D2)-neuron-enriched gene, we examined the role of Slc6a15 in NAc D2-neurons in mediating susceptibility to stress in male mice. First, we showed that Slc6a15 mRNA was reduced in NAc of mice susceptible to chronic social defeat stress (CSDS), a paradigm that produces behavioral and molecular adaptations that resemble clinical depression. Consistent with our preclinical data, we observed Slc6a15 mRNA reduction in NAc of individuals with major depressive disorder (MDD). The Slc6a15 reduction in NAc occurred selectively in D2-neurons. Next, we used Cre-inducible viruses combined with D2-Cre mice to reduce or overexpress Slc6a15 in NAc D2-neurons. Slc6a15 reduction in D2-neurons caused enhanced susceptibility to a subthreshold social defeat stress (SSDS) as observed by reduced social interaction, while a reduction in social interaction following CSDS was not observed when Slc6a15 expression in D2-neurons was restored. Finally, since both D2-medium spiny neurons (MSNs) and D2-expressing choline acetyltransferase (ChAT) interneurons express Slc6a15, we examined Slc6a15 protein in these interneurons after CSDS. Slc6a15 protein was unaltered in ChAT interneurons. Consistent with this, reducing Slc5a15 selectively in NAc D2-MSNs, using A2A-Cre mice that express Cre selectively in D2-MSNs, caused enhanced susceptibility to SSDS. Collectively, our data demonstrate that reduced Slc6a15 in NAc occurs in MDD individuals and that Slc6a15 reduction in NAc D2-neurons underlies stress susceptibility. SIGNIFICANCE STATEMENT Our study demonstrates a role for reduced Slc6a15, a neutral amino acid transporter, in nucleus accumbens (NAc) in depression and stress susceptibility. The

  7. Regulation of dopamine D2 receptors in a novel cell line (SUP1)

    International Nuclear Information System (INIS)

    Ivins, K.J.; Luedtke, R.R.; Artymyshyn, R.P.; Molinoff, P.B.

    1991-01-01

    A prolactin-secreting cell line, SUP1, has been established from rat pituitary tumor 7315a. In radioligand binding experiments, the D2 receptor antagonist (S)-(-)-3- 125 I iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2- pyrrolidinyl)methyl]benzamide ( 125 I IBZM) labeled a single class of sites in homogenates of SUP1 cells (Kd = 0.6 nM; Bmax = 45 fmol/mg of protein). The sites displayed a pharmacological profile consistent with that of D2 receptors. Inhibition of the binding of 125 I IBZM by dopamine was sensitive to GTP, suggesting that D2 receptors in SUP1 cells are coupled to guanine nucleotide-binding protein(s). In the presence of isobutylmethylxanthine, dopamine decreased the level of cAMP accumulation in SUP1 cells. Dopamine also inhibited prolactin secretion from SUP1 cells. Both the inhibition of cAMP accumulation and the inhibition of prolactin secretion were blocked by D2 receptor antagonists, suggesting that these effects of dopamine were mediated by an interaction with D2 receptors. The regulation of D2 receptors in SUP1 cells by D2 receptor agonists was investigated. Exposure of SUP1 cells to dopamine or to the D2 receptor agonist N-propylnorapomorphine led to increased expression of D2 receptors, with no change in the affinity of the receptors for 125 I IBZM. An increase in the density of D2 receptors in SUP1 cells was evident within 7 hr of exposure to dopamine. Spiroperidol, a D2 receptor antagonist, blocked the effect of dopamine on receptor density. These results suggest that exposure of D2 receptors in SUP1 cells to agonists leads to an up-regulation of D2 receptors. Dopamine retained the ability to inhibit cAMP accumulation in SUP1 cells exposed to dopamine for 24 hr, suggesting that D2 receptors in SUP1 cells are not desensitized by prolonged exposure to agonist

  8. The Dopamine D2 Receptor Gene in Lamprey, Its Expression in the Striatum and Cellular Effects of D2 Receptor Activation

    Science.gov (United States)

    Robertson, Brita; Huerta-Ocampo, Icnelia; Ericsson, Jesper; Stephenson-Jones, Marcus; Pérez-Fernández, Juan; Bolam, J. Paul; Diaz-Heijtz, Rochellys; Grillner, Sten

    2012-01-01

    All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates. PMID:22563388

  9. Analysis of D2D Communications over Gamma/Nakagami Fading Channels

    Directory of Open Access Journals (Sweden)

    Z. Hussain

    2018-04-01

    Full Text Available In this paper, we investigate the outage probability, channel capacity and symbol error rate (SER performance of device-to-device (D2D communication systems. The D2D communication system is affected by several co-channel interferers. Gamma fading channel is considered for the D2D communication system. The channel for the co-channel interference is assumed to be Nakagami faded. An expression for the probability density function (PDF of the signal-to-interference ratio (SIR is presented. The PDF is a function of distances between various devices in the D2D system, path-loss, channel fading conditions and signal powers. Based on the PDF expression, we present the expressions for the outage, channel capacity and SER. With the help of numerical results the performance of D2D communication system is discussed under various conditions of interference, path-loss and channel fading.

  10. Preparation and use of very pure o-D2. Technical report No. 1

    International Nuclear Information System (INIS)

    Honig, A.; Lewis, M.; Yu, Z.Z.; Yucel, S.

    1985-01-01

    Optimum production and utilization of spin-polarized deuterium as a fusion fuel requires long nuclear spin-lattice relaxation times at temperatures near 4K. This can be achieved with very high purity ortho-D 2 . We report new experimental methods and results of total-adsorption catalysis of D 2 para-ortho conversion in the 4 to 15K temperature region, using as catalysts activated alumina and partially-activated charcoal. Because of the strongly anisotropic adsorbate binding on alumina, the ortho-D 2 equilibrium concentration near 10 to 12K (where the conversion time is acceptable) is not high enough, and near 4K (where the equilibium ortho-D 2 concentration is satisfactory) the conversion time is almost prohibitively too long to permit achievement of the desired ortho-D 2 purity. Although doping alumina with paramagnetic ions could improve this situation, it would be at the expense of excessive back-conversion upon desorption

  11. Potent haloperidol derivatives covalently binding to the dopamine D2 receptor.

    Science.gov (United States)

    Schwalbe, Tobias; Kaindl, Jonas; Hübner, Harald; Gmeiner, Peter

    2017-10-01

    The dopamine D 2 receptor (D 2 R) is a common drug target for the treatment of a variety of neurological disorders including schizophrenia. Structure based design of subtype selective D 2 R antagonists requires high resolution crystal structures of the receptor and pharmacological tools promoting a better understanding of the protein-ligand interactions. Recently, we reported the development of a chemically activated dopamine derivative (FAUC150) designed to covalently bind the L94C mutant of the dopamine D 2 receptor. Using FAUC150 as a template, we elaborated the design and synthesis of irreversible analogs of the potent antipsychotic drug haloperidol forming covalent D 2 R-ligand complexes. The disulfide- and Michael acceptor-functionalized compounds showed significant receptor affinity and an irreversible binding profile in radioligand depletion experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Relationship of frontal D2/3 binding potentials to cognition

    DEFF Research Database (Denmark)

    Fagerlund, Birgitte; Pinborg, Lars H; Mortensen, Erik Lykke

    2013-01-01

    for set shifting. The main findings indicated a relation between D2/3 receptor binding in the frontal cortex and set shifting, planning and attention, but also support a differential involvement of cortical dopamine D2/3 receptor binding in at least some cognitive functions, perhaps particularly attention......Studies of in vivo dopamine receptors in schizophrenia have mostly focused on D2 receptors in striatal areas or on D1 receptors in cortex. No previous study has examined the correlation between cortical dopamine D2/3 receptor binding potentials and cognition in schizophrenia patients. The objective......, in schizophrenia patients compared to healthy people. The results suggest that cortical D2/3 receptor function may be more involved in some cognitive functions (i.e. attention, fluency and planning) in patients with schizophrenia than in healthy people, suggesting that information processing in schizophrenia may...

  13. Vibrational relaxation and dissociation of D2(vj) on Cu(111)

    International Nuclear Information System (INIS)

    Cacciatore, M.; DeFelice, P.; Capitelli, M.

    1992-01-01

    The dissociative chemisorption of H 2 /D 2 with single crystal Cu surface has recently been the object of experimental and theoretical investigations. Here the authors present their results for the D 2 (vj)/Cu(111) system obtained within a semiclassical model developed for the interaction of molecules with non-rigid surfaces. The dissociation probability for D 2 in a specific initial (vj) state has been computed as a function of the impact energy and the surface temperature set to 300K. The quantum tunneling probability through the potential barriers has also been evaluated. The results show that the D 2 dissociation probability is smaller when compared to that of H 2 . The D 2 absorption probability, as well as the energy transferred to the surface phonons, is higher then that found for H 2

  14. Dynamic Downlink Spectrum Access for D2D-Enabled Heterogeneous Networks

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2018-01-15

    This paper proposes new approaches for underlay device- to-device (D2D) communication in spectrum-shared het- erogeneous cellular networks. It considers devices that share downlink resources and have an enabled D2D feature to improve coverage. The mode of operation classifies devices according to their experienced base station (BS) coverage, potential to be served by BS, ability of BS to meet their quality of service (QoS), and their downlink resources occupancy. The initiation of D2D cooperation is conditioned on proposed provisional access by an active device, wherein its serving BS attempts to meet its QoS using as low number of spectrum channels as possible, while treating remaining channels for feasible D2D cooperation. Detailed formulations for the mode of operation and a proposed D2D path allocation scheme are presented under perfect and imperfect operation scenarios. The developed results are generally applicable for any performance metric and network model.

  15. Sigma1 and dopamine D2 receptor occupancy in the mouse brain after a single administration of haloperidol and two dopamine D2-like receptor ligands

    International Nuclear Information System (INIS)

    Ishiwata, Kiichi; Kawamura, Kazunori; Kobayashi, Tadayuki; Matsuno, Kiyoshi

    2003-01-01

    We investigated sigma 1 and dopamine D 2 receptor occupancy in mouse brain after a single injection of haloperidol, nemonapride, or spiperone using [ 11 C]SA4503 and [ 11 C]raclopride, respectively. Co-injection of the three compounds significantly blocked the uptake of each radioligand. Six hours later, only haloperidol blocked [ 11 C]SA4503 uptake, while all three reduced [ 11 C]raclopride uptake. Sigma 1 receptor occupancy by haloperidol was reduced to 19% at day 2 when D 2 receptor occupancy disappeared. [ 11 C]SA4503 would be applicable to the investigation of sigma 1 receptor occupancy of antispychotic drugs using PET

  16. State resolved rotational excitation in HD+D2 collisions. II. Angular dependence of 0→2 transitions

    International Nuclear Information System (INIS)

    Buck, U.; Huisken, F.; Maneke, G.; Schaefer, J.

    1983-01-01

    Time-of-flight spectra for the scattering of HD molecules from D 2 molecules have been measured at a collision energy of E = 70.3 meV over a range of center-of-mass scattering angles from 45 0 to 158 0 . The spectra reveal clearly resolved transitions at the energy loss ΔE = 33 meV which corresponds to 0→2 transitions of HD and the double transition 0→1 of HD and 0→2 of D 2 . The differential cross sections derived from these spectra increase with increasing scattering angle from 1.7% to 34.7% of the elastic cross section. The pure 0→2 transition of D 2 which only needs 22 meV to be induced could not be detected within our experimental sensitivity of 0.02 A 2 /sr. Closed coupled calculations based on the ab initio potential surface of Meyer and Schaefer show that this result can be explained by the different coupling terms which are responsible for these transitions. In contrast to the 0→1 transition the 0→2 transition of HD proved to be sensitive to the anisotropic part of the interaction potential for the homonuclear system. The comparison of experimental and calculated cross sections for the ab initio potential of Meyer and Schaefer reveals discrepancies for the 0→1 transition of HD, but shows agreement for the 0→2 transition of HD at intermediate angles

  17. PREFACE: International Symposium on Dynamic Deformation and Fracture of Advanced Materials (D2FAM 2013)

    Science.gov (United States)

    Silberschmidt, Vadim V.

    2013-07-01

    Intensification of manufacturing processes and expansion of usability envelopes of modern components and structures in many cases result in dynamic loading regimes that cannot be resented adequately employing quasi-static formulations of respective problems of solid mechanics. Specific features of dynamic deformation, damage and fracture processes are linked to various factors, most important among them being: a transient character of load application; complex scenarios of propagation, attenuation and reflection of stress waves in real materials, components and structures; strain-rate sensitivity of materials properties; various thermo-mechanical regimes. All these factors make both experimental characterisation and theoretical (analytical and numerical) analysis of dynamic deformation and fracture rather challenging; for instance, besides dealing with a spatial realisation of these processes, their evolution with time should be also accounted for. To meet these challenges, an International Symposium on Dynamic Deformation and Fracture of Advanced Materials D2FAM 2013 was held on 9-11 September 2013 in Loughborough, UK. Its aim was to bring together specialists in mechanics of materials, applied mathematics, physics, continuum mechanics, materials science as well as various areas of engineering to discuss advances in experimental and theoretical analysis, and numerical simulations of dynamic mechanical phenomena. Some 50 papers presented at the Symposium by researchers from 12 countries covered various topics including: high-strain-rate loading and deformation; dynamic fracture; impact and blast loading; high-speed penetration; impact fatigue; damping properties of advanced materials; thermomechanics of dynamic loading; stress waves in micro-structured materials; simulation of failure mechanisms and damage accumulation; processes in materials under dynamic loading; a response of components and structures to harsh environment. The materials discussed at D2FAM 2013

  18. S36. DIFFERENTIAL ENCODING OF SENSITIZATION AND CROSS SENSITIZATION TO PSYCHOSTIMULANTS AND ANTIPSYCHOTICS IN NUCLEUS ACCUMBENS D1- AND D2- RECEPTOR EXPRESSING MEDIUM SPINY NEURONS

    Science.gov (United States)

    Amato, Davide; Heinsbroek, Jasper; Kalivas, Peter W

    2018-01-01

    Abstract Background Nearly half of all individuals diagnosed with schizophrenia abuse addictive substances such as cocaine. Currently, the neurobiological mechanisms in patients with schizophrenia that lead to cocaine abuse are unknown. A possible explanation for the co-morbidity between schizophrenia and addiction is that the rewarding properties of cocaine reverse the diminished motivational drive caused by chronic antipsychotic regimen. Moreover, chronic antipsychotic treatment can sensitize and amplify cocaine rewarding effects and exacerbate psychoses. Methods The rewarding properties of cocaine are attributed to the differential effects of dopamine on D1 and D2 receptor-expressing medium spiny neurons (MSNs) in the nucleus accumbens (NAc). Using in vivo Ca2+ miniature microscopic imaging, we characterize the role of D1 and D2 MSN in mono- and a cross- sensitization paradigms. D1- and D2-Cre mice were injected with a Cre dependent calcium indicator (gCaMP6f) and implanted with a gradient index (GRIN) lens above the nucleus accumbens and calcium activity was recorded using a head mounted miniature microscope. Cocaine sensitization was measured after a classic repeated cocaine regiment and antipsychotic and psychostimulant cross-sensitization was measured by a single cocaine injection after chronic pre-treatment with haloperidol. Results We found that both D1-MSN and D2-MSN populations are modulated by initial cocaine experience and further modulated during the expression of cocaine sensitization. A subpopulation of D1-MSN displayed initial activation, but reduced activity during the expression of sensitization. By contrast, the majority of D2-MSNs were suppressed by initial cocaine experience, but became active during the expression of sensitization. Furthermore, activity of D1- and D2-MSNs bidirectionally related with the observed behavioral responses to cocaine. Cross-sensitization following haloperidol treatment led to increased behavioral responses to

  19. Importance of D1 and D2 receptor stimulation for the induction and expression of cocaine-induced behavioral sensitization in preweanling rats.

    Science.gov (United States)

    McDougall, Sanders A; Rudberg, Krista N; Veliz, Ana; Dhargalkar, Janhavi M; Garcia, Aleesha S; Romero, Loveth C; Gonzalez, Ashley E; Mohd-Yusof, Alena; Crawford, Cynthia A

    2017-05-30

    The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Adenosine A2A receptors modulate the dopamine D2 receptor-mediated inhibition of synaptic transmission in the mouse prefrontal cortex.

    Science.gov (United States)

    Real, Joana I; Simões, Ana Patrícia; Cunha, Rodrigo A; Ferreira, Samira G; Rial, Daniel

    2018-05-01

    Prefrontal cortex (PFC) circuits are modulated by dopamine acting on D 1 - and D 2 -like receptors, which are pharmacologically exploited to manage neuropsychiatric conditions. Adenosine A 2A receptors (A 2 A R) also control PFC-related responses and A 2 A R antagonists are potential anti-psychotic drugs. As tight antagonistic A 2 A R-D 2 R and synergistic A 2 A R-D 1 R interactions occur in other brain regions, we now investigated the crosstalk between A 2 A R and D 1 /D 2 R controlling synaptic transmission between layers II/III and V in mouse PFC coronal slices. Dopamine decreased synaptic transmission, a presynaptic effect based on the parallel increase in paired-pulse responses. Dopamine inhibition was prevented by the D 2 R-like antagonist sulpiride but not by the D 1 R antagonist SCH23390 and was mimicked by the D 2 R agonist sumanirole, but not by the agonists of either D 4 R (A-412997) or D 3 R (PD128907). Dopamine inhibition was prevented by the A 2 A R antagonist, SCH58261, and attenuated in A 2 A R knockout mice. Accordingly, triple-labelling immunocytochemistry experiments revealed the co-localization of A 2 A R and D 2 R immunoreactivity in glutamatergic (vGluT1-positive) nerve terminals of the PFC. This reported positive A 2 A R-D 2 R interaction controlling PFC synaptic transmission provides a mechanistic justification for the anti-psychotic potential of A 2 A R antagonists. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Striatal D2/3 Binding Potential Values in Drug-Naïve First-Episode Schizophrenia Patients Correlate With Treatment Outcome

    Science.gov (United States)

    Wulff, Sanne; Pinborg, Lars Hageman; Svarer, Claus; Jensen, Lars Thorbjørn; Nielsen, Mette Ødegaard; Allerup, Peter; Bak, Nikolaj; Rasmussen, Hans; Frandsen, Erik; Rostrup, Egill; Glenthøj, Birte Yding

    2015-01-01

    One of best validated findings in schizophrenia research is the association between blockade of dopamine D2 receptors and the effects of antipsychotics on positive psychotic symptoms. The aim of the present study was to examine correlations between baseline striatal D2/3 receptor binding potential (BPp) values and treatment outcome in a cohort of antipsychotic-naïve first-episode schizophrenia patients. Additionally, we wished to investigate associations between striatal dopamine D2/3 receptor blockade and alterations of negative symptoms as well as functioning and subjective well-being. Twenty-eight antipsychotic-naïve schizophrenia patients and 26 controls were included in the study. Single-photon emission computed tomography (SPECT) with [123I]iodobenzamide ([123I]-IBZM) was used to examine striatal D2/3 receptor BPp. Patients were examined before and after 6 weeks of treatment with the D2/3 receptor antagonist amisulpride. There was a significant negative correlation between striatal D2/3 receptor BPp at baseline and improvement of positive symptoms in the total group of patients. Comparing patients responding to treatment to nonresponders further showed significantly lower baseline BPp in the responders. At follow-up, the patients demonstrated a negative correlation between the blockade and functioning, whereas no associations between blockade and negative symptoms or subjective well-being were observed. The results show an association between striatal BPp of dopamine D2/3 receptors in antipsychotic-naïve first-episode patients with schizophrenia and treatment response. Patients with a low BPp have a better treatment response than patients with a high BPp. The results further suggest that functioning may decline at high levels of dopamine receptor blockade. PMID:25698711

  2. ARF6 and GASP-1 are post-endocytic sorting proteins selectively involved in the intracellular trafficking of dopamine D2 receptors mediated by GRK and PKC in transfected cells

    Science.gov (United States)

    Cho, DI; Zheng, M; Min, C; Kwon, KJ; Shin, CY; Choi, HK; Kim, KM

    2013-01-01

    Background and Purpose GPCRs undergo both homologous and heterologous regulatory processes in which receptor phosphorylation plays a critical role. The protein kinases responsible for each pathway are well established; however, other molecular details that characterize each pathway remain unclear. In this study, the molecular mechanisms that determine the differences in the functional roles and intracellular trafficking between homologous and PKC-mediated heterologous internalization pathways for the dopamine D2 receptor were investigated. Experimental Approach All of the S/T residues located within the intracellular loops of D2 receptor were mutated, and the residues responsible for GRK- and PKC-mediated internalization were determined in HEK-293 cells and SH-SY5Y cells. The functional role of receptor internalization and the cellular components that determine the post-endocytic fate of internalized D2 receptors were investigated in the transfected cells. Key Results T134, T225/S228/S229 and S325 were involved in PKC-mediated D2 receptor desensitization. S229 and adjacent S/T residues mediated the PKC-dependent internalization of D2 receptors, which induced down-regulation and desensitization. S/T residues within the second intracellular loop and T225 were the major residues inv