WorldWideScience

Sample records for low-magnitude high-frequency mechanical

  1. Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon.

    Science.gov (United States)

    Thompson, William R; Keller, Benjamin V; Davis, Matthew L; Dahners, Laurence E; Weinhold, Paul S

    2015-05-01

    Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-frequency vibration. Controlled laboratory study. Complete surgical transection of the medial collateral ligament (MCL) was performed in 32 Sprague-Dawley rats, divided into control and low-magnitude, high-frequency vibration groups. Low-magnitude, high-frequency vibration started on postoperative day 2, and rats received vibration for 30 minutes a day for 12 days. All rats were sacrificed 2 weeks after the operation, and their intact and injured MCLs were biomechanically tested or used for histological analysis. Intact Achilles tendons from the injured limb were evaluated for differences in gene expression. Mechanical testing revealed no differences in the ultimate tensile load or the structural stiffness between the control and vibration groups for either the injured or intact MCL. Vibration exposure increased gene expression of collagen 1 alpha (3-fold), interleukin 6 (7-fold), cyclooxygenase 2 (5-fold), and bone morphogenetic protein 12 (4-fold) in the intact Achilles tendon when compared with control tendons (P high-frequency vibration treatment, significant enhancements in gene expression were observed in the intact Achilles tendon. These included collagen, several inflammatory cytokines, and growth factors critical for tendons. As low-magnitude, high-frequency vibration had no negative effects on ligament healing, vibration therapy may be a useful tool to accelerate healing of other tissues (bone) in multitrauma injuries without inhibiting ligament healing. Additionally, the enhanced gene expression in response to low-magnitude, high-frequency vibration in the intact Achilles tendon suggests

  2. Trabecular bone adaptation to low-magnitude high-frequency loading in microgravity.

    Science.gov (United States)

    Torcasio, Antonia; Jähn, Katharina; Van Guyse, Maarten; Spaepen, Pieter; Tami, Andrea E; Vander Sloten, Jos; Stoddart, Martin J; van Lenthe, G Harry

    2014-01-01

    Exposure to microgravity causes loss of lower body bone mass in some astronauts. Low-magnitude high-frequency loading can stimulate bone formation on earth. Here we hypothesized that low-magnitude high-frequency loading will also stimulate bone formation under microgravity conditions. Two groups of six bovine cancellous bone explants were cultured at microgravity on a Russian Foton-M3 spacecraft and were either loaded dynamically using a sinusoidal curve or experienced only a static load. Comparable reference groups were investigated at normal gravity. Bone structure was assessed by histology, and mechanical competence was quantified using μCT and FE modelling; bone remodelling was assessed by fluorescent labelling and secreted bone turnover markers. Statistical analyses on morphometric parameters and apparent stiffness did not reveal significant differences between the treatment groups. The release of bone formation marker from the groups cultured at normal gravity increased significantly from the first to the second week of the experiment by 90.4% and 82.5% in response to static and dynamic loading, respectively. Bone resorption markers decreased significantly for the groups cultured at microgravity by 7.5% and 8.0% in response to static and dynamic loading, respectively. We found low strain magnitudes to drive bone turnover when applied at high frequency, and this to be valid at normal as well as at microgravity. In conclusion, we found the effect of mechanical loading on trabecular bone to be regulated mainly by an increase of bone formation at normal gravity and by a decrease in bone resorption at microgravity. Additional studies with extended experimental time and increased samples number appear necessary for a further understanding of the anabolic potential of dynamic loading on bone quality and mechanical competence.

  3. Trabecular bone adaptation to low-magnitude high-frequency loading in microgravity.

    Directory of Open Access Journals (Sweden)

    Antonia Torcasio

    Full Text Available Exposure to microgravity causes loss of lower body bone mass in some astronauts. Low-magnitude high-frequency loading can stimulate bone formation on earth. Here we hypothesized that low-magnitude high-frequency loading will also stimulate bone formation under microgravity conditions. Two groups of six bovine cancellous bone explants were cultured at microgravity on a Russian Foton-M3 spacecraft and were either loaded dynamically using a sinusoidal curve or experienced only a static load. Comparable reference groups were investigated at normal gravity. Bone structure was assessed by histology, and mechanical competence was quantified using μCT and FE modelling; bone remodelling was assessed by fluorescent labelling and secreted bone turnover markers. Statistical analyses on morphometric parameters and apparent stiffness did not reveal significant differences between the treatment groups. The release of bone formation marker from the groups cultured at normal gravity increased significantly from the first to the second week of the experiment by 90.4% and 82.5% in response to static and dynamic loading, respectively. Bone resorption markers decreased significantly for the groups cultured at microgravity by 7.5% and 8.0% in response to static and dynamic loading, respectively. We found low strain magnitudes to drive bone turnover when applied at high frequency, and this to be valid at normal as well as at microgravity. In conclusion, we found the effect of mechanical loading on trabecular bone to be regulated mainly by an increase of bone formation at normal gravity and by a decrease in bone resorption at microgravity. Additional studies with extended experimental time and increased samples number appear necessary for a further understanding of the anabolic potential of dynamic loading on bone quality and mechanical competence.

  4. An in vitro scratch tendon tissue injury model: effects of high frequency low magnitude loading.

    Science.gov (United States)

    Adekanmbi, Isaiah; Zargar, Nasim; Hulley, Philippa

    2017-03-01

    The healing process of ruptured tendons is suboptimal, taking months to achieve tissue with inferior properties to healthy tendon. Mechanical loading has been shown to positively influence tendon healing. However, high frequency low magnitude (HFLM) loads, which have shown promise in maintaining healthy tendon properties, have not been studied with in vitro injury models. Here, we present and validate an in vitro scratch tendon tissue injury model to investigate effects of HFLM loading on the properties of injured rat tail tendon fascicles (RTTFs). A longitudinal tendon tear was simulated using a needle aseptically to scratch a defined length along individual RTTFs. Tissue viability, biomechanical, and biochemical parameters were investigated before and 7 days after culture . The effects of static, HFLM (20 Hz), and low frequency (1 Hz) cyclic loading or no load were also investigated. Tendon viability was confirmed in damaged RTTFs after 7 days of culture, and the effects of a 0.77 ± 0.06 cm scratch on the mechanical property (tangent modulus) and tissue metabolism in damaged tendons were consistent, showing significant damage severity compared with intact tendons. Damaged tendon fascicles receiving HFLM (20 Hz) loads displayed significantly higher mean tangent modulus than unloaded damaged tendons (212.7 ± 14.94 v 92.7 ± 15.59 MPa), and damaged tendons receiving static loading (117.9 ± 10.65 MPa). HFLM stimulation maintained metabolic activity in 7-day cultured damaged tendons at similar levels to fresh tendons immediately following damage. Only damaged tendons receiving HFLM loads showed significantly higher metabolism than unloaded damaged tendons (relative fluorescence units -7021 ± 635.9 v 3745.1 ± 641.7). These validation data support the use of the custom-made in vitro injury model for investigating the potential of HFLM loading interventions in treating damaged tendons.

  5. The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice

    Directory of Open Access Journals (Sweden)

    Esther Wehrle

    2015-01-01

    Full Text Available Fracture healing is impaired in aged and osteoporotic individuals. Because adequate mechanical stimuli are able to increase bone formation, one therapeutical approach to treat poorly healing fractures could be the application of whole-body vibration, including low-magnitude high-frequency vibration (LMHFV. We investigated the effects of LMHFV on fracture healing in aged osteoporotic mice. Female C57BL/6NCrl mice (n=96 were either ovariectomised (OVX or sham operated (non-OVX at age 41 weeks. When aged to 49 weeks, all mice received a femur osteotomy that was stabilised using an external fixator. The mice received whole-body vibrations (20 minutes/day with 0.3 g peak-to-peak acceleration and a frequency of 45 Hz. After 10 and 21 days, the osteotomised femurs and intact bones (contra-lateral femurs, lumbar spine were evaluated using bending-testing, micro-computed tomography (μCT, histology and gene expression analyses. LMHFV disturbed fracture healing in aged non-OVX mice, with significantly reduced flexural rigidity (−81% and bone formation (−80% in the callus. Gene expression analyses demonstrated increased oestrogen receptor β (ERβ, encoded by Esr2 and Sost expression in the callus of the vibrated animals, but decreased β-catenin, suggesting that ERβ might mediate these negative effects through inhibition of osteoanabolic Wnt/β-catenin signalling. In contrast, in OVX mice, LMHFV significantly improved callus properties, with increased flexural rigidity (+1398% and bone formation (+637%, which could be abolished by subcutaneous oestrogen application (0.025 mg oestrogen administered in a 90-day-release pellet. On a molecular level, we found an upregulation of ERα in the callus of the vibrated OVX mice, whereas ERβ was unaffected, indicating that ERα might mediate the osteoanabolic response. Our results indicate a major role for oestrogen in the mechanostimulation of fracture healing and imply that LMHFV might only be safe and

  6. The Role of Mechanical Stimulation in Recovery of Bone Loss—High versus Low Magnitude and Frequency of Force

    Directory of Open Access Journals (Sweden)

    Mamta Patel Nagaraja

    2014-04-01

    Full Text Available Musculoskeletal pathologies associated with decreased bone mass, including osteoporosis and disuse-induced bone loss, affect millions of Americans annually. Microgravity-induced bone loss presents a similar concern for astronauts during space missions. Many pharmaceutical treatments have slowed osteoporosis, and recent data shows promise for countermeasures for bone loss observed in astronauts. Additionally, high magnitude and low frequency impact such as running has been recognized to increase bone and muscle mass under normal but not microgravity conditions. However, a low magnitude and high frequency (LMHF mechanical load experienced in activities such as postural control, has also been shown to be anabolic to bone. While several clinical trials have demonstrated that LMHF mechanical loading normalizes bone loss in vivo, the target tissues and cells of the mechanical load and underlying mechanisms mediating the responses are unknown. In this review, we provide an overview of bone adaptation under a variety of loading profiles and the potential for a low magnitude loading as a way to counteract bone loss as experienced by astronauts.

  7. Slow high-frequency effects in mechanics: problems, solutions, potentials

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening – an appa......Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening...... and compared: The Method of Direct Separation of Motions, the Method of Averaging, and the Method of Multiple Scales. The tutorial concludes by suggesting that more vibration experts, researchers and students should know about HFE effects, for the benefit not only of general vibration troubleshooting, but also...

  8. Advances to Dynamic Mechanical Analysis: High Frequencies and Environmental Applications

    Science.gov (United States)

    Foreman, Jonathon

    2002-03-01

    In dynamic mechanical analysis (DMA) the sample is deformed and released sinusoidally providing information about the modulus and damping behaviors with respect to temperature, time, oscillation frequency and amplitude of motion. It offers exceptional sensitivity to glass transitions and secondary relaxations. Recent developments have increased the frequency range up to 1000 Hz, which allow properties measurements under actual end-use conditions. Furthermore high frequencies enhance the ability to determine the kinetics of viscoelastic relaxations. Another recent development allows DMA measurements while samples are immersed in fluids or enveloped in gases. Most significant is the ability to alter the furnace control parameters to account for the thermal properties of the environment used. This configuration allows temperature-controlled measurements (both heating and isothermal profiles) on a wide range of sample shapes and sizes. Environmental DMA is easier to interpret than standard DMA (in air or inert gas) on preconditioned samples because such samples often lose the conditioning solvent or gas during the measurement. easy.com/dma_apps.asp>Examples will show real-time property changes from the interaction of unconditioned materials with conditioning environments and experiments on pre-conditioned materials that are heated while immersed in conditioning environments. -------------------------------------------------------------

  9. Mechanics and modelling of high frequency mechanical impact and its effect on fatigue

    OpenAIRE

    LE QUILLIEC, Guenhael; LIEURADE, Henri Paul; DRISSI-HABTI, Monssef; INGLEBERT, Geneviève; MACQUET, Pascal; JUBIN, Laurent; BOUSSEAU, Marc

    2013-01-01

    High frequency mechanical impact is a recent improvement method which is probably one of the most effective for treating welded assemblies. A number of experimental results relating to this process are presented in this article. These results lead to better understand the mechanisms of the process, to outline the influence of the operating parameters and to confirm the role played by the initial quality of treated welds. In addition, a process is proposed in order to numerically estimate the ...

  10. Mechanisms and factors that influence high frequency retroviral recombination

    DEFF Research Database (Denmark)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga;

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse t......, and vaccine development....... transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity...

  11. Mechanisms and factors that influence high frequency retroviral recombination

    DEFF Research Database (Denmark)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga;

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse...... transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity......, and vaccine development....

  12. Mechanisms and Factors that Influence High Frequency Retroviral Recombination

    Directory of Open Access Journals (Sweden)

    Krista Delviks-Frankenberry

    2011-09-01

    Full Text Available With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development.

  13. A note for the mechanism of high-frequency oscillation instability resulted from absorbing boundary conditions

    Institute of Scientific and Technical Information of China (English)

    XIE Zhi-nan; LIAO Zhen-peng

    2008-01-01

    In this paper the explanation of the mechanism of high-frequency oscillation instability resulted from absorbing boundary conditions is further improved. And we analytically prove the proposition that for one dimensional dis- crete model of elastic wave motion, the module of reflection factor will be greater than 1 in high frequency band when artificial wave velocity is greater than 1.5 times the ratio of discrete space step to discrete time step. Based on the proof, the frequency band in which instability occurs is discussed in detail, showing such high-frequency waves are meaningless for the numerical simulation of wave motion.

  14. Passive ultrasonics using sub-Nyquist sampling of high-frequency thermal-mechanical noise.

    Science.gov (United States)

    Sabra, Karim G; Romberg, Justin; Lani, Shane; Degertekin, F Levent

    2014-06-01

    Monolithic integration of capacitive micromachined ultrasonic transducer arrays with low noise complementary metal oxide semiconductor electronics minimizes interconnect parasitics thus allowing the measurement of thermal-mechanical (TM) noise. This enables passive ultrasonics based on cross-correlations of diffuse TM noise to extract coherent ultrasonic waves propagating between receivers. However, synchronous recording of high-frequency TM noise puts stringent requirements on the analog to digital converter's sampling rate. To alleviate this restriction, high-frequency TM noise cross-correlations (12-25 MHz) were estimated instead using compressed measurements of TM noise which could be digitized at a sampling frequency lower than the Nyquist frequency.

  15. Mechanisms of high-frequency song generation in brachypterous crickets and the role of ghost frequencies.

    Science.gov (United States)

    Robillard, Tony; Montealegre-Z, Fernando; Desutter-Grandcolas, Laure; Grandcolas, Philippe; Robert, Daniel

    2013-06-01

    Sound production in crickets relies on stridulation, the well-understood rubbing together of a pair of specialised wings. As the file of one wing slides over the scraper of the other, a series of rhythmic impacts causes harmonic oscillations, usually resulting in the radiation of pure tones delivered at low frequencies (2-8 kHz). In the short-winged crickets of the Lebinthini tribe, acoustic communication relies on signals with remarkably high frequencies (>8 kHz) and rich harmonic content. Using several species of the subfamily Eneopterinae, we characterised the morphological and mechanical specialisations supporting the production of high frequencies, and demonstrated that higher harmonics are exploited as dominant frequencies. These specialisations affect the structure of the stridulatory file, the motor control of stridulation and the resonance of the sound radiator. We placed these specialisations in a phylogenetic framework and show that they serve to exploit high-frequency vibrational modes pre-existing in the phylogenetic ancestor. In Eneopterinae, the lower frequency components are harmonically related to the dominant peak, suggesting they are relicts of ancestral carrier frequencies. Yet, such ghost frequencies still occur in the wings' free resonances, highlighting the fundamental mechanical constraints of sound radiation. These results support the hypothesis that such high-frequency songs evolved stepwise, by a form of punctuated evolution that could be related to functional constraints, rather than by only the progressive increase of the ancestral fundamental frequency.

  16. Thermo-Mechanical Stress in High-Frequency Vacuum Electron Devices

    Science.gov (United States)

    Gamzina, Diana; Luhmann, Neville C.; Ravani, Bahram

    2017-01-01

    Analysis of the thermo-mechanical performance of high-frequency vacuum electron devices is essential to the advancement of RF sources towards high-power generation. Operation in an ultra-high vacuum environment, space restricting magnetic focusing, and limited material options are just some of the constraints that complicate thermal management in a high-power VED. An analytical method for evaluating temperature, stress, and deformation distribution in thin vacuum-to-cooling walls is presented, accounting for anisotropic material properties. Thin plate geometry is used and analytical expressions are developed for thermo-mechanical analysis that includes the microstructure effects of grain orientations. The method presented evaluates the maximum allowable heat flux that can be used to establish the power-handling limitation of high-frequency VEDs prior to full-scale design, accelerating time-to-manufacture.

  17. Thermo-Mechanical Stress in High-Frequency Vacuum Electron Devices

    Science.gov (United States)

    Gamzina, Diana; Luhmann, Neville C.; Ravani, Bahram

    2016-09-01

    Analysis of the thermo-mechanical performance of high-frequency vacuum electron devices is essential to the advancement of RF sources towards high-power generation. Operation in an ultra-high vacuum environment, space restricting magnetic focusing, and limited material options are just some of the constraints that complicate thermal management in a high-power VED. An analytical method for evaluating temperature, stress, and deformation distribution in thin vacuum-to-cooling walls is presented, accounting for anisotropic material properties. Thin plate geometry is used and analytical expressions are developed for thermo-mechanical analysis that includes the microstructure effects of grain orientations. The method presented evaluates the maximum allowable heat flux that can be used to establish the power-handling limitation of high-frequency VEDs prior to full-scale design, accelerating time-to-manufacture.

  18. Design aspects of high strength steel welded structures improved by high frequency mechanical impact (HFMI) treatment

    OpenAIRE

    Yildirim, Halid Can

    2013-01-01

    This doctoral study is concerned with the fatigue strength of welded steel structures which are improved by high frequency mechanical impact (HFMI) treatment. A comprehensive evaluation of 417 HFMI test data obtained from the literature and 24 HFMI fatigue data tested as a part of this work are studied. According to the statistical analyses an S-N slope of five (5) is proposed. A yield strength correction procedure which relates the material yield strength (fy) to fatigue is presented and ver...

  19. High frequency PMN-PT single crystal focusing transducer fabricated by a mechanical dimpling technique.

    Science.gov (United States)

    Chen, Y; Lam, K H; Zhou, D; Cheng, W F; Dai, J Y; Luo, H S; Chan, H L W

    2013-02-01

    High frequency (∼30MHz and ∼80MHz) focusing ultrasound transducers were fabricated using a PMN-0.28PT single crystal by a mechanical dimpling technique. The dimpled single crystal was used as an active element for the focusing transducer. Compared with a plane transducer, the focusing transducer fabricated with a dimpled active element exhibits much broader bandwidth and higher sensitivity. Besides, a high quality image can be obtained by the 30MHz focusing transducer, in which the -6dB axial and lateral resolution is 27μm and 139μm, respectively. These results prove that the dimpling technique is capable to fabricate the high frequency focusing transducers with excellent performance for imaging applications.

  20. [Study on anti-hyperlipidemia mechanism of high frequency herb pairs by molecular docking method].

    Science.gov (United States)

    Jiang, Lu-di; He, Yu-su; Chen, Xi; Tao, Ou; Li, Gong-Yu; Zhang, Yan-ling

    2015-06-01

    Traditional Chinese medicine (TCM) has definitely clinical effect in treating hyperlipidemia, but the action mechanism still need to be explored. Based on consulting Chinese Pharmacopoeia (2010), all the lipid-lowering Chinese patent medicines were analyzed by associated rules data mining method to explore high frequency herb pairs. The top three couplet medicines with high support degree were Puerariae Lobatae Radix-Crataegi Fructus, Salviae Miltiorrhizae Radix et Rhizoma-Crataegi Fructus, and Polygoni Multiflori Radix-Crataegi Fructus. The 20 main ingredients were selected from the herb pairs and docked with 3 key hyperlipidemia targets, namely 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase), peroxisome proliferator activated receptor-α (PPAR-α ) and niemann-pick C1 like 1 (NPC1L1) to further discuss the molecular mechanism of the high frequency herb pairs, by using the docking program, LibDock. To construct evaluation rules for the ingredients of herb pairs, the root-mean-square deviation (RMSD) value between computed and initial complexes was first calculated to validate the fitness of LibDock models. Then, the key residues were also confirmed by analyzing the interactions of those 3 proteins and corresponding marketed drugs. The docking results showed that hyperin, puerarin, salvianolic acid A and polydatin can interact with two targets, and the other five compounds may be potent for at least one of the three targets. In this study, the multi-target effect of high frequency herb pairs for lipid-lowering was discussed on the molecular level, which can help further researching new multi-target anti-hyperlipidemia drug.

  1. High Frequency Cut-off and Changing of Radio Emission Mechanism in Pulsars

    CERN Document Server

    Kontorovich, V M

    2012-01-01

    Pulsars are the fast rotating neutron stars with strong magnetic field emitting over a wide frequency range. In spite of the efforts during 40 years after the discovery of pulsars, the mechanism of their radio emission remains to be unknown so far. We propose a new approach to solving this problem. The object of our study is a sample of pulsars with a high-frequency break of the spectrum from Pushchino catalogue. A theoretical explanation of the observed dependence of the high-frequency break from the pulsar period is given. The dependence of the break position from the magnetic field is predicted. This explanation is based on a new mechanism for electron emission in the inner polar gap. Radiation occurs when electrons are accelerated in the electric field rising from zero at the star surface. Acceleration passes through a maximum and tends to zero when the electron velocity approaches the velocity of light. The all radiated power is allocated to the radio band. The averaging over the polar cap, with some nat...

  2. Mechanizing the Merc: The Chicago Mercantile Exchange and the Rise of High-Frequency Trading.

    Science.gov (United States)

    MacKenzie, Donald

    2015-07-01

    This article investigates one important strand in the evolution of today's high-frequency trading or HFT (the fast, automated trading of large numbers of financial securities). That strand is the history of the automation of trading on what has become the world's most prominent futures exchange, the Chicago Mercantile Exchange or Merc. The process of the automation of the Merc was episodic, often driven by responses to perceived external threats, and involved both "local" politics and transnational considerations. The article discusses the relationship between the Merc's automation and the embodied, deeply social trading practices of the Merc's open-outcry trading pits, and compares how the Merc was mechanized with the quite different-and in a sense more explicitly "social"-project of automation launched by the Merc's rival, the Chicago Board of Trade.

  3. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    Some nontrivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial (depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based...... on a slightly modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical...

  4. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    2008-01-01

    Some non-trivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based on a slightly...... modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical optimally...

  5. Effects of High Frequency Chest Compression on Respiratory System Mechanics in Normal Subjects and Cystic Fibrosis Patients

    Directory of Open Access Journals (Sweden)

    Richard L Jones

    1995-01-01

    Full Text Available OBJECTIVE: To investigate the short term effects of high frequency chest compression (HFCC on several indices of respiratory system mechanics in normal subjects and patients with cystic fibrosis (CF.

  6. Mechanism of High Frequency Shallow Earthquake Source in Mount Soputan, North Sulawesi

    Directory of Open Access Journals (Sweden)

    Yasa Suparman

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i3.122Moment tensor analysis had been conducted to understand the source mechanism of earthquakes in Soputan Volcano during October - November 2010 period. The record shows shallow earthquakes with frequency about 5 - 9 Hz. Polarity distribution of P-wave first onset indicates that the recorded earthquakes are predominated by earthquakes where almost at all stations have the same direction of P-wave first motions, and earthquakes with upward first motions.In this article, the source mechanism is described as the second derivative of moment tensor, approached with first motion amplitude inversion of P-wave at some seismic stations. The result of moment tensor decomposition are predominated by earthquakes with big percentage in ISO and CLVD component. Focal mechanism shows that the recorded earthquakes have the same strike in northeast-southwest direction with dip about 400 - 600. The sources of the high frequency shallow earthquakes are in the form of tensile-shear cracks or a combination between crack and tensile faulting.

  7. Mechanism of High Frequency Shallow Earthquake Source in Mount Soputan, North Sulawesi

    Directory of Open Access Journals (Sweden)

    Yasa Suparman

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i3.122Moment tensor analysis had been conducted to understand the source mechanism of earthquakes in Soputan Volcano during October - November 2010 period. The record shows shallow earthquakes with frequency about 5 - 9 Hz. Polarity distribution of P-wave first onset indicates that the recorded earthquakes are predominated by earthquakes where almost at all stations have the same direction of P-wave first motions, and earthquakes with upward first motions.In this article, the source mechanism is described as the second derivative of moment tensor, approached with first motion amplitude inversion of P-wave at some seismic stations. The result of moment tensor decomposition are predominated by earthquakes with big percentage in ISO and CLVD component. Focal mechanism shows that the recorded earthquakes have the same strike in northeast-southwest direction with dip about 400 - 600. The sources of the high frequency shallow earthquakes are in the form of tensile-shear cracks or a combination between crack and tensile faulting.

  8. Respiratory mechanics during high-frequency oscillatory ventilation: a physical model and preterm infant study.

    Science.gov (United States)

    Singh, Rachana; Courtney, Sherry E; Weisner, Michael D; Habib, Robert H

    2012-04-01

    Accurate mechanics measurements during high-frequency oscillatory ventilation (HFOV) facilitate optimizing ventilator support settings. Yet, these are influenced substantially by endotracheal tube (ETT) contributions, which may dominate when leaks around uncuffed ETT are present. We hypothesized that 1) the effective removal of ETT leaks may be confirmed via direct comparison of measured vs. model-predicted mean intratracheal pressure [mPtr (meas) vs. mPtr (pred)], and 2) reproducible respiratory system resistance (Rrs) and compliance (Crs) may be derived from no-leak oscillatory Ptr and proximal flow. With the use of ETT test-lung models, proximal airway opening (Pao) and distal (Ptr) pressures and flows were measured during slow-cuff inflations until leaks are removed. These were repeated for combinations of HFOV settings [frequency, mean airway pressure (Paw), oscillation amplitudes (ΔP), and inspiratory time (%t(I))] and varying test-lung Crs. Results showed that leaks around the ETT will 1) systematically reduce the effective distending pressures and lung-delivered oscillatory volumes, and 2) derived mechanical properties are increasingly nonphysiologic as leaks worsen. Mean pressures were systematically reduced along the ventilator circuit and ETT (Paw > Pao > Ptr), even for no-leak conditions. ETT size-specific regression models were then derived for predicting mPtr based on mean Pao (mPao), ΔP, %t(I), and frequency. Next, in 10 of 11 studied preterm infants (0.77 ± 0.24 kg), no-to-minimal leak was confirmed based on excellent agreement between mPtr (meas) and mPtr (pred), and consequently, their oscillatory respiratory mechanics were evaluated. Infant resistance at the proximal ETT (R(ETT); resistance airway opening = R(ETT) + Rrs; P mechanical properties that can objectively guide ventilatory management of HFOV-treated preterm infants.

  9. Effective properties of mechanical systems under high-frequency excitation at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2008-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical p...

  10. Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators

    Science.gov (United States)

    Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif

    2011-01-01

    High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown

  11. High-frequency oscillatory ventilation is not superior to conventional mechanical ventilation in surfactant-treated rabbits with lung injury

    NARCIS (Netherlands)

    D.A.M.P.J. Gommers (Diederik); A. Hartog (Anneke); R. Schnabel; A. de Jaegere (Anne); B.F. Lachmann (Burkhard)

    1999-01-01

    textabstractThe aim of this study was to compare high-frequency oscillatory ventilation (HFOV) with conventional mechanical ventilation (CMV) with and without surfactant in the treatment of surfactant-deficient rabbits. A previously described saline lung lavage model of

  12. Effects of High Frequency Chest Compression on Respiratory System Mechanics in Normal Subjects and Cystic Fibrosis Patients

    OpenAIRE

    Jones, Richard L; Richard T Lester; Neil E Brown

    1995-01-01

    OBJECTIVE: To investigate the short term effects of high frequency chest compression (HFCC) on several indices of respiratory system mechanics in normal subjects and patients with cystic fibrosis (CF).DESIGN: Comparative physiological approach. Subjects were blinded to 10 randomized HFCC settings (5, 10, 15, 20 and 25 Hz) with each applied at the lowest and at the highest background vest pressure.SETTING: Pulmonary function and lung mechanics laboratory, University of Alberta.PARTICIPANTS: Te...

  13. Using strong nonlinearity and high-frequency vibrations to control effective mechanical stiffness

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2008-01-01

    High-frequency excitation (HFE) can be used to change the effective stiffness of an elastic structure, and related quanti-ties such as resonance frequencies, wave speed, buckling loads, and equilibrium states. There are basically two ways to do this: By using parametrical HFE (with or without non...... the method of direct separation of motions with results of a modified multiple scales ap-proach, valid also for strong nonlinearity, the stiffening ef-fect is predicted for a generic 1-dof system, and results are tested against numerical simulation and ((it is planned)) laboratory experiments....

  14. Using strong nonlinearity and high-frequency vibrations to control effective mechanical stiffness

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2008-01-01

    High-frequency excitation (HFE) can be used to change the effective stiffness of an elastic structure, and related quanti-ties such as resonance frequencies, wave speed, buckling loads, and equilibrium states. There are basically two ways to do this: By using parametrical HFE (with or without non...... the method of direct separation of motions with results of a modified multiple scales ap-proach, valid also for strong nonlinearity, the stiffening ef-fect is predicted for a generic 1-dof system, and results are tested against numerical simulation and ((it is planned)) laboratory experiments....

  15. High Shock, High Frequency Characteristics of a Mechanical Isolator for a Piezoresistive Accelerometer, the ENDEVCO 7270AM6*

    Energy Technology Data Exchange (ETDEWEB)

    BATEMAN,VESTA I.; BROWN,FREDERICK A.; NUSSER,MICHAEL A.

    2000-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories (SNL). An Extended Technical Assistance Program (ETAP) with the accelerometer manufacturer has resulted in a commercial mechanically isolated accelerometer that is available to the general public, the ENDEVCO 7270AM6*, for three shock acceleration ranges of 6,000 g, 20,000 g, and 60,000 g. The in-axis response shown in this report has acceptable frequency domain performance from DC to 10 kHz and 10(XO)over a temperature range of {minus}65 F to +185 F. Comparisons with other isolated accelerometers show that the ENDEVCO 7270AM6 has ten times the bandwidth of any other commercial isolator. ENDEVCO 7270AM6 cross-axis response is shown in this report.

  16. Positive Selection of Deleterious Alleles through Interaction with a Sex-Ratio Suppressor Gene in African Buffalo: A Plausible New Mechanism for a High Frequency Anomaly

    NARCIS (Netherlands)

    Hooft, van W.F.; Greyling, B.J.; Getz, W.M.; Helden, P.D.; Zwaan, B.J.; Bastos, A.D.S.

    2015-01-01

    Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer)

  17. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone.

    Science.gov (United States)

    Rubin, C; Turner, A S; Mallinckrodt, C; Jerome, C; McLeod, K; Bain, S

    2002-03-01

    Departing from the premise that it is the large-amplitude signals inherent to intense functional activity that define bone morphology, we propose that it is the far lower magnitude, high-frequency mechanical signals that continually barrage the skeleton during longer term activities such as standing, which regulate skeletal architecture. To examine this hypothesis, we proposed that brief exposure to slight elevations in these endogenous mechanical signals would suffice to increase bone mass in those bones subject to the stimulus. This was tested by exposing the hind limbs of adult female sheep (n = 9) to 20 min/day of low-level (0.3g), high-frequency (30 Hz) mechanical signals, sufficient to induce a peak of approximately 5 microstrain (micro epsilon) in the tibia. Following euthanasia, peripheral quantitative computed tomography (pQCT) was used to segregate the cortical shell from the trabecular envelope of the proximal femur, revealing a 34.2% increase in bone density in the experimental animals as compared with controls (p = 0.01). Histomorphometric examination of the femur supported these density measurements, with bone volume per total volume increasing by 32% (p = 0.04). This density increase was achieved by two separate strategies: trabecular spacing decreased by 36.1% (p = 0.02), whereas trabecular number increased by 45.6% (p = 0.01), indicating the formation of cancellous bone de novo. There were no significant differences in the radii of animals subject to the stimulus, indicating that the adaptive response was local rather than systemic. The anabolic potential of the signal was evident only in trabecular bone, and there were no differences, as measured by any assay, in the cortical bone. These data suggest that subtle mechanical signals generated during predominant activities such as posture may be potent determinants of skeletal morphology. Given that these strain levels are three orders of magnitude below strains that can damage bone tissue, we

  18. A simulation tool to study high-frequency chest compression energy transfer mechanisms and waveforms for pulmonary disease applications.

    Science.gov (United States)

    O'Clock, George D; Lee, Yong Wan; Lee, Jongwon; Warwick, Warren J

    2010-07-01

    High-frequency chest compression (HFCC) can be used as a therapeutic intervention to assist in the transport and clearance of mucus and enhance water secretion for cystic fibrosis patients. An HFCC pump-vest and half chest-lung simulation, with 23 lung generations, has been developed using inertance, compliance, viscous friction relationships, and Newton's second law. The simulation has proven to be useful in studying the effects of parameter variations and nonlinear effects on HFCC system performance and pulmonary system response. The simulation also reveals HFCC waveform structure and intensity changes in various segments of the pulmonary system. The HFCC system simulation results agree with measurements, indicating that the HFCC energy transport mechanism involves a mechanically induced pulsation or vibration waveform with average velocities in the lung that are dependent upon small air displacements over large areas associated with the vest-chest interface. In combination with information from lung physiology, autopsies and a variety of other lung modeling efforts, the results of the simulation can reveal a number of therapeutic implications.

  19. Heat generation in an elastic binder system with embedded discrete energetic particles due to high-frequency, periodic mechanical excitation

    Science.gov (United States)

    Mares, J. O.; Miller, J. K.; Gunduz, I. E.; Rhoads, J. F.; Son, S. F.

    2014-11-01

    High-frequency mechanical excitation can induce heating within energetic materials and may lead to advances in explosives detection and defeat. In order to examine the nature of this mechanically induced heating, samples of an elastic binder (Sylgard 184) were embedded with inert and energetic particles placed in a fixed spatial pattern and were subsequently excited with an ultrasonic transducer at discrete frequencies from 100 kHz to 20 MHz. The temperature and velocity responses of the sample surfaces suggest that heating due to frictional effects occurred near the particles at excitation frequencies near the transducer resonance of 215 kHz. An analytical solution involving a heat point source was used to estimate heating rates and temperatures at the particle locations in this frequency region. Heating located near the sample surface at frequencies near and above 1 MHz was attributed to viscoelastic effects related to the surface motion of the samples. At elevated excitation parameters near the transducer resonance frequency, embedded particles of ammonium perchlorate and cyclotetramethylene-tetranitramine were driven to chemical decomposition.

  20. Mechanical competence of ovariectomy-induced compromised bone after single or combined treatment with high-frequency loading and bisphosphonates.

    Science.gov (United States)

    Camargos, G V; Bhattacharya, P; van Lenthe, G H; Del Bel Cury, A A; Naert, I; Duyck, J; Vandamme, K

    2015-06-01

    Osteoporosis leads to increased bone fragility, thus effective approaches enhancing bone strength are needed. Hence, this study investigated the effect of single or combined application of high-frequency (HF) loading through whole body vibration (WBV) and alendronate (ALN) on the mechanical competence of ovariectomy-induced osteoporotic bone. Thirty-four female Wistar rats were ovariectomized (OVX) or sham-operated (shOVX) and divided into five groups: shOVX, OVX-shWBV, OVX-WBV, ALN-shWBV and ALN-WBV. (Sham)WBV loading was applied for 10 min/day (130 to 150 Hz at 0.3g) for 14 days and ALN at 2 mg/kg/dose was administered 3x/week. Finite element analysis based on micro-CT was employed to assess bone biomechanical properties, relative to bone micro-structural parameters. HF loading application to OVX resulted in an enlarged cortex, but it was not able to improve the biomechanical properties. ALN prevented trabecular bone deterioration and increased bone stiffness and bone strength of OVX bone. Finally, the combination of ALN with HF resulted in an increased cortical thickness in OVX rats when compared to single treatments. Compared to HF loading, ALN treatment is preferred for improving the compromised mechanical competence of OVX bone. In addition, the association of ALN with HF loading results in an additive effect on the cortical thickness.

  1. Mucus transport mechanisms in relation to the effect of high frequency chest compression (HFCC) on mucus clearance.

    Science.gov (United States)

    Hansen, L G; Warwick, W J; Hansen, K L

    1994-02-01

    High frequency chest compression (HFCC) appears promising as a form of chest physiotherapy. Studies published by several clinical centers support its efficacy, and further clinical data are expected to become available.

  2. Instantaneous responses to high-frequency chest wall oscillation in patients with acute pneumonic respiratory failure receiving mechanical ventilation

    Science.gov (United States)

    Chuang, Ming-Lung; Chou, Yi-Ling; Lee, Chai-Yuan; Huang, Shih-Feng

    2017-01-01

    Abstract Background: Endotracheal intubation and prolonged immobilization of patients receiving mechanical ventilation may reduce expectoration function. High-frequency chest wall oscillation (HFCWO) may ameliorate airway secretion movement; however, the instantaneous changes in patients’ cardiopulmonary responses are unknown. Moreover, HFCWO may influence ventilator settings by the vigorous oscillation. The aim of this study was to investigate these issues. Methods: Seventy-three patients (52 men) aged 71.5 ± 13.4 years who were intubated with mechanical ventilation for pneumonic respiratory failure were recruited and randomly classified into 2 groups (HFCWO group, n = 36; and control group who received conventional chest physical therapy (CCPT, n = 37). HFCWO was applied with a fixed protocol, whereas CCPT was conducted using standard protocols. Both groups received sputum suction after the procedure. Changes in ventilator settings and the subjects’ responses were measured at preset intervals and compared within groups and between groups. Results: Oscillation did not affect the ventilator settings (all P > 0.05). The mean airway pressure, breathing frequency, and rapid shallow breathing index increased, and the tidal volume and SpO2 decreased (all P < 0.05). After sputum suction, the peak airway pressure (Ppeak) and minute ventilation decreased (all P < 0.05). The HFCWO group had a lower tidal volume and SpO2 at the end of oscillation, and lower Ppeak and tidal volume after sputum suction than the CCPT group. Conclusions: HFCWO affects breathing pattern and SpO2 but not ventilator settings, whereas CCPT maintains a steadier condition. After sputum suction, HFCWO slightly improved Ppeak compared to CCPT, suggesting that the study extends the indications of HFCWO for these patients in intensive care unit. (ClinicalTrials.gov number NCT02758106, retrospectively registered.) PMID:28248854

  3. High frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice.

    Science.gov (United States)

    Hadden, Hélène

    2013-01-15

    We tested the hypothesis that high frequency ventilation affects respiratory system mechanical functions in C57BL/6J and BALB/c mice. We measured respiratory mechanics by the forced oscillation technique over 1h in anesthetized, intubated, ventilated BALB/c and C57BL/6J male mice. We did not detect any change in airway resistance, Rn, tissue damping, G, tissue elastance, H and hysteresivity, eta in BALB/c mice during 1h of ventilation at 150 or at 450 breaths/min; nor did we find a difference between BALB/c mice ventilated at 150 breaths/min compared with 450 breaths/min. Among C57BL/6J mice, except for H, all parameters remained unchanged over 1h of ventilation in mice ventilated at 150 breaths/min. However, after 10 and 30 min of ventilation at 450 breaths/min, Rn, and respiratory system compliance were lower, and eta was higher, than their starting value. We conclude that high frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice.

  4. Positive Selection of Deleterious Alleles through Interaction with a Sex-Ratio Suppressor Gene in African Buffalo: A Plausible New Mechanism for a High Frequency Anomaly

    NARCIS (Netherlands)

    Hooft, van W.F.; Greyling, B.J.; Getz, W.M.; Helden, P.D.; Zwaan, B.J.; Bastos, A.D.S.

    2015-01-01

    Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer) populati

  5. Positive Selection of Deleterious Alleles through Interaction with a Sex-Ratio Suppressor Gene in African Buffalo: A Plausible New Mechanism for a High Frequency Anomaly

    NARCIS (Netherlands)

    Hooft, van W.F.; Greyling, B.J.; Getz, W.M.; Helden, van P.D.; Zwaan, B.J.; Bastos, A.D.S.

    2014-01-01

    Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer) populati

  6. Insights into streamflow generation mechanisms using high-frequency analysis of isotopes and water quality in streamflow and precipitation

    Science.gov (United States)

    von Freyberg, Jana; Kirchner, James W.

    2017-04-01

    In the pre-Alpine Alptal catchment in central Switzerland, snowmelt and rainfall events cause rapid changes not only in hydrological conditions, but also in water quality. A flood forecasting model for such a mountainous catchment thus requires process understanding that is informed by high-frequency monitoring of hydrological and hydrochemical parameters. Therefore, we installed a high-frequency sampling and analysis system near the outlet of the 0.7 km2 Erlenbach catchment, a headwater tributary of the Alp river. We measured stable water isotopes (δ18O, δ2H) in precipitation and streamwater using Picarro, Inc.'s (Santa Clara, CA, USA) newly developed Continuous Water Sampler Module (CWS) coupled to their L2130-i Cavity Ring-Down Spectrometer, at 30 min temporal resolution. Water quality was monitored with a dual-channel ion chomatograph (Metrohm AG, Herisau, Switzerland) for analysis of major cations and anions, as well as with a UV-Vis spectroscopy system and electrochemical probes (s::can Messtechnik GmbH, Vienna, Austria) for characterization of nutrients and basic water quality parameters. For quantification of trace elements and metals, we collected additional water samples for subsequent ICP-MS analysis in the laboratory. To illustrate the applicability of our newly developed automated analysis and sampling system under field conditions, we will present initial results from the 2016 fall and winter seasons at the Erlenbach catchment. During this period, river discharge was mainly fed by groundwater, as well as intermittent snowmelt and rain-on-snow events. Our high-frequency data set, along with spatially distributed sampling of snowmelt, enables a detailed analysis of source areas, flow pathways and biogeochemical processes that control chemical dynamics in streamflow and the discharge regime.

  7. A rapid sample-exchange mechanism for cryogen-free dilution refrigerators compatible with multiple high-frequency signal connections

    Science.gov (United States)

    Batey, G.; Chappell, S.; Cuthbert, M. N.; Erfani, M.; Matthews, A. J.; Teleberg, G.

    2014-03-01

    Researchers attempting to study quantum effects in the solid-state have a need to characterise samples at very low-temperatures, and frequently in high magnetic fields. Often coupled with this extreme environment is the requirement for high-frequency signalling to the sample for electrical control or measurements. Cryogen-free dilution refrigerators allow the necessary wiring to be installed to the sample more easily than their wet counterparts, but the limited cooling power of the closed cycle coolers used in these systems means that the experimental turn-around time can be longer. Here we shall describe a sample loading arrangement that can be coupled with a cryogen-free refrigerator and that allows samples to be loaded from room temperature in a matter of minutes. The loaded sample is then cooled to temperatures ∼10 mK in ∼7 h. This apparatus is compatible with systems incorporating superconducting magnets and allows multiple high-frequency lines to be connected to the cold sample.

  8. Does low magnitude earthquake ground shaking cause landslides?

    Science.gov (United States)

    Brain, Matthew; Rosser, Nick; Vann Jones, Emma; Tunstall, Neil

    2015-04-01

    Estimating the magnitude of coseismic landslide strain accumulation at both local and regional scales is a key goal in understanding earthquake-triggered landslide distributions and landscape evolution, and in undertaking seismic risk assessment. Research in this field has primarily been carried out using the 'Newmark sliding block method' to model landslide behaviour; downslope movement of the landslide mass occurs when seismic ground accelerations are sufficient to overcome shear resistance at the landslide shear surface. The Newmark method has the advantage of simplicity, requiring only limited information on material strength properties, landslide geometry and coseismic ground motion. However, the underlying conceptual model assumes that shear strength characteristics (friction angle and cohesion) calculated using conventional strain-controlled monotonic shear tests are valid under dynamic conditions, and that values describing shear strength do not change as landslide shear strain accumulates. Recent experimental work has begun to question these assumptions, highlighting, for example, the importance of shear strain rate and changes in shear strength properties following seismic loading. However, such studies typically focus on a single earthquake event that is of sufficient magnitude to cause permanent strain accumulation; by doing so, they do not consider the potential effects that multiple low-magnitude ground shaking events can have on material strength. Since such events are more common in nature relative to high-magnitude shaking events, it is important to constrain their geomorphic effectiveness. Using an experimental laboratory approach, we present results that address this key question. We used a bespoke geotechnical testing apparatus, the Dynamic Back-Pressured Shear Box (DynBPS), that uniquely permits more realistic simulation of earthquake ground-shaking conditions within a hillslope. We tested both cohesive and granular materials, both of which

  9. Microwave Radiometer - high frequency

    Data.gov (United States)

    Oak Ridge National Laboratory — The Microwave Radiometer-High Frequency (MWRHF) provides time-series measurements of brightness temperatures from two channels centered at 90 and 150 GHz. These two...

  10. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points

    NARCIS (Netherlands)

    Herfst, R.W.; Dekker, A.; Witvoet, G.; Crowcombe, W.E.; Lange, T.J. de; Sadeghian Marnani, H.

    2015-01-01

    One of the major limitations in the speed of the atomic force microscope (AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical (z) direction. According to the design principles of “light and stiff” and “static determinacy,” the bandwidth of the mechanical scanner is

  11. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points

    NARCIS (Netherlands)

    Herfst, R.W.; Dekker, A.; Witvoet, G.; Crowcombe, W.E.; Lange, T.J. de; Sadeghian Marnani, H.

    2015-01-01

    One of the major limitations in the speed of the atomic force microscope (AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical (z) direction. According to the design principles of “light and stiff” and “static determinacy,” the bandwidth of the mechanical scanner is lim

  12. High-frequency ECG

    Science.gov (United States)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  13. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points

    Energy Technology Data Exchange (ETDEWEB)

    Herfst, Rodolf; Dekker, Bert; Witvoet, Gert; Crowcombe, Will; Lange, Dorus de [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Sadeghian, Hamed, E-mail: hamed.sadeghianmarnani@tno.nl, E-mail: h.sadeghianmarnani@tudelft.nl [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Department of Precision and Microsystems Engineering, Delft University of Technology, Delft (Netherlands)

    2015-11-15

    One of the major limitations in the speed of the atomic force microscope (AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical (z) direction. According to the design principles of “light and stiff” and “static determinacy,” the bandwidth of the mechanical scanner is limited by the first eigenfrequency of the AFM head in case of tip scanning and by the sample stage in terms of sample scanning. Due to stringent requirements of the system, simply pushing the first eigenfrequency to an ever higher value has reached its limitation. We have developed a miniaturized, high speed AFM scanner in which the dynamics of the z-scanning stage are made insensitive to its surrounding dynamics via suspension of it on specific dynamically determined points. This resulted in a mechanical bandwidth as high as that of the z-actuator (50 kHz) while remaining insensitive to the dynamics of its base and surroundings. The scanner allows a practical z scan range of 2.1 μm. We have demonstrated the applicability of the scanner to the high speed scanning of nanostructures.

  14. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points.

    Science.gov (United States)

    Herfst, Rodolf; Dekker, Bert; Witvoet, Gert; Crowcombe, Will; de Lange, Dorus; Sadeghian, Hamed

    2015-11-01

    One of the major limitations in the speed of the atomic force microscope (AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical (z) direction. According to the design principles of "light and stiff" and "static determinacy," the bandwidth of the mechanical scanner is limited by the first eigenfrequency of the AFM head in case of tip scanning and by the sample stage in terms of sample scanning. Due to stringent requirements of the system, simply pushing the first eigenfrequency to an ever higher value has reached its limitation. We have developed a miniaturized, high speed AFM scanner in which the dynamics of the z-scanning stage are made insensitive to its surrounding dynamics via suspension of it on specific dynamically determined points. This resulted in a mechanical bandwidth as high as that of the z-actuator (50 kHz) while remaining insensitive to the dynamics of its base and surroundings. The scanner allows a practical z scan range of 2.1 μm. We have demonstrated the applicability of the scanner to the high speed scanning of nanostructures.

  15. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  16. Low-magnitude whole body vibration does not affect bone mass but does affect weight in ovariectomized rats

    NARCIS (Netherlands)

    O.P. van der Jagt (Olav); J.C. van der Linden (Jacqueline); J.H. Waarsing (Jan); J.A.N. Verhaar (Jan); H.H. Weinans (Harrie)

    2012-01-01

    textabstractMechanical loading has stimulating effects on bone architecture, which can potentially be used as a therapy for osteoporosis. We investigated the skeletal changes in the tibia of ovariectomized rats during treatment with whole body vibration (WBV). Different low-magnitude WBV treatment

  17. Characterization of Mechanical Properties at the Micro/Nano Scale: Stiction Failure of MEMS, High-Frequency Michelson Interferometry and Carbon NanoFibers

    Science.gov (United States)

    Kheyraddini Mousavi, Arash

    Different forces scale differently with decreasing length scales. Van der Waals and surface tension are generally ignored at the macro scale, but can become dominant at the micro and nano scales. This fact, combined with the considerable compliance and large surface areas of micro and nano devices, can leads to adhesion in MicroElectroMechanical Systems (MEMS) and NanoElectroMechanical Systems (NEMS) - a.k.a. stiction-failure. The adhesive forces between MEMS devices leading to stiction failure are characterized in this dissertation analytically and experimentally. Specifically, the adhesion energy of poly-Si μcantilevers are determined experimentally through Mode II and mixed Mode I&II crack propagation experiments. Furthermore, the description of a high-frequency Michelson Interferometer is discussed for imaging of crack propagation of the μcantilevers with their substrate at the nano-scale and harmonic imaging of MEMS/NEMS. Van der Waals forces are also responsible for the adhesion in nonwoven carbon nanofiber networks. Experimental and modeling results are presented for the mechanical and electrical properties of nonwoven (random entanglements) of carbon nanofibers under relatively low and high-loads, both in tensions and compression. It was also observed that the structural integrity of these networks is controlled by mechanical entanglement and flexural rigidity of individual fibers as well as Hertzian forces at the fiber/fiber interface.

  18. High frequency electromagnetic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Daily, W.; Ramirez, A.; Ueng, T.; Latorre, R.

    1989-09-01

    An experiment was conducted in G Tunnel at the Nevada Test Site to evaluate high frequency electromagnetic tomography as a candidate for in situ monitoring of hydrology in the near field of a heater placed in densely welded tuff. Tomographs of 200 MHz electromagnetic permittivity were made for several planes between boreholes. Data were taken before the heater was turned on, during heating and during cooldown of the rockmass. This data is interpreted to yield maps of changes in water content of the rockmass as a function of time. This interpretation is based on laboratory measurement of electromagnetic permittivity as a function of water content for densely welded tuff. 8 refs., 6 figs.

  19. High Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    AC Bryan

    1996-01-01

    Full Text Available High frequency oscillatory (HFO ventilation using low tidal volume and peak airway pressures is extremely efficient at eliminating carbon dioxide and raising pH in the newborn infant with acute respiratory failure. Improvement in oxygenation requires a strategy of sustained or repetitive inflations to 25 to 30 cm H2O in order to place the lung on the deflation limb of the pressure-volume curve. This strategy has also been shown to decrease the amount of secondary lung injury in animal models. Experience of the use of HFO ventilation as a rescue therapy as well as several published controlled trials have shown improved outcomes and a decrease in the use of extracorporeal membrane oxygenation when it has been used in newborns.

  20. Sources and transfer mechanisms of dissolved organic matter during storm and inter-storm conditions in a lowland headwater catchment: constraints from high-frequency molecular data

    Directory of Open Access Journals (Sweden)

    L. Jeanneau

    2015-02-01

    Full Text Available The transfer of dissolved organic matter (DOM at soil–river interfaces controls the biogeochemistry of micropollutants and the equilibrium between continental and oceanic C reservoirs. Then determining the transfer mechanisms of DOM is of main importance for ecological and geochemical reasons. Is stream DOM the result of the flushing of pre-existing soil DOM reservoirs activated by the modification of water flow paths? The evolution of the chemical composition of stream DOM investigated by thermally assisted hydrolysis and methylation (THM using tetramethylammonium hydroxide (TMAH coupled to a gas chromatograph and mass spectrometer (THM-GC-MS during inter-storm conditions and five storm events with a high-frequency sampling gives new insights on this question. In inter-storm conditions, stream DOM is inherited from the flushing of soil DOM, while during storm events, the modification of the distribution of chemical biomarkers allows the identification of three additional mechanisms. The first one corresponds to the destabilization of microbial biofilms by the increase in water velocity resulting in the fleeting export of a microbial pool. The second mechanism corresponds to the erosion of soils and river banks leading to a partition of organic matter between particles and dissolved phase. The third mechanism is linked to the increase in water velocity in soils that could induce the erosion of macropore walls, leading to an in-soil partitioning between soil microparticles and dissolved phase. The contribution of this in-soil erosive process would be linked to the magnitude of the hydraulic gradient following the rise of water table and could persist after the recession, which could explain why the return to inter-storm composition of DOM does not follow the same temporal scheme as the discharge. Those results are of main importance to understand the transfer of nutrients and micropollutants at the soil–river interfaces during the hot moments

  1. Clinical experience in treatment of five H1N1 flu patients with respiratory failure with high-frequency oscillatory mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Zhi-gang ZHANG

    2011-08-01

    Full Text Available Objective To investigate the application and safety of high-frequency oscillation ventilation(HFOV in the treatment of patients suffering from H1N1 influenza with respiratory failure.Methods Self-control study was conducted.The treatment of five H1N1 influenza patients with respiratory failure was switched to HFOV after failure of conventional mechanical ventilation(CMV.Blood gas [partial pressure of oxygen(PaO2,partial pressure of carbon dioxide(PCO2,pH],respiratory mechanics indices [oxygen concentration(FiO2,mean airway pressure(Paw,static response(Cst,oxygenation index(PaO2/FiO2] before and after treatment were observed.Lung biopsy and clinical treatment data were also analyzed.Results Oxygenation was improved in 3 patients 6 to 8 hours after HFOV treatment,and marked improvement was observed after 24-48h.48-72h later,HFOV was replaced by CMV,and the patients weaned from mechanical ventilation successfully at 144h.In two patients symptoms were exacerbated after HFOV for 8 hours and the treatment was switched to CMV.Among them one died at 75h,and another one was treated with extracorporeal membrane oxygenation(ECMO and died at 145h.Conclusions HFOV can significantly improve the outcome of H1N1 flu patients with respiratory failure.The sequential treatment with HFOV followed by CMV can reduce complications and mortality.

  2. Seismic characterization of low-magnitude floods and lahars at La Lumbre ravine, Volcán de Colima (Mexico)

    Science.gov (United States)

    Coviello, Velio; Capra, Lucia; Márquez, Víctor H.; Procter, Jonathan; Walsh, Braden

    2017-04-01

    Volcán de Colima currently is the most active volcano in Mexico where a number of rain-induced lahars occur each year. After an explosive phase, lahar frequency increases due to the immediate reworking of pyroclastic material and it progressively decreases in the following years. This behavior was distinctly observed during the two last rainy seasons that followed the intense volcanic activity of July 2015. La Lumbre ravine drains the West-Southwestern slopes of Volcán de Colima and is one of the most active channels of the volcano. Since 2014, monitoring is performed in a heavily instrumented cross-section located at 1580 m a.s.l. on the left bank of the channel. At the present day, the monitoring station is equipped with a raingauge, two stage sensors, a videocamera, and different seismic devices. At La Lumbre, lahars initiate as dilute, sediment-laden stream flows and with the entrainment of additional sediment they evolve into hyper-concentrations and debris flows. The hydro-repellency mechanism of the highly vegetated volcanic soils can explain the high frequency of lahars triggered by low-intensity rainfall events: under these hydrophobic conditions, infiltration is inhibited and runoff is facilitated at less highly peaked discharges that are more likely to initiate lahars that can have an impact on the inhabited areas located downstream. This is the reason why the possibility to detect not only large lahars but also low-magnitude flows is particularly important at La Lumbre. Here we present monitoring data of processes ranging from stream flows to large lahars that occurred during the last rainy seasons along La Lumbre ravine. In particular, we investigate the possibility to estimate the sediment concentration of debris flood and small lahars using a very easy-to-install and low-cost seismic sensor, i.e. a geophone, installed outside the flow path. For instance, we show how a hyper-concentrated flow characterized by a mean velocity of less than 1 meter per

  3. Positive selection of deleterious alleles through interaction with a sex-ratio suppressor gene in African Buffalo: a plausible new mechanism for a high frequency anomaly.

    Science.gov (United States)

    van Hooft, Pim; Greyling, Ben J; Getz, Wayne M; van Helden, Paul D; Zwaan, Bas J; Bastos, Armanda D S

    2014-01-01

    Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer) population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations), we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has important

  4. Positive Selection of Deleterious Alleles through Interaction with a Sex-Ratio Suppressor Gene in African Buffalo: A Plausible New Mechanism for a High Frequency Anomaly

    Science.gov (United States)

    van Hooft, Pim; Greyling, Ben J.; Getz, Wayne M.; van Helden, Paul D.; Zwaan, Bas J.; Bastos, Armanda D. S.

    2014-01-01

    Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer) population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations), we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has important

  5. Positive selection of deleterious alleles through interaction with a sex-ratio suppressor gene in African Buffalo: a plausible new mechanism for a high frequency anomaly.

    Directory of Open Access Journals (Sweden)

    Pim van Hooft

    Full Text Available Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations, we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has

  6. Effects of high-frequency oscillatory ventilation and conventional mechanical ventilation on oxygen metabolism and tissue perfusion in sheep models of acute respiratory distress syndrome

    Institute of Scientific and Technical Information of China (English)

    Liu Songqiao; Huang Yingzi; Wang Maohua; Chen Qiuhua; Liu Ling; Xie Jianfeng; Tan Li

    2014-01-01

    Background High-frequency oscillatory ventilation (HFOV) allows for small tidal volumes at mean airway pressures (mPaw) above that of conventional mechanical ventilation (CMV),but the effect of HFOV on hemodynamics,oxygen metabolism,and tissue perfusion in acute respiratory distress syndrome (ARDS) remains unclear.We investigated the effects of HFOV and CMV in sheep models with ARDS.Methods After inducing ARDS by repeated lavage,twelve adult sheep were randomly divided into a HFOV or CMV group.After stabilization,standard lung recruitments (40 cmH2O × 40 seconds) were performed.The optimal mPaw or positive end-expiratory pressure was obtained by lung recruitment and decremental positive end-expiratory pressure titration.The animals were then ventilated for 4 hours.The hemodynamics,tissue perfusion (superior mesenteric artery blood flow,pHi,and Pg-aCO2),oxygen metabolism and respiratory mechanics were examined at baseline before saline lavage,in the ARDS model,after model stabilization,and during hourly mechanical ventilation for up to 4 hours.A two-way repeated measures analysis of variance was applied to evaluate differences between the groups.Results The titrated mPaw was higher and the tidal volumes lower in the HFOV group than the positive end-expiratory pressure in the CMV group.There was no significant difference in hemodynamic parameters between the HFOV and CMV groups.There was no difference in the mean alveolar pressure between the two groups.After lung recruitment,both groups showed an improvement in the oxygenation,oxygen delivery,and DO2.Lactate levels increased in both groups after inducing the ARDS model.Compared with the CMV group,the superior mesenteric artery blood flow and pHi were significantly higher in the HFOV group,but the Pg-aCO2 decreased in the HFOV group.Conclusion Compared with CMV,HFOV with optimal mPaw has no significant side effect on hemodynamics or oxygen metabolism,and increases gastric tissue blood perfusion.

  7. High frequency welded (ERW) casing

    Energy Technology Data Exchange (ETDEWEB)

    Duisberg, J. (Hoesch Roehrenwerke A.G., Hamm (Germany, F.R.))

    1980-09-01

    Due to the up-to-date standard in welding and testing techniques, the significance of ERW-casing is growing rapidly. The basic items of ERW-pipe are explained in detail. The forming mechanism, the high frequency welding by induction and contact welding processes is explained in detail as well as destructive and non-destructive testing methods. Finishing the ends as threading, thread control (gauging), power tight connection, pressure test and final quality control are rounding up the picture of the production of ERW-casing. Last but not least the test results from the joint strength- and collapse tests which are of outstanding interest for casings, are compared with API requirements in order to demonstrate compliance with API requirements.

  8. Applicability of P/S amplitude ratios for the discrimination of low magnitude seismic events

    Institute of Scientific and Technical Information of China (English)

    PAN Chang-zhou; JIN Ping; WANG Hong-chun

    2007-01-01

    Applicability of regional P/S amplitude ratios for the discrimination of low-magnitude seismic events was tested and proved using earthquakes and explosions in Central Asia. Results obtained show that regional P/S amplitude ratios which may discriminate medium or large magnitude events well, are also applicable to low magnitude events. Their performances for low magnitude events are almost as good as that for medium or large events. Statistical comparisons based on 25 P/S discriminate from the four seismic stations WMQ, BLK, MUL and MAK showed that the average misclassification rate for low-magnitude seismic events averagely was only 2 percent higher than that for medium and large magnitude seismic events.

  9. High frequency nanotube oscillator

    Science.gov (United States)

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  10. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2009-01-01

    If you are looking for a complete study of the fundamental concepts in magnetic theory, read this book. No other textbook covers magnetic components of inductors and transformers for high-frequency applications in detail. This unique text examines design techniques of the major types of inductors and transformers used for a wide variety of high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits. It describes skin effect and proximity effect in detail to provide you with a sound understanding of high-frequency phenomena. As well as this, you will disco

  11. High-frequency seafloor acoustics

    National Research Council Canada - National Science Library

    Jackson, D. R; Richardson, M. D

    2007-01-01

    This title provides access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics...

  12. Geographies of High Frequency Trading

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2016-01-01

    This paper investigates the geographies of high frequency trading. Today shares shift hands within micro seconds, giving rise to a form of financial geographies termed algorithmic capitalism. This notion refers to the different spatio-temporalities produced by high frequency trading, under...... the valuation of time. As high frequency trading accelerates financial markets, the paper examines the spatio-temporalities of automated trading by the ways in which the speed of knowledge exploitation in financial markets is not only of interest, but also the expansion between different temporalities....... The paper demonstrates how the intensification of time-space compression produces radical new dynamics in the financial market and develops information rent in HFT as convertible to a time rent and a spatio-temporal rent. The final section discusses whether high frequency trading only responds to crises...

  13. High-frequency Trader Subjectivity

    DEFF Research Database (Denmark)

    Borch, Christian; Lange, Ann-Christina

    2017-01-01

    In this article, we examine the recent shift in financial markets toward high-frequency trading (HFT). This turn is being legitimized with reference to how algorithms are allegedly more rational and efficient than human traders, and less prone to emotionally motivated decisions. We argue...... that although HFT does not render humans irrelevant, it is leading to a reconfiguration of both the ideal trading subject and the human–machine relations. Drawing on interviews with and ethnographic observations of high-frequency traders, as well as HFT ‘how to’ books, we analyze the subjectivity and self......-techniques of the ideal high-frequency trader. We demonstrate that these traders face the challenge of avoiding emotional interference in their algorithms and that they deploy a set of disciplinary self-techniques to curb the importance of emotional attachment....

  14. High-frequency complex pitch

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2012-01-01

    Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine-structure ......Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine...

  15. High Frequency Chandler Wobble Excitation

    Science.gov (United States)

    Seitz, F.; Stuck, J.; Thomas, M.

    2003-04-01

    and OMCT forcing fields give no hint for increased excitation power in the Chandler band. Thus it is assumed, that continuous high frequency excitation due to stochastic weather phenomena is responsible for the perpetuation of the Chandler wobble.

  16. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  17. High frequency trading and fragility

    OpenAIRE

    Cespa, Giovanni; Vives, Xavier

    2017-01-01

    We show that limited dealer participation in the market, coupled with an informational friction resulting from high frequency trading, can induce demand for liquidity to be upward sloping and strategic complementarities in traders’ liquidity consumption decisions: traders demand more liquidity when the market becomes less liquid, which in turn makes the market more illiquid, fostering the initial demand hike. This can generate market instability, where an initial dearth of liquidity degenerat...

  18. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  19. High-frequency transcutaneous electrical nerve stimulation alters thermal but not mechanical allodynia following chronic constriction injury of the rat sciatic nerve.

    Science.gov (United States)

    Somers, D L; Clemente, F R

    1998-11-01

    To determine if daily transcutaneous electrical nerve stimulation (TENS) can alter the thermal and mechanical allodynia that develops after chronic constriction injury (CCI) to the right sciatic nerve of rats. A completely randomized experimental design was used. Four groups of rats underwent CCI surgery to the right sciatic nerve and either were not treated with TENS or received TENS starting at different times after the CCI surgery. TENS was delivered daily for 1 hour to CCI rats through self-adhesive electrodes applied to skin innervated by the right dorsal rami of lumbar spinal nerves L1-6. Rats of different groups received daily TENS starting immediately, 20 to 30 hours, or 3 days after the CCI surgery. Thermal and mechanical pain thresholds of hind paws were assessed bilaterally in all rats twice before the CCI surgery (baseline) and then 2, 7, 12, and 14 days after surgery. Thermal and mechanical allodynia were expressed as difference scores between the pain thresholds of right and left hind paws. These values were normalized to differences that existed between the two paws at baseline. Daily TENS beginning immediately after CCI surgery prevented the development of thermal allodynia at all assessment times (p < .05). Daily TENS starting 1 day after surgery reduced thermal allodynia, but only on days 2 and 14 (p < .05). Daily TENS beginning 3 days after surgery had no effect on the development of thermal allodynia. Regardless of when it was started, daily TENS did not consistently alter mechanical allodynia in CCI rats. It appears that daily TENS can prevent thermal but not mechanical allodynia in this model. However, early intervention with the treatment is critical if it is to be effective at all.

  20. Mechanical wet-milling and subsequent consolidation of ultra-fine Al2O3-(ZrO2+3%Y2O3) bioceramics by using high-frequency induction heat sintering

    Institute of Scientific and Technical Information of China (English)

    Khalil Abdelrazek KHALIL; Sug Won KIM

    2007-01-01

    Alumina/zirconia composites were synthesized by wet-milling technique and rapid consolidation with high frequency induction heat sintering(HFIHS). The starting materials were a mixture of alumina micro-powder (80%, volume fraction) and 3YSZ nano-powders (20%). The mixtures were optimized for good sintering behaviors and mechanical properties. Nano-crystalline grains are obtained after 24 h milling. The nano-structured powder compacts are then processed to full density at different temperatures by HFIHS. Effects of temperature on the mechanical and microstructure properties were studied. Al2O3-3YSZ composites with higher mechanical properties and small grain size are successfully developed at relatively low temperatures through this technique.

  1. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2013-01-01

    A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (su

  2. 机械故障信息监测MEMS高频加速度传感器%MEMS High-Frequency Accelerometers for Mechanical Fault Monitoring

    Institute of Scientific and Technical Information of China (English)

    赵玉龙; 刘岩; 孙禄

    2012-01-01

    结合机械故障信息监测的需求,将微机电系统(micro electro-mechanical system,简称MEMS)传感器技术引入到机械装备的振动测量中,介绍了压阻式MEMS加速度传感器的检测原理、结构设计、微加工工艺及其关键技术.以“小变形-大应力”为敏感结构设计思路,研制了梁膜结构、孔缝双桥结构以及复合多梁结构3种高频加速度传感器,以满足高速制造装备的振动信号监测对传感器的需求.通过静态、动态性能测试实验可以看出,3种结构均在一定程度上提升了传感器的测量性能,实际测振实验也说明所研制的MEMS加速度传感器具备了装备振动信号检测所需的功能.具有微型化、低成本以及可大规模生产潜力的MEMS传感器的发展为高端机械制造装备的发展提供了新的器件支持,推动主轴部件等的智能化、一体化发展.%Concerning the requirements of mechanical fault monitoring, the MEMS sensor technology is incorporated into the vibration detection in manufacturing equipment. The detailed parameters of MEMS piezoresistive accelerometers are introduced, including sensing mechanism, structural design, microma-chining process and key techniques. Using the proposal of large stress under little deformation, the cantilever-membrane structure, quad-slots-beam structure and multi-beam structure are proposed for high-performance accelerometers. The novel structures give an available solution to the trade-off between the measurement sensitivity and resonant frequency and obviously enhance the sensor characteristics. The results of sensor characterization and vibration detection show that the developed sensors can be used in the fault monitoring in manufacturing equipment. The MEMS sensors, featuring the potential for low cost and miniaturization, are promising to be the new sensing devices for advanced manufacturing equipment.

  3. Ionospheric modifications in high frequency heating experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Spencer P. [Department of Electrical and Computer Engineering, Polytechnic School of Engineering, New York University, 5 MetroTech Center, Brooklyn, New York 11201 (United States)

    2015-01-15

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  4. High Frequency Linacs for Hadrontherapy

    Science.gov (United States)

    Amaldi, Ugo; Braccini, Saverio; Puggioni, Paolo

    The use of radiofrequency linacs for hadrontherapy was proposed about 20 years ago, but only recently has it been understood that the high repetition rate together with the possibility of very rapid energy variations offers an optimal solution to the present challenge of hadrontherapy: "paint" a moving tumor target in three dimensions with a pencil beam. Moreover, the fact that the energy, and thus the particle range, can be electronically adjusted implies that no absorber-based energy selection system is needed, which, in the case of cyclotron-based centers, is the cause of material activation. On the other side, a linac consumes less power than a synchrotron. The first part of this article describes the main advantages of high frequency linacs in hadrontherapy, the early design studies, and the construction and test of the first high-gradient prototype which accelerated protons. The second part illustrates some technical issues relevant to the design of copper standing wave accelerators, the present developments, and two designs of linac-based proton and carbon ion facilities. Superconductive linacs are not discussed, since nanoampere currents are sufficient for therapy. In the last two sections, a comparison with circular accelerators and an overview of future projects are presented.

  5. Econometrics of financial high-frequency data

    CERN Document Server

    Hautsch, Nikolaus

    2011-01-01

    This book covers major approaches in high-frequency econometrics. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications.

  6. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  7. High-frequency micromechanical columnar resonators

    Directory of Open Access Journals (Sweden)

    Jenny Kehrbusch, Elena A Ilin, Peter Bozek, Bernhard Radzio and Egbert Oesterschulze

    2009-01-01

    Full Text Available High-frequency silicon columnar microresonators are fabricated using a simple but effective technological scheme. An optimized fabrication scheme was invented to obtain mechanically protected microcolumns with lateral dimensions controlled on a scale of at least 1 μm. In this paper, we investigate the influence of the environmental conditions on the mechanical resonator properties. At ambient conditions, we observed a frequency stability δf/f of less than 10−6 during 5 h of operation at almost constant temperature. However, varying the temperature shifts the frequency by approximately −173 Hz °C− 1. In accordance with a viscous damping model of the ambient gas, we perceived that the quality factor of the first flexural mode decreased with the inverse of the square root of pressure. However, in the low-pressure regime, a linear dependence was observed. We also investigated the influence of the type of the immersing gas on the resonant frequency.

  8. Effects of mechanical stimuli on adaptive remodeling of condylar cartilage.

    Science.gov (United States)

    Sriram, D; Jones, A; Alatli-Burt, I; Darendeliler, M A

    2009-05-01

    Trabecular bone has been shown to be responsive to low-magnitude, high-frequency mechanical stimuli. This study aimed to assess the effects of these stimuli on condylar cartilage and its endochondral bone. Forty female 12-week-old C3H mice were divided into 3 groups: baseline control (killed at day 0), sham (killed at day 28 without exposure to mechanical stimuli), and experimental (killed following 28 days of exposure to mechanical stimuli). The experimental group was subjected to mechanical vibration of 30 Hz, for 20 minutes per day, 5 days per week, for 28 days. The specimens were analyzed by micro-computed tomography. The experimental group demonstrated a significant decrease in the volume of condylar cartilage and also a significant increase in bone histomorphometric parameters. The results suggest that the low-magnitude, high-frequency mechanical stimuli enhance adaptive remodeling of condylar cartilage, evidenced by the advent of endochondral bone replacing the hypertrophic cartilage.

  9. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Science.gov (United States)

    2013-11-26

    ...] Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final Programmatic... Programmatic Environmental Assessment (PEA) for the Nationwide Use of High Frequency (HF) and Ultra High Frequency (UHF) Sound Navigation and Ranging (SONAR) Technology and Finding of No Significant Impact (FONSI...

  10. Low-magnitude whole body vibration does not affect bone mass but does affect weight in ovariectomized rats.

    Science.gov (United States)

    van der Jagt, Olav P; van der Linden, Jacqueline C; Waarsing, Jan H; Verhaar, Jan A N; Weinans, Harrie

    2012-01-01

    Mechanical loading has stimulating effects on bone architecture, which can potentially be used as a therapy for osteoporosis. We investigated the skeletal changes in the tibia of ovariectomized rats during treatment with whole body vibration (WBV). Different low-magnitude WBV treatment protocols were tested in a pilot experiment using ovariectomized rats with loading schemes of 2 × 8 min/day, 5 days/week (n = 2 rats per protocol). Bone volume and architecture were evaluated during a 10 week follow-up using in-vivo microcomputed tomography scanning. The loading protocol in which a 45 Hz sine wave was applied at 2 Hz with an acceleration of 0.5g showed an anabolic effect on bone and was therefore further analyzed in two groups of animals (n = 6 each group) with WBV starting directly after or 3 weeks after ovariectomy and compared to a control (non-WBV) group at 0, 3, 6 and 10 weeks' follow-up. In the follow-up experiment the WBV stimulus did not significantly affect trabecular volume fraction or cortical bone volume in any of the treatment groups during the 10 week follow-up. WBV did reduce weight gain that was induced as a consequence of ovariectomy. We could not demonstrate any significant effects of WBV on bone loss as a consequence of ovariectomy in rats; however, the weight gain that normally results after ovariectomy was partly prevented. Treatment with WBV was not able to prevent bone loss during induced osteoporosis.

  11. 基于分子对接技术的高频降脂药对作用机制研究%Study on anti-hyperlipidemia mechanism of high frequency herb pairs by molecular docking method

    Institute of Scientific and Technical Information of China (English)

    蒋芦荻; 贺昱甦; 陈茜; 陶欧; 李贡宇; 张燕玲

    2015-01-01

    Traditional Chinese medicine (TCM) has definitely clinical effect in treating hyperlipidemia,but the action mechanism still need to be explored.Based on consulting Chinese Pharmacopoeia (2010),all the lipid-lowering Chinese patent medicines were analyzed by associated rules data mining method to explore high frequency herb pairs.The top three couplet medicines with high support degree were Puerariae Lobatae Radix-Crataegi Fructus,Salviae Miltiorrhizae Radix et Rhizoma-Crataegi Fructus,and Po1ygoni Multiflori Radix-Crataegi Fructus.The 20 main ingredients were selected from the herb pairs and docked with 3 key hyperlipidemia targets,namely 3-hydroxy-3-methylglutaryl cocnzyme A reductase (HMG-CoA reductase),peroxisome proliferator activated receptor-α(PPAR-α) and niemann-pick C1 like 1 (NPC1L1) to further discuss the molecular mechanism of the high frequency herb pairs,by using the docking program,LibDock.To construct evaluation rules for the ingredients of herb pairs,the root-mean-square deviation (RMSD) value between computed and initial complexes was first calculated to validate the fitness of LibDock models.Then,the key residues were also confirmed by analyzing the interactions of those 3 proteins and corresponding marketed drugs.The docking results showed that hyperin,puerarin,salvianolic acid A and polydatin can interact with two targets,and the other five compounds may be potent for at least one of the three targets.In this study,the multi-target effect of high frequency herb pairs for lipid-lowering was discussed on the molecular level,which can help further researching new multi-target anti-hyperlipidemia drug.%中药治疗高脂血症临床疗效确切,但降脂中药的效应物质基础和作用机制仍待进一步明确.该文用关联规则方法分析了2010年版《中国药典》收录的降脂中成药的药对组合规则,并以支持度排序前3的高频药对“葛根-山楂、丹参-山楂、何首乌-山楂”的20个主要化学成分和3

  12. Overview of the Advanced High Frequency Branch

    Science.gov (United States)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  13. Low and high frequency fatigue tests of nodular cast irons

    Directory of Open Access Journals (Sweden)

    A. Vaško

    2017-01-01

    Full Text Available The paper deals with the comparison of fatigue properties of nodular cast iron at low and high frequency cyclic loading. The specimens from three melts of nodular cast iron with different microstructure and mechanical properties were used for experiments. Fatigue tests were carried out at low and high frequency sinusoidal cyclic push-pull loading (stress ratio R = –1 at ambient temperature (T = 20 ± 5 °C. Low frequency fatigue tests were carried out using the fatigue experimental machine Zwick/Roell Amsler 150HFP 5100 at frequency f ≈ 120 Hz; high frequency fatigue tests were carried out using the ultrasonic fatigue testing device KAUP-ZU at frequency f ≈ 20 kHz.

  14. Introducing The Traceable Mechanism of Automotive Engine High Frequency Fault Automatic Detection System Design%引入可溯源机制的火电汽轮机高频故障自动检测系统设计

    Institute of Scientific and Technical Information of China (English)

    朱晓明

    2013-01-01

    火电汽轮机故障诊断系统中,存在故障信号非线性强,故障特征信号容易被干扰,很难建立稳定诊断模型。在传统的神经网络汽轮机故障诊断模型中,引入可溯源机制,利用贝叶斯网络的故障推理学习和边沿信号概率分析能力组成故障追溯模型,对汽轮机中的汽缸、隔板、喷嘴、静叶片、汽封和轴封模块高频故障信号进行追溯,再通过故障特征值和实际输出之差与设定汽轮机故障阈值的大小比较关系判断故障,实验结果表明,该方法有效地解决故障信号非线性带来的干扰,完成火电汽轮机高精度的故障检测。%Thermal power steam turbine fault diagnosis system, the fault signal nonlinear, strong fault feature signals are easy to be interference, it is difficult to establish stable diagnosis model. In the traditional steam turbine fault diagnosis model of neural network, the introduction of traceable mechanism, and the use of bayesian network inference ability to learn and edge signal probability analysis of the fault trace model, cylinder of steam turbine, baffle plate, nozzle, stator blade, seal and shaft seal module back on high frequency fault signal, again through the fault characteristic value and the difference between the actual output and setting the size of the steam turbine fault threshold comparison judgment fault, the experimental results show that this method is effective to solve the fault signal of nonlinear disturbance, complete thermal power turbine high accuracy of fault detection.

  15. Induced damage in Carrara Marble as a result of long-term low-magnitude environmental stresses

    Science.gov (United States)

    Voigtlaender, Anne; Leith, Kerry; Krautblatter, Michael; Walter, Jens M.

    2015-04-01

    Damage of intact rock is commonly driven by the interaction of long-term low-magnitude external environmental stresses in combination with surface chemistry, rather than short-term loading in excess of intact rock strength. In order to determine the contribution of environmental stresses to the propagation of micro- and macroscopic fractures under natural environmental conditions we undertook long-term three-point bending tests on large size Carrara Marble specimens. The interaction of mechanical stresses induced by external loading and corrosive conditions (e.g. the presence of water) at the tip of a pre-existing crack is termed stress corrosion. We investigate stress corrosion below saw cut notches in wet and dry samples of Carrara Marble (M1-5, each 10cm x 10cm x 110cm). These were pre-loaded to about 66% of their assumed ultimate strength (determined by the fracture toughness (Kic) calculated for the crack tip). Two marble beams (M1, M3) were initially loaded to 22% and three (M2, M4, M5) to 55% of Kic. CaC03 saturated water was continuously dripped in the notch of samples --M1-4 to create corrosive conditions, while M5 was kept dry. After a three-week bedding period, loading on sample M1 was increased to 55%, M2 and M5 to 77% and M3 and M4 to 85% of Kic respectively. The tests were interrupted prior to failure of the specimens in order to allow the assessment of the crack-tip structure. During the testing period we used classical strain gages and acoustic emission sensors to measure strain and elastic stress changes through coda wave interferometry. Temperature and humidity were monitored and the outflowing fluid was collected for future analysis, throughout. The effect of induced damage on residual intrinsic stresses was evaluated using neutron diffraction on the SALSA instrument at the Institute Laue-Langevin (ILL, Grenoble, France), while texture measurements were undertaken using the X-ray goniometer at the Geoscience Center, University Göttingen, and

  16. Low-frequency, low-magnitude vibrations (LFLM enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-02-01

    Full Text Available The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS, to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2, and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration.

  17. High-frequency hearing in seals and sea lions.

    Science.gov (United States)

    Cunningham, Kane A; Reichmuth, Colleen

    2016-01-01

    Existing evidence suggests that some pinnipeds (seals, sea lions, and walruses) can detect underwater sound at frequencies well above the traditional high-frequency hearing limits for their species. This phenomenon, however, is not well studied: Sensitivity patterns at frequencies beyond traditional high-frequency limits are poorly resolved, and the nature of the auditory mechanism mediating hearing at these frequencies is unknown. In the first portion of this study, auditory sensitivity patterns in the 50-180 kHz range were measured for one California sea lion (Zalophus californianus), one harbor seal (Phoca vitulina), and one spotted seal (Phoca largha). Results show the presence of two distinct slope-regions at the high-frequency ends of the audiograms of all three subjects. The first region is characterized by a rapid decrease in sensitivity with increasing frequency-i.e. a steep slope-followed by a region of much less rapid sensitivity decrease-i.e. a shallower slope. In the second portion of this study, a masking experiment was conducted to investigate how the basilar membrane of a harbor seal subject responded to acoustic energy from a narrowband masking noise centered at 140 kHz. The measured masking pattern suggests that the initial, rapid decrease in sensitivity on the high-frequency end of the subject's audiogram is not due to cochlear constraints, as has been previously hypothesized, but rather to constraints on the conductive mechanism. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. High frequency group pulse electrochemical machining

    Institute of Scientific and Technical Information of China (English)

    WU Gaoyang; ZHANG Zhijing; ZHANG Weimin; TANG Xinglun

    2007-01-01

    In the process of machining ultrathin metal structure parts,the signal composition of high frequency group pulse,the influence of frequency to reverse current,and the design of the cathode in high frequency group pulse electrochemical machining (HGPECM) are discussed.The experiments on process were carried out.Results indicate that HGPECM can greatly improve the characteristics of the inter-electrode gap flow field,reduce electrode passivation,and obtain high machining quality.The machining quality is obviously improved by increasing the main pulse frequency.The dimensional accuracy reaches 30-40 pro and the roughness attained is at 0.30-0.35 μm.High frequency group pulse electrochemical machining can be successfully used in machining micro-parts.

  19. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  20. High frequency pressure oscillator for microcryocoolers

    NARCIS (Netherlands)

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.; Jansen, Henricus V.; Zhao, Yiping; Holland, Herman J.; Burger, Johannes Faas; Elwenspoek, Michael Curt

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency

  1. Investigation of high-frequency pipe welding

    Science.gov (United States)

    Konovalov, Nikolai A.; Lakhno, Nikolay I.; Gushchin, A. G.; Putryk, N. D.; Kovalenko, Vladimir I.; Galkina, V. A.; Veselovsky, Vladimir B.; Furmanov, Valeri B.; Kovika, Nikolai D.; Novikov, Leonid V.; Shcherbina, V. N.

    1993-01-01

    For investigation of a pipe welding process at high-frequency heating aimed at increasing of pipe quality and decreasing of spoilage, the use of high-speed recording and TV-technique is considered to be effective. The authors have created a visual inspection system for pipe welding process studies at a tube mill of the Novomoskovsk Pipe Plant.

  2. High frequency dynamics in centrifugal compressors

    NARCIS (Netherlands)

    Twerda, A.; Meulendijks, D.; Smeulers, J.P.M.; Handel, R. van den; Lier, L.J. van

    2008-01-01

    Problems with centrifugal compressors relating to high frequency, i.e. Blade passing frequency (BPF) are increasing. Pulsations and vibrations generated in centrifugal compressors can lead to nuisance, due to strong tonal noise, and even breakdown. In several cases the root cause of a failure or a

  3. High frequency pressure oscillator for microcryocoolers

    NARCIS (Netherlands)

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.; Jansen, Henricus V.; Zhao, Yiping; Holland, Herman J.; Burger, Johannes Faas; Elwenspoek, Michael Curt

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pre

  4. High frequency dynamics in centrifugal compressors

    NARCIS (Netherlands)

    Twerda, A.; Meulendijks, D.; Smeulers, J.P.M.; Handel, R. van den; Lier, L.J. van

    2008-01-01

    Problems with centrifugal compressors relating to high frequency, i.e. Blade passing frequency (BPF) are increasing. Pulsations and vibrations generated in centrifugal compressors can lead to nuisance, due to strong tonal noise, and even breakdown. In several cases the root cause of a failure or a n

  5. High Frequency Trading, Information, and Takeovers

    NARCIS (Netherlands)

    Humphery-Jenner, M.

    2011-01-01

    This paper (1) proposes new variables to detect informed high-frequency trading (HFT), (2) shows that HFT can help to predict takeover targets, and (3) shows that HFT in uences target announcement announcement returns. Prior literature suggests that informed trade may occur before takeovers, but has

  6. High frequency pressure oscillator for microcryocoolers

    NARCIS (Netherlands)

    Vanapalli, S.; Brake, ter H.J.M.; Jansen, H.V.; Zhao, Y.; Holland, H.J.; Burger, J.F.; Elwenspoek, M.C.

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pre

  7. Essays on high frequency financial econometrics

    NARCIS (Netherlands)

    X. Yang

    2015-01-01

    It has long been demonstrated that continuous-time methods are powerful tools in financial modeling. Yet only in recent years, their counterparts in empirical analysis—high frequency econometrics—began to emerge with the availability of intra-day data and relevant statistical tools. This dissertatio

  8. Essays on high frequency financial econometrics

    NARCIS (Netherlands)

    Yang, X.

    2015-01-01

    It has long been demonstrated that continuous-time methods are powerful tools in financial modeling. Yet only in recent years, their counterparts in empirical analysis—high frequency econometrics—began to emerge with the availability of intra-day data and relevant statistical tools. This

  9. Advanced Extremely High Frequency Satellite (AEHF)

    Science.gov (United States)

    2015-12-01

    High Frequency Satellite (AEHF) is a joint service satellite communications system that provides global , survivable, secure, protected, and jam...three satellites fully integrated into the Milstar constellation. October 2014: On October 16, 2014, the program received PEO certification for the...Combined Orbital Operation, Logistics Sustainment ( COOLS ) contract, it will be completed and coordinated in CY 2016. The AEHF system being sustained

  10. High frequency III-V nanowire MOSFETs

    Science.gov (United States)

    Lind, Erik

    2016-09-01

    III-V nanowire transistors are promising candidates for very high frequency electronics applications. The improved electrostatics originating from the gate-all-around geometry allow for more aggressive scaling as compared with planar field-effect transistors, and this can lead to device operation at very high frequencies. The very high mobility possible with In-rich devices can allow very high device performance at low operating voltages. GaN nanowires can take advantage of the large band gap for high voltage operation. In this paper, we review the basic physics and device performance of nanowire field- effect transistors relevant for high frequency performance. First, the geometry of lateral and vertical nanowire field-effect transistors is introduced, with special emphasis on the parasitic capacitances important for nanowire geometries. The basic important high frequency transistor metrics are introduced. Secondly, the scaling properties of gate-all-around nanowire transistors are introduced, based on geometric length scales, demonstrating the scaling possibilities of nanowire transistors. Thirdly, to model nanowire transistor performance, a two-band non-parabolic ballistic transistor model is used to efficiently calculate the current and transconductance as a function of band gap and nanowire size. The intrinsic RF metrics are also estimated. Finally, experimental state-of-the-art nanowire field-effect transistors are reviewed and benchmarked, lateral and vertical transistor geometries are explored, and different fabrication routes are highlighted. Lateral devices have demonstrated operation up to 350 GHz, and vertical devices up to 155 GHz.

  11. High Frequency Trading, Information, and Takeovers

    NARCIS (Netherlands)

    Humphery-Jenner, M.

    2011-01-01

    This paper (1) proposes new variables to detect informed high-frequency trading (HFT), (2) shows that HFT can help to predict takeover targets, and (3) shows that HFT in uences target announcement announcement returns. Prior literature suggests that informed trade may occur before takeovers, but has

  12. Investigation of the fatigue and short-term mechanical properties of 13% chromium steel and titanium alloys after welding or treatment with high-frequency currents as applied to steam-turbine blades

    Science.gov (United States)

    Gonserovskii, F. G.; Nikitin, V. I.; Silevich, V. M.; Simin, O. N.

    2008-02-01

    We present the results of a study on comparing the structural strength of rotor blades made of stainless 13% chromium steels for their design versions in which wear-resistant straps made of cast VZK stellite are soldered or welded on the blade inlet edges. It is shown that treatment of VT6 alloy with high-frequency currents increases the endurance limit of the zone subjected to strengthening and makes the alloy more resistant to erosion. The worn blades of a 48-T4 titanium alloy repaired with the use of welding technologies have operational characteristics at least as good as those of newly manufactured ones.

  13. Fuzzy and conventional control of high-frequency ventilation.

    Science.gov (United States)

    Noshiro, M; Matsunami, T; Takakuda, K; Ryumae, S; Kagawa, T; Shimizu, M; Fujino, T

    1994-07-01

    A high-frequency ventilator was developed, consisting of a single-phase induction motor, an unbalanced mass and a mechanical vibration system. Intermittent positive pressure respiration was combined with high-frequency ventilation to measure end-tidal pCO2. Hysteresis was observed between the rotational frequency of the high-frequency ventilator and end-tidal pCO2. A fuzzy proportional plus integral control system, designed on the basis of the static characteristics of the controlled system and a knowledge of respiratory physiology, successfully regulated end-tidal pCO2. The characteristics of gas exchange under high-frequency ventilation was approximated by a first-order linear model. A conventional PI control system, designed on the basis of the approximated model, regulated end-tidal pCO2 with a performance similar to that of the fuzzy PI control system. The design of the fuzzy control system required less knowledge about the controlled system than that of the conventional control system.

  14. Strange effects of strong high-frequency excitation

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    Three general effects of mechanical high-frequency excitation (HFE) are described: Stiffening - an apparent change in the stiffness associated with an equilibrium; Biasing - a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening...... - a tendency for discontinuities to be apparently smeared out by HFE. Studies of specific physical systems as well as more general models are described....

  15. High-Frequency Chest Compression: A Summary of the Literature

    OpenAIRE

    Dosman, Cara F; Jones, Richard L

    2005-01-01

    The purpose of the present literature summary is to describe high-frequency chest compression (HFCC), summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have...

  16. Acoustic trapping with a high frequency linear phased array

    OpenAIRE

    Zheng, Fan; Ying LI; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K. Kirk

    2012-01-01

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be eas...

  17. High-current, high-frequency capacitors

    Science.gov (United States)

    Renz, D. D.

    1983-06-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  18. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  19. High-Frequency Percussive Ventilation Revisited

    Science.gov (United States)

    2010-01-01

    physiologic and clin- ical outcomes. Pediatric and adult inhalational injury studies have linked HFPV to an improvement in static lung compliance...sedation–analgesic combinations (usually fentanyl with the individual or combined use of midazolam and propofol and/or dexmedetomidine), patient...1998;84:1174–7. 34. Frantz ID III, Close RH. Alveolar pressure swings during high frequency ventilation in rabbits. Pediatr Res 1985;19:162–6. 35. Pillow

  20. [High-frequency ventilation. I. Distribution of alveolar pressure amplitudes during high frequency oscillation in the lung model].

    Science.gov (United States)

    Theissen, J; Lunkenheimer, P P; Niederer, P; Bush, E; Frieling, G; Lawin, P

    1987-09-01

    The pattern of intrapulmonary pressure distribution was studied during high-frequency ventilation in order to explain the inconsistent results reported in the literature. Methods. Pressure and flow velocity (hot-wire anemometry) were measured in different lung compartments: 1. In transalveolar chambers sealed to the perforated pleural surfaces of dried pig lungs; 2. In emphysema-simulating airbags sealed to the isolated bronchial trees of dried pig lungs; and 3. In transalveolar chambers sealed to the perforated pleural surfaces of freshly excised pig lungs. Results. 1. The pressure amplitudes change from one area to another and depending on the exciting frequency. 2. High-frequency oscillation is associated with an increase in pressure amplitude when the exciting frequency rises, whereas with conventional high-frequency jet ventilation the pressure amplitude is more likely to decrease with frequency. 3. During high-frequency jet ventilation the local pressure amplitude changes with the position of the tube in the trachea rather than with the exciting frequency. 4. When the volume of the measuring chamber is doubled the resulting pressure amplitude falls to half the control value. 5. The pressure amplitude and mean pressure measured in the transalveolar chamber vary more or less independently from the peak flow velocity. High-frequency ventilation is thus seen to be a frequency-dependant, inhomogeneous mode of ventilation that can essentially be homogenized by systematically changing the exciting frequency. The frequency-dependant response to different lung areas to excitation is likely to result from an intrabronchially-localized aerodynamic effect rather than the mechanical properties of the lung parenchyma.

  1. Extended High Frequency Audiometry in Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Cuneyt Kucur

    2013-01-01

    and BMI of PCOS and control groups were comparable. Each subject was tested with low (250–2000 Hz, high (4000–8000 Hz, and extended high frequency audiometry (8000–20000. Hormonal and biochemical values including LH, LH/FSH, testosterone, fasting glucose, fasting insulin, HOMA-I, and CRP were calculated. Results. PCOS patients showed high levels of LH, LH/FSH, testosterone, fasting insulin, glucose, HOMA-I, and CRP levels. The hearing thresholds of the groups were similar at frequencies of 250, 500, 1000, 2000, and 4000 Hz; statistically significant difference was observed in 8000–14000 Hz in PCOS group compared to control group. Conclusion. PCOS patients have hearing impairment especially in extended high frequencies. Further studies are needed to help elucidate the mechanism behind hearing impairment in association with PCOS.

  2. Interfacial reaction mechanism of CBN grain continuous brazed by ultra-high frequency induction%超高频感应连续钎焊立方氮化硼磨粒的界面反应机理

    Institute of Scientific and Technical Information of China (English)

    李奇林; 苏宏华; 徐九华; 雷卫宁

    2015-01-01

    采用超高频感应连续钎焊工艺,在不同扫描速度条件下实现了立方氮化硼(CBN)磨粒、Ag-Tu-Ti合金以及基体三者之间的钎焊连接。采用扫描电子显微镜(SEM)和X射线能谱仪(EDX)观察钎焊后的CBN磨粒界面新生化合物形貌。结果表明:随着扫描速度的变化,在CBN磨粒表面生成颗粒状TiN化合物以及针状和六棱柱状的TiB 2化合物。其中,TiN尺寸为100 nm左右,而TiB 2尺寸小于200 nm。在超高频感应连续钎焊CBN磨粒表面首先生成颗粒状TiN层,然后在TiN层外围形成柱状TiB 2层,最终形成CBN/TiN/TiB 2/钎料结构。当扫描速度为0.5 mm/s时,可以获得较好的界面新生化合物层结构。%Continuous brazing with ultra-high frequency induction was proposed to braze the cubic born nitride (CBN) grits and steel substrate based on Ag-Cu-Ti filler alloy. The new compounds morphologies were observed and analogized by scanning electron microscopy (SEM) and energy diffraction X-ray (EDX). The results show that, with the variation of scanning speed, granular compounds TiN about 100 nm in size, the needle-like and prismatic compounds TiB 2 less than 200 nm in size are observed, respectively. The theoretical analysis results reveal that, during continuous brazing by ultra-high frequency induction, granular TiN layer forms on the surface of CBN firstly, and then, prismatic TiB 2 layer forms on the outside of the new TiN layer. The joint is CBN/TiN/TiB 2/filler structure, finally. A satisfactory interfacial structure can be obtained when scanning speed is 0.5 mm/s.

  3. High-Frequency Rayleigh-Wave Method

    Institute of Scientific and Technical Information of China (English)

    Jianghai Xia; Richard D Millerg; Xu Yixian; Luo Yinhe; Chen Chao; Liu Jiangping; Julian Ivanov; Chong Zeng

    2009-01-01

    High-frequency (≥2 Hz) Rayleigh-wave data acquired with a multichannei recording sys-tem have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave tech-niques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a nou-iuvasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution.

  4. Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, shows results......The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...

  5. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    . Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... to be applied, especially at low power levels where gating loss becomes a significant percentage of the total loss budget. Various resonant gate drive methods have been proposed to address this design challenge, with varying size, cost, and complexity. This dissertation presents a self-oscillating resonant gate...

  6. Cultures of High-frequency Trading

    DEFF Research Database (Denmark)

    Lange, Ann-Christina; Lenglet, Marc; Seyfert, Robert

    2016-01-01

    As part of ongoing work to lay a foundation for social studies of high-frequency trading (HFT), this paper introduces the culture(s) of HFT as a sociological problem relating to knowledge and practice. HFT is often discussed as a purely technological development, where all that matters is the speed...... of allocating, processing and transmitting data. Indeed, the speed at which trades are executed and data transmitted is accelerating, and it is fair to say that algorithms are now the primary interacting agents operating in the financial markets. However, we contend that HFT is first and foremost a cultural...

  7. The LASI high-frequency ellipticity system

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, B.K.; Poulton, M.M. [Univ. of Arizona, Tucson, AZ (United States)

    1995-10-01

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  8. Vertical Nanowire High-Frequency Transistors

    OpenAIRE

    Johansson, Sofia

    2014-01-01

    This thesis explores a novel transistor technology based on vertical InAs nanowires, which could be considered both for low-power high-frequency analog applications and for replacing Si CMOS in the continued scaling of digital electronics. The potential of this device - the vertical InAs nanowire MOSFET – lies in the combination of the outstanding transport properties of InAs and the improved electrostatic control of the gate-all-around geometry. Three generations of the vertical InAs nanowir...

  9. Vertical Nanowire High-Frequency Transistors

    OpenAIRE

    Johansson, Sofia

    2014-01-01

    This thesis explores a novel transistor technology based on vertical InAs nanowires, which could be considered both for low-power high-frequency analog applications and for replacing Si CMOS in the continued scaling of digital electronics. The potential of this device - the vertical InAs nanowire MOSFET – lies in the combination of the outstanding transport properties of InAs and the improved electrostatic control of the gate-all-around geometry. Three generations of the vertical InAs nano...

  10. Solar coronal observations at high frequencies

    CERN Document Server

    Katsiyannis, A C; Phillips, K J H; Williams, D R; Keenan, F P

    2001-01-01

    The Solar Eclipse Coronal Imaging System (SECIS) is a simple and extremely fast, high-resolution imaging instrument designed for studies of the solar corona. Light from the corona (during, for example, a total solar eclipse) is reflected off a heliostat and passes via a Schmidt-Cassegrain telescope and beam splitter to two CCD cameras capable of imaging at 60 frames a second. The cameras are attached via SCSI connections to a purpose-built PC that acts as the data acquisition and storage system. Each optical channel has a different filter allowing observations of the same events in both white light and in the green line (Fe XIV at 5303 A). Wavelet analysis of the stabilized images has revealed high frequency oscillations which may make a significant contribution on the coronal heating process. In this presentation we give an outline of the instrument and its future development.

  11. High-frequency lunar teleseismic events

    Science.gov (United States)

    Nakamura, Y.; Dorman, J.; Duennebier, F.; Ewing, M.; Lammlein, D.; Latham, G.

    1974-01-01

    A small number of seismic signals, including some of the strongest observed to date, have been identified as representing a fourth principal category of natural lunar seismic events with characteristics distinct from those produced by normal meteoroid impacts, deep moonquakes, and thermal moonquakes. These signals are much richer in high frequencies than other events observed at comparable distances, and display relatively impulsive P- and S-wave beginnings, indicating negligible seismic-wave scattering near the source. Source depths of these events may range between 0 and perhaps 300 km. These and other characteristics could represent either (1) meteoroids impacting upon outcrops of competent lunar crystal rock, (2) rare impacting objects that penetrate to competent rock below a scattering zone, or (3) shallow tectonic moonquakes.

  12. Plasma effects in high frequency radiative transfer

    Science.gov (United States)

    Alonso, C. T.

    1981-02-01

    A survey of collective plasma processes which can affect the transfer of high frequency radiation in a hot dense plasma is given. For pedagogical reasons plasma processes are examined by relating them to a particular reference plasma which consists of fully ionized carbon at a temperature kT = 1 KeV (ten million degrees Kelvin) and an electron density N = 3 x 10 to the 23rd power/cu cm, (which corresponds to a mass density rho = 1 gm/cu cm) and an ion density N sub i = 5 x 10 to the 22nd power/cu cm. The transport of photons, ranging from 1 eV to 1 KeV in energy, in such plasmas is considered. Such photons are to be used as diagnostic probes of hot dense laboratory plasmas.

  13. A 300 Hz high frequency thermoacoustically driven pulse tube cooler

    Institute of Scientific and Technical Information of China (English)

    ZHU ShangLong; YU GuoYao; ZHANG XiaoDong; DAI Wei; LUO ErCang; ZHOU Yuan

    2008-01-01

    This article introduces the latest progress of a 300 Hz thermoacoustically driven pulse tube cooler. Based on the experience of former experiments, improvements have been made in the standing-wave engine, pulse tube cooler and their coupling mechanism. An inlet pressure ratio of 1.248 was obtained with the mean pressure and heating power of 4.13 MPa and 1760 W, respectively. A lowest no-load temperature of 69.5 K has been reached under this condition. This is the first time for thermoacousti-cally driven pulse tube coolers to reach the temperature below 76 K with such a high frequency.

  14. Acoustic trapping with a high frequency linear phased array.

    Science.gov (United States)

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K Kirk

    2012-11-19

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array.

  15. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy

    NARCIS (Netherlands)

    Zweiphenning, W. J E M; van 't Klooster, M. A.; van Diessen, E.; van Klink, N. E C; Huiskamp, G. J M|info:eu-repo/dai/nl/074463640; Gebbink, T. A.; Leijten, F. S S|info:eu-repo/dai/nl/152243054; Gosselaar, P. H.|info:eu-repo/dai/nl/304813990; Otte, W. M.|info:eu-repo/dai/nl/168455706; Stam, C. J.; Braun, K. P J|info:eu-repo/dai/nl/207237239; Zijlmans, G. J M|info:eu-repo/dai/nl/304819581

    2016-01-01

    OBJECTIVE: High frequency oscillations (HFOs; > 80 Hz), especially fast ripples (FRs, 250-500 Hz), are novel biomarkers for epileptogenic tissue. The pathophysiology suggests enhanced functional connectivity within FR generating tissue. Our aim was to determine the relation between brain areas

  16. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy

    Directory of Open Access Journals (Sweden)

    W.J.E.M. Zweiphenning

    2016-01-01

    Significance: ‘Baseline’ high-frequency network parameters might help intra-operative recognition of epileptogenic tissue without the need for waiting for events. These findings can increase our understanding of the ‘architecture’ of epileptogenic networks and help unravel the pathophysiology of HFOs.

  17. Mine geophysics methods in studying the coal bearing rock mass condition in low magnitude tectonic fault zones

    Science.gov (United States)

    Alexeev, A. D.; Zhitlyonok, D. M.; Pitalenko, E. I.

    2003-04-01

    Disjunctive type tectonic faults are quite serious problem at underground coal winning. In the fault adjacent areas both coal seam and coal bearing rocks are usually essentially fractured that makes them less stable in coalfaces at underground mining. Some researchers have pointed out to enhanced stress state in these areas as well provided that loosening zones are absent. Coal seams are mostly inclined to disjunctive faults in Central region of Donets Coal Basin where tectonic processes were very intense. There are a lot of small faults with magnitudes close to seam thickness about 2 m in this region along with large thrust or fault disjunctives with stratigraphic magnitudes over 10 m (Dyleyev, Northern, Brunvald, Bulavin faults and others). Highest disjunctive dislocation is typical for coalfields near mines "Toretskaya" and "Novodzerzhinskaya", Coal Production Co. "Dzerzhinskugol", where dislocation density reaches about 8.5 faults per 1 km across the field. Small disjunctive faults often coincide with sites of sudden coal and gas outbursts, longwall inrushes, and poor support condition in development workings. It is known that affected zones on either side accommodate each disjunctive fault, these zones being distinctive for increased fissuring, higher stresses, coal and rocks differing strength. Affected zone width dependence on the fault parameters was determined using geological approach. Mine electrical survey and acoustical probing methods were used to study rock mass faulted condition in the vicinity of development workings and stopes intercepting low magnitude (below 5 m) disjunctive faults in coal field of mine "Toretskaya". These findings have allowed to establish a new fault magnitude dependence of rupture tectonic dislocation's affected zone width in the form of B = 3.2 H, where B is dislocation's affected zone width (m); H is the dislocation's stratigraphic magnitude (m). It was established as well that stress level in rock mass near disjunctive

  18. The evolution of an ephemeral river during the rising and receding phases of medium and low magnitude discharge events

    Science.gov (United States)

    Lotsari, E. S.; Calle, M.; Benito-Ferrandez, G.; Kaartinen, H.; Kukko, A.; Hyyppä, J.; Hyyppä, H.; Alho, P.

    2015-12-01

    In addition to great flash floods, medium and low magnitude discharge events can also cause great morphological changes in ephemeral river channels. Despite the advances in measurement techniques, such as laser scanning, and simulation approaches, the channel evolution during the different phases of discharge events is still not well known in gravelly ephemeral rivers, such as Rambla de la Viuda (Spain). The aim is to detect the temporal evolution of the ephemeral river channel during consecutive medium (March 2013) and low (May 2013) magnitude discharge events. The study is based on both accurate topographical measurements (laser scanning) and morphodynamic simulations (Delft 2D). Before the final analysis, the model's performance was tested with different parameterizations. When compared to the observed channel changes, the transport equation had crucial role in simulation results. Engelund-Hansen equation succeeded the best. It was important to use spatially varying grain sizes. Erosion and deposition (m3) were the greatest during the first hours of the rising phase of the discharge events. After this, erosion and deposition amounts, which were detected hourly, started declining. Thus, this occurred before the peak discharge, and erosion slowed down more than deposition. After the discharge peak, changes in deposition and erosion amounts were slightly more gradual than changes in discharge. The deposition during the receding phase was due to the advancing bar lobe frontier. River bed changes followed temporally the changes in discharges during the receding phase. This was different to the rising phase, when temporal differences occurred between changes in discharges and changes in deposition and erosion. This study shows that both rising and receding phases of discharge events are important for bar movement and channel evolution of the gravelly ephemeral river.

  19. High-frequency graphene voltage amplifier.

    Science.gov (United States)

    Han, Shu-Jen; Jenkins, Keith A; Valdes Garcia, Alberto; Franklin, Aaron D; Bol, Ageeth A; Haensch, Wilfried

    2011-09-14

    While graphene transistors have proven capable of delivering gigahertz-range cutoff frequencies, applying the devices to RF circuits has been largely hindered by the lack of current saturation in the zero band gap graphene. Herein, the first high-frequency voltage amplifier is demonstrated using large-area chemical vapor deposition grown graphene. The graphene field-effect transistor (GFET) has a 6-finger gate design with gate length of 500 nm. The graphene common-source amplifier exhibits ∼5 dB low frequency gain with the 3 dB bandwidth greater than 6 GHz. This first AC voltage gain demonstration of a GFET is attributed to the clear current saturation in the device, which is enabled by an ultrathin gate dielectric (4 nm HfO(2)) of the embedded gate structures. The device also shows extrinsic transconductance of 1.2 mS/μm at 1 V drain bias, the highest for graphene FETs using large-scale graphene reported to date.

  20. High frequency band crossings in ^168Lu.

    Science.gov (United States)

    Roux, D. G.; Li, Y.; Ma, W. C.; Amro, H.; Thompson, J.; Winger, J.; Hagemann, G.; Herskind, B.; Jensen, D.; Sletten, G.; Wilson, J.; Fallon, P.; Diamond, R.; Goergen, A.; Machiavelli, A.; Ward, D.; Hübel, H.; Domscheit, J.

    2003-10-01

    High spin states in ^168Lu were populated using the ^123Sb(^48Ca,3n) reaction at 203 MeV. The beam was provided by the 88" cyclotron at LBNL, and coincident gamma rays were detected with the Gammasphere spectrometer array. An analysis of the data which had been sorted into three- and four- dimensional histograms confirmed the four previously known (J.H.Ha et al. J. Phys. Soc. Japan 71 (2002) 1663-1671) pairs of signature partner bands and extended them to considerably higher spins (in one case up to a tentative 50 hbar). In addition, a new pair of signature partners, as well as a new doubly decoupled band were found. On the basis of the present data, the configuration of one of the known bands, previously assigned π d_3/2 øtimes ν i_13/2 was reassigned as π d_5/2 øtimes ν i_13/2. High frequency band crossings, beyond the first ν i_13/2 alignment, were observed for the first time. These results will be discussed with reference to Cranking Shell Model calculations.

  1. Plant Responses to High Frequency Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Alain Vian

    2016-01-01

    Full Text Available High frequency nonionizing electromagnetic fields (HF-EMF that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc. are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor, and growth reduced (stem elongation and dry weight after low power (i.e., nonthermal HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism.

  2. Calculation of Leakage Inductance for High Frequency Transformers

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Jun, Zhang; Hurley, William Gerard

    2015-01-01

    Frequency dependent leakage inductance is often observed. High frequency eddy current effects cause a reduction in leakage inductance. The proximity effect between adjacent layers is responsible for the reduction of leakage inductance. This paper gives a detailed analysis of high frequency leakage...... inductance and proposes an accurate prediction methodology. High frequency leakage inductances in several interleaved winding configurations are also discussed. Interleaved winding configurations actually give a smaller degree of reduction of leakage induction at high frequency. Finite Element Analysis (FEA...

  3. Where is the value in high frequency trading?

    OpenAIRE

    Álvaro Cartea; José Penalva

    2011-01-01

    We analyze the impact of high frequency trading in financial markets based on a model with three types of traders: liquidity traders, market makers, and high frequency traders. Our four main findings are: i) The price impact of the liquidity trades is higher in the presence of the high frequency trader and is increasing with the size of the trade. In particular, we show that the high frequency trader reduces (increases) the prices that liquidity traders receive when selling (buying) their equ...

  4. Engineering Graphene Conductivity for Flexible and High-Frequency Applications.

    Science.gov (United States)

    Samuels, Alexander J; Carey, J David

    2015-10-14

    Advances in lightweight, flexible, and conformal electronic devices depend on materials that exhibit high electrical conductivity coupled with high mechanical strength. Defect-free graphene is one such material that satisfies both these requirements and which offers a range of attractive and tunable electrical, optoelectronic, and plasmonic characteristics for devices that operate at microwave, terahertz, infrared, or optical frequencies. Essential to the future success of such devices is therefore the ability to control the frequency-dependent conductivity of graphene. Looking to accelerate the development of high-frequency applications of graphene, here we demonstrate how readily accessible and processable organic and organometallic molecules can efficiently dope graphene to carrier densities in excess of 10(13) cm(-2) with conductivities at gigahertz frequencies in excess of 60 mS. In using the molecule 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ), a high charge transfer (CT) of 0.5 electrons per adsorbed molecule is calculated, resulting in p-type doping of graphene. n-Type doping is achieved using cobaltocene and the sulfur-containing molecule tetrathiafulvalene (TTF) with a CT of 0.41 and 0.24 electrons donated per adsorbed molecule, respectively. Efficient CT is associated with the interaction between the π electrons present in the molecule and in graphene. Calculation of the high-frequency conductivity shows dispersion-less behavior of the real component of the conductivity over a wide range of gigahertz frequencies. Potential high-frequency applications in graphene antennas and communications that can exploit these properties and the broader impacts of using molecular doping to modify functional materials that possess a low-energy Dirac cone are also discussed.

  5. Study on GNi-WC25 Coating by High Frequency Induction Cladding

    Institute of Scientific and Technical Information of China (English)

    张增志; 韩桂泉; 付跃文; 沈立山

    2002-01-01

    Process and mechanism of high frequency were studied in this paper by means of cold-attachment for the preparation of Gni-WC25 coating . The resu lts show its special distribution law of eddy current while the magnetic transition temperature and electric-resistivity of the coating have been measured .Wear-resistance of the high-frequency induction coating has an advantage over those of laser cladding coating and oxygen-acetylene spraying-fusing coating . Moreover , the Gni-WC25 coating by high-frequency induction claddi ng has smooth surface and even microstructure.

  6. Exfoliated BN shell-based high-frequency magnetic core-shell materials.

    Science.gov (United States)

    Zhang, Wei; Patel, Ketan; Ren, Shenqiang

    2017-09-14

    The miniaturization of electric machines demands high frequency magnetic materials with large magnetic-flux density and low energy loss to achieve a decreased dimension of high rotational speed motors. Herein, we report a solution-processed high frequency magnetic composite (containing a nanometal FeCo core and a boron nitride (BN) shell) that simultaneously exhibits high electrical resistivity and magnetic permeability. The frequency dependent complex initial permeability and the mechanical robustness of nanocomposites are intensely dependent on the content of BN insulating phase. The results shown here suggest that insulating magnetic nanocomposites have potential for application in next-generation high-frequency electric machines with large electrical resistivity and permeability.

  7. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy.

    Science.gov (United States)

    Zweiphenning, W J E M; van 't Klooster, M A; van Diessen, E; van Klink, N E C; Huiskamp, G J M; Gebbink, T A; Leijten, F S S; Gosselaar, P H; Otte, W M; Stam, C J; Braun, K P J; Zijlmans, G J M

    2016-01-01

    High frequency oscillations (HFOs; > 80 Hz), especially fast ripples (FRs, 250-500 Hz), are novel biomarkers for epileptogenic tissue. The pathophysiology suggests enhanced functional connectivity within FR generating tissue. Our aim was to determine the relation between brain areas showing FRs and 'baseline' functional connectivity within EEG networks, especially in the high frequency bands. We marked FRs, ripples (80-250 Hz) and spikes in the electrocorticogram of 14 patients with refractory temporal lobe epilepsy. We assessed 'baseline' functional connectivity in epochs free of epileptiform events within these recordings, using the phase lag index. We computed the Eigenvector Centrality (EC) per channel in the FR and gamma band network. We compared EC between channels that did or did not show events at other moments in time. FR-band EC was higher in channels with than without spikes. Gamma-band EC was lower in channels with ripples and FRs. We confirmed previous findings of functional isolation in the gamma-band and found a first proof of functional integration in the FR-band network of channels covering presumed epileptogenic tissue. 'Baseline' high-frequency network parameters might help intra-operative recognition of epileptogenic tissue without the need for waiting for events. These findings can increase our understanding of the 'architecture' of epileptogenic networks and help unravel the pathophysiology of HFOs.

  8. High frequency nano-optomechanical disk resonators in liquids

    CERN Document Server

    Gil-Santos, E; Nguyen, D T; Hease, W; Lemaître, A; Ducci, S; Leo, G; Favero, I

    2015-01-01

    Vibrating nano- and micromechanical resonators have been the subject of research aiming at ultrasensitive mass sensors for mass spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits diminish dramatically in liquids due to dissipative mechanisms like viscosity and acoustic losses. A push towards faster and lighter miniaturized nanodevices would enable improved performances, provided dissipation was controlled and novel techniques were available to efficiently drive and read-out their minute displacement. Here we report on a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine mechanical motion at high frequency above the GHz, ultra-low mass of a few picograms, and moderate dissipation in liquids. We show that high-sensitivity optical measurements allow to direct resolve their thermally driven Brownian vibrations, even in the most dissipative liquids. Thanks to this novel technique, we experimentally, numerically and analytically...

  9. Dynamics and sensitivity analysis of high-frequency conduction block

    Science.gov (United States)

    Ackermann, D. Michael; Bhadra, Niloy; Gerges, Meana; Thomas, Peter J.

    2011-10-01

    The local delivery of extracellular high-frequency stimulation (HFS) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and is currently being pursued for several clinical indications. However, the mechanism for this type of nerve block remains unclear. In this study, we investigate two hypotheses: (1) depolarizing currents promote conduction block via inactivation of sodium channels and (2) the gating dynamics of the fast sodium channel are the primary determinate of minimal blocking frequency. Hypothesis 1 was investigated using a combined modeling and experimental study to investigate the effect of depolarizing and hyperpolarizing currents on high-frequency block. The results of the modeling study show that both depolarizing and hyperpolarizing currents play an important role in conduction block and that the conductance to each of three ionic currents increases relative to resting values during HFS. However, depolarizing currents were found to promote the blocking effect, and hyperpolarizing currents were found to diminish the blocking effect. Inward sodium currents were larger than the sum of the outward currents, resulting in a net depolarization of the nodal membrane. Our experimental results support these findings and closely match results from the equivalent modeling scenario: intra-peritoneal administration of the persistent sodium channel blocker ranolazine resulted in an increase in the amplitude of HFS required to produce conduction block in rats, confirming that depolarizing currents promote the conduction block phenomenon. Hypothesis 2 was investigated using a spectral analysis of the channel gating variables in a single-fiber axon model. The results of this study suggested a relationship between the dynamical properties of specific ion channel gating elements and the contributions of corresponding conductances to block onset. Specifically, we show that the dynamics of the fast sodium inactivation gate are

  10. Microscale capillary wave turbulence excited by high frequency vibration.

    Science.gov (United States)

    Blamey, Jeremy; Yeo, Leslie Y; Friend, James R

    2013-03-19

    Low frequency (O(10 Hz-10 kHz)) vibration excitation of capillary waves has been extensively studied for nearly two centuries. Such waves appear at the excitation frequency or at rational multiples of the excitation frequency through nonlinear coupling as a result of the finite displacement of the wave, most often at one-half the excitation frequency in so-called Faraday waves and twice this frequency in superharmonic waves. Less understood, however, are the dynamics of capillary waves driven by high-frequency vibration (>O(100 kHz)) and small interface length scales, an arrangement ideal for a broad variety of applications, from nebulizers for pulmonary drug delivery to complex nanoparticle synthesis. In the few studies conducted to date, a marked departure from the predictions of classical Faraday wave theory has been shown, with the appearance of broadband capillary wave generation from 100 Hz to the excitation frequency and beyond, without a clear explanation. We show that weak wave turbulence is the dominant mechanism in the behavior of the system, as evident from wave height frequency spectra that closely follow the Rayleigh-Jeans spectral response η ≈ ω(-17/12) as a consequence of a period-halving, weakly turbulent cascade that appears within a 1 mm water drop whether driven by thickness-mode or surface acoustic Rayleigh wave excitation. However, such a cascade is one-way, from low to high frequencies. The mechanism of exciting the cascade with high-frequency acoustic waves is an acoustic streaming-driven turbulent jet in the fluid bulk, driving the fundamental capillary wave resonance through the well-known coupling between bulk flow and surface waves. Unlike capillary waves, turbulent acoustic streaming can exhibit subharmonic cascades from high to low frequencies; here it appears from the excitation frequency all the way to the fundamental modes of the capillary wave at some four orders of magnitude in frequency less than the excitation frequency

  11. Slow high-frequency effects in mechanics: problems, solutions, potentials

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2005-01-01

    and compared: The Method of Direct Separation of Motions, the Method of Averaging, and the Method of Multiple Scales. The tutorial concludes by suggesting that more vibration experts, researchers and students should know about HFE effects, for the benefit not only of general vibration troubleshooting, but also...

  12. High-Frequency Axial Fatigue Test Procedures for Spectrum Loading

    Science.gov (United States)

    2016-07-20

    REPORT NO: NAWCADPAX/TIM-2016/49 HIGH - FREQUENCY AXIAL FATIGUE TEST PROCEEDURES FOR SPECTRUM LOADING by David T. Rusk, AIR...OF THE NAVY NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MARYLAND NAWCADPAX/TIM-2016/49 20 July 2016 HIGH - FREQUENCY AXIAL...Technical Information Memorandum 3. DATES COVERED 4. TITLE AND SUBTITLE High - Frequency Axial Fatigue Test Procedures for Spectrum Loading

  13. Anomalous waiting times in high-frequency financial data

    CERN Document Server

    Scalas, E; Luckock, H; Mainardi, F; Mantelli, M; Raberto, M; Scalas, Enrico; Gorenflo, Rudolf; Luckock, Hugh; Mainardi, Francesco; Mantelli, Maurizio; Raberto, Marco

    2004-01-01

    In high-frequency financial data not only returns, but also waiting times between consecutive trades are random variables. Therefore, it is possible to apply continuous-time random walks (CTRWs) as phenomenological models of the high-frequency price dynamics. An empirical analysis performed on the 30 DJIA stocks shows that the waiting-time survival probability for high-frequency data is non-exponential. This fact imposes constraints on agent-based models of financial markets.

  14. High-frequency multimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Adrian P. Nievergelt

    2014-12-01

    Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.

  15. Some general effects of strong high-frequency excitation: stiffening, biasing, and smoothening

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2002-01-01

    Mechanical high-frequency (HF) excitation provides a working principle behind many industrial and natural applications and phenomena. This paper concerns three particular effects of HF excitation, that may change the apparent characteristics of mechanical systems: 1) stiffening, by which the appa...

  16. Study on the dynamic characteristics of a high frequency brake based on giant magnetostrictive material

    Science.gov (United States)

    Xu, Ai Qun

    2016-06-01

    In order to meet the requirements of rapid and smooth braking, high-frequency braking using a giant magnetostrictive actuator is proposed, which can solve the problems in hydraulic braking, such as, it leaks easily, catches fire easily, is difficult to find failures, high cost on maintenance and repairing, etc. The main factors affecting the force of a high-frequency braking actuator are emphatically analyzed, the brakes dynamic model is established and a performance testing device for high frequency braking is constructed based on LabVIEW. The output force of the actuator increases with the excitation current of the driving coil increasing, and the increased multiple of the output force is greater than that of the excitation current; the range of the actuator force amplitude is 121.63 N ∼ 158.14 N, which changes little, while excitation frequency changes between 200 Hz ∼ 1000 Hz. In a minor range of pre-stress, the output force decreases with an increase in the axial pre-stress of the giant magnetostrictive rod, but is not obvious. It is known by finite element simulation analysis that high-frequency braking shortens the braking displacement and time effectively, which proves the feasibility and effectiveness of high frequency braking. Theoretical analysis and experimental results indicate that the output force of the actuator changes at the same frequency with excitation current; it is controllable and its mechanical properties meet the requirements of high frequency braking.

  17. Influence of Smoking on Ultra-High-Frequency Auditory Sensitivity.

    Science.gov (United States)

    Prabhu, Prashanth; Varma, Gowtham; Dutta, Kristi Kaveri; Kumar, Prajwal; Goyal, Swati

    2017-04-01

    In this study, an attempt was made to determine the effect of smoking on ultra-high-frequency auditory sensitivity. The study also attempted to determine the relationship between the nature of smoking and ultra-high-frequency otoacoustic emissions (OAEs) and thresholds. The study sample included 25 smokers and 25 non-smokers. A detailed history regarding their smoking habits was collected. High-frequency audiometric thresholds and amplitudes of high-frequency distortion-product OAEs were analyzed for both ears from all participants. The results showed that the ultra-high-frequency thresholds were elevated and that there was reduction in the amplitudes of ultra-high-frequency OAEs in smokers. There was an increased risk of auditory damage with chronic smoking. The study results highlight the application of ultra-high-frequency OAEs and ultra-high-frequency audiometry for the early detection of auditory impairment. However, similar studies should be conducted on a larger population for better generalization of the results.

  18. Special Information on High-Frequency Radar. Part 15

    Science.gov (United States)

    1971-06-01

    NRL Memorandum Report 2265 f Special Information on High-Frequency Radar Part XV J. M. HEADRICK, W. C. HEADRICK, J. M. HUDNALL AND J. F. THOMASON...20390 3. REPORT TITLE SPECIAL INFORMATION ON HIGH-FREQUENCY RADAR, PART XV (U) 4. DESCRIPTIVE NOTES(Type of report and inclhsive dates) This is a final

  19. High frequency modeling of power transformers. Stresses and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bjerkan, Eilert

    2005-05-15

    In this thesis a reliable, versatile and rigorous method for high frequency power transformer modeling is searched and established. The purpose is to apply this model to sensitivity analysis of FRA (Frequency Response Analysis) which is a quite new diagnostic method for assessing the mechanical integrity of power transformer windings on-site. The method should be versatile in terms of being able to estimate internal and external over voltages and resonances. Another important aspect is that the method chosen is suitable for real transformer geometries. In order to verify the suitability of the model for real transformers, a specific test-object is used. This is a 20MVA transformer, and details are given in chapter 1.4. The high frequency power transformer model is established from geometrical and constructional information from the manufacturer, together with available material characteristics. All circuit parameters in the lumped circuit representation are calculated based on these data. No empirical modifications need to be performed. Comparison shows capability of reasonable accuracy in the range from 10 khz to 1 MHz utilizing a disc-to-disc representation. A compromise between accuracy of model due to discretization and complexity of the model in a turn-to-turn representation is inevitable. The importance of the iron core is emphasized through a comparison of representations with/without the core included. Frequency-dependent phenomena are accurately represented using an isotropic equivalent for windings and core, even with a coarse mesh for the FEM-model. This is achieved through a frequency-dependent complex permeability representation of the materials. This permeability is deduced from an analytical solution of the frequency-dependent magnetic field inside the conductors and the core. The importance of dielectric losses in a transformer model is also assessed. Since published data on the high frequency properties of press board are limited, some initial

  20. Macroseismic investigation of the 2008-2010 low magnitude seismic swarm in the Brabant Massif, Belgium. The link between macroseismic intensity and geomorphology

    Science.gov (United States)

    Van Noten, Koen; Lecocq, Thomas; Vleminckx, Bart; Camelbeeck, Thierry

    2013-04-01

    Between July 2008 and January 2010 a seismic swarm took place in a region 20 km south of Brussels, Belgium. The sequence started on the 12th of July 2008 with a ML = 2.2 event and was followed the day after by the largest event in the sequence (ML = 3.2). Thanks to a locally installed temporary seismic monitoring system more than 300 low magnitude events, with events as low as ML = -0.7, have been detected. Results of the relocations of the different hypocenters and analysis of the focal mechanisms show that the majority of these earthquakes took place at several km's depth (3 to 6 km) along a (possibly blind) 1.5 km long NW-SE fault (zone) situated in the Cambrian basement rocks of the Brabant Massif. Remarkably, 60 events (0.6 ˜ ML ˜ 3.2) were felt, or heard only sometimes, by the local population. This was detected by the "Did you feel it?" macroseismic inquiries on the ROB seismology website (www.seismology.be). For each event a classical macroseismic intensity map has been constructed based on the average macroseismic intensity of each community. Within a single community, however, the reported macroseismic intensities locally often vary ranging between non-damaging intensities of I and IV (on the EMS-98 scale). Using the average macroseismic intensity of a community therefore often oversimplificates the local intensity, especially in hilly areas in which local site effects could have influenced the impact of the earthquakes at the surface. In this presentation we investigate if the perception of the people of how they experienced the small events (sound, vibrations) was influenced by local geomorphological site effects. First, based on available borehole and outcrop data a sediment thickness map of the Cenozoic and Quaternary cover above the basement rocks of the Brabant Massif is constructed in a 200 km2 area around the different epicenters. Second, several electrical resistivity tomography (ERT) profiles are conducted in order to locally improve the

  1. High-frequency ultrasonic arrays for ocular imaging

    Science.gov (United States)

    Jaeger, M. D.; Kline-Schoder, R. J.; Douville, G. M.; Gagne, J. R.; Morrison, K. T.; Audette, W. E.; Kynor, D. B.

    2007-03-01

    High-resolution ultrasound imaging of the anterior portion of the eye has been shown to provide important information for sizing of intraocular lens implants, diagnosis of pathological conditions, and creation of detailed maps of corneal topography to guide refractive surgery. Current ultrasound imaging systems rely on mechanical scanning of a single acoustic element over the surface of the eye to create the three-dimensional information needed by clinicians. This mechanical scanning process is time-consuming and subject to errors caused by eye movement during the scanning period. This paper describes development of linear ultrasound imaging arrays intended to increase the speed of image acquisition and reduce problems associated with ocular motion. The arrays consist of a linear arrangement of high-frequency transducer elements designed to operate in the 50 - 75 MHz frequency range. The arrays are produced using single-crystal lithium niobate piezoelectric material, thin film electrodes, and epoxy-based acoustic layers. The array elements have been used to image steel test structures and bovine cornea.

  2. Extended high frequency audiometry in secretory otitis media.

    Science.gov (United States)

    Sharma, Deepika; Munjal, Sanjay K; Panda, Naresh K

    2012-06-01

    The objective of the present study was to determine the status of extended high frequencies in subjects with secretory otitis media. The study evaluated 30 ears of 20 subjects with secretory otitis media in the age group of 15-30 years. This data was compared with 20 ears of 10 volunteers of the same age group with clinically normal hearing. Pure tone air conduction thresholds were analyzed in three frequency groups: low frequency (LF: 0.25, 0.5, and 1 kHz), high frequency (HF: 2, 4, and 8 kHz) and extended high frequency (EHF: 10, 12, and 16 kHz). The results showed elevated extended high frequency thresholds (EHFG) as compared to control group and comparatively better thresholds at high frequencies(HFG)s as compared to low (LFG)and extended high frequencies(EHFG) in the study group. This validates the importance of including an extended high frequency audiometry in the test battery of patients with secretory otitis media.

  3. High-frequency energy in singing and speech

    Science.gov (United States)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  4. SINGLE PHASE HIGH FREQUENCY AC CONVERTER FOR INDUCTION HEATING APPLICATION

    Directory of Open Access Journals (Sweden)

    M.A INAYATHULLAAH,

    2010-12-01

    Full Text Available The proposed topology reduces the total harmonic distortion (THD of a high frequency AC/AC Converter well below the acceptable limit. This paper deals with a novel single phase AC/DC/AC soft switching utility frequency AC to high frequency AC converter. In this paper a single phase full bridge inverter with Vienna rectifier as front end is used instead of conventional diode bridge rectifier to provide continuous sinusoidal input current with nearly unity power factor at the source side with extremely low distortion.. This power converter is more suitable and acceptable for cost effective high frequency (HF consumer induction heating applications.

  5. High frequency modeling of power transformers. Stresses and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bjerkan, Eilert

    2005-05-15

    In this thesis a reliable, versatile and rigorous method for high frequency power transformer modeling is searched and established. The purpose is to apply this model to sensitivity analysis of FRA (Frequency Response Analysis) which is a quite new diagnostic method for assessing the mechanical integrity of power transformer windings on-site. The method should be versatile in terms of being able to estimate internal and external over voltages and resonances. Another important aspect is that the method chosen is suitable for real transformer geometries. In order to verify the suitability of the model for real transformers, a specific test-object is used. This is a 20MVA transformer, and details are given in chapter 1.4. The high frequency power transformer model is established from geometrical and constructional information from the manufacturer, together with available material characteristics. All circuit parameters in the lumped circuit representation are calculated based on these data. No empirical modifications need to be performed. Comparison shows capability of reasonable accuracy in the range from 10 khz to 1 MHz utilizing a disc-to-disc representation. A compromise between accuracy of model due to discretization and complexity of the model in a turn-to-turn representation is inevitable. The importance of the iron core is emphasized through a comparison of representations with/without the core included. Frequency-dependent phenomena are accurately represented using an isotropic equivalent for windings and core, even with a coarse mesh for the FEM-model. This is achieved through a frequency-dependent complex permeability representation of the materials. This permeability is deduced from an analytical solution of the frequency-dependent magnetic field inside the conductors and the core. The importance of dielectric losses in a transformer model is also assessed. Since published data on the high frequency properties of press board are limited, some initial

  6. Finite-Element Modeling of Viscoelastic Cells During High-Frequency Cyclic Strain

    Directory of Open Access Journals (Sweden)

    David W. Holdsworth

    2012-03-01

    Full Text Available Mechanotransduction refers to the mechanisms by which cells sense and respond to local loads and forces. The process of mechanotransduction plays an important role both in maintaining tissue viability and in remodeling to repair damage; moreover, it may be involved in the initiation and progression of diseases such as osteoarthritis and osteoporosis. An understanding of the mechanisms by which cells respond to surrounding tissue matrices or artificial biomaterials is crucial in regenerative medicine and in influencing cellular differentiation. Recent studies have shown that some cells may be most sensitive to low-amplitude, high-frequency (i.e., 1–100 Hz mechanical stimulation. Advances in finite-element modeling have made it possible to simulate high-frequency mechanical loading of cells. We have developed a viscoelastic finite-element model of an osteoblastic cell (including cytoskeletal actin stress fibers, attached to an elastomeric membrane undergoing cyclic isotropic radial strain with a peak value of 1,000 µstrain. The results indicate that cells experience significant stress and strain amplification when undergoing high-frequency strain, with peak values of cytoplasmic strain five times higher at 45 Hz than at 1 Hz, and peak Von Mises stress in the nucleus increased by a factor of two. Focal stress and strain amplification in cells undergoing high-frequency mechanical stimulation may play an important role in mechanotransduction.

  7. Finite-element modeling of viscoelastic cells during high-frequency cyclic strain.

    Science.gov (United States)

    Milner, Jaques S; Grol, Matthew W; Beaucage, Kim L; Dixon, S Jeffrey; Holdsworth, David W

    2012-03-22

    Mechanotransduction refers to the mechanisms by which cells sense and respond to local loads and forces. The process of mechanotransduction plays an important role both in maintaining tissue viability and in remodeling to repair damage; moreover, it may be involved in the initiation and progression of diseases such as osteoarthritis and osteoporosis. An understanding of the mechanisms by which cells respond to surrounding tissue matrices or artificial biomaterials is crucial in regenerative medicine and in influencing cellular differentiation. Recent studies have shown that some cells may be most sensitive to low-amplitude, high-frequency (i.e., 1-100 Hz) mechanical stimulation. Advances in finite-element modeling have made it possible to simulate high-frequency mechanical loading of cells. We have developed a viscoelastic finite-element model of an osteoblastic cell (including cytoskeletal actin stress fibers), attached to an elastomeric membrane undergoing cyclic isotropic radial strain with a peak value of 1,000 µstrain. The results indicate that cells experience significant stress and strain amplification when undergoing high-frequency strain, with peak values of cytoplasmic strain five times higher at 45 Hz than at 1 Hz, and peak Von Mises stress in the nucleus increased by a factor of two. Focal stress and strain amplification in cells undergoing high-frequency mechanical stimulation may play an important role in mechanotransduction.

  8. High-frequency chest compression: a summary of the literature.

    Science.gov (United States)

    Dosman, Cara F; Jones, Richard L

    2005-01-01

    The purpose of the present literature summary is to describe high-frequency chest compression (HFCC), summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have shown that HFCC leads to more mucus clearance and better lung function compared with conventional chest physiotherapy. However, HFCC also decreases end-expiratory lung volume, which can lead to increased airway resistance and a decreased oscillated volume. Adding positive end-expiratory pressure to HFCC has been shown to prevent this decrease in end-expiratory lung volume and to increase the oscillated volume. It is possible that the HFCC-induced decrease in end-expiratory lung volume may result in more mucus clearance in airways that remain open by reducing airway size. Adjunctive methods, such as positive end-expiratory pressure, may not always be needed to make HFCC more effective.

  9. High-frequency ultrasonic imaging of thickly sliced specimens

    Science.gov (United States)

    Miyasaka, Chiaki; Tittmann, Bernhard R.; Chandraratna, Premindra A. N.

    2003-07-01

    It has been reported that a mechanical scanning reflection acoustic microscope (hereinafter called simply "SAM"), using high frequency ultrasonic tone-burst waves, can form a horizontal cross-sectional image (i.e., c-scan image) showing a highly resolved cellular structure of biological tissue. However, the tissue prepared for the SAM has been mostly a thinly sectioned specimen. In this study, the SAM images of specimens thickly sectioned from the tissue were analyzed. Optical and scanning acoustic microscopies were used to evaluate tissues of human small intestine and esophagus. For preparing thin specimens, the tissue was embedded in paraffin, and substantially sectioned at 5-10μm by the microtome. For optical microscopy, the tissue was stained with hematoxylin and eosin, and affixed onto glass substrates. For scanning acoustic microscopy, two types of specimens were prepared: thinly sectioned specimens affixed on the glass substrate, wherein the specimens were deparaffinized in xylene, but not stained, and thickely sectioned specimens. Images of the thick specimens obtained with frequency at 200 MHz revealed cellular structures. The morphology was very similar to that seen in the thinly sectioned specimens with optical and scanning acoustic microscopy. In addition, scanning electron microscopy was used to compare the images of biological tissue. An acoustic lens with frequency at 200 MHz permitted the imaging of surface and/or subsurface of microstructures in the thick sections of small intestine and esophagus.

  10. High-frequency oscillations and mesial temporal lobe epilepsy.

    Science.gov (United States)

    Lévesque, Maxime; Shiri, Zahra; Chen, Li-Yuan; Avoli, Massimo

    2017-01-20

    The interest of epileptologists has recently shifted from the macroscopic analysis of interictal spikes and seizures to the microscopic analysis of short events in the EEG that are not visible to the naked eye but are observed once the signal has been filtered in specific frequency bands. With the use of new technologies that allow multichannel recordings at high sampling rates and the development of computer algorithms that permit the automated analysis of extensive amounts of data, it is now possible to extract high-frequency oscillations (HFOs) between 80 and 500Hz from the EEG; HFOs have been further categorised as ripples (80-200Hz) and fast ripples (250-500Hz). Within the context of epileptic disorders, HFOs should reflect the pathological activity of neural networks that sustain seizure generation, and could serve as biomarkers of epileptogenesis and ictogenesis. We review here the presumptive cellular mechanisms of ripples and fast ripples in mesial temporal lobe epilepsy. We also focus on recent findings regarding the occurrence of HFOs during epileptiform activity observed in in vitro models of epileptiform synchronization, in in vivo models of mesial temporal lobe epilepsy and in epileptic patients. Finally, we address the effects of anti-epileptic drugs on HFOs and raise some questions and issues related to the definition of HFOs.

  11. High-Frequency Chest Compression: A Summary of the Literature

    Directory of Open Access Journals (Sweden)

    Cara F Dosman

    2005-01-01

    Full Text Available The purpose of the present literature summary is to describe high-frequency chest compression (HFCC, summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have shown that HFCC leads to more mucus clearance and better lung function compared with conventional chest physiotherapy. However, HFCC also decreases end-expiratory lung volume, which can lead to increased airway resistance and a decreased oscillated volume. Adding positive end-expiratory pressure to HFCC has been shown to prevent this decrease in end-expiratory lung volume and to increase the oscillated volume. It is possible that the HFCC-induced decrease in end-expiratory lung volume may result in more mucus clearance in airways that remain open by reducing airway size. Adjunctive methods, such as positive end-expiratory pressure, may not always be needed to make HFCC more effective.

  12. High frequency strain measurements with fiber Bragg grating sensors

    Science.gov (United States)

    Koch, J.; Angelmahr, M.; Schade, W.

    2015-05-01

    In recent years fiber Bragg grating sensors gained interest in structural health monitoring and concepts for smart structures. They are small, lightweight, and immune to electromagnetic interference. Using multiplexing techniques, several sensors can be addressed by a single fiber. Therefore, well-established structures and materials in industrial applications can be easily equipped with fiber optical sensors with marginal influence on their mechanical properties. In return, critical components can be monitored in real-time, leading to reduced maintenance intervals and a great reduction of costs. Beside of generally condition monitoring, the localization of failures in a structure is a desired feature of the condition monitoring system. Detecting the acoustic emission of a sudden event, its place of origin can be determined by analyzing the delay time of distributed sensor signals. To achieve high localization accuracies for the detection of cracks, breaks, and impacts high sampling rates combined with the simultaneous interrogation of several fiber Bragg grating sensors are required. In this article a fiber Bragg grating interrogator for high frequency measurements up to the megahertz range is presented. The interrogator is based on a passive wavelength to intensity conversion applying arrayed waveguide gratings. Light power fluctuations are suppressed by a differential data evaluation, leading to a reduced signal-to-noise ratio and a low strain detection limit. The measurement system is used to detect, inter alia, wire breaks in steel wire ropes for dockside cranes.

  13. High-Frequency Microwave Processing of Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...

  14. Conditions of the Classical Transmission Line Equations at High Frequency

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    New transmission line equations are deduced applying Maxwell's equations in this paper. The conditions of the classical transmission line equations have been discussed, which is important to solve the EM problems in high frequency case.

  15. High Temperature, High Frequency Fuel Metering Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  16. Quantum inductance and high frequency oscillators in graphene nanoribbons.

    Science.gov (United States)

    Begliarbekov, Milan; Strauf, Stefan; Search, Christopher P

    2011-04-22

    Here we investigate high frequency AC transport through narrow graphene nanoribbons with top-gate potentials that form a localized quantum dot. We show that as a consequence of the finite dwell time of an electron inside the quantum dot (QD), the QD behaves like a classical inductor at sufficiently high frequencies ω ≥ GHz. When the geometric capacitance of the top-gate and the quantum capacitance of the nanoribbon are accounted for, the admittance of the device behaves like a classical serial RLC circuit with resonant frequencies ω ∼ 100-900 GHz and Q-factors greater than 10(6). These results indicate that graphene nanoribbons can serve as all-electronic ultra-high frequency oscillators and filters, thereby extending the reach of high frequency electronics into new domains.

  17. High frequency modeling for quantum-well laser diodes

    Institute of Scientific and Technical Information of China (English)

    GAO JianJun

    2009-01-01

    High frequency modeling of quantum-well (OW) laser diodes for optoelectronic integrated circuit (OEIC) design is discussed in this paper. Modeling of the intrinsic device and the extrinsic components is discussed by accounting for important physical effects at both de and high frequency. The concepts of equivalent circuits representing both intrinsic and extrinsic components in a QW laser diode are ana-lyzed to obtain a physics-based high frequency model. The model is based on the physical rate equa-tions, and is versatile in that it permits both small-and large-signal simulations to be performed. Sev-eral procedures of the high frequency model parameter extraction are also discussed. Emphasis here is placed on validating the model via a comparison of simulated results with measured data of the small-signal modulation response, obtained over a wide range of optical output powers.

  18. High frequency ultrasound with color Doppler in dermatology*

    Science.gov (United States)

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  19. Basis of Ionospheric Modification by High-Frequency Waves

    Science.gov (United States)

    2007-06-01

    for conducting ionospheric heating experiments in Gakona, Alaska, as part of the High Frequency Active Auroral Research Program ( HAARP ) [5], is being...upgraded. The upgraded HAARP HF transmitting system will be a phased-array antenna of 180 elements. Each element is a cross dipole, which radiates a...supported by the High Frequency Active Auroral Research Program ( HAARP ), the Air Force Research Laboratory at Hanscom Air Force Base, MA, and by the Office

  20. Single phase AC-DC power factor corrected converter with high frequency isolation using buck converter

    Directory of Open Access Journals (Sweden)

    R. Ramesh,

    2014-03-01

    Full Text Available Single phase ac-dc converters having high frequency isolation are implemented in buck, boost, buck-boost configuration with improving the power quality in terms of reducing the harmonics of input current. The paperpropose the circuit configuration, control mechanism, and simulation result for the single phase ac-dc converter.

  1. Distinct contributions of low- and high-frequency neural oscillations to speech comprehension

    NARCIS (Netherlands)

    Kösem, A.V.M.; Wassenhove, V. van

    2016-01-01

    ABSTRACTIn the last decade, the involvement of neural oscillatory mechanisms in speech comprehension has been increasingly investigated. Current evidence suggests that low-frequency and high-frequency neural entrainment to the acoustic dynamics of speech are linked to its analysis. One crucial

  2. Reflections on Pediatric High-Frequency Oscillatory Ventilation From a Physiologic Perspective

    NARCIS (Netherlands)

    Kneyber, Martin C. J.; van Heerde, Marc; Markhorst, Dick G.

    2012-01-01

    Mechanical ventilation using low tidal volumes has become universally accepted to prevent ventilator-induced lung injury. High-frequency oscillatory ventilation (HFOV) allows pulmonary gas exchange using very small tidal volume (1-2 mL/kg) with concomitant decreased risk of atelectrauma. However, it

  3. Spontaneous breathing during high-frequency oscillatory ventilation improves regional lung characteristics in experimental lung injury

    NARCIS (Netherlands)

    van Heerde, M.; Roubik, K.; Kopelent, V.; Kneyber, M. C. J.; Markhorst, D. G.

    2010-01-01

    Background Maintenance of spontaneous breathing is advocated in mechanical ventilation. This study evaluates the effect of spontaneous breathing on regional lung characteristics during high-frequency oscillatory (HFO) ventilation in an animal model of mild lung injury. Methods Lung injury was

  4. Spontaneous breathing during high-frequency oscillatory ventilation improves regional lung characteristics in experimental lung injury

    NARCIS (Netherlands)

    van Heerde, M.; Roubik, K.; Kopelent, V.; Kneyber, M. C. J.; Markhorst, D. G.

    2010-01-01

    Background Maintenance of spontaneous breathing is advocated in mechanical ventilation. This study evaluates the effect of spontaneous breathing on regional lung characteristics during high-frequency oscillatory (HFO) ventilation in an animal model of mild lung injury. Methods Lung injury was induce

  5. Theories and experiments on the stiffening effect of high-frequency excitation for continuous elastic systems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    One effect of strong mechanical high-frequency excitation may be to apparently "stiffen" a structure, a well-described phenomenon for discrete systems. The present study provides theoretical and experimental results on this effect for continuous elastic structures. A laboratory experiment is set ...

  6. Influence of high frequency pulse on electrode wear in micro-EDM

    Directory of Open Access Journals (Sweden)

    Xiao-peng Li

    2014-09-01

    Full Text Available An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni–TiN cylindrical coating electrode, copper electrode and Cu50W electrode. The wear mechanism of Ni–TiN/Cu composite electrode in the case of high-frequency pulse current is studied, and the influence of the fluctuation frequency of discharge current on electrode wear in micro-EDM is found out. Compared with the electrode made from homogeneous material, the high frequency electromagnetic properties of Ni–TiN composite layer can be used effectively to inhibit the effect of high frequency pulse on the electrode and improve the distribution trend of current density.

  7. Influence of high frequency pulse on electrode wear in micro-EDM

    Institute of Scientific and Technical Information of China (English)

    Xiao-peng LI; Yuan-gang WANG; Fu-ling ZHAO; Meng-hua WU; Yu LIU

    2014-01-01

    An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix NieTiN cylindrical coating electrode, copper electrode and Cu50W electrode. The wear mechanism of NieTiN/Cu composite electrode in the case of high-frequency pulse current is studied, and the influence of the fluctuation frequency of discharge current on electrode wear in micro-EDM is found out. Compared with the electrode made from homogeneous material, the high frequency electromagnetic properties of NieTiN composite layer can be used effectively to inhibit the effect of high frequency pulse on the electrode and improve the distribution trend of current density.

  8. Effects of Normalizing Temperature on Microstructure and Mechanical Properties of High Frequency Electric Resistance of Welded Pipe X52 Steel%正火温度对高频电阻焊管X52钢组织性能的影响

    Institute of Scientific and Technical Information of China (English)

    孙庭秀; 周晋仕; 马晓琴

    2012-01-01

    The influences of normalizing temperature on the microstructure and mechanical properties of high frequency electric resistance welded pipe X52 were studied by Gleeble-3500 thermo mechanical simulator. The results show that the strength of X52 steel deceases with the increase of normalizing temperature in the normalizing temperature range from 850 to 1000 ℃, when the normalizing temperature is 900 ℃, the lowest strength is obtained. With further increasing the normalizing temperature, the strength increases. However, with the increase of the normalizing temperature in range from 900 to 1000 ℃, the microstructure of the weld zone is refined, and the strength increases. Under the same heat treatment conditions, the microstructure and mechanical properties of the weld zone are similar to that of steel plate.%采用Gleeble-3500型热模拟试验机、金相显微镜研究了正火温度对高频电阻焊管X52钢组织和性能的影响规律.结果表明:在850~1000℃的正火加热温度范围内,其强度随加热温度的升高而降低,在900℃时,强度达到最低值;随加热温度进一步升高,强度增加.而焊缝区在900~1000℃的正火加热温度范围内,随加热温度升高,组织细化,强度增加.在相同的工艺条件下,焊缝和钢板的组织和性能相差不大.

  9. Forecasting Value-at-Risk Using High-Frequency Information

    Directory of Open Access Journals (Sweden)

    Huiyu Huang

    2013-06-01

    Full Text Available in the prediction of quantiles of daily Standard&Poor’s 500 (S&P 500 returns we consider how to use high-frequency 5-minute data. We examine methods that incorporate the high frequency information either indirectly, through combining forecasts (using forecasts generated from returns sampled at different intraday interval, or directly, through combining high frequency information into one model. We consider subsample averaging, bootstrap averaging, forecast averaging methods for the indirect case, and factor models with principal component approach, for both direct and indirect cases. We show that in forecasting the daily S&P 500 index return quantile (Value-at-Risk or VaR is simply the negative of it, using high-frequency information is beneficial, often substantially and particularly so, in forecasting downside risk. Our empirical results show that the averaging methods (subsample averaging, bootstrap averaging, forecast averaging, which serve as different ways of forming the ensemble average from using high-frequency intraday information, provide an excellent forecasting performance compared to using just low-frequency daily information.

  10. Cluster observations of high-frequency waves in the exterior cusp

    Directory of Open Access Journals (Sweden)

    Y. Khotyaintsev

    2004-07-01

    Full Text Available We study wave emissions, in the frequency range from above the lower hybrid frequency up to the plasma frequency, observed during one of the Cluster crossings of a high-beta exterior cusp region on 4 March 2003. Waves are localized near narrow current sheets with a thickness a few times the ion inertial length; currents are strong, of the order of 0.1-0.5μA/m2 (0.1-0.5mA/m2 when mapped to ionosphere. The high frequency part of the waves, frequencies above the electron-cyclotron frequency, is analyzed in more detail. These high frequency waves can be broad-band, can have spectral peaks at the plasma frequency or spectral peaks at frequencies below the plasma frequency. The strongest wave emissions usually have a spectral peak near the plasma frequency. The wave emission intensity and spectral character change on a very short time scale, of the order of 1s. The wave emissions with strong spectral peaks near the plasma frequency are usually seen on the edges of the narrow current sheets. The most probable generation mechanism of high frequency waves are electron beams via bump-on-tail or electron two-stream instability. Buneman and ion-acoustic instability can be excluded as a possible generation mechanism of waves. We suggest that high frequency waves are generated by electron beams propagating along the separatrices of the reconnection region.

  11. Condenser Microphone Protective Grid Correction for High Frequency Measurements

    Science.gov (United States)

    Lee, Erik; Bennett, Reginald

    2010-01-01

    Use of a protective grid on small diameter microphones can prolong the lifetime of the unit, but the high frequency effects can complicate data interpretation. Analytical methods have been developed to correct for the grid effect at high frequencies. Specifically, the analysis pertains to quantifying the microphone protective grid response characteristics in the acoustic near field of a rocket plume noise source. A frequency response function computation using two microphones will be explained. Experimental and instrumentation setup details will be provided. The resulting frequency response function for a B&K 4944 condenser microphone protective grid will be presented, along with associated uncertainties

  12. A MEMS-based high frequency x-ray chopper.

    Science.gov (United States)

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  13. Extended High Frequency Audiometry in Secretory Otitis Media

    OpenAIRE

    Sharma, Deepika; Munjal, Sanjay K.; Panda, Naresh K.

    2012-01-01

    The objective of the present study was to determine the status of extended high frequencies in subjects with secretory otitis media. The study evaluated 30 ears of 20 subjects with secretory otitis media in the age group of 15–30 years. This data was compared with 20 ears of 10 volunteers of the same age group with clinically normal hearing. Pure tone air conduction thresholds were analyzed in three frequency groups: low frequency (LF: 0.25, 0.5, and 1 kHz), high frequency (HF: 2, 4, and 8 kH...

  14. Posture Estimation by Using High Frequency Markers and Kernel Regressions

    Science.gov (United States)

    Ono, Yuya; Iwai, Yoshio; Ishiguro, Hiroshi

    Recently, research fields of augmented reality and robot navigation are actively investigated. Estimating a relative posture between an object and a camera is an important task in these fields. In this paper, we propose a novel method for posture estimation by using high frequency markers and kernel regressions. The markers are embedded in an object's texture in the high frequency domain. We observe the change of spatial frequency of object's texture to estimate a current posture of the object. We conduct experiments to show the effectiveness of our method.

  15. Testing the efficiency of high-frequency foreign exchange market

    Directory of Open Access Journals (Sweden)

    Václav Mastný

    2004-01-01

    Full Text Available This paper deals with the efficiency of the high-frequency foreign exchange market. The objective of this paper is to investigate whether standard statistical tests give the same results for time series resampled at intervals of 15.30 and 60 min. The data used for the purpose of this paper contain major currency pairs such as EUR/USD, GBP/USD and JPY/USD. The results of statistical tests indicate that the high frequency intervals (15-minute are not random and should not be considered independent. On the other hand, tests with lower frequency rates (30 and 60 min indicate rising randomness of the market.

  16. Casimir force between δ -δ' mirrors transparent at high frequencies

    Science.gov (United States)

    Braga, Alessandra N.; Silva, Jeferson Danilo L.; Alves, Danilo T.

    2016-12-01

    We investigate, in the context of a real massless scalar field in 1 +1 dimensions, models of partially reflecting mirrors simulated by Dirac δ -δ' point interactions. In the literature, these models do not exhibit full transparency at high frequencies. In order to provide a more realistic feature for these models, we propose a modified δ -δ' point interaction that enables full transparency in the limit of high frequencies. Taking this modified δ -δ' model into account, we investigate the Casimir force, comparing our results with those found in the literature.

  17. A MEMS-based high frequency x-ray chopper

    Energy Technology Data Exchange (ETDEWEB)

    Siria, A; Schwartz, W; Chevrier, J [Institut Neel, CNRS-Universite Joseph Fourier Grenoble, BP 166, F-38042 Grenoble Cedex 9 (France); Dhez, O; Comin, F [ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex 9 (France); Torricelli, G [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  18. 高频通气治疗吸入性损伤%Treatment of inhalation injury with high frequency ventilation

    Institute of Scientific and Technical Information of China (English)

    李国辉; 郭光华

    2008-01-01

    High frequency ventilation (HFV) is a kind of lung protective ventilation strategy. High-frequency jet ventilation (HFJV) can decrease the water content, relocate interstitial fluid and accelerate lymph flow in the lung of dogs with smoke inhalation injury. HFJV can effectively improve breathing mechanics and gas exchange in dogs with smoke inhalation injury. Clinical application also proves that HFV is efficient in treatment of inhalation injury.

  19. Efficient estimation for ergodic diffusions sampled at high frequency

    DEFF Research Database (Denmark)

    Sørensen, Michael

    A general theory of efficient estimation for ergodic diffusions sampled at high fre- quency is presented. High frequency sampling is now possible in many applications, in particular in finance. The theory is formulated in term of approximate martingale estimating functions and covers a large class...

  20. Modelling financial high frequency data using point processes

    DEFF Research Database (Denmark)

    Hautsch, Nikolaus; Bauwens, Luc

    In this chapter written for a forthcoming Handbook of Financial Time Series to be published by Springer-Verlag, we review the econometric literature on dynamic duration and intensity processes applied to high frequency financial data, which was boosted by the work of Engle and Russell (1997...

  1. Very High Frequency Interleaved Self-Oscillating Resonant SEPIC Converter

    DEFF Research Database (Denmark)

    Kovacevic, Milovan; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper describes analysis and design procedure of an interleaved, self-oscillating resonant SEPIC converter, suitable for operation at very high frequencies (VHF) ranging from 30 MHz to 300 MHz. The presented circuit consists of two resonant SEPIC DC-DC converters, and a capacitive...

  2. Very High Frequency Half Bridge DC/DC Converter

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...

  3. Current barriers to confine high frequency common mode currents

    NARCIS (Netherlands)

    Moonen, Dominicus Johannes Guilielmus; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2016-01-01

    A commercially produced three phase power line filter is submitted to a Current Barrier (CB) Electro-Magnetic Compatibility (EMC) zoning strategy as an attempt to confine high frequency common mode currents. The intent of the paper is not to show how to build a ’perfect’ filter, since this is known.

  4. Factors Affecting the Benefits of High-Frequency Amplification

    Science.gov (United States)

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2008-01-01

    Purpose: This study was designed to determine the extent to which high-frequency amplification helped or hindered speech recognition as a function of hearing loss, gain-frequency response, and background noise. Method: Speech recognition was measured monaurally under headphones for nonsense syllables low-pass filtered in one-third-octave steps…

  5. High Frequency State-Variable Biquadratic Active Filters

    Directory of Open Access Journals (Sweden)

    T. Dostal

    1998-04-01

    Full Text Available The state-variable (KHN active RC biquadratic filters with good performance in high frequency range , flexibility of outputs (LP, HP, BP, low sensitivities in novel current and hybrid modes, using current conveyors, transimpedance, trans-admittance and current operational amplifiers, are given in this paper.

  6. Modelling financial high frequency data using point processes

    DEFF Research Database (Denmark)

    Hautsch, Nikolaus; Bauwens, Luc

    In this chapter written for a forthcoming Handbook of Financial Time Series to be published by Springer-Verlag, we review the econometric literature on dynamic duration and intensity processes applied to high frequency financial data, which was boosted by the work of Engle and Russell (1997......) on autoregressive duration models...

  7. Piping system subjected to seismic hard rock high frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Rydell, Cecilia, E-mail: cecilia.rydell@byv.kth.se [KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Vattenfall AB, SE-169 92 Stockholm (Sweden); Malm, Richard; Ansell, Anders [KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2014-10-15

    Highlights: • A study of the influence of support gaps in the analysis of a piping system. • Piping system located within a nuclear power plant reactor containment building. • Piping system subjected to a seismic hard rock high-frequency load. • Comparison of low- and high-frequency seismic loads. • The influence on the stress response of piping and acceleration response of valves. - Abstract: This paper addresses the influence of support gaps in the analyses of a piping system when subjected to a seismic hard rock high-frequency load. The system is located within the reactor containment building of a nuclear power plant and is assessed to be susceptible to high-frequency loads. The stress response of the pipe and the acceleration response of the valves are evaluated for different support gap sizes. It is shown that the inclusion of the support gaps in the analyses reduces the stress response for almost all pipe elements. On the other hand, the acceleration response of the valves is not necessarily reduced by the consideration of the gaps.

  8. High frequency ultrasound imaging of a single-species biofilm

    NARCIS (Netherlands)

    Shemesh, H.; Goertz, D. E.; van der Sluis, L. W. M.; de Jong, N.; Wu, M. K.; Wesselink, P. R.

    2007-01-01

    Objective: This study evaluated the feasibility of a high frequency ultrasound scan to examine the 3D morphology of Streptococcus mutans biofilms grown in vitro. Methods: Six 2-day S. mutans biofilms and six 7-day biofilms were grown on tissue culture membranes and on bovine dentine discs. A sterile

  9. High-frequency Trading, Algorithmic Finance, and the Flash Crash

    DEFF Research Database (Denmark)

    Borch, Christian

    2016-01-01

    The Flash Crash of 6 May 2010 has an interesting status in discussions of high-frequency trading, i.e. fully automated, superfast computerized trading: it is invoked both as an important illustration of how this field of algorithmic trading operates and, more often, as an example of how fully aut...

  10. Free-field calibration of measurement microphones at high frequencies

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Torras Rosell, Antoni;

    2011-01-01

    Measurement microphones are typically calibrated in a free field at frequencies up to 50 kHz. This is a sufficiently high frequency for the most of sound measurement applications related with noise assessment. However, other applications such as assessment of the noise emitted by ultrasound clean...

  11. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    Science.gov (United States)

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  12. Vacuum amplification of the high-frequency electromagnetic radiation

    OpenAIRE

    Vilkovisky, G. A.

    1998-01-01

    When an electrically charged source is capable of both emitting the electromagnetic waves and creating charged particles from the vacuum, its radiation gets so much amplified that only the backreaction of the vacuum makes it finite. The released energy and charge are calculated in the high-frequency approximation. The technique of expectation values is advanced and employed.

  13. On the high frequency spectrum of a classical accretion disc

    CERN Document Server

    Balbus, Steven A

    2014-01-01

    We derive simple and explicit expressions for the high frequency spectrum of a classical accretion disc. Both stress-free and finite stress inner boundaries are considered. A classical accretion disc spectrum with a stress-free inner boundary departs from a Wien spectrum at large $\

  14. Practical techniques for enhancing the high-frequency MASW method

    Science.gov (United States)

    For soil exploration in the vadose zone, a high-frequency multi-channel analysis of surface waves (HF-MASW) method has been developed. In the study, several practical techniques were applied to enhance the overtone image of the HF-MASW method. They included (1) the self-adaptive MASW method using a ...

  15. Fact or friction: jumps at ultra high frequency

    NARCIS (Netherlands)

    K. Christensen; R. Oomen; M. Podolskij

    2011-01-01

    In this paper, we demonstrate that jumps in financial asset prices are not nearly as common as generally thought, and that they account for only a very small proportion of total return variation. We base our investigation on an extensive set of ultra high-frequency equity and foreign exchange rate d

  16. Influence of pore roughness on high-frequency permeability

    NARCIS (Netherlands)

    Cortis, A.; Smeulders, D.M.J.; Guermond, J.L.; Lafarge, D.

    2003-01-01

    The high-frequency behavior of the fluid velocity patterns for smooth and corrugated pore channels is studied. The classical approach of Johnson et al. [J. Fluid Mech. 176, 379 (1987)] for smooth geometries is obtained in different manners, thus clarifying differences with Sheng and Zhou [Phys. Rev.

  17. Collocations of High Frequency Noun Keywords in Prescribed Science Textbooks

    Science.gov (United States)

    Menon, Sujatha; Mukundan, Jayakaran

    2012-01-01

    This paper analyses the discourse of science through the study of collocational patterns of high frequency noun keywords in science textbooks used by upper secondary students in Malaysia. Research has shown that one of the areas of difficulty in science discourse concerns lexis, especially that of collocations. This paper describes a corpus-based…

  18. What middle ear parameters tell about impedance matching and high frequency hearing.

    Science.gov (United States)

    Hemilä, S; Nummela, S; Reuter, T

    1995-05-01

    Acoustic energy enters the mammalian cochlea aided by an anatomical impedance matching performed by the middle ear. The purpose of this paper is to analyse the functional consequences of changes in scale of the middle ear when going from the smallest mammals to the largest. Our anatomical measurements in mammals of different sizes ranging from bats to elephants indicate that middle ear proportions are largely isometric. Thus the calculated transformer ratio is basically independent of animal size, a typical value lying between 30 and 80. Similarly, the calculated specific acoustic input impedance of the inner ear is independent of animal size, the average value being about 140 kPa s/m. We show that if the high frequency hearing limit of isometric ears is limited by ossicle inertia, it should be inversely proportional to the cubic root of the ossicular mass. This prediction is in reasonable agreement with published audiogram data. We then present a three-parameter model of the middle ear where some obvious deviations from perfect isometry are taken into account. The high frequency hearing limits of different species generally agree well with the predictions of this simple model. However, the hearing limits of small rodents clearly deviate from the model calculation. We interpret this observation as indicating that the hearing limit towards very high frequencies may be set by cochlear transduction mechanisms. Further we discuss the exceptional high frequency hearing of the cat and the amphibious hearing of seals.

  19. Ictal high frequency oscillations distinguish two types of seizure territories in humans.

    Science.gov (United States)

    Weiss, Shennan A; Banks, Garrett P; McKhann, Guy M; Goodman, Robert R; Emerson, Ronald G; Trevelyan, Andrew J; Schevon, Catherine A

    2013-12-01

    High frequency oscillations have been proposed as a clinically useful biomarker of seizure generating sites. We used a unique set of human microelectrode array recordings (four patients, 10 seizures), in which propagating seizure wavefronts could be readily identified, to investigate the basis of ictal high frequency activity at the cortical (subdural) surface. Sustained, repetitive transient increases in high gamma (80-150 Hz) amplitude, phase-locked to the low-frequency (1-25 Hz) ictal rhythm, correlated with strong multi-unit firing bursts synchronized across the core territory of the seizure. These repetitive high frequency oscillations were seen in recordings from subdural electrodes adjacent to the microelectrode array several seconds after seizure onset, following ictal wavefront passage. Conversely, microelectrode recordings demonstrating only low-level, heterogeneous neural firing correlated with a lack of high frequency oscillations in adjacent subdural recording sites, despite the presence of a strong low-frequency signature. Previously, we reported that this pattern indicates a failure of the seizure to invade the area, because of a feedforward inhibitory veto mechanism. Because multi-unit firing rate and high gamma amplitude are closely related, high frequency oscillations can be used as a surrogate marker to distinguish the core seizure territory from the surrounding penumbra. We developed an efficient measure to detect delayed-onset, sustained ictal high frequency oscillations based on cross-frequency coupling between high gamma amplitude and the low-frequency (1-25 Hz) ictal rhythm. When applied to the broader subdural recording, this measure consistently predicted the timing or failure of ictal invasion, and revealed a surprisingly small and slowly spreading seizure core surrounded by a far larger penumbral territory. Our findings thus establish an underlying neural mechanism for delayed-onset, sustained ictal high frequency oscillations, and

  20. Occupational exposure to anaesthetic gases and high-frequency audiometry.

    Science.gov (United States)

    Giorgianni, Concetto; Gangemi, Silvia; Tanzariello, Maria Giuseppina; Barresi, Gaetano; Miceli, Ludovica; D'Arrigo, Graziella; Spatari, Giovanna

    2015-09-01

    Occupational exposure to anaestethic gases has been suggested to induce auditory damages. The aim of this study is to investigate high-frequency audiometric responses in subjects exposed to anaesthetic gases, in order to highlight the possible effects on auditory system. The study was performed on a sample of 30 medical specialists of Messina University Anaesthesia and Intensive care. We have used tonal audiometry as well as high-frequency one. We have compared the responses with those obtained in a similar control group not exposed to anaesthetic gases. Results were compared statistically. Results show a strong correlation (p = 0.000) between left and right ear responses to all the audiometric tests. The exposed and the control group run though the standard audiometry analysis plays different audiometric responses up only to higher frequencies (2000 HZ p = 0.009 and 4000 Hz p = 0.04); in high-frequency audiometry, as all other frequencies, the attention is drew to the fact that the sample groups distinguish themselves in a significantly statistic way (10,000 Hz p = 0.025, 12,000 Hz p = 0.008, 14,000 Hz p = 0.026, 16,000 Hz p = 0.08). The highest values are the ones related to exposed subjects both in standard (2000 Hz p = 0.01, 4000 Hz p = 0.02) and in high-frequency audiometry (10,000 Hz p = 0.011, 12,000 Hz p = 0.004, 14,000 Hz p = 0.012, 16,000 Hz p = 0.004). Results, even if preliminary and referred to a low-range sample, show an involvement of the anatomic structure responsible for the perception of high-frequency audiometric responses in subjects exposed to anaesthetic gases. © The Author(s) 2012.

  1. Excitation and Ionisation dynamics in high-frequency plasmas

    Science.gov (United States)

    O'Connell, D.

    2008-07-01

    excitation and sustainment of the discharge. As the pressure decreases the discharge operates in so-called 'alpha-mode' where the sheath expansion is responsible for discharge sustainment. Decreasing the pressure towards the limit of operation (below 1 Pa) the discharge operates in a regime where kinetic effects dominate plasma sustainment. Wave particle interactions resulting from the flux of highly energetic electrons interacting with thermal bulk electrons give rise to a series of oscillations in the electron excitation phase space at the sheath edge. This instability is responsible for a significant energy deposit in the plasma when so-called 'ohmic heating' is no longer efficient. In addition to this an interesting electron acceleration mechanism occurs during the sheath collapse. The large sheath width, due to low plasma densities at the lower pressure, and electron inertia allows the build up of a local electric field accelerating electrons towards the electrode. Multi-frequency plasmas, provide additional process control for technological applications, and through investigating the excitation dynamics in such discharges the limitations of functional separation is observed. Non-linear frequency coupling is observed in plasma boundary sheaths governed by two frequencies simultaneously. In an alpha-operated discharge the sheath edge velocity governs the excitation and ionisation within the plasma, and it will be shown that this is determined by the time varying sheath width. The nature of the coupling effects strongly depends on the ratio of the applied voltages. Under technologically relevant conditions (low frequency voltage >> high frequency voltage) interesting phenomena depending on the phase relation of the voltages are also observed and will be discussed.

  2. High-Frequency Deep Brain Stimulation of the Putamen Improves Bradykinesia in Parkinson’s Disease

    Science.gov (United States)

    Montgomery, Erwin B.; Huang, He; Walker, Harrison C.; Guthrie, Barton L.; Watts, Ray L.

    2014-01-01

    Deep brain stimulation is effective for a wide range of neurological disorders; however, its mechanisms of action remain unclear. With respect to Parkinson’s disease, the existence of multiple effective targets suggests that putamen stimulation also may be effective and raises questions as to the mechanisms of action. Are there as many mechanisms of action as there are effective targets or some single or small set of mechanisms common to all effective targets? During the course of routine surgery of the globus pallidus interna in patients with Parkinson’s disease, the deep brain stimulation lead was placed in the putamen en route to the globus pallidus interna. Recordings of hand opening and closing during high-frequency and no stimulation were made. Speed of the movements, based on the amplitude and frequency of the repetitive hand movements as well as the decay in amplitude, were studied. Hand speed in 6 subjects was statistically significantly faster during active deep brain stimulation than the no-stimulation condition. There were no statistically significant differences in decay in the amplitude of hand movements. High-frequency deep brain stimulation of the putamen improves bradykinesia in a hand-opening and -closing task in patients with Parkinson’s disease. Consequently, high-frequency deep brain stimulation of virtually every structure in the basal ganglia-thalamic-cortical system improves bradykinesia. These observations, together with microelectrode recordings reported in the literature, argue that deep brain stimulation effects may be system specific and not structure specific. PMID:21714010

  3. Variable Temperature High-Frequency Response of Heterostructure Transistors

    Science.gov (United States)

    Laskar, Joy

    1992-01-01

    The development of high performance heterostructure transistors is essential for emerging opto-electronic integrated circuits (OEICs) and monolithic microwave integrated circuits (MMICs). Applications for OEICs and MMICs include the rapidly growing telecommunications and personal communications markets. The key to successful OEIC and MMIC chip sets is the development of high performance, cost-effective technologies. In this work, several different transistor structures are investigated to determine the potential for high speed performance and the physical mechanisms controlling the ultimate device operation. A cryogenic vacuum microwave measurement system has been developed to study the high speed operation of modulation doped field-effect transistors (MODFETs), doped channel metal insulator field-effect transistors (MISFETs), and metal semiconductor field-effect transistors (MESFETs). This study has concluded that the high field velocity and not the low field mobility is what controls high frequency operation of GaAs based field-effect transistors. Both Al_{rm x} Ga_{rm 1-x}As/GaAs and InP/In_{rm y}Ga _{rm 1-y}As heterostructure bipolar transistors (HBTs) have also been studied at reduced lattice temperatures to understand the role of diffusive transport in the Al_{rm x} Ga_{rm 1-x}As/GaAs HBT and nonequilibrium transport in the InP/In _{rm y}Ga_ {rm 1-y}As HBT. It is shown that drift/diffusion formulation must be modified to accurately estimate the base delay time in the conventional Al _{rm x}Ga_ {rm 1-x}As/GaAs HBT. The reduced lattice temperature operation of the InP/In_ {rm y}Ga_{rm 1-y}As HBT demonstrates extreme nonequilibrium transport in the neutral base and collector space charge region with current gain cut-off frequency exceeding 300 GHz, which is the fastest reported transistor to date. Finally, the MODFET has been investigated as a three-terminal negative differential resistance (NDR) transistor. The existence of real space transfer is confirmed by

  4. Automated screening for high-frequency hearing loss.

    Science.gov (United States)

    Vlaming, Marcel S M G; MacKinnon, Robert C; Jansen, Marije; Moore, David R

    2014-01-01

    Hearing loss at high frequencies produces perceptual difficulties and is often an early sign of a more general hearing loss. This study reports the development and validation of two new speech-based hearing screening tests in English that focus on detecting hearing loss at frequencies above 2000 Hz. The Internet-delivered, speech-in noise tests used closed target-word sets of digit triplets or consonant-vowel-consonant (CVC) words presented against a speech-shaped noise masker. The digit triplet test uses the digits 0 to 9 (excluding the disyllabic 7), grouped in quasi-random triplets. The CVC test uses simple words (e.g., "cat") selected for the high-frequency spectral content of the consonants. During testing, triplets or CVC words were identified in an adaptive procedure to obtain the speech reception threshold (SRT) in noise. For these new, high-frequency (HF) tests, the noise was low-pass filtered to produce greater masking of the low-frequency speech components, increasing the sensitivity of the test for HF hearing loss. Individual test tokens (digits, CVCs) were first homogenized using a group of 10 normal-hearing (NH) listeners by equalizing intelligibility across tokens at several speech-in-noise levels. Both tests were then validated and standardized using groups of 24 NH listeners and 50 listeners with hearing impairment. Performance on the new high frequency digit triplet (HF-triplet) and CVC (HF-CVC) tests was compared with audiometric hearing loss, and with that on the unfiltered, broadband digit triplet test (BB-triplet) test, and the ASL (Adaptive Sentence Lists) speech-in-noise test. The HF-triplet and HF-CVC test results (SRT) both correlated positively and highly with high-frequency audiometric hearing loss and with the ASL test. SRT for both tests as a function of high-frequency hearing loss increased at nearly three times the rate as that of the BB-triplet test. The intraindividual variability (SD) on the tests was about 2.1 (HF-triplet) and 1

  5. Iloprost drug delivery during infant conventional and high-frequency oscillatory ventilation

    OpenAIRE

    Robert M. DiBlasi; Crotwell, Dave N.; Shen, Shuijie; Zheng, Jiang; Fink, James B.; Yung, Delphine

    2016-01-01

    Iloprost is a selective pulmonary vasodilator approved for inhalation by the Food and Drug Administration. Iloprost has been increasingly used in the management of critically ill neonates with hypoxic lung disease. This in vitro study was designed to test the hypothesis that aerosol drug delivery could be effectively administered to infants with both conventional ventilation and high-frequency oscillatory ventilation (HFOV). A neonatal test lung model configured with newborn lung mechanics wa...

  6. Fatigue behaviour of welded joints treated by high frequency hammer peening: Part 1 , experimental study

    OpenAIRE

    LE QUILLIEC, Guenhael; LIEURADE, Henri Paul; BOUSSEAU, Marc; DRISSI-HABTI, Monssef; INGLEBERT, Geneviève; MACQUET, Pascal; JUBIN, Laurent

    2011-01-01

    High frequency hammer peening is a recent improvement method which is probably one of the most effective for treating welded assemblies. A number of experimental results relating to this process are presented in this article. These results lead to better understand the mechanisms of the process, to outline the influence of the operating parameters and to confirm the role played by the initial quality of the welds. In the long run, the aim of this study is to propose an industrially applicable...

  7. Fatigue Behaviour of Welded Joints Treated by High Frequency Hammer Peening: Part I , Experimental Study

    OpenAIRE

    LE QUILLIEC, Guenhael; Lieurade, Henri-Paul; BOUSSEAU, Marc; DRISSI-HABTI, Monssef; INGLEBERT, Geneviève; MACQUET, Pascal; JUBIN, Laurent

    2011-01-01

    International audience; High frequency hammer peening is a recent improvement method which is probably one of the most effective for treating welded assemblies. A number of experimental results relating to this process are presented in this article. These results lead to better understand the mechanisms of the process, to outline the influence of the operating parameters and to confirm the role played by the initial quality of the welds. In the long run, the aim of this study is to propose an...

  8. Control of extracellular cleavage of ProBDNF by high frequency neuronal activity

    OpenAIRE

    Nagappan, Guhan; Zaitsev, Eugene; Senatorov, Vladimir V.; Yang, Jianmin; Hempstead, Barbara L.; Lu, Bai

    2009-01-01

    Pro- and mature neurotrophins often elicit opposing biological effects. For example, mature brain-derived neurotrophic factor (mBDNF) is critical for long-term potentiation induced by high-frequency stimulation, whereas proBDNF facilitate long-term depression induced by low-frequency stimulation. Because mBDNF is derived from proBDNF by endoproteolytic cleavage, mechanisms regulating the cleavage of proBDNF may control the direction of BDNF regulation. Using methods that selectively detect pr...

  9. The Cerebellar Mossy Fiber Synapse as a Model for High-Frequency Transmission in the Mammalian CNS.

    Science.gov (United States)

    Delvendahl, Igor; Hallermann, Stefan

    2016-11-01

    The speed of neuronal information processing depends on neuronal firing frequency. Here, we describe the evolutionary advantages and ubiquitous occurrence of high-frequency firing within the mammalian nervous system in general. The highest firing frequencies so far have been observed at the cerebellar mossy fiber to granule cell synapse. The mechanisms enabling high-frequency transmission at this synapse are reviewed and compared with other synapses. Finally, information coding of high-frequency signals at the mossy fiber synapse is discussed. The exceptionally high firing frequencies and amenability to high-resolution technical approaches both in vitro and in vivo establish the cerebellar mossy fiber synapse as an attractive model to investigate high-frequency signaling from the molecular up to the network level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Planck 2013 results. VI. High Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143,217, 353, 545......, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 ..., and 857 GHz with an angular resolution ranging from 9.07 to 4.06. The detector noise per (effective) beam solid angle is respectively,10, 6 , 12, and 39 µK in the four lowest HFI frequency channels (100-353 GHz) and 13 and 14 kJy sr-1 in the 545 and 857 GHz channels. Relativeto the 143 GHz channel...

  11. Parametric Study of High Frequency Pulse Detonation Tubes

    Science.gov (United States)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  12. Extraction of ULSI Interconnect Resistance at High Frequencies

    Institute of Scientific and Technical Information of China (English)

    XIAO Xia; JIAN Duanduan; YAO Suying; ZHANG Shengcai; RUAN Gang

    2005-01-01

    Correct extraction of the ultra-large-scale integrated (ULSI) interconnect components at hight frequencies is very important for evaluating electrical performances of high-speed ULSI circuits.In this paper, the extraction of the interconnect resistance at high frequencies is derived from the Ohm′s law and verified by the software FastHenry.The results are also compared with those of another resistance formula originated from the effective area of the current flowing. The applicability of these two formulae is discussed.The influence of the interconnect geometry on the resistance at high frequencies is studied.The computation indicates that the effect of frequency on the resistance is weak when the skin depth is larger than half of the short side of the rectangular interconnect cross section.With further increase of frequency, the resistance increases obviously. Results imply that conductor with a square cross section exhibits the largest resistance for rectangular conductors of constant cross section area.

  13. On the high frequency polarization of pulsar radio emission

    CERN Document Server

    Von Hoensbroech, A; Krawczyk, A

    1998-01-01

    We have analyzed the polarization properties of pulsars at an observing frequency of 4.9 GHz. Together with low frequency data, we are able to trace polarization profiles over more than three octaves into an interesting frequency regime. At those high frequencies the polarization properties often undergo important changes such as significant depolarization. A detailed analysis allowed us to identify parameters, which regulate those changes. A significant correlation was found between the integrated degree of polarization and the loss of rotational energy E^dot. The data were also used to review the widely established pulsar profile classification scheme of core- and cone-type beams. We have discovered the existence of pulsars which show a strongly increasing degree of circular polarization towards high frequencies. Previously unpublished average polarization profiles, recorded at the 100m Effelsberg radio telescope, are presented for 32 radio pulsars at 4.9 GHz. The data were used to derive polarimetric param...

  14. Propagation of high frequency waves in the quiet solar atmosphere

    Directory of Open Access Journals (Sweden)

    Andić A.

    2008-01-01

    Full Text Available High-frequency waves (5 mHz to 20 mHz have previously been suggested as a source of energy accounting for partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analyzed here. Image sequences were taken by using the German Vacuum Tower Telescope (VTT, Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analyzed with wavelets. Wavelet phase-difference analysis was performed to determine whether the waves propagate. We observed the propagation of waves in the frequency range 10 mHz to 13 mHz. We also observed propagation of low-frequency waves in the ranges where they are thought to be evanescent in the regions where magnetic structures are present.

  15. Propagation of High Frequency Waves in the Quiet Solar Atmosphere

    Directory of Open Access Journals (Sweden)

    Andić, A.

    2008-12-01

    Full Text Available High-frequency waves (5 mHz to 20 mHz have previously been suggested as a source of energy accounting for partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analysed here. Image sequences were taken by using the German Vacuum Tower Telescope (VTT, Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analysed with wavelets. Wavelet phase-difference analysis was performed to determine whether the waves propagate. We observed the propagation of waves in the frequency range 10 mHz to 13 mHz. We also observed propagation of low-frequency waves in the ranges where they are thought to be evanescent in the regions where magnetic structures are present.

  16. How high frequency trading affects a market index.

    Science.gov (United States)

    Kenett, Dror Y; Ben-Jacob, Eshel; Stanley, H Eugene; Gur-Gershgoren, Gitit

    2013-01-01

    The relationship between a market index and its constituent stocks is complicated. While an index is a weighted average of its constituent stocks, when the investigated time scale is one day or longer the index has been found to have a stronger effect on the stocks than vice versa. We explore how this interaction changes in short time scales using high frequency data. Using a correlation-based analysis approach, we find that in short time scales stocks have a stronger influence on the index. These findings have implications for high frequency trading and suggest that the price of an index should be published on shorter time scales, as close as possible to those of the actual transaction time scale.

  17. Skyrmion-based high-frequency signal generator

    Science.gov (United States)

    Luo, Shijiang; Zhang, Yue; Shen, Maokang; Ou-Yang, Jun; Yan, Baiqian; Yang, Xiaofei; Chen, Shi; Zhu, Benpeng; You, Long

    2017-03-01

    Many concepts for skyrmion-based devices have been proposed, and most of their possible applications are based on the motion of skyrmions driven by a dc current in an area with a constricted geometry. However, skyrmion motion driven by a pulsed current has not been investigated so far. In this work, we propose a skyrmion-based high-frequency signal generator based on the pulsed-current-driven circular motion of skyrmions in a square-shaped film by micromagnetic simulation. The results indicate that skyrmions can move in a closed curve with central symmetry. The trajectory and cycle period can be adjusted by tuning the size of the film, the current density, the Dzyaloshinskii-Moriya interaction constant, and the local in-plane magnetic anisotropy. The period can be tuned from several nanoseconds to tens of nanoseconds, which offers the possibility to prepare high-frequency signal generator based on skyrmions.

  18. High-frequency Oscillations in Eyewalls of Tropical Cyclones

    Science.gov (United States)

    Li, Weibiao; Chen, Shumin

    2017-04-01

    High-frequency oscillations, with periods of about 2 hours, are first identified by applying wavelet analysis to observed minutely wind speeds around the eye and eyewall of tropical cyclones (TCs). Analysis of a model simulation of Typhoon Hagupit (2008) shows that the oscillations also occur in the intensity of TC, vertical motion, convergence activity and air density around the eyewall. Sequences of oscillations in these variables follow a certain order. In a typical cycle, the drop of density in the planetary boundary layer (PBL) is followed by an increase in the inward radial wind; this enhanced frictional convergence causes increase in density, followed by a decrease in the inward radial wind. The increase in convergence in the PBL causes increase of updraft at the top of the PBL, followed by high vertical velocity at high altitude of 8-10 km, then the increase of the maximum wind speed, and vice versa. Key words: tropical cyclone, high-frequency oscillations, eyewall, intensity

  19. Propagation of High Frequency Waves in the Quiet Solar Atmosphere

    CERN Document Server

    Andić, Aleksandra

    2008-01-01

    High-frequency waves (5 mHz to 20mHz) have previously been suggested as a source of energy accounting partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analysed here. Image sequences are taken using the German Vacuum Tower Telescope (VTT), Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analyzed with wavelets. Wavelet phase-difference analysis is performed to determine whether the waves propagate. We observe the propagation of waves in the frequency range 10mHz to 13mHz. We also observe propagation of low-frequency waves in the ranges where they are thought to be evanescent in regions where magnetic structures are present.

  20. Peripheral Circulatory Features during High-Frequency Jet Ventilation

    Directory of Open Access Journals (Sweden)

    M. B. Kontorovich

    2010-01-01

    Full Text Available The paper gives the results of a study of peripheral circulatory features during high-frequency jet ventilation (HFJV. The main specific features of peripheral circulation and oxygen transport during HFJV are formulated on the basis of a study of cardiac output (impedance cardiography, peripheral vascular resistance, peripheral vascular blood filling (photoplethysmogram analysis, adaptive peripheral blood flow reactions (spectral analysis of peripheral vascular pulsation. HFJV gives rise to the peculiar pattern of peripheral hemodynamics and tissue gas exchange, which is characterized by higher oxygen uptake without a decrease in mixed venous blood saturation, with normal extraction coefficient and preserved low peripheral vascular resistance. During HFJV, unlike traditional ventilation, the main peripheral hemodynamic feature is the increased capillary bed blood volume caused by the blood flow involvement of reserve capillaries under control of volume (parasympathetic regulation of adaptive peripheral hemodynamic reactions. Key words: high-frequency jet ventilation, oxygen transport, peripheral hemodynamics.

  1. Generation of sheet currents by high frequency fast MHD waves

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.

  2. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  3. How High Frequency Trading Affects a Market Index

    Science.gov (United States)

    Kenett, Dror Y.; Ben-Jacob, Eshel; Stanley, H. Eugene; gur-Gershgoren, Gitit

    2013-01-01

    The relationship between a market index and its constituent stocks is complicated. While an index is a weighted average of its constituent stocks, when the investigated time scale is one day or longer the index has been found to have a stronger effect on the stocks than vice versa. We explore how this interaction changes in short time scales using high frequency data. Using a correlation-based analysis approach, we find that in short time scales stocks have a stronger influence on the index. These findings have implications for high frequency trading and suggest that the price of an index should be published on shorter time scales, as close as possible to those of the actual transaction time scale. PMID:23817553

  4. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply...... these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop very high frequency switch mode power supplies. If these converters can be designed to operate efficiently, a huge...... of technologies for very high frequency switch mode power supplies. At these highly elevated frequencies normal bulky magnetics with heavy cores consisting of rare earth materials, can be replaced by air core inductors embedded in the printed circuit board. This is investigated thoroughly and both spirals...

  5. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications

    OpenAIRE

    Zhou, Qifa; Lau, Sienting; WU, DAWEI; Shung, K. Kirk

    2011-01-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the curr...

  6. Modeling high-frequency capacitance in SOI MOS capacitors

    Science.gov (United States)

    Łukasiak, Lidia; Jasiński, Jakub; Beck, Romuald B.; Ikraiam, Fawzi A.

    2016-12-01

    This paper presents a model of high frequency capacitance of a SOI MOSCAP. The capacitance in strong inversion is described with minority carrier redistribution in the inversion layer taken into account. The efficiency of the computational process is significantly improved. Moreover, it is suitable for the simulation of thin-film SOI structures. It may also be applied to the characterization of non-standard SOI MOSCAPS e.g. with nanocrystalline body.

  7. Measurements Of High Frequency Electromagnetic Waves In Center Of Mus

    OpenAIRE

    etem, taha; ABBASOV, Teymuraz

    2016-01-01

    All electrically powered devices cause electromagnetic wave exposure onhuman body and we use them nearly every moment in a day. Mobile phones,computers, televisions, hair dryers, lighting systems, etc. they all useelectricity and naturally radiate electromagnetic waves. Effects ofelectromagnetic waves are not clear but international organizations definelimit values depending on epidemiological studies in this field. In this studywe measure high frequency electromagnetic waves in city center o...

  8. Clinical Implications High Frequency Chest Wall Oscillation (HFCWO)

    OpenAIRE

    Mantellini E.; Perrero L.; Petrozzino S.; Gatta A.; Bona S.

    2012-01-01

    Purpose: patients with neuromuscular diseases presents an high incidence of respiratory infections favoured by stagnation of deep bronchial secretions and deficit of cough. The aim of the study is to evaluate the correct treatment of this condition and the role of High Frequency Chest Wall Oscillation (HFCWO) in helping the removal of bronchial secretions and reduce the incidence of infections in patients with neuromuscular disease.Methods: analysis of the current bibliography related to resp...

  9. Non-linear high-frequency waves in the magnetosphere

    Indian Academy of Sciences (India)

    S Moolla; R Bharuthram; S V Singh; G S Lakhina

    2003-12-01

    Using fluid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic field in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric field.

  10. Ultra high frequency induction welding of powder metal compacts

    Energy Technology Data Exchange (ETDEWEB)

    Cavdar, U.; Gulsahin, I.

    2014-10-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  11. Factors controlling high-frequency radiation from extended ruptures

    Science.gov (United States)

    Beresnev, Igor A.

    2017-09-01

    Small-scale slip heterogeneity or variations in rupture velocity on the fault plane are often invoked to explain the high-frequency radiation from earthquakes. This view has no theoretical basis, which follows, for example, from the representation integral of elasticity, an exact solution for the radiated wave field. The Fourier transform, applied to the integral, shows that the seismic spectrum is fully controlled by that of the source time function, while the distribution of final slip and rupture acceleration/deceleration only contribute to directivity. This inference is corroborated by the precise numerical computation of the full radiated field from the representation integral. We compare calculated radiation from four finite-fault models: (1) uniform slip function with low slip velocity, (2) slip function spatially modulated by a sinusoidal function, (3) slip function spatially modulated by a sinusoidal function with random roughness added, and (4) uniform slip function with high slip velocity. The addition of "asperities," both regular and irregular, does not cause any systematic increase in the spectral level of high-frequency radiation, except for the creation of maxima due to constructive interference. On the other hand, an increase in the maximum rate of slip on the fault leads to highly amplified high frequencies, in accordance with the prediction on the basis of a simple point-source treatment of the fault. Hence, computations show that the temporal rate of slip, not the spatial heterogeneity on faults, is the predominant factor forming the high-frequency radiation and thus controlling the velocity and acceleration of the resulting ground motions.

  12. High-frequency audibility: benefits for hearing-impaired listeners.

    Science.gov (United States)

    Hogan, C A; Turner, C W

    1998-07-01

    The present study was a systematic investigation of the benefit of providing hearing-impaired listeners with audible high-frequency speech information. Five normal-hearing and nine high-frequency hearing-impaired listeners identified nonsense syllables that were low-pass filtered at a number of cutoff frequencies. As a means of quantifying audibility for each condition, Articulation Index (AI) was calculated for each condition for each listener. Most hearing-impaired listeners demonstrated an improvement in speech recognition as additional audible high-frequency information was provided. In some cases for more severely impaired listeners, increasing the audibility of high-frequency speech information resulted in no further improvement in speech recognition, or even decreases in speech recognition. A new measure of how well hearing-impaired listeners used information within specific frequency bands called "efficiency" was devised. This measure compared the benefit of providing a given increase in speech audibility to a hearing-impaired listener to the benefit observed in normal-hearing listeners for the same increase in speech audibility. Efficiencies were calculated using the old AI method and the new AI method (which takes into account the effects of high speech presentation levels). There was a clear pattern in the results suggesting that as the degree of hearing loss at a given frequency increased beyond 55 dB HL, the efficacy of providing additional audibility to that frequency region was diminished, especially when this degree of hearing loss was present at frequencies of 4000 Hz and above. A comparison of analyses from the "old" and "new" AI procedures suggests that some, but not all, of the deficiencies of speech recognition in these listeners was due to high presentation levels.

  13. High-frequency capillary waves excited by oscillating microbubbles

    CERN Document Server

    Pommella, Angelo; Poulichet, Vincent; Garbin, Valeria

    2013-01-01

    This fluid dynamics video shows high-frequency capillary waves excited by the volumetric oscillations of microbubbles near a free surface. The frequency of the capillary waves is controlled by the oscillation frequency of the microbubbles, which are driven by an ultrasound field. Radial capillary waves produced by single bubbles and interference patterns generated by the superposition of capillary waves from multiple bubbles are shown.

  14. Significance of High-frequency Electrical Brain Activity.

    Science.gov (United States)

    Kobayashi, Katsuhiro; Akiyama, Tomoyuki; Agari, Takashi; Sasaki, Tatsuya; Shibata, Takashi; Hanaoka, Yoshiyuki; Akiyama, Mari; Endoh, Fumika; Oka, Makio; Date, Isao

    2017-06-01

     Electroencephalogram (EEG) data include broadband electrical brain activity ranging from infra-slow bands (frequency bands (e.g., the approx. 10 Hz alpha rhythm) to high-frequency bands of up to 500 Hz. High-frequency oscillations (HFOs) including ripple and fast ripple oscillations (80-200 Hz and>200 / 250 Hz, respectively) are particularly of note due to their very close relationship to epileptogenicity, with the possibility that they could function as a surrogate biomarker of epileptogenicity. In contrast, physiological high-frequency activity plays an important role in higher brain functions, and the differentiation between pathological / epileptic and physiological HFOs is a critical issue, especially in epilepsy surgery. HFOs were initially recorded with intracranial electrodes in patients with intractable epilepsy as part of a long-term invasive seizure monitoring study. However, fast oscillations (FOs) in the ripple and gamma bands (40-80 Hz) are now noninvasively detected by scalp EEG and magnetoencephalography, and thus the scope of studies on HFOs /FOs is rapidly expanding.

  15. Clinical Implications High Frequency Chest Wall Oscillation (HFCWO

    Directory of Open Access Journals (Sweden)

    Mantellini E.

    2012-01-01

    Full Text Available Purpose: patients with neuromuscular diseases presents an high incidence of respiratory infections favoured by stagnation of deep bronchial secretions and deficit of cough. The aim of the study is to evaluate the correct treatment of this condition and the role of High Frequency Chest Wall Oscillation (HFCWO in helping the removal of bronchial secretions and reduce the incidence of infections in patients with neuromuscular disease.Methods: analysis of the current bibliography related to respiratory infections and neuromuscular disease. PCEF (Peak Cough Expiratory Flow is used as a standardized indicator of efficiency of cough.Results: the High Frequency Chest Wall Oscillation (HFCWO is useful, in cases of increased production of mucus and impairment of muco-ciliary clearance, to remove the tracheobronchial secretions and reduce the incidence of infections.Conclusions: the correct approach to patients with neuromuscular disease and frequent respiratory infections is focused on treatment of cough ineffective and management of bronchial secretions. High Frequency Chest Wall Oscillation (HFCWO (VEST has a central role in treatment of cough ineffective and management of bronchial secretions reducing respiratory infections.

  16. Occupational hearing loss: tonal audiometry X high frequencies audiometry

    Directory of Open Access Journals (Sweden)

    Lauris, José Roberto Pereira

    2009-09-01

    Full Text Available Introduction: Studies on the occupational exposure show that noise has been reaching a large part of the working population around the world, and NIHL (noise-induced hearing loss is the second most frequent disease of the hearing system. Objective: To review the audiometry results of employees at the campus of the University of São Paulo, Bauru. Method: 40 audiometry results were analyzed between 2007 and 2008, whose ages comprised between 32 and 59 years, of both sexes and several professions: gardeners, maintenance technicians, drivers etc. The participants were divided into 2 groups: those with tonal thresholds within acceptable thresholds and those who presented auditory thresholds alterations, that is tonal thresholds below 25 dB (NA in any frequency (Administrative Rule no. 19 of the Ministry of Labor 1998. In addition to the Conventional Audiologic Evaluation (250Hz to 8.000Hz we also carried out High Frequencies Audiometry (9000Hz, 10000Hz, 11200Hz, 12500Hz, 14000Hz and 16000Hz. Results: According to the classification proposed by FIORINI (1994, 25.0% (N=10 they presented with NIHL suggestive audiometric configurations. The results of high frequencies Audiometry confirmed worse thresholds than those obtained in the conventional audiometry in the 2 groups evaluated. Conclusion: The use of high frequencies audiometry proved to be an important register as a hearing alteration early detection method.

  17. Investigating DOC export dynamics using high-frequency instream concentration measurements

    Science.gov (United States)

    Oosterwoud, Marieke; Keller, Toralf; Musolff, Andreas; Frei, Sven; Park, Ji-Hyung; Fleckenstein, Jan H.

    2014-05-01

    Being able to monitor DOC concentrations using in-situ high frequency measurements makes it possible to better understand concentration-discharge behavior under different hydrological conditions. We developed a UV-Vis probe setup for modified/adapted use under field conditions. The quasi mobile probe setup allows a more flexible probe deployment. New or existing monitoring sites can easily be equipped for quasi-continuous monitoring or measurements can be performed at changing locations, without the need for additional infrastructure. We were able to gather high frequency data on DOC dynamics for one year in two streams in the Harz mountains in Germany. It proved that obtaining accurate DOC concentrations from the UV-Vis probes required frequent maintenance and probe calibration. The advantage of the setup over standard monitoring protocols becomes evident when comparing net exports over a year. In addition to mass improved balance calculations the high-frequency measurements can reveal intricate hysteretic relationships between discharge and concentrations that can provide valuable insights into the hydrologic dynamics and mechanisms that govern the delivery of DOC to the receiving waters. Measurements with similar probes from two additional catchments in Southern Germany and South Korea will be used to illustrate different discharge-concentration relationships and what can be learned from them about the hydrologic mechanisms that control the dynamics of DOC export.

  18. Inactivation of bacteria and yeast using high-frequency ultrasound treatment.

    Science.gov (United States)

    Gao, Shengpu; Hemar, Yacine; Ashokkumar, Muthupandian; Paturel, Sara; Lewis, Gillian D

    2014-09-01

    High-frequency (850 kHz) ultrasound was used to inactivate bacteria and yeast at different growth phases under controlled temperature conditions. Three species of bacteria, Enterobacter aerogenes, Bacillus subtilis and Staphylococcus epidermidis as well as a yeast, Aureobasidium pullulans were considered. The study shows that high-frequency ultrasound is highly efficient in inactivating the bacteria in both their exponential and stationary growth phases, and inactivation rates of more than 99% were achieved. TEM observation suggests that the mechanism of bacteria inactivation is mainly due to acoustic cavitation generated free radicals and H2O2. The rod-shaped bacterium B. subtilis was also found to be sensitive to the mechanical effects of acoustic cavitation. The study showed that the inactivation process continued even after ultrasonic processing cessed due to the presence of H2O2, generated during acoustic cavitation. Compared to bacteria, the yeast A. pullulans was found to be more resistant to high-frequency ultrasound treatment.

  19. Frequency dependence of lung volume changes during superimposed high-frequency jet ventilation and high-frequency jet ventilation.

    Science.gov (United States)

    Sütterlin, R; Priori, R; Larsson, A; LoMauro, A; Frykholm, P; Aliverti, A

    2014-01-01

    Superimposed high-frequency jet ventilation (SHFJV) has proved to be safe and effective in clinical practice. However, it is unclear which frequency range optimizes ventilation and gas exchange. The aim of this study was to systematically compare high-frequency jet ventilation (HFJV) with HFJV by assessing chest wall volume variations (ΔEEV(CW)) and gas exchange in relation to variable high frequency. SHFJV or HFJV were used alternatively to ventilate the lungs of 10 anaesthetized pigs (21-25 kg). The low-frequency component was kept at 16 min(-1) in SHFJV. In both modes, high frequencies ranging from 100 to 1000 min(-1) were applied in random order and ventilation was maintained for 5 min in all modalities. Chest wall volume variations were obtained using opto-electronic plethysmography. Airway pressures and arterial blood gases were measured repeatedly. SHFJV increased ΔEEV(CW) compared with HFJV; the difference ranged from 43 to 68 ml. Tidal volume (V(T)) was always >240 ml during SHFJV whereas during HFJV ranged from 92 ml at the ventilation frequency of 100 min(-1) to negligible values at frequencies >300 min(-1). We observed similar patterns for Pa(O₂) and Pa(CO₂). SHFJV provided generally higher, frequency-independent oxygenation (Pa(O₂) at least 32.0 kPa) and CO₂ removal (Pa(CO₂) ∼5.5 kPa), whereas HFJV led to hypoxia and hypercarbia at higher rates (Pa(O₂) 10 kPa at f(HF)>300 min(-1)). In a porcine model, SHFJV was more effective in increasing end-expiratory volume than single-frequency HFJV, but both modes may provide adequate ventilation in the absence of airway obstruction and respiratory disease, except for HFJV at frequencies ≥300 min(-1).

  20. Investigations of high-frequency induction hardening process for piston rod of shock absorber

    Institute of Scientific and Technical Information of China (English)

    Xianhua Cheng; Qianqian Shangguan

    2005-01-01

    The microhardness of piston rods treated with different induction hardening processes was tested. The experimental results reveal that the depth of the hardened zone is proportional to the ratio of the moving speed of the piston rod to the output power of the induction generator. This result is proved correct through the Finite Element Method (FEM) simulation of the thermal field of induction heating. From tensile and impact tests, an optimized high frequency induction hardening process for piston rods has been obtained, where the output power was 82%×80 kW and the moving speed of workpiece was 5364 mm/min. The piston rods, treated by the optimized high frequency induction hardening process, show the best comprehensive mechanical performance.

  1. Electrosynthesis and characterization of conducting polypyrrole elaborated under high frequency ultrasound irradiation.

    Science.gov (United States)

    Et Taouil, A; Lallemand, F; Hihn, J Y; Blondeau-Patissier, V

    2011-07-01

    The effects of high frequency ultrasound (500kHz) on pyrrole electropolymerization in sodium perchlorate aqueous medium have been investigated. Cyclic voltametry studies showed that there is no influence on pyrrole oxidation potential. Scanning Electron Microscopy (SEM) imaging, and mechanical and optical profiling, revealed thinner, denser and more homogeneous surface structure for polypyrrole films elaborated under ultrasound irradiation. This is attributed to cavitation bubble asymmetric collapse close to the interface, which should induce changes in the nucleation-growth mechanism during the first polymerization stage. An increase of approximately 27% in doping level for sonicated films was revealed by X-ray Photoelectron Spectroscopy (XPS) analyses.

  2. High Frequency Ground Motion from Finite Fault Rupture Simulations

    Science.gov (United States)

    Crempien, Jorge G. F.

    There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.

  3. Computation of High-Frequency Waves with Random Uncertainty

    KAUST Repository

    Malenova, Gabriela

    2016-01-06

    We consider the forward propagation of uncertainty in high-frequency waves, described by the second order wave equation with highly oscillatory initial data. The main sources of uncertainty are the wave speed and/or the initial phase and amplitude, described by a finite number of random variables with known joint probability distribution. We propose a stochastic spectral asymptotic method [1] for computing the statistics of uncertain output quantities of interest (QoIs), which are often linear or nonlinear functionals of the wave solution and its spatial/temporal derivatives. The numerical scheme combines two techniques: a high-frequency method based on Gaussian beams [2, 3], a sparse stochastic collocation method [4]. The fast spectral convergence of the proposed method depends crucially on the presence of high stochastic regularity of the QoI independent of the wave frequency. In general, the high-frequency wave solutions to parametric hyperbolic equations are highly oscillatory and non-smooth in both physical and stochastic spaces. Consequently, the stochastic regularity of the QoI, which is a functional of the wave solution, may in principle below and depend on frequency. In the present work, we provide theoretical arguments and numerical evidence that physically motivated QoIs based on local averages of |uE|2 are smooth, with derivatives in the stochastic space uniformly bounded in E, where uE and E denote the highly oscillatory wave solution and the short wavelength, respectively. This observable related regularity makes the proposed approach more efficient than current asymptotic approaches based on Monte Carlo sampling techniques.

  4. On the Ongoing Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, describes......The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...

  5. Articulated pipes conveying fluid pulsating with high frequency

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1999-01-01

    Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging...... pipe position will lose stability if the mean flow speed exceeds a certain critical value. Adding a pulsating component to the fluid flow is shown to stabilize the hanging position for high values of the ratio between fluid and pipe-mass, and to marginally destabilize this position for low ratios...

  6. High frequency microphone measurements for transition detection on airfoils

    DEFF Research Database (Denmark)

    Døssing, Mads

    Time series of pressure fluctuations has been obtained using high frequency microphones distributed over the surface of airfoils undergoing wind tunnel tests in the LM Windtunnel, owned by ’LM Glasfiber’, Denmark. The present report describes the dataanalysis, with special attention given...... pressure) and Tollmien-Schlichting frequencies. The tests were made at Reynolds and Mach numbers corresponding to the operating conditions of a typical horizontal axis wind turbine (HAWT). The Risø B1-18, Risø C2-18 and NACA0015 profiles were tested and the measured transition points are reported....

  7. High frequency chest compression therapy: a case study.

    Science.gov (United States)

    Butler, S; O'Neill, B

    1995-01-01

    A new device, the ThAIRapy Bronchial Drainage System, enables patients with cystic fibrosis to self-administer the technique of high frequency chest compression (HFCC) to assist with mucociliary clearance. We review the literature on HFCC and outline a case study of a patient currently using the ThAIRapy Bronchial Drainage System. While mucociliary clearance and lung function may be enhanced by HFCC therapy, more research is needed to determine its efficacy, cost benefits, and optimum treatment guidelines. Although our initial experience with the patient using this device has been positive, we were unable to accurately evaluate the ThAIRapy Bronchial Drainage System.

  8. High-Frequency-Induced Cathodic Breakdown during Plasma Electrolytic Oxidation

    Science.gov (United States)

    Nominé, A.; Nominé, A. V.; Braithwaite, N. St. J.; Belmonte, T.; Henrion, G.

    2017-09-01

    The present communication shows the possibility of observing microdischarges under cathodic polarization during plasma electrolytic oxidation at high frequency. Cathodic microdischarges can ignite beyond a threshold frequency found close to 2 kHz. The presence (respectively, absence) of an electrical double layer is put forward to explain how the applied voltage can be screened, which therefore prevents (respectively, promotes) the ignition of a discharge. Interestingly, in the conditions of the present study, the electrical double layer requires between 175 and 260 μ s to form. This situates the expected threshold frequency between 1.92 and 2.86 kHz, which is in good agreement with the value obtained experimentally.

  9. High Frequency Modulation Method for Measuring of Birefringence

    Directory of Open Access Journals (Sweden)

    Šulc M.

    2013-05-01

    Full Text Available A method of optical birefringence measurement is presented. It uses an el ectro-optic modulator for the high frequency modulation of polarization of the laser beam. The developed optical apparatus exhibits high sensitivity. It is able to measure very small birefringence of samples down to 10-3 rad. The accuracy and sensitivity of the method was checked by measurement of calibrated Sol eil – Babi net compensator. Method can be also used for online and accurate measurement of an optical components birefringence. This application was developed with the aim to measure Cotton-Mouton effect in air and nitrogen.

  10. High-frequency electric field amplification in a magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, Aleksandr V [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2006-11-30

    In the investigation of cyclotron ion heating in systems designed for plasma isotope separation, the high-frequency (HF) electric field amplification effect was found to occur in equilibrium plasma. In the present article this effect is treated as a result of the interaction of the plasma placed in a constant external magnetic field with the HF modes of the vacuum chamber. Consistent elaboration of this approach allowed obtaining a clear interpretation of the HF electric field amplification effect and constructing a simple model of HF field excitation in a plasma column embedded in the external magnetic field. (methodological notes)

  11. Inference from high-frequency data: A subsampling approach

    DEFF Research Database (Denmark)

    Christensen, Kim; Podolskij, Mark; Thamrongrat, Nopporn

    -definite by construction. Moreover, the subsampler is to some extent automatic, as it does not exploit explicit knowledge about the structure of the asymptotic covariance. It therefore tends to adapt to the problem at hand and be robust against misspecification of the noise process. As such, this paper facilitates...... copies of the original statistic based on local stretches of high-frequency data, and then it studies the sampling variation of these. We show that our estimator is consistent both in frictionless markets and models with additive microstructure noise. We derive a rate of convergence for it and are also...

  12. A SYNCHRONIZATION ALGORITHM FOR HF (HIGH FREQUENCY) BROADBAND OFDM SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Yang Lei; Zhang You'ai

    2008-01-01

    In this letter, a kind of associated synchronization algorithm which is suitable for HF (High Frequency) broadband OFDM (Orthogonal Frequency Division Multiplexing) system is presented based on describing and constructing the GMW (Gorden, Mills and Welch) sequence. The algorithm is based on the Schmidl and Minn's symbol timing principle, the constructed GMW sequence is transmitted and disposed, and the synchronization is adjudicated using the correlation of GMW sequence. The simulation result indicates that this algorithm has high performance synchronization ability under the low SNR (Signal to Noise Ratio) at two different kinds of channel models.

  13. High frequency sampling of a continuous-time ARMA process

    CERN Document Server

    Brockwell, Peter J; Klüppelberg, Claudia

    2011-01-01

    Continuous-time autoregressive moving average (CARMA) processes have recently been used widely in the modeling of non-uniformly spaced data and as a tool for dealing with high-frequency data of the form $Y_{n\\Delta}, n=0,1,2,...$, where $\\Delta$ is small and positive. Such data occur in many fields of application, particularly in finance and the study of turbulence. This paper is concerned with the characteristics of the process $(Y_{n\\Delta})_{n\\in\\bbz}$, when $\\Delta$ is small and the underlying continuous-time process $(Y_t)_{t\\in\\bbr}$ is a specified CARMA process.

  14. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    The paper deals with the wave buoy analogy where a ship is considered as a wave buoy, so that measured ship responses are used as a basis to estimate wave spectra and associated sea state parameters. The study presented follows up on a previous paper, Nielsen [Nielsen UD. Response-based estimation...... processes are carried out in the present paper; however with one of the responses being the relative motion which is a type of response that is sensitive to high-frequency excitations. Based on the present study it is shown that by including the relative motion, the frequency-wise energy distribution can...

  15. High-Frequency Properties of Ultracool Dwarf Star Radio Transients, or The Little Dwarfs that Could

    Science.gov (United States)

    Ravi, Vikram; Hobbs, George; Keith, Michael; Champion, David; Ferrario, Lilia; Wickramasinghe, Dayal

    2009-07-01

    Radio transients are among the most intriguing phenomena in astronomy. Numerous flaring events, some periodic, have lately surfaced, with only few identified with known objects such as magnetic stars. Periodic, non-thermal, highly circularly-polarised pulses and unusually strong quiescence have been recently detected from three late-type quickly-rotating (~2hr periods) ultracool dwarf stars (>M7) at centimetric wavelengths. This violates empirical relations and quantifiers of dwarf-star surface activity. Measurements of dwarf-star kiloGauss magnetic fields have led to emission models based on dipole fields and incoherent gyrosynchrotron or coherent electron-cyclotron maser mechanisms. We propose to observe two such similar objects at 1cm and 7mm (LP944-20 and DENIS1048-3956) that are known to flare but without detected periodicities. No observations of high-frequency emission from any magnetic star have been published. The broadband capabilities of CABB will provide extraordinary frequency-synthesised sensitivity in a search for periodicity. The obtained spectral indices, along with possible high-frequency spectral cut-offs, will greatly help constrain emission models of magnetic stars. This is the first attempt to characterise the high-frequency transient radio sky, a key science project for future telescopes such as ASKAP and the SKA.

  16. [Membranotropic effects of electromagnetic radiation of extremely high frequency on Escherichia coli].

    Science.gov (United States)

    Trchunian, A; Ogandzhanian, E; Sarkisian, E; Gonian, S; Oganesian, A; Oganesian, S

    2001-01-01

    It was found that "sound" electromagnetic radiations of extremely high frequencies (53.5-68 GHz) or millimeter waves (wavelength range of 4.2-5.6 mm) of low intensity (power density 0.01 mW) have a bactericidal effect on Escherichia coli bacteria. It was shown that exposure to irradiation of extremely high frequencies increases the electrokinetic potential and surface change density of bacteria and decreases of membrane potential. The total secretion of hydrogen ions was suppressed, the H+ flux from the cytoplasm to medium decreased, and the flux of N,N'-dicyclohexylcarbodiimide-sensitive potassium ions increased, which was accompanied by changes in the stoichiometry of these fluxes and an increase in the sensitivity of H+ ions to N,N'-dicyclohexylcarbodiimide. The effects depended on duration of exposure: as the time of exposure increased, the bactericidal effect increased, whereas the membranotropic effects decreased. The effects also depended on growth phase of bacteria: the irradiation affected the cells in the stationary but not in the logarithmic phase. It is assumed that the H(+)-ATPase complex F0F1 is involved in membranotropic effects of electromagnetic radiation of extremely high frequencies. Presumably, there are some compensatory mechanisms that eliminate the membranotropic effects.

  17. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Directory of Open Access Journals (Sweden)

    Wiebke Schubotz

    Full Text Available Vowel identification in noise using consonant-vowel-consonant (CVC logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz. CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  18. Suppressing high-frequency temperature oscillations in microchannels with surface structures

    Science.gov (United States)

    Zhu, Yangying; Antao, Dion S.; Bian, David W.; Rao, Sameer R.; Sircar, Jay D.; Zhang, Tiejun; Wang, Evelyn N.

    2017-01-01

    Two-phase microchannel heat sinks are attractive for thermal management of high heat flux electronic devices, yet flow instability which can lead to thermal and mechanical fatigue remains a significant challenge. Much work has focused on long-timescale (˜seconds) flow oscillations which are usually related to the compressible volume in the loop. The rapid growth of vapor bubbles which can also cause flow reversal, however, occurs on a much shorter timescale (˜tens of milliseconds). While this high-frequency oscillation has often been visualized with high-speed imaging, its effect on the instantaneous temperature has not been fully investigated due to the typical low sampling rates of the sensors. Here, we investigate the temperature response as a result of the high-frequency flow oscillation in microchannels and the effect of surface microstructures on this temperature oscillation with a measurement data acquisition rate of 1000 Hz. For smooth surface microchannels, fluid flow oscillated between complete dry-out and rewetting annular flow due to the short-timescale flow instability, which caused high-frequency and large amplitude temperature oscillations (10 °C in 25 ms). In comparison, hydrophilic surface structures on the microchannel promoted capillary flow which delayed and suppressed dry-out in each oscillation cycle, and thus significantly reduced the temperature oscillation at high heat fluxes. This work suggests that promoting capillary wicking via surface structures is a promising technique to reduce thermal fatigue in high heat flux two-phase microchannel thermal management devices.

  19. 10 K high frequency pulse tube cryocooler with precooling

    Science.gov (United States)

    Liu, Sixue; Chen, Liubiao; Wu, Xianlin; Zhou, Yuan; Wang, Junjie

    2016-07-01

    A high frequency pulse tube cryocooler with precooling (HPTCP) has been developed and tested to meet the requirement of weak magnetic signals measurement, and the performance characteristics are presented in this article. The HPTCP is a two-stage pulse tube cryocooler with the precooling-stage replaced by liquid nitrogen. Two regenerators completely filled with stainless steel (SS) meshes are used in the cooler. Together with cold inertance tubes and cold gas reservoir, a cold double-inlet configuration is used to control the phase relationship of the HPTCP. The experimental result shows that the cold double-inlet configuration has improved the performance of the cooler obviously. The effects of operation parameters on the performance of the cooler are also studied. With a precooling temperature of 78.5 K, the maximum refrigeration capacity is 0.26 W at 15 K and 0.92 W at 20 K when the input electric power are 174 W and 248 W respectively, and the minimum no-load temperature obtained is 10.3 K, which is a new record on refrigeration temperature for high frequency pulse tube cryocooler reported with SS completely used as regenerative matrix.

  20. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  1. A perspective on high-frequency ultrasound for medical applications

    Science.gov (United States)

    Mamou, Jonathan; Aristizába, Orlando; Silverman, Ronald H.; Ketterling, Jeffrey A.

    2010-01-01

    High-frequency ultrasound (HFU, >15 MHz) is a rapidly developing field. HFU is currently used and investigated for ophthalmologic, dermatologic, intravascular, and small-animal imaging. HFU offers a non-invasive means to investigate tissue at the microscopic level with resolutions often better than 100 μm. However, fine resolution is only obtained over the limited depth-of-field (˜1 mm) of single-element spherically-focused transducers typically used for HFU applications. Another limitation is penetration depth because most biological tissues have large attenuation at high frequencies. In this study, two 5-element annular arrays with center frequencies of 17 and 34 MHz were fabricated and methods were developed to obtain images with increased penetration depth and depth-of-field. These methods were used in ophthalmologic and small-animal imaging studies. Improved blood sensitivity was obtained when a phantom mimicking a vitreous hemorrhage was imaged. Central-nervous systems of 12.5-day-old mouse embryos were imaged in utero and in three dimensions for the first time.

  2. High-frequency Pulse-tube Refrigerator for 4 K

    Science.gov (United States)

    Tanaeva, I. A.; Klaasse Bos, C. G.; de Waele, A. T. A. M.

    2006-04-01

    At present pulse-tube refrigerators (PTRs), used for the important temperature region of 4 K, are of the Gifford-McMahon (GM)-type. The main sources of losses in GM-type PTRs are the compressor and the rotary valve. The efficiency of the combination of the compressor and the rotary valve is only about 30%. In addition to that GM-type compressors are heavy and need periodic maintenance. The main goal of this research is to develop a Stirling-type 4-K pulse-tube refrigerator. This implies higher operating frequencies, compared to the usual 1-2 Hz. At higher frequencies a number of properties of a pulse-tube system, such as length-to-diameter ratios of the pulse tubes and the regenerator, volume and configuration of a regenerator material, phase-shift control method, etc., change significantly, and, therefore, require detailed study. The interactions between various parameters of the pulse tube and of the linear compressor are very complicated. Therefore, as a first part of this research, we study the pulse tube at high frequencies, independent of the compressor. We generate high-frequency pressure oscillations, using a GM-type compressor and a special type of rotary valve, which enables us to operate at frequencies up to 20 Hz. Results of this work are described in this contribution.

  3. Design of a high frequency low voltage CMOS operational amplifier

    Directory of Open Access Journals (Sweden)

    Priyanka Kakoty

    2011-03-01

    Full Text Available A method is presented in this paper for the design of a high frequency CMOS operational amplifier (Op-Amp which operates at 3V power supply using tsmc 0.18 micron CMOS technology. The OPAMPdesigned is a two-stage CMOS OPAMP followed by an output buffer. This Operational Transconductance Amplifier (OTA employs a Miller capacitor and is compensated with a current buffer compensation technique. The unique behaviour of the MOS transistors in saturation region not only allows a designer to work at a low voltage, but also at a high frequency. Designing of two-stage op-ampsis a multi-dimensional-optimization problem where optimization of one or more parameters may easily result into degradation of others. The OPAMP is designed to exhibit a unity gain frequency of 2.02GHzand exhibits a gain of 49.02dB with a 60.50 phase margin. As compared to the conventional approach, the proposed compensation method results in a higher unity gain frequency under the same load condition.Design has been carried out in Tanner tools. Simulation results are verified using S-edit and W-edit.

  4. Design of a high frequency low voltage CMOS operational amplifier

    Directory of Open Access Journals (Sweden)

    Priyanka Kakoty

    2011-03-01

    Full Text Available A method is presented in this paper for the design of a high frequency CMOS operational amplifier (Op-Amp which operates at 3V power supply using tsmc 0.18 micron CMOS technology. The OPAMPdesigned is a two-stage CMOS OPAMP followed by an output buffer. This OperationalTransconductance Amplifier (OTA employs a Miller capacitor and is compensated with a current buffercompensation technique. The unique behaviour of the MOS transistors in saturation region not onlyallows a designer to work at a low voltage, but also at a high frequency. Designing of two-stage op-ampsis a multi-dimensional-optimization problem where optimization of one or more parameters may easilyresult into degradation of others. The OPAMP is designed to exhibit a unity gain frequency of 2.02GHzand exhibits a gain of 49.02dB with a 60.50 phase margin. As compared to the conventional approach, theproposed compensation method results in a higher unity gain frequency under the same load condition.Design has been carried out in Tanner tools. Simulation results are verified using S-edit and W-edit.

  5. Corrosion monitoring using high-frequency guided waves

    Science.gov (United States)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  6. Efficient Design of Sierpinski Fractal Antenna for High Frequency Applications

    Directory of Open Access Journals (Sweden)

    Rajdeep Singh

    2014-08-01

    Full Text Available A wideband published slot antenna appropriate for wireless code division multiple access (WCDMA and sustaining the international interoperability for microwave access (WiMAX applications is planned here. The antenna is fractal line fed and its construction is based on fractal geometry where the resonance frequency of antenna is dropped by applying iteration methods. Fractal antennas are the most suited for aerospace and UWB applications because of their low profile, light weight and low power handling capacity. They can be designed in a variety of shapes in order to obtain enhanced gain and bandwidth, dual band and circular polarization to even ultra-wideband operation. For the simulation process ANSOFT HFSS (high frequency structure simulator has been used. The effect of antenna dimensions and substrate parameters on the performance of antenna have been discussed. The antenna has been designed using the Arlon substrate with relative permittivity of 1.3 and a substrate of Sierpinski Carpet shaped placed on it. Feed used is the fractal line feed. The designed antenna is a low profile, small size and multiband antenna since it can be operated at different frequencies within the frequency range of 4.3GHz to 11GHz. It includes the frequencies used for wireless WCDMA application and used to receive and transmit a high-frequency signal.

  7. Planck 2013 results. VI. High Frequency Instrument data processing

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bowyer, J.W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, L. -Y; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Jeune, M. Le; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; MacTavish, C.J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J.P.; Racine, B.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Shellard, E.P.S.; Spencer, L.D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J.A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (hereafter HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857 GHz with an angular resolution ranging from 9.7 to 4.6 arcmin. The detector noise per (effective) beam solid angle is respectively, 10, 6, 12 and 39 microKelvin in HFI four lowest frequency channel (100--353 GHz) and 13 and 14 kJy/sr for the 545 and 857 GHz channels. Using the 143 GHz channel as a reference, these two high frequency channels are intercalibrated within 5% and the 353 GHz relative calibration is at the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 < l <2500), are intercalibrated at better than 0.2 %.

  8. Advances in high frequency ultrasound separation of particulates from biomass.

    Science.gov (United States)

    Juliano, Pablo; Augustin, Mary Ann; Xu, Xin-Qing; Mawson, Raymond; Knoerzer, Kai

    2017-03-01

    In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  9. Data mining neocortical high-frequency oscillations in epilepsy and controls.

    Science.gov (United States)

    Blanco, Justin A; Stead, Matt; Krieger, Abba; Stacey, William; Maus, Douglas; Marsh, Eric; Viventi, Jonathan; Lee, Kendall H; Marsh, Richard; Litt, Brian; Worrell, Gregory A

    2011-10-01

    Transient high-frequency (100-500 Hz) oscillations of the local field potential have been studied extensively in human mesial temporal lobe. Previous studies report that both ripple (100-250 Hz) and fast ripple (250-500 Hz) oscillations are increased in the seizure-onset zone of patients with mesial temporal lobe epilepsy. Comparatively little is known, however, about their spatial distribution with respect to seizure-onset zone in neocortical epilepsy, or their prevalence in normal brain. We present a quantitative analysis of high-frequency oscillations and their rates of occurrence in a group of nine patients with neocortical epilepsy and two control patients with no history of seizures. Oscillations were automatically detected and classified using an unsupervised approach in a data set of unprecedented volume in epilepsy research, over 12 terabytes of continuous long-term micro- and macro-electrode intracranial recordings, without human preprocessing, enabling selection-bias-free estimates of oscillation rates. There are three main results: (i) a cluster of ripple frequency oscillations with median spectral centroid = 137 Hz is increased in the seizure-onset zone more frequently than a cluster of fast ripple frequency oscillations (median spectral centroid = 305 Hz); (ii) we found no difference in the rates of high frequency oscillations in control neocortex and the non-seizure-onset zone neocortex of patients with epilepsy, despite the possibility of different underlying mechanisms of generation; and (iii) while previous studies have demonstrated that oscillations recorded by parenchyma-penetrating micro-electrodes have higher peak 100-500 Hz frequencies than penetrating macro-electrodes, this was not found for the epipial electrodes used here to record from the neocortical surface. We conclude that the relative rate of ripple frequency oscillations is a potential biomarker for epileptic neocortex, but that larger prospective studies correlating high-frequency

  10. High frequency conductivity of hot electrons in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Amekpewu, M., E-mail: mamek219@gmail.com [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, S.Y. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Musah, R. [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, N.G. [Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Abukari, S.S.; Dompreh, K.A. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana)

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac–dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons’ source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  11. Planck early results. VI. The High Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Bucher, M.; Castex, G.; Colley, J.-M.

    2011-01-01

    We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545...... and 857 GHz with an angular resolution ranging from 9.9 to 4.4′. The white noise level is around 1.5 μK degree or less in the 3 main CMB channels (100-217 GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created...... to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project. © ESO, 2011....

  12. Gravitational-wave astronomy: the high-frequency window

    CERN Document Server

    Andersson, N; Andersson, Nils; Kokkotas, Kostas D

    2004-01-01

    This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated ``bread-and-butter'' source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from ...

  13. High frequency techniques an introduction to RF and microwave engineering

    CERN Document Server

    White, Joseph F

    2004-01-01

    A practical guide for today's wireless engineerHigh Frequency Techniques: An Introduction to RF and Microwave Engineering is a clearly written classical circuit and field theory text illustrated with modern computer simulation software. The book's ten chapters cover: *The origins and current uses of wireless transmission *A review of AC analysis, Kirchhoff's laws, RLC elements, skin effect, and introduction to the use of computer simulation software*Resonators, Q definitions, and Q-based impedance matching *Transmission lines, waves, VSWR, reflection phenomena, Fano's reflection bandwidth limits, telegrapher, and impedance transformation equations*Development and in-depth use of the Smith Chart *Matrix algebra with Z, Y, ABCD, S, and T matrix applications*An unusually thorough introduction to electromagnetic field theory, step-by-step development of vector calculus, Maxwell's equations, waveguides, propagation, and antennas*Backward wave, branch line, rat race and Wilkinson couplers, impedance measurements, a...

  14. High Frequency Stochastic Resonance in Periodically Driven Systems

    CERN Document Server

    Dykman, M I

    1993-01-01

    Abstract: High frequency stochastic resonance (SR) phenomena, associated with fluctuational transitions between coexisting periodic attractors, have been investigated experimentally in an electronic model of a single-well Duffing oscillator bistable in a nearly resonant field of frequency $\\omega_F$. It is shown that, with increasing noise intensity, the signal/noise ratio (SNR) for a signal due to a weak trial force of frequency $\\Omega decreases again at higher noise intensities: behaviour similar to that observed previously for conventional (low frequency) SR in systems with static bistable potentials. The stochastic enhancement of the SNR of an additional signal at the mirror-reflected frequency $\\vert Ømega - 2 ømega_F \\vert$ is also observed, in accordance with theoretical predictions. Relationships with phenomena in nonlinear optics are discussed.

  15. High frequency conductivity of hot electrons in carbon nanotubes

    Science.gov (United States)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac-dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons' source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  16. High frequency acoustic microscopy with Fresnel zoom lens

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The acoustic field distributions and the convergent beams generated by the planar-structure Fresnel zone transducers on solid surface are investigated. Because only 0 and 180 degree phase transducers are used, an imaging system with the Fresnel zoom lens could work at very high frequency, which overcomes the frequency limit of the traditional phased array acoustic imaging system. Simulation results are given to illustrate the acoustic field distributions along the focal axis and the whole plane as well. Based on the principle of scanning of the focus with the change of frequency for the excited signal, an experimental imaging system is also built. Acoustic Fresnel zone transducers are fabricated at center frequency of 400 MHz. Measurements and detections of the known hole flaws at different depths of the fused quartz sample are presented to show that the imaging system with Fresnel zoom lens could move its focus by only changing the frequency of the excited signal.

  17. HIGH FREQUENCY INDUCTION WELDING OF HIGH SILICON STEEL TUBES

    Directory of Open Access Journals (Sweden)

    Ricardo Miranda Alé

    2012-06-01

    Full Text Available High-Si steel is a low cost alternative for the fabrication of tubular structures resistant to atmospheric corrosion. However, the literature has often pointed out that steels presenting a higher Si content and/or a lower Mn/Si ratio have higher susceptibility to defects at the weld bond line during HFIW (High Frequency Induction Welding process, which has been widely used for manufacturing small diameter tubes. In this study the effect of the HFIW conditions on the quality of steel tubes with high-Si content and low Mn/Si ratio is investigated. The quality of welded tubes was determined by flare test and the defects in the bond line were identified by SEM. It has been found that higher welding speeds, V-convergence angles and power input should be applied in welding of high-Si steel, when compared to similar strength C-Mn steel.

  18. MHD waves generated by high-frequency photospheric vortex motions

    Directory of Open Access Journals (Sweden)

    V. Fedun

    2011-06-01

    Full Text Available In this paper, we discuss simulations of MHD wave generation and propagation through a three-dimensional open magnetic flux tube in the lower solar atmosphere. By using self-similar analytical solutions for modelling the magnetic field in Cartesian coordinate system, we have constructed a 3-D magnetohydrostatic configuration which is used as the initial condition for non-linear MHD wave simulations. For a driver we have implemented a high-frequency vortex-type motion at the footpoint region of the open magnetic flux tube. It is found that the implemented swirly source is able to excite different types of wave modes, i.e. sausage, kink and torsional Alfvén modes. Analysing these waves by magneto-seismology tools could provide insight into the magnetic structure of the lower solar atmosphere.

  19. Dynamical Structures of High-Frequency Financial Data

    CERN Document Server

    Kim, K; Kim, S Y; Kim, Y; Yoon, S M; Chang, Ki-Ho; Kim, Kyungsik; Kim, Soo Yong; Kim, Yup; Yoon, Seong-Min

    2005-01-01

    We study the dynamical behavior of high-frequency data from the Korean Stock Price Index (KOSPI) using the movement of returns in Korean financial markets. The dynamical behavior for a binarized series of our models is not completely random. The conditional probability is numerically estimated from a return series of KOSPI tick data. Non-trivial probability structures can be constituted from binary time series of autoregressive (AR), logit, and probit models, for which the Akaike Information Criterion shows a minimum value at the 15th order. From our results, we find that the value of the correct match ratio for the AR model is slightly larger than the findings of other models.

  20. High-Frequency Acoustic Sediment Classification in Shallow Water

    CERN Document Server

    Bentrem, F W; Kalcic, M T; Duncan, M E; Bentrem, Frank W.; Sample, John; Kalcic, Maria T.; Duncan, Michael E.

    2002-01-01

    A geoacoustic inversion technique for high-frequency (12 kHz) multibeam sonar data is presented as a means to classify the seafloor sediment in shallow water (40-300 m). The inversion makes use of backscattered data at a variety of grazing angles to estimate mean grain size. The need for sediment type and the large amounts of multibeam data being collected with the Naval Oceanographic Office's Simrad EM 121A systems, have fostered the development of algorithms to process the EM 121A acoustic backscatter into maps of sediment type. The APL-UW (Applied Physics Laboratory at the University of Washington) backscattering model is used with simulated annealing to invert for six geoacoustic parameters. For the inversion, three of the parameters are constrained according to empirical correlations with mean grain size, which is introduced as an unconstrained parameter. The four unconstrained (free) parameters are mean grain size, sediment volume interaction, and two seafloor roughness parameters. Acoustic sediment cla...

  1. High-Frequency Cutoff in Type III Bursts

    Science.gov (United States)

    Stanislavsky, A. A.; Konovalenko, A. A.; Volvach, Ya. S.; Koval, A. A.

    In this article we report about a group of solar bursts with high-frequency cutoff, observed on 19 August of 2012 near 8:23 UT, simultaneously by three different radio telescopes: the Ukrainian decameter radio telescope (8-33 MHz), the French Nancay Decametric Array (10-70 MHz) and the Italian San Vito Solar Observatory of RSTN (25-180 MHz). Morphologically the bursts are very similar to the type III bursts. The solar activity is connected with the emergency of a new group of solar spots on the far side of the Sun with respect to observers on Earth. The solar bursts accompany many moderate flares over eastern limb. The refraction of the behind-limb radio bursts towards the Earth is favorable, if CMEs generate low-density cavities in solar corona.

  2. Electrostatic Instabilities at High Frequency in a Plasma Shock Front

    Institute of Scientific and Technical Information of China (English)

    LV Jian-Hong; HE Yong; HU Xi-Wei

    2007-01-01

    New electrostatic instabilities in the plasma shock front are reported.These instabilities are driven by the electrostatic field which is caused by charge separation and the parameter gradients in a plasma shock front.The linear analysis to the high frequency branch of electrostatic instabilities has been carried out and the dispersion relations are obtained numerically.There are unstable disturbing waves in both the parallel and perpendicular directions of shock propagation.The real frequencies of both unstable waves are similar to the electron electrostatic wave,and the unstable growth rate in the parallel direction is much greater than the one in the perpendicular direction.The dependence of growth rates on the electric field and parameter gradients is also presented.

  3. High-frequency supersonic heating of hydrogen for propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Bonneville, Jacques M.

    1963-03-15

    The possibility of increasing the specific impulse of hydrogen by supersonic heating is shown on the basis of thermodynamics. The application of high-frequency electric fields to heat the gas permits a control over the heating rates in the nozzle, and results in a reduction in energy losses to walls, electrodes, etc. The efficiencies of the various energy transfer processes are considered in some detail. A simple process of expansion and heating is presented. Results of calculations of heat transfer rates to the nozzle wall are given. A consistent set of electron densities and electric fields are also calculated and presented. Some qualitative results of experimental work previously carried out are included. It is concluded that the process should increase the specific impulse of hydrogen appreciably, in a reasonably efficient manner, and that further experimental work is indicated. (auth)

  4. High-frequency thermal processes in harmonic crystals

    CERN Document Server

    Kuzkin, Vitaly A

    2016-01-01

    We consider two high-frequency thermal processes in uniformly heated harmonic crystals relaxing towards equilibrium: (i) equilibration of kinetic and potential energies and (ii) redistribution of energy among spatial directions. Equation describing these processes with deterministic initial conditions is derived. Solution of the equation shows that characteristic time of these processes is of the order of ten periods of atomic vibrations. After that time the system practically reaches the stationary state. It is shown analytically that in harmonic crystals temperature tensor is not isotropic even in the stationary state. As an example, harmonic triangular lattice is considered. Simple formula relating the stationary value of the temperature tensor and initial conditions is derived. The function describing equilibration of kinetic and potential energies is obtained. It is shown that the difference between the energies (Lagrangian) oscillates around zero. Amplitude of these oscillations decays inversely proport...

  5. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  6. High-frequency underwater plasma discharge application in antibacterial activity

    Science.gov (United States)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli ( E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  7. High-frequency underwater plasma discharge application in antibacterial activity

    Science.gov (United States)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  8. High-frequency underwater plasma discharge application in antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U. [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of); Mongre, R. K.; Jeong, D. K. [Jeju National University, Faculty of Biotechnology (Korea, Republic of); Suresh, R.; Lee, H. J., E-mail: hjlee@jejunu.ac.kr [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of)

    2017-03-15

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  9. Trans-Ionospheric High Frequency Signal Ray Tracing

    Science.gov (United States)

    Wright, S.; Gillespie, R. J.

    2012-09-01

    All electromagnetic radiation undergoes refraction as it propagates through the atmosphere. Tropospheric refraction is largely governed by interaction of the radiation with bounded electrons; ionospheric refraction is primarily governed by free electron interactions. The latter phenomenon is important for propagation and refraction of High Frequency (HF) through Extremely High Frequency (EHF) signals. The degree to which HF to EHF signals are bent is dependent upon the integrated refractive effect of the ionosphere: a result of the signal's angle of incidence with the boundaries between adjacent ionospheric regions, the magnitude of change in electron density between two regions, as well as the frequency of the signal. In the case of HF signals, the ionosphere may bend the signal so much that it is directed back down towards the Earth, making over-the-horizon HF radio communication possible. Ionospheric refraction is a major challenge for space-based geolocation applications, where the ionosphere is typically the biggest contributor to geolocation error. Accurate geolocation requires an algorithm that accurately reflects the physical process of a signal transiting the ionosphere, and an accurate specification of the ionosphere at the time of the signal transit. Currently implemented solutions are limited by both the algorithm chosen to perform the ray trace and by the accuracy of the ionospheric data used in the calculations. This paper describes a technique for adapting a ray tracing algorithm to run on a General-Purpose Graphics Processing Unit (GPGPU or GPU), and using a physics-based model specifying the ionosphere at the time of signal transit. This technique allows simultaneous geolocation of significantly more signals than an equivalently priced Central Processing Unit (CPU) based system. Additionally, because this technique makes use of the most widely accepted numeric algorithm for ionospheric ray tracing and a timely physics-based model of the ionosphere

  10. High Frequency Plant Regeneration of Musa paradisiaca cv. Karibale Monthan

    Directory of Open Access Journals (Sweden)

    R. Shashi Kumar

    2015-06-01

    Full Text Available High frequency plant regeneration protocol has been standardized from banana cultivar Musa paradisiaca cv. Karibale Monthan, an endemic cultivar of Malnad region of Karnataka. The fruits are used as glomerular protective to solve kidney problems. To minimize the microbial contamination and to promote healthy growth, explants were treated with 70 % absolute alcohol for 6 min, 0.1 % Mercuric chloride for 10 min and 0.2 % for 10 min, 1 % Sodium hypochlorite for 15 min, 0.1 % Cefotaxime for 5 min and 0.05 % Gentamicin for 5 min. The high frequency shoot initiation (93.33 % was recorded at 5 mg/l BAP. The synergetic effect of BAP (4 to 6 mg/l, TDZ (0.1 to 1.2 mg/l and coconut water (0.1 to 0.9 ml/l induced multiple shoot buds and it was optimized at the concentration of 5 mg/l BAP, 0.5 mg/l TDZ and 0.5 ml/l coconut water with 15.90 ± 1.66 frequency of shoots per propagule. Supplementation of 1.0 mg/l IBA induced 5.33 ± 1.21 numbers of roots with a mean root length of 7.50 ± 1.87 roots. The 99% of plantlets with distinct roots and shoots were successfully acclimatized in the green house and transferred to the field to evaluate the agro-morphological variations. The weight of the bunch (kg, number of hands in a bunch, number of fingers in a hand, length of the finger (cm, girth of the finger (cm and girth of the pseudostem (cm exhibited by in vitro plants were higher than the in vivo plants.

  11. High frequency bulk resonators for bio/chemical diagnostics and monitoring applications

    DEFF Research Database (Denmark)

    Cagliani, Alberto

    In the environmental monitoring eld there is a vast variety of possible applications for microfabricated MEMS sensors. As an example, a network of miniaturized sensors could detect toxic gases, harmful airbornes, explosives in air or, in liquid, monitor the quality of drinking water...... is by monitoring the target mass, that is continuously deposited or removed from the sensor's surface, while the sensor's structure vibrates in resonance. This thesis presents the development of MEMS mass sensors based on mechanical microresonators in the very high frequency range 12-132 MHz. This devices can...

  12. Evaluation of a new circuit configuration for the VDR-4 high-frequency percussive ventilator.

    Science.gov (United States)

    Jones, Samuel W; Short, Kathy A; Hanson, William J; Hendrix, Laura; Charles, Anthony G; Cairns, Bruce A

    2010-01-01

    High-frequency percussive ventilation (HFPV) by the VDR-4(R) has been a successful mode of ventilation in the management of inhalation injuries for nearly 20 years. A limitation of the standard VDR-4 ventilator circuit is that the sliding venturi manifold is heavy in weight and is normally connected directly to the patient's endotracheal tube (ETT), resulting in potentially hazardous torque on the ETT. In this study, we evaluate the mechanics of a new circuit for the VDR-4 that relocates the sliding venturi manifold portion of the circuit away from the ETT into the ventilator proper. This new VDR-4 circuit configuration may have an important impact on patient safety.

  13. Hours of high-frequency stimulations reveal intracellular neuronal trends in vivo

    Science.gov (United States)

    Brama, H.; Goldental, A.; Vardi, R.; Stern, E. A.; Kanter, I.

    2016-11-01

    The neuronal response to controlled stimulations in vivo has been classically estimated using a limited number of events. Here we show that hours of high-frequency stimulations and recordings of neurons in vivo reveal previously unknown response phases of neurons in the intact brain. Results indicate that for stimulation frequencies below a critical neuronal characteristic frequency, f c, response timings are stabilized to tens-of-microseconds accuracy. For stimulation frequencies exceeding f c the firing frequency is saturated and independent of the stimulation frequency, as a result of random neuronal response failures. This neuronal plasticity, previously shown in vitro, supports a robust mechanism for low firing rates on a network level.

  14. Ethanol enrichment from ethanol-water mixtures using high frequency ultrasonic atomization.

    Science.gov (United States)

    Kirpalani, D M; Suzuki, K

    2011-09-01

    The influence of high frequency ultrasound on the enrichment of ethanol from ethanol-water mixtures was investigated. Experiments performed in a continuous enrichment system showed that the generated atomized mist was at a higher ethanol concentration than the feed and the enrichment ratio was higher than the vapor liquid equilibrium curve for ethanol-water above 40 mol%. Well-controlled experiments were performed to analyze the effect of physical parameters; temperature, carrier gas flow and collection height on the enrichment. Droplet size measurements of the atomized mist and visualization of the oscillating fountain jet formed during sonication were made to understand the separation mechanism.

  15. The effect of high-frequencies loading on the fatigue cracking of nodular cast iron

    Directory of Open Access Journals (Sweden)

    R. Ulewicz

    2017-01-01

    Full Text Available The article presents the results of fatigue tests using high-frequency loading of nodular cast iron. Nodular cast iron GJS-500-7, GJS-600-3 and cast iron ADI with a tensile strength of Rm = 1 125 MPa were used for the tests. The fatigue tests were conducted on a resonance testing machine. For the cast iron grades under investigation, fatigue characteristics in high and ultra-high-cycle regions were experimentally determined. After the completion of the tests, the fractographic analysis of fatigue fractures was made with the aim of determining the fatigue crack initiation location and the fracture mechanism.

  16. Using H/V Spectral Ratio Analysis to Map Sediment Thickness and to Explain Macroseismic Intensity Variation of a Low-Magnitude Seismic Swarm in Central Belgium

    Science.gov (United States)

    Van Noten, K.; Lecocq, T.; Camelbeeck, T.

    2013-12-01

    Between 2008 and 2010, the Royal Observatory of Belgium received numerous ';Did You Feel It'-reports related to a 2-year lasting earthquake swarm at Court-Saint-Etienne, a small town in a hilly area 20 km SE of Brussels, Belgium. These small-magnitude events (-0.7 ≤ ML ≤ 3.2, n = c. 300 events) were recorded both by the permanent seismometer network in Belgium and by a locally installed temporary seismic network deployed in the epicentral area. Relocation of the hypocenters revealed that the seismic swarm can be related to the reactivation of a NW-SE strike-slip fault at 3 to 6 km depth in the basement rocks of the Lower Palaeozoic London-Brabant Massif. This sequence caused a lot of emotion in the region because more than 60 events were felt by the local population. Given the small magnitudes of the seismic swarm, most events were more often heard than felt by the respondents, which is indicative of a local high-frequency earthquake source. At places where the bedrock is at the surface or where it is covered by thin alluvial sediments ( 30 m). In those river valleys that have a considerable alluvial sedimentary cover, macroseismic intensities are again lower. To explain this variation in macroseismic intensity we present a macroseismic analysis of all DYFI-reports related to the 2008-2010 seismic swarm and a pervasive H/V spectral ratio (HVSR) analysis of ambient noise measurements to model the thickness of sediments covering the London-Brabant Massif. The HVSR method is a very powerful tool to map the basement morphology, particularly in regions of unknown subsurface structure. By calculating the soil's fundamental frequency above boreholes, we calibrated the power-law relationship between the fundamental frequency, shear wave velocity and the thickness of sediments. This relationship is useful for places where the sediment thickness is unknown and where the fundamental frequency can be calculated by H/V spectral ratio analysis of ambient noise. In a

  17. Using high-frequency vibrations and non-linear inclusions to create metamaterials with adjustable effective properties

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Thomsen, Jon Juel

    2009-01-01

    We investigate how high-frequency (HF) excitation combined with strongly non-linear elasticity may influence the effective properties for low-frequency wave propagation. The HF effects are demonstrated for linear spring-mass chains with embedded non-linear parts. The investigated mechanical syste...

  18. Post-stimulation block of frog sciatic nerve by high-frequency (kHz) biphasic stimulation.

    Science.gov (United States)

    Yang, Guangning; Xiao, Zhiying; Wang, Jicheng; Shen, Bing; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2017-04-01

    This study determined if high-frequency biphasic stimulation can induce nerve conduction block that persists after the stimulation is terminated, i.e., post-stimulation block. The frog sciatic nerve-muscle preparation was used in the study. Muscle contraction force induced by low-frequency (0.5 Hz) nerve stimulation was recorded to indicate the occurrence and recovery of nerve block induced by the high-frequency (5 or 10 kHz) biphasic stimulation. Nerve block was observed during high-frequency stimulation and after termination of the stimulation. The recovery from post-stimulation block occurred in two distinct phases. During the first phase, the complete block induced during high-frequency stimulation was maintained. The average maximal duration for the first phase was 107 ± 50 s. During the second phase, the block gradually or abruptly reversed. The duration of both first and second phases was dependent on stimulation intensity and duration but not frequency. Stimulation of higher intensity (1.4-2 times block threshold) and longer duration (5 min) produced the longest period (249 ± 58 s) for a complete recovery. Post-stimulation block can be induced by high-frequency biphasic stimulation, which is important for future investigations of the blocking mechanisms and for optimizing the stimulation parameters or protocols in clinical applications.

  19. Numerical Simulation of Heat Transfer and Deformation of Initial Shell in Soft Contact Continuous Casting Mold Under High Frequency Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Heat transfer and deformation of initial solidification shell in soft contact continuous casting moldunder high frequency electromagnetic field were analyzed using numerical simulation method; the relative electromagnetic parameters were obtained from the previous studies. Owing to the induction heating of a high frequency electromagnetic field (20 kHz), the thickness of initial solidification shell decreases, and the temperature of strand surface and slit copper mold increases when compared with the case without the electromagnetic filed. The viscosity of flux decreases because of the induction heating of the high frequency electromagnetic field, and the dimension of the flux channel increases with electromagnetic pressure; thus, the deformation behavior of initial solidification shell was different before and after the action of high frequency electromagnetic field. Furthermore, the abatement mechanism of oscillation marks under high frequency electromagnetic field was explained.

  20. 40 MHz high-frequency ultrafast ultrasound imaging.

    Science.gov (United States)

    Huang, Chih-Chung; Chen, Pei-Yu; Peng, Po-Hsun; Lee, Po-Yang

    2017-06-01

    Ultrafast high-frame-rate ultrasound imaging based on coherent-plane-wave compounding has been developed for many biomedical applications. Most coherent-plane-wave compounding systems typically operate at 3-15 MHz, and the image resolution for this frequency range is not sufficient for visualizing microstructure tissues. Therefore, the purpose of this study was to implement a high-frequency ultrafast ultrasound imaging operating at 40 MHz. The plane-wave compounding imaging and conventional multifocus B-mode imaging were performed using the Field II toolbox of MATLAB in simulation study. In experiments, plane-wave compounding images were obtained from a 256 channel ultrasound research platform with a 40 MHz array transducer. All images were produced by point-spread functions and cyst phantoms. The in vivo experiment was performed from zebrafish. Since high-frequency ultrasound exhibits a lower penetration, chirp excitation was applied to increase the imaging depth in simulation. The simulation results showed that a lateral resolution of up to 66.93 μm and a contrast of up to 56.41 dB were achieved when using 75-angles plane waves in compounding imaging. The experimental results showed that a lateral resolution of up to 74.83 μm and a contrast of up to 44.62 dB were achieved when using 75-angles plane waves in compounding imaging. The dead zone and compounding noise are about 1.2 mm and 2.0 mm in depth for experimental compounding imaging, respectively. The structure of zebrafish heart was observed clearly using plane-wave compounding imaging. The use of fewer than 23 angles for compounding allowed a frame rate higher than 1000 frames per second. However, the compounding imaging exhibits a similar lateral resolution of about 72 μm as the angle of plane wave is higher than 10 angles. This study shows the highest operational frequency for ultrafast high-frame-rate ultrasound imaging. © 2017 American Association of Physicists in Medicine.

  1. The comparison of three high-frequency chest compression devices.

    Science.gov (United States)

    Lee, Yong W; Lee, Jongwon; Warwick, Warren J

    2008-01-01

    High-frequency chest compression (HFCC) is shown to enhance clearance of pulmonary airway secretions. Several HFCC devices have been designed to provide this therapy. Standard equipment consists of an air pulse generator attached by lengths of tubing to an adjustable, inflatable vest/jacket (V/J) garment. In this study, the V/Js were fitted over a mannequin. The three device air pulse generators produced characteristic waveform patterns. The variations in the frequency and pressure setting of devices were consistent with specific device design features. These studies suggest that a better understanding of the effects of different waveform, frequency, and pressure combinations may improve HFCC therapeutic efficacy of three different HFCC machines. The V/J component of HFCC devices delivers the compressive pulses to the chest wall to produce both airflow through and oscillatory effects in the airways. The V/J pressures of three HFCC machines were measured and analyzed to characterize the frequency, pressure, and waveform patterns generated by each of three device models. The dimensions of all V/Js were adjusted to a circumference of approximately 110% of the chest circumference. The V/J pressures were measured, and maximum, minimum, and mean pressure, pulse pressure, and root mean square of three pulse generators were calculated. Jacket pressures ranged between 2 and 34 mmHg. The 103 and 104 models' pulse pressures increased with the increase in HFCC frequency at constant dial pressure. With the ICS the pulse pressure decreased when the frequency increased. The waveforms of models 103 and 104 were symmetric sine wave and asymmetric sine wave patterns, respectively. The ICS had a triangular waveform. At 20 Hz, both the 103 and 104 were symmetric sine waveform but the ICS remained triangular. Maximum crest factors emerged in low-frequency and high-pressure settings for the ICS and in the high-frequency and low-pressure settings for models 103 and 104. Recognizing the

  2. Theory of High Frequency Rectification by Silicon Crystals

    Science.gov (United States)

    Bethe, H. A.

    1942-10-29

    The excellent performance of British "red dot" crystals is explained as due to the knife edge contact against a polished surface. High frequency rectification depends critically on the capacity of the rectifying boundary layer of the crystal, C. For high conversion efficiency, the product of this capacity and of the "forward" (bulk) resistance R {sub b} of the crystal must be small. For a knife edge, this product depends primarily on the breadth of the knife edge and very little upon its length. The contact can therefore have a rather large area which prevents burn-out. For a wavelength of 10 cm. the computations show that the breadth of the knife edge should be less than about 10 {sup -3} cm. For a point contact the radius must be less than 1.5 x 10 {sup -3} cm. and the resulting small area is conducive to burn-out. The effect of "tapping" is probably to reduce the area of contact. (auth)

  3. Refraction of high frequency noise in an arbitrary jet flow

    Science.gov (United States)

    Khavaran, Abbas; Krejsa, Eugene A.

    1994-01-01

    Refraction of high frequency noise by mean flow gradients in a jet is studied using the ray-tracing methods of geometrical acoustics. Both the two-dimensional (2D) and three-dimensional (3D) formulations are considered. In the former case, the mean flow is assumed parallel and the governing propagation equations are described by a system of four first order ordinary differential equations. The 3D formulation, on the other hand, accounts for the jet spreading as well as the axial flow development. In this case, a system of six first order differential equations are solved to trace a ray from its source location to an observer in the far field. For subsonic jets with a small spreading angle both methods lead to similar results outside the zone of silence. However, with increasing jet speed the two prediction models diverge to the point where the parallel flow assumption is no longer justified. The Doppler factor of supersonic jets as influenced by the refraction effects is discussed and compared with the conventional modified Doppler factor.

  4. Ultra high frequency induction welding of powder metal compacts

    Directory of Open Access Journals (Sweden)

    Çavdar, Uǧur

    2014-06-01

    Full Text Available The application of the iron based Powder Metal (PM compacts in Ultra High Frequency Induction Welding (UHFIW were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined.Soldadura por inducción de ultra alta frecuencia de polvos de metal compactados. Se ha realizado un estudio de la aplicación de polvos de metal (PM de base hierro compactados por soldadura por inducción de ultra alta frecuencia (UHFIW. Estos polvos de metal compactados se utilizan para producir engranajes. Este estudio investiga los métodos de uni.n de los materiales de PM con UHFIW en su aplicación en la industria. La máxima tensión y la máxima deformación de los polvos de metal compactados soldados fueron determinadas por flexión en tres puntos y prueba de resistencia. Se determinó la microdureza y la microestructura de los polvos compactados por soldadura por inducción.

  5. High frequency chest compression effects heart rate variability.

    Science.gov (United States)

    Lee, Jongwon; Lee, Yong W; Warwick, Warren J

    2007-01-01

    High frequency chest compression (HFCC) supplies a sequence of air pulses through a jacket worn by a patient to remove excessive mucus for the treatment or prevention of lung disease patients. The air pulses produced from the pulse generator propagates over the thorax delivering the vibration and compression energy. A number of studies have demonstrated that the HFCC system increases the ability to clear mucus and improves lung function. Few studies have examined the change in instantaneous heart rate (iHR) and heart rate variability (HRV) during the HFCC therapy. The purpose of this study is to measure the change of HRV with four experimental protocols: (a) without HFCC, (b) during Inflated, (c)HFCC at 6Hz, and (d) HFCC at 21Hz. The nonlinearity and regularity of HRV was assessed by approximate entropy (ApEn), a method used to quantify the complexities and randomness. To compute the ApEn, we sectioned with a total of eight epochs and displayed the ApEn over the each epoch. Our results show significant differences in the both the iHR and HRV between the experimental protocols. The iHR was elevated at both the (c) 6Hz and (d) 21Hz condition from without HFCC (10%, 16%, respectively). We also found that the HFCC system tends to increase the HRV. Our study suggests that monitoring iHR and HRV are very important physiological indexes during HFCC therapy.

  6. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  7. High frequency of BRAF V600E mutations in ameloblastoma.

    Science.gov (United States)

    Kurppa, Kari J; Catón, Javier; Morgan, Peter R; Ristimäki, Ari; Ruhin, Blandine; Kellokoski, Jari; Elenius, Klaus; Heikinheimo, Kristiina

    2014-04-01

    Ameloblastoma is a benign but locally infiltrative odontogenic neoplasm. Although ameloblastomas rarely metastasise, recurrences together with radical surgery often result in facial deformity and significant morbidity. Development of non-invasive therapies has been precluded by a lack of understanding of the molecular background of ameloblastoma pathogenesis. When addressing the role of ERBB receptors as potential new targets for ameloblastoma, we discovered significant EGFR over-expression in clinical samples using real-time RT-PCR, but observed variable sensitivity of novel primary ameloblastoma cells to EGFR-targeted drugs in vitro. In the quest for mutations downstream of EGFR that could explain this apparent discrepancy, Sanger sequencing revealed an oncogenic BRAF V600E mutation in the cell line resistant to EGFR inhibition. Further analysis of the clinical samples by Sanger sequencing and BRAF V600E-specific immunohistochemistry demonstrated a high frequency of BRAF V600E mutations (15 of 24 samples, 63%). These data provide novel insight into the poorly understood molecular pathogenesis of ameloblastoma and offer a rationale to test drugs targeting EGFR or mutant BRAF as novel therapies for ameloblastoma. © 2013 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  8. High frequency acoustic microscopy with Fresnel zoom lens

    Institute of Scientific and Technical Information of China (English)

    QIAO DongHai; LI ShunZhou; WANG ChengHao

    2007-01-01

    The acoustic field distributions and the convergent beams generated by the planar-structure Fresnel zone transducers on solid surface are investigated.Because only 0 and 180 degree phase transducers are used,an imaging system with the Fresnel zoom lens could work at very high frequency,which overcomes the frequency limit of the traditional phased array acoustic imaging system.Simulation results are given to illustrate the acoustic field distributions along the focal axis and the whole plane as well.Based on the principle of scanning of the focus with the change of frequency for the excited signal,an experimental imaging system is also built.Acoustic Fresnel zone transducers are fabricated at center frequency of 400 MHz.Measurements and detections of the known hole flaws at different depths of the fused quartz sample are presented to show that the imaging system with Fresnel zoom lens could move its focus by only changing the frequency of the excited signal.

  9. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  10. Why high-frequency pulse tubes can be tipped

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Gregory W092710 [Los Alamos National Laboratory; Backhaus, Scott N [Los Alamos National Laboratory

    2010-01-01

    The typical low-frequency pulse-tube refrigerator loses significant cooling power when it is tipped with the pulse tube's cold end above its hot end, because natural convection in the pulse tube loads the cold heat exchanger. Yet most high-frequency pulse-tube refrigerators work well in any orientation with respect to gravity. In such a refrigerator, natural convection is suppressed by sufficiently fast velocity oscil1ations, via a nonlinear hydrodynamic effect that tends to align the density gradients in the pulse tube parallel to the oscillation direction. Since gravity's tendency to cause convection is only linear in the pulse tube's end-to-end temperature difference while the oscillation's tendency to align density gradients with oscillating velocity is nonlinear, it is easiest to suppress convection when the end-to-end temperature difference is largest. Simple experiments demonstrate this temperature dependence, the strong dependence on the oscillating velocity, and little dependence on the magnitude or phase of the oscillating pressure. In some circumstances in this apparatus, the suppression of convection is a hysteretic function of oscillating velocity. In some other circumstances, a time-dependent convective state seems more difficult to suppress.

  11. Extremely high-frequency micro-Doppler measurements of humans

    Science.gov (United States)

    Hedden, Abigail S.; Silvious, Jerry L.; Dietlein, Charles R.; Green, Jeremy A.; Wikner, David A.

    2014-05-01

    The development of sensors that are capable of penetrating smoke, dust, fog, clouds, and rain is critical for maintaining situational awareness in degraded visual environments and for providing support to the Warfighter. Atmospheric penetration properties, the ability to form high-resolution imagery with modest apertures, and available source power make the extremely high-frequency (EHF) portion of the spectrum promising for the development of radio frequency (RF) sensors capable of penetrating visual obscurants. Comprehensive phenomenology studies including polarization and backscatter properties of relevant targets are lacking at these frequencies. The Army Research Laboratory (ARL) is developing a fully-polarimetric frequency-modulated continuous-wave (FMCW) instrumentation radar to explore polarization and backscatter properties of in-situ rain, scattering from natural and man-made surfaces, and the radar cross section and micro-Doppler signatures of humans at EHF frequencies, specifically, around the 220 GHz atmospheric window. This work presents an overview of the design and construction of the radar system, hardware performance, data acquisition software, and initial results including an analysis of human micro-Doppler signatures.

  12. Planck pre-launch status: High Frequency Instrument polarization calibration

    CERN Document Server

    Rosset, C; Ponthieu, N; Ade, P; Catalano, A; Conversi, L; Couchot, F; Crill, B P; Désert, F -X; Ganga, K; Giard, M; Giraud-Héraud, Y; Haïssinski, J; Henrot-Versillé, S; Holmes, W; Jones, W C; Lamarre, J -M; Lange, A; Leroy, C; Macías-Pérez, J; Maffei, B; de Marcillac, P; Miville-Deschênes, M -A; Montier, L; Noviello, F; Pajot, F; Perdereau, O; Piacentini, F; Piat, M; Plaszczynski, S; Pointecouteau, E; Puget, J -L; Ristorcelli, I; Savini, G; Sudiwala, R; Veneziani, M; Yvon, D

    2010-01-01

    The High Frequency Instrument of Planck will map the entire sky in the millimeter and sub-millimeter domain from 100 to 857 GHz with unprecedented sensitivity to polarization ($\\Delta P/T_{\\tiny cmb} \\sim 4\\cdot 10^{-6}$) at 100, 143, 217 and 353 GHz. It will lead to major improvements in our understanding of the Cosmic Microwave Background anisotropies and polarized foreground signals. Planck will make high resolution measurements of the $E$-mode spectrum (up to $\\ell \\sim 1500$) and will also play a prominent role in the search for the faint imprint of primordial gravitational waves on the CMB polarization. This paper addresses the effects of calibration of both temperature (gain) and polarization (polarization efficiency and detector orientation) on polarization measurements. The specific requirements on the polarization parameters of the instrument are set and we report on their pre-flight measurement on HFI bolometers. We present a semi-analytical method that exactly accounts for the scanning strategy of...

  13. High-frequency acoustic for nanostructure wetting characterization.

    Science.gov (United States)

    Li, Sizhe; Lamant, Sebastien; Carlier, Julien; Toubal, Malika; Campistron, Pierre; Xu, Xiumei; Vereecke, Guy; Senez, Vincent; Thomy, Vincent; Nongaillard, Bertrand

    2014-07-01

    Nanostructure wetting is a key problem when developing superhydrophobic surfaces. Conventional methods do not allow us to draw conclusions about the partial or complete wetting of structures on the nanoscale. Moreover, advanced techniques are not always compatible with an in situ, real time, multiscale (from macro to nanoscale) characterization. A high-frequency (1 GHz) acoustic method is used for the first time to characterize locally partial wetting and the wetting transition between nanostructures according to the surface tension of liquids (the variation is obtained by ethanol concentration modification). We can see that this method is extremely sensitive both to the level of liquid imbibition and to the impalement dynamic. We thus demonstrate the possibility to evaluate the critical surface tension of a liquid for which total wetting occurs according to the aspect ratio of the nanostructures. We also manage to identify intermediate states according to the height of the nanotexturation. Finally, our measurements revealed that the drop impalement depending on the surface tension of the liquid also depends on the aspect ratio of the nanostructures. We do believe that our method may lead to new insights into nanoscale wetting characterization by accessing the dynamic mapping of the liquid imbibition under the droplet.

  14. Algorithmic and high-frequency trading in Borsa Istanbul

    Directory of Open Access Journals (Sweden)

    Oguz Ersan

    2016-12-01

    Full Text Available This paper investigates the levels of algorithmic trading (AT and high-frequency trading (HFT in an emerging market, Borsa Istanbul (BIST, utilizing a dataset of 354 trading days between January 2013 and May 2014. We find an upward trend in AT by using common proxies: number of messages per minute and algo_trad of Hendershott et al. (2011. Mean algo_trad for BIST 100 index constituents varies between −18 and −13 which is parallel to 2003–2005 levels of NASDAQ large cap stocks. Initially, we measure HFT involvement by detecting linked messages as in the way proposed in Hasbrouck and Saar (2013. Next, we propose an extended HFT measure which captures various HFT strategies. This measure attributes approximately 6% of the orders to HFT. HFT involvement is higher in large orders (11.96%, in orders submitted by portfolio/fund management firms (10.40%, after improvement of BIST's order submission platform and tick size reduction for certain stocks.

  15. Low temperature high frequency coaxial pulse tube for space application

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard; Duval, Jean-Marc [SBT, UMR-E CEA / UJF-Grenoble 1, INAC, 17, rue des Martyrs, Grenoble, F-38054 (France); Daniel, Christophe [CNES, 18, avenue Edouard Belin, Toulouse, F-31401 (France)

    2014-01-29

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for the ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.

  16. High-frequency (1000 Hz) tympanometry in normal neonates.

    Science.gov (United States)

    Kei, Joseph; Allison-Levick, Julie; Dockray, Jacqueline; Harrys, Rachel; Kirkegard, Christina; Wong, Janet; Maurer, Marion; Hegarty, Jayne; Young, June; Tudehope, David

    2003-01-01

    The characteristics of high frequency (1000 Hz) acoustic admittance results obtained from normal neonates were described in this study. Participants were 170 healthy neonates (96 boys and 74 girls) aged between 1 and 6 days (mean = 3.26 days, SD = 0.92). Transient evoked otoacoustic emissions (TEOAEs), and 226 Hz and 1000 Hz probe tone tympanograms were obtained from the participants using a Madsen Capella OAE/middle ear analyser. The results showed that of the 170 neonates, 34 were not successfully tested in both ears, 14 failed the TEOAE screen in one or both ears, and 122 (70 boys, 52 girls) passed the TEOAE screen in both ears and also maintained an acceptable probe seal during tympanometry. The 1000 Hz tympanometric data for the 122 neonates (244 ears) showed a single-peaked tympanogram in 225 ears (92.2%), a flat-sloping tympanogram in 14 ears (5.7%), a double-peaked tympanogram in 3 ears (1.2%) and other unusual shapes in 2 ears (0.8%). There was a significant ear effect, with right ears showing significantly higher mean peak compensated static admittance and tympanometric width, but lower mean acoustic admittance at +200 daPa and gradient than left ears. No significant gender effects or its interaction with ear were found. The normative tympanometric data derived from this cohort may serve as a guide for detecting middle ear dysfunction in neonates.

  17. High frequency guided wave propagation in monocrystalline silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2017-04-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  18. High frequency microseismic noise as possible earthquake precursor

    Directory of Open Access Journals (Sweden)

    Ivica Sović

    2013-08-01

    Full Text Available Before an earthquake occurs, microseismic noise in high frequency (HF range, i.e. 2-25 Hz, is being generated during preparation process. These signals change the microseismic noise and, consequently, the spectrum of microseismic noise. Time variation of spectra recorded at the same seismological station could imply the change of the state of noise source. We propose the image moment analysis approach to objectively compare microseismic noise spectra. The result could be used for earthquake precursor identification. Expected spectra change is in HF range, so the analysis has been limited to the shallow tectonic earthquakes with epicenters close, up to 15 km, the seismological stations. The method has been tested post festum using four earthquakes in Dinarides which satisfied condition for epicentral distance. The spectra were calculated for noise recorded in time intervals of 10 days before and 6 to 10 days after the earthquakes. Affine moment invariants were calculated for noise spectra which were treated as the input objects. Spectra of the first five days in the series were referent spectra. The classification parameters were Euclidean distances between referent spectra and the spectra for all days in the series, including referent ones. The results have shown that the spectra of the microseismic noise become noticeably different than the other spectra in time intervals one or two days before an earthquake.

  19. Protection circuits for very high frequency ultrasound systems.

    Science.gov (United States)

    Choi, Hojong; Shung, K Kirk

    2014-04-01

    The purpose of protection circuits in ultrasound applications is to block noise signals from the transmitter from reaching the transducer and also to prevent unwanted high voltage signals from reaching the receiver. The protection circuit using a resistor and diode pair is widely used due to its simple architecture, however, it may not be suitable for very high frequency (VHF) ultrasound transducer applications (>100 MHz) because of its limited bandwidth. Therefore, a protection circuit using MOSFET devices with unique structure is proposed in this paper. The performance of the designed protection circuit was compared with that of other traditional protection schemes. The performance characteristics measured were the insertion loss (IL), total harmonic distortion (THD) and transient response time (TRT). The new protection scheme offers the lowest IL (-1.0 dB), THD (-69.8 dB) and TRT (78 ns) at 120 MHz. The pulse-echo response using a 120 MHz LiNbO3 transducer with each protection circuit was measured to validate the feasibility of the protection circuits in VHF ultrasound applications. The sensitivity and bandwidth of the transducer using the new protection circuit improved by 252.1 and 50.9 %, respectively with respect to the protection circuit using a resistor and diode pair. These results demonstrated that the new protection circuit design minimizes the IL, THD and TRT for VHF ultrasound transducer applications.

  20. Fantoni’s Tracheostomy using Catheter High Frequency Jet Ventilation

    Directory of Open Access Journals (Sweden)

    P. Török

    2012-01-01

    Full Text Available Background: It has been shown previously that conventional ventilation delivered through a long cuffed endotracheal tube is associated with a high flow-resistance and frequent perioperative complications. Aim: We attempted to supersede the conventional ventilation by high-frequency jet ventilation through a catheter (HFJV-C and assess safety of the procedure. Material and methods: Using a translaryngeal tracheostomy kit, we performed a translaryngeal (Fantoni tracheostomy (TLT. Subsequently, we introduced a special 2-way prototype ventilatory catheter into the trachea via the TLT under bronchoscopic control. Satisfactory HFJV-C ventilation through the catheter was achieved in 218 patients. Results: There were no significant adverse effects on vital signs observed in the cohort during the study. The pH, SpO2, PaO2, and PaCO2 did not change significantly following the HFJV-C. The intrinsic PEEPi measured in trachea did not exceed 4—5 cm H2O during its application, which was significantly less than during the classical ventilation via the endotracheal tube fluctuating between 12 and 17 cm H2O. No serious medical complications occurred. Conclusion: The HFJV during Fantoni’s tracheostomy using the catheter HFJV-C proved to be a safe and effective method of lung ventilation at the intensive care unit. Key words: Translaryngeal tracheostomy, HFJV via catheter.

  1. Planck early results. VI. The High Frequency Instrument data processing

    Science.gov (United States)

    Planck HFI Core Team; Ade, P. A. R.; Aghanim, N.; Ansari, R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Banday, A. J.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bradshaw, T.; Bucher, M.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, C.; Church, S.; Clements, D. L.; Colley, J.-M.; Colombi, S.; Couchot, F.; Coulais, A.; Cressiot, C.; Crill, B. P.; Crook, M.; de Bernardis, P.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dolag, K.; Dole, H.; Doré, O.; Douspis, M.; Dunkley, J.; Efstathiou, G.; Filliard, C.; Forni, O.; Fosalba, P.; Ganga, K.; Giard, M.; Girard, D.; Giraud-Héraud, Y.; Gispert, R.; Górski, K. M.; Gratton, S.; Griffin, M.; Guyot, G.; Haissinski, J.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hills, R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Kaplan, J.; Kneissl, R.; Knox, L.; Kunz, M.; Lagache, G.; Lamarre, J.-M.; Lange, A. E.; Lasenby, A.; Lavabre, A.; Lawrence, C. R.; Le Jeune, M.; Leroy, C.; Lesgourgues, J.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Mann, R.; Marleau, F.; Marshall, D. J.; Masi, S.; Matsumura, T.; McAuley, I.; McGehee, P.; Melin, J.-B.; Mercier, C.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Mortlock, D.; Murphy, A.; Nati, F.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Osborne, S.; Pajot, F.; Patanchon, G.; Peacocke, T.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Ponthieu, N.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Remazeilles, M.; Renault, C.; Riazuelo, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Saha, R.; Santos, D.; Savini, G.; Schaefer, B. M.; Shellard, P.; Spencer, L.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Sygnet, J.-F.; Tauber, J. A.; Thum, C.; Torre, J.-P.; Touze, F.; Tristram, M.; van Leeuwen, F.; Vibert, L.; Vibert, D.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Wiesemeyer, H.; Woodcraft, A.; Yurchenko, V.; Yvon, D.; Zacchei, A.

    2011-12-01

    We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857 GHz with an angular resolution ranging from 9.9 to 4.4'. The white noise level is around 1.5 μK degree or less in the 3 main CMB channels (100-217 GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project. Corresponding author: F. R. Bouchet, e-mail: bouchet@iap.fr

  2. Planck Early Results: The High Frequency Instrument data processing

    CERN Document Server

    Ade, P A R; Ansari, R; Arnaud, M; Ashdown, M; Aumont, J; Banday, A J; Bartelmann, M; Bartlett, J G; Battaner, E; Benabed, K; Benoît, A; Bernard, J -P; Bersanelli, M; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bradshaw, T; Bucher, M; Cardoso, J -F; Castex, G; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, C; Church, S; Clements, D L; Colley, J -M; Colombi, S; Couchot, F; Coulais, A; Cressiot, C; Crill, B P; Crook, M; de Bernardis, P; Delabrouille, J; Delouis, J -M; Désert, F -X; Dolag, K; Dole, H; Doré, O; Douspis, M; Dunkley, J; Efstathiou, G; Filliard, C; Forni, O; Fosalba, P; Ganga, K; Giard, M; Girard, D; Giraud-Héraud, Y; Gispert, R; Górski, K M; Gratton, S; Griffin, M; Guyot, G; Haissinski, J; Harrison, D; Helou, G; Henrot-Versillé, S; Hernández-Monteagudo, C; Hildebrandt, S R; Hills, R; Hivon, E; Hobson, M; Holmes, W A; Huffenberger, K M; Jaffe, A H; Jones, W C; Kaplan, J; Kneissl, R; Knox, L; Kunz, M; Lagache, G; Lamarre, J -M; Lange, A E; Lasenby, A; Lavabre, A; Lawrence, C R; Jeune, M Le; Leroy, C; Lesgourgues, J; Lewis, A; Macías-Pérez, J F; MacTavish, C J; Maffei, B; Mandolesi, N; Mann, R; Marleau, F; Marshall, D J; Masi, S; Matsumura, T; McAuley, I; McGehee, P; Melin, J -B; Mercier, C; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Mortlock, D; Murphy, A; Nati, F; Netterfield, C B; N\\orgaard-Nielsen, H U; North, C; Noviello, F; Novikov, D; Osborne, S; Pajot, F; Patanchon, G; Peacocke, T; Pearson, T J; Perdereau, O; Perotto, L; Piacentini, F; Piat, M; Plaszczynski, S; Pointecouteau, E; Ponthieu, N; Prézeau, G; Prunet, S; Puget, J -L; Reach, W T; Remazeilles, M; Renault, C; Riazuelo, A; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rowan-Robinson, M; Rusholme, B; Saha, R; Santos, D; Savini, G; Schaefer, B M; Shellard, P; Spencer, L; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Sygnet, J -F; Tauber, J A; Thum, C; Torre, J -P; Touze, F; Tristram, M; Van Leeuwen, F; Vibert, L; Vibert, D; Wandelt, B D; White, S D M; Wiesemeyer, H; Woodcraft, A; Yurchenko, V; Yvon, D; Zacchei, A

    2011-01-01

    We describe the processing of the 334 billion raw data samples from the High Frequency Instrument (hereafter HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857GHz with an angular resolution ranging from 9.9 to 4.4 arcmin. The white noise level is around 1.5 microK.degree or less in the 3 main CMB channels (100-217GHz). The photometric accuracy is better than 2% at frequencies lower or equal to 353GHz, and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be abl...

  3. High frequency production of haploid embryos in asparagus anther culture.

    Science.gov (United States)

    Feng, X R; Wolyn, D J

    1991-12-01

    A method for obtaining a high frequency of haploid asparagus embryos through anther culture was developed. Flowers collected from plants in the field in July, August and September 1990, for the genotype G203, were stored at 5°C for 24 h. Anthers were placed on Murashige and Skoog medium (MS) containing 500 mg l (-1) casein hydrolysate, 800 mg l(-1) glutamine, 2 mg l (-1) NAA, 1 mg l (-1) BA and 5 % sucrose at 32 °C in the dark for three to four weeks to induce calli. Calli were then grown at 25 °C with a 16 h photoperiod for three to four weeks. Developing embryos and calli were transferred to embryo maturation medium, MS containing 6% sucrose, 0.1 mg l (-1) NAA, 0.1 mg l (-1) kinetin and 0.65 mg l (-1) ancymidol, for four weeks. More than 50% of the recovered mature embryos germinated on MS containing l mg l (-1) GA3. Anthers with microspores at the late-uninucleate stage had the highest frequency of total and embryogenic calli formation, 40% and 15%, respectively. Each embryogenic callus usually produced 10-15 embryos. Aproximately 75 plants per 100 anthers cultured were recovered: 76% haploid, 22% diploid and 2% triploid. High temperature was critical for the induction of embryogenic callus.

  4. Challenges in graphene integration for high-frequency electronics

    Science.gov (United States)

    Giannazzo, F.; Fisichella, G.; Greco, G.; Roccaforte, F.

    2016-06-01

    This paper provides an overview of the state-of-the-art research on graphene (Gr) for high-frequency (RF) devices. After discussing current limitations of lateral Gr RF transistors, novel vertical devices concepts such as the Gr Base Hot Electron Transistor (GBHET) will be introduced and the main challenges in Gr integration within these architectures will be discussed. In particular, a GBHET device based on Gr/AlGaN/GaN heterostructure will be considered. An approach to the fabrication of this heterostructure by transfer of CVD grown Gr on copper to the AlGaN surface will be presented. The morphological and electrical properties of this system have been investigated at nanoscale by atomic force microscopy (AFM) and conductive atomic force microscopy (CAFM). In particular, local current-voltage measurements by the CAFM probe revealed the formation of a Schottky contact with low barrier height (˜0.41 eV) and excellent lateral uniformity between Gr and AlGaN. Basing on the electrical parameters extracted from this characterization, the theoretical performances of a GBHET formed by a metal/Al2O3/Gr/AlGaN/GaN stack have been evaluated.

  5. Very high frequency plasma reactant for atomic layer deposition

    Science.gov (United States)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo; Kim, Tae Hyung; Yeom, Geun Young; Kim, Kangsik; Lee, Zonghoon; Jung, Hanearl; Lee, Chang Wan; Kim, Hyungjun; Lee, Han-Bo-Ram

    2016-11-01

    Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al2O3 were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al2O3 shows superior physical and electrical properties over RF PE-ALD Al2O3, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al2O3 on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  6. Tecnologia radio cognitiva en la banda ultra high frequency (UHF

    Directory of Open Access Journals (Sweden)

    Hernán Paz Penagos

    2014-01-01

    Full Text Available Mobile cellular communication companies in Colombia require more spectrum resources to expand their portfolio of services. However, additional frequency bands for that particular purpose are scarce, yet it is well known that there are many underutilized licensed bands. Therefore new radio technologies are being studied in order to solve this problem, e.g. Software Defined Radio SDR Cognitive Radio CR and Dynamic Spectrum Access DSA. These strategies recommend mobility across the radio spectrum to meet various needs and achieve greater efficiency when managing such a scarce resource. In this context, a case study is presented in an attempt to examine the require¬ments that must be met for the implementation of cognitive radio networks in Bogota. The case study includes evaluation for the possibility of migration from cellular communications to cognitive radio since the bands assigned to UltraHigh Frequency UHF television offer possible free-of-interference coexistence between the two services (i.e. Cellular and TV. The study shows feasibility to migration; however, the implementations of cognitive radio need availability of hardware, software and flexible radio platforms.

  7. CONSTITUTIVE COMPUTATIONAL MODELLING FOUNDATION OF PIEZOELECTRONIC MICROSTRUCTURES AND APPLICATION TO HIGH-FREQUENCY MICROCHIP DSAW RESONATORS

    Institute of Scientific and Technical Information of China (English)

    张武; 唐锦春

    2002-01-01

    This paper establishes a piezoelectric constitutive computational approach based on generalized eigenvalue and multivariable finite element solutions with potential applications to accurate and effective analysis of layered piezoelectric microstructures of arbitrary geometries and different anisotropic materials, to ease the limitation of current computer capacity in analyzing large-scale high-frequency disturbed surface acoustic waves (DSAW) by mounted electrodes in piezoelectric devices such as microchip SAW resonators. A new incompatible generalized hybrid/mixed element GQM5 is also proposed for improving predictions of the piezoelectric surface mount thermal stresses that are shear-dominated. The (generalized) plane strain constitutive model is numerically verified for piezoelectric finite element computation. With the help of computational piezoelectricity (electro-mechanics) for general layered structures with metal electrodes and anisotropic piezoelectric substrates, some new interesting, reliable and fundamental constitutive finite element results are obtained for high-frequency piezoelectric and mechanical SAW propagations and can be used for further applications. The ST-cut FEA results agree quite well with available exact and lab solutions for free surface case.

  8. Experimental Study on Surface Characteristics of Laser Cladding Layer Regulated by High-Frequency Microforging

    Science.gov (United States)

    Fan, Xiang Fang; Zhou, Ju; Qiu, Chang Jun; He, Bin; Ye, Jiang; Yuan, Bo; Pi, Zhengqing

    2011-03-01

    High-frequency microforging technology is used to produce micrometer-scale plastic deformation on the surface of material out of the vibration impact of a forging punch, and the cumulative effect of its various frequencies on micrometer-scale plastic deformation can cause changes of surface microstructure and mechanical properties. This study used (1) a self-made machine to treat NiCrBSi alloy, (2) a mechanical comparator and optical microscopy (OM) to study the geometric characteristics of plastic deformation, (3) OM and scanning electric microscopy (SEM) to observe influence on surface microstructure and cracking behavior of the laser cladding layer under microforging, (4) x-ray diffractometer (XRD) to measure the surface residual stress of laser cladding layer before and after forging, and (5) microhardness tester and wearing experimental machine to study changes of microhardness, friction coefficient, and wear characteristics of laser cladding layer after microforging. The results have shown that high-frequency microforging could produce plastic deformation about 150 μm deep on the surface of NiCrBSi alloy clad by laser. Regular dendrite and eutectic crystallization microstructure, which is a peculiar characteristic of the laser cladding layer, was broken into pieces and formed residual compression residual stress on the surface. Resistance to cracking of laser cladding layer improved greatly, microhardness and wearability increased, and the friction coefficient did not under go a noticeable change.

  9. 77 FR 8222 - Notice Requesting Nominations for the Subcommittee on Automated and High Frequency Trading

    Science.gov (United States)

    2012-02-14

    ... COMMISSION Notice Requesting Nominations for the Subcommittee on Automated and High Frequency Trading AGENCY... Automated and High Frequency Trading within the Technology Advisory Committee. SUMMARY: The Commodity... Automated and High Frequency Trading (Subcommittee) under the auspices of the Technology Advisory Committee...

  10. Magnetoencephalography Detection of High-Frequency Oscillations in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Kimberly eLeiken

    2014-12-01

    Full Text Available Increasing evidence from invasive intracranial recordings suggests that the matured brain generates both physiological and pathological high-frequency signals. The present study was designed to detect high-frequency brain signals in the developing brain using newly developed magnetoencephalography (MEG methods. Twenty healthy children were studied with a high sampling rate MEG system. Functional high-frequency brain signals were evoked by electrical stimulation applied to the index fingers. To determine if the high-frequency neuromagnetic signals are true brain responses in high-frequency range, we analyzed the MEG data using the conventional averaging as well as newly developed time-frequency analysis along with beamforming. The data of healthy children showed that very high-frequency brain signals (> 1000 Hz in the somatosensory cortex in the developing brain could be detected and localized using MEG. The amplitude of very high-frequency brain signals was significantly weaker than that of the low-frequency brain signals. Very high-frequency brain signals showed a much earlier latency than those of a low-frequency. Magnetic source imaging (MSI revealed that a portion of the high-frequency signals was from the somatosensory cortex, another portion of the high-frequency signals was probably from the thalamus. Our results provide evidence that the developing brain generates high-frequency signals that can be detected with the noninvasive technique of MEG. MEG detection of high-frequency brain signals may open a new window for the study of developing brain function.

  11. Tsunami Arrival Detection with High Frequency (HF Radar

    Directory of Open Access Journals (Sweden)

    Donald Barrick

    2012-05-01

    Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no system exists for local detection of an actual incoming wave with a significant warning capability. Networks of coastal high frequency (HF-radars are now routinely observing surface currents in many countries. We report here on an empirical method for the detection of the initial arrival of a tsunami, and demonstrate its use with results from data measured by fourteen HF radar sites in Japan and USA following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. We compare arrival times at the radars with those measured by neighboring tide gauges. Arrival times measured by the radars preceded those at neighboring tide gauges by an average of 19 min (Japan and 15 min (USA The initial water-height increase due to the tsunami as measured by the tide gauges was moderate, ranging from 0.3 to 2 m. Thus it appears possible to detect even moderate tsunamis using this method. Larger tsunamis could obviously be detected further from the coast. We find that tsunami arrival within the radar coverage area can be announced 8 min (i.e., twice the radar spectral time resolution after its first appearance. This can provide advance warning of the tsunami approach to the coastline locations.

  12. Semiclassical methods for high frequency wave propagation in periodic media

    Science.gov (United States)

    Delgadillo, Ricardo A.

    We will study high-frequency wave propagation in periodic media. A typical example is given by the Schrodinger equation in the semiclassical regime with a highly oscillatory periodic potential and external smooth potential. This problem presents a numerical challenge when in the semiclassical regime. For example, conventional methods such as finite differences and spectral methods leads to high numerical cost, especially in higher dimensions. For this reason, asymptotic methods like the frozen Gaussian approximation (FGA) was developed to provide an efficient computational tool. Prior to the development of the FGA, the geometric optics and Gaussian beam methods provided an alternative asymptotic approach to solving the Schrodinger equation efficiently. Unlike the geometric optics and Gaussian beam methods, the FGA does not lose accuracy due to caustics or beam spreading. In this thesis, we will briefly review the geometric optics, Gaussian beam, and FGA methods. The mathematical techniques used by these methods will aid us in formulating the Bloch-decomposition based FGA. The Bloch-decomposition FGA generalizes the FGA to wave propagation in periodic media. We will establish the convergence of the Bloch-decomposition based FGA to the true solution for Schrodinger equation and develop a gauge-invariant algorithm for the Bloch-decomposition based FGA. This algorithm will avoid the numerical difficulty of computing the gauge-dependent Berry phase. We will show the numerical performance of our algorithm by several one-dimensional examples. Lastly, we will propose a time-splitting FGA-based artificial boundary conditions for solving the one-dimensional nonlinear Schrodinger equation (NLS) on an unbounded domain. The NLS will be split into two parts, the linear and nonlinear parts. For the linear part we will use the following absorbing boundary strategy: eliminate Gaussian functions whose centers are too distant to a fixed domain.

  13. Robust Optimization Design Algorithm for High-Frequency TWTs

    Science.gov (United States)

    Wilson, Jeffrey D.; Chevalier, Christine T.

    2010-01-01

    Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.

  14. Low and High-Frequency Field Potentials of Cortical Networks ...

    Science.gov (United States)

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between different pharmacological agents/chemicals. However, normal brain activity is additionally composed of integrated low-frequency (0.5-100 Hz) field potentials (LFPs) which are filtered out of MEA recordings. The objective of this study was to characterize the relationship between HF and LFP neural network signals, and to assess the relative sensitivity of LFPs to selected neurotoxicants. Rat primary cortical cultures were grown on glass, single-well MEA chips. Spontaneous activity was sampled at 25 kHz and recorded (5 min) (Multi-Channel Systems) from mature networks (14 days in vitro). HF (spike, mean firing rate, MFR) and LF (power spectrum, amplitude) components were extracted from each network and served as its baseline (BL). Next, each chip was treated with either 1) a positive control, bicuculline (BIC, 25μM) or domoic acid (DA, 0.3μM), 2) or a negative control, acetaminophen (ACE, 100μM) or glyphosate (GLY, 100μM), 3) a solvent control (H2O or DMSO:EtOH), or 4) a neurotoxicant, (carbaryl, CAR 5, 30μM ; lindane, LIN 1, 10μM; permethrin, PERM 25, 50μM; triadimefon, TRI 5, 65μM). Post treatment, 5 mins of spontaneous activity was recorded and analyzed. As expected posit

  15. Catchment Very-High Frequency Hydrochemistry: the Critex Chemical House

    Science.gov (United States)

    Floury, P.; Gaillardet, J.; Tallec, G.; Blanchouin, A.; Ansart, P.

    2015-12-01

    Exploring the variations of river quality at very high frequency is still a big challenge that has fundamental implications both for understanding catchment ecosystems and for water quality monitoring. Within the French Critical Zone program CRITEX, we have proposed to develop a prototype called "Chemical House", applying the "lab on field" concept to one of the stream of the Orgeval Critical Zone Observatory. The Orgeval catchment (45 km2) is part of the Critical Zone RBV ("Réseau des bassins versants") network. It is a typical temperate agricultural catchment that has been intensively monitored for the last 50 years for hydrology and nutrient chemistry. Agricultural inputs and land use are also finely monitored making Orgeval an ideal basin to test the response of the Critical Zone to agricultural forcing. Geology consists of a typical sedimentary basin of Cenozoic age with horizontal layers of limestones, silcrete and marls, covered by a thin loamy layer. Two main aquifers are present within the catchment: the Brie and the Champigny aquifers. Mean runoff is 780 mm/yr. The Chemical House is a fully automated lab and installed directly along the river, which performs measurement of all major dissolved elements such as Na, Cl, Mg, Ca, NO3, SO4 and K every half hour. It also records all physical parameters (Temperature, pH, conductivity, O2 dissolved, Turbidity) of the water every minute. Orgeval Chemical House started to measure river chemistry on June 12, 2015 and has successfully now recorded several months of data. We will present the architecture of the Chemical House and the first reproducibility and accuracy tests made during the summer drought 2015 period. Preliminary results show that the chemical house is recoding significant nychtemeral (day/night) cycles for each element. We also observe that each element has its own behaviour along a day. First results open great prospects.

  16. Achieving High-Frequency Optical Control of Synaptic Transmission

    Science.gov (United States)

    Jackman, Skyler L.; Beneduce, Brandon M.; Drew, Iain R.

    2014-01-01

    The optogenetic tool channelrhodopsin-2 (ChR2) is widely used to excite neurons to study neural circuits. Previous optogenetic studies of synapses suggest that light-evoked synaptic responses often exhibit artificial synaptic depression, which has been attributed to either the inability of ChR2 to reliably fire presynaptic axons or to ChR2 elevating the probability of release by depolarizing presynaptic boutons. Here, we compare light-evoked and electrically evoked synaptic responses for high-frequency stimulation at three synapses in the mouse brain. At synapses from Purkinje cells to deep cerebellar nuclei neurons (PC→DCN), light- and electrically evoked synaptic currents were remarkably similar for ChR2 expressed transgenically or with adeno-associated virus (AAV) expression vectors. For hippocampal CA3→CA1 synapses, AAV expression vectors of serotype 1, 5, and 8 led to light-evoked synaptic currents that depressed much more than electrically evoked currents, even though ChR2 could fire axons reliably at up to 50 Hz. The disparity between optical and electrical stimulation was eliminated when ChR2 was expressed transgenically or with AAV9. For cerebellar granule cell to stellate cell (grc→SC) synapses, AAV1 also led to artificial synaptic depression and AAV9 provided superior performance. Artificial synaptic depression also occurred when stimulating over presynaptic boutons, rather than axons, at CA3→CA1 synapses, but not at PC→DCN synapses. These findings indicate that ChR2 expression methods and light stimulation techniques influence synaptic responses in a neuron-specific manner. They also identify pitfalls associated with using ChR2 to study synapses and suggest an approach that allows optogenetics to be applied in a manner that helps to avoid potential complications. PMID:24872574

  17. Regenerator Operation at Very High Frequencies for Microcryocoolers

    Science.gov (United States)

    Radebaugh, Ray; O'Gallagher, Agnes

    2006-04-01

    The size of Stirling and Stirling-type pulse tube cryocoolers is dominated by the size of the pressure oscillator. Such cryocoolers typically operate at frequencies up to about 60 Hz for cold-end temperatures above about 60 K. Higher operating frequencies would allow the size and mass of the pressure oscillator to be reduced for a given power input. However, simply increasing the operating frequency leads to large losses in the regenerator. The simple analytical equations derived here show how the right combination of frequency and pressure, along with optimized regenerator geometry, can lead to successful regenerator operation at frequencies up to 1 kHz. Efficient regenerator operation at such high frequencies is possible only with pressures of about 5 to 8 MPa and with very small hydraulic diameters and lengths. Other geometrical parameters must also be optimized for such conditions. The analytical equations are used to provide guidance to the right combination of parameters. We give example numerical calculations with REGEN3.2 in the paper for 60 Hz, 400 Hz, and 1000 Hz operation of optimized screen regenerators and show that the coefficient of performance at 400 Hz and 1000 Hz is about 78 % and 68 %, respectively, of that for 60 Hz when an average pressure of 7 MPa is used with the higher frequency, compared with 2.5 MPa for 60 Hz operation. The 1000 Hz coefficient of performance for parallel tubes is about the same as that of the screen geometry at 60 Hz. The compressor and cold-end swept volumes are reduced by a factor of 47 at 1000 Hz, compared with the 60 Hz case for the same input acoustic power, which can enable the development of microcryocoolers for MEMS applications.

  18. High-frequency homogenization for travelling waves in periodic media.

    Science.gov (United States)

    Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω2. We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω1=ω2 and [Formula: see text] where Λ=(λ1λ2…λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a⊙b is defined to be the vector (a1b1,a2b2,…,adbd ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  19. Very high frequency plasma reactant for atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Tae Hyung; Yeom, Geun Young [Department of Advanced Materials Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Kangsik; Lee, Zonghoon [School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 (Korea, Republic of); Jung, Hanearl; Lee, Chang Wan [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Han-Bo-Ram, E-mail: hbrlee@inu.ac.kr [Department of Materials Science and Engineering, Incheon National University, 406-840 Incheon (Korea, Republic of)

    2016-11-30

    Highlights: • Fundamental research plasma process for thin film deposition is presented. • VHF plasma source for PE-ALD Al{sub 2}O{sub 3} was employed to reduce plasma damage. • The use of VHF plasma improved all of the film qualities and growth characteristics. - Abstract: Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al{sub 2}O{sub 3} were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al{sub 2}O{sub 3} shows superior physical and electrical properties over RF PE-ALD Al{sub 2}O{sub 3}, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al{sub 2}O{sub 3} on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  20. National High Frequency Radar Network (hfrnet) and Pacific Research Efforts

    Science.gov (United States)

    Hazard, L.; Terrill, E. J.; Cook, T.; de Paolo, T.; Otero, M. P.; Rogowski, P.; Schramek, T. A.

    2016-12-01

    The U.S. High Frequency Radar Network (HFRNet) has been in operation for over ten years with representation from 31 organizations spanning academic institutions, state and local government agencies, and private organizations. HFRNet currently holds a collection from over 130 radar installations totaling over 10 million records of surface ocean velocity measurements. HFRNet is a primary example of inter-agency and inter-institutional partnerships for improving oceanographic research and operations. HF radar derived surface currents have been used in several societal applications including coastal search and rescue, oil spill response, water quality monitoring and marine navigation. Central to the operational success of the large scale network is an efficient data management, storage, access, and delivery system. The networking of surface current mapping systems is characterized by a tiered structure that extends from the individual field installations to local regional operations maintaining multiple sites and on to centralized locations aggregating data from all regions. The data system development effort focuses on building robust data communications from remote field locations (sites) for ingestion into the data system via data on-ramps (Portals or Site Aggregators) to centralized data repositories (Nodes). Centralized surface current data enables the aggregation of national surface current grids and allows for ingestion into displays, management tools, and models. The Coastal Observing Research and Development Center has been involved in international relationships and research in the Philippines, Palau, and Vietnam. CORDC extends this IT architecture of surface current mapping data systems leveraging existing developments and furthering standardization of data services for seamless integration of higher level applications. Collaborations include the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA), The Coral Reef Research

  1. High-frequency TRNS reduces BOLD activity during visuomotor learning.

    Directory of Open Access Journals (Sweden)

    Catarina Saiote

    Full Text Available Transcranial direct current stimulation (tDCS and transcranial random noise stimulation (tRNS consist in the application of electrical current of small intensity through the scalp, able to modulate perceptual and motor learning, probably by changing brain excitability. We investigated the effects of these transcranial electrical stimulation techniques in the early and later stages of visuomotor learning, as well as associated brain activity changes using functional magnetic resonance imaging (fMRI. We applied anodal and cathodal tDCS, low-frequency and high-frequency tRNS (lf-tRNS, 0.1-100 Hz; hf-tRNS 101-640 Hz, respectively and sham stimulation over the primary motor cortex (M1 during the first 10 minutes of a visuomotor learning paradigm and measured performance changes for 20 minutes after stimulation ceased. Functional imaging scans were acquired throughout the whole experiment. Cathodal tDCS and hf-tRNS showed a tendency to improve and lf-tRNS to hinder early learning during stimulation, an effect that remained for 20 minutes after cessation of stimulation in the late learning phase. Motor learning-related activity decreased in several regions as reported previously, however, there was no significant modulation of brain activity by tDCS. In opposition to this, hf-tRNS was associated with reduced motor task-related-activity bilaterally in the frontal cortex and precuneous, probably due to interaction with ongoing neuronal oscillations. This result highlights the potential of lf-tRNS and hf-tRNS to differentially modulate visuomotor learning and advances our knowledge on neuroplasticity induction approaches combined with functional imaging methods.

  2. Recent Improvements in High-Frequency Eddy Current Conductivity Spectroscopy

    Science.gov (United States)

    Abu-Nabah, Bassam A.; Nagy, Peter B.

    2008-02-01

    Due to its frequency-dependent penetration depth, eddy current measurements are capable of mapping near-surface residual stress profiles based on the so-called piezoresistivity effect, i.e., the stress-dependence of electric conductivity. To capture the peak compressive residual stress in moderately shot-peened (Almen 4-8A) nickel-base superalloys, the eddy current inspection frequency has to go as high as 50-80 MHz. Recently, we have reported the development of a new high-frequency eddy current conductivity measuring system that offers an extended inspection frequency range up to 80 MHz. Unfortunately, spurious self- and stray-capacitance effects render the complex coil impedance variation with lift-off more nonlinear as the frequency increases, which makes it difficult to achieve accurate apparent eddy current conductivity (AECC) measurements with the standard four-point linear interpolation method beyond 25 MHz. In this paper, we will demonstrate that reducing the coil size reduces its sensitivity to capacitive lift-off variations, which is just the opposite of the better known inductive lift-off effect. Although reducing the coil size also reduces its absolute electric impedance and relative sensitivity to conductivity variations, a smaller coil still yields better overall performance for residual stress assessment. In addition, we will demonstrate the benefits of a semi-quadratic interpolation scheme that, together with the reduced lift-off sensitivity of the smaller probe coil, minimizes and in some cases completely eliminates the sensitivity of AECC measurements to lift-off uncertainties. These modifications allow us to do much more robust measurements up to as high as 80-100 MHz with the required high relative accuracy of +/-0.1%.

  3. Castration alters protein balance after high-frequency muscle contraction.

    Science.gov (United States)

    Steiner, Jennifer L; Fukuda, David H; Rossetti, Michael L; Hoffman, Jay R; Gordon, Bradley S

    2017-02-01

    Resistance exercise increases muscle mass by shifting protein balance in favor of protein accretion. Androgens independently alter protein balance, but it is unknown whether androgens alter this measure after resistance exercise. To answer this, male mice were subjected to sham or castration surgery 7-8 wk before undergoing a bout of unilateral, high-frequency, electrically induced muscle contractions in the fasted or refed state. Puromycin was injected 30 min before euthanasia to measure protein synthesis. The tibialis anterior was analyzed 4 h postcontraction. In fasted mice, neither basal nor stimulated rates of protein synthesis were affected by castration despite lower phosphorylation of mechanistic target of rapamycin in complex 1 (mTORC1) substrates [p70S6K1 (Thr389) and 4E-BP1 (Ser65)]. Markers of autophagy (LC3 II/I ratio and p62 protein content) were elevated by castration, and these measures remained elevated above sham values after contractions. Furthermore, in fasted mice, the protein content of Regulated in Development and DNA Damage 1 (REDD1) was correlated with LC3 II/I in noncontracted muscle, whereas phosphorylation of uncoordinated like kinase 1 (ULK1) (Ser757) was correlated with LC3 II/I in the contracted muscle. When mice were refed before contractions, protein synthesis and mTORC1 signaling were not affected by castration in either the noncontracted or contracted muscle. Conversely, markers of autophagy remained elevated in the muscles of refed, castrated mice even after contractions. These data suggest the castration-mediated elevation in baseline autophagy reduces the absolute positive shift in protein balance after muscle contractions in the refed or fasted states.

  4. High-frequency homogenization for travelling waves in periodic media

    Science.gov (United States)

    Harutyunyan, Davit; Milton, Graeme W.; Craster, Richard V.

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector k and frequency ω1 plus a modulated Bloch carrier wave having crystal wavevector m and frequency ω2. We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω1=ω2 and (k -m )⊙Λ ∈2 π Zd, where Λ=(λ1λ2…λd) is the periodicity cell of the medium and for any two vectors a =(a1,a2,…,ad),b =(b1,b2,…,bd)∈Rd, the product a⊙b is defined to be the vector (a1b1,a2b2,…,adbd). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  5. High frequency dynamics of BMG determined by synchrotron radiation: A microscopic picture

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Jorge, E-mail: jserrano@fa.upc.ed [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Univ. Politecnica de Catalunya, Avda. del Canal Olimpic 15, Castelldefels (Spain); Dept. de Fisica Aplicada, EPSC, Univ. Politecnica de Catalunya, Avda. del Canal Olimpic 15, 08860 Castelldefels (Spain); Pineda, Eloi [Dept. de Fisica i Enginyeria Nuclear, ESAB, Univ. Politecnica de Catalunya, Avda. del Canal Olimpic 15, 08860 Castelldefels (Spain); Bruna, Pere [Dept. de Fisica Aplicada, EPSC, Univ. Politecnica de Catalunya, Avda. del Canal Olimpic 15, 08860 Castelldefels (Spain); Labrador, Ana [LLS, BM16-ESRF, BP 220, 38043 Grenoble Cedex 9 (France); Le Tacon, Mathieu; Krisch, Michael; Monaco, Giulio [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP 220, 38043 Grenoble Cedex 9 (France); Crespo, Daniel [Dept. de Fisica Aplicada, EPSC, Univ. Politecnica de Catalunya, Avda. del Canal Olimpic 15, 08860 Castelldefels (Spain)

    2010-04-16

    Mechanical properties are becoming the focus in research on bulk metallic glasses (BMG), as they are the limiting factor for structural applications. A wide range of experimental techniques gives complementary macroscopic data that are often difficult to correlate with the microscopic structural knowledge of the same materials. Recently, high resolution inelastic X-ray scattering (IXS) was applied to determine the high frequency dynamics of BMG [T. Scopigno, J.-B. Suck, R. Angelini, F. Albergamo, G. Ruocco, Phys. Rev. Lett. 96 (2006) 135501]. This technique offers a new approach to the mechanic properties helping to bridge the gap between the microscopic and the macroscopic picture. Here we will present results of IXS experiments on bulk metallic glasses with different fragility values, obtained at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France).

  6. High frequency wave packets for the Schr\\"odinger equation and its numerical approximations

    CERN Document Server

    Marica, Aurora-Mihaela

    2010-01-01

    We build Gaussian wave packets for the linear Schr\\"odinger equation and its finite difference space semi-discretization and illustrate the lack of uniform dispersive properties of the numerical solutions as established in Ignat, Zuazua, Numerical dispersive schemes for the nonlinear Schr\\"odinger equation, SIAM. J. Numer. Anal., 47(2) (2009), 1366-1390. It is by now well known that bigrid algorithms provide filtering mechanisms allowing to recover the uniformity of the dispersive properties as the mesh size goes to zero. We analyze and illustrate numerically how these high frequency wave packets split and propagate under these bigrid filtering mechanisms, depending on how the fine grid/coarse grid filtering is implemented.

  7. LDRD final report on Bloch Oscillations in two-dimensional nanostructure arrays for high frequency applications.

    Energy Technology Data Exchange (ETDEWEB)

    Lyo, Sungkwun Kenneth; Pan, Wei; Reno, John Louis; Wendt, Joel Robert; Barton, Daniel Lee

    2008-09-01

    We have investigated the physics of Bloch oscillations (BO) of electrons, engineered in high mobility quantum wells patterned into lateral periodic arrays of nanostructures, i.e. two-dimensional (2D) quantum dot superlattices (QDSLs). A BO occurs when an electron moves out of the Brillouin zone (BZ) in response to a DC electric field, passing back into the BZ on the opposite side. This results in quantum oscillations of the electron--i.e., a high frequency AC current in response to a DC voltage. Thus, engineering a BO will yield continuously electrically tunable high-frequency sources (and detectors) for sensor applications, and be a physics tour-de-force. More than a decade ago, Bloch oscillation (BO) was observed in a quantum well superlattice (QWSL) in short-pulse optical experiments. However, its potential as electrically biased high frequency source and detector so far has not been realized. This is partially due to fast damping of BO in QWSLs. In this project, we have investigated the possibility of improving the stability of BO by fabricating lateral superlattices of periodic coupled nanostructures, such as metal grid, quantum (anti)dots arrays, in high quality GaAs/Al{sub x}Ga{sub 1-x}As heterostructures. In these nanostructures, the lateral quantum confinement has been shown theoretically to suppress the optical-phonon scattering, believed to be the main mechanism for fast damping of BO in QWSLs. Over the last three years, we have made great progress toward demonstrating Bloch oscillations in QDSLs. In the first two years of this project, we studied the negative differential conductance and the Bloch radiation induced edge-magnetoplasmon resonance. Recently, in collaboration with Prof. Kono's group at Rice University, we investigated the time-domain THz magneto-spectroscopy measurements in QDSLs and two-dimensional electron systems. A surprising DC electrical field induced THz phase flip was observed. More measurements are planned to investigate this

  8. Assessing the high frequency behavior of non-polarizable electrodes for spectral induced polarization measurements

    Science.gov (United States)

    Abdulsamad, Feras; Florsch, Nicolas; Schmutz, Myriam; Camerlynck, Christian

    2016-12-01

    During the last decades, the usage of spectral induced polarization (SIP) measurements in hydrogeology and detecting environmental problems has been extensively increased. However, the physical mechanisms which are responsible for the induced polarization response over the usual frequency range (typically 1 mHz to 10-20 kHz) require better understanding. The phase shift observed at high frequencies is sometimes attributed to the so-called Maxwell-Wagner polarization which takes place when charges cross an interface. However, SIP measurements of tap water show a phase shift at frequencies higher than 1 kHz, where no Maxwell-Wagner polarization may occur. In this paper, we enlighten the possible origin of this phase shift and deduce its likely relationship with the types of the measuring electrodes. SIP Laboratory measurements of tap water using different types of measuring electrodes (polarizable and non-polarizable electrodes) are carried out to detect the origin of the phase shift at high frequencies and the influence of the measuring electrodes types on the observed complex resistivity. Sodium chloride is used to change the conductivity of the medium in order to quantify the solution conductivity role. The results of these measurements are clearly showing the impact of the measuring electrodes type on the measured phase spectrum while the influence on the amplitude spectrum is negligible. The phenomenon appearing on the phase spectrum at high frequency (> 1 kHz) whatever the electrode type is, the phase shows an increase compared to the theoretical response, and the discrepancy (at least in absolute value) increases with frequency, but it is less severe when medium conductivity is larger. Additionally, the frequency corner is shifted upward in frequency. The dependence of this phenomenon on the conductivity and the measuring electrodes type (electrode-electrolyte interface) seems to be due to some dielectric effects (as an electrical double layer of small

  9. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults

    Science.gov (United States)

    McLaskey, Gregory C.; Thomas, Amanda M.; Glaser, Steven D.; Nadeau, Robert M.

    2012-01-01

    Faults strengthen or heal with time in stationary contact and this healing may be an essential ingredient for the generation of earthquakes. In the laboratory, healing is thought to be the result of thermally activated mechanisms that weld together micrometre-sized asperity contacts on the fault surface, but the relationship between laboratory measures of fault healing and the seismically observable properties of earthquakes is at present not well defined. Here we report on laboratory experiments and seismological observations that show how the spectral properties of earthquakes vary as a function of fault healing time. In the laboratory, we find that increased healing causes a disproportionately large amount of high-frequency seismic radiation to be produced during fault rupture. We observe a similar connection between earthquake spectra and recurrence time for repeating earthquake sequences on natural faults. Healing rates depend on pressure, temperature and mineralogy, so the connection between seismicity and healing may help to explain recent observations of large megathrust earthquakes which indicate that energetic, high-frequency seismic radiation originates from locations that are distinct from the geodetically inferred locations of large-amplitude fault slip

  10. Investigations into the microstructure-toughness relation in high frequency induction welded pipes

    Energy Technology Data Exchange (ETDEWEB)

    Gungor, O. E.; Thibaux, P.; Liebeherr, M. [ArcelorMittal Global RnD Ghent, Zelzate, (Belgium); Yan, P.; Bhadeshia, H. K. D. H. [Material Science and Mettalurgy, University of Cambridge, (United Kingdom); Quidord, D. [ArcelorMittal Commercial FCE, Fos-sur-Mer, (France)

    2010-07-01

    High frequency induction is frequently used in the production of longitudinally welded pipes for gas transmission but there is some concern about the lower toughness of the weld metal. The HFI welds require in-line post-weld heat treatment (PWHT) to ensure better weld properties. This study investigated the effect of the high frequency induction (HFI) welding process and in-line post-weld heat treatment on weld properties. Tests were performed on HFI welded X65 pipes with a diameter of 24''. Mechanical properties of the pipes were evaluated using Charpy impact (V-notch) and tensile tests before and after PWHT. The EBSD technique was used to study the microtexture and grain structure of the welds. The results showed that the toughness of the bond line after PWHT was sufficiently high, but it is still lower than that of the base material. The coarse crystallographic grain size at the junction of the welds was found to be one of the main reasons for the low toughness.

  11. Coarse-fine adaptive tuned vibration absorber with high frequency resolution

    Science.gov (United States)

    Wang, Xi; Yang, Bintang; You, Jiaxin; Gao, Zhe

    2016-11-01

    The speed fluctuation of satellite-rotary-mechanisms causes vibration of slightly different frequencies. The critical requirements of satellites need a vibration control device with high frequency resolution to suppress the vibration. This paper presents a coarse-fine adaptive tuned vibration absorber (ATVA) with high frequency resolution. The coarse-fine ATVA which simultaneously satisfies the requirements of high resolution and relatively wide effective bandwidth is capable of tracking the variable exciting frequency adaptively to suppress the vibration of the primary system. The coarse-fine ATVA is divided into a coarse tuning segment and a fine tuning segment. The coarse tuning segment is used to tune the required natural frequency in a relatively wide effective bandwidth and the fine tuning segment can achieve precise tune in a tiny-scale bandwidth. The mathematical model of the coarse tuning and the fine tuning is proposed to design the parameters of the coarse-fine ATVA. The experimental test results indicate the coarse tuning bandwidth of the coarse-fine ATVA is 8.7 Hz to 29 Hz and the minimum resolution of the fine tuning is 0.05 Hz. Moreover, a significant vibration attenuation of 15dB is verified in the effective bandwidth.

  12. Single stock dynamics on high-frequency data: from a compressed coding perspective.

    Directory of Open Access Journals (Sweden)

    Hsieh Fushing

    Full Text Available High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS, and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors.

  13. The Subharmonic Behavior and Thresholds of High Frequency Ultrasound Contrast Agents

    Science.gov (United States)

    Allen, John

    2016-11-01

    Ultrasound contrast agents are encapsulated micro-bubbles used for diagnostic and therapeutic biomedical ultrasound. The agents oscillate nonlinearly about their equilibrium radii upon sufficient acoustic forcing and produce unique acoustic signatures that allow them to be distinguished from scattering from the surrounding tissue. The subharmonic response occurs below the fundamental and is associated with an acoustic pressure threshold. Subharmonic imaging using ultrasound contrast agents has been established for clinical applications at standard diagnostic frequencies typically below 20 MHz. However, for emerging applications of high frequency applications (above 20 MHz) subharmonic imaging is an area of on-going research. The effects of attenuation from tissue are more significant and the characterization of agents is not as well understood. Due to specificity and control production, polymer agents are useful for high frequency applications. In this study, we highlight novel measurement techniques to measure and characterize the mechanical properties of the shell of polymer contrast agents. The definition of the subharmonic threshold is investigated with respect to mono-frequency and chirp forcing waveforms which have been used to achieve optimal subharmonic content in the backscattered signal. Time frequency analysis using the Empirical Mode Decomposition (EMD) and the Hilbert-Huang transform facilitates a more sensitive and robust methodology for characterization of subharmonic content with respect to non-stationary forcing. A new definition of the subharmonic threshold is proposed with respect to the energy content of the associated adaptive basis decomposition. Additional studies with respect to targeted agent behavior and cardiovascular disease are discussed. NIH, ONR.

  14. Analysis of Excitation Characteristics of Ultra High Frequency Electromagnetic Waves Induced by PD in GIS

    Institute of Scientific and Technical Information of China (English)

    DING Dengwei; GAO Wensheng; YAO Senjing; LIU Weidong; HE Jiaxi

    2013-01-01

    The understanding of the excitation mechanism of ultra high frequency (UHF) electromagnetic waves (EW) is essential for applying UHF method to partial discharge (PD) detection.Since the EW induced by PD in gas insulated switchgear (GIS) contains not only transverse electromagnetic (TEM) wave,but also high-order transverse electric (TE) and high-order transverse magnetic (TM) waves,we analyzed the proportions between the TEM wave and the high order waves,as well as the influence of the PD position on this proportion,using the finite different time domain (FDTD) method.According to the unique characteristics of the waves,they are separated only approximately.It is found that the high-order mode is the main component,more than 70%,of the electric field around the enclosure of GIS,and that with the increasing distance between PD source and inner conductors,the low frequency (below about 800 MHz) component of EW decreases,but the high frequency component (above 1 GHz) increases,meanwhile the proportion of high-order components in EW could reach 77% from 70%.It concluded that the closer the PD source to the enclosure is,the easier high order EW may be excited.

  15. Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound

    Science.gov (United States)

    Töyräs, J.; Rieppo, J.; Nieminen, M. T.; Helminen, H. J.; Jurvelin, J. S.

    1999-11-01

    Ultrasound may provide a quantitative technique for the characterization of cartilage changes typical of early osteoarthrosis. In this study, specific changes in bovine articular cartilage were induced using collagenase and chondroitinase ABC, enzymes that selectively degrade collagen fibril network and digest proteoglycans, respectively. Changes in cartilage structure and properties were quantified using high frequency ultrasound, microscopic analyses and mechanical indentation tests. The ultrasound reflection coefficient of the physiological saline-cartilage interface (R1) decreased significantly (-96.4%, p<0.01) in the collagenase digested cartilage compared to controls. Also a significantly lower ultrasound velocity (-6.2%, p<0.01) was revealed after collagenase digestion. After chondroitinase ABC digestion, a new acoustic interface at the depth of the enzyme penetration front was detected. Cartilage thickness, as determined with ultrasound, showed a high, linear correlation (R = 0.943, n = 60, average difference 0.073 mm (4.0%)) with the thickness measured by the needle-probe method. Both enzymes induced a significant decrease in the Young's modulus of cartilage (p<0.01). Our results indicate that high frequency ultrasound provides a sensitive technique for the analysis of cartilage structure and properties. Possibly ultrasound may be utilized in vivo as a quantitative probe during arthroscopy.

  16. Confronting models for the high-frequency QPOs with Lense-Thirring precession

    CERN Document Server

    Stefanov, Ivan Zh

    2014-01-01

    Quasiperiodic oscillations (QPOs) have been observed in the power-density spectra of some low-mass X-ray binaries(LMXB) containing a black hole. The two major groups of QPOs -- low-frequency and high-frequency -- have rather different properties. That is why they are usually studied separately. In the literature one can find a large number of models for the high-frequency QPOs but not so many for the low-frequency ones. HF QPOs have attracted significant research efforts due to their potential to provide indispensable information for the properties of the black hole, for its accretion disc and for strong field gravity in general. However, in order to interpret the data for the HF QPOs of the observed objects we have to fix a model. Here we propose a simple test which could allow us to sift the models. The test is based on five rather general assumptions concerning the nature of the central object in black-hole binaries and the mechanism for the generation of the LF QPOs observed in the PDS of such objects. In...

  17. Single stock dynamics on high-frequency data: from a compressed coding perspective.

    Science.gov (United States)

    Fushing, Hsieh; Chen, Shu-Chun; Hwang, Chii-Ruey

    2014-01-01

    High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS), and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors.

  18. Theories and experiments on the stiffening effect of high-frequency excitation for continuous elastic systems

    Science.gov (United States)

    Thomsen, J. J.

    2003-02-01

    One effect of strong mechanical high-frequency excitation may be to apparently "stiffen" a structure, a well-described phenomenon for discrete systems. The present study provides theoretical and experimental results on this effect for continuous elastic structures. A laboratory experiment is set up for demonstrating and measuring the stiffening effect in a simple setting, in the form of a horizontal piano string subjected to longitudinal high-frequency excitation at the clamped base and free at the other end. A simplest possible theoretical model is set up and analyzed using a hierarchy of three approximating theories, each providing valuable insight. One of these is capable of predicting the vertical string lift due to stiffening in terms of simple expressions, with results that agree very well with experimental measurements for a wide range of conditions. It appears that resonance effects cannot be ignored, as was done in a few related studies—unless the system has very low modal density or heavy damping; thus first-order consideration to resonance effects is included. Using the specific example with experimental support to put confidence on the proposed theory, expressions for predicting the stiffening effect for a more general class of continuous systems in differential operator form are also provided.

  19. Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence.

    Science.gov (United States)

    Park, Jinhyoung; Lee, Jungwoo; Lau, Sien Ting; Lee, Changyang; Huang, Ying; Lien, Ching-Ling; Kirk Shung, K

    2012-04-01

    Acoustic radiation force impulse (ARFI) imaging has been developed as a non-invasive method for quantitative illustration of tissue stiffness or displacement. Conventional ARFI imaging (2-10 MHz) has been implemented in commercial scanners for illustrating elastic properties of several organs. The image resolution, however, is too coarse to study mechanical properties of micro-sized objects such as cells. This article thus presents a high-frequency coded excitation ARFI technique, with the ultimate goal of displaying elastic characteristics of cellular structures. Tissue mimicking phantoms and zebrafish embryos are imaged with a 100-MHz lithium niobate (LiNbO₃) transducer, by cross-correlating tracked RF echoes with the reference. The phantom results show that the contrast of ARFI image (14 dB) with coded excitation is better than that of the conventional ARFI image (9 dB). The depths of penetration are 2.6 and 2.2 mm, respectively. The stiffness data of the zebrafish demonstrate that the envelope is harder than the embryo region. The temporal displacement change at the embryo and the chorion is as large as 36 and 3.6 μm. Consequently, this high-frequency ARFI approach may serve as a remote palpation imaging tool that reveals viscoelastic properties of small biological samples.

  20. Speckle interferometric sensor to measure low-amplitude high frequency Ocular Microtremor (OMT)

    Science.gov (United States)

    Ryle, James P.; Al-Kalbani, Mohammed; Gopinathan, Unnikrishnan; Boyle, Gerard; Coakley, Davis; Sheridan, John T.

    2009-08-01

    Ocular microtremor (OMT) is a physiological high frequency (up to 150Hz) low amplitude (150-2500nm) involuntary tremor of the human eye. It is one of the three fixational ocular motions described by Adler and Fliegelman in 1934 as well as microsaccades and drift. Clinical OMT investigations to date have used eye-contacting piezoelectric probes or piezoelectric strain gauges. Before contact can be made, the eye must first be anaesthetised. In some cases, this induces eyelid spasms (blepharospasm) making it impossible to measure OMT. Using the contact probe method, the eye motion is mechanically damped. In addition to this, it is not possible to obtain exact information about the displacement. Results from clinical studies to date have given electrical signal amplitudes from the probe. Recent studies suggest a number of clinical applications for OMT, these include monitoring the depth of anaesthesia of a patient in surgery, prediction of outcome in coma, diagnosis of brainstem death. In addition to this, abnormal OMT frequency content is present in patients with neurological disorders such as Multiple sclerosis and Parkinson's disease. However for ongoing clinical investigations the contact probe method falls short of a non-contact accurate measurement solution. In this paper, we design a compact non contact phase modulating optical fiber speckle interferometer to measure eye motions. We present our calibration results using a calibrated piezoelectric vibration simulator. Digital signal processing is then performed to extract the low amplitude high frequency displacement information.

  1. A Meta-analysis on Resting State High-frequency Heart Rate Variability in Bulimia Nervosa.

    Science.gov (United States)

    Peschel, Stephanie K V; Feeling, Nicole R; Vögele, Claus; Kaess, Michael; Thayer, Julian F; Koenig, Julian

    2016-09-01

    Autonomic nervous system function is altered in eating disorders. We aimed to quantify differences in resting state vagal activity, indexed by high-frequency heart rate variability comparing patients with bulimia nervosa (BN) and healthy controls. A systematic search of the literature to identify studies eligible for inclusion and meta-analytical methods were applied. Meta-regression was used to identify potential covariates. Eight studies reporting measures of resting high-frequency heart rate variability in individuals with BN (n = 137) and controls (n = 190) were included. Random-effects meta-analysis revealed a sizeable main effect (Z = 2.22, p = .03; Hedge's g = 0.52, 95% CI [0.06;0.98]) indicating higher resting state vagal activity in individuals with BN. Meta-regression showed that body mass index and medication intake are significant covariates. Findings suggest higher vagal activity in BN at rest, particularly in unmedicated samples with lower body mass index. Potential mechanisms underlying these findings and implications for routine clinical care are discussed. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  2. EFFECT MECHANISM OF HIGH FREQUENCY ELECTRO-MAGNETIC FIELD ON THE SURFACE QUALITY AND EQUIAXED CRYSTAL RATIO OF 15CrMo BILLET%高频电磁场对15CrMo连铸坯表面质量和等轴晶率的影响机理

    Institute of Scientific and Technical Information of China (English)

    许秀杰; 邓安元; 王恩刚; 张林涛; 张永杰; 赫冀成

    2009-01-01

    An induced coil surrounding a segmented mold used in soft contact electromagnetic casting (soft-contact EMC) was used to produce a high frequency magnetic field for reducing ferrostatic pressure between the mold and melt. The distribution of magnetic field in the mold was examined using a magnetic probe of the induction coil type. Then mathematical model was developed to study the distributions of magnetic field, electromagnetic force and flowing velocity of molten steel in the mold. Finally, continuous casting experiments were conducted with alloy constructional steel 15CrMo in the laboratory caster. The surface morphologies and macrostructure were examined and analyzed. Based on the comprehension of the distributions of magnetic field, electromagnetic force and flowing velocity of molten steel in the mold through measurements and numerical simulation, the effects of electromag-netic field were systematically investigated. The results indicate that when the electromagnetic field was applied in the initially solidified area, the mold flux consumption was increased dramatically. As a result, the surface quality of continuously cast billets is greatly improved, for example, oscillation marks disappeared due to the decrease of flux pressure. Moreover, the growth of columnar grains is suppressed for two main reasons. The first one is that the mold near meniscus is heated by Joule heat generated by the high frequency electromagnetic field. The other one is that the thermal resistance between mold and the solidified shell is increased as the increase of mold flux thickness. Inhomogeneous distributions of magnetic field in the mold along the casting direction were confirmed both by measurement and numerical simulation. And the Lorentz force on the molten steel along the casting direction is uneven likewise. Under the drive of Lorentz force, two counter-rotational vortices are formed below the meniscus. Moreover, the temperature gradient in front of the solid

  3. Development of high frequency annular array ultrasound transducers

    Science.gov (United States)

    Gottlieb, Emanuel John

    The advantage of ultrasonic annular arrays over conventional single element transducers has been in the ability to transmit focus at multiple points throughout the depth of field, as well as receive dynamic focus. Today, annular, linear and multidimensional array imaging systems are not commercially available at frequencies greater than 20 MHz. The fabrication technology used to develop a high frequency (>50 MHz) annular array transducer is presented. A 9 mum P(VDF-TrFE) film was bonded to gold annuli electrodes on the top layer of a two sided polyimide flexible circuit. Each annulus was separated by a 30 mum kerf and had several electroplated micro vias that connected to electrode traces on the bottom side of the polyimide flexible circuit. The array's performance was evaluated by measuring the electrical impedance, pulse echo response and crosstalk measurement for each element in the array. In order to improve device sensitivity each element was electrically matched to an impedance magnitude of 50 O and 0° phase at resonance. The average round trip insertion loss measured for the array and compensated for diffraction effects was -33.5 dB. The measured average center frequency and bandwidth of an element was 55 MHz and 47 respectively. The measured crosstalk between adjacent elements remained below -29 dB at the center frequency in water. A vertical wire phantom was imaged using a single focus transmit beamformer and dynamic focusing receive beamformer. This image showed a significant improvement in lateral resolution over a range of 9 mm after the dynamic focusing receive algorithm was applied. These results correlated well with predictions from a Field II simulation. After beamforming the minimum lateral resolution (-6 dB) was 108 mum at the focus. Preliminary ultrasound B-mode images of the rabbit eye using this transducer were shown in conjunction with a multi-channel digital beamformer. A feasibility study of designing and fabricating tunable copolymer

  4. A Compact High Frequency Doppler Radio Scatterometer for Coastal Oceanography

    Science.gov (United States)

    Flament, P. J.; Harris, D.; Flament, M.; Fernandez, I. Q.; Hlivak, R.; Flores-vidal, X.; Marié, L.

    2016-12-01

    A low-power High Frequency Doppler Radar has been designed for large series production. The use of commercial-off-the-shelf components is maximized to minimize overall cost. Power consumption is reduced to 130W in full duty and 20W in stand-by under 20-36 V-DC, thus enabling solar/wind and/or fuel cell operation by default. For 8 channels, commercial components and sub-assemblies cost less than k20 excluding coaxial antenna cables, and less than four man-weeks of technician suffice for integration, testing and calibration, suggesting a final cost of about k36, based on production batches of 25 units. The instrument is integrated into passively-cooled 90x60x20 cm3 field-deployable enclosures, combining signal generation, transmitter, received, A/D converter and computer, alleviating the need for additional protection such as a container or building. It uses frequency-ramped continuous wave signals, and phased-array transmissions to decouple the direct path to the receivers. Five sub-assemblies are controlled by a Linux embedded computer: (i) direct digital synthesis of transmit and orthogonal local oscillator signals, derived from a low phase noise oven-controlled crystal; (ii) distributed power amplifiers totaling 5 W, integrated into λ/8 passive transmit antenna monopoles; (iii) λ/12 compact active receive antenna monopoles with embedded out-of-band rejection filters; (iv) analog receivers based on complex demodulation by double-balanced mixers, translating the HF spectrum to the audio band; (v) 24-bit analog-to-digital sigma-delta conversion at 12 kHz with 512x oversampling, followed by decimation to a final sampling frequency of 750 Hz. Except for the HF interference rejection filters, the electronics can operate between 3 and 50 MHz with no modification. At 13.5 MHz, 5 W transmit power, 15 min integration time, the high signal-to-noise ratio permits a typical range of 120 km for currents measurements with 8-antenna beam-forming. The University of Hawaii HFR

  5. Encoding of High Frequencies Improves with Maturation of Action Potential Generation in Cultured Neocortical Neurons

    Science.gov (United States)

    Nikitin, Evgeny S.; Bal, Natalia V.; Malyshev, Aleksey; Ierusalimsky, Victor N.; Spivak, Yulia; Balaban, Pavel M.; Volgushev, Maxim

    2017-01-01

    The ability of neocortical neurons to detect and encode rapid changes at their inputs is crucial for basic neuronal computations, such as coincidence detection, precise synchronization of activity and spike-timing dependent plasticity. Indeed, populations of cortical neurons can respond to subtle changes of the input very fast, on a millisecond time scale. Theoretical studies and model simulations linked the encoding abilities of neuronal populations to the fast onset dynamics of action potentials (APs). Experimental results support this idea, however mechanisms of fast onset of APs in cortical neurons remain elusive. Studies in neuronal cultures, that are allowing for accurate control over conditions of growth and microenvironment during the development of neurons and provide better access to the spike initiation zone, may help to shed light on mechanisms of AP generation and encoding. Here we characterize properties of AP encoding in neocortical neurons grown for 11–25 days in culture. We show that encoding of high frequencies improves upon culture maturation, which is accompanied by the development of passive electrophysiological properties and AP generation. The onset of APs becomes faster with culture maturation. Statistical analysis using correlations and linear model approaches identified the onset dynamics of APs as a major predictor of age-dependent changes of encoding. Encoding of high frequencies strongly correlated also with the input resistance of neurons. Finally, we show that maturation of encoding properties of neurons in cultures is similar to the maturation of encoding in neurons studied in slices. These results show that maturation of AP generators and encoding is, to a large extent, determined genetically and takes place even without normal micro-environment and activity of the whole brain in vivo. This establishes neuronal cultures as a valid experimental model for studying mechanisms of AP generation and encoding, and their maturation. PMID

  6. Temporal Characteristics of High-Frequency Lower-Limb Oscillation during Freezing of Gait in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Don A. Yungher

    2014-01-01

    Full Text Available A cardinal feature of freezing of gait (FOG is high frequency (3–8 Hz oscillation of the legs, and this study aimed to quantify the temporal pattern of lower-body motion prior to and during FOG. Acceleration data was obtained from sensors attached to the back, thighs, shanks, and feet in 14 Parkinson’s disease patients performing timed-up-and-go tasks, and clinical assessment of FOG was performed by two experienced raters from video. A total of 23 isolated FOG events, defined as occurring at least 5 s after gait initiation and with no preceding FOG, were identified from the clinical ratings. The corresponding accelerometer records were analyzed within a 4 s window centered at the clinical onset of freezing. FOG-related high-frequency oscillation (an increase in power in the 3–8 Hz band >3 SD from baseline followed a distal to proximal onset pattern, appearing at the feet, shanks, thighs, and then back over a period of 250 ms. Peak power tended to decrease as the focus of oscillation moved from feet to back. There was a consistent delay (mean 872 ms between the onset of high frequency oscillation at the feet and clinical onset of FOG. We infer that FOG is characterized by high frequency oscillation at the feet, which progresses proximally and is mechanically damped at the torso.

  7. Temporal Characteristics of High-Frequency Lower-Limb Oscillation during Freezing of Gait in Parkinson's Disease

    Science.gov (United States)

    Yungher, Don A.; Morris, Tiffany R.; Dilda, Valentina; Shine, James M.; Naismith, Sharon L.; Lewis, Simon J. G.; Moore, Steven T.

    2014-01-01

    A cardinal feature of freezing of gait (FOG) is high frequency (3–8 Hz) oscillation of the legs, and this study aimed to quantify the temporal pattern of lower-body motion prior to and during FOG. Acceleration data was obtained from sensors attached to the back, thighs, shanks, and feet in 14 Parkinson's disease patients performing timed-up-and-go tasks, and clinical assessment of FOG was performed by two experienced raters from video. A total of 23 isolated FOG events, defined as occurring at least 5 s after gait initiation and with no preceding FOG, were identified from the clinical ratings. The corresponding accelerometer records were analyzed within a 4 s window centered at the clinical onset of freezing. FOG-related high-frequency oscillation (an increase in power in the 3–8 Hz band >3 SD from baseline) followed a distal to proximal onset pattern, appearing at the feet, shanks, thighs, and then back over a period of 250 ms. Peak power tended to decrease as the focus of oscillation moved from feet to back. There was a consistent delay (mean 872 ms) between the onset of high frequency oscillation at the feet and clinical onset of FOG. We infer that FOG is characterized by high frequency oscillation at the feet, which progresses proximally and is mechanically damped at the torso. PMID:25101189

  8. Nonlinear control of high-frequency phonons in spider silk

    Science.gov (United States)

    Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George

    2016-10-01

    Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.

  9. High-Frequency Propagation in the Ocean Waveguide

    Science.gov (United States)

    2016-06-07

    function) and its dynamics. Ideally, we would like to characterize the behavior as a function of 1) source/receiver geometry, 2) arrival angle, 3) carrier...mechanisms involved that relate to temporal coherence and spatial coherence. To be clear on these mechanisms, it is useful to think about the extremes...accurate (and most time consuming ) at the top. In particular, the top row is the exact Helmholtz-Kirchhoff integral equation solution (following precisely a

  10. High frequency oscillations mirror disease activity in patients with focal cortical dysplasia.

    Science.gov (United States)

    Kerber, Karolin; LeVan, Pierre; Dümpelmann, Matthias; Fauser, Susanne; Korinthenberg, Rudolf; Schulze-Bonhage, Andreas; Jacobs, Julia

    2013-08-01

    The study analyzes the occurrence of high frequency oscillations in different types of focal cortical dysplasia in 22 patients with refractory epilepsy. High frequency oscillations are biomarkers for epileptic tissue, but it is unknown whether they can reflect increasingly dysplastic tissue changes as well as epileptic disease activity. High frequency oscillations (80-450 Hz) were visually marked by two independent reviewers in all channels of intracranial implanted grid, strips, and depth electrodes in patients with focal cortical dysplasia and refractory epilepsy. Rates of high frequency oscillations in patients with pathologically confirmed focal cortical dysplasia of Palmini type 1a and b were compared with those in type 2a and b. Patients with focal cortical dysplasia type 2 had significantly more seizures than those with type 1 (p high frequency oscillations were significantly higher in patients with focal cortical dysplasia type 2 versus type 1 (p high frequency oscillations were significantly higher in presumed epileptogenic areas than outside (p high frequency oscillations mirrors the higher epileptogenicity of focal cortical dysplasia type 2 lesions compared to type 1 lesions. Therefore, rates of high frequency oscillations can reflect disease activity of a lesion. This has implications for the use of high frequency oscillations as biomarkers for epileptogenic areas, because a detailed analysis of their rates may be necessary to use high frequency oscillations as a predictive tool in epilepsy surgery. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  11. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp

    Energy Technology Data Exchange (ETDEWEB)

    Beleznai, Sz; Mihajlik, G; Richter, P [Department of Atomic Physics, Budapest University of Technology and Economics, 3-9.Muegyetem rkp., Budapest H-1111 (Hungary); Maros, I; Balazs, L, E-mail: beleznai@dept.phy.bme.h [GE Consumer and Industrial-Lighting, 77 Vaci ut, Budapest H-1344 (Hungary)

    2010-01-13

    The application of a high frequency ({approx}2.5 MHz) burst (amplitude-modulated sinusoidal) excitation voltage waveform is investigated for driving a fluorescent dielectric barrier discharge (DBD) light source. The excitation waveform presents a novel method for generating spatially stable homogeneous Xe DBD possessing a high conversion efficiency from electrical energy to VUV Xe{sub 2}{sup *} excimer radiation ({approx}172 nm), even at a significantly higher electrical energy deposition than realized by pulsed excitation. Simulation and experimental results predict discharge efficiencies around 60%. Lamp efficacy above 74 lm W{sup -1} has been achieved. VUV emission and loss mechanisms are investigated extensively and the performance of burst and pulsed waveforms is compared both theoretically and experimentally.

  12. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp

    Science.gov (United States)

    Beleznai, Sz; Mihajlik, G.; Maros, I.; Balázs, L.; Richter, P.

    2010-01-01

    The application of a high frequency (~2.5 MHz) burst (amplitude-modulated sinusoidal) excitation voltage waveform is investigated for driving a fluorescent dielectric barrier discharge (DBD) light source. The excitation waveform presents a novel method for generating spatially stable homogeneous Xe DBD possessing a high conversion efficiency from electrical energy to VUV Xe_{2}^{\\ast} excimer radiation (~172 nm), even at a significantly higher electrical energy deposition than realized by pulsed excitation. Simulation and experimental results predict discharge efficiencies around 60%. Lamp efficacy above 74 lm W-1 has been achieved. VUV emission and loss mechanisms are investigated extensively and the performance of burst and pulsed waveforms is compared both theoretically and experimentally.

  13. High-frequency field observations of aeolian saltation interactions with turbulent boundary layer winds

    CERN Document Server

    Martin, Raleigh L; Chamecki, Marcelo

    2016-01-01

    The wind-blown transport of sand is driven by turbulent winds that fluctuate over a broad range of temporal and spatial scales. Increasingly sophisticated models and wind tunnel experiments have attempted to capture these dynamics of aeolian saltation, yet model predictions often diverge substantially from field observations. To help fill this knowledge gap, we collected comprehensive high-frequency field measurements to characterize the dynamics of aeolian saltation under natural conditions. Here, we provide detailed description of our field deployments, including information about sites, instruments, and data processing methods. We then demonstrate how our field measurements can help to improve understanding of the mechanics of aeolian processes. We also describe the limitations of our measurement techniques and the needs for future work.

  14. Transient increase of intact visual field size by high-frequency narrow-band stimulation.

    Science.gov (United States)

    Elliott, Mark A; Seifert, Doerthe; Poggel, Dorothe A; Strasburger, Hans

    2015-03-01

    Three patients with visual field defects were stimulated with a square matrix pattern, either static, or flickering at frequencies that had been found to either promote or not promote blindsight performance. Comparison between pre- and post-stimulation perimetric maps revealed an increase in the size of the intact visual field but only for flicker frequencies previously found to promote blindsight. These changes were temporary but dramatic - in two instances the intact field was increased by an area of ∼30 deg(2) of visual angle. These results indicate that not only does specific high-frequency stimulus flicker promote blindsight, but that intact visual field size may be increased by stimulation at the same frequencies. Our findings inform speculation on both the brain mechanisms and the potency of temporal modulation for altering the functional visual field.

  15. Experimental and Numerical Investigation of Thermoacoustic Sources Related to High-Frequency Instabilities

    Directory of Open Access Journals (Sweden)

    Mathieu Zellhuber

    2014-03-01

    Full Text Available Flame dynamics related to high-frequency instabilities in gas turbine combustors are investigated using experimental observations and numerical simulations. Two different combustor types are studied, a premix swirl combustor (experiment and a generic reheat combustor (simulation. In both cases, a very similar dynamic behaviour of the reaction zone is observed, with the appearance of transverse displacement and coherent flame wrinkling. From these observations, a model for the thermoacoustic feedback linked to transverse modes is proposed. The model splits heat release rate fluctuations into distinct contributions that are related to flame displacement and variations of the mass burning rate. The decomposition procedure is applied on the numerical data and successfully verified by comparing a reconstructed Rayleigh index with the directly computed value. It thus allows to quantify the relative importance of various feedback mechanisms for a given setup.

  16. High frequency characterization of conductive inks embedded within a structural composite

    Science.gov (United States)

    Pa, Peter; McCauley, Raymond; Larimore, Zachary; Mills, Matthew; Yarlaggada, Shridhar; Mirotznik, Mark S.

    2015-06-01

    Woven fabric composites provide an attractive platform for integrating electromagnetic functionality—such as conformal load-bearing antennas and frequency selective surfaces—into a structural platform. One practical fabrication method for integrating conductive elements within a woven fabric composite system involves using additive manufacturing systems such as screen printing. While screen printing is an inherently scalable, flexible and cost effective method, little is known about the high frequency electrical properties of its conductive inks when they are embedded within the woven fabric composite. Thus, we have completed numerical and experimental studies to determine the electrical conductivity of screen printable conductive inks that are embedded within this composite. We have also performed mechanical studies to evaluate how printing affects the structural performance of the composite.

  17. High-frequency nanofluidics: a universal formulation of the fluid dynamics of MEMS and NEMS.

    Science.gov (United States)

    Ekinci, K L; Yakhot, V; Rajauria, S; Colosqui, C; Karabacak, D M

    2010-11-21

    A solid body undergoing oscillatory motion in a fluid generates an oscillating flow. Oscillating flows in Newtonian fluids were first treated by G.G. Stokes in 1851. Since then, this problem has attracted much attention, mostly due to its technological significance. Recent advances in micro- and nanotechnology require that this problem be revisited: miniaturized mechanical resonators with linear dimensions in microns and sub-microns-microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS), respectively-give rise to oscillating flows when operated in fluids. Yet flow parameters for these devices, such as the characteristic flow time and length scales, may deviate greatly from those in Stokes' solution. As a result, new and interesting physics emerges with important consequences to device applications. In this review, we shall provide an introduction to this area of fluid dynamics, called high-frequency nanofluidics, with emphasis on both theory and experiments.

  18. Note: Decoupling design for high frequency piezoelectric ultrasonic transducers with their clamping connections

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F. J., E-mail: wangfujun@tju.edu.cn; Liang, C. M.; Tian, Y. L.; Zhao, X. Y.; Zhang, D. W. [Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Zhang, H. J. [Tianjin Key Laboratory of Modern Mechatronics Equipment Technology, School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2015-12-15

    This work presents the flexure-mechanism based decoupling design between high frequency piezoelectric ultrasonic transducers and their clamping connections to improve ultrasonic energy transmission efficiency. The ring, prismatic beam, and circular notched hinge based flanges were presented, and the crucial geometric dimensions of the transducers with the flexure decoupling flanges were determined. Finite element analysis (FEA) was carried out to investigate the dynamic characteristics of the transducers. Finally, experiments were conducted to examine and verify the effects of the proposed decoupling flanges. FEA and experimental results show that smaller frequency deviations and larger tip displacement amplitudes have been achieved by using the transducers with the flexure flanges compared with the transducer with a rigid ring-type flange, and thus the ultrasonic transmission efficiency can be improved through the flexure flanges.

  19. High frequency bone conduction auditory evoked potentials in the guinea pig: Assessing cochlear injury after ossicular chain manipulation.

    Science.gov (United States)

    Bergin, M J; Bird, P A; Vlajkovic, S M; Thorne, P R

    2015-12-01

    Permanent high frequency (>4 kHz) sensorineural hearing loss following middle ear surgery occurs in up to 25% of patients. The aetiology of this loss is poorly understood and may involve transmission of supra-physiological forces down the ossicular chain to the cochlea. Investigating the mechanisms of this injury using animal models is challenging, as evaluating cochlear function with evoked potentials is confounded when ossicular manipulation disrupts the normal air conduction (AC) pathway. Bone conduction (BC) using clinical bone vibrators in small animals is limited by poor transducer output at high frequencies sensitive to trauma. The objectives of the present study were firstly to evaluate a novel high frequency bone conduction transducer with evoked auditory potentials in a guinea pig model, and secondly to use this model to investigate the impact of middle ear surgical manipulation on cochlear function. We modified a magnetostrictive device as a high frequency BC transducer and evaluated its performance by comparison with a calibrated AC transducer at frequencies up to 32 kHz using the auditory brainstem response (ABR), compound action potential (CAP) and summating potential (SP). To mimic a middle ear traumatising stimulus, a rotating bur was brought in to contact with the incudomalleal complex and the effect on evoked cochlear potentials was observed. BC-evoked potentials followed the same input-output function pattern as AC potentials for all ABR frequencies. Deterioration in CAP and SP thresholds was observed after ossicular manipulation. It is possible to use high frequency BC to evoke responses from the injury sensitive basal region of the cochlea and so not rely on AC with the potential confounder of conductive hearing loss. Ongoing research explores how these findings evolve over time, and ways in which injury may be reduced and the cochlea protected during middle ear surgery.

  20. Design of High Frequency Power Oscillator Board Based on Rotary Encoder Control

    Directory of Open Access Journals (Sweden)

    Jiang Shifen

    2013-06-01

    Full Text Available Accurate and stable high frequency pulse power supply is studied to improve high-speed wedm machine tool's efficiency. Regarding to the shortcomings of traditional digital circuit high frequency oscillator board, we design a high frequency power oscillator board based on rotary encoder control, control accuracy and high-frequency waveform by programming, adjusting the frequency and display. It has six brakes of processing function, it also includes feedback function of emulsification oil. The high frequency will be shutdown and the emulsification oil will be changed if there is too much metal dust in emulsification. It has been proved by practice that high-frequency circuit board is simple and reliable and can greatly increase efficiency of wire cutting.

  1. A New High Frequency Injection Method Based on Duty Cycle Shifting without Maximum Voltage Magnitude Loss

    DEFF Research Database (Denmark)

    Wang, Dong; Lu, Kaiyuan; Rasmussen, Peter Omand

    2015-01-01

    The conventional high frequency signal injection method is to superimpose a high frequency voltage signal to the commanded stator voltage before space vector modulation. Therefore, the magnitude of the voltage used for machine torque production is limited. In this paper, a new high frequency...... injection method, in which high frequency signal is generated by shifting the duty cycle between two neighboring switching periods, is proposed. This method allows injecting a high frequency signal at half of the switching frequency without the necessity to sacrifice the machine fundamental voltage...... amplitude. This may be utilized to develop new position estimation algorithm without involving the inductance in the medium to high speed range. As an application example, a developed inductance independent position estimation algorithm using the proposed high frequency injection method is applied to drive...

  2. Magnetoencephalography detection of high-frequency oscillations in the developing brain.

    Science.gov (United States)

    Leiken, Kimberly; Xiang, Jing; Zhang, Fawen; Shi, Jingping; Tang, Lu; Liu, Hongxing; Wang, Xiaoshan

    2014-01-01

    Increasing evidence from invasive intracranial recordings suggests that the matured brain generates both physiological and pathological high-frequency signals. The present study was designed to detect high-frequency brain signals in the developing brain using newly developed magnetoencephalography (MEG) methods. Twenty healthy children were studied with a high-sampling rate MEG system. Functional high-frequency brain signals were evoked by electrical stimulation applied to the index fingers. To determine if the high-frequency neuromagnetic signals are true brain responses in high-frequency range, we analyzed the MEG data using the conventional averaging as well as newly developed time-frequency analysis along with beamforming. The data of healthy children showed that very high-frequency brain signals (>1000 Hz) in the somatosensory cortex in the developing brain could be detected and localized using MEG. The amplitude of very high-frequency brain signals was significantly weaker than that of the low-frequency brain signals. Very high-frequency brain signals showed a much earlier latency than those of a low-frequency. Magnetic source imaging (MSI) revealed that a portion of the high-frequency signals was from the somatosensory cortex, another portion of the high-frequency signals was probably from the thalamus. Our results provide evidence that the developing brain generates high-frequency signals that can be detected with the non-invasive technique of MEG. MEG detection of high-frequency brain signals may open a new window for the study of developing brain function.

  3. Sonic analogue of black holes and the effects of high frequencies on black hole evaporation

    CERN Document Server

    Unruh, W G

    1995-01-01

    The naive calculation of black hole evaporation makes the thermal emission depend on the arbitrary high frequency behaviour of the theory where the theory is certainly wrong. Using the sonic analog to black holes-- dumb holes-- I show numerically that a change in the dispersion relation at high frequencies does not seem to alter the evaporation process, lending weight to the reality of the black hole evaporation process. I also suggest a reason for the insensitivity of the process to high frequency regime.

  4. Analysis of Energy Overshoot of High Frequency Waves with Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    WEN Fan

    2000-01-01

    A study is made on the overshoot phenomena in wind-generated waves. The surface displace ments of time-growing waves are measured at four fetches in a wind wave channel. The evolution of high frequency waves is displayed with wavelet transform. The results are compared with Sutherland's. It is found that high frequency wave components experience much stronger energy overshoot in the evolution.The energy of high frequency waves decreases greatly after overshoot

  5. High Frequency Excitation for Cavity Flow Control: Combined Experiments and Linear Stability Analysis

    Science.gov (United States)

    2009-06-30

    Peto , "Suppression of cav- ity resonance using high frequency forcing - the characteristic signature of effective devices", American Institute of...Aeronautics and Astronautics Paper 2001-2128 (2001). 25 M. Stanek, G. Raman, J. A. Ross, J. Odedra, J. W. Peto , F. Alvi, and V. Kibens, "High frequency...Institute of Aeronautics and 30 Astronautics Paper 2002-2404 (2002). 26 M. Stanek, J. A. Ross, J. Odedra, and J. Peto , "High frequency acoustic

  6. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight

    Science.gov (United States)

    Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.

    2017-03-01

    Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.

  7. Physics of Collisional Plasmas Introduction to High-Frequency Discharges

    CERN Document Server

    Moisan, Michel

    2012-01-01

    The Physics of Collisional Plasmas deals with the plasma physics of interest to laboratory research and industrial applications, such as lighting, fabrication of microelectronics, destruction of greenhouse gases. Its emphasis is on explaining the physical mechanisms, rather than the detailed mathematical description and theoretical analysis. At the introductory level, it is important to convey the characteristic physical phenomena of plasmas, before addressing the ultimate formalism of kinetic theory, with its microscopic, statistical mechanics approach. To this aim, this text translates the physical phenomena into more tractable equations, using the hydrodynamic model; this considers the plasma as a fluid, in which the macroscopic physical parameters are the statistical averages of the microscopic (individual) parameters. This book is an introduction to the physics of collisional plasmas, as opposed to plasmas in space. It is intended for graduate students in physics and engineering . The first chapter intr...

  8. High frequency stimulation induces sonic hedgehog release from hippocampal neurons

    Science.gov (United States)

    Su, Yujuan; Yuan, Yuan; Feng, Shengjie; Ma, Shaorong; Wang, Yizheng

    2017-01-01

    Sonic hedgehog (SHH) as a secreted protein is important for neuronal development in the central nervous system (CNS). However, the mechanism about SHH release remains largely unknown. Here, we showed that SHH was expressed mainly in the synaptic vesicles of hippocampus in both young postnatal and adult rats. High, but not low, frequency stimulation, induces SHH release from the neurons. Moreover, removal of extracellular Ca2+, application of tetrodotoxin (TTX), an inhibitor of voltage-dependent sodium channels, or downregulation of soluble n-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) proteins, all blocked SHH release from the neurons in response to HFS. Our findings suggest a novel mechanism to control SHH release from the hippocampal neurons. PMID:28262835

  9. High frequency transcutaneous electrical nerve stimulation with diphenidol administration results in an additive antiallodynic effect in rats following chronic constriction injury.

    Science.gov (United States)

    Lin, Heng-Teng; Chiu, Chong-Chi; Wang, Jhi-Joung; Hung, Ching-Hsia; Chen, Yu-Wen

    2015-03-04

    The impact of coadministration of transcutaneous electrical nerve stimulation (TENS) and diphenidol is not well established. Here we estimated the effects of diphenidol in combination with TENS on mechanical allodynia and tumor necrosis factor-α (TNF-α) expression. Using an animal chronic constriction injury (CCI) model, the rat was estimated for evidence of mechanical sensitivity via von Frey hair stimulation and TNF-α expression in the sciatic nerve using the ELISA assay. High frequency (100Hz) TENS or intraperitoneal injection of diphenidol (2.0μmol/kg) was applied daily, starting on postoperative day 1 (POD1) and lasting for the next 13 days. We demonstrated that both high frequency TENS and diphenidol groups had an increase in mechanical withdrawal thresholds of 60%. Coadministration of high frequency TENS and diphenidol gives better results of paw withdrawal thresholds in comparison with high frequency TENS alone or diphenidol alone. Both diphenidol and coadministration of high frequency TENS with diphenidol groups showed a significant reduction of the TNF-α level compared with the CCI or HFS group (Phigh frequency TENS group exhibited a higher TNF-α level than the sham group (Phigh frequency TENS alone, and the combination produced a reduction of neuropathic allodynia. Both diphenidol and the combination of diphenidol with high frequency TENS inhibited TNF-α expression. A moderately effective dose of diphenidol appeared to have an additive effect with high frequency TENS. Therefore, multidisciplinary treatments could be considered for this kind of mechanical allodynia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Lessons Learned in High Frequency Data Transmissions Design

    CERN Document Server

    Sullivan, Stephanie W; The ATLAS collaboration

    2016-01-01

    Requirements of HEP experiments lead to highly integrated systems with many electrical, mechanical and thermal constraints. A complex performance optimisation is therefore required. High speed data transmission lines are designed, while simultaneously minimising radiation length. Methods to improve the signal integrity of point to point links and multi-drop configurations are described. FEA calculations are an essential guide to the optimisation which allow data rates of 640 Mbps for point to point links over a length of up to 1.4m, as well as 160 Mbps for multi-drop configuration. The designs were validated using laboratory measurements of S-parameters and direct BER tests.

  11. Lung pressures and gas transport during high-frequency airway and chest wall oscillation.

    Science.gov (United States)

    Khoo, M C; Ye, T H; Tran, N H

    1989-09-01

    The major goal of this study was to compare gas exchange, tidal volume (VT), and dynamic lung pressures resulting from high-frequency airway oscillation (HFAO) with the corresponding effects in high-frequency chest wall oscillation (HFCWO). Eight anesthetized paralyzed dogs were maintained eucapnic with HFAO and HFCWO at frequencies ranging from 1 to 16 Hz in the former and 0.5 to 8 Hz in the latter. Tracheal (delta Ptr) and esophageal (delta Pes) pressure swings, VT, and arterial blood gases were measured in addition to respiratory impedance and static pressure-volume curves. Mean positive pressure (25-30 cmH2O) in the chest cuff associated with HFCWO generation decreased lung volume by approximately 200 ml and increased pulmonary impedance significantly. Aside from this decrease in functional residual capacity (FRC), no change in lung volume occurred as a result of dynamic factors during the course of HFCWO application. With HFAO, a small degree of hyperinflation occurred only at 16 Hz. Arterial PO2 decreased by 5 Torr on average during HFCWO. VT decreased with increasing frequency in both cases, but VT during HFCWO was smaller over the range of frequencies compared with HFAO. delta Pes and delta Ptr between 1 and 8 Hz were lower than the corresponding pressure swings obtained with conventional mechanical ventilation (CMV) applied at 0.25 Hz. delta Pes was minimized at 1 Hz during HFCWO; however, delta Ptr decreased continuously with decreasing frequency and, below 2 Hz, became progressively smaller than the corresponding values obtained with HFAO and CMV.

  12. Electron Scattering by High-Frequency Whistler Waves at Earth's Bow Shock

    Science.gov (United States)

    Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gersham, D. J.; hide

    2017-01-01

    Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earths bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvn Mach number is approximately 11 and a shock angle of approximately 84deg. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.52 keV) electron flux, correlated with high-frequency (0.2 - 0.4 Omega(sub ce), where Omega(sub ce) is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.

  13. A cervid vocal fold model suggests greater glottal efficiency in calling at high frequencies.

    Directory of Open Access Journals (Sweden)

    Ingo R Titze

    Full Text Available Male Rocky Mountain elk (Cervus elaphus nelsoni produce loud and high fundamental frequency bugles during the mating season, in contrast to the male European Red Deer (Cervus elaphus scoticus who produces loud and low fundamental frequency roaring calls. A critical step in understanding vocal communication is to relate sound complexity to anatomy and physiology in a causal manner. Experimentation at the sound source, often difficult in vivo in mammals, is simulated here by a finite element model of the larynx and a wave propagation model of the vocal tract, both based on the morphology and biomechanics of the elk. The model can produce a wide range of fundamental frequencies. Low fundamental frequencies require low vocal fold strain, but large lung pressure and large glottal flow if sound intensity level is to exceed 70 dB at 10 m distance. A high-frequency bugle requires both large muscular effort (to strain the vocal ligament and high lung pressure (to overcome phonation threshold pressure, but at least 10 dB more intensity level can be achieved. Glottal efficiency, the ration of radiated sound power to aerodynamic power at the glottis, is higher in elk, suggesting an advantage of high-pitched signaling. This advantage is based on two aspects; first, the lower airflow required for aerodynamic power and, second, an acoustic radiation advantage at higher frequencies. Both signal types are used by the respective males during the mating season and probably serve as honest signals. The two signal types relate differently to physical qualities of the sender. The low-frequency sound (Red Deer call relates to overall body size via a strong relationship between acoustic parameters and the size of vocal organs and body size. The high-frequency bugle may signal muscular strength and endurance, via a 'vocalizing at the edge' mechanism, for which efficiency is critical.

  14. Gender identification from high-pass filtered vowel segments: the use of high-frequency energy.

    Science.gov (United States)

    Donai, Jeremy J; Lass, Norman J

    2015-10-01

    The purpose of this study was to examine the use of high-frequency information for making gender identity judgments from high-pass filtered vowel segments produced by adult speakers. Specifically, the effect of removing lower-frequency spectral detail (i.e., F3 and below) from vowel segments via high-pass filtering was evaluated. Thirty listeners (ages 18-35) with normal hearing participated in the experiment. A within-subjects design was used to measure gender identification for six 250-ms vowel segments (/æ/, /ɪ /, /ɝ/, /ʌ/, /ɔ/, and /u/), produced by ten male and ten female speakers. The results of this experiment demonstrated that despite the removal of low-frequency spectral detail, the listeners were accurate in identifying speaker gender from the vowel segments, and did so with performance significantly above chance. The removal of low-frequency spectral detail reduced gender identification by approximately 16 % relative to unfiltered vowel segments. Classification results using linear discriminant function analyses followed the perceptual data, using spectral and temporal representations derived from the high-pass filtered segments. Cumulatively, these findings indicate that normal-hearing listeners are able to make accurate perceptual judgments regarding speaker gender from vowel segments with low-frequency spectral detail removed via high-pass filtering. Therefore, it is reasonable to suggest the presence of perceptual cues related to gender identity in the high-frequency region of naturally produced vowel signals. Implications of these findings and possible mechanisms for performing the gender identification task from high-pass filtered stimuli are discussed.

  15. Does Phonology Play a Role When Skilled Readers Read High-Frequency Words? Evidence from ERPs

    Science.gov (United States)

    Newman, Randy Lynn; Jared, Debra; Haigh, Corinne A.

    2012-01-01

    We used event-related brain potentials to clarify the role of phonology in activating the meanings of high-frequency words during skilled silent reading. Target homophones ("meet") in sentences such as "The students arranged to meet in the library to study" were replaced on some trials by either a high-frequency homophone mate…

  16. High frequency electromagnetic processes in induction motors supplied from PWM inverters

    Directory of Open Access Journals (Sweden)

    Ioan Ţilea

    2010-12-01

    Full Text Available The paper presents the electromagnetic interference between induction motors and inverters when at high frequency electromagnetic process appears in induction motors having a parallel resonant effect because of parasitic capacitive coupling between windings and ground, using a numerical model in simulink and a high frequency induction motor equivalent circuit model this effect is shown.

  17. Translational damping on high-frequency flapping wings

    Science.gov (United States)

    Parks, Perry A.

    Flapping fliers such as insects and birds depend on passive translational and rotational damping to terminate quick maneuvers and to provide a source of partial stability in an otherwise unstable dynamic system. Additionally, passive translational and rotational damping reduce the amount of active kinematic changes that must be made to terminate maneuvers and maintain stability. The study of flapping-induced damping phenomena also improves the understanding of micro air vehicle (MAV) dynamics needed for the synthesis of effective flight control strategies. Aerodynamic processes which create passive translational and rotational damping as a direct result of symmetric flapping with no active changes in wing kinematics have been previously studied and were termed flapping counter-force (FCF) and flapping counter-torque (FCT), respectively. In this first study of FCF measurement in air, FCF generation is measured using a pendulum system designed to isolate and measure the relationship of translational flapping-induced damping with wingbeat frequency for a 2.86 gram mechanical flapper equipped with real cicada wings. Analysis reveals that FCF generation and wingbeat frequency are directly proportional, as expected from previous work. The quasi-steady FCF model using Blade-Element-Theory is used as an estimate for translational flapping-induced damping. In most cases, the model proves to be accurate in predicting the relationship between flapping-induced damping and wingbeat frequency. "Forward-backward" motion proves to have the strongest flapping-induced damping while "up-down" motion has the weakest.

  18. High frequency electromagnetic interference shielding magnetic polymer nanocomposites

    Science.gov (United States)

    He, Qingliang

    , another unique function- flame retardancy of these polymer nanocomposites will also be demonstrated. The mechanism of all the materials production and their performance enhancement will also be discussed in detail.

  19. High frequency of microsatellites in S. cerevisiae meiotic recombination hotspots

    Directory of Open Access Journals (Sweden)

    Pitt Joel PW

    2008-01-01

    Full Text Available Abstract Background Microsatellites are highly abundant in eukaryotic genomes but their function and evolution are not yet well understood. Their elevated mutation rate makes them ideal markers of genetic difference, but high levels of unexplained heterogeneity in mutation rates among microsatellites at different genomic locations need to be elucidated in order to improve the power and accuracy of the many types of study that use them as genetic markers. Recombination could contribute to this heterogeneity, since while replication errors are thought to be the predominant mechanism for microsatellite mutation, meiotic recombination is involved in some mutation events. There is also evidence suggesting that microsatellites could function as recombination signals. The yeast S. cerevisiae is a useful model organism with which to further explore the link between microsatellites and recombination, since it is very amenable to genetic study, and meiotic recombination hotspots have been mapped throughout its entire genome. Results We examined in detail the relationship between microsatellites and hotspots of meiotic double-strand breaks, the precursors of meiotic recombination, throughout the S. cerevisiae genome. We included all tandem repeats with motif length (repeat period between one and six base pairs. Long, short and two-copy arrays were considered separately. We found that long, mono-, di- and trinucleotide microsatellites are around twice as frequent in hot than non-hot intergenic regions. The associations are weak or absent for repeats with less than six copies, and also for microsatellites with 4–6 base pair motifs, but high-copy arrays with motif length greater than three are relatively very rare throughout the genome. We present evidence that the association between high-copy, short-motif microsatellites and recombination hotspots is not driven by effects on microsatellite distribution of other factors previously linked to both

  20. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    Science.gov (United States)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  1. Ultrastructural Study of Alveolar Epithelial Type II Cells by High-Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    Xiaofei Qin

    2013-01-01

    Full Text Available Alveolar epithelial type II cells (AECIIs containing lamellar bodies (LBs are alveolar epithelial stem cells that have important functions in the repair of lung structure and function after lung injury. The ultrastructural changes in AECIIs after high-frequency oscillatory ventilation (HFOV with a high lung volume strategy or conventional ventilation were evaluated in a newborn piglet model with acute lung injury (ALI. After ALI with saline lavage, newborn piglets were randomly assigned into five study groups (three piglets in each group, namely, control (no mechanical ventilation, conventional ventilation for 24 h, conventional ventilation for 48 h, HFOV for 24 h, and HFOV for 48 h. The lower tissues of the right lung were obtained to observe the AECII ultrastructure. AECIIs with reduced numbers of microvilli, decreased LBs electron density, and vacuole-like LBs deformity were commonly observed in all five groups. Compared with conventional ventilation groups, the decrease in numbers of microvilli and LBs electron density, as well as LBs with vacuole-like appearance and polymorphic deformity, was less severe in HFOV with high lung volume strategy groups. AECIIs were injured during mechanical ventilation. HFOV with a high lung volume strategy resulted in less AECII damage than conventional ventilation.

  2. In vivo BDNF modulation of hippocampal mossy fiber plasticity induced by high frequency stimulation.

    Science.gov (United States)

    Schjetnan, Andrea Gómez-Palacio; Escobar, Martha L

    2012-01-01

    Changes in synaptic efficacy and morphology have been proposed as mechanisms underlying learning and memory processes. In our previous studies, high frequency stimulation (HFS) sufficient to induce LTP at the hippocampal mossy fiber (MF) pathway, leads to MF synaptogenesis, in a prominent contralateral form, at the stratum oriens of hippocampal CA3 area. Recently we reported that acute intrahippocampal microinfusion of BDNF induces a lasting potentiation of synaptic efficacy at the MF projection accompanied by a structural reorganization at the CA3 area within the stratum oriens region in a prominent ipsilateral form. It is considered that the capacity of synapses to express plastic changes is itself subject to variation dependent on previous experience. Here we used intrahippocampal microinfusion of BDNF to analyze its effects on functional and structural synaptic plasticity induced by subsequent mossy fiber HFS sufficient to induce LTP in adult rats, in vivo. Our results show that BDNF modifies the ability of the MF pathway to present LTP by HFS. Moreover BDNF modified the structural reorganization pattern produced by HFS, presenting a balanced bilateral appearance. Microinfusion of K252a blocks the functional and morphological effects produced by BDNF, revealing that the BDNF modulation is dependent on its TrkB receptor activation. These findings support the idea that BDNF actions modify subsequent synaptic plasticity; a homeostatic mechanism thought to be essential for synaptic integration among prolonged temporal domains in the adult mammalian brain.

  3. A Cold Adhesion for Self-fused Alloy Coat by High Frequency Induction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zeng-zhi; AI Bo

    2004-01-01

    In this study, a method to prepare self-fused alloy coat, which started with a cold adhesion precoating and then induction fusing plus, is presented. It also intended to analyze the mechanism, microstructure and anitwear ability of the coat. The workpiece was precoated with Ni60 powder through an adhesion agent. The oven-dried precoat was then heated by a high frequency induction generated by 100kw power with a frequency of 250kHz. The technological parameters of the method were determined through analysis of the thermal magnetism, thermal resistivity and anti-induction mechanism. By comparing the microstrucrures and properties of the coat produced by cold adhesion, thermal spraying and laser refusing, it is concluded that: (1) One side of the workpiece should be preheated to 200℃ before induction fusion, and the range of induction frequency should be 200~250kHz. (2) The microstrucrure of the coat by cold adhesion is superior to that by thermal spraying, but the particle size range should be 0.047~0.044mm (200~320 meshes) (3) The corrosion resistance of Ni60 coat by cold adhesion is better than that by thermal spraying, and the cold adhesion is the best method to prepare the antiwear coat.

  4. A Cold Adhesion for Self-fused Alloy Coat by High Frequency Induction

    Institute of Scientific and Technical Information of China (English)

    ZHANGZeng-zhi; AIBo

    2004-01-01

    In this study, a method to prepare self-fused alloy coat, which started with a cold adhesion precoating and then induction fusing plus, is presented. It also intended to analyze the mechanism, microstnlcture and anitwear ability of the coat. The workpiece was precoated with Ni60 powder through an adhesion agent. The oven-dried precoat was then heated by a high frequency induction generated by 100kw power with a frequency of 250kHz. The technological parameters of the method were determined through analysis of tbe thermal magnetism, thermal resislivity, and anti-induction mechanism. By comparing the microsLrUclures and properties of the coat produced by cold adhesion, thermal spraying and laser refusing, it is concluded that: (1) One side of the workpiece should be preheated to 200℃ before induction fusion, and the range of induction frequency should be 200-250kHz. (2) The microstructure of the coat by cold adhesion is superior to that by themal spraying, but the particle size range should be 0.047-0.044mm (200-320 meshes) (3) The corrosion resistance of Ni60 coat by cold adhesion is better than that by thermal spraying, and the cold adhesion is the best method to prepare the antiwear coat.

  5. A Global Lake Ecological Observatory Network (GLEON) for synthesising high-frequency sensor data for validation of deterministic ecological models

    Science.gov (United States)

    David, Hamilton P; Carey, Cayelan C.; Arvola, Lauri; Arzberger, Peter; Brewer, Carol A.; Cole, Jon J; Gaiser, Evelyn; Hanson, Paul C.; Ibelings, Bas W; Jennings, Eleanor; Kratz, Tim K; Lin, Fang-Pang; McBride, Christopher G.; de Motta Marques, David; Muraoka, Kohji; Nishri, Ami; Qin, Boqiang; Read, Jordan S.; Rose, Kevin C.; Ryder, Elizabeth; Weathers, Kathleen C.; Zhu, Guangwei; Trolle, Dennis; Brookes, Justin D

    2014-01-01

    A Global Lake Ecological Observatory Network (GLEON; www.gleon.org) has formed to provide a coordinated response to the need for scientific understanding of lake processes, utilising technological advances available from autonomous sensors. The organisation embraces a grassroots approach to engage researchers from varying disciplines, sites spanning geographic and ecological gradients, and novel sensor and cyberinfrastructure to synthesise high-frequency lake data at scales ranging from local to global. The high-frequency data provide a platform to rigorously validate process- based ecological models because model simulation time steps are better aligned with sensor measurements than with lower-frequency, manual samples. Two case studies from Trout Bog, Wisconsin, USA, and Lake Rotoehu, North Island, New Zealand, are presented to demonstrate that in the past, ecological model outputs (e.g., temperature, chlorophyll) have been relatively poorly validated based on a limited number of directly comparable measurements, both in time and space. The case studies demonstrate some of the difficulties of mapping sensor measurements directly to model state variable outputs as well as the opportunities to use deviations between sensor measurements and model simulations to better inform process understanding. Well-validated ecological models provide a mechanism to extrapolate high-frequency sensor data in space and time, thereby potentially creating a fully 3-dimensional simulation of key variables of interest.

  6. Characterization of Microstructure and Molecular Dynamics with High Frequency Oscillatory Techniques

    Science.gov (United States)

    Remmler, Torsten; Amin, Samiul; Ferrante, Andrea; Pechhold, Wolfgang

    2009-07-01

    To characterize the rheological behaviour of complex viscoelastic fluids, polymer melts and other soft materials, motor-drive controlled rheometers are mainly used, either at constant stress or strain rate, or in the oscillatory mode. The latter has proved advantageous to discover the viscoelastic functions G*, η*, J* as fingerprints of the material under investigation, it's composition, molecular modelling and applicability. A conclusive analysis of such a viscoelastic spectrum can only be achieved if the amplitudes chosen guarantee linearity and if the frequency range covers more than 6 decades to reach the low kHz-domain. Investigations of many materials with motor-drive controlled rheometers are limited at higher frequencies and reach the above mentioned goal by applying the time-temperature superposition principle, i.e. the mastercurve technique. Since this method is restricted to rheologically simple materials (e.g. some polymer melts), but exclude those of small activation energies and others with temperature-sensitive chemical/physical structures including phase transitions, oscillating rheometry should be extended into higher real-frequency ranges, to establish useful linear viscoelastic spectroscopy. Since complex fluids can have structural arrangement over a wide range of lengthscales and their relaxation mechanisms can impact the dynamics over a wide range of timescales, multiple techniques need to be employed in order to accurately and fully establish the links between rheology, microstructure & dynamics. This is also critical information, required for fully validating developed theory and models. In this talk, advantages and limits of classical oscillatory rheometry will be covered, handling and principle of operation of two high frequency options are introduced and typical examples for real frequency spectra on soft matter, such as polymer melts, polymer solutions and weak gels will be shown. A xanthum gum based system has been investigated not only

  7. Visual contribution to the high-frequency human angular vestibulo-ocular reflex.

    Science.gov (United States)

    Chim, Daniel; Lasker, David M; Migliaccio, Americo A

    2013-09-01

    The vestibulo-ocular reflex (VOR) acts to maintain images stable on the retina by rotating the eyes in exactly the opposite direction, but with equal magnitude, to head velocity. When viewing a near target, this reflex has an increased response to compensate for the translation of the eyes relative to the target that acts to reduce retinal image slip. Previous studies have shown that retinal velocity error provides an important visual feedback signal to increase the low-frequency (<1 Hz) VOR response during near viewing. We sought to determine whether initial eye position and retinal image position error could provide enough information to substantially increase the high-frequency VOR gain (eye velocity/head velocity) during near viewing. Ten human subjects were tested using the scleral search coil technique during horizontal head impulses under different lighting conditions (constant dark, strobe light at 0.5, 1, 2, 4, 10, 15 Hz, constant light) while viewing near (9.5 ± 1.3 cm) and far (104 cm) targets. Our results showed that the VOR gain increased during near viewing compared to far viewing, even during constant dark. For the near target, there was an increase in VOR gain with increasing strobe frequency from 1.17 ± 0.17 in constant dark to 1.36 ± 0.27 in constant light, a 21 ± 9 % increase. For the far target, strobe frequency had no effect. Presentation order of strobe frequency (i.e. 0.5-15 vs. 15-0.5 Hz) did not affect the gain, but it did affect the vergence angle (angle between the two eye's lines of sight). The VOR gain and vergence angles were constant during each trial. Our findings show that a retinal position error signal helps increase the vergence angle and could be invoking vestibular adaptation mechanisms to increase the high-frequency VOR response during near viewing. This is in contrast to the low-frequency VOR that depends more on retinal velocity error and predictive adaptation mechanisms.

  8. High-frequency hearing thresholds: effects of age, occupational ultrasound and noise exposure.

    Science.gov (United States)

    Maccà, Isabella; Scapellato, Maria Luisa; Carrieri, Mariella; Maso, Stefano; Trevisan, Andrea; Bartolucci, Giovanni Battista

    2015-02-01

    It has been suggested that high-frequency audiometry (HFA) could represent a useful preventive measure in exposed workers. The aim was to investigate the effects of age, ultrasound and noise on high-frequency hearing thresholds. We tested 24 industrial ultrasound-exposed subjects, 113 industrial noise-exposed subjects and 148 non-exposed subjects. Each subject was tested with both conventional-frequency (0.125-8 kHz) and high-frequency (9-18 kHz) audiometry. The hearing threshold at high frequency deteriorated as a function of age, especially in subjects more than 30 years old. The ultrasound-exposed subjects had significantly higher hearing thresholds than the non-exposed ones at the high frequencies, being greatest from 10 to 14 kHz. This hearing loss was already significantly evident in subjects with exposure frequencies 4 and 6 kHz and at the high frequency of 14 kHz. After stratification for age, there was a significant difference between the two groups at 9-10 and 14-15 kHz only for those under 30 years of age. Multivariate analysis indicated that age was the primary predictor, and noise and ultrasound exposure the secondary predictors of hearing thresholds in the high-frequency range. The results suggest that HFA could be useful in the early diagnosis of noise-induced hearing loss in younger groups of workers (under 30 years of age).

  9. High-Frequency Resonant Matrix Converter using IGBT-Based Bidirectional Switches for Induction Heating

    Directory of Open Access Journals (Sweden)

    Jami Rajesh

    2014-02-01

    Full Text Available This paper deals with a novel type soft switching utility frequency AC- high frequency AC converter using asymmetrical PWM bidirectional active switches which can be defined as high frequency resonant matrix converter.This power frequency changer can directly convert utility frequency AC power to high frequency AC power ranging more than 20kHz up to 100kHz. Only one active edge resonant capacitor-assisted soft switching high frequency load resonant cyclo-converter is based on asymmetrical duty cycle PWM strategy. This high frequency cyclo-converter uses bidirectional IGBTs composed of anti-parallel one-chip reverse blocking IGBTs. This high frequency cycloconverter has some remarkable features as electrolytic capacitorless DC busline link, unity power factor correction and sinewave line current shaping, simple configuration with minimum circuit components and low cost, high efficiency and downsizing. This series load resonant cycloconverter incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances. Its operating principle is described by using equivalent circuits. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are discussed on the basis of simulation and experimental results.

  10. [Diagnostic accuracy of the immersion high-frequency B-scan ultrasonography in chemical injured eyes].

    Science.gov (United States)

    Yang, Qinghua; Chen, Bing; Wang, Liqiang; Li, Zhaohui; Huang, Yifei

    2014-08-01

    To investigate the diagnostic accuracy of the immersion high-frequency B-scan ultrasonography, a noninvasive preoperative diagnosis method, in observing the anterior segment in chemical injured eyes. It was a retrospective study. Sixty-three ocular chemical injury patients (63 eyes), who accepted the keratoplasty or the artificial cornea transplant in PLA General Hospital from May 2011 to May 2013, were included in this study. All the injured eyes were examined by ultrasound bio-microscopy (UBM) and immersion high-frequency B-scan ultrasonography, respectively. The images were analyzed and the results were compared with the intraoperative findings. The observation of lens was the main parameter. All the 63 patients were examined with the UBM and the immersion high-frequency B-scan ultrasonography before the surgery. The findings of the cornea, anterior chamber angle, iris from UBM were consistent with those from the immersion high-frequency B-scan ultrasonography. As for the lens observation, in 32 eyes in which the lens were not detected by UBM, the lens were not detected in only 16 eyes, while 3 eyes with normal lens and 13 eyes with lens pacifications (1 eye with pyknotic lens) by immersion high-frequency B-scan ultrasonography. In 17 eyes in which the lens were found normal by UBM, there were only 14 eyes with normal lens and the rest 3 eyes' lens were found intumescent by immersion high-frequency B-scan ultrasonography. In 6 eyes in which lens were detected with suspicious by UBM, 2 eyes' lens were pyknotic and 4 eyes' lens were intumescent or clouded by immersion high-frequency B-scan ultrasonography. The findings of immersion high-frequency B-scan ultrasonography were highly consistent with the intraoperative findings. The lens could be observed accurately by immersion high-frequency B-scan ultrasonography in chemical injured eyes.

  11. Econometric analysis of realized covariation: high frequency based covariance, regression, and correlation in financial economics

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2004-01-01

    This paper analyses multivariate high frequency financial data using realized covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis, and covariance. It will be based on a fixed interval of time (e.g., a day or week), allowing...... the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions, and covariances change through time. In particular we provide confidence intervals for each of these quantities....

  12. A novel variable polarity welding power based on high-frequency pulse modulation

    Institute of Scientific and Technical Information of China (English)

    Qiu Ling; Yang Chunli; Fan Chenglei; Lin Sanbao; Wu Yun

    2006-01-01

    A new type of variable polarity welding power modulated with high-frequency pulse current is developed.Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can improve the crystallization process in the weld bead as a result of the electromagnetic force generated by pulse current.Digital signal processor (DSP) is used to realize the closed-loop control of the first inverter, variable polarity output of the second inverter and high-frequency pulse current superposition.

  13. Effect of sintering process on microstructure and magnetic properties of high frequency power ferrite

    Institute of Scientific and Technical Information of China (English)

    SUN Ke; LAN Zhongwen; CHEN Shengming; SUN Yueming; YU Zhong

    2006-01-01

    An oxide ceramic process was adopted to prepare high frequency manganese-zinc (MnZn) power ferrite. In combination with the microstructure analysis of material, the influences of sintering process on initial permeability (μi) and high frequency loss in unit volume (Pcv) of MnZn power ferrite were investigated. The results show that in order to obtain fine microstructure and high frequency properties, the preferable sintering temperature and atmosphere are 1230 ℃ and oxygen partial pressure ( PO2) of 4%, respectively.

  14. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  15. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    Science.gov (United States)

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  16. A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications

    Science.gov (United States)

    Wang, B.; Gan, Z. H.

    2013-08-01

    The importance of liquid helium temperature cooling technology in the aerospace field is discussed, and the results indicate that improving the efficiency of liquid helium cooling technologies, especially the liquid helium high frequency pulse tube cryocoolers, is the principal difficulty to be solved. The state of the art and recent developments of liquid helium high frequency pulse tube cryocoolers are summarized. The main scientific challenges for high frequency pulse tube cryocoolers to efficiently reach liquid helium temperatures are outlined, and the research progress addressing those challenges are reviewed. Additionally some possible solutions to the challenges are pointed out and discussed.

  17. Fabrication and modeling of piezoelectric transducers for High-Frequency medical imaging

    CERN Document Server

    Abellard, André-Pierre; Holc, Janez; Levassort, Franck; Noshchenko, Oleksandr; Lethiecq, Marc; Kosec, Marija

    2013-01-01

    We have studied the processing of piezoelectric thick films using electrophoretic deposition (EPD) for high-frequency ultrasound applications. Lead-zirconium-titanate (PZT) particles synthetized by solid states synthesis were dispersed in ethanol using ammonium polyacrylate (PAA). The electrophoretic deposition of PZT particles was performed at a constant-current mode. PZT thick-films deposited at 1 mA for 60 seconds were sintered at 900oC for 2 hours in a PbO-controlled atmosphere. The scanning-electron microscopy (SEM) analysis shows that the thickness of PZT layer is uniform and that the pores are homogeneously distributed within the layer. The complex electrical impedance was measured and fitted by KLM scheme in order to deduce the dielectric, mechanical and piezoelectric parameters of the thick-films. The density and thickness of PZT thick films are used as inputs and the thickness coupling factor kt, dielectric constant at constant strain and resonant frequency are deduced. The results show that homogen...

  18. FTIR Analysis of Flowing Afterglow from a High-Frequency Spark Discharge

    Science.gov (United States)

    White, Allen; Hieftje, Gary M.; Ray, Steve; Pfeuffer, Kevin

    2014-06-01

    Plasmas are often used as ionization sources for ambient mass spectrometry (AMS). Here, the flowing afterglow of a novel high-energy spark discharge system, operated in nitrogen at high repetition rates, is investigated as a source for AMS. The spark discharge here is the same as that of an automobile ignition circuit.Combustion in automobile engines is initiated by a spark ignition system that is designed to deliver short-duration,high-voltage sparks to multiple engine cylinders. The arrangement utilized in this study is a modified discharge configuration designed to produce similarly short-duration, high-voltage discharges. It consists of an automotive ignition coil that is activated by a spark initiation circuit that discharges in turn into a cell with neutral gas input flow and ultimately into the collection orifice of a mass spectrometer. The discharge voltage is approximately 40kV at 800 Hz. High-frequency spark discharges in a nitrogen flow produce reagent ions such as NO+. In order to better evaluate the effectiveness of the discharge in producing reagent ions, an FTIR is utilized to measure IR active species such as nitric oxide, hydroxide, ozone, and water in the afterglow of the spark discharge during variation of discharge parameters. Time-resolved IR emission spectra provide additional insight into the reagent ion production mechanisms.

  19. The Utilization of High-Frequency Gravitational Waves for Global Communications

    Directory of Open Access Journals (Sweden)

    Robert M L Baker

    2012-10-01

    Full Text Available For over 1000 years electromagnetic radiation has been utilized for long-distance communication. Smoke signals, heliographs, telegraphs, telephones and radio have all served our previous communication needs. Nevertheless, electromagnetic radiation has one major difficulty: it is easily absorbed. In this paper we consider a totally different radiation, a radiation that is not easily absorbed: gravitational radiation. Such radiation, like gravity itself, is not absorbed by earth, water or any material substance. In particular we discuss herein means to generate and detect high-frequency gravitational waves or HFGWs, and how they can be utilized for communication. There are two barriers to their practical utilization: they are extremely difficult to generate (a large power required to generate very weak GWs and it is extremely difficult to detect weak GWs. We intend to demonstrate theoretically in this paper their phase-coherent generation utilizing an array of in-phase microelectro-mechanical systems or MEMS resonator elements in which the HFGW flux is proportional to the square of the number of elements. This process solves the transmitter difficulty. Three HFGW detectors have previously been built; but their sensitivity is insufficient for meaningful HFGW reception; greater sensitivity is necessary. A new Li-Baker HFGW detector, discussed herein, is based upon a different measurement technique than the other detectors and is predicted to achieve a sensitivity to satisfy HFGW communication needs.

  20. Robust diffraction correction method for high-frequency ultrasonic tissue characterization

    Science.gov (United States)

    Raju, Balasundar

    2001-05-01

    The computation of quantitative ultrasonic parameters such as the attenuation or backscatter coefficient requires compensation for diffraction effects. In this work a simple and accurate diffraction correction method for skin characterization requiring only a single focal zone is developed. The advantage of this method is that the transducer need not be mechanically repositioned to collect data from several focal zones, thereby reducing the time of imaging and preventing motion artifacts. Data were first collected under controlled conditions from skin of volunteers using a high-frequency system (center frequency=33 MHz, BW=28 MHz) at 19 focal zones through axial translation. Using these data, mean backscatter power spectra were computed as a function of the distance between the transducer and the tissue, which then served as empirical diffraction correction curves for subsequent data. The method was demonstrated on patients patch-tested for contact dermatitis. The computed attenuation coefficient slope was significantly (p<0.05) lower at the affected site (0.13+/-0.02 dB/mm/MHz) compared to nearby normal skin (0.2+/-0.05 dB/mm/MHz). The mean backscatter level was also significantly lower at the affected site (6.7+/-2.1 in arbitrary units) compared to normal skin (11.3+/-3.2). These results show diffraction corrected ultrasonic parameters can differentiate normal from affected skin tissues.

  1. High frequency electro-optic measurement of strained silicon racetrack resonators

    CERN Document Server

    Borghi, M; Merget, F; Witzens, J; Bernard, M; Ghulinyan, M; Pucker, G; Pavesi, L

    2015-01-01

    The observation of the electro-optic effect in strained silicon waveguides has been considered as a direct manifestation of an induced $\\chi^{(2)}$ non-linearity in the material. In this work, we perform high frequency measurements on strained silicon racetrack resonators. Strain is controlled by a mechanical deformation of the waveguide. It is shown that any optical modulation vanishes independently of the applied strain when the applied voltage varies much faster than the carrier effective lifetime, and that the DC modulation is also largely independent of the applied strain. This demonstrates that plasma carrier dispersion is responsible for the observed electro-optic effect. After normalizing out free carrier effects, our results set an upper limit of $8\\,pm/V$ to the induced high-speed $\\chi^{(2)}_{eff,zzz}$ tensor element at an applied stress of $-0.5\\,GPa$. This upper limit is about one order of magnitude lower than the previously reported values for static electro-optic measurements.

  2. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    Science.gov (United States)

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions.

  3. Enthesiopathy of the flexor carpi ulnaris at the pisiform: Findings of high-frequency sonography

    Energy Technology Data Exchange (ETDEWEB)

    Wick, Marius C., E-mail: marius.wick@i-med.ac.at [Department of Radiology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck (Austria); Weiss, Ruediger J., E-mail: rudiger.weiss@karolinska.se [Department of Molecular Medicine and Surgery, Section of Orthopaedics and Sports Medicine, Karolinska University Hospital (Solna), Karolinska Institutet, S-17176 Stockholm (Sweden); Arora, Rohit, E-mail: rohit.arora@uki.at [Department for Trauma Surgery and Sports Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck (Austria); Gabl, Markus, E-mail: markus.gabl@uki.at [Department for Trauma Surgery and Sports Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck (Austria); Gruber, Johann, E-mail: johann.gruber@uki.at [Department of Internal Medicine I, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck (Austria); Jaschke, Werner, E-mail: werner.jaschke@i-med.ac.at [Department of Radiology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck (Austria); Klauser, Andrea S., E-mail: andrea.klauser@i-med.ac.at [Department of Radiology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck (Austria)

    2011-02-15

    Objectives: Acute or chronic pain at the pisiform may be due to tendinopathy of the flexor carpi ulnaris tendon (FCU) insertion, mechanical overuse, bony fractures, and osteoarthritis of the pisiform-triquetral joint. Enthesiopathy of the FCU at the pisiform might exhibit abnormalities assessable for sonographic characterization. This study aimed to determine the most relevant sonographic features of tendinopathy of the FCU insertion at the pisiform. Materials and methods: We retrospectively analyzed radiological findings of 9 patients admitted for high-frequency sonographic evaluation of a painful pisiform FCU insertion. The FCU insertion was assessed for active enthesiopathy in terms of tendon thickening and hyperemia, peritendinous effusion, peritendinous hyperemia, peritendinous soft tissue thickening, cystic fluid collections, erosive cortical irregularities, and osteoproliferative alterations at the pisiform. Results: Of all patients, 5 had inflammatory rheumatic disorders and the remainder had a painful pisiform FCU insertion related to overuse. While peritendinous effusion, pisiform erosive cortical irregularities, and peritendinous soft tissue thickening at the FCU insertion were exclusively found in rheumatic patients, active enthesiopathy of the FCU tendon, pisiform osteoproliferative alterations, and hyperemia of the peritendinous soft tissue were inconsistent and found in both groups. Cystic fluid collections from the pisiform-triquetral joint were only seen in patients with overuse. Conclusions: In this small case series of patients with pain at the pisiform FCU insertion, we could reveal several typical sonographic features for insertion tendinopathy. Further studies should prove if these sonographic features could impact on the management of patients with pain at the pisiform.

  4. Experimental study of a very high frequency, 162 MHz, segmented electrode, capacitively coupled plasma discharge

    Science.gov (United States)

    Sirse, Nishant; Harvey, Cleo; Gaman, Cezar; Ellingboe, Bert

    2016-09-01

    Radio-frequency capacitively coupled plasma (CCP) discharge operating at a very high frequency, 30-300 MHz, offers many advantages over standard 13.56 MHz CCP. However, there is a limited flexibility on the choice of driving frequency and substrate size due to plasma non-uniformity caused by the standing wave effect and edge effect. To overcome this issue segmented electrode CCP's are proposed and researched. Despite its numerous advantages the power coupling mechanism and plasma chemistry in this type of discharge are not fully understood due to lack of experimental data. In this paper, we present the experimental study of a segmented electrode, 3x4 tile array (10x10 cm square tile with 1 cm tile-to-tile separation), CCP discharge driven at 162 MHz. We measured plasma uniformity and gas temperature using hairpin probe and optical emission spectroscopy respectively. A homemade RF compensated Langmuir probe is employed to measure the Electron Energy Distribution Function (EEDF) by second harmonic technique. Energy resolved quadrupole mass spectrometer is utilized to measure the ion energy distribution. Discharge/plasma properties are investigated for several operating conditions and for power coupling mode in both washer board and checker board configuration. The experimental results show that the uniform plasma density can be maintained over a large area along with highly non-equilibrium condition to produce unique gas phase plasma chemistry.

  5. How to improve reading skills in dyslexics: the effect of high frequency rTMS.

    Science.gov (United States)

    Costanzo, Floriana; Menghini, Deny; Caltagirone, Carlo; Oliveri, Massimiliano; Vicari, Stefano

    2013-12-01

    The latest progress in understanding remediation of dyslexia underlines how some changes in brain are a necessary mechanism of improvement. We wanted to determine whether high frequency repetitive transcranial magnetic stimulation (hf-rTMS) over areas that are underactive during reading in dyslexics, would improve reading of dyslexic adults. We applied 5Hz-TMS over both left and right inferior parietal lobule (IPL) and superior temporal gyrus (STG) prior to word, non-word and text reading aloud. Results show that hf-rTMS stimulation over the left IPL improves non-word reading accuracy and hf-rTMS stimulation over the left STG increases word reading speed and text reading accuracy. Moreover after right IPL stimulation, non-word reading accuracy also improves. These findings indicate that in dyslexics, L-STG and L-IPL have a differential role in word, non-word and text reading. Even if we would normally expect left-lateralized improvements only, the finding of a right IPL involvement suggests that there is additional compensatory recruitment of this region in dyslexics. In conclusion, we provide the first evidence that distinctive facilitation of neural pathways known to be underactive in dyslexics transitorily improves their reading performance. Such ameliorative effect may open new perspectives for the development of long-term specific treatments for dyslexia. © 2013 Published by Elsevier Ltd.

  6. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    Directory of Open Access Journals (Sweden)

    van Rijn Clementina M

    2011-04-01

    Full Text Available Abstract Background High frequency electrical stimulation (HFS of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal plasticity. The aim of this study is to investigate HFS-induced central plasticity of sensory processing at the level of the brain using the electroencephalogram (EEG. To this end we measured evoked potentials in response to noxious electrical pinprick-like stimuli applied in the heterotopic skin area before, directly after and 30 minutes after HFS. Results We observed potential cortical electrophysiological correlates of heterotopic facilitation. Two different cortical correlates were found; the first one was a lateralized effect, i.e. a larger N100 amplitude on the conditioned arm than the control arm 30 minutes after end of HFS. This was comparable with the observed lateralized effect of visual analogue scale (VAS scores as response to the mechanical punctate stimuli. The second correlate seems to be a more general (non-lateralized effect, because the result affects both arms. On average for both arms the P200 amplitude increased significantly 30 minutes after end of HFS with respect to baseline. Conclusions We suggest that for studying heterotopic nociceptive facilitation the evoked brain response is suitable and relevant for investigating plasticity at the level of the brain and is perhaps a more sensitive and reliable marker than the perceived pain intensity (e.g. VAS.

  7. Effects of high-frequency oscillatory ventilation on vagal and phrenic nerve activities.

    Science.gov (United States)

    Man, G C; Man, S F; Kappagoda, C T

    1983-02-01

    This study was undertaken to define the mechanism for the respiratory inhibition observed during high-frequency oscillatory ventilation (HFOV). The effects of HFOV on the activities of single units in the vagus (Vna) and phrenic nerves (Pna) were examined in pentobarbital-anesthetized dogs. The animals were either ventilated by intermittent positive-pressure ventilation (IPPV) with and without positive end-expiratory pressure (PEEP), or by HFOV at a frequency of 25 Hz and pump displacement volume of 3 ml/kg. In 13 vagal units the Vna was much higher during HFOV than during IPPV or airway occlusion at a matched airway pressure. Ten units in the phrenic nerves were examined, and Pna (expressed as bursts/min) was attenuated by HFOV in all of them. In four of them, the effect of cooling the vagi to 8-10 degrees C on Pna was examined, and it was found that HFOV failed to alter the Pna. We conclude that 1) HFOV stimulates the pulmonary vagal afferent fibers continuously and to a degree greater than that due to static lung inflation and increased airway pressure and 2) the increased vagal activity during HFOV probably causes phrenic nerve activity inhibition.

  8. High-frequency electro-optic measurement of strained silicon racetrack resonators.

    Science.gov (United States)

    Borghi, M; Mancinelli, M; Merget, F; Witzens, J; Bernard, M; Ghulinyan, M; Pucker, G; Pavesi, L

    2015-11-15

    The observation of the electro-optic effect in strained silicon waveguides has been considered a direct manifestation of an induced χ(2) nonlinearity in the material. In this work, we perform high-frequency measurements on strained silicon racetrack resonators. Strain is controlled by a mechanical deformation of the waveguide. It is shown that any optical modulation vanishes, independent of the applied strain, when the applied voltage varies much faster than the carrier effective lifetime and that the DC modulation is also largely independent of the applied strain. This demonstrates that plasma carrier dispersion is responsible for the observed electro-optic effect. After normalizing out free-carrier effects, our results set an upper limit of (8±3) pm/V to the induced high-speed effective χeff,zzz(2) tensor element at an applied stress of -0.5 GPa. This upper limit is about 1 order of magnitude lower than previously reported values for static electro-optic measurements.

  9. Vibration Mode Observation of Piezoelectric Disk-type Resonator by High Frequency Laser Doppler Vibrometer

    Science.gov (United States)

    Matsumura, Takeshi; Esashi, Masayoshi; Harada, Hiroshi; Tanaka, Shuji

    For future mobile phones based on cognitive radio technology, a compact multi-band RF front-end architecture is strongly required and an integrated multi-band RF filter bank is a key component in it. Contour-mode resonators are receiving increased attention for a multi-band filter solution, because its resonant frequency is mainly determined by its size and shape, which are defined by lithography. However, spurious responses including flexural vibration are also excited due to its thin structure. To improve resonator performance and suppress spurious modes, visual observation with a laser probe system is very effective. In this paper, we have prototyped a mechanically-coupled disk-array filter, which consists of a Si disk and 2 disk-type resonators of higher-order wine-glass mode, and observed its vibration modes using a high-frequency laser-Doppler vibrometer (UHF-120, Polytec, Inc.). As a result, it was confirmed that higher order wine-glass mode vibration included a compound displacement, and that its out-of-plane vibration amplitude was much smaller than other flexural spurious modes. The observed vibration modes were compared with FEM (Finite Element Method) simulation results. In addition, it was also confirmed that the fabrication error, e.g. miss-alignment, induced asymmetric vibration.

  10. Modelling stock order flows with non-homogeneous intensities from high-frequency data

    Science.gov (United States)

    Gorshenin, Andrey K.; Korolev, Victor Yu.; Zeifman, Alexander I.; Shorgin, Sergey Ya.; Chertok, Andrey V.; Evstafyev, Artem I.; Korchagin, Alexander Yu.

    2013-10-01

    A micro-scale model is proposed for the evolution of such information system as the limit order book in financial markets. Within this model, the flows of orders (claims) are described by doubly stochastic Poisson processes taking account of the stochastic character of intensities of buy and sell orders that determine the price discovery mechanism. The proposed multiplicative model of stochastic intensities makes it possible to analyze the characteristics of the order flows as well as the instantaneous proportion of the forces of buyers and sellers, that is, the imbalance process, without modelling the external information background. The proposed model gives the opportunity to link the micro-scale (high-frequency) dynamics of the limit order book with the macro-scale models of stock price processes of the form of subordinated Wiener processes by means of limit theorems of probability theory and hence, to use the normal variance-mean mixture models of the corresponding heavy-tailed distributions. The approach can be useful in different areas with similar properties (e.g., in plasma physics).

  11. Spatiotemporal dynamics of word retrieval in speech production revealed by cortical high-frequency band activity.

    Science.gov (United States)

    Riès, Stephanie K; Dhillon, Rummit K; Clarke, Alex; King-Stephens, David; Laxer, Kenneth D; Weber, Peter B; Kuperman, Rachel A; Auguste, Kurtis I; Brunner, Peter; Schalk, Gerwin; Lin, Jack J; Parvizi, Josef; Crone, Nathan E; Dronkers, Nina F; Knight, Robert T

    2017-06-06

    Word retrieval is core to language production and relies on complementary processes: the rapid activation of lexical and conceptual representations and word selection, which chooses the correct word among semantically related competitors. Lexical and conceptual activation is measured by semantic priming. In contrast, word selection is indexed by semantic interference and is hampered in semantically homogeneous (HOM) contexts. We examined the spatiotemporal dynamics of these complementary processes in a picture naming task with blocks of semantically heterogeneous (HET) or HOM stimuli. We used electrocorticography data obtained from frontal and temporal cortices, permitting detailed spatiotemporal analysis of word retrieval processes. A semantic interference effect was observed with naming latencies longer in HOM versus HET blocks. Cortical response strength as indexed by high-frequency band (HFB) activity (70-150 Hz) amplitude revealed effects linked to lexical-semantic activation and word selection observed in widespread regions of the cortical mantle. Depending on the subsecond timing and cortical region, HFB indexed semantic interference (i.e., more activity in HOM than HET blocks) or semantic priming effects (i.e., more activity in HET than HOM blocks). These effects overlapped in time and space in the left posterior inferior temporal gyrus and the left prefrontal cortex. The data do not support a modular view of word retrieval in speech production but rather support substantial overlap of lexical-semantic activation and word selection mechanisms in the brain.

  12. Observations of High-frequency Internal Wave Energy Offshore of Point Loma, California

    Science.gov (United States)

    Rhee, K.; Crosby, S. C.; Fiedler, J. W.

    2016-12-01

    As coastally directed internal wave energy shoals in shallow water, the resulting bores can transport cold, dense, nutrient-rich waters shoreward, influencing local fauna and ultimately dissipating tidal energy into heat. Understanding the mechanisms, propagation, and resultant transport is crucial for determining the physical-biological interactions along our coasts. We observed significant internal wave energy offshore of Point Loma, San Diego using a thermistor chain moored in 22m depth. Temperature observations spaced 1.5m apart from 0 to 18m were sampled at 2Hz and recorded for a period of ten days during July 2016. Temperature, salinity, oxygen, and nutrient profiles were obtained at 3 stations further offshore during deployment and recovery cruises. At the time of mooring deployment, thermocline depth was 10 to 20m. During recovery we observed a significant decrease of thermocline depth, which was likely caused by surface mixing during a strong wind event. During the 10-day deployment we observed many high frequency (5 to 10 minute periods) internal waves events. In addition, we noticed rapid temperature changes (4oC in less than a minute) suggestive of internal bores; however, other events appeared to be linear, possibly indicating unbroken internal waves. Here, we examine the critical slope for linear mode-1 propagation, the correlation of these events with tidal ebb and flow, and infer how a deeper mixed layer effects internal wave propagation.

  13. Dynamical control of electron-phonon interactions with high-frequency light

    Science.gov (United States)

    Dutreix, C.; Katsnelson, M. I.

    2017-01-01

    This work addresses the one-dimensional problem of Bloch electrons when they are rapidly driven by a homogeneous time-periodic light and linearly coupled to vibrational modes. Starting from a generic time-periodic electron-phonon Hamiltonian, we derive a time-independent effective Hamiltonian that describes the stroboscopic dynamics up to the third order in the high-frequency limit. This yields nonequilibrium corrections to the electron-phonon coupling that are controllable dynamically via the driving strength. This shows in particular that local Holstein interactions in equilibrium are corrected by antisymmetric Peierls interactions out of equilibrium, as well as by phonon-assisted hopping processes that make the dynamical Wannier-Stark localization of Bloch electrons impossible. Subsequently, we revisit the Holstein polaron problem out of equilibrium in terms of effective Green's functions, and specify explicitly how the binding energy and effective mass of the polaron can be controlled dynamically. These tunable properties are reported within the weak- and strong-coupling regimes since both can be visited within the same material when varying the driving strength. This work provides some insight into controllable microscopic mechanisms that may be involved during the multicycle laser irradiations of organic molecular crystals in ultrafast pump-probe experiments, although it should also be suitable for realizations in shaken optical lattices of ultracold atoms.

  14. High frequency wide-band transformer uses coax to achieve high turn ratio and flat response

    Science.gov (United States)

    De Parry, T.

    1966-01-01

    Center-tap push-pull transformer with toroidal core helically wound with a single coaxial cable creates a high frequency wideband transformer. This transformer has a high-turn ratio, a high coupling coefficient, and a flat broadband response.

  15. Low and High-Frequency Field Potentials of Cortical Networks Exhibit Distinct Responses to Chemicals

    Science.gov (United States)

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between differ...

  16. Real-time, high frequency QRS electrocardiograph with reduced amplitude zone detection

    Science.gov (United States)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2009-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as ''RAZs''. RAZs are displayed as ''go, no-go'' signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  17. Laser and high-frequency cauthery gingivectomy in nonperiodontal indications: assessment and comparison of techniques

    Science.gov (United States)

    Bartak, Petr; Smucler, Roman

    2003-06-01

    The authors have verified the efficiency and safety of laser and high-frequency gingivectomy in non-periodontal indications. Within a prospective, non-selective study, they treated and monitored 357 dental areas in 139 teeth.Out of the total number, 248 areas were treated wtih a diode laser, 980nm; 109 areas with high-frequency electrocautery. The following parameters were monitored: a) regeneration of the marginal gingiva; b) generation of iatrogenic recessions or periodontal pockets; c) bleeding from gingival sulcus during probing; d) changes in tooth vitality; e) patient's subjective evaluation. The authors identified a high degree of safety in both laser and high-frequency gingivectomy, with no significant difference between these two methods. Laser gingivectomy appears to have a wider indication range, while high-frequency gingivectomy requires lower financial expenses.

  18. High Frequency Radar Locations in the United States as of February 2016.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset show the point locations of High Frequency (HF) radar systems across the US. HF radars measure the speed and direction of ocean surface currents in near...

  19. Effect of low-intensity extremely high frequency radiation on reproductive function in wistar rats.

    Science.gov (United States)

    Subbotina, T I; Tereshkina, O V; Khadartsev, A A; Yashin, A A

    2006-08-01

    The exposure to low-intensity extremely high frequency electromagnetic radiation during spermatogenesis was accompanied by pathological changes, which resulted in degeneration and polymorphism of spermatozoa. The number of newborn rats increased in the progeny of irradiated animals.

  20. Motion behavior of non-metallic particles under high frequency magnetic field

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhong-tao; GUO Qing-tao; YU Feng-yun; LI Jie; ZHANG Jian; LI Ting-ju

    2009-01-01

    Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles in commercial pure aluminum under high frequency magnetic field. At the meantime, multi-pipe experiment was also done to discuss the prospect of continuous elimination of non-metallic particles under high frequency magnetic field. It is shown that: 1) results of numerical simulation are in good agreement with the experimental results, which certificates the rationality of the simulation model; 2) when the intensity of high frequency magnetic field is 0.06 T, the 30 μm alumina particles in melt inner could migrate to the edge and be removed within 2 s; 3) multi-pipe elimination of alumina particles under high frequency magnetic field is also effective and has a good prospect in industrial application.

  1. Stability Analysis of an Inverted Pendulum Subjected to Combined High Frequency Harmonics and Stochastic Excitations

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhi-Long; JIN Xiao-Ling; ZHU Zi-Qi

    2008-01-01

    Stability of vertical upright position of an inverted pendulum with its suspension point subjected to high frequency harmonics and stochastic excitations is investigated. Two classes of excitations, i.e., combined high frequency harmonic excitation and Gaussian white noise excitation, and high frequency bounded noise excitation, respectively,are considered. Firstly, the terms of high frequency harmonic excitations in the equation of motion of the system can be set equivalent to nonlinear stiffness terms by using the method of direct separation of motions. Then the stochastic averaging method of energy envelope is used to derive the averaged It(o) stochastic differential equation for system energy. Finally, the stability with probability 1 of the system is studied by using the largest Lyapunov exponent obtained from the averaged It(o) stochastic differential equation. The effects of system parameters on the stability of the system are discussed, and some examples are given to illustrate the efficiency of the proposed procedure.

  2. High-frequency irreversible electroporation (H-FIRE for non-thermal ablation without muscle contraction

    Directory of Open Access Journals (Sweden)

    Arena Christopher B

    2011-11-01

    Full Text Available Abstract Background Therapeutic irreversible electroporation (IRE is an emerging technology for the non-thermal ablation of tumors. The technique involves delivering a series of unipolar electric pulses to permanently destabilize the plasma membrane of cancer cells through an increase in transmembrane potential, which leads to the development of a tissue lesion. Clinically, IRE requires the administration of paralytic agents to prevent muscle contractions during treatment that are associated with the delivery of electric pulses. This study shows that by applying high-frequency, bipolar bursts, muscle contractions can be eliminated during IRE without compromising the non-thermal mechanism of cell death. Methods A combination of analytical, numerical, and experimental techniques were performed to investigate high-frequency irreversible electroporation (H-FIRE. A theoretical model for determining transmembrane potential in response to arbitrary electric fields was used to identify optimal burst frequencies and amplitudes for in vivo treatments. A finite element model for predicting thermal damage based on the electric field distribution was used to design non-thermal protocols for in vivo experiments. H-FIRE was applied to the brain of rats, and muscle contractions were quantified via accelerometers placed at the cervicothoracic junction. MRI and histological evaluation was performed post-operatively to assess ablation. Results No visual or tactile evidence of muscle contraction was seen during H-FIRE at 250 kHz or 500 kHz, while all IRE protocols resulted in detectable muscle contractions at the cervicothoracic junction. H-FIRE produced ablative lesions in brain tissue that were characteristic in cellular morphology of non-thermal IRE treatments. Specifically, there was complete uniformity of tissue death within targeted areas, and a sharp transition zone was present between lesioned and normal brain. Conclusions H-FIRE is a feasible technique for

  3. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    Science.gov (United States)

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  4. Tesla’s high voltage and high frequency generators with oscillatory circuits

    Directory of Open Access Journals (Sweden)

    Cvetić Jovan M.

    2016-01-01

    Full Text Available The principles that represent the basics of the work of the high voltage and high frequency generator with oscillating circuits will be discussed. Until 1891, Tesla made and used mechanical generators with a large number of extruded poles for the frequencies up to about 20 kHz. The first electric generators based on a new principle of a weakly coupled oscillatory circuits he used for the wireless signal transmission, for the study of the discharges in vacuum tubes, the wireless energy transmission, for the production of the cathode rays, that is x-rays and other experiments. Aiming to transfer the signals and the energy to any point of the surface of the Earth, in the late of 19th century, he had discovered and later patented a new type of high frequency generator called a magnifying transmitter. He used it to examine the propagation of electromagnetic waves over the surface of the Earth in experiments in Colorado Springs in the period 1899-1900. Tesla observed the formation of standing electromagnetic waves on the surface of the Earth by measuring radiated electric field from distant lightning thunderstorm. He got the idea to generate the similar radiation to produce the standing waves. On the one hand, signal transmission, i.e. communication at great distances would be possible and on the other hand, with more powerful and with at least three magnifying transmitters the wireless transmission of energy without conductors at any point of the Earth surface could also be achieved. The discovery of the standing waves on the surface of the Earth and the invention of the magnifying transmitter he claimed his greatest inventions. Less than two years later, at the end of 1901, he designed and started to build a much stronger magnifying transmitter on Long Island near New York City (the Wardenclyffe tower wishing to become a world telecommunication center. During the tower construction, he elaborated the plans for an even stronger transmitter based on

  5. High-Frequency Einstein-Podolsky-Rosen Entanglement via Atomic Memory Effects in Four-Wave Mixing

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-Hua; HU Xiang-Ming; KONG Ling-Feng; ZHANG Xiu

    2010-01-01

    @@ Atomic memory effects occur when the atomic relaxation times are comparable to or much longer than the cavity relaxation times.We show that by using the memory effects,it is possible to obtain high-frequency Einstein-Podolsky-Rosen entanglement between a pair of Stokes and anti-Stokes fields in a four-wave mixing system.The physical origin is traced to the dynamical Stark splittings of dressed states due to the parametrically amplified fields.This mechanism provides an alternative and efficient way for sideband entanglement.

  6. Parkinsonian Rest Tremor Is Associated With Modulations of Subthalamic High-Frequency Oscillations.

    Science.gov (United States)

    Hirschmann, Jan; Butz, Markus; Hartmann, Christian J; Hoogenboom, Nienke; Özkurt, Tolga E; Vesper, Jan; Wojtecki, Lars; Schnitzler, Alfons

    2016-10-01

    High frequency oscillations (>200 Hz) have been observed in the basal ganglia of PD patients and were shown to be modulated by the administration of levodopa and voluntary movement. The objective of this study was to test whether the power of high-frequency oscillations in the STN is associated with spontaneous manifestation of parkinsonian rest tremor. The electromyogram of both forearms and local field potentials from the STN were recorded in 11 PD patients (10 men, age 58 [9.4] years, disease duration 9.2 [6.3] years). Patients were recorded at rest and while performing repetitive hand movements before and after levodopa intake. High-frequency oscillation power was compared across epochs containing rest tremor, tremor-free rest, or voluntary movement and related to the tremor cycle. We observed prominent slow (200-300 Hz) and fast (300-400 Hz) high-frequency oscillations. The ratio between slow and fast high-frequency oscillation power increased when tremor became manifest. This increase was consistent across nuclei (94%) and occurred in medication ON and OFF. The ratio outperformed other potential markers of tremor, such as power at individual tremor frequency, beta power, or low gamma power. For voluntary movement, we did not observe a significant difference when compared with rest or rest tremor. Finally, rhythmic modulations of high-frequency oscillation power occurred within the tremor cycle. Subthalamic high-frequency oscillation power is closely linked to the occurrence of parkinsonian rest tremor. The balance between slow and fast high-frequency oscillation power combines information on motor and medication state. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  7. A High Voltage High Frequency Resonant Inverter for Supplying DBD Devices with Short Discharge Current Pulses

    OpenAIRE

    Bonnin, Xavier; Brandelero, Julio; Videau, Nicolas; Piquet, Hubert; Meynard, Thierry

    2014-01-01

    International audience; In this paper, the merits of a high-frequency resonant converter for supplying dielectric barrier discharges (DBD) devices are established. It is shown that, thanks to its high-frequency operating condition, such a converter allows to supply DBD devices with short discharge current pulses, a high repetition rate, and to control the injected power. In addition, such a topology eliminates the matter of connecting a high-voltage transformer directly across the DBD device ...

  8. Conventional Audiometry, Extended High-Frequency Audiometry, and DPOAE for Early Diagnosis of NIHL

    OpenAIRE

    Mehrparvar, Amir Houshang; Mirmohammadi, Seyyed Jalil; Davari, Mohammad Hossein; MOSTAGHACI, Mehrdad; Mollasadeghi, Abolfazl; Bahaloo, Maryam; Hashemi, Seyyed Hesam

    2014-01-01

    Background: Noise most frequently affects hearing system, as it may typically cause a bilateral, progressive sensorineural hearing loss at high frequencies. Objectives: This study was designed to compare three different methods to evaluate noise-induced hearing loss (conventional audiometry, high-frequency audiometry, and distortion product otoacoustic emission). Material and Methods: This was a cross-sectional study. Data was analyzed by SPSS (ver. 19) using chi square, T test and repeated m...

  9. High frequency system project implementation plan. [Diagnostic recording system for Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Moon, L. L.

    1976-03-12

    The High Frequency System is a new mobile, digital diagnostic recording system for use at the Nevada Test Site. Many different kinds of event data will be digitized in real-time by this system, and these data will be recorded and stored for later read-out and transmission to NADCEN. The hardware and software requirements of the High Frequency System are examined, and the parameters of the system are proposed.

  10. The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling

    Science.gov (United States)

    2015-09-30

    is to measure and model very high frequency underwater sound generated by processes at the sea surface, relevant to the high-frequency underwater...realizations generated from wave gauge data synchronized with the acoustic measurements. The curves are not generally smooth because of the limited...on Coherent Acoustic Propagation and Modeling Grant B. Deane Marine Physical Laboratory, Scripps Institution of Oceanography UCSD La Jolla, CA

  11. Design and Measurement of Planar Toroidal Transformers for Very High Frequency Power Applications

    DEFF Research Database (Denmark)

    Knott, Arnold; Pejtersen, Jens

    2012-01-01

    The quest for higher power density has led to research of very high frequency (30-300 MHz) power converters. Magnetic components based on ferrite cores have limited application within this frequency range due to increased core loss. Air-core magnetics is a viable alternative as they do not exhibi...... power converters for very high frequencies. The magnetic coupling factor of both transformers is approx. 60 % and the mutual coupling inductance is dominant up to a frequency of 50 MHz....

  12. High-Frequency Transcranial Random Noise Stimulation Enhances Perception of Facial Identity.

    Science.gov (United States)

    Romanska, Aleksandra; Rezlescu, Constantin; Susilo, Tirta; Duchaine, Bradley; Banissy, Michael J

    2015-11-01

    Recently, a number of studies have demonstrated the utility of transcranial current stimulation as a tool to facilitate a variety of cognitive and perceptual abilities. Few studies, though, have examined the utility of this approach for the processing of social information. Here, we conducted 2 experiments to explore whether a single session of high-frequency transcranial random noise stimulation (tRNS) targeted at lateral occipitotemporal cortices would enhance facial identity perception. In Experiment 1, participants received 20 min of active high-frequency tRNS or sham stimulation prior to completing the tasks examining facial identity perception or trustworthiness perception. Active high-frequency tRNS facilitated facial identity perception, but not trustworthiness perception. Experiment 2 assessed the spatial specificity of this effect by delivering 20 min of active high-frequency tRNS to lateral occipitotemporal cortices or sensorimotor cortices prior to participants completing the same facial identity perception task used in Experiment 1. High-frequency tRNS targeted at lateral occipitotemporal cortices enhanced performance relative to motor cortex stimulation. These findings show that high-frequency tRNS to lateral occipitotemporal cortices produces task-specific and site-specific enhancements in face perception.

  13. High frequency genetic variation of purine biosynthesis genes is a mechanism of success in Campylobacter jejuni

    Science.gov (United States)

    Phenotypic variation is prevalent among progeny of the zoonotic pathogen Campylobacter jejuni, the leading agent of enterocolitis in the developed world. Heterogeneity bestows increased survival to bacterial populations because variable phenotypes ensure some cells will be protected against future s...

  14. Development of Integrated Electronics for Readout of High Frequency Micro/Nano-mechanical Resonator

    DEFF Research Database (Denmark)

    Tang, Meng

    af den bulk resonatorer, var en fulk elektrisk model udledte for yderligere design og simulation. Modellen er baseret på en elektrisk model med serie modstand induktans og kapacitans (RLC) i parallel med en ekstra parallel kondensator. Igennem analysen ser vi at den parallelle kondensator bringer...

  15. Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking.

    Directory of Open Access Journals (Sweden)

    Fabiano Baroni

    2014-05-01

    Full Text Available High-frequency oscillations (above 30 Hz have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF or Generalized Integrate-and-Fire (GIF neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i the firing rate response to the noisy background input, ii the membrane potential distribution, and iii the shape of Inhibitory Post-Synaptic Potentials (IPSPs. For hyperpolarizing inhibition, the GIF IPSP profile (factor iii exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i and ii, respectively, which tend to decrease synchrony. If inhibition is shunting instead

  16. Deviation of tracheal pressure from airway opening pressure during high-frequency oscillatory ventilation in a porcine lung model.

    Science.gov (United States)

    Johannes, Amélie; Zollhoefer, Bernd; Eujen, Ulrike; Kredel, Markus; Rauch, Stefan; Roewer, Norbert; Muellenbach, Ralf M

    2013-04-01

    Oxygenation during high-frequency oscillatory ventilation is secured by a high level of mean airway pressure. Our objective was to identify a pressure difference between the airway opening of the respiratory circuit and the trachea during application of different oscillatory frequencies. Six female Pietrain pigs (57.1 ± 3.6 kg) were first ventilated in a conventional mechanical ventilation mode. Subsequently, the animals were switched to high-frequency oscillatory ventilation by setting mean airway opening pressure 5 cmH(2)O above the one measured during controlled mechanical ventilation. Measurements at the airway opening and at tracheal levels were performed in healthy lungs and after induction of acute lung injury by surfactant depletion. During high-frequency oscillatory ventilation, the airway opening pressure was set at a constant level. The pressure amplitude was fixed at 90 cmH(2)O. Starting from an oscillatory frequency of 3 Hz, the frequency was increased in steps of 3 Hz to 15 Hz and then decreased accordingly. At each frequency, measurements were performed in the trachea through a side-lumen of the endotracheal tube and the airway opening pressure was recorded. The pressure difference was calculated. At every oscillatory frequency, a pressure loss towards the trachea could be shown. This pressure difference increased with higher oscillatory frequencies (3 Hz 2.2 ± 2.1 cmH(2)O vs. 15 Hz 7.5 ± 1.8 cmH(2)O). The results for healthy and injured lungs were similar. Tracheal pressures decreased with higher oscillatory frequencies. This may lead to pulmonary derecruitment. This has to be taken into consideration when increasing oscillatory frequencies and differentiated pressure settings are mandatory.

  17. A transport model and numerical simulation of the high-frequency dynamics of three-dimensional beam trusses.

    Science.gov (United States)

    Le Guennec, Yves; Savin, Éric

    2011-12-01

    The theory of microlocal analysis shows that the energy density associated with the high-frequency vibrations of a three-dimensional Timoshenko beam satisfies a Liouville-type transport equation. In the present application, the material of the beam is assumed to be isotropic. Its parameters are allowed to vary along the beam axis at length scales much larger than the wavelength of the high-frequency waves traveling in it. Moreover, the curvature and torsion of the beam are accounted for. The first part of the paper focuses on the derivation of the transport model for a single three-dimensional beam. In order to extend this model to beam trusses, the reflection/transmission phenomena of the energy fluxes at junctions of beams are described by power flow reflection/transmission operators in a subsequent part. For numerical simulations, a discontinuous Galerkin finite element method is used on account of the discontinuities of the energy density field at the junctions. Thus, a complete mechanical-numerical modeling of the linear transient dynamics of beam trusses is proposed. It is illustrated by numerical examples highlighting some remarkable features of high-frequency vibrations: The onset of a diffusive regime characterized by energy equipartition rules at late times. Energy diffusion is prompted by the multiple reflection/transmission of waves at the junctions, with possible mode (polarization) conversions. This is the regime applicable to the statistical energy analysis of structural acoustics systems. The main purpose of this research is to develop an effective strategy to simulate and predict the transient response of beam trusses impacted by acoustic or mechanical shocks.

  18. Iloprost drug delivery during infant conventional and high-frequency oscillatory ventilation.

    Science.gov (United States)

    DiBlasi, Robert M; Crotwell, Dave N; Shen, Shuijie; Zheng, Jiang; Fink, James B; Yung, Delphine

    2016-03-01

    Iloprost is a selective pulmonary vasodilator approved for inhalation by the Food and Drug Administration. Iloprost has been increasingly used in the management of critically ill neonates with hypoxic lung disease. This in vitro study was designed to test the hypothesis that aerosol drug delivery could be effectively administered to infants with both conventional ventilation and high-frequency oscillatory ventilation (HFOV). A neonatal test lung model configured with newborn lung mechanics was ventilated with a conventional ventilator and an HFOV with standard settings. A vibrating-mesh nebulizer was placed (1) proximal to the patient airway in the inspiratory limb between the humidifier probe and patient wye (conventional) as well as between the vent circuit and the endotracheal tube (ETT) for HFOV and (2) between the ventilator and humidifier (distal). Iloprost was nebulized in three separate runs using three new nebulizers in each of the circuit locations. A collecting filter was placed at the distal end of the ETT for each trial. Iloprost was quantified using high-performance liquid chromatography. The percentage of nominal dose delivered was greater with the nebulizer placed proximal to the airway for conventional ventilation (10.74% ± 2%) and HFOV (29% ± 2%) than with it placed in the distal position (2.96% ± 0.2% vs. 0.96% ± 0.8%, respectively; P < 0.05). Drug delivery in proximal position was nearly threefold greater during HFOV than during conventional ventilation. In conclusion, iloprost drug delivery was best achieved when the nebulizer was placed proximal to the patient airway during neonatal mechanical ventilation. Drug delivery appears to be more efficient during HFOV than during conventional ventilation.

  19. Perception and coding of high-frequency spectral notches: potential implications for sound localization.

    Science.gov (United States)

    Alves-Pinto, Ana; Palmer, Alan R; Lopez-Poveda, Enrique A

    2014-01-01

    The interaction of sound waves with the human pinna introduces high-frequency notches (5-10 kHz) in the stimulus spectrum that are thought to be useful for vertical sound localization. A common view is that these notches are encoded as rate profiles in the auditory nerve (AN). Here, we review previously published psychoacoustical evidence in humans and computer-model simulations of inner hair cell responses to noises with and without high-frequency spectral notches that dispute this view. We also present new recordings from guinea pig AN and "ideal observer" analyses of these recordings that suggest that discrimination between noises with and without high-frequency spectral notches is probably based on the information carried in the temporal pattern of AN discharges. The exact nature of the neural code involved remains nevertheless uncertain: computer model simulations suggest that high-frequency spectral notches are encoded in spike timing patterns that may be operant in the 4-7 kHz frequency regime, while "ideal observer" analysis of experimental neural responses suggest that an effective cue for high-frequency spectral discrimination may be based on sampling rates of spike arrivals of AN fibers using non-overlapping time binwidths of between 4 and 9 ms. Neural responses show that sensitivity to high-frequency notches is greatest for fibers with low and medium spontaneous rates than for fibers with high spontaneous rates. Based on this evidence, we conjecture that inter-subject variability at high-frequency spectral notch detection and, consequently, at vertical sound localization may partly reflect individual differences in the available number of functional medium- and low-spontaneous-rate fibers.

  20. Perception and coding of high-frequency spectral notches: Potential implications for sound localization

    Directory of Open Access Journals (Sweden)

    Ana eAlves-Pinto

    2014-05-01

    Full Text Available The interaction of sound waves with the human pinna introduces high-frequency notches (5-10 kHz in the stimulus spectrum that are thought to be useful for vertical sound localization. A common view is that these notches are encoded as rate profiles in the auditory nerve (AN. Here, we review previously published psychoacoustical evidence in humans and computer-model simulations of inner hair cell responses to noises with and without high-frequency spectral notches that dispute this view. We also present new recordings from guinea pig AN and ‘ideal observer’ analyses of these recordings that suggest that discrimination between noises with and without high-frequency spectral notches is probably based on the information carried in the temporal pattern of AN discharges. The exact nature of the neural code involved remains nevertheless uncertain: computer model simulations suggest that high-frequency spectral notches are encoded in spike timing patterns that may be operant in the 4-7 kHz frequency regime, while ‘ideal observer’ analysis of experimental neural responses suggest that an effective cue for high-frequency spectral discrimination may be based on sampling rates of spike arrivals of AN fibers using non-overlapping time binwidths of between 4 and 9 ms. Neural responses show that sensitivity to high-frequency notches is greatest for fibers with low and medium spontaneous rates than for fibers with high spontaneous rates. Based on this evidence, we conjecture that inter-subject variability at high-frequency spectral notch detection and, consequently, at vertical sound localization may partly reflect individual differences in the available number of functional medium- and low-spontaneous-rate fibers.

  1. Diurnal and Seasonal Responses of High Frequency Chlorophyll Fluorescence and PRI Measurements to Abiotic Stress in Almonds

    Science.gov (United States)

    Bambach-Ortiz, N. E.; Paw U, K. T.

    2016-12-01

    Plants have evolved to efficiently utilize light to synthesize energy-rich carbon compounds, and at the same time, dissipate absorbed but excessive photon that would otherwise transfer excitation energy to potentially toxic reactive oxygen species (ROS). Nevertheless, even the most rapidly growing plants with the highest rates of photosynthesis only utilize about half of the light their leaves absorb during the hours of peak irradiance in sun-exposed habitats. Usually, that daily peak of irradiance coincides with high temperature and a high vapor pressure deficit, which are conditions related to plant stomata closure. Consequently, specially in water stressed environments, plants need to have mechanisms to dissipate most of absorbed photons. Plants avoid photo-oxidative damage of the photosynthetic apparatus due to the formation of ROS under excess light using different mechanisms in order to either lower the amount of ROS formation or detoxify already formed ROS. Photoinhibition is defined as a reduction in photosynthetic activity due largely to a sustained reduction in the photochemical efficiency of Photosystem II (PSII), which can be assessed by monitoring Chlorophyll a fluorescence (ChlF). Alternatively, monitoring abiotic stress effects upon photosynthetic activity and photoinhibition may be possible using high frequency spectral reflectance sensors. We aim to find the potential relationships between high frequency PRI and ChlF as indicators of photoinhibition and permanent photodamage at a seasonal scale. Preliminary results show that PRI responses are sensitive to photoinhibition, but provide a poor representation of permanent photodamage observed at a seasonal scale.

  2. High-frequency oscillations in Parkinson's disease: spatial distribution and clinical relevance.

    Science.gov (United States)

    Wang, Jing; Hirschmann, Jan; Elben, Saskia; Hartmann, Christian J; Vesper, Jan; Wojtecki, Lars; Schnitzler, Alfons

    2014-09-01

    The pathophysiology of Parkinson's disease (PD) has been related to excessive beta band oscillations in the basal ganglia. Recent recordings from the subthalamic nucleus of PD patients showed that beta oscillations show strong cross-frequency coupling with high-frequency oscillations (>200 Hz). However, little is known about the characteristics and functional properties of these oscillations. We studied the spatial distribution of high-frequency oscillations and their relation to PD motor symptoms. We included 10 PD patients in medication OFF who underwent implantation of deep brain stimulation (DBS) electrodes. Intraoperative five-channel microelectrode recordings were performed at 9 to 10 recording sites within the subthalamic nucleus and its immediate surroundings. We found a focal spatial distribution of high-frequency oscillations with highest power 2 mm below the dorsolateral border of the subthalamic nucleus. Within the subthalamic nucleus, power peaked slightly anterior to the DBS target site. In addition, contralateral akinesia/rigidity scores were negatively correlated with high-frequency oscillation power. Our results demonstrate a focal origin of high-frequency oscillations within the subthalamic nucleus and provide further evidence for their functional association with motor state. © 2014 International Parkinson and Movement Disorder Society.

  3. The high frequency characteristics of laser reflection and visible light during solid state disk laser welding

    Science.gov (United States)

    Gao, Xiangdong; You, Deyong; Katayama, Seiji

    2015-07-01

    Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1-10 kHz and 10-125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status.

  4. High-frequency profile in adolescents and its relationship with the use of personal stereo devices

    Directory of Open Access Journals (Sweden)

    Renata Almeida Araújo Silvestre

    2016-04-01

    Full Text Available Abstract Objective: To analyze and correlate the audiometric findings of high frequencies (9–16 kHz in adolescents with their hearing habits and attitudes, in order to prevent noise-induced hearing loss. Method: This was a descriptive cross-sectional study, which included 125 adolescents in a sample of normal-hearing students, at a state school. The subjects performed high-frequency audiometry testing and answered a self-administered questionnaire addressing information on sound habits concerning the use of personal stereo devices. The sample was divided according to the exposure characteristics (time, duration, intensity, etc. and the results were compared with the observed thresholds, through the difference in proportions test, chi-squared, Student's t-test, and ANOVA, all at a significance level of 0.05. Results: Average high-frequency thresholds were registered below 15 dB HL and no significant correlation was found between high frequency audiometric findings and the degree of exposure. Conclusion: The prevalence of harmful sound habits due to the use of personal stereo devices is high in the adolescent population, but there was no correlation between exposure to high sound pressure levels through personal stereos and the high-frequency thresholds in this population.

  5. High-frequency gamblers show increased resistance to extinction following partial reinforcement.

    Science.gov (United States)

    Horsley, Rachel R; Osborne, Matthew; Norman, Christine; Wells, Timothy

    2012-04-15

    Behaviours that have been rewarded intermittently persist for longer during periods of non-reward than behaviours that have been rewarded continuously. This classic phenomenon is known as the partial reinforcement extinction effect. For decades it has been generally understood that this phenomenon is fundamental to the persistence of gambling in the absence of winning. One obvious, yet untested hypothesis arising from this is that persistent (here, high-frequency) gamblers might be more sensitive to partial reinforcement contingencies. Therefore, our aim was to test the hypothesis that compared to low-frequency gamblers, high-frequency gamblers would show greater resistance to extinction following partial reinforcement in a computer based experiment. Participants were 19 high-frequency gamblers and 21 low-frequency gamblers, all healthy non-smokers aged between 18 and 52. Following partial or continuous reinforcement, persistence of responding in extinction was measured as the number of times a target response was made. After partial reinforcement, high-frequency gamblers made the target response a greater number of times in extinction (compared to low-frequency gamblers). Moreover, the partial reinforcement extinction effect was larger in high-frequency gamblers than in low-frequency gamblers. It remains to be seen whether increased sensitivity to partial reinforcement is a cause or effect of persistent gambling. Nevertheless, the present study represents an important first step in investigating the role of simple partial reinforcement contingencies in determining resistance to extinction in gamblers, the importance of which, whilst hitherto recognised, has never been demonstrated experimentally.

  6. Adaptive high-frequency information fusion algorithm of radar and optical images

    Science.gov (United States)

    Wang, Yiding; Qin, Shuai

    2011-12-01

    An adaptive High-frequency Information Fusion Algorithm of Radar and Optical Images is proposed in this paper, in order to improve the resolution of the radar image and reserve more radar information. Firstly, Hough Transform is adopted in the process of low-resolution radar image and high-resolution optical image registration. The implicit linear information is extracted from two different heterogeneous images for better result. Then NSCT transform is used for decomposition and fusion. In different decomposition layers or in the same layer with different directions, fusion rules are adaptive for the high-frequency information of images. The ratio values of high frequency information entropy, variance, gradient and edge strength are calculated after NSCT decomposition. High frequency information entropy, variance, gradient or edge strength, which has the smallest ratio value, is selected as an optimal rule for regional fusion. High-frequency information of radar image could be better retained, at the same time the low-frequency information of optical image also could be remained. Experimental results showed that our approach performs better than those methods with single fusion rule.

  7. High Frequency Tan Delta Measurement Method for 132kV Transmission Underground Cables

    Directory of Open Access Journals (Sweden)

    A.R. Avinash

    2015-07-01

    Full Text Available Tangent Delta is a measurement technique to investigate cables insulation strength. Current techniques utilize Very Low Frequency (VLF at 0.1 Hz and power frequency at 50 Hz. However, high voltages are required, thus requiring larger space and cost. Proposed method of tangent delta testing utilizes High frequency Low voltage diagnoses. The phase between the current and the voltage is utilized to determine the tangent delta (tan δ. The aim of this study is to develop a low voltage high frequency tangent delta measurement method and test if it can discriminate manufactured 132 kV good conditioned cable sample from defect induced cables with void, scotched and contamination in its insulation. Impurities are clearly discriminated using this method. Comparison of Tangent Delta of cables manufactured simultaneously in good condition and defect induced is performed using High Frequency Tangent Delta method and in 50 Hz conventional method to validate the effectiveness of the measurement technique. The High Frequency AC setup utilizes a small testing environment which can sample small lengths with minimum 1 m length of cable. The small lengths will result in the reduction of total capacitance of the cable but using High Frequency induces high electric stress on XLPE layer thus resulting in measureable dielectric current.

  8. The effects of photobiomodulation and low-amplitude high-frequency vibration on bone healing process: a comparative study.

    Science.gov (United States)

    Rajaei Jafarabadi, M; Rouhi, G; Kaka, G; Sadraie, S H; Arum, J

    2016-12-01

    This study aimed at investigating the effects of photobiomodulation (PBM) and low-amplitude high-frequency (LAHF) whole body mechanical vibration on bone fracture healing process when metallic plates are implanted in rats' femurs. Forty male rats weighing between 250 and 350 g, 12 weeks old, were employed in this study. A transverse critical size defect (CSD) was made in their right femurs that were fixed by stainless steel plates. After the surgery, the rats were divided equally into four groups: low-level laser therapy group (GaAlAs laser, 830 nm, 40 mW, 4 J/cm(2), 0.35 cm beam diameter, LLLT), whole body vibration group (60 Hz, 0.1 mm amplitude, 1.5 g, WBV), a combination of laser and vibration group (LV), and the control group (C). Each group was divided into two subgroups based on sacrifice dates. The rats were sacrificed at intervals of 3 and 6 weeks after the surgery to extract their right femurs for radiography and biomechanical and histological analyses, and the results were analyzed using standard statistical methods. Radiographic analyses showed greater callus formation in the LLLT and WBV groups than in control group at both 3 (P low-amplitude high-frequency WBV both had a positive impact on bone healing process, for critical size defects in the presence of a stainless steel implant. But their combination, i.e., low-level laser therapy and low-amplitude high-frequency whole body vibration (LV), interestingly did not accelerate the fractured bone healing process.

  9. The effect of stratification and topography on high-frequency internal waves in a continental shelf sea

    Science.gov (United States)

    Domina, Anastasiia; Palmer, Matthew; Vlasenko, Vasil; Sharples, Jonathan; Green, Mattias; Stashchuk, Nataliya

    2017-04-01

    Internal gravity waves (IWs) have been recognised as one of the main drivers of climate controlling circulation, sustaining fisheries in shelf seas and CO2-pump system. High frequency IWs are particularly important to internal mixing in the shelf seas, where they contain an enhanced fraction of the available baroclinic energy. The origin, generation mechanism, propagation and spatial distribution of these waves are unfortunately still poorly understood since they are difficult to measure and simulate, and are therefore not represented in the vast majority of ocean and climate models. In this study we aim to increase our understanding of high frequency IWs dynamics in shelf seas through a combination of observational (from moorings and ocean gliders) and modelling methods (MITgcm), and test the hypothesis that "Solitary waves are responsible for driving a large fraction of the vertical diffusivity at the shelf edge and adjacent shelf region". A new high-resolution (50m horizontal) MITgcm configuration is employed to identify the generation and propagation of IWs in a regional shelf sea and subsequently identify internal wave generation hotspots by using calculated Froude number and body force maps. We assess the likely impact of changing seasonal and climate forcing on IWs with a range of different density structures. Our model suggests that under increasing stratification, the IW field becomes more energetic at all frequencies, however the increase in energy is not evenly distributed. While energy in the dominant low frequency IWs increase by 20-40%, energy associated with high frequency waves increases by as much as 90%. These model results are compared to varying stratification scenarios from observations made during 2012 and 2013 to interpret the impact on continental shelf sea IW generation and propagation. We use the results from a turbulence enabled ocean glider to assess the impact that this varying wavefield has on internal mixing, and discuss the

  10. Atomization off thin water films generated by high-frequency substrate wave vibrations.

    Science.gov (United States)

    Collins, David J; Manor, Ofer; Winkler, Andreas; Schmidt, Hagen; Friend, James R; Yeo, Leslie Y

    2012-11-01

    Generating aerosol droplets via the atomization of thin aqueous films with high frequency surface acoustic waves (SAWs) offers several advantages over existing nebulization methods, particularly for pulmonary drug delivery, offering droplet sizes in the 1-5-μm range ideal for effective pulmonary therapy. Nevertheless, the physics underlying SAW atomization is not well understood, especially in the context of thin liquid film formation and spreading and how this affects the aerosol production. Here, we demonstrate that the film geometry, governed primarily by the applied power and frequency of the SAW, indeed plays a crucial role in the atomization process and, in particular, the size of the atomized droplets. In contrast to the continuous spreading of low surface energy liquids atop similar platforms, high surface energy liquids such as water, in the present case, are found to undergo transient spreading due to the SAW to form a quasisteady film whose height is determined by self-selection of the energy minimum state associated with the acoustic resonance in the film and whose length arises from a competition between acoustic streaming and capillary effects. This is elucidated from a fundamental model for the thin film spreading behavior under SAW excitation, from which we show good agreement between the experimentally measured and theoretically predicted droplet dimension, both of which consistently indicate a linear relationship between the droplet diameter and the mechanical power coupled into the liquid by the SAW (the latter captured by an acoustic Weber number to the two thirds power, and the reciprocal of the SAW frequency).

  11. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    Science.gov (United States)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  12. Influence on cell death of high frequency motion of magnetic nanoparticles during magnetic hyperthermia experiments

    Science.gov (United States)

    Hallali, N.; Clerc, P.; Fourmy, D.; Gigoux, V.; Carrey, J.

    2016-07-01

    Studies with transplanted tumors in animals and clinical trials have provided the proof-of-concept of magnetic hyperthermia (MH) therapy of cancers using iron oxide nanoparticles. Interestingly, in several studies, the application of an alternating magnetic field (AMF) to tumor cells having internalized and accumulated magnetic nanoparticles (MNPs) into their lysosomes can induce cell death without detectable temperature increase. To explain these results, among other hypotheses, it was proposed that cell death could be due to the high-frequency translational motion of MNPs under the influence of the AMF gradient generated involuntarily by most inductors. Such mechanical actions of MNPs might cause cellular damages and participate in the induction of cell death under MH conditions. To test this hypothesis, we developed a setup maximizing this effect. It is composed of an anti-Helmholtz coil and two permanent magnets, which produce an AMF gradient and a superimposed static MF. We have measured the MNP heating power and treated tumor cells by a standard AMF and by an AMF gradient, on which was added or not a static magnetic field. We showed that the presence of a static magnetic field prevents MNP heating and cell death in standard MH conditions. The heating power of MNPs in an AMF gradient is weak, position-dependent, and related to the presence of a non-zero AMF. Under an AMF gradient and a static field, no MNP heating and cell death were measured. Consequently, the hypothesis that translational motions could be involved in cell death during MH experiments is ruled out by our experiments.

  13. Magneto-dielectric properties of doped ferrite based nanosized ceramics over very high frequency range

    Directory of Open Access Journals (Sweden)

    Ashish Saini

    2016-06-01

    Full Text Available In the present study, indium doped nano sized nickel zinc cobalt based ferrite ceramics with composition Ni0.5Zn0.3Co0.2InxFe2-xO4 (x = 0.2 and 0.4 were synthesized by a co-precipitation technique. Powdered sample has been pre-sintered at 800 °C, pressed into toroids and finally sintered at 1000 °C. The single phase formation of the presintered powder has been confirmed by X ray diffraction (XRD. The average particle size of the presintered powder has been estimated by field emission scanning electron microscope (FESEM and found to be about ~60 nm for x = 0.2 and ~80 nm at x = 0.4. The electromagnetic characterization has been made using vector network analyzer. High value of permeability (17.3 and 15.2 for x = 0.2 and 0.4 respectively with low magnetic loss tangent of 10−1 order were obtained. Permittivity of 8.2 and 10, and dielectric loss tangent of the order of 10−2 were also achieved. With the measured electromagnetic parameters, miniaturization factor of 12.32 and normalized characteristic impedance close to unity (1.23 were obtained up to 100 MHz frequency. These fascinating parameters definitely propose Ni0.5Zn0.3Co0.2In0.4Fe1.6O4 ceramics as a substrate material for miniaturized antenna in very high frequency band. Possible reasons and mechanisms of electromagnetic properties for different concentrations of indium are discussed in the paper.

  14. High frequency monitoring of pesticides in runoff water from a vineyard: ecotoxicological and hysteresis pattern analysis

    Science.gov (United States)

    Lefrancq, Marie; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Landry, David; Payraudeau, Sylvain

    2017-04-01

    Rainfall-induced peaks in pesticide concentrations can occur rapidly; therefore, low frequency sampling may largely underestimate maximum pesticide concentrations and fluxes. Detailed storm-based sampling of pesticide concentrations in runoff water to better predict pesticide sources, transport pathways and toxicity within the headwater catchments is actually lacking. High frequency monitoring (2 min) of dissolved concentrations and loads for seven pesticides (Dimetomorph, Fluopicolide, Glyphosate, Iprovalicarb, Tebuconazole, Tetraconazole and Triadimenol) and one degradation product (AMPA) were assessed for 20 runoff events from 2009 to 2012 at the outlet of a vineyard catchment in the Layon catchment in France. The pesticide concentrations reached 387 µg/L. All of the runoff events exceeded the mandated acceptable concentrations of 0.1 µg/L for each pesticide (European directive 2013/39/EC). High resolution sampling used to detect the peak pesticide levels revealed that Toxic Units (TU) for algae, invertebrates and fish often exceeded the European Uniform principles (25%). The instantaneous and average (time or discharge-weighted) concentrations indicated an up to 30- or 4-fold underestimation of the TU obtained when measuring the maximum concentrations, respectively, highlighting the important role of the sampling methods for assessing peak exposure. High resolution sampling combined with concentration-discharge hysteresis analyses revealed that clockwise responses were predominant (52%), indicating that Hortonian runoff is the prevailing surface runoff trigger mechanism in the study catchment. The hysteresis patterns for suspended solids and pesticides were highly dynamic and storm- and chemical-dependent. Intense rainfall events induced stronger C-Q hysteresis (magnitude). This study provides new insights into the complexity of pesticide dynamics in runoff water and highlights the ability of hysteresis analysis to improve the understanding of pesticide

  15. STOCHASTIC DESCRIPTION OF THE HIGH-FREQUENCY CONTENT OF DAILY SUNSPOTS AND EVIDENCE FOR REGIME CHANGES

    Energy Technology Data Exchange (ETDEWEB)

    Shapoval, A. [Financial University under the Government of the Russian Federation, Leningradsky pr. 49, Moscow (Russian Federation); Le Mouël, J.-L.; Courtillot, V. [Institute de Physique du Globe, Sorbonne Paris Cité, Paris (France); Shnirman, M. [Institute of Earthquake Prediction Theory and Mathematical Geophysics, Profsoyuznaya 84/32, 117997 Moscow (Russian Federation)

    2015-01-20

    The irregularity index λ is applied to the high-frequency content of daily sunspot numbers ISSN. This λ is a modification of the standard maximal Lyapunov exponent. It is computed here as a function of embedding dimension m, within four-year time windows centered at the maxima of Schwabe cycles. The λ(m) curves form separate clusters (pre-1923 and post-1933). This supports a regime transition and narrows its occurrence to cycle 16, preceding the growth of activity leading to the Modern Maximum. The two regimes are reproduced by a simple autoregressive process AR(1), with the mean of Poisson noise undergoing 11 yr modulation. The autocorrelation a of the process (linked to sunspot lifetime) is a ≈ 0.8 for 1850-1923 and ≈0.95 for 1933-2013. The AR(1) model suggests that groups of spots appear with a Poisson rate and disappear at a constant rate. We further applied the irregularity index to the daily sunspot group number series for the northern and southern hemispheres, provided by the Greenwich Royal Observatory (RGO), in order to study a possible desynchronization. Correlations between the north and south λ(m) curves vary quite strongly with time and indeed show desynchronization. This may reflect a slow change in the dimension of an underlying dynamical system. The ISSN and RGO series of group numbers do not imply an identical mechanism, but both uncover a regime change at a similar time. Computation of the irregularity index near the maximum of cycle 24 will help in checking whether yet another regime change is under way.

  16. Thermoacoustic contrast of prostate cancer due to heating by very high frequency irradiation

    Science.gov (United States)

    Patch, S. K.; Hull, D.; Thomas, M.; Griep, SK; Jacobsohn, K.; See, WA

    2015-01-01

    Applying the thermoacoustic (TA) effect to diagnostic imaging was first proposed in the 1980s. The object under test is irradiated by high-power pulses of electromagnetic energy, which heat tissue and cause thermal expansion. Outgoing TA pressure pulses are detected by ultrasound transducers and reconstructed to provide images of the object. The TA contrast mechanism is strongly dependent upon the frequency of the irradiating electromagnetic pulse. When very high frequency (VHF) electromagnetic irradiation is utilized, TA signal production is driven by ionic content. Prostatic fluids contain high levels of ionic metabolites, including citrate, zinc, calcium, and magnesium. Healthy prostate glands produce more ionic metabolites than diseased glands. VHF pulses are therefore expected to generate stronger TA signal in healthy prostate glands than in diseased glands. A benchtop system for performing ex vivo TA computed tomography with VHF energy is described and images are presented. The system utilizes irradiation pulses of 700 ns duration exceeding 20 kW power. Reconstructions frequently visualize anatomic landmarks such as the urethra and verumontanum. TA reconstructions from three freshly excised human prostate glands with little, moderate, and severe cancerous involvement are compared with histology. TA signal strength is negatively correlated with percent cancerous involvement in this small sample size. For the 45 regions of interest analyzed, a reconstruction value of 0.4 mV provides 100% sensitivity but only 29% specificity. This sample size is far too small to draw sweeping conclusions, but the results warrant a larger volume study including comparison of TA images to the gold standard, histology.

  17. High Frequency Resonance Damping of DFIG based Wind Power System under Weak Network

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    When operating in a micro or weak grid which has a relatively large network impedance, the Doubly Fed Induction Generator (DFIG) based wind power generation system is prone to suffer high frequency resonance due to the impedance interaction between DFIG system and the parallel compensated network...... (series RL + shunt C). In order to improve the performance of the DFIG system as well as other units and loads connected to the weak grid, the high frequency resonance needs to be effectively damped. In this paper, the proposed active damping control strategy is able to implement effective damping either...... in the Rotor Side Converter (RSC) or in the Grid Side Converter (GSC), through the introduction of virtual positive capacitor or virtual negative inductor to reshape the DFIG system impedance and mitigate the high frequency resonance. A detailed theoretical explanation on the virtual positive capacitor...

  18. A Method for Gray-Scale Imaging of Blood Flow Using High-Frequency Ultrasound.

    Science.gov (United States)

    Yang, Jun; Pang, Chao; Song, Xue-Dong; Gao, Xuan

    2017-07-01

    This paper presents a new method that complements current techniques available in the high-frequency blood imaging field. A comprehensive scattering model was established to determine the feasibility and frequency range of the blood flow imaging of superficial organs and tissues using high-frequency ultrasound. The transmitting and receiving modes and an algorithm were designed to obtain blood flow information based on differentiation between tissues and blood flow. The system was created and tested first with a model that simulates blood flow and was then used on human tissue. A fine-scale image of a blood vessel could be obtained with this system. Moreover, this method can obtain weak blood flow signal using single pulse rather than the traditional pulse-code method and maintains a high resolution that can be matched to high-frequency structural imaging. This study provides a reliable method for further applications related to diagnoses of superficial organs.

  19. Extended high-frequency audiometry (9,000-20,000 Hz). Usefulness in audiological diagnosis.

    Science.gov (United States)

    Rodríguez Valiente, Antonio; Roldán Fidalgo, Amaya; Villarreal, Ithzel M; García Berrocal, José R

    2016-01-01

    Early detection and appropriate treatment of hearing loss are essential to minimise the consequences of hearing loss. In addition to conventional audiometry (125-8,000 Hz), extended high-frequency audiometry (9,000-20,000 Hz) is available. This type of audiometry may be useful in early diagnosis of hearing loss in certain conditions, such as the ototoxic effect of cisplatin-based treatment, noise exposure or oral misunderstanding, especially in noisy environments. Eleven examples are shown in which extended high-frequency audiometry has been useful in early detection of hearing loss, despite the subject having a normal conventional audiometry. The goal of the present paper was to highlight the importance of the extended high-frequency audiometry examination for it to become a standard tool in routine audiological examinations.

  20. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    Science.gov (United States)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2017-02-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.