WorldWideScience

Sample records for low-grade brain tumors

  1. Ganglioglioma: comparison with other low-grade brain tumors Ganglioglioma: estudo comparativo com outros tumores cerebrais primarios de baixo grau

    Directory of Open Access Journals (Sweden)

    Paulo Thadeu Brainer-Lima

    2006-09-01

    Full Text Available METHOD: Forty-two patients with low-grade brain tumor and refractory epilepsy were studied. The mean age was 22.3 years. They were divided into two groups: Group A, patients with ganglioglioma (n=19 and group B, patients with other low-grade tumors (n=23 (14 astrocytoma, 6 oligodendroglioma, 2 dysembryoplastic neuroepithelial tumor, and 1 xanthoastrocytoma. RESULTS: Age at seizure’s onset was 7 years or less in 73% of the patients in group A and in 30.4% of the patients in group B (p=0.045. Complex partial occurred frequently in group A and B (94.7% versus 82%, respectively. Seizure’s frequency was higher in group B (p=0.002.Computerized tomography (CT was normal in 36.8% of group A patients and abnormal in all group B patients. Magnetic resonance imaging (MRI was abnormal in all patients. Surgical removal was complete in 89.5% of the patients in group A and in 78.2% of the patients in group B. CONCLUSION: The association of refractory epilepsy and complex partial seizures, at a relatively low frequency, in young patients potentially normal CT and a MRI hypointense temporal lobe lesion in T1-weighed slices were habitual image findings in ganglioglioma, rather than other low-grade tumor.MÉTODO: Foram estudados 42 pacientes com tumor cerebral primário de baixo grau e epilepsia refratária. A idade média foi 22,3 anos. Eles foram divididos em dois grupos: no grupo A os pacientes com ganglioglioma (n=19 e no grupo B os pacientes com outros tumores primários de crescimento lento (n=23 (14 astrocitomas, 6 oligodendrogliomas, 2 tumores desembrioblástico neuroepitelial e um xantoastrocitoma. RESULTADOS: A idade de início das crises convulsivas foi 7 anos ou menos em 73% dos pacientes no grupo A e 30,4% dos pacientes no grupo B (p=0,045. A crise convulsiva do tipo parcial complexa foi a mais identificada nos grupos A e B (94,7% versus 82%, respectivamente. A freqüência de crise foi mais alta no grupo B (p=0,002. A tomografia computadorizada

  2. Hippocampal Dosimetry Predicts Neurocognitive Function Impairment After Fractionated Stereotactic Radiotherapy for Benign or Low-Grade Adult Brain Tumors

    International Nuclear Information System (INIS)

    Gondi, Vinai; Hermann, Bruce P.; Mehta, Minesh P.; Tomé, Wolfgang A.

    2013-01-01

    Purpose: To prospectively evaluate the association between hippocampal dose and long-term neurocognitive function (NCF) impairment for benign or low-grade adult brain tumors treated with fractionated stereotactic radiotherapy (FSRT). Methods and Materials: Adult patients with benign or low-grade adult brain tumors were treated with FSRT per institutional practice. No attempt was made to spare the hippocampus. NCF testing was conducted at baseline and 18 months follow-up, on a prospective clinical trial. Regression-based standardized z scores were calculated by using similar healthy control individuals evaluated at the same test–retest interval. NCF impairment was defined as a z score ≤−1.5. After delineation of the bilateral hippocampi according to the Radiation Therapy Oncology Group contouring atlas, dose–volume histograms were generated for the left and right hippocampi and for the composite pair. Biologically equivalent doses in 2-Gy fractions (EQD 2 ) assuming an α/β ratio of 2 Gy were computed. Fisher’s exact test and binary logistic regression were used for univariate and multivariate analyses, respectively. Dose–response data were fit to a nonlinear model. Results: Of 29 patients enrolled in this trial, 18 completed both baseline and 18-month NCF testing. An EQD 2 to 40% of the bilateral hippocampi >7.3 Gy was associated with impairment in Wechsler Memory Scale-III Word List (WMS-WL) delayed recall (odds ratio [OR] 19.3; p = 0.043). The association between WMS-WL delayed recall and EQD 2 to 100% of the bilateral hippocampi >0.0 Gy trended to significance (OR 14.8; p = 0.068). Conclusion: EQD 2 to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term impairment in list-learning delayed recall after FSRT for benign or low-grade adult brain tumors. Given that modern intensity-modulated radiotherapy techniques can reduce the dose to the bilateral hippocampi below this dosimetric threshold, patients should be enrolled in

  3. Hippocampal Dosimetry Predicts Neurocognitive Function Impairment After Fractionated Stereotactic Radiotherapy for Benign or Low-Grade Adult Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Gondi, Vinai [Department of Human Oncology, University of Wisconsin, Madison, WI (United States); Hermann, Bruce P. [Department of Neurology, University of Wisconsin, Madison, WI (United States); Mehta, Minesh P. [Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL (United States); Tome, Wolfgang A., E-mail: tome@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Department of Biomedical Engineering, University of Wisconsin, Madison, WI (United States)

    2012-07-15

    Purpose: To prospectively evaluate the association between hippocampal dose and long-term neurocognitive function (NCF) impairment for benign or low-grade adult brain tumors treated with fractionated stereotactic radiotherapy (FSRT). Methods and Materials: Adult patients with benign or low-grade adult brain tumors were treated with FSRT per institutional practice. No attempt was made to spare the hippocampus. NCF testing was conducted at baseline and 18 months follow-up, on a prospective clinical trial. Regression-based standardized z scores were calculated by using similar healthy control individuals evaluated at the same test-retest interval. NCF impairment was defined as a z score {<=}-1.5. After delineation of the bilateral hippocampi according to the Radiation Therapy Oncology Group contouring atlas, dose-volume histograms were generated for the left and right hippocampi and for the composite pair. Biologically equivalent doses in 2-Gy fractions (EQD{sub 2}) assuming an {alpha}/{beta} ratio of 2 Gy were computed. Fisher's exact test and binary logistic regression were used for univariate and multivariate analyses, respectively. Dose-response data were fit to a nonlinear model. Results: Of 29 patients enrolled in this trial, 18 completed both baseline and 18-month NCF testing. An EQD{sub 2} to 40% of the bilateral hippocampi >7.3 Gy was associated with impairment in Wechsler Memory Scale-III Word List (WMS-WL) delayed recall (odds ratio [OR] 19.3; p = 0.043). The association between WMS-WL delayed recall and EQD{sub 2} to 100% of the bilateral hippocampi >0.0 Gy trended to significance (OR 14.8; p = 0.068). Conclusion: EQD{sub 2} to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term impairment in list-learning delayed recall after FSRT for benign or low-grade adult brain tumors. Given that modern intensity-modulated radiotherapy techniques can reduce the dose to the bilateral hippocampi below this dosimetric threshold

  4. Hippocampal Dosimetry Predicts Neurocognitive Function Impairment After Fractionated Stereotactic Radiotherapy for Benign or Low-Grade Adult Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Gondi, Vinai [Department of Human Oncology, University of Wisconsin, Madison, WI (United States); Hermann, Bruce P. [Department of Neurology, University of Wisconsin, Madison, WI (United States); Mehta, Minesh P. [Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL (United States); Tome, Wolfgang A., E-mail: tome@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Department of Biomedical Engineering, University of Wisconsin, Madison, WI (United States)

    2013-02-01

    Purpose: To prospectively evaluate the association between hippocampal dose and long-term neurocognitive function (NCF) impairment for benign or low-grade adult brain tumors treated with fractionated stereotactic radiotherapy (FSRT). Methods and Materials: Adult patients with benign or low-grade adult brain tumors were treated with FSRT per institutional practice. No attempt was made to spare the hippocampus. NCF testing was conducted at baseline and 18 months follow-up, on a prospective clinical trial. Regression-based standardized z scores were calculated by using similar healthy control individuals evaluated at the same test-retest interval. NCF impairment was defined as a z score {<=}-1.5. After delineation of the bilateral hippocampi according to the Radiation Therapy Oncology Group contouring atlas, dose-volume histograms were generated for the left and right hippocampi and for the composite pair. Biologically equivalent doses in 2-Gy fractions (EQD{sub 2}) assuming an {alpha}/{beta} ratio of 2 Gy were computed. Fisher's exact test and binary logistic regression were used for univariate and multivariate analyses, respectively. Dose-response data were fit to a nonlinear model. Results: Of 29 patients enrolled in this trial, 18 completed both baseline and 18-month NCF testing. An EQD{sub 2} to 40% of the bilateral hippocampi >7.3 Gy was associated with impairment in Wechsler Memory Scale-III Word List (WMS-WL) delayed recall (odds ratio [OR] 19.3; p = 0.043). The association between WMS-WL delayed recall and EQD{sub 2} to 100% of the bilateral hippocampi >0.0 Gy trended to significance (OR 14.8; p = 0.068). Conclusion: EQD{sub 2} to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term impairment in list-learning delayed recall after FSRT for benign or low-grade adult brain tumors. Given that modern intensity-modulated radiotherapy techniques can reduce the dose to the bilateral hippocampi below this dosimetric threshold

  5. Hippocampal Dosimetry Predicts Neurocognitive Function Impairment After Fractionated Stereotactic Radiotherapy for Benign or Low-Grade Adult Brain Tumors

    International Nuclear Information System (INIS)

    Gondi, Vinai; Hermann, Bruce P.; Mehta, Minesh P.; Tomé, Wolfgang A.

    2012-01-01

    Purpose: To prospectively evaluate the association between hippocampal dose and long-term neurocognitive function (NCF) impairment for benign or low-grade adult brain tumors treated with fractionated stereotactic radiotherapy (FSRT). Methods and Materials: Adult patients with benign or low-grade adult brain tumors were treated with FSRT per institutional practice. No attempt was made to spare the hippocampus. NCF testing was conducted at baseline and 18 months follow-up, on a prospective clinical trial. Regression-based standardized z scores were calculated by using similar healthy control individuals evaluated at the same test–retest interval. NCF impairment was defined as a z score ≤−1.5. After delineation of the bilateral hippocampi according to the Radiation Therapy Oncology Group contouring atlas, dose–volume histograms were generated for the left and right hippocampi and for the composite pair. Biologically equivalent doses in 2-Gy fractions (EQD 2 ) assuming an α/β ratio of 2 Gy were computed. Fisher’s exact test and binary logistic regression were used for univariate and multivariate analyses, respectively. Dose–response data were fit to a nonlinear model. Results: Of 29 patients enrolled in this trial, 18 completed both baseline and 18-month NCF testing. An EQD 2 to 40% of the bilateral hippocampi >7.3 Gy was associated with impairment in Wechsler Memory Scale-III Word List (WMS-WL) delayed recall (odds ratio [OR] 19.3; p = 0.043). The association between WMS-WL delayed recall and EQD 2 to 100% of the bilateral hippocampi >0.0 Gy trended to significance (OR 14.8; p = 0.068). Conclusion: EQD 2 to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term impairment in list-learning delayed recall after FSRT for benign or low-grade adult brain tumors. Given that modern intensity-modulated radiotherapy techniques can reduce the dose to the bilateral hippocampi below this dosimetric threshold, patients should be enrolled in

  6. Factors Influencing Neurocognitive Outcomes in Young Patients With Benign and Low-Grade Brain Tumors Treated With Stereotactic Conformal Radiotherapy

    International Nuclear Information System (INIS)

    Jalali, Rakesh; Mallick, Indranil; Dutta, Debnarayan

    2010-01-01

    Purpose: To present the effect of radiotherapy doses to different volumes of normal structures on neurocognitive outcomes in young patients with benign and low-grade brain tumors treated prospectively with stereotactic conformal radiotherapy (SCRT). Methods and Materials: Twenty-eight patients (median age, 13 years) with residual/progressive brain tumors (10 craniopharyngioma, 8 cerebellar astrocytoma, 6 optic pathway glioma and 4 cerebral low-grade glioma) were treated with SCRT to a dose of 54 Gy in 30 fractions over 6 weeks. Prospective neuropsychological assessments were done at baseline before RT and at subsequent follow-up examinations. The change in intelligence quotient (IQ) scores was correlated with various factors, including dose-volume to normal structures. Results: Although the overall mean full-scale IQ (FSIQ) at baseline before RT remained unchanged at 2-year follow-up after SCRT, one third of patients did show a >10% decline in FSIQ as compared with baseline. Logistic regression analysis demonstrated that patients aged 10% drop in FSIQ than older patients (53% vs. 10%, p = 0.03). Dosimetric comparison in patients showing a >10% decline vs. patients showing a 43.2 Gy to >13% of volume of the left temporal lobe were the ones to show a significant drop in FSIQ (p = 0.048). Radiotherapy doses to other normal structures, including supratentorial brain, right temporal lobe, and frontal lobes, did not reveal any significant correlation. Conclusion: Our prospectively collected dosimetric data show younger age and radiotherapy doses to left temporal lobe to be predictors of neurocognitive decline, and may well be used as possible dose constraints for high-precision radiotherapy planning.

  7. Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies

    International Nuclear Information System (INIS)

    Weizman, Lior; Sira, Liat Ben; Joskowicz, Leo; Rubin, Daniel L.; Yeom, Kristen W.; Constantini, Shlomi; Shofty, Ben; Bashat, Dafna Ben

    2014-01-01

    Purpose: Tracking the progression of low grade tumors (LGTs) is a challenging task, due to their slow growth rate and associated complex internal tumor components, such as heterogeneous enhancement, hemorrhage, and cysts. In this paper, the authors show a semiautomatic method to reliably track the volume of LGTs and the evolution of their internal components in longitudinal MRI scans. Methods: The authors' method utilizes a spatiotemporal evolution modeling of the tumor and its internal components. Tumor components gray level parameters are estimated from the follow-up scan itself, obviating temporal normalization of gray levels. The tumor delineation procedure effectively incorporates internal classification of the baseline scan in the time-series as prior data to segment and classify a series of follow-up scans. The authors applied their method to 40 MRI scans of ten patients, acquired at two different institutions. Two types of LGTs were included: Optic pathway gliomas and thalamic astrocytomas. For each scan, a “gold standard” was obtained manually by experienced radiologists. The method is evaluated versus the gold standard with three measures: gross total volume error, total surface distance, and reliability of tracking tumor components evolution. Results: Compared to the gold standard the authors' method exhibits a mean Dice similarity volumetric measure of 86.58% and a mean surface distance error of 0.25 mm. In terms of its reliability in tracking the evolution of the internal components, the method exhibits strong positive correlation with the gold standard. Conclusions: The authors' method provides accurate and repeatable delineation of the tumor and its internal components, which is essential for therapy assessment of LGTs. Reliable tracking of internal tumor components over time is novel and potentially will be useful to streamline and improve follow-up of brain tumors, with indolent growth and behavior

  8. Neuropsychological status in children and young adults with benign and low-grade brain tumors treated prospectively with focal stereotactic conformal radiotherapy

    International Nuclear Information System (INIS)

    Jalali, Rakesh; Goswami, Savita; Sarin, Rajiv; More, Niteen; Siddha, Manish; Kamble, Rashmi

    2006-01-01

    Purpose: To present prospective neuropsychological data at baseline and follow-up in children and young adults with benign and low-grade gliomas treated with focal stereotactic conformal radiotherapy (SCRT). Methods and Materials: A total of 22 patients (age 4-25 years) with residual/progressive benign and low-grade brain tumors considered suitable for SCRT underwent detailed and in-depth neuropsychological and cognitive testing at baseline before SCRT. The test battery included measurement of age-adjusted intelligence quotients (IQs) and cognitive parameters of visual, spatial, visuomotor, and attention concentrations. Anxiety was measured using the State-Trait Anxiety Inventory for Children and Hamilton Anxiety Rating Scale for patients >16 years old. Patients were treated with high-precision conformal radiotherapy under stereotactic guidance to a dose of 54 Gy in 30 fractions. All neuropsychological assessments were repeated at 6 and 24 months after SCRT completion and compared with the baseline values. Results: The baseline mean full-scale IQ before starting RT for patients 16 years, the corresponding value was 72 (range, 64-129). Of 20 evaluable patients, 14 (70%) had less than average IQs at baseline, even before starting radiotherapy. The verbal IQ, performance IQ, and full-scale IQ, as well as other cognitive scores, did not change significantly at the 6- and 24-month follow-up assessments for all patients. The memory quotient in older children and young adults was maintained at 6 and 24 months after SCRT, with a mean value of 93 and 100, respectively, compared with a mean baseline value of 81 before RT. The mean anxiety score in children measured by the C1 and C2 components of the State-Trait Anxiety Inventory for Children (STAIC) was 48 and 40, respectively, which improved significantly to mean values of 30 and 26, respectively, at the 24-month follow-up assessment (p = 0.005). The mean depression score in patients >16 years old was 23 at baseline and had

  9. Postoperative radiotherapy for low grade glioma of the brain

    International Nuclear Information System (INIS)

    Chun, Ha Chung; Lee, Myung Za

    2000-01-01

    To evaluate the effectiveness and tolerance of postoperative external beam radiotherapy for patients with low grade glioma of the brain and define the optimal radiotherapeutic regimen. Between June, 1985 and May, 1998, 72 patients with low grade gliomas were treated with postoperative radiotherapy immediately following surgery. Median age was 37 years with range of 11 to 76 years. Forty one patients were male and 31 patients were female with male to female ratio of 1.3:1. Of those patients, 15 underwent biopsy alone and remaining 57 did subtotal resection. The distribution of the patients according to histologic type was as follows: astrocytomas-42 patients (58%), mixed oligodendrogliomas-19 patients (27%), oligodendrogliomas-11 patients (15%). Two patients were treated with whole brain irradiation followed by cone down boost and remaining 70 patients were treated with localized field with appropriate margin. All of the patients were treated with conventional once a day fractionation. Most of patients received total tumor dose of 5000-5500 cGy. The overall 5 and 7 year survival rates for entire group of 72 patients were 61% and 50%. Corresponding disease free survival rates for entire patients were 53% and 45%, respectively. The 5 and 7 year overall survival rates for astrocytomas, mixed oligodendrogliomas, and oligodendrogliomas were 48% and 45%, 76% and 56%, and 80% and 52%, respectively. Patients who underwent subtotal resection showed better survival rates than those who did biopsy alone. The overall 5 year survival rates for subtotal resection patients and biopsy alone patients were 67% and 43%, respectively. Forty six patients who were 40 years or younger survived better than 26 patients who were 41 years or older (overall survival rate at 5 years, 69% vs 45%). Although one patient was not able to complete the treatment because of neurological deterioration, there was no significant treatment related acute toxicities. Postoperative radiotherapy was safe and

  10. Seizure prognosis of patients with low-grade tumors.

    Science.gov (United States)

    Kahlenberg, Cynthia A; Fadul, Camilo E; Roberts, David W; Thadani, Vijay M; Bujarski, Krzysztof A; Scott, Rod C; Jobst, Barbara C

    2012-09-01

    Seizures frequently impact the quality of life of patients with low grade tumors. Management is often based on best clinical judgment. We examined factors that correlate with seizure outcome to optimize seizure management. Patients with supratentorial low-grade tumors evaluated at a single institution were retrospectively reviewed. Using multiple regression analysis the patient characteristics and treatments were correlated with seizure outcome using Engel's classification. Of the 73 patients with low grade tumors and median follow up of 3.8 years (range 1-20 years), 54 (74%) patients had a seizure ever and 46 (63%) had at least one seizure before tumor surgery. The only factor significantly associated with pre-surgical seizures was tumor histology. Of the 54 patients with seizures ever, 25 (46.3%) had a class I outcome at last follow up. There was no difference in seizure outcome between grade II gliomas (astrocytoma grade II, oligodendroglioma grade II, mixed oligo-astrocytoma grade II) and other pathologies (pilocytic astrocytoma, ependymomas, DNET, gangliocytoma and ganglioglioma). Once seizures were established seizure prognosis was similar between different pathologies. Chemotherapy (p=0.03) and radiation therapy (p=0.02) had a positive effect on seizure outcome. No other parameter including significant tumor growth during the follow up period predicted seizure outcome. Only three patients developed new-onset seizures after tumor surgery that were non-perioperative. Anticonvulsant medication was tapered in 14 patients with seizures and 10 had no further seizures. Five patients underwent additional epilepsy surgery with a class I outcome in four. Two patients received a vagal nerve stimulator with >50% seizure reduction. Seizures at presentation are the most important factor associated with continued seizures after tumor surgery. Pathology does not influence seizure outcome. Use of long term prophylactic anticonvulsants is unwarranted. Chemotherapy and

  11. Extended diffusion weighted magnetic resonance imaging with two-compartment and anomalous diffusion models for differentiation of low-grade and high-grade brain tumors in pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Burrowes, Delilah; Deng, Jie [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Northwestern University, Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Fangusaro, Jason R. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Hematology/Oncology, Chicago, IL (United States); Northwestern University, Feinberg School of Medicine, Department of Pediatrics-Hematology, Oncology, and Stem Cell Transplantation, Chicago, IL (United States); Nelson, Paige C.; Rozenfeld, Michael J. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Department of Biostatistics and Epidemiology, Cincinnati, OH (United States); Wadhwani, Nitin R. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pathology and Laboratory Medicine, Chicago, IL (United States); Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL (United States)

    2017-08-15

    The purpose of this study was to examine advanced diffusion-weighted magnetic resonance imaging (DW-MRI) models for differentiation of low- and high-grade tumors in the diagnosis of pediatric brain neoplasms. Sixty-two pediatric patients with various types and grades of brain tumors were evaluated in a retrospective study. Tumor type and grade were classified using the World Health Organization classification (WHO I-IV) and confirmed by pathological analysis. Patients underwent DW-MRI before treatment. Diffusion-weighted images with 16 b-values (0-3500 s/mm{sup 2}) were acquired. Averaged signal intensity decay within solid tumor regions was fitted using two-compartment and anomalous diffusion models. Intracellular and extracellular diffusion coefficients (D{sub slow} and D{sub fast}), fractional volumes (V{sub slow} and V{sub fast}), generalized diffusion coefficient (D), spatial constant (μ), heterogeneity index (β), and a diffusion index (index{sub d}iff = μ x V{sub slow}/β) were calculated. Multivariate logistic regression models with stepwise model selection algorithm and receiver operating characteristic (ROC) analyses were performed to evaluate the ability of each diffusion parameter to distinguish tumor grade. Among all parameter combinations, D and index{sub d}iff jointly provided the best predictor for tumor grades, where lower D (p = 0.03) and higher index{sub d}iff (p = 0.009) were significantly associated with higher tumor grades. In ROC analyses of differentiating low-grade (I-II) and high-grade (III-IV) tumors, index{sub d}iff provided the highest specificity of 0.97 and D provided the highest sensitivity of 0.96. Multi-parametric diffusion measurements using two-compartment and anomalous diffusion models were found to be significant discriminants of tumor grading in pediatric brain neoplasms. (orig.)

  12. Emerging role of functional brain MRI in low-grade glioma surgery

    DEFF Research Database (Denmark)

    Friismose, Ancuta; Traise, Peter; Markovic, Ljubo

    Learning objectives 1. To describe the use of functional MRI (fMRI) in cranial surgery planning for patients with low-grade gliomas (LGG). 2. To show the increasing importance of fMRI in the clinical setting. Background LGG include brain tumors classified by the World Health Organization as grade I...... be used to map eloquent cortex areas, thus minimizing postoperative deficits and improving surgical performance. Findings and procedure details Patients diagnosed with low-grade gliomas located in eloquent brain areas undergo fMRI prior to surgery. The exams are performed on a 3T MR system (Achieva TX....... Language comprehension and visual tasks can be added to visualize Wernicke’s area or the visual cortex. Diffusion tensor imaging (DTI) is used to map nerve tract course relative to the tumour. Conclusion FMRI has proven its clinical utility in locating eloquent brain areas with relation to tumor site...

  13. Low-grade astrocytoma: surgical outcomes in eloquent versus non-eloquent brain areas

    Directory of Open Access Journals (Sweden)

    André de Macedo Bianco

    2013-01-01

    Full Text Available A retrospective study of 81 patients with low-grade astrocytoma (LGA comparing the efficacy of aggressive versus less aggressive surgery in eloquent and non-eloquent brain areas was conducted. Extent of surgical resection was analyzed to assess overall survival (OS and progression- free survival (PFS. Degree of tumor resection was classified as gross total resection (GTR, subtotal resection (STR or biopsy. GTR, STR and biopsy in patients with tumors in non-eloquent areas were performed in 31, 48 and 21% subjects, whereas in patients with tumors in eloquent areas resections were 22.5, 35 and 42.5%. Overall survival was 4.7 and 1.9 years in patients with tumors in non-eloquent brain areas submitted to GTR/STR and biopsy (p=0.013, whereas overall survival among patients with tumors in eloquent area was 4.5 and 2.1 years (p=0.33. Improved outcome for adult patients with LGA is predicted by more aggressive surgery in both eloquent and non-eloquent brain areas.

  14. Seizure control as a new metric in assessing efficacy of tumor treatment in low-grade glioma trials

    Science.gov (United States)

    Chamberlain, Marc; Schiff, David; Reijneveld, Jaap C.; Armstrong, Terri S.; Ruda, Roberta; Wen, Patrick Y.; Weller, Michael; Koekkoek, Johan A. F.; Mittal, Sandeep; Arakawa, Yoshiki; Choucair, Ali; Gonzalez-Martinez, Jorge; MacDonald, David R.; Nishikawa, Ryo; Shah, Aashit; Vecht, Charles J.; Warren, Paula; van den Bent, Martin J.; DeAngelis, Lisa M.

    2017-01-01

    Patients with low-grade glioma frequently have brain tumor–related epilepsy, which is more common than in patients with high-grade glioma. Treatment for tumor-associated epilepsy usually comprises a combination of surgery, anti-epileptic drugs (AEDs), chemotherapy, and radiotherapy. Response to tumor-directed treatment is measured primarily by overall survival and progression-free survival. However, seizure frequency has been observed to respond to tumor-directed treatment with chemotherapy or radiotherapy. A review of the current literature regarding seizure assessment for low-grade glioma patients reveals a heterogeneous manner in which seizure response has been reported. There is a need for a systematic approach to seizure assessment and its influence on health-related quality-of-life outcomes in patients enrolled in low-grade glioma therapeutic trials. In view of the need to have an adjunctive metric of tumor response in these patients, a method of seizure assessment as a metric in brain tumor treatment trials is proposed. PMID:27651472

  15. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I.; Stam, C.; Douw, L.; Bartolomei, F.; Heimans, J.; Dijk, van B.; Postma, T.; Klein, M.; Reijneveld, J.

    2008-01-01

    Purpose: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain

  16. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I.; Stam, C. J.; Douw, L.; Bartolomei, F.; Heimans, J. J.; van Dijk, B. W.; Postma, T. J.; Klein, M.; Reijneveld, J. C.

    2008-01-01

    In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activity

  17. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  18. Sequential Apparent Diffusion Coefficient for Assessment of Tumor Progression in Patients with Low-Grade Glioma.

    Science.gov (United States)

    Chen, I E; Swinburne, N; Tsankova, N M; Hefti, M M; Aggarwal, A; Doshi, A H; Hormigo, A; Delman, B N; Nael, K

    2018-04-19

    Early and accurate identification of tumor progression in patients with low-grade gliomas is challenging. We aimed to assess the role of quantitative ADC analysis in the sequential follow-up of patients with low-grade gliomas as a potential imaging marker of tumor stability or progression. In this retrospective study, patients with a diagnosis of low-grade glioma with at least 12 months of imaging follow-up were retrospectively reviewed. Two neuroradiologists independently reviewed sequential MR imaging in each patient to determine tumor progression using the Response Assessment in Neuro-Oncology criteria. Normalized mean ADC (ADC mean ) and 10th percentile ADC (ADC 10 ) values from FLAIR hyperintense tumor volume were calculated for each MR image and compared between patients with stable disease versus tumor progression using univariate analysis. The interval change of ADC values between sequential scans was used to differentiate stable disease from progression using the Fisher exact test. Twenty-eight of 69 patients who were evaluated met our inclusion criteria. Fifteen patients were classified as stable versus 13 patients as having progression based on consensus reads of MRIs and the Response Assessment in Neuro-Oncology criteria. The interval change of ADC values showed greater concordance with ultimate lesion disposition than quantitative ADC values at a single time point. The interval change in ADC 10 matched the expected pattern in 12/13 patients with tumor progression (overall diagnostic accuracy of 86%, P average, the ADC 10 interval change predicted progression 8 months before conventional MR imaging. The interval change of ADC 10 values can be used to identify progression versus stability of low-grade gliomas with a diagnostic accuracy of 86% and before apparent radiologic progression on conventional MR imaging. © 2018 by American Journal of Neuroradiology.

  19. High precision conformal radiotherapy employing conservative margins in childhood benign and low-grade brain tumours

    International Nuclear Information System (INIS)

    Jalali, Rakesh; Budrukkar, Ashwini; Sarin, Rajiv; Sharma, Dayananda S.

    2005-01-01

    Background and purpose: To report local control and follow up outcome data of high precision conformal radiotherapy in childhood brain tumours. Materials and methods: Between December 1999 and December 2002, 26 children (17 boys and 9 girls, median age 11.5 years) with incompletely excised or recurrent benign and low-grade brain tumours [13 craniopharyngiomas, 11 low-grade gliomas (LGG) and 2 others] were treated with three-dimensional (3D) conformal radiotherapy (CRT) (12 patients) and stereotactic conformal radiotherapy (SCRT) (14 patients). Gross tumour volume (GTV) included neuro-imaging based visible tumour and/or resected tumour bed. Clinical target volume (CTV) consisted of GTV + 5 mm margin and planning target volume (PTV) consisted of additional 5 mm margin for CRT and 2 mm for SCRT. Treatment was delivered with 3-9 conformal fixed fields to a median dose of 54 Gy/30 fractions. Results: The actuarial 2 and 3 year disease free and overall survival was 96 and 100%, respectively (median follow up: 25 months, range 12-47 months). Radiological follow up available in 25 patients revealed complete response in 1, partial regression in 10, stable disease in 13 and progression in 1 patient (within the CTV). One patient with craniopharyngioma on a routine imaging revealed a mild asymptomatic cyst enlargement, which resolved with conservative management. A patient with chiasmatic glioma developed cystic degeneration and hydrocephalus 9 months after SCRT requiring cyst drainage and placement of a ventriculoperitoneal shunt. Conclusion: High-precision conformal techniques delivering irradiation to a computer generated target volume employing 7-10 mm 3D margins beyond the visible tumour and/or resected tumour bed appear to be safe in children with incompletely resected or recurrent benign and low-grade brain tumours, based on these data

  20. Epilepsy and brain tumors

    Science.gov (United States)

    ENGLOT, DARIO J.; CHANG, EDWARD F.; VECHT, CHARLES J.

    2016-01-01

    Seizures are common in patients with brain tumors, and epilepsy can significantly impact patient quality of life. Therefore, a thorough understanding of rates and predictors of seizures, and the likelihood of seizure freedom after resection, is critical in the treatment of brain tumors. Among all tumor types, seizures are most common with glioneuronal tumors (70–80%), particularly in patients with frontotemporal or insular lesions. Seizures are also common in individuals with glioma, with the highest rates of epilepsy (60–75%) observed in patients with low-grade gliomas located in superficial cortical or insular regions. Approximately 20–50% of patients with meningioma and 20–35% of those with brain metastases also suffer from seizures. After tumor resection, approximately 60–90% are rendered seizure-free, with most favorable seizure outcomes seen in individuals with glioneuronal tumors. Gross total resection, earlier surgical therapy, and a lack of generalized seizures are common predictors of a favorable seizure outcome. With regard to anticonvulsant medication selection, evidence-based guidelines for the treatment of focal epilepsy should be followed, and individual patient factors should also be considered, including patient age, sex, organ dysfunction, comorbidity, or cotherapy. As concomitant chemotherapy commonly forms an essential part of glioma treatment, enzyme-inducing anticonvulsants should be avoided when possible. Seizure freedom is the ultimate goal in the treatment of brain tumor patients with epilepsy, given the adverse effects of seizures on quality of life. PMID:26948360

  1. Long-term Behavior of Serous Borderline Tumors Subdivided Into Atypical Proliferative Tumors and Noninvasive Low-grade Carcinomas

    DEFF Research Database (Denmark)

    Vang, Russell; Hannibal, Charlotte G; Junge, Jette

    2017-01-01

    Ovarian serous borderline tumors (SBTs) have been the subject of considerable controversy, particularly with regard to terminology and behavior. It has been proposed that they constitute a heterogenous group of tumors composed, for the most part, of typical SBTs that are benign and designated...... "atypical proliferative serous tumor (APST)" and a small subset of SBTs with micropapillary architecture that have a poor outcome and are designated "noninvasive low-grade serous carcinoma (niLGSC)". It also has been argued that the difference in behavior between the 2 groups is not due to the subtype...... of the primary tumor but rather the presence of extraovarian disease, specifically invasive implants. According to the terminology of the 2014 WHO Classification, typical SBTs are equivalent to APSTs and SBTs displaying micropapillary architecture are synonymous with niLGSC. In addition, "invasive implants" were...

  2. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  3. External Beam Radiotherapy in the Management of Low Grade Astrocytoma of the Brain

    International Nuclear Information System (INIS)

    Jeon, Ha Jung

    2009-01-01

    This study was designed to evaluate the effectiveness of postoperative radiotherapy for patients with low-grade astrocytomas and to define an optimal radiotherapeutic regimen and prognostic factors. A total of 69 patients with low-grade astrocytomas underwent surgery and postoperative radiotherapy immediately following surgery at our institution between October 1989 and September 2006. The median patient age was 36 years. Forty-one patients were 40 years or younger and 28 patients were 41 years or older. Fourteen patients underwent a biopsy alone and the remaining 55 patients underwent a subtotal resection. Thirty-nine patients had a Karnofsky performance status of less than 80% and 30 patients had a Karnofsky performance status greater than 80%. Two patients were treated with whole brain irradiation followed by a coned down boost field to the localized area. The remaining 67 patients were treated with a localized field with an appropriate margin. Most of the patients received a dose of 50∼55 Gy and majority of the patients were treated with a dose of 54 Gy. The overall 5-year and 7-year survival rates for all of the 69 patients were 49% and 44%, respectively. Corresponding disease free survival rates were 45% and 40%, respectively. Patients who underwent a subtotal resection showed better survival than patients who underwent a biopsy alone. The overall 5-year survival rates for patients who underwent a subtotal resection and patients who underwent a biopsy alone were 57% and 38%, respectively (p<0.05). Forty-one patients who were 40 years or younger showed a better overall 5-year survival rate as compared with 28 patients who were 41 years or older (56% versus 40%, p<0.05). The overall 5-year survival rates for 30 patients with a Karnofsky performance status greater than 80% and 39 patients with a Karnofsky performance status less than 80% were 51% and 47%, respectively. This finding was not statistically significant. Although one patient was not able to

  4. Understanding Brain Tumors

    Science.gov (United States)

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  5. Brain tumor - children

    Science.gov (United States)

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  6. Brain Tumors (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Brain Tumors KidsHealth / For Parents / Brain Tumors What's in ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  7. Pattern of Tumor Shrinkage during Neoadjuvant Chemotherapy Is Associated with Prognosis in Low-Grade Luminal Early Breast Cancer.

    Science.gov (United States)

    Fukada, Ippei; Araki, Kazuhiro; Kobayashi, Kokoro; Shibayama, Tomoko; Takahashi, Shunji; Gomi, Naoya; Kokubu, Yumi; Oikado, Katsunori; Horii, Rie; Akiyama, Futoshi; Iwase, Takuji; Ohno, Shinji; Hatake, Kiyohiko; Sata, Naohiro; Ito, Yoshinori

    2018-01-01

    Purpose To evaluate the association between tumor shrinkage patterns shown with magnetic resonance (MR) imaging during neoadjuvant chemotherapy (NAC) and prognosis in patients with low-grade luminal breast cancer. Materials and Methods This retrospective study was approved by the institutional review board and informed consent was obtained from all subjects. The low-grade luminal breast cancer was defined as hormone receptor-positive and human epidermal growth factor receptor 2-negative with nuclear grades 1 or 2. The patterns of tumor shrinkage as revealed at MR imaging were categorized into two types: concentric shrinkage (CS) and non-CS. Among 854 patients who had received NAC in a single institution from January 2000 to December 2009, 183 patients with low-grade luminal breast cancer were retrospectively evaluated for the development set. Another data set from 292 patients who had received NAC in the same institution between January 2010 and December 2012 was used for the validation set. Among these 292 patients, 121 patients with low-grade luminal breast cancer were retrospectively evaluated. Results In the development set, the median observation period was 67.9 months. Recurrence was observed in 31 patients, and 16 deaths were related to breast cancer. There were statistically significant differences in both the disease-free survival (DFS) and overall survival (OS) rates between patterns of tumor shrinkage (P breast cancer. DFS rate was significantly longer in patients with the CS pattern (72.8 months; 95% confidence interval [CI]: 69.9, 75.6 months) than in those with the non-CS pattern (56.0 months; 95% CI: 49.1, 62.9 months; P ≤ .001). The CS pattern was associated with an excellent prognosis (median OS, 80.6 months; 95% CI: 79.3, 81.8 months vs 65.0 months; 95% CI: 60.1, 69.8 months; P = .004). Multivariate analysis demonstrated that the CS pattern had the only significant independent association with DFS (P = .007) and OS (P = .037) rates. Conclusion

  8. Pediatric Brain Tumor Foundation

    Science.gov (United States)

    ... navigate their brain tumor diagnosis. WATCH AND SHARE Brain tumors and their treatment can be deadly so ... Pediatric Central Nervous System Cancers Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  9. Application of PET in brain tumor

    International Nuclear Information System (INIS)

    Chung, June Key

    2002-01-01

    The annual incidence of primary brain tumors is 7-19 cases per 100,000 people. The unique capacity of visualizing biochemical processes allows PET to determine functional metabolic activities of the brain tumors. Like other malignant tumors, F-18 FDG has been used commonly in the imaging of brain tumors. FDG PET is valuable in grading malignancy, predicting prognosis, monitoring treatment, differentiating tumor recurrence from radiation nucrosis, and detecting primary lesion in metastatric brain tumors. Among amino acids labeled with positron emitters, C-11 methionine is used clinically.Tumor delineation is much better with methionine PET than with FDG PET. Low grade gliomas, in particular, are better evaluated with methionine than with FDG. PET opens another dimension in brain tumor imaging. PET imaging has clearly entered the clinical area with a profound impact on patient care in many indications

  10. Molecular fingerprinting reflects different histotypes and brain region in low grade gliomas

    International Nuclear Information System (INIS)

    Mascelli, Samantha; Fasulo, Daniel; Noy, Karin; Wittemberg, Gayle; Pignatelli, Sara; Piatelli, Gianluca; Cama, Armando; Garré, Maria Luisa; Capra, Valeria; Verri, Alessandro; Barla, Annalisa; Raso, Alessandro; Mosci, Sofia; Nozza, Paolo; Biassoni, Roberto; Morana, Giovanni; Huber, Martin; Mircean, Cristian

    2013-01-01

    Paediatric low-grade gliomas (LGGs) encompass a heterogeneous set of tumours of different histologies, site of lesion, age and gender distribution, growth potential, morphological features, tendency to progression and clinical course. Among LGGs, Pilocytic astrocytomas (PAs) are the most common central nervous system (CNS) tumours in children. They are typically well-circumscribed, classified as grade I by the World Health Organization (WHO), but recurrence or progressive disease occurs in about 10-20% of cases. Despite radiological and neuropathological features deemed as classic are acknowledged, PA may present a bewildering variety of microscopic features. Indeed, tumours containing both neoplastic ganglion and astrocytic cells occur at a lower frequency. Gene expression profiling on 40 primary LGGs including PAs and mixed glial-neuronal tumours comprising gangliogliomas (GG) and desmoplastic infantile gangliogliomas (DIG) using Affymetrix array platform was performed. A biologically validated machine learning workflow for the identification of microarray-based gene signatures was devised. The method is based on a sparsity inducing regularization algorithm l 1 l 2 that selects relevant variables and takes into account their correlation. The most significant genetic signatures emerging from gene-chip analysis were confirmed and validated by qPCR. We identified an expression signature composed by a biologically validated list of 15 genes, able to distinguish infratentorial from supratentorial LGGs. In addition, a specific molecular fingerprinting distinguishes the supratentorial PAs from those originating in the posterior fossa. Lastly, within supratentorial tumours, we also identified a gene expression pattern composed by neurogenesis, cell motility and cell growth genes which dichotomize mixed glial-neuronal tumours versus PAs. Our results reinforce previous observations about aberrant activation of the mitogen-activated protein kinase (MAPK) pathway in LGGs

  11. Childhood Brain Tumors

    Science.gov (United States)

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  12. Tumor type resulting in upgrade: An analysis based on 333 low grade soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Langer, Stefan

    2014-11-01

    Full Text Available [english] Introduction: Soft tissue sarcomas (STS are rare tumors. Based on histopathological criteria, three grades are distinguished from low (G1 to intermediate (G2 and high grade (G3. After complete initial surgical resection, some G1 STS recur as lesions with an upgrade of a previous G1 STS to a recurrent G2 STS. This upgrade indicates higher malignancy of the STS. Our aim was to find possible risk factors for these upgrades including age, localization of tumor and tumor type. Methods: This retrospective case-control study evaluated 333 patients. Of these 333, 54.7% were male and 45.3% female. All patients underwent R0 resections and among these, 10% subsequently upgraded. The processed data include age, gender, tumor type, tumor localization, local recurrence and upgrade. Results: Patients with upgrades have a higher mean age of 5.5 years than our reference collective. The tumor type has a significant effect on upgrades. Patients with fibrosarcomas are at a threefold risk of an upgrade compared to patients with other G1 STS.Conclusion: Our results indicate that age and tumor type play a key role in upgrades in G1 STS. Patients, age 60 and above and diagnosed with G1 fibrosarcomas, are three times as likely to upgrade compared to patients younger than 60 with other G1 STS. We discuss the significance of these risk factors and whether aside from complete tumor resection, additional therapies (e.g. irradiation may be applied to improve therapeutic outcome.

  13. Longterm neurocognitive sequellae of a prospectively followed cohort of low grade tumor patients treated by conformal irradiation

    International Nuclear Information System (INIS)

    Armstrong, C.; Ruffer, J.; Hopwood, C.; Montenegro, L.; Mollman, J.; Judy, K.; Alavi, J.; Corn, B.

    1996-01-01

    Purpose/Objective: Although many advances have been made in the use of therapeutic irradiation to treat patients with brain tumors, the neurocognitive effects of conformal radiation therapy (CRT) are poorly known and controversial. Retrospective studies of radiotherapy in children and adults have revealed both leukoencephalopathy and cognitive impairments in follow-up of months to 20 years after treatment. Most prospective studies have examined neurocognitive effects at one year post CRT, and our previous findings (1993,1995) suggest that this endpoint misses the first two phases of the delayed effects of CRT. We also propose that the effects of CRT can be characterized in terms of dissociated curvilinear slopes of neurocognitive impairments, which allow specific hypotheses about the multiple phases of the delayed effects. Materials/Methods: We have examined our neurocognitive model of radiotherapy effects in our current group of 20 patients who have supratentorial, low grade, primary brain tumors. Total CRT doses ranged between 46 to 63 Gy (med. dose of 54 Gy, with fractionations of 1.8-2.0 Gy). Healthy control subjects were matched to patients with respect to age and education. Patients were tested with a comprehensive neuropsychological battery at baseline (6 weeks post resection/biopsy, immediately prior to CRT), at three month intervals for one year, and yearly; current analyses reflect three years post baseline. To test the hypothesis that long-term memory is generally impaired versus selective impairment of verbal/semantic memory processes, we used parallel tests of verbal/semantic and visual/perceptual long-term memory which require association to encode and retrieve the stimuli. The visual long-term memory test was available on 10 patients. Results: A specific treatment-dependent deficit in long-term memory retrieval of word lists was found in 18 of 20 patients at six weeks post completion of CRT, though it was a temporary impairment which rebounded by one

  14. Pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Poussaint, Tina Y. [Department of Radiology, Boston, MA (United States); Panigrahy, Ashok [Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); Huisman, Thierry A.G.M. [Charlotte R. Bloomberg Children' s Center, Johns Hopkins Hospital, Division of Pediatric Radiology and Pediatric Neuroradiology, Baltimore, MD (United States)

    2015-09-15

    Among all causes of death in children from solid tumors, pediatric brain tumors are the most common. This article includes an overview of a subset of infratentorial and supratentorial tumors with a focus on tumor imaging features and molecular advances and treatments of these tumors. Key to understanding the imaging features of brain tumors is a firm grasp of other disease processes that can mimic tumor on imaging. We also review imaging features of a common subset of tumor mimics. (orig.)

  15. Subventricular zone predicts high velocity of tumor expansion and poor clinical outcome in patients with low grade astrocytoma.

    Science.gov (United States)

    Wen, Bing; Fu, Feixian; Hu, Liangbo; Cai, Qiuyi; Xie, Junshi

    2018-05-01

    The aim of this study is to clarify the association between subventricular zone (SVZ) involvement and velocity of diametric expansion(VDE) in patients with low-grade astrocytoma and also assessed the clinical outcome of those patients. A total of 168 adult patients with newly diagnosed supratentorial low-grade astrocytoma were studied retrospectively. There were 73 patients had SVZ involvement. Patients with SVZ involvement(7.16 ± 6.53 mm/y) had a higher VDE than patients without SVZ involvement(4.38 ± 5.35 mm/y). VDE was modeled as a categorical variable(<4, ≥4 and, <8, ≥8 and, <12, ≥12 mm/y). Logistic regression showed that SVZ involvement was associated with high VDE after adjusting by confounding variables. On the univariate analysis, the results showed that tumor involved with SVZ, VDE ≥ 4 mm/y, VDE ≥ 8 mm/y, and VDE ≥ 8 mm/y were significant predictors of a shorter OS, progression-free survival (PFS) and malignant progression-free survival (MFS)(all p <0.05). The categorical variables of VDE (<4 mm/y, ≥4 mm/y and, <8 mm/y, ≥8 mm/y and, <12 mm/y, ≥12 mm/y) were adjusted by confounding variables in multivariate analysis, respectively. The results indicated that VDE ≥ 8 mm/y, VDE ≥ 12 mm/y were worse prognostic factors for OS, while VDE ≥ 4 mm/y, VDE ≥ 8 mm/y and VDE ≥ 12 mm/y were related to shorter PFS and MFS. In addition, SVZ involvement was prognostic factors in predicting OS and PFS except MFS. Our results demonstrated that SVZ involvement predicted high VDE and worse clinical outcome, and high VDE was associated with poor prognosis in patients with low-grade astrocytoma. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Children's Brain Tumor Foundation

    Science.gov (United States)

    ... 2 Family Donate Volunteer Justin's Hope Fund Children’s Brain Tumor Foundation, A non-profit organization, was founded ... and the long term outlook for children with brain and spinal cord tumors through research, support, education, ...

  17. Tumor Types: Understanding Brain Tumors

    Science.gov (United States)

    ... May cause excessive secretion of hormones Common among men and women in their 50s-80s Accounts for about 13 percent of all brain tumors Symptoms Headache Depression Vision loss Nausea or vomiting Behavioral and cognitive ...

  18. Pediatric brain tumors; Kindliche Hirntumoren

    Energy Technology Data Exchange (ETDEWEB)

    Reith, W.; Bodea, S. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany); Muehl-Benninghaus, R.

    2017-09-15

    Brain tumors differ between children and adults both in histology and localization. Malignant gliomas and meningiomas predominate in adults while medulloblastomas and low-grade astrocytomas are the most frequent brain tumors in children. More than one half (50-70%) of pediatric brain tumors have an infratentorial location but only approximately 30% in adults. Brain tumors can be recognized in sonography, cranial computed tomography (CCT) and magnetic resonance imaging (MRI) by their space-consuming character and by their divergent density and intensity in comparison to normal brain parenchyma. They can grow extrusively, even infiltrate the parenchyma or originate from it. Besides clinical symptoms and diagnostics this article describes the most common pediatric brain tumors, i.e. astrocytoma, medulloblastoma, brainstem glioma, craniopharyngioma, neurofibromatosis and ganglioglioma. The most important imaging criteria are outlined. (orig.) [German] Sowohl Histologie als auch Lokalisation von Hirntumoren unterscheiden sich bei Kindern und Erwachsenen. Waehrend maligne Gliome und Meningeome bei Erwachsenen vorherrschen, kommen bei Kindern ueberwiegend Medulloblastome und niedriggradige Astrozytome vor. Mehr als die Haelfte (50-70 %) aller kindlichen Hirntumoren sind infratentoriell lokalisiert, dagegen sind es bei Erwachsenen nur etwa 30 %. Im Ultraschall, in der kranialen CT (CCT) oder MRT koennen Hirntumoren durch ihren raumfordernden Charakter und ihrer zum normalen Parenchym abweichenden Dichte oder Signalintensitaet erkannt werden. Sie koennen verdraengend wachsen, z. T. auch das Parenchym infiltrieren oder von diesem ausgehen. Neben der klinischen Symptomatik und Diagnostik werden im vorliegenden Artikel die haeufigsten kindlichen Hirntumoren, das Astrozytom, Medulloblastom, Hirnstammgliom, Kraniopharyngeom, die Neurofibromatose und das Gangliogliom beschrieben. Die wichtigsten bildgebende Kriterien werden dargestellt. (orig.)

  19. Non-FDG PET imaging of brain tumors

    Institute of Scientific and Technical Information of China (English)

    HUANG Zemin; GUAN Yihui; ZUO Chuantao; ZHANG Zhengwei; XUE Fangping; LIN Xiangtong

    2007-01-01

    Due to relatively high uptake of glucose in the brain cortex, the use of FDG PET imaging is greatly limited in brain tumor imaging, especially for low-grade gliomas and some metastatic tumours. More and more tracers with higher specificity were developed lately for brain tumor imaging. There are 3 main types of non-FDG PET tracers:amino acid tracers, choline tracers and nucleic acid tracers. These tracers are now widely applied in many aspects of brain tumor imaging. This article summarized the general use of non-FDG PET in different aspects of brain tumor imaging.

  20. Epilepsy and Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhi-yi Sha

    2009-01-01

    @@ Epidemiology It is estimated 61,414 new cases of primary brain tumors are expected to be diagnosed in 2009 in the U.S. The incidence statistic of 61,414 persons diagnosed per year includes both malignant (22,738) and non-malignant (38,677) brain tumors. (Data from American Brain Tumor Association). During the years 2004-2005, approximately 359,000 people in the United States were living with the diagnosis of a primary brain or central nervous system tumor. Specifically, more than 81,000 persons were living with a malignant tumor, more than 267,000 persons with a benign tumor. For every 100,000 people in the United States, approximately 131 are living following the diagnosis of a brain tumor. This represents a prevalence rate of 130.8 per 100,000 person years[1].

  1. Current and future strategies in radiotherapy of childhood low-grade glioma of the brain. Part II. Treatment-related late toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kortmann, R.D.; Timmermann, B.; Plasswilm, L.; Paulsen, F.; Jeremic, B.; Kay, S.; Bamberg, M. [Dept. of Radiooncology, Univ. of Tuebingen (Germany); Taylor, R.E. [Radiotherapy Dept., Cookridge Hospital, Leeds (United Kingdom); Scarzello, G. [Dept. of Radiotherapy, Padua General Hospital (Italy); Gnekow, A.K. [Children' s Hospital Augsburg (Germany); Dieckmann, K. [Dept. of Radiooncology, General Hospital Vienna (Austria)

    2003-09-01

    Material and Methods: Studies on the use of radiation therapy in children with low-grade glioma were systematically reviewed for data on radiotherapy-induced side effects on brain parenchyma, endocrine dysfunction, growth retardation, neurocognitive dysfunction, vasculopathy, and secondary neoplasms. Results: Data on late effects are scarce and heterogeneous. Past reports included only retrospective series from the 1930s to present days, a time during which treatment policies and radiation techniques widely varied and considerably changed in recent years. Often, considerable uncertainty existed regarding pretreatment health status and radiotherapy-related factors (e.g., total dose, dose per fraction, treatment fields). In spite of these shortcomings and often conflicting observations, it appears that especially younger children and children with neurofibromatosis (NF) are at risk of endocrinopathies in terms of growth retardation and developmental abnormalities, as well as neurocognitive dysfunction expressed as problems in the psychosocial environment such as in education and occupation. However, both observations may be attributed to the higher proportion of NF in the very young who frequently develop large tumors spreading along the entire supratentorial midline. The risk of radiation-induced disturbances in visual function is low (no case reported). Young children with NF appear to have an increased risk of vasculopathies. 33 cases of moyamoya disease were found (preferably in the very young), 18 of whom were NF-positive. Other cerebrovascular accidents (24 cases, of whom 14 were NF-positive) and secondary neoplasms (15 cases, of whom only five occurred in field - four were high-grade astrocytomas) are a rare condition. The latter cannot be distinguished from late relapses with malignant transformation. Modern treatment techniques appear to reduce the risk of radiation-induced late effects. Conclusions: More studies and clear definitions of clinical endpoints

  2. Current and future strategies in radiotherapy of childhood low-grade glioma of the brain. Part II. Treatment-related late toxicity

    International Nuclear Information System (INIS)

    Kortmann, R.D.; Timmermann, B.; Plasswilm, L.; Paulsen, F.; Jeremic, B.; Kay, S.; Bamberg, M.; Taylor, R.E.; Scarzello, G.; Gnekow, A.K.; Dieckmann, K.

    2003-01-01

    Material and Methods: Studies on the use of radiation therapy in children with low-grade glioma were systematically reviewed for data on radiotherapy-induced side effects on brain parenchyma, endocrine dysfunction, growth retardation, neurocognitive dysfunction, vasculopathy, and secondary neoplasms. Results: Data on late effects are scarce and heterogeneous. Past reports included only retrospective series from the 1930s to present days, a time during which treatment policies and radiation techniques widely varied and considerably changed in recent years. Often, considerable uncertainty existed regarding pretreatment health status and radiotherapy-related factors (e.g., total dose, dose per fraction, treatment fields). In spite of these shortcomings and often conflicting observations, it appears that especially younger children and children with neurofibromatosis (NF) are at risk of endocrinopathies in terms of growth retardation and developmental abnormalities, as well as neurocognitive dysfunction expressed as problems in the psychosocial environment such as in education and occupation. However, both observations may be attributed to the higher proportion of NF in the very young who frequently develop large tumors spreading along the entire supratentorial midline. The risk of radiation-induced disturbances in visual function is low (no case reported). Young children with NF appear to have an increased risk of vasculopathies. 33 cases of moyamoya disease were found (preferably in the very young), 18 of whom were NF-positive. Other cerebrovascular accidents (24 cases, of whom 14 were NF-positive) and secondary neoplasms (15 cases, of whom only five occurred in field - four were high-grade astrocytomas) are a rare condition. The latter cannot be distinguished from late relapses with malignant transformation. Modern treatment techniques appear to reduce the risk of radiation-induced late effects. Conclusions: More studies and clear definitions of clinical endpoints

  3. Encouraging Early Clinical Outcomes With Helical Tomotherapy–Based Image-Guided Intensity-Modulated Radiation Therapy for Residual, Recurrent, and/or Progressive Benign/Low-Grade Intracranial Tumors: A Comprehensive Evaluation

    International Nuclear Information System (INIS)

    Gupta, Tejpal; Wadasadawala, Tabassum; Master, Zubin; Phurailatpam, Reena; Pai-Shetty, Rajershi; Jalali, Rakesh

    2012-01-01

    Purpose: To report early clinical outcomes of helical tomotherapy (HT)-based image-guided intensity-modulated radiation therapy (IMRT) in brain tumors of varying shape, size, and location. Materials and Methods: Patients with residual, recurrent, and/or progressive low-grade intracranial and skull-base tumors were treated on a prospective protocol of HT-based IMRT and followed clinicoradiologically. Standardized metrics were used for plan evaluation and outcome analysis. Results: Twenty-seven patients with 30 lesions were treated to a median radiotherapy dose of 54 Gy in 30 fractions. All HT plans resulted in excellent target volume coverage with steep dose-gradients. The mean (standard deviation) dose homogeneity index and conformity index was 0.07 (0.05) and 0.71 (0.08) respectively. At first response assessment, 20 of 30 lesions were stable, whereas 9 showed partial regression. One patient with a recurrent clival chordoma though neurologically stable showed imaging-defined progression, whereas another patient with stable disease on serial imaging had sustained neurologic worsening. With a median follow-up of 19 months (interquartile range, 11–26 months), the 2-year clinicoradiological progression-free survival and overall survival was 93.3% and 100% respectively. Conclusions: Careful selection of radiotherapy technique is warranted for benign/low-grade brain tumors to achieve durable local control with minimum long-term morbidity. Large or complex-shaped tumors benefit most from IMRT. Our early clinical experience of HT-based IMRT for brain tumors has been encouraging.

  4. Encouraging Early Clinical Outcomes With Helical Tomotherapy-Based Image-Guided Intensity-Modulated Radiation Therapy for Residual, Recurrent, and/or Progressive Benign/Low-Grade Intracranial Tumors: A Comprehensive Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tejpal [Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Kharghar, Navi Mumbai (India); Wadasadawala, Tabassum; Master, Zubin; Phurailatpam, Reena; Pai-Shetty, Rajershi; Jalali, Rakesh [Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Kharghar, Navi Mumbai (India)

    2012-02-01

    Purpose: To report early clinical outcomes of helical tomotherapy (HT)-based image-guided intensity-modulated radiation therapy (IMRT) in brain tumors of varying shape, size, and location. Materials and Methods: Patients with residual, recurrent, and/or progressive low-grade intracranial and skull-base tumors were treated on a prospective protocol of HT-based IMRT and followed clinicoradiologically. Standardized metrics were used for plan evaluation and outcome analysis. Results: Twenty-seven patients with 30 lesions were treated to a median radiotherapy dose of 54 Gy in 30 fractions. All HT plans resulted in excellent target volume coverage with steep dose-gradients. The mean (standard deviation) dose homogeneity index and conformity index was 0.07 (0.05) and 0.71 (0.08) respectively. At first response assessment, 20 of 30 lesions were stable, whereas 9 showed partial regression. One patient with a recurrent clival chordoma though neurologically stable showed imaging-defined progression, whereas another patient with stable disease on serial imaging had sustained neurologic worsening. With a median follow-up of 19 months (interquartile range, 11-26 months), the 2-year clinicoradiological progression-free survival and overall survival was 93.3% and 100% respectively. Conclusions: Careful selection of radiotherapy technique is warranted for benign/low-grade brain tumors to achieve durable local control with minimum long-term morbidity. Large or complex-shaped tumors benefit most from IMRT. Our early clinical experience of HT-based IMRT for brain tumors has been encouraging.

  5. The value of intraoperative sonography in low grade glioma surgery.

    Science.gov (United States)

    Petridis, Athanasios K; Anokhin, Maxim; Vavruska, Jan; Mahvash, Mehran; Scholz, Martin

    2015-04-01

    There is a number of different methods to localize a glioma intraoperatively. Neuronavigation, intraoperative MRI, 5-aminolevulinic acid, as well as intraoperative sonography. Every method has its advantages and disadvantages. Low grade gliomas do not show a specific signal with 5-aminolevulinic acid and are difficult to distinguish macroscopically from normal tissue. In the present study we stress out the importance of intraoperative diagnostic ultrasound for localization of low grade gliomas. We retrospectively evaluated the charts and MRIs of 34 patients with low grade gliomas operated in our department from 2011 until December 2014. The efficacy of ultrasound as an intraoperative navigational tool was assessed. In 15 patients ultrasound was used and in 19 not. Only histologically proven low grades gliomas (astrocytomas grade II) were evaluated. In none of the patients where ultrasound (combined with neuronavigation) was used (N=15) to find the tumors, the target was missed, whereas the exclusive use of neuronavigation missed the target in 5 of 19 cases of small subcortical low grade gliomas. Intraoperative ultrasound is an excellent tool in localizing low grade gliomas intraoperatively. It is an inexpensive, real time neuronavigational tool, which overcomes brain shift. Even when identifying the tumors with ultrasound is very reliable, the extend of resection and the decision to remove any residual tumor with the help of ultrasound is at the moment unreliable. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Multiparametric MR assessment of pediatric brain tumors

    International Nuclear Information System (INIS)

    Tzika, A.A.; Astrakas, L.G.; Zarifi, M.K.; Petridou, N.; Young-Poussaint, T.; Goumnerova, L.; Black, P.McL.; Zurakowski, D.; Anthony, D.C.

    2003-01-01

    MR assessment of pediatric brain tumors has expanded to include physiologic information related to cellular metabolites, hemodynamic and diffusion parameters. The purpose of this study was to investigate the relationship between MR and proton MR spectroscopic imaging in children with primary brain tumors. Twenty-one patients (mean age 9 years) with histologically verified brain tumors underwent conventional MR imaging, hemodynamic MR imaging (HMRI) and proton MR spectroscopic imaging (MRSI). Fourteen patients also had diffusion-weighted MR imaging (DWMRI). Metabolic indices including choline-containing compounds (Cho), total creatine (tCr) and lipids/lactate (L) were derived by proton MRSI, relative cerebral blood volume (rCBV) by HMRI, and apparent tissue water diffusion coefficients (ADC) by DWMRI. Variables were examined by linear regression and correlation as well as by ANOVA. Cho (suggestive of tumor cellularity and proliferative activity) correlated positively with rCBV, while the relationship between Cho and ADC (suggestive of cellular density) was inverse (P<0.001). The relationship between rCBV and ADC was also inverse (P=0.004). Cho and lipids (suggestive of necrosis and/or apoptosis) were not significantly correlated (P=0.51). A positive relationship was found between lipids and ADC (P=0.002). The relationships between Cho, rCBV, ADC and lipids signify that tumor physiology is influenced by the tumor's physical and chemical environment. Normalized Cho and lipids distinguished high-grade from low-grade tumors (P<0.05). Multiparametric MR imaging using MRSI, HMRI and DWMRI enhances assessment of brain tumors in children and improves our understanding of tumor physiology while promising to distinguish higher- from lower-malignancy tumors, a distinction that is particularly clinically important among inoperable tumors. (orig.)

  7. Mucosal Proliferations in Completely Examined Fallopian Tubes Accompanying Ovarian Low-grade Serous Tumors: Neoplastic Precursor Lesions or Normal Variants of Benign Mucosa?

    Science.gov (United States)

    Wolsky, Rebecca J; Price, Matt A; Zaloudek, Charles J; Rabban, Joseph T

    2018-05-01

    Malignant transformation of the fallopian tube mucosa, followed by exfoliation of malignant cells onto ovarian and/or peritoneal surfaces, has been implicated as the origin of most pelvic high-grade serous carcinoma. Whether a parallel pathway exists for pelvic low-grade serous tumors [ovarian serous borderline tumor (SBT) and low-grade serous carcinoma (LGSC)] remains to be fully elucidated. The literature is challenging to interpret due to variation in the diagnostic criteria and terminology for cytologically low-grade proliferations of the fallopian tube mucosa, as well as variation in fallopian tube specimen sampling. Recently, a candidate fallopian tube precursor to ovarian SBT, so-called papillary tubal hyperplasia, was described in advanced stage patients. The current study was designed to identify fallopian tube mucosal proliferations unique to patients with low-grade serous ovarian tumors (serous cystadenoma, SBT, LGSC) and to determine if they may represent precursors to the ovarian tumors. Fallopian tubes were thinly sliced and entirely examined microscopically, including all of the fimbriated and nonfimbriated portions of the tubes, from patients with ovarian serous cystadenoma (35), SBT (61), and LGSC (11) and from a control population of patients with ovarian mucinous cystadenoma (28), mature cystic teratoma (18) or uterine leiomyoma (14). The slides of the fallopian tubes were examined in randomized order, without knowledge of the clinical history or findings in the ovaries or other organs. Alterations of the mucosa of the fallopian tube were classified as type 1: nonpapillary proliferation of cytologically bland tubal epithelium exhibiting crowding, stratification, and/or tufting without papillary fibrovascular cores or as type 2: papillary alterations consisting of a fibrovascular core lined by a cytologically bland layer of tubal epithelium. A third abnormality, type 3, consisted of detached intraluminal papillae, buds, or nests of epithelium that

  8. Connective tissue growth factor mediates TGF-β1-induced low-grade serous ovarian tumor cell apoptosis.

    Science.gov (United States)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C K

    2017-10-17

    Ovarian low-grade serous carcinoma (LGSC) is a rare disease and is now considered to be a distinct entity from high-grade serous carcinoma (HGSC), which is the most common and malignant form of epithelial ovarian cancer. Connective tissue growth factor (CTGF) is a secreted matricellular protein that has been shown to modulate many biological functions by interacting with multiple molecules in the microenvironment. Increasing evidence indicates that aberrant expression of CTGF is associated with cancer development and progression. Transforming growth factor-β1 (TGF-β1) is a well-known molecule that can strongly up-regulate CTGF expression in different types of normal and cancer cells. Our previous study demonstrated that TGF-β1 induces apoptosis of LGSC cells. However, the effect of TGF-β1 on CTGF expression in LGSC needs to be defined. In addition, whether CTGF mediates TGF-β1-induced LGSC cell apoptosis remains unknown. In the present study, we show that TGF-β1 treatment up-regulates CTGF expression by activating SMAD3 signaling in two human LGSC cell lines. Additionally, siRNA-mediated CTGF knockdown attenuates TGF-β1-induced cell apoptosis. Moreover, our results show that the inhibitory effect of the CTGF knockdown on TGF-β1-induced cell apoptosis is mediated by down-regulating SMAD3 expression. This study demonstrates an important role for CTGF in mediating the pro-apoptotic effects of TGF-β1 on LGCS.

  9. Novel strategies of Raman imaging for brain tumor research.

    Science.gov (United States)

    Anna, Imiela; Bartosz, Polis; Lech, Polis; Halina, Abramczyk

    2017-10-17

    Raman diagnostics and imaging have been shown to be an effective tool for the analysis and discrimination of human brain tumors from normal structures. Raman spectroscopic methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n= 5), low-grade astrocytoma (grades I-II WHO) (n =4), ependymoma (n=3) and metastatic brain tumors (n= 1) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma, low grade astrocytoma and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational features and Raman images we provide a real-time feedback method that is label-free to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, proteins, DNA and RNA. Our results indicate marked metabolic differences between low and high grade brain tumors. We discuss molecular mechanisms causing these metabolic changes, particularly lipid alterations in malignant medulloblastoma and low grade gliomas that may shed light on the mechanisms driving tumor recurrence thereby revealing new approaches for the treatment of malignant glioma. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have found that almost all tumors studied in the paper have increased Raman signals of nucleic acids. This increase can be interpreted as increased DNA/RNA turnover in brain tumors. We have shown that the ratio of Raman intensities I 2930 /I 2845 at 2930 and 2845 cm -1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the different lipid and protein contents of cancerous brain tissue compared to the non-tumor tissue. We found that

  10. Awake Craniotomy with Noninvasive Brain Mapping by 3-Tesla Functional Magnetic Resonance Imaging for Excision of Low-grade Glioma: A Case of a Young Patient from Pakistan.

    Science.gov (United States)

    Aleem Bhatti, Atta Ul; Jakhrani, Nasir Khan; Parekh, Maria Adnan

    2018-01-01

    The past few years have seen increasing support for gross total resection in the management of low-grade gliomas (LGGs), with a greater extent of resection correlated with better overall survival, progression-free survival, and time to malignant transformation. There is consistent evidence in literature supporting extent of safe resection as a good prognostic indicator as well as positively affecting seizure control, symptomatic relief in pressure symptoms, and longer progression-free and total survival. The operative goal in most LGG cases is to maximize the extent of resection for these benefits while avoiding postoperative neurologic deficits. Several advanced invasive and noninvasive surgical techniques such as intraoperative magnetic resonance imaging (MRI), fluorescence-guided surgery, intraoperative functional pathway mapping, and neuronavigation have been developed in an attempt to better achieve maximal safe resection. We present a case of LGG in a young patient with a 5-year history of refractory seizures and gradual onset walking difficulty. Serial MRI brain scans revealed a progressive increase in right frontal tumor size with substantial edema and parafalcine herniation. Noninvasive brain mapping by functional MRI (fMRI) and sleep-awake-sleep type of anesthesia with endotracheal tube insertion was utilized during an awake craniotomy. Histopathology confirmed a Grade II oligodendroglioma, and genetic analysis revealed no codeletion at 1p/19q. Neurological improvement was remarkable in terms of immediate motor improvement, and the patient remained completely seizure free on a single antiepileptic drug. There is no radiologic or clinical evidence of recurrence 6 months postoperatively. This is the first published report of an awake craniotomy for LGG in Pakistan. The contemporary concept of supratotal resection in LGGs advocates generous functional resection even beyond MRI findings rather than mere excision of oncological boundaries. This relatively

  11. Gamma Knife treatment of low-grade gliomas in children.

    Science.gov (United States)

    Ekşi, Murat Şakir; Yılmaz, Baran; Akakın, Akın; Toktaş, Zafer Orkun; Kaur, Ahmet Cemil; Demir, Mustafa Kemal; Kılıç, Türker

    2015-11-01

    Low-grade gliomas have good overall survival rates in pediatric patients compared to adults. There are some case series that reported the effectiveness and safety of Gamma Knife radiosurgery, yet they are limited in number of patients. We aimed to review the relevant literature for pediatric low-grade glial tumors treated with stereotactic radiosurgery, specifically Gamma Knife radiosurgery, and to present an exemplary case. A 6-year-old boy was admitted to clinic due to head trauma. He was alert, cooperative, and had no obvious motor or sensorial deficit. A head CT scan depicted a hypodense zone at the right caudate nucleus. The brain magnetic resonance imaging (MRI) depicted a mass lesion at the same location. A stereotactic biopsy was performed. Histopathological diagnosis was low-grade astrocytoma (grade II, World Health Organization (WHO) classification, 2007). Gamma Knife radiosurgery was applied to the tumor bed. Tumor volume was 21.85 cm(3). Fourteen gray was given to 50% isodose segment of the lesion (maximal dose of 28 Gy). The tumor has disappeared totally in 4 months, and the patient was tumor-free 21 months after the initial treatment. The presented literature review represents mostly single-center experiences with different patient and treatment characteristics. Accordingly, a mean/median margin dose of 11.3-15 Gy with Gamma Knife radiosurgery (GKRS) is successful in treatment of pediatric and adult low-grade glial tumor patients. However, prospective studies with a large cohort of pediatric patients should be conducted to make a more comprehensive conclusion for effectiveness and safety of GKRS in pediatric low-grade glial tumors.

  12. Epidemiological features of brain tumors

    Directory of Open Access Journals (Sweden)

    Živković Nenad

    2013-01-01

    Full Text Available Brain tumors account for 1.4% of all cancers and 2.4% of all cancer-related deaths. The incidence of brain tumors varies and it is higher in developed countries of Western Europe, North America, Australia and New Zealand. In Serbia, according to data from 2009, malignant brain tumors account for 2. 2 of all tumors, and from all cancer­related deaths, 3.2% is caused by malignant brain tumors. According to recent statistical reports, an overall incidence of brain tumors for benign and malignant tumors combined is 18.71 per 100,000 persons/year. The most common benign brain tumor in adults is meningioma, which is most present in women, and the most common malignant tumor is glioblastoma, which is most present in adult men. Due to high mortality, especially in patients diagnosed with glioblastoma and significant brain tumor morbidity, there is a constant interest in understanding its etiology in order to possibly prevent tumor occurrence in future and enable more efficient treatment strategies for this fatal brain disease. Despite the continuously growing number of epidemiological studies on possible factors of tumor incidence, the etiology remains unclear. The only established environmental risk factor of gliomas is ionizing radiation exposure. Exposure to radiofrequency electromagnetic fields via cell phone use has gained a lot of attention as a potential risk factor of brain tumor development. However, studies have been inconsistent and inconclusive, so more definite results are still expected.

  13. Low-Grade Astrocytoma Associated with Abscess Formation: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Tai-Hsin Tsai

    2008-05-01

    Full Text Available A rare case of low-grade astrocytoma associated with abscess formation occurred in a 52-year-old man presenting with Broca's aphasia. He underwent craniotomy and tumor removal under the impression of brain tumor with necrotic cystic change. Abscess accumulation within the intra-axial tumor was found intraoperatively. Literature related to brain abscess with brain tumor is reviewed, with an emphasis on abscesses with astrocytoma. We discuss the common brain tumors that are associated with abscess, pathogens that coexist with brain tumor, and the pathogeneses of coexisting brain abscess and tumor. It is very important to know how to differentiate between and diagnose a brain abscess and tumor, or brain abscess with tumor, preoperatively from clinical presentation and through the use of computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging or magnetic resonance spectroscopy.

  14. Epidemiological features of brain tumors

    OpenAIRE

    Živković Nenad; Mihailović Goran; Marković Marko; Berisavac Iva; Spaić Milan

    2013-01-01

    Brain tumors account for 1.4% of all cancers and 2.4% of all cancer-related deaths. The incidence of brain tumors varies and it is higher in developed countries of Western Europe, North America, Australia and New Zealand. In Serbia, according to data from 2009, malignant brain tumors account for 2. 2 of all tumors, and from all cancer­related deaths, 3.2% is caused by malignant brain tumors. According to recent statistical reports, an overall incidence of b...

  15. Current and future strategies in radiotherapy of childhood low-grade glioma of the brain. Part I. Treatment modalities of radiation therapy

    International Nuclear Information System (INIS)

    Kortmann, R.D.; Timmermann, B.; Plasswilm, L.; Paulsen, F.; Jeremic, B.; Kay, S.; Bamberg, M.; Taylor, R.E.; Scarzello, G.; Gnekow, A.K.; Dieckmann, K.

    2003-01-01

    Background: Treatment of childhood low-grade gliomas is a challenging issue owing to their low incidence and the lack of consensus about ''optimal'' treatment approach. Material and Methods: Reports in the literature spanning 60 years of radiation therapy, including orthovoltage, megavoltage and recently modern high-precision treatments, were reviewed with respect to visual function, survival, prognostic factors, dose prescriptions, target volumes, and treatment techniques. Based on these experiences, future strategies in the management of childhood low-grade glioma are presented. Results: Evaluation of published reports is difficult because of inconsistencies in data presentation, relatively short follow-up in some series and failure to present findings and results in a comparable way. Even with the shortcomings of the reports available in the literature, primarily concerning indications, age at treatment, dose response, timing and use of ''optimal'' treatment fields, radiation therapy continues to play an important role in the management of these tumors achieving long-term survival rates up to 80% or more. Particularly in gliomas of the visual pathway, high local tumor control and improved or stable function is achieved in approximately 90% of cases. Data on dose-response relationships recommend dose prescriptions between 45 and 54 Gy with standard fractionation. There is consensus now to employ radiation therapy in older children in case of progressive disease only, regardless of tumor location and histologic subtype. In younger children, the role of radiotherapy is unclear. Recent advances in treatment techniques, such as 3-D treatment planning and various ''high-precision'' treatments achieved promising initial outcome, however with limited patient numbers and short follow-ups. Conclusions: Radiation therapy is an effective treatment modality in children with low-grade glioma regarding tumor control and improvement and/or preservation of neurologic function or

  16. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...

  17. DWI-associated entire-tumor histogram analysis for the differentiation of low-grade prostate cancer from intermediate-high-grade prostate cancer.

    Science.gov (United States)

    Wu, Chen-Jiang; Wang, Qing; Li, Hai; Wang, Xiao-Ning; Liu, Xi-Sheng; Shi, Hai-Bin; Zhang, Yu-Dong

    2015-10-01

    To investigate diagnostic efficiency of DWI using entire-tumor histogram analysis in differentiating the low-grade (LG) prostate cancer (PCa) from intermediate-high-grade (HG) PCa in comparison with conventional ROI-based measurement. DW images (b of 0-1400 s/mm(2)) from 126 pathology-confirmed PCa (diameter >0.5 cm) in 110 patients were retrospectively collected and processed by mono-exponential model. The measurement of tumor apparent diffusion coefficients (ADCs) was performed with using histogram-based and ROI-based approach, respectively. The diagnostic ability of ADCs from two methods for differentiating LG-PCa (Gleason score, GS ≤ 6) from HG-PCa (GS > 6) was determined by ROC regression, and compared by McNemar's test. There were 49 LG-tumor and 77 HG-tumor at pathologic findings. Histogram-based ADCs (mean, median, 10th and 90th) and ROI-based ADCs (mean) showed dominant relationships with ordinal GS of Pca (ρ = -0.225 to -0.406, p Histogram 10th ADCs had dominantly high Az (0.738), Youden index (0.415), and positive likelihood ratio (LR+, 2.45) in stratifying tumor GS against mean, median and 90th ADCs, and ROI-based ADCs. Histogram mean, median, and 10th ADCs showed higher specificity (65.3%-74.1% vs. 44.9%, p histogram analysis had higher specificity, Az, Youden index, and LR+ for differentiation of PCa Gleason grade than ROI-based approach.

  18. Glioma supratentorial de baixo grau em adulto: experiência com 23 pacientes operados Supratentorial low grade tumors in adults: an experience with 23 surgical cases

    Directory of Open Access Journals (Sweden)

    José Carlos Lynch

    2004-06-01

    Full Text Available Os astrocitomas e oligodendrogliomas supratentoriais dos adultos são tumores infrequentes. Analisamos retrospectivamente 23 pacientes com este tipo de neoplasia que foram operados entre 1986 e 2002. Não ocorreu nenhum óbito no pós-operatório. A sobrevida de 5 e 10 anos de todo o grupo foi 67 e 30% respectivamente, semelhante a outras experiências. Em 14 pacientes obtivemos a remoção completa da lesão (60,8% e em 9 (39,2% ocorreu remoção parcial do tumor. No subgrupo da ressecção total do tumor, 89% sobreviveram 5 anos e 45% alcançaram 10 anos de sobrevida, em contraste com o subgrupo da remoção parcial em que somente 35% alcançaram os 5 anos de sobrevida e nenhum, 10 anos. Devido aos efeitos deletérios da radioterapia, nós preferimos prescrevê-la apenas nos casos de recorrência tumoral.Low-grade supratentorial astrocytomas and oligodendrogliomas in adults are uncommon tumors of the central nervous system. We analyzed retrospectively 23 patients with this type of neoplasia, who were operated on between 1986 and 2002. There were no post-operative deaths. The survival rate at 5 and 10 years post-surgery for the entire sample was 67 and 30% respectively, similar to other outcomes. With 14 patients we achieved a complete removal of the lesion (60.8% and with 9 (39.2% partial removal of the tumor. In the sub-group which underwent total resection of the tumor, 89% survived 5 years and 45% attained 10 years of survival, in contrast with the sub-group that underwent partial removal in which only 35% attained 5 years of survival and none 10 years. Due to the deleterious effects of radiation therapy, we preferred to prescribe it only in cases of tumor recurrence.

  19. Imaging of brain tumors

    International Nuclear Information System (INIS)

    Gaensler, E.H.L.

    1995-01-01

    The contents are diagnostic approaches, general features of tumors -hydrocephalus, edema, attenuation and/or intensity value, hemorrhage, fat, contrast enhancement, intra-axial supratentorial tumors - tumors of glial origin, oligodendrogliomas, ependymomas, subependymomas, subependymal giant cell astrocytomas, choroid plexus papilloma; midline tumors - colloid cysts, craniopharyngiomas; pineal region tumors and miscellaneous tumors i.e. primary intracerebral lymphoma, primitive neuroectodermal tumors, hemangioblastomas; extraaxial tumors - meningiomas; nerve sheath tumors -schwannomas, epidermoids, dermoids, lipomas, arachnoid cysts; metastatic tumors (8 refs.)

  20. Imaging of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Gaensler, E H.L. [California Univ., San Francisco, CA (United States). Dept. of Radiology

    1996-12-31

    The contents are diagnostic approaches, general features of tumors -hydrocephalus, edema, attenuation and/or intensity value, hemorrhage, fat, contrast enhancement, intra-axial supratentorial tumors - tumors of glial origin, oligodendrogliomas, ependymomas, subependymomas, subependymal giant cell astrocytomas, choroid plexus papilloma; midline tumors - colloid cysts, craniopharyngiomas; pineal region tumors and miscellaneous tumors i.e. primary intracerebral lymphoma, primitive neuroectodermal tumors, hemangioblastomas; extraaxial tumors - meningiomas; nerve sheath tumors -schwannomas, epidermoids, dermoids, lipomas, arachnoid cysts; metastatic tumors (8 refs.).

  1. Boron neutron capture therapy for malignant brain tumor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yoshinobu [National Kagawa Children`s Hospital, Takamatsu, Kagawa (Japan)

    1998-03-01

    Since 1968, we have treated 149 patients and performed boron-neutron capture therapy (BNCT) on 164 occasions using 5 reactors in Japan. There were 64 patients with glioblastoma, 39 patients with anaplastic astrocytoma and 17 patients with low grade astrocytoma (grade 1 or 2). There were 30 patients with other types of tumor. The overall response rate in the glioma patients was 64%. Seven patients (12%) of glioblastoma, 22 patients (56%) of anaplastic astrocytoma and 8 patients (62%) of low grade astrocytoma lived more than 2 years Median survival time of glioblastoma was 640 days. Median survival times of patients with anaplastic astrocytoma was 1811 days, and 1669 days in low grade astrocytoma. Six patients (5 glioblastoma and one anaplastic astrocytoma) died within 90 days after BNCT. Six patients lived more than 10 years. Histological grading, age of the patients, neutron fluence at the target point and target depth or size of the tumor were proved to be important factors. BNCT is an effective treatment for malignant brain tumors. We are now became able to radiate the tumor more correctly with a high enough dose of neutron beam even if we use thermal neutron beam. (author)

  2. Brain Tumor Epidemiology Consortium (BTEC)

    Science.gov (United States)

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  3. Mechanism of brain tumor headache.

    Science.gov (United States)

    Taylor, Lynne P

    2014-04-01

    Headaches occur commonly in all patients, including those who have brain tumors. Using the search terms "headache and brain tumors," "intracranial neoplasms and headache," "facial pain and brain tumors," "brain neoplasms/pathology," and "headache/etiology," we reviewed the literature from the past 78 years on the proposed mechanisms of brain tumor headache, beginning with the work of Penfield. Most of what we know about the mechanisms of brain tumor associated headache come from neurosurgical observations from intra-operative dural and blood vessel stimulation as well as intra-operative observations and anecdotal information about resolution of headache symptoms with various tumor-directed therapies. There is an increasing overlap between the primary and secondary headaches and they may actually share a similar biological mechanism. While there can be some criticism that the experimental work with dural and arterial stimulation produced head pain and not actual headache, when considered with the clinical observations about headache type, coupled with improvement after treatment of the primary tumor, we believe that traction on these structures, coupled with increased intracranial pressure, is clearly part of the genesis of brain tumor headache and may also involve peripheral sensitization with neurogenic inflammation as well as a component of central sensitization through trigeminovascular afferents on the meninges and cranial vessels. © 2014 American Headache Society.

  4. Intracerebral hemorrhage in brain tumors

    International Nuclear Information System (INIS)

    Fujita, Katsuzo; Matsumoto, Satoshi

    1980-01-01

    A series of 16 cases of intracerebral hemorrhage associated with brain tumors are described. The literature is reviewed and the incidence of these cases is reported to be low, but we had clinically encountered these cases more commonly than reported, since CT was introduced to the neurosurgical field as a diagnostic aid. The presenting symptoms were those of spontaneous intracerebral hemorrhage or brain tumor. The intracerebral hemorrhage associated with brain tumor may mask the cause of bleeding and confuse the diagnosis. The majority of the tumor causing the intracerebral hemorrhage are highly malignant as glioblastoma or metastatic brain tumor, but there are some benign tumors such as pituitary adenoma, hemangioblastoma, benign astrocytoma and meningioma, which would have good survival rates if discovered early. The mechanisms of massive hemorrhage with brain tumor are not clear. From pathological findings of our cases and other reports, the mechanism seems to be due to the vascular endothelial proliferation with subsequent obliteration of the lumen of the vessel. Thin walled, poorly formed vessels in tumor may also become distorted with growth of the tumor and these may easily rupture and bleed. Necrosis with subsequent loss of vessel support may be a factor in production of hemorrhage. Radiation therapy may be a predisposing factor. Children are rarely involved in these cases. The prognosis in the majority of cases would seen to be poor, since the majority of the tumor are highly malignant and most such patients are seen by the neurosurgeon some time after the hemorrhage has accomplished its fatal mischief. (author)

  5. Intracerebral hemorrhage in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, K; Matsumoto, S [Kobe Univ. (Japan). School of Medicine

    1980-10-01

    A series of 16 cases of intracerebral hemorrhage associated with brain tumors are described. The literature is reviewed and the incidence of these cases is reported to be low, but we had clinically encountered these cases more commonly than reported, since CT was introduced to the neurosurgical field as a diagnostic aid. The presenting symptoms were those of spontaneous intracerebral hemorrhage or brain tumor. The intracerebral hemorrhage associated with brain tumor may mask the cause of bleeding and confuse the diagnosis. The majority of the tumor causing the intracerebral hemorrhage are highly malignant as glioblastoma or metastatic brain tumor, but there are some benign tumors such as pituitary adenoma, hemangioblastoma, benign astrocytoma and meningioma, which would have good survival rates if discovered early. The mechanisms of massive hemorrhage with brain tumor are not clear. From pathological findings of our cases and other reports, the mechanism seems to be due to the vascular endothelial proliferation with subsequent obliteration of the lumen of the vessel. Thin walled, poorly formed vessels in tumor may also become distorted with growth of the tumor and these may easily rupture and bleed. Necrosis with subsequent loss of vessel support may be a factor in production of hemorrhage. Radiation therapy may be a predisposing factor. Children are rarely involved in these cases. The prognosis in the majority of cases would seen to be poor, since the majority of the tumor are highly malignant and most such patients are seen by the neurosurgeon some time after the hemorrhage has accomplished its fatal mischief.

  6. Pet imaging of peripheral benzodiazepine binding sites in brain tumors

    International Nuclear Information System (INIS)

    Junck, L.; Jewett, D.M.; Olsen, J.M.; Kilbourn, M.R.; Koeppe, R.A.; Young, A.B.; Greenberg, H.S.; Kuhl, D.E.

    1991-01-01

    Studies in vitro have shown that the peripheral-type benzodiazepine binding site (PBBS) is present in moderate to high density on malignant gliomas as well as in areas of reactive gliosis, but in low density in normal brain. PK 11195 is an isoquinoline derivative that binds selectively to the PBBS but not to the central benzodiazepine receptor. We have used [ 11 C]PK 11195 with positron emission tomography (PET) to study brain tumors and cerebral infarcts. Preliminary results showed that, in 13 of 18 patients with astrocytomas, [ 11 C]PK 11195 radioactivity was increased in tumor compared to remote brain and that the concentration ratios of tumor-to-remote brain were higher for high grade astrocytomas than for low grade astrocytomas. Pharmacokinetic analysis suggests that the increased activity in tumor probably does not result from alterations in blood flow or vascular permeability. Patients with lymphoma, meningioma, medulloblastoma, brain metastasis, and neurosarcoidosis have also shown increased radioactivity in tumor. Among eight patients with acute and subacute cerebral infarcts, activity in the infarct was increased in seven and was often greatest at the periphery. We conclude that [ 11 C]PK 11195 is a promising radiopharmaceutical for further investigation of brain tumors as well as diseases characterized by reactive gliosis

  7. Adult Pilomyxoid Astrocytoma Mimicking a Cortical Brain Tumor: MR Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jong Chang; Weon, Young Cheol; Suh, Jae Hee; Kim, Young; Hwang, Jae Cheol [Ulsan University Hospital, Ulsan (Korea, Republic of)

    2010-08-15

    A pilomyxoid astrocytoma (PMA) is a recently identified low-grade neoplasm that was previously classified as a pilocytic astrocytoma (PA), yet demonstrates unique histological features and more aggressive behavior. Although a PMA is generally a tumor of early childhood and typically occurs in the hypothalamic/chiasmatic region, it can mimic cortical tumors, especially in adults. We report the MR findings of a PMA presenting as a cortical brain tumor in an adult with neurofibromatosis 1 (NF1)

  8. Functional imaging for brain tumors (perfusion, DTI and MR spectroscopy)

    International Nuclear Information System (INIS)

    Essig, M.; Giesel, F.; Stieltjes, B.; Weber, M.A.

    2007-01-01

    This contribution considers the possibilities involved with using functional methods in magnetic resonance imaging (MRI) diagnostics for brain tumors. Of the functional methods available, we discuss perfusion MRI (PWI), diffusion MRI (DWI and DTI) and MR spectroscopy (H-MRS). In cases of brain tumor, PWI aids in grading and better differentiation in diagnostics as well as for pre-therapeutic planning. In addition, the course of treatment, both after chemo- as well as radiotherapy in combination with surgical treatment, can be optimized. PWI allows better estimates of biological activity and aggressiveness in low grade brain tumors, and in the case of WHO grade II astrocytoma showing anaplastically transformed tumor areas, allows more rapid visualization and a better prediction of the course of the disease than conventional MRI diagnostics. Diffusion MRI, due to the directional dependence of the diffusion, can illustrate the course and direction of the nerve fibers, as well as reconstructing the nerve tracts in the cerebrum, pons and cerebellum 3-dimensionally. Diffusion imaging can be used for describing brain tumors, for evaluating contralateral involvement and the course of the nerve fibers near the tumor. Due to its operator dependence, DTI based fiber tracking for defining risk structures is controversial. DWI can also not differentiate accurately between cystic and necrotic brain tumors, or between metastases and brain abscesses. H-MRS provides information on cell membrane metabolism, neuronal integrity and the function of neuronal structures, energy metabolism and the formation of tumors and brain tissue necroses. Diagnostic problems such as the differentiation between neoplastic and non-neoplastic lesions, grading cerebral glioma and distinguishing between primary brain tumors and metastases can be resolved. An additional contribution will discuss the control of the course of glial tumors after radiotherapy. (orig.)

  9. Radiation therapy of brain tumor

    International Nuclear Information System (INIS)

    Sung, K. J.; Lee, D. H.; Park, C. Y.

    1980-01-01

    One hundred and six cases of brain tumors were treated at the Yonsei Cancer Center from January 1972 to August 1978 by Co-60 teletherapy unit. We analyses their clinical findings, histopathological findings, treatment and results. In those cases which computerized tomography had been used before and after radiation therapy, changes in tumor size and the presence of edema or necrosis following treatment was evaluated. 1. Among 106 cases, 90 cases were primary brain tumors and 16 cases were metastatic brain tumors. Pituitary tumors (38), glioma (34) and pinealoma (10) composed of most of primary brain tumors. 2. Post treatment follow-up was possible in 38 cases more than 1 years. Four among 11 cases of giloma expired and survivors had considerable neurological symptoms except 2 cases. Sixty five percent (12/20) of pituitary tumors showed improvement of visual symptoms and all cases (7) of pinealoma which post treatment follow-up was possible, showed remarkable good response. 3. Findings of CT scan after radiation treatment were compatible with results of clinical findings and post treatment follow-up. It showed complete regression of tumor mass in one case of pinealoma and medulloblastoma. One case of pituitary tumor showed almost complete regression of tumor mass. It also showed large residual lesion in cases of glioblastoma multiforme and cystic astrocytoma.

  10. Brain tumor and CT, 1

    International Nuclear Information System (INIS)

    Suzuki, Nobuyuki; Katada, Kazuhiro; Shinomiya, Youichi; Sano, Hirotoshi; Kanno, Tetsuo

    1981-01-01

    It is very important for a neurosurgeon to know the consistency of a brain tumor preoperatively, since the information which is of much use in indicating the likely difficulty of the operation, which operative tools should be selected, the amount of bleeding to be expected from the tumor, and so on. The authors, therefore, tried to evaluate the consistency of brain tumors preoperatively 27 cases in which the margin of the tumor was made clear with a homogeneous stain were studied concerning the relationship between the tumor consistency and the CT findings. The results are as follows: 1) A higher CT number on a plain CT indicated a harder consistency of the tumor. 2) A lesser contrast index (CT number on enhancement CT/CT number on plain CT) showed a harder consistency of the tumor. (author)

  11. Assisted Care Options (Brain Tumors)

    Science.gov (United States)

    ... you with relief from the symptoms, pain, and stress of your brain tumor, while improving quality of life for both you and your family. Palliative care specialists work together as a team to provide an extra ...

  12. Biomarkers of Pediatric Brain Tumors

    Directory of Open Access Journals (Sweden)

    Mark D Russell

    2013-03-01

    Full Text Available Background and Need for Novel Biomarkers: Brain tumors are the leading cause of death by solid tumors in children. Although improvements have been made in their radiological detection and treatment, our capacity to promptly diagnose pediatric brain tumors in their early stages remains limited. This contrasts several other cancers where serum biomarkers such as CA 19-9 and CA 125 facilitate early diagnosis and treatment. Aim: The aim of this article is to review the latest literature and highlight biomarkers which may be of clinical use in the common types of primary pediatric brain tumor. Methods: A PubMed search was performed to identify studies reporting biomarkers in the bodily fluids of pediatric patients with brain tumors. Details regarding the sample type (serum, cerebrospinal fluid or urine, biomarkers analyzed, methodology, tumor type and statistical significance were recorded. Results: A total of 12 manuscripts reporting 19 biomarkers in 367 patients vs. 397 controls were identified in the literature. Of the 19 biomarkers identified, 12 were isolated from cerebrospinal fluid, 2 from serum, 3 from urine, and 2 from multiple bodily fluids. All but one study reported statistically significant differences in biomarker expression between patient and control groups.Conclusions: This review identifies a panel of novel biomarkers for pediatric brain tumors. It provides a platform for the further studies necessary to validate these biomarkers and, in addition, highlights several techniques through which new biomarkers can be discovered.

  13. Brain tumor-targeted drug delivery strategies

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    2014-06-01

    Full Text Available Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges.

  14. Negative brain scintigrams in brain tumors

    International Nuclear Information System (INIS)

    Dalke, K.G.

    1978-01-01

    With 53 histologically verified and 2 histologically not identified brain tumors, that showed a negative scintigram, it was tried to find reasons for the wrong and negative dropout of these scintigrams. The electroencephalograms and angiograms, that were made simultaneously were taken into consideration with respect to their propositional capability and were compared with the scintigram findings. For the formation of the negative brain scintigrams there could be found no unique cause or causal constellation. The scintigraphic tumor representation is likely based on a complex process. Therefore the reasons for the negativity of the brain scintigrams can be a manifold of causes. An important role plays the vascularisation of the tumor, but not in a sole way. As well the tumor localisation gains some importance; especially in the temporal lobe or in the deeper structures situated tumors can be negative in the scintigram. To hold down the rate of wrong-negative quote in the case of intracranial tumor search, one is advised to continue with an further exposure after 2 to 4 hours besides the usual exposures, unless a sequential scintigraphy was made from the beginning. (orig./MG) [de

  15. Fibrocartilaginous mesenchymoma with low-grade malignancy

    International Nuclear Information System (INIS)

    Dahlin, D.C.; Bertoni, F.; Beabout, J.W.; Campanacci, M.

    1984-01-01

    In a review of cases of fibrous cartilaginous dysplasia of bone, five of fibrocartilaginous lesions were found to be different in clinical behavior and radiographic and morphologic features from the others. We have named these previously undescribed tumors ''fibrocartilaginous mesenchymomas with low-grade malignancy in the fibrous elements.'' (orig.)

  16. Differential diagnosis of the epileptogenic supratentorial brain tumors in children

    Directory of Open Access Journals (Sweden)

    V. S. Khalilov

    2015-01-01

    Full Text Available Fifty-six out of 79 pediatric patients with supratentorial brain tumors were noted to have symptomatic epilepsy. Dysembryoplastic neuroepithelial tumors (DNET, diffuse astrocytomas (DA, and gangliogliomas (GG were the most epileptogenic tumors. Seizures were new-onset in all our noted cases of DNET and in 4 patients with GG and the only clinical tumor sign in 6 of 8 cases of DNET. The neuroimaging features of the MRI pattern of DNET, DA, and GG were an iso/hypointense signal on Tl-weighted magnetic resonance images and a signal, the intensity of which varied from heterogeneous to cerebrospinal fluid, on T2-weighted FLAIR images. Cases of DNET and GG displayed no mass effect or perifocal edema, a trend towards location in the temporoinsular regions, and a frequent concurrence with local gray-white matter differentiation disorders and atrophy. The FLAIR images clearly showed the so-called foam-like (multicystic structure with pericystic changes. No significant change in the dimensions of the identified DNET and GG was observed during the follow up period. In low-grade DA, tumor growth was reduced and it is difficult to differentiate minimal perifocal edema from tumor-like tissue. The sensitivity of these tumors to contrast enhancement is ambiguous. Along with DNET (that was epileptogenic in 100% of cases, DA (91,7% and GG (80% were the most common epileptogenic brain tumors.

  17. The applications of 11C-MET PET in brain tumor

    International Nuclear Information System (INIS)

    Hua Fengchun

    2002-01-01

    11 C-methionine (MET), an amino acid, is the most widely used radio pharmaceutics which can reflect transport metabolism of amino acid in vivo, and synthesis of protein in tumor. 11 C-MET PET can be used for evaluation of brain tumor: detection of tumor, differential diagnosis between recurrence and radiation necrosis and early evaluation of response to treatment. Especially, for the definition of tumor margin and detection of low-grade tumors, PET with 11 C-MET is better than PET with 18 F-FDG or other modalities such as CT and MRI

  18. NMR characteristics of low-grade glioma. Comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Asato, Reinin; Tokuriki, Yasuhiko; Nakano, Yoshihisa; Itoh, Harumi; Torizuka, Kanji; Ueda, Tohru; Yamashita, Junkoh; Handa, Hajime

    1985-08-01

    Sixteen low-grade gliomas were evaluated both with nuclear magnetic resonance (NMR) imaging and with computed tomography (CT). In 13 cases (81%), the NMR images were much better in tissue contrast than the contrast-enhanced CT images. The tumors were shown as well-circumscribed oval lesions in the NMR, though they appeared as ill-defined, irregular, low-attenuation areas in the CT. The extent of the lesion, which was supposed to represent the active tumor tissue, was greater in the NMR than in the CT, because NMR tissue parameters (T/sub 1/, T/sub 2/) are more sensitive to pathological changes in brain tissue than is the X-ray attenuation coefficient. Though, in an optic glioma and a brain-stem astrocytoma, the CT with contrast enhancement displayed the contour of the mass as well as did NMR, it was inferior to the NMR in showing the cephalocaudal extension of the tumors. Calcification does not give a proton NMR signal under the present measuring conditions; thus the calcified cystic wall of a hypothalamic astrocytoma was displayed only in the CT images. In conclusion, the NMR imaging was apparently superior to contrast-enhanced CT in demonstrating the lesions due to low-grade glioma.

  19. Brain scintigraphy (SPECT) using 201thallium in patients with primary tumors of the brain

    International Nuclear Information System (INIS)

    Barzen, G.; Schubert, C.; Richter, W.; Calder, D.; Eichstaedt, H.; Felix, R.; Baerwald, M.

    1992-01-01

    We evaluated the role of thallium 201 Single-Photon-Emission-Computed-Tomography (SPECT) in diagnosis, differential diagnosis and follow-up of 33 patients with primary brain tumors. 27 of 33 lesions were detectable by Tl-201-SPECT because only two of eight low-grade (grade 1 and 2) astrocytomas showed Tl-201 accumulation up to a tumor to nontumor ratio of 2.6. High grade (grade 3 and 4) astrocytomas showed Tl-201 accumulation in the range of 2.2 up to 13.0 and were different from low-grade astrocytomas. Noninvasive grading of astrocytomas is therefore possible, whereas differential diagnosis of oligodendrogliomas and astrocytomas or meningeomas was not possible with Tl-201. In the follow-up of six patients, we could demonstrate, that tumor progression is correlated with increasing and tumor regression with decreasing Tl-201 accumulations. This functional changings proceed morphological findings in CT. But vanishing of Tl-201 accumulation during therapy does not mean vanishing of tumor as could be demonstrated by follow-up. (orig.) [de

  20. Brain tumors and syndromes in children

    NARCIS (Netherlands)

    Bleeker, Fonnet E.; Hopman, Saskia M. J.; Merks, Johannes H. M.; Aalfs, Cora M.; Hennekam, Raoul C. M.

    2014-01-01

    (Brain) tumors are usually a disorder of aged individuals. If a brain tumor occurs in a child, there is a possible genetic susceptibility for this. Such genetic susceptibilities often show other signs and symptoms. Therefore, every child with a brain tumor should be carefully evaluated for the

  1. Fiber tracking for brain tumor

    International Nuclear Information System (INIS)

    Yamada, Kei; Nakamura, Hisao; Ito, Hirotoshi; Tanaka, Osamu; Kubota, Takao; Yuen, Sachiko; Kizu, Osamu; Nishimura, Tsunehiko

    2003-01-01

    The purpose of this study was to validate an innovative scanning method for patients diagnosed with brain tumors. Using a 1.5 Tesla whole body magnetic resonance (MR) imager, 23 patients with brain tumors were scanned. The recorded data points of the diffusion-tensor imaging (DTI) sequences were 128 x 37 with the parallel imaging technique. The parallel imaging technique was equivalent to a true resolution of 128 x 74. The scan parameters were repetition time (TR)=6000, echo time (TE)=88, 6 averaging with a b-value of 800 s/mm 2 . The total scan time for DTI was 4 minutes and 24 seconds. DTI scans and subsequent fiber tracking were successfully applied in all cases. All fiber tracts on the contralesional side were visualized in the expected locations. Fiber tracts on the lesional side had varying degrees of displacement, disruption, or a combination of displacement and disruption due to the tumor. Tract disruption resulted from direct tumor involvement, compression upon the tract, and vasogenic edema surrounding the tumor. This DTI method using a parallel imaging technique allows for clinically feasible fiber tracking that can be incorporated into a routine MR examination. (author)

  2. Brain tumors and CT scans in infants and children, (3)

    International Nuclear Information System (INIS)

    Oi, Shizuo

    1983-01-01

    In clinical pictures of brain tumors in infants and children, many features are not identical to those in adults, including characteristics of the tumors in age population, the locations of the tumors, the clinical symptoms and signs, and various factors affecting prognosis. We have, therefore, clinically and extensively analyzed brain tumors in infants and children. This study was also performed in order to analyze the characteristic CT findings of astrocytoma, the tumor most frequently occurring among infants and children. The subjects were 24 cases of astrocytoma and 2 cases of glioblastoma in infants and children under 16 years. The locations and characteristics of the tumors were as follows. Most of the tumors occurred in the 4th ventricle, had a characteristic low density, and could almost entirely be clearly distinguished from medulloblastomas, but not from ependymomas, on CT. The features of the supratentorial tumors were similar to those of the astrocytomas and glioblastomas mostly appearing in adults, as previously reported, in the relatively close correlation with the location and malignancy of the tumor. There was also a case of diffuse astrocytoma, a ''non-enhanced low-density solid tumor,'' which raised clinical problems. Among low-grade astrocytomas in infants and children, only a few show a high density on plain CT, many have, at least macroscopically, a strong contrast enhancement, and peritumoral edema is not observed on CT or, if observed, is observed only slightly. As individual features, homogenous enhancement pattern, a mixed density, a central low density, and a rare absence of enhancement are listed. (author)

  3. Therapy of malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Jellinger, K [ed.

    1987-01-01

    The tumors of the brain claim for a separate position in scientific medicine regarding biology, morphology, features of clinical manifestation, diagnostics and therapy. During the past years due to rapid progress in medical biotechnics the situation of the neuroclinician in front of brain tumors has been dramatically changed. The prerequisites for early and accurate diagnosis as well as for successful treatment also of malignant neoplasms have increased and remarkably improved. At the same time the information necessary for an appropriate pragmatic use of the available cognitive methods and therapeutic means increased along the same scale. These facts necessitate the preparation of publications in which the state of the art is presented in possible completeness, systematic order and proper dis-posability for rational management and therapeutic strategies. The primary aim of the present book is to serve these purposes. With 8 chapters, two of them are indexed for INIS, the collective of competent authors deal on the biology, pathology and immunology of malignant brain tumors of adults and of children including relevant basic and recent data of experimental research; further on the available methods of therapy: neurosurgery, radiology and chemotherapy, the fundamental principals of their efficacy and the differing models of single respective combined application, in comprehensive critical form. 111 figs.

  4. Therapy of malignant brain tumors

    International Nuclear Information System (INIS)

    Jellinger, K.

    1987-01-01

    The tumors of the brain claim for a separate position in scientific medicine regarding biology, morphology, features of clinical manifestation, diagnostics and therapy. During the past years due to rapid progress in medical biotechnics the situation of the neuroclinician in front of brain tumors has been dramatically changed. The prerequisites for early and accurate diagnosis as well as for successful treatment also of malignant neoplasms have increased and remarkably improved. At the same time the information necessary for an appropriate pragmatic use of the available cognitive methods and therapeutic means increased along the same scale. These facts necessitate the preparation of publications in which the state of the art is presented in possible completeness, systematic order and proper dis-posability for rational management and therapeutic strategies. The primary aim of the present book is to serve these purposes. With 8 chapters, two of them are indexed for INIS, the collective of competent authors deal on the biology, pathology and immunology of malignant brain tumors of adults and of children including relevant basic and recent data of experimental research; further on the available methods of therapy: neurosurgery, radiology and chemotherapy, the fundamental principals of their efficacy and the differing models of single respective combined application, in comprehensive critical form. 111 figs

  5. Improving Care in Pediatric Neuro-oncology Patients: An Overview of the Unique Needs of Children With Brain Tumors.

    Science.gov (United States)

    Fischer, Cheryl; Petriccione, Mary; Donzelli, Maria; Pottenger, Elaine

    2016-03-01

    Brain tumors represent the most common solid tumors in childhood, accounting for almost 25% of all childhood cancer, second only to leukemia. Pediatric central nervous system tumors encompass a wide variety of diagnoses, from benign to malignant. Any brain tumor can be associated with significant morbidity, even when low grade, and mortality from pediatric central nervous system tumors is disproportionately high compared to other childhood malignancies. Management of children with central nervous system tumors requires knowledge of the unique aspects of care associated with this particular patient population, beyond general oncology care. Pediatric brain tumor patients have unique needs during treatment, as cancer survivors, and at end of life. A multidisciplinary team approach, including advanced practice nurses with a specialty in neuro-oncology, allows for better supportive care. Knowledge of the unique aspects of care for children with brain tumors, and the appropriate interventions required, allows for improved quality of life. © The Author(s) 2015.

  6. Brain Tumor Image Segmentation in MRI Image

    Science.gov (United States)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  7. A fractional motion diffusion model for grading pediatric brain tumors.

    Science.gov (United States)

    Karaman, M Muge; Wang, He; Sui, Yi; Engelhard, Herbert H; Li, Yuhua; Zhou, Xiaohong Joe

    2016-01-01

    To demonstrate the feasibility of a novel fractional motion (FM) diffusion model for distinguishing low- versus high-grade pediatric brain tumors; and to investigate its possible advantage over apparent diffusion coefficient (ADC) and/or a previously reported continuous-time random-walk (CTRW) diffusion model. With approval from the institutional review board and written informed consents from the legal guardians of all participating patients, this study involved 70 children with histopathologically-proven brain tumors (30 low-grade and 40 high-grade). Multi- b -value diffusion images were acquired and analyzed using the FM, CTRW, and mono-exponential diffusion models. The FM parameters, D fm , φ , ψ (non-Gaussian diffusion statistical measures), and the CTRW parameters, D m , α , β (non-Gaussian temporal and spatial diffusion heterogeneity measures) were compared between the low- and high-grade tumor groups by using a Mann-Whitney-Wilcoxon U test. The performance of the FM model for differentiating between low- and high-grade tumors was evaluated and compared with that of the CTRW and the mono-exponential models using a receiver operating characteristic (ROC) analysis. The FM parameters were significantly lower ( p  < 0.0001) in the high-grade ( D fm : 0.81 ± 0.26, φ : 1.40 ± 0.10, ψ : 0.42 ± 0.11) than in the low-grade ( D fm : 1.52 ± 0.52, φ : 1.64 ± 0.13, ψ : 0.67 ± 0.13) tumor groups. The ROC analysis showed that the FM parameters offered better specificity (88% versus 73%), sensitivity (90% versus 82%), accuracy (88% versus 78%), and area under the curve (AUC, 93% versus 80%) in discriminating tumor malignancy compared to the conventional ADC. The performance of the FM model was similar to that of the CTRW model. Similar to the CTRW model, the FM model can improve differentiation between low- and high-grade pediatric brain tumors over ADC.

  8. Collecting and Storing Blood and Brain Tumor Tissue Samples From Children With Brain Tumors

    Science.gov (United States)

    2017-12-11

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Newly Diagnosed Childhood Ependymoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma

  9. Holmium-166-chico intracavitary radiation therapy for cystic brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, C. H.; Lee, S. H.; Jang, J. S.; Kim, E. H.; Choi, C. W.; Hong, S. W.; Lim, S. M. [Korea Cancer Center, Seoul (Korea, Republic of)

    1997-07-01

    Holmium-166-chitosan complex (Ho-166-chico) is injected into the unresectable seven cystic brain tumors (2 cases of metastatic brain tumors from lung cancer, 1 case of recurrent trigeminal neurinoma, 3 cases of recurrent low grade cystic astrocytomas, and 1 case of craniopharyngioma). The Ommaya reservoir was installed stereotactically. The cyst volume and wall thickness were measured by MRI before Ho-166-chico injection. The thickness of the cyst wall is up to 4 mm. Ho-166-chico (555-740 MBq) injected into the cyst to result in 25 Gy of dose to a cyst wall at a depth of 4 mm. Dose to the cyst wall was estimated by Monte Carlo simulation using the EGS4 code. All Ho-166-chico injected was assumed to be uniformly distributed in the spherical cyst. After Ho-166-chico injection, the distribution of isotopes was monitored by gamma camera. Two injections were administrated in two cases, and one injection in all the others. The response was evaluated with MRI. Four of 7 cases were shrunk in size with thinning of the cyst wall, 2 of 7 cases showed growth arrest, and one case showed progression. Estimated surface dose of cyst wall was between 78 and 2566 Gy. No one showed systemic absorption of Ho-166-chico, and specific complication associated with isotope injection. Ho-166-chico intracavitary radiation therapy for cystic brain tumor may be safe, and reliable method and deserves further evaluation.

  10. Intraindividual comparison of F-18-FLT PET and F-18 FET PET in brain tumor patients

    International Nuclear Information System (INIS)

    Kim, Sung Eun; Cheon, G. J.; Cho, Y. S.; Kwak, H. S.; Lee, C. H.; Choi, C. W.; Lim, S. M.

    2003-01-01

    To compare findings on FLT PET with FET PET, we prospectively undertaken FLT, FET and FDG PET in same patient with suspected primary/metastatic and recurrent brain tumors. Seventeen studies in 16 patients (47 8.3 years, M: F 10: 6) with brain tumor (3 for initial diagnosis, 6 for therapeutic response, 6 for detecting recurrence, 1 for diagnosis and recurrence both) were included. Brain tumors were 14 gliomas (6 high- grade 9 low-grade by the WHO classification), 2 metastatic brain tumors and 1 CNS lymphoma. 18F-FDG, FLT and FET PET were performed within two weeks. Attenuation-corrected brain images were acquired 30 minutes after injection of 370-555 MBq FDG, FLT and FET with a dedicated PET scanner (ECAT HR scanner, Siemens-CTI). Maximum SUV (max SUV) and relative uptake defined by FLT and FET accumulation within the tumor in relation to a contralateral control region (max SUV for tumor/ mean SUV for contralateral normal gray matter) were calculated. 26 tumor foci were analyzed. Relative FLT uptake (4.17 2.4, 0.58 to 7.45) was grater than than FET uptake (2.03 1.17, 0.92 to 4.53 (p<0.0006)) and FDG uptake (1.16 0.34, 0.76 to 2.08). Among FLT, FET and FDG uptakes in 20 tumor foci, correlation were poor. the relative FLT uptake of high-grade glioma was higher than low-glioma (6.070.76 vs 3.11 2.15, p=0.002), however, relative FET uptake was not different significantly (2.68 1.51, high-grade vs 1.970.78, low-grade). The correlation between tumor grade (high vs low grade) and relative uptake (FLT and FET) was shown only with relative FLT uptake (r=0.62, p=0.002). The best cut off value of relative FLT uptake between high-grade and low-grade glioma was 4.54 (AUC: 0.89 sensitivity: 100 specificity: 86.7%). Compared with FET uptake, FLT uptake showed much higher contrast and associated with tumor grade. Further study, evaluation of proliferative index of Ki-67 and its relationship with FLT and FET uptake, are ongoing

  11. PET AND SPECT STUDIES IN CHILDREN WITH HEMISPHERIC LOW-GRADE GLIOMAS

    Science.gov (United States)

    Juhász, Csaba; Bosnyák, Edit

    2016-01-01

    Molecular imaging is playing an increasing role in the pre-treatment evaluation of low-grade gliomas. While glucose positron emission tomography (PET) can be helpful to differentiate low-grade from high-grade tumors, PET imaging with amino acid radiotracers has several advantages, such as better differentiation between tumors and non-tumorous lesions, optimized biopsy targeting and improved detection of tumor recurrence. This review provides a brief overview of single photon emission computed tomography (SPECT) studies followed by a more detailed review of clinical applications of glucose and amino acid PET imaging in low-grade hemispheric gliomas. We discuss key differences in the performance of the most commonly utilized PET radiotracers and highlight the advantage of PET/MRI fusion to obtain optimal information about tumor extent, heterogeneity and metabolism. Recent data also suggest that simultaneous acquisition of PET/MR images and the combination of advanced MRI techniques with quantitative PET can further improve the pre- and post-treatment evaluation of pediatric brain tumors. PMID:27659825

  12. A low-grade extraskeletal osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Kyoji; Ito, Hiroki; Miyakoshi, Naohisa; Itoi, Eiji [Department of Orthopedic Surgery, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543 (Japan); Sageshima, Masato [Department of Clinical Pathology, Akita University Hospital, 1-1-1 Hondo, Akita 010-8543 (Japan); Nishida, Jun [Department of Orthopedic Surgery, Iwate Medical School, 19-1 Uchimaru, Morioka 020-8505 (Japan)

    2003-03-01

    The case of a 35-year-old woman with low-grade extraskeletal osteosarcoma of the left leg is presented. Radiographs showed peripheral ossification of the lesion, suggesting myositis ossificans. Most of the tumor was composed of cartilage, and the cellularity and cell atypia of the proliferating chondrocytes were mild to moderate. In the periphery, bone formation with a relatively clear margin and proliferation of spindle cells with minimal nuclear atypia were observed. The average percentage of cells positive for MIB-1 was 9.0%. A diagnosis of low-grade extraskeletal osteosarcoma was made on the basis of these histologic findings. The clinical course 47 months after a wide excision was uneventful. (orig.)

  13. Radiotherapy using bleomycin, ACNU, and vincristine for malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Ryuichi; Murakami, Naoto; Suzuki, Yasuo; Takeda, Norio; Arai, Hiroyuki; Konno, Kimikazu; Tanimura, Ken-ichi

    1984-08-01

    Radiotherapy combined with bleomycin, ACNU, and vincristine was performed on 106 patients with malignant brain tumors. The treatment protocol was based on the concept of combination chemotherapy or chemoradiotherapy and synchronized chemoradiotherapy. For the purpose of synchronized chemoradiotherapy, bleomycin, ACNU, and vincristine were used as G/sub 2/M cell cycle phase accumulator, and radiation and bleomycin were used as agents to which G/sub 2/M or G/sub 2/ phase cells are sensitive. The short-term results of the chemoradiotherapy were evaluated by measuring tumor regression by computerized tomography (CT) in 80 patients with evaluable CT lesions. The response rate was 67% (6/9) for astrocytoma, 29% (7/24) for anaplastic glioma, 67% (4/6) for pontine glioma, 100%(5/5) for malignant lymphoma, 100% (8/8) for germ cell tumors and 65% (15/23) for metastatic tumors. A control study was performed using radiation alone on another 18 patients with metastatic tumors, and the response rate was 50% (9/18). Among the 106 patients treated with chemoradiotherapy, the major side effects observed were as follows: leukopenia in 33 patients (31%), thrombocytopenia in 14 (13%), paralytic ileus in 2 (2%), peripheral neuropathy in 2 (2%), and lung fibrosis in 1 (1%). Contrary to expectation, low-grade astrocytomas responded much better to the chemoradiotherapy than high-grade astrocytomas.

  14. Utility of 99mTc-GHA Brain SPECT in the grading of brain tumors

    International Nuclear Information System (INIS)

    Bhattacharya, Anish; Mittal, B.R.; Kumar, Ashok

    2004-01-01

    ratio of late tracer uptake to early uptake in each tumor was then calculated, and compared with the final histological diagnosis. Of the 19 patients studied, 9 were histologically low-grade [WHO grade] tumors (2 astrocytoma II, 2 oligo-astrocytoma II, 5 oligodendroglioma II), while 10 were highgrade tumors (1 oligodendroglioma III, 5 astrocytoma III, 4 glioblastoma multiformae IV). RR of all the tumors ranged from 0.7 - 1.29. Low-grade gliomas (grade II)showed a lower RR (0.70 - 0.97) (mean 0.85 ± 0.10), while high-grade gliomas (grade III / IV) had a higher RR (1.03 - 1.29) (mean 1.11 ± 0.07). On histopathological correlation, it was found that the RR at a threshold of 1.0 yielded the maximum accuracy for discriminating between low (grade I / II) and high-grade (III / IV) gliomas. Thus, Tc99m-GHA SPECT allowed correct identification of glioma grade in 14/19 patients. RR in four patients with histologically low-grade gliomas was more than 1.0; these were graded as high-grade gliomas on Tc99m-GHA SPECT. Only one histologically high-grade tumor (astrocytoma III; RR 0.70) was indicated to be low grade on GHA scintigraphy. This corresponded to a sensitivity of 90%, a specificity of 55.5% and an overall predictivity of 73.7% of 99mTc-GHA SPECT imaging for grading of cerebral gliomas. This study suggests that Tc99m-GHA SPECT with early and delayed imaging is a good indicator of brain tumor activity and may prove to be an economical and efficient technique for grading of glial tumors of the brain. It may further be hypothesized that Tc99m-GHA demonstrates the actual metabolic activity of these tumors. (author)

  15. Automated Processing of Dynamic Contrast-Enhanced MRI: Correlation of Advanced Pharmacokinetic Metrics with Tumor Grade in Pediatric Brain Tumors.

    Science.gov (United States)

    Vajapeyam, S; Stamoulis, C; Ricci, K; Kieran, M; Poussaint, T Young

    2017-01-01

    Pharmacokinetic parameters from dynamic contrast-enhanced MR imaging have proved useful for differentiating brain tumor grades in adults. In this study, we retrospectively reviewed dynamic contrast-enhanced perfusion data from children with newly diagnosed brain tumors and analyzed the pharmacokinetic parameters correlating with tumor grade. Dynamic contrast-enhanced MR imaging data from 38 patients were analyzed by using commercially available software. Subjects were categorized into 2 groups based on pathologic analyses consisting of low-grade (World Health Organization I and II) and high-grade (World Health Organization III and IV) tumors. Pharmacokinetic parameters were compared between the 2 groups by using linear regression models. For parameters that were statistically distinct between the 2 groups, sensitivity and specificity were also estimated. Eighteen tumors were classified as low-grade, and 20, as high-grade. Transfer constant from the blood plasma into the extracellular extravascular space (K trans ), rate constant from extracellular extravascular space back into blood plasma (K ep ), and extracellular extravascular volume fraction (V e ) were all significantly correlated with tumor grade; high-grade tumors showed higher K trans , higher K ep , and lower V e . Although all 3 parameters had high specificity (range, 82%-100%), K ep had the highest specificity for both grades. Optimal sensitivity was achieved for V e , with a combined sensitivity of 76% (compared with 71% for K trans and K ep ). Pharmacokinetic parameters derived from dynamic contrast-enhanced MR imaging can effectively discriminate low- and high-grade pediatric brain tumors. © 2017 by American Journal of Neuroradiology.

  16. Perfusion magnetic resonance imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Dallery, F.; Michel, D.; Constans, J.M.; Gondry-Jouet, C. [University Hospital, Department of Radiology, Amiens (France); Bouzerar, R.; Promelle, V.; Baledent, O. [University Hospital, Department of Imaging and Biophysics, Amiens (France); Attencourt, C. [University Hospital, Departement of Pathology, Amiens (France); Peltier, J. [University Hospital, Departement of Neurosurgery, Amiens (France)

    2017-11-15

    The use of DSC-MR imaging in pediatric neuroradiology is gradually growing. However, the number of studies listed in the literature remains limited. We propose to assess the perfusion and permeability parameters in pediatric brain tumor grading. Thirty children with a brain tumor having benefited from a DSC-MR perfusion sequence have been retrospectively explored. Relative CBF and CBV were computed on the ROI with the largest lesion coverage. Assessment of the lesion's permeability was also performed through the semi-quantitative PSR parameter and the K2 model-based parameter on the whole-lesion ROI and a reduced ROI drawn on the permeability maps. A statistical comparison of high- and low-grade groups (HG, LG) as well as a ROC analysis was performed on the histogram-based parameters. Our results showed a statistically significant difference between LG and HG groups for mean rCBV (p < 10{sup -3}), rCBF (p < 10{sup -3}), and for PSR (p = 0.03) but not for the K2 factor (p = 0.5). However, the ratio K2/PSR was shown to be a strong discriminating factor between the two groups of lesions (p < 10{sup -3}). For rCBV and rCBF indicators, high values of ROC AUC were obtained (> 0.9) and mean value thresholds were observed at 1.07 and 1.03, respectively. For K2/PSR in the reduced area, AUC was also superior to 0.9. The implementation of a dynamic T2* perfusion sequence provided reliable results using an objective whole-lesion ROI. Perfusion parameters as well as a new permeability indicator could efficiently discriminate high-grade from low-grade lesions in the pediatric population. (orig.)

  17. Telomere length modulation in human astroglial brain tumors.

    Directory of Open Access Journals (Sweden)

    Domenico La Torre

    Full Text Available BACKGROUND: Telomeres alteration during carcinogenesis and tumor progression has been described in several cancer types. Telomeres length is stabilized by telomerase (h-TERT and controlled by several proteins that protect telomere integrity, such as the Telomere Repeat-binding Factor (TRF 1 and 2 and the tankyrase-poli-ADP-ribose polymerase (TANKs-PARP complex. OBJECTIVE: To investigate telomere dysfunction in astroglial brain tumors we analyzed telomeres length, telomerase activity and the expression of a panel of genes controlling the length and structure of telomeres in tissue samples obtained in vivo from astroglial brain tumors with different grade of malignancy. MATERIALS AND METHODS: Eight Low Grade Astrocytomas (LGA, 11 Anaplastic Astrocytomas (AA and 11 Glioblastoma Multiforme (GBM samples were analyzed. Three samples of normal brain tissue (NBT were used as controls. Telomeres length was assessed through Southern Blotting. Telomerase activity was evaluated by a telomere repeat amplification protocol (TRAP assay. The expression levels of TRF1, TRF2, h-TERT and TANKs-PARP complex were determined through Immunoblotting and RT-PCR. RESULTS: LGA were featured by an up-regulation of TRF1 and 2 and by shorter telomeres. Conversely, AA and GBM were featured by a down-regulation of TRF1 and 2 and an up-regulation of both telomerase and TANKs-PARP complex. CONCLUSIONS: In human astroglial brain tumours, up-regulation of TRF1 and TRF2 occurs in the early stages of carcinogenesis determining telomeres shortening and genomic instability. In a later stage, up-regulation of PARP-TANKs and telomerase activation may occur together with an ADP-ribosylation of TRF1, causing a reduced ability to bind telomeric DNA, telomeres elongation and tumor malignant progression.

  18. Imaging modalities in radiation treatment planning of brain tumors

    International Nuclear Information System (INIS)

    Georgiev, D.

    2009-01-01

    The radiation therapy is a standard treatment after surgery for most of malignant and some of benignant brain tumors. The restriction in acquiring local tumor control is an inability in realization of high dose without causing radiation necrosis in irradiated area and sparing normal tissues. The development of imaging modalities during the last years is responsible for better treatment results and lower early and late toxicity. Essential is the role of image methods not only in the diagnosis and also in the precise anatomical (during last years also functional) localisation, spreading of the tumor, treatment planning process and the effects of the treatment. Target delineation is one of the great geometrical uncertainties in the treatment planning process. Early studies on the use of CT in treatment planning documented that tumor coverage without CT was clearly inadequate in 20% of the patients and marginal in another 27 %. The image fusion of CT, MBI and PET and also the use of contrast materia helps to get over those restrictions. The use of contrast material enhances the signal in 10 % of the patients with glioblastoma multiform and in a higher percentage of the patients with low-grade gliomas

  19. Noninvasive perfusion imaging of human brain tumors with EPISTAR

    Energy Technology Data Exchange (ETDEWEB)

    Gaa, J. [Department of Radiology, AN-234, MRI, Beth Israel Hospital, Boston, MA 02215 (United States); Warach, S. [Department of Radiology, AN-234, MRI, Beth Israel Hospital, Boston, MA 02215 (United States); Wen, P. [Department of Neurology, Brigham and Womens Hospital, Harvard Medical School, Boston, MA (United States); Thangaraj, V. [Department of Radiology, AN-234, MRI, Beth Israel Hospital, Boston, MA 02215 (United States); Wielopolski, P. [Department of Radiology, AN-234, MRI, Beth Israel Hospital, Boston, MA 02215 (United States); Edelman, R.R. [Department of Radiology, AN-234, MRI, Beth Israel Hospital, Boston, MA 02215 (United States)

    1996-08-01

    A total of 17 patients with histologically proven diagnoses of low-grade astrocytoma (n = 4), high-grade astrocytoma (n = 8), lymphoma (n = 3), and meningioma (n = 2) were examined by using EPISTAR MR imaging. Meningiomas had the highest EPISTAR tumor/white matter contrast and low-grade astrocytomas and lymphomas the lowest. High-grade astrocytomas demonstrated elevated EPISTAR signal with marked regional heterogeneity. There was agreement between tumor vascularity by SPECT and EPISTAR in the five cases where both were done. Our results show that tumor vascularity can be assessed qualitatively by using EPISTAR without the need for contrast medium injection. (orig.). With 5 figs.

  20. Endothelial cell marker PAL-E reactivity in brain tumor, developing brain, and brain disease

    NARCIS (Netherlands)

    Leenstra, S.; Troost, D.; Das, P. K.; Claessen, N.; Becker, A. E.; Bosch, D. A.

    1993-01-01

    The endothelial cell marker PAL-E is not reactive to vessels in the normal brain. The present study concerns the PAL-E reactivity in brain tumors in contrast to normal brain and nonneoplastic brain disease. A total of 122 specimens were examined: brain tumors (n = 94), nonneoplastic brain disease (n

  1. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    International Nuclear Information System (INIS)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen; Haberer, Thomas; Jaekel, Oliver

    2013-01-01

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications

  2. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)], e-mail: Stephanie.Combs@med.uni-heidelberg.de; Haberer, Thomas [Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany); Jaekel, Oliver [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany)

    2013-10-15

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications.

  3. Brain tumors in children; Hirntumoren beim Kind

    Energy Technology Data Exchange (ETDEWEB)

    Harting, I.; Seitz, A. [Universitaetsklinikum Heidelberg (Germany). Abt. Neuroradiologie

    2009-06-15

    Brain tumors are common in children; in Germany approximately 400 children are diagnosed every year. In the posterior fossa, cerebellar neoplasms outnumber brainstem gliomas. In contrast to their rarity in adults, brainstem gliomas are not uncommon in children. Supratentorial tumors can be subdivided by location into neoplasms of the cerebral hemispheres, suprasellar and pineal tumors. Astrocytoma is the most common pediatric brain tumor followed by medulloblastoma, ependymoma and craniopharyngeoma. The combination of imaging morphology, tumor localisation and patient age at manifestation form the basis of the neuroradiological differential diagnosis. (orig.)

  4. BNCT for malignant brain tumors in children

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, Hiroaki

    2006-01-01

    BSH-based intra-operative BNCT as an initial treatment underwent in 4 children with malignant brain tumors since 1998. There were 2 glioblastomas, one primitive neuroectodermal tumor (PNET) and one anaplastic ependymoma patient. They included two children under 3-year-old. All GBM patients were died of CSF dissemination without tumor regrowth in the primary site. Another PNET and anaplastic ependymoma patients are still alive without tumor recurrence. We can consider BNCT is optimal treatment modality for malignant brain tumor in children. (author)

  5. Brain tumors in patients primarly treated psychiatrically

    Directory of Open Access Journals (Sweden)

    Ignjatović-Ristić Dragana

    2011-01-01

    Full Text Available Introduction. Psychiatric symptoms are not rare manifestations of brain tumors. Brain tumors presented by symptoms of raised intracranial pressure, focal neurological signs, or convulsions are usually first seen by the neurologist or less frequently by the neurosurgeon in routine diagnostic procedures. On the other hand, when psychiatric symptoms are the first manifestation in “neurologically silent” brain tumors, the patients are sent to the psychiatrist for the treatment of psychiatric symptoms and brain tumors are left misdiagnosed for a long period of time. Case Report. We presented three patients with the diagnosed brain tumor where psychiatrist had been the first specialist to be consulted. In all three cases neurological examination was generally unremarkable with no focal signs or features of raised intracranial pressure. CT scan demonstrated right insular tumor in a female patient with obsessive-compulsive disorder (OCD; right parietal temporal tumor in a patient with delusions and depression and left frontal tumor in a patient with history of alcohol dependency. Conclusion. Psychiatric symptoms/disorders in patients with brain tumors are not specific enough and can have the same clinical presentation as the genuine psychiatric disorder. Therefore, we emphasize the consideration of neuroimaging in patients with abrupt beginning of psychiatric symptoms, in those with a change in mental status, or when headaches suddenly appear or in cases of treatment resistant psychiatric disorders regardless the lack of neurological symptoms.

  6. Diagnostic performance of whole brain volume perfusion CT in intra-axial brain tumors: Preoperative classification accuracy and histopathologic correlation

    International Nuclear Information System (INIS)

    Xyda, Argyro; Haberland, Ulrike; Klotz, Ernst; Jung, Klaus; Bock, Hans Christoph; Schramm, Ramona; Knauth, Michael; Schramm, Peter

    2012-01-01

    Background: To evaluate the preoperative diagnostic power and classification accuracy of perfusion parameters derived from whole brain volume perfusion CT (VPCT) in patients with cerebral tumors. Methods: Sixty-three patients (31 male, 32 female; mean age 55.6 ± 13.9 years), with MRI findings suspected of cerebral lesions, underwent VPCT. Two readers independently evaluated VPCT data. Volumes of interest (VOIs) were marked circumscript around the tumor according to maximum intensity projection volumes, and then mapped automatically onto the cerebral blood volume (CBV), flow (CBF) and permeability Ktrans perfusion datasets. A second VOI was placed in the contra lateral cortex, as control. Correlations among perfusion values, tumor grade, cerebral hemisphere and VOIs were evaluated. Moreover, the diagnostic power of VPCT parameters, by means of positive and negative predictive value, was analyzed. Results: Our cohort included 32 high-grade gliomas WHO III/IV, 18 low-grade I/II, 6 primary cerebral lymphomas, 4 metastases and 3 tumor-like lesions. Ktrans demonstrated the highest sensitivity, specificity and positive predictive value, with a cut-off point of 2.21 mL/100 mL/min, for both the comparisons between high-grade versus low-grade and low-grade versus primary cerebral lymphomas. However, for the differentiation between high-grade and primary cerebral lymphomas, CBF and CBV proved to have 100% specificity and 100% positive predictive value, identifying preoperatively all the histopathologically proven high-grade gliomas. Conclusion: Volumetric perfusion data enable the hemodynamic assessment of the entire tumor extent and provide a method of preoperative differentiation among intra-axial cerebral tumors with promising diagnostic accuracy.

  7. [Identification of emotions in patients with low-grade gliomas versus cerebrovascular accidents].

    Science.gov (United States)

    du Boullay, V; Plaza, M; Capelle, L; Chaby, L

    2013-03-01

    Facial and vocal emotions contribute to sustain efficient social relationships. Brain disease may impair their identification. In the case of slow-growth tumors (Low Grade Gliomas [LGG]) or sudden stroke (cerebrovascular accidents [CVA]), the lesions induce contrasted plasticity and reorganisation processes. We compared the facial, vocal and intermodal identification of six emotions (happiness, fear, angriness, sadness, disgust and neutral) of three groups: patients with LGG before and after tumor resection, patients with CVA and control subjects. In LGG patients, the results revealed less efficient performances after tumor resection and in CVA patients weak performances regarding negative emotions. The intermodal condition (simultaneous visual and vocal association) improved performances in all groups and enabled equivalent performance in CVA subjects compared with control subjects. The intergroup differences may be related to variable brain plasticity as a function of type and rapidity of brain injury. Intermodal processing appears to be a compensatory condition. Copyright © 2012. Published by Elsevier Masson SAS.

  8. Pediatric brain tumors of neuroepithelial tissue

    International Nuclear Information System (INIS)

    Papanagiotou, P.; Politi, M.; Bergmann, M.; Pekrun, A.; Juergens, K.U.

    2014-01-01

    Tumors of neuroepithelial tissue represent the largest group of pediatric brain tumors by far and has therefore been divided into several discrete tumor subtypes each corresponding to a specific component of the neuropil. The neuropil contains several subtypes of glial cells, including astrocytes, oligodendrocytes, ependymal cells and modified ependymal cells that form the choroid plexus. This review discusses the imaging aspects of the most common pediatric tumors of neuroepithelial tissue. (orig.) [de

  9. Current treatment of low grade astrocytoma

    DEFF Research Database (Denmark)

    Pedersen, Christina Louise; Romner, Bertil

    2013-01-01

    Through a comprehensive review of the current literature, the present article investigates several aspects of low grade astrocytomas (LGA), including prognostic factors, treatment strategies and follow-up regimes. LGA are in general relatively slow-growing primary brain tumours, but they have a v...... effective in discriminating between tumour progression and radiation necrosis. The research into biomarkers is currently limited with regards to their applications in LGA diagnostics, and therefore further studies including larger patient populations are needed.......Through a comprehensive review of the current literature, the present article investigates several aspects of low grade astrocytomas (LGA), including prognostic factors, treatment strategies and follow-up regimes. LGA are in general relatively slow-growing primary brain tumours, but they have...... as the course of disease. The current literature seems to support the idea that treatment with radical tumour resection, where possible, yields better long term outcome for patients with LGA. However, adjuvant therapy is often necessary. Administering early postoperative radiotherapy to patients with partially...

  10. Identification of microRNA signature in different pediatric brain tumors.

    Science.gov (United States)

    Tantawy, Marwa; Elzayat, Mariam G; Yehia, Dina; Taha, Hala

    2018-01-01

    Understanding pediatric brain tumor biology is essential to help on disease stratification, and to find novel markers for early diagnosis. MicroRNA (miRNA) expression has been linked to clinical outcomes and tumor biology. Here, we aimed to detect the expression of different miRNAs in different pediatric brain tumor subtypes to discover biomarkers for early detection and develop novel therapies. Expression of 82 miRNAs was detected in 120 pediatric brain tumors from fixed-formalin paraffin-embedded tissues, low-grade glioma, high-grade glioma, ependymoma, and medulloblastoma, using quantitative real-time PCR. Low-expression of miR-221, miR-9, and miR-181c/d and over-expression of miR-101, miR-222, miR-139, miR-1827, and miR-34c was found in medulloblastoma; low expression of miR-10a and over-expression of miR-10b and miR-29a in ependymoma; low expression of miR-26a and overexpression of miR-19a/b, miR-24, miR-27a, miR- 584, and miR-527 in low-grade glioma. Cox regression showed differential miRNA expression between responders and non-responders. The most specific were miR-10a and miR-29a low expression in LGG non-responders, miR-135a and miR-146b over-expression in ependymoma non-responders, and miR-135b overexpression in medulloblastoma non-responders. MicroRNAs are differentially expressed in subtypes of brain tumors suggesting that they may help diagnosis. A greater understanding of aberrant miRNA in pediatric brain tumors may support development of novel therapies.

  11. Identification of microRNA signature in different pediatric brain tumors

    Directory of Open Access Journals (Sweden)

    Marwa Tantawy

    2018-03-01

    Full Text Available Abstract Understanding pediatric brain tumor biology is essential to help on disease stratification, and to find novel markers for early diagnosis. MicroRNA (miRNA expression has been linked to clinical outcomes and tumor biology. Here, we aimed to detect the expression of different miRNAs in different pediatric brain tumor subtypes to discover biomarkers for early detection and develop novel therapies. Expression of 82 miRNAs was detected in 120 pediatric brain tumors from fixed-formalin paraffin-embedded tissues, low-grade glioma, high-grade glioma, ependymoma, and medulloblastoma, using quantitative real-time PCR. Low-expression of miR-221, miR-9, and miR-181c/d and over-expression of miR-101, miR-222, miR-139, miR-1827, and miR-34c was found in medulloblastoma; low expression of miR-10a and over-expression of miR-10b and miR-29a in ependymoma; low expression of miR-26a and overexpression of miR-19a/b, miR-24, miR-27a, miR- 584, and miR-527 in low-grade glioma. Cox regression showed differential miRNA expression between responders and non-responders. The most specific were miR-10a and miR-29a low expression in LGG non-responders, miR-135a and miR-146b over-expression in ependymoma non-responders, and miR-135b overexpression in medulloblastoma non-responders. MicroRNAs are differentially expressed in subtypes of brain tumors suggesting that they may help diagnosis. A greater understanding of aberrant miRNA in pediatric brain tumors may support development of novel therapies.

  12. Asymptomatic brain tumor detected at brain check-up

    International Nuclear Information System (INIS)

    Onizuka, Masanari; Suyama, Kazuhiko; Shibayama, Akira; Hiura, Tsuyoshi; Horie, Nobutaka; Miyazaki, Hisaya

    2001-01-01

    Brain check-up was performed in 4000 healthy subjects who underwent medical and radiological examinations for possible brain diseases in our hospital from April 1996 to March 2000. Magnetic resonance imaging revealed 11 brain tumors which consisted of six meningiomas, three pituitary adenomas, one astrocytoma, and one epidermoid cyst. The detection rate of incidental brain tumor in our hospital was 0.3%. Nine patients underwent surgery, with one case of morbidity due to postoperative transient oculomotor nerve paresis. The widespread use of brain check-up may increasingly detect asymptomatic brain tumors. Surgical indications for such lesions remain unclear, and the strategy for treatment should be determined with consideration of the patient's wishes. (author)

  13. Evaluation of miR-362 Expression in Astrocytoma of Human Brain Tumors

    Directory of Open Access Journals (Sweden)

    Majid Kheirollahi

    2017-01-01

    Full Text Available Background: Patients affected by gliomas have a poor prognosis. Astrocytoma is a subtype of glioma. Identification of biomarkers could be an effective way to an early diagnosis of tumor or to distinguish more aggressive tumors that need more intensive therapy. In this study, we investigated whether the expression of miR-362 was increased or decreased in patients with different grades of astrocytoma. Materials and Methods: miR-362 expression was compared in 25 patients with astrocytoma with that of 4 normal nonneoplastic brain tissues. Results: In all tumor tissues, the expression of miR-362 was significantly decreased relative to its expression in normal brain tissues. However, there was no significant difference between miR-362 expressions in high and low grades of astrocytoma. Conclusions: In conclusion, miR-362 showed a down-regulation pattern in astrocytoma tissues that was different from the pattern obtained from previously published microarray studies.

  14. Changing Epidemiology of Pediatric Brain Tumors

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-07-01

    Full Text Available Neurosurgeons at the Hospital for Sick Children, Toronto, Canada, analyzed and classified 1, 866 surgical pathology cases of brain tumors in children under age 19 years, treated 1980-2008.

  15. Headache and Vascular Events with Brain Tumors

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-05-01

    Full Text Available Investigators at the Children's Hospital of Philadelphia, PA, performed a retrospective study of 265 children with brain tumors who received cranial irradiation and developed severe recurrent headache.

  16. Brain's tumor image processing using shearlet transform

    Science.gov (United States)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Korneeva, Anna; Kruglyakov, Alexey; Legalov, Alexander; Romanenko, Alexey; Zotin, Alexander

    2017-09-01

    Brain tumor detection is well known research area for medical and computer scientists. In last decades there has been much research done on tumor detection, segmentation, and classification. Medical imaging plays a central role in the diagnosis of brain tumors and nowadays uses methods non-invasive, high-resolution techniques, especially magnetic resonance imaging and computed tomography scans. Edge detection is a fundamental tool in image processing, particularly in the areas of feature detection and feature extraction, which aim at identifying points in a digital image at which the image has discontinuities. Shearlets is the most successful frameworks for the efficient representation of multidimensional data, capturing edges and other anisotropic features which frequently dominate multidimensional phenomena. The paper proposes an improved brain tumor detection method by automatically detecting tumor location in MR images, its features are extracted by new shearlet transform.

  17. Plasticity of cognitive functions before and after awake brain tumor surgery

    Directory of Open Access Journals (Sweden)

    Djaina Satoer

    2015-04-01

    Results: P1 and P2 showed opposite preoperative cognitive profiles. P1 obtained normal cognitive results and P2 had clinically significant impairments in all cognitive domains, (language, memory, attentional and executive deficits (z-score ≥-1.50. P3 and P4 also demonstrate opposite preoperative profiles. P4 obtained intact cognitive results, whereas P3 was impaired in memory and executive functions (z-score ≥-1.50. Intraoperatively, in both P3 and P4 positive language sites were found (left inferior frontal gyrus and left parietal lobe. At 3 months postoperatively, P3 presented language deficits followed by recovery at 12 months, whereas P4 appeared to have recovered at 3 months postoperatively from the observed premorbid impairments in memory and executive functioning (z-score <-1.50. Pathological examination revealed a slow growing brain tumor (low-grade in P1 and P3 and a fast growing brain tumor (high-grade in P2 and P4. Conclusion: In patients with similar brain tumor localizations, we found distinct cognitive profiles, possibly affected by different neural plasticity processes. Preoperatively, a favorable plasticity effect on cognition was found in P1 (temporoparietal area, potentially affected by tumor grade. Preserved cognitive functions was possibly facilitated by the slow growth rate of a low-grade tumor allowing functional reorganization (Mandonnet et al., 2003. However, P2 with a brain tumor in the same area showed preoperative deficits in several domains (language, memory and attention/executive functions. A faster growth rate of a high-grade tumor could have more aggressively affected cognition. In P3 and P4 with the same localization (insula, we found a different effect on the cognitive recovery process; at short term (3 months, improvement of the preoperatively observed cognitive impairments in a low-grade tumor P3, whereas a more gradual functional reorganization was found in language (3-12 months in P4, a high-grade tumor, contrasting Habets

  18. Beyond Survival - Cognition after Pediatric Brain Tumor

    OpenAIRE

    Tonning Olsson, Ingrid

    2015-01-01

    Background: Pediatric Brain Tumor (PBT) survivors suffer from cognitive sequelae, especially within the areas of cognitive tempo, attention, executive function and memory. The cognitive difficulties are often accentuated over the years, but knowledge about the long term trajectory is still scarce. Aim: The aim of this thesis was to examine cognitive sequelae after Pediatric Brain Tumor (PBT); risk factors, common difficulties, development and neuroimaging correlates. Methods: In study...

  19. Brain tumors in children: long-term survival after radiation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jenkin, Derek; Greenberg, Mark; Hoffman, Harold; Hendrick, Bruce; Humphreys, Robin; Vatter, Annette

    1995-02-01

    Purpose: To determine the cause of death in children who survive more than 5 years after radiation treatment of a brain tumor. Methods and Material: Nine hundred and twelve consecutive children with a primary brain tumor irradiated at the Princess Margaret Hospital or Toronto-Bayview Regional Cancer Center from 1958 to 1991, were evaluated for long-term outcome. Results: Overall 10- and 20-year survival rates were 44% and 37%. Subsequent survival of 377 5-year survivors was, at an additional 10 and 20 years, 78% and 67%. Most (83%) deaths that occurred more than 5 years from diagnosis were a result of relapse of the original tumor. The 10-year survival rate subsequent to relapse was 9% when the first relapse occurred less than one year from diagnosis, 17% for 1-2 years, and 31% when the time to relapse was 3 years or greater. The cumulative actuarial incidence of, and death from, second malignant tumors at 30 years from diagnosis was 18% and 13%, respectively. Conclusions: Death later than 5 years from diagnosis of a brain tumor in children is common and is usually due to progressive disease in slowly evolving low grade tumors. Death from a second malignant tumor becomes more frequent than death from the original tumor after 15 years from diagnosis.

  20. Re-examine tumor-induced alterations in hemodynamic responses of BOLD fMRI. Implications in presurgical brain mapping

    International Nuclear Information System (INIS)

    Wang, Liya; Ali, Shazia; Fa, Tianning; Mao, Hui; Dandan, Chen; Olson, Jeffrey

    2012-01-01

    Background: Blood oxygenation level dependent (BOLD) fMRI is used for presurgical functional mapping of brain tumor patients. Abnormal tumor blood supply may affect hemodynamic responses and BOLD fMRI signals. Purpose: To perform a multivariate and quantitative investigation of the effect of brain tumors on the hemodynamic responses and its impact on BOLD MRI signal time course, data analysis in order to better understand tumor-induced alterations in hemodynamic responses, and accurately mapping cortical regions in brain tumor patients. Material and Methods: BOLD fMRI data from 42 glioma patients who underwent presurgical mapping of the primary motor cortex (PMC) with a block designed finger tapping paradigm were analyzed, retrospectively. Cases were divided into high grade (n = 24) and low grade (n = 18) groups based on pathology. The tumor volume and distance to the activated PMCs were measured. BOLD signal time courses from selected regions of interest (ROIs) in the PMCs of tumor affected and contralateral unaffected hemispheres were obtained from each patient. Tumor-induced changes of BOLD signal intensity and time to peak (TTP) of BOLD signal time courses were analyzed statistically. Results: The BOLD signal intensity and TTP in the tumor-affected PMCs are altered when compared to that of the unaffected hemisphere. The average BOLD signal level is statistically significant lower in the affected PMCs. The average TTP in the affected PMCs is shorter in the high grade group, but longer in the low grade tumor group compared to the contralateral unaffected hemisphere. Degrees of alterations in BOLD signal time courses are related to both the distance to activated foci and tumor volume with the stronger effect in tumor distance to activated PMC. Conclusion: Alterations in BOLD signal time courses are strongly related to the tumor grade, the tumor volume, and the distance to the activated foci. Such alterations may impair accurate mapping of tumor-affected functional

  1. Radiotherapy for pediatric brain stem tumors

    International Nuclear Information System (INIS)

    Shcherbenko, O.I.; Parkhomenko, R.A.; Govorina, E.V.; Zelinskaya, N.I.; Ardatova, G.V.; Nechaeva, V.N.

    2000-01-01

    The immediate and short-term results of gamma therapy of brain stem tumors in 24 children were evaluated. All the patients were able to sustain treatment due to adjuvant support with dehydrating and hormonal drugs, and beneficial clinical effect was recorded in 80%. However, magnetic resonance tomography showed no decrease in tumor size. Tumor growth relapsed 3-8 months after radiotherapy. Although total dose ranged 60-72 Gy in 19 patients, there was no clinical evidence of radiation injury [ru

  2. Fluorescent Nanoparticle Uptake for Brain Tumor Visualization

    Directory of Open Access Journals (Sweden)

    Rachel Tréhin

    2006-04-01

    Full Text Available Accurate delineation of tumor margins is vital to the successful surgical resection of brain tumors. We have previously developed a multimodal nanoparticle CLIO-Cy5.5, which is detectable by both magnetic resonance imaging and fluorescence, to assist in intraoperatively visualizing tumor boundaries. Here we examined the accuracy of tumor margin determination of orthotopic tumors implanted in hosts with differing immune responses to the tumor. Using a nonuser-based signal intensity method applied to fluorescent micrographs of 9L gliosarcoma green fluorescent protein (GFP tumors, mean overestimations of 2 and 24 µm were obtained using Cy5.5 fluorescence, compared to the true tumor margin determined by GFP fluorescence, in nude mice and rats, respectively. To resolve which cells internalized the nanoparticle and to quantitate degree of uptake, tumors were disaggregated and cells were analyzed by flow cytometry and fluorescence microscopy. Nanoparticle uptake was seen in both CD11b+ cells (representing activated microglia and macrophages and tumor cells in both animal models by both methods. CD11b+ cells were predominantly found at the tumor margin in both hosts, but were more pronounced at the margin in the rat model. Additional metastatic (CT26 colon and primary (Gli36 glioma brain tumor models likewise demonstrated that the nanoparticle was internalized both by tumor cells and by host cells. Together, these observations suggest that fluorescent nanoparticles provide an accurate method of tumor margin estimation based on a combination of tumor cell and host cell uptake for primary and metastatic tumors in animal model systems and offer potential for clinical translation.

  3. Analysis of DTI-Derived Tensor Metrics in Differential Diagnosis between Low-grade and High-grade Gliomas.

    Science.gov (United States)

    Jiang, Liang; Xiao, Chao-Yong; Xu, Quan; Sun, Jun; Chen, Huiyou; Chen, Yu-Chen; Yin, Xindao

    2017-01-01

    Purpose: It is critical and difficult to accurately discriminate between high- and low-grade gliomas preoperatively. This study aimed to ascertain the role of several scalar measures in distinguishing high-grade from low-grade gliomas, especially the axial diffusivity (AD), radial diffusivity (RD), planar tensor (Cp), spherical tensor (Cs), and linear tensor (Cl) derived from diffusion tensor imaging (DTI). Materials and Methods: Fifty-three patients with pathologically confirmed brain gliomas (21 low-grade and 32 high-grade) were included. Contrast-enhanced T1-weighted images and DTI were performed in all patients. The AD, RD, Cp, Cs, and Cl values in the tumor zone, peritumoral edema zone, white matter (WM) adjacent to edema and contralateral normal-appearing white matter (NAWM) were calculated. The DTI parameters and tumor grades were statistically analyzed, and receiver operating characteristic (ROC) curve analysis was also performed. Results: The DTI metrics in the affected hemisphere showed significant differences from those in the NAWM, except for the AD values in the tumor zone and the RD values in WM adjacent to edema in the low-grade groups, as well as the Cp values in WM adjacent to edema in the high-grade groups. AD in the tumor zone as well as Cs and Cl in WM adjacent to edema revealed significant differences between the low- and high-grade gliomas. The areas under the curve (Az) of all three metrics were greater than 0.5 in distinguishing low-grade from high-grade gliomas by ROC curve analysis, and the best DTI metric was Cs in WM adjacent to edema (Az: 0.692). Conclusion: AD in the tumor zone as well as Cs and Cl in WM adjacent to edema will provide additional information to better classify gliomas and can be used as non-invasive reliable biomarkers in glioma grading.

  4. Radionuclidr diagnosis of brain tumors, brain inflammatory and traumatic lesions

    International Nuclear Information System (INIS)

    Badmaev, K.N.; Mel'kishev, V.F.; Dement'ev, E.V.; Svetlova, N.L.

    1982-01-01

    A complex of problems of radionuclide diagnosis of central nervous system diseases including tumors, traumas, vascular lessons, inflammatory processes is considered. The principles, technique and results of radionuclide xintigraphy of a tumor, depending on its localization are given. Radioindication of brain tumours in the operation is given

  5. Evaluation of {sup 99m}Tc-ECD SPECT for the detection of brain tumor. Comparison with {sup 201}Tl SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Motoo; Sasaki, Yasushi; Kikuchi, Yoshirou; Kaminaga, Tatsuro; Furui, Shigeru [Teikyo Univ., Tokyo (Japan). Faculty of Medicine; Konoeda, Kouichi; Karigome, Masato; Yoshida, Katsuhiko

    1997-01-01

    For the evaluation of brain tumor (n=15), we performed both dynamic and static {sup 99m}Tc-ECD (ECD) SPECT studies. {sup 201}Tl SPECT was also used for comparison with the results of ECD SPECT. Dynamic ECD SPECT was obtained following the injection of 600 MBq of ECD. Five min after the injection of ECD, static ECD SPECT was performed. {sup 201}Tl SPECT was obtained 10 min after the injection of 74 MBq. Abnormal uptake was recognized in 7 of 15 tumors with dynamic ECD; 5 of 7 meningiomas, 1 of 1 glioblastoma and 1 of 1 astrocytoma. However, no abnormal uptake was seen in 3 of 3 benign tumors (1 low grade astrocytoma, 1 hemangioma, 1 craniopharyngioma) and in 2 of 2 brain metastases. In contrast abnormal uptake was seen in 11 of 15 tumors with {sup 201}Tl; 7 of 7 meningiomas, 2 of 2 brain metastases, 1 of 1 glioblastoma and 1 of 1 craniopharyngioma. No abnormal uptake was seen in 3 of 3 benign tumors (1 hemangioma and 2 low grade astrocytomas). Equivocal uptake was seen in 1 low grade astrocytoma with dynamic ECD and {sup 201}Tl. The mechanism of the accumulation of dynamic ECD to brain tumor is unclear. However, it may reflect not only blood flow, but also metabolism. (author)

  6. Low-grade salivary duct carcinoma or low-grade intraductal carcinoma? Review of the literature.

    Science.gov (United States)

    Kuo, Ying-Ju; Weinreb, Ilan; Perez-Ordonez, Bayardo

    2013-07-01

    Low-grade salivary duct carcinoma (LG-SDC) is a rare neoplasm characterized by predominant intraductal growth, luminal ductal phenotype, bland microscopic features, and favorable clinical behavior with an appearance reminiscent of florid to atypical ductal hyperplasia to low grade intraductal breast carcinoma. LG-SDC is composed of multiple cysts, cribriform architecture with "Roman Bridges", "pseudocribriform" proliferations with floppy fenestrations or irregular slits, micropapillae with epithelial tufts, fibrovascular cores, and solid areas. Most of the tumor cells are small to medium sized with pale eosinophilic cytoplasm, and round to oval nuclei, which may contain finely dispersed or dark condensed chromatin. Foci of intermediate to high grade atypia, and invasive carcinoma or micro-invasion have been reported in up to 23 % of cases. The neoplastic cells have a ductal phenotype with coexpression of keratins and S100 protein and are surrounded by a layer of myoepithelial cells in non-invasive cases. The main differential diagnosis of LG-SDC includes cystadenoma, cystadenocarcinoma, sclerosing polycystic adenosis, salivary duct carcinoma in situ/high-grade intraductal carcinoma, and papillary-cystic variant of acinic cell carcinoma. There is no published data supporting the continuous classification of LG-SDC as a variant of cystadenocarcinoma. Given that most LG-SDC are non-invasive neoplasms; the terms "cribriform cystadenocarcinoma" and LG-SDC should be replaced by "low-grade intraductal carcinoma" (LG-IDC) of salivary gland or "low-grade intraductal carcinoma with areas of invasive carcinoma" in those cases with evidence of invasive carcinoma.

  7. Proton MRS imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Maria [Aghia Sophia Children' s Hospital, Department of Radiology, Athens (Greece); Tzika, A.A. [Harvard Medical School, Department of Surgery, Massachusetts General Hospital, Boston, MA (United States); Shriners Burn Hospital, Boston, MA (United States)

    2016-06-15

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. (orig.)

  8. Histopathological studies on the irradiated brain tumors

    International Nuclear Information System (INIS)

    Narita, Tadao

    1980-01-01

    Of 43 cases of irradiated brain tumor, histological findings showed extensive necrosis or disappearance of the neoplasm, considered to be attributable to radiation treatment, in 30 (70%). Extensive necrosis of the tumor in areas exposed to radiation was found in 16 treated cases (37.2%). The histopathology of massive necrosis was that of simple coagulative necrosis, sometimes with marked vascular alterations and extravasation of fibrinoid material into the necrotic tissue. Necrosis was almost always incomplete, and foci of residual tumors were found at the periphery of the tumors. The terminal picture in cases of massive necrosis was often that of widespread intra- and extracranial metastasis. Almost complete disappearance of the tumor was observed in some cases with subsequent diffuse degenerative changes in the brain parenchyma exposed to radiation. In 5 cases of irradiated tumors, autopsy findings suggested that the growth of the primary tumor might have been restricted. And in 5 cases tumor cytology revealed the marked presence of a large number of multinucleated, bizarre giant cells with evidence of degeneration in both the cytoplasm and the nucleus. Multifocal necrosis of the brain, with axonal swelling and sponginess of the tissue, was observed in two patients following combined radiation and antineoplastic chemotherapy. Diffuse loss and degeneration of nerve cells of the cerebral cortex in pseudo-laminar fashion was observed in 7 patients with or without bilateral necrosis of the globus pallidus. Histological findings revealed typical anoxic encephalopathy. (J.P.N.)

  9. Histopathological studies on the irradiated brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Narita, T [Gunma Univ., Maebashi (Japan).School of Medicine

    1980-01-01

    Of 43 cases of irradiated brain tumor, histological findings showed extensive necrosis or disappearance of the neoplasm, considered to be attributable to radiation treatment, in 30 (70%). Extensive necrosis of the tumor in areas exposed to radiation was found in 16 treated cases (37.2%). The histopathology of massive necrosis was that of simple coagulative necrosis, sometimes with marked vascular alterations and extravasation of fibrinoid material into the necrotic tissue. Necrosis was almost always incomplete, and foci of residual tumors were found at the periphery of the tumors. The terminal picture in cases of massive necrosis was often that of widespread intra- and extracranial metastasis. Almost complete disappearance of the tumor was observed in some cases with subsequent diffuse degenerative changes in the brain parenchyma exposed to radiation. In 5 cases of irradiated tumors, autopsy findings suggested that the growth of the primary tumor might have been restricted. And in 5 cases tumor cytology revealed the marked presence of a large number of multinucleated, bizarre giant cells with evidence of degeneration in both the cytoplasm and the nucleus. Multifocal necrosis of the brain, with axonal swelling and sponginess of the tissue, was observed in two patients following combined radiation and antineoplastic chemotherapy. Diffuse loss and degeneration of nerve cells of the cerebral cortex in pseudo-laminar fashion was observed in 7 patients with or without bilateral necrosis of the globus pallidus. Histological findings revealed typical anoxic encephalopathy.

  10. Noonan syndrome, PTPN11 mutations, and brain tumors. A clinical report and review of the literature.

    Science.gov (United States)

    Siegfried, Aurore; Cances, Claude; Denuelle, Marie; Loukh, Najat; Tauber, Maïté; Cavé, Hélène; Delisle, Marie-Bernadette

    2017-04-01

    Noonan syndrome (NS), an autosomal dominant disorder, is characterized by short stature, congenital heart defects, developmental delay, and facial dysmorphism. PTPN11 mutations are the most common cause of NS. PTPN11 encodes a non-receptor protein tyrosine phosphatase, SHP2. Hematopoietic malignancies and solid tumors are associated with NS. Among solid tumors, brain tumors have been described in children and young adults but remain rather rare. We report a 16-year-old boy with PTPN11-related NS who, at the age of 12, was incidentally found to have a left temporal lobe brain tumor and a cystic lesion in the right thalamus. He developed epilepsy 2 years later. The temporal tumor was surgically resected because of increasing crises and worsening radiological signs. Microscopy showed nodules with specific glioneuronal elements or glial nodules, leading to the diagnosis of dysembryoplastic neuroepithelial tumor (DNT). Immunohistochemistry revealed positive nuclear staining with Olig2 and pERK in small cells. SHP2 plays a key role in RAS/MAPK pathway signaling which controls several developmental cell processes and oncogenesis. An amino-acid substitution in the N-terminal SHP2 domain disrupts the self-locking conformation and leads to ERK activation. Glioneuronal tumors including DNTs and pilocytic astrocytomas have been described in NS. This report provides further support for the relation of DNTs with RASopathies and for the implication of RAS/MAPK pathways in sporadic low-grade glial tumors including DNTs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Liquid biopsy for brain tumors

    Science.gov (United States)

    Shankar, Ganesh M.; Balaj, Leonora; Stott, Shannon L.; Nahed, Brian; Carter, Bob S.

    2018-01-01

    Introduction Minimally invasive methods will augment the clinical approach for establishing the diagnosis or monitoring treatment response of central nervous system tumors. Liquid biopsy by blood or cerebrospinal fluid sampling holds promise in this regard. Areas covered In this literature review, the authors highlight recent studies describing the analysis of circulating tumor cells, cell free nucleic acids, and extracellular vesicles as strategies to accomplish liquid biopsy in glioblastoma and metastatic tumors. The authors then discuss the continued efforts to improve signal detection, standardize the liquid biopsy handling and preparation, develop platforms for clinical application, and establish a role for liquid biopsies in personalized medicine. Expert commentary As the technologies used to analyze these biomarkers continue to evolve, we propose that there is a future potential to precisely diagnose and monitor treatment response with liquid biopsies. PMID:28875730

  12. Unusual radiological characteristics of teratoid/rhabdoid brain tumor ...

    African Journals Online (AJOL)

    We report a case of atypical teratoid rhabdoid brain tumor for 4 months old male child, who presented with unusual radiological findings, that can be confused with other brain tumors ,so we high light these unusual imaging features to aid in making correct diagnosis. Keywords: atypical teratoid–rhabdoid tumor, brain tumor, ...

  13. MRI Brain Tumor Segmentation Methods- A Review

    OpenAIRE

    Gursangeet, Kaur; Jyoti, Rani

    2016-01-01

    Medical image processing and its segmentation is an active and interesting area for researchers. It has reached at the tremendous place in diagnosing tumors after the discovery of CT and MRI. MRI is an useful tool to detect the brain tumor and segmentation is performed to carry out the useful portion from an image. The purpose of this paper is to provide an overview of different image segmentation methods like watershed algorithm, morphological operations, neutrosophic sets, thresholding, K-...

  14. Bleomycin treatment of brain tumors: an evaluation

    DEFF Research Database (Denmark)

    Linnert, Mette; Gehl, Julie

    2009-01-01

    Bleomycin has been used in the treatment of brain tumors for over 30 years. Currently, we are evaluating electrochemotherapy (the use of electric pulses to enhance uptake of bleomycin) for patients with secondary brain tumors. We, therefore, reviewed the literature with specific reference...... fever, headaches, nausea and vomiting, lethargy, and peritumoral edema. Out of 189 patients treated from 1973 to 2007, only five patients (3%) had severe and six patients (3%) had moderate adverse effects. One death was directly related to this treatment, where very high doses were used. Two patients...

  15. MR imaging of the brain: tumors

    International Nuclear Information System (INIS)

    Sartor, K.

    1999-01-01

    The radiologic modality that most likely provides the imaging information needed in a patient suspected of having a brain tumor is MR imaging. A brain tumor can be reliably ruled out if the MR examination is performed properly and experts interpret the results as negative. If there is a tumor, however, its exact location and topography must be determined. Important for therapy and prognosis are also tumor properties such as histologic type and grade, as well as effects on adjacent brain structures. Although potentially a noninvasive method of in vivo neuropathology, MR is still far from being sufficiently specific, as dissimilar lesions may look the same despite the use of refined imaging protocols. The evolution of MR imaging continues, however, making further methodologic improvement likely. Presently, advanced methods, such as diffusion- and perfusion-weighted MR imaging, functional MR imaging, neuronavigation based on MR imaging data, and the use of MR imaging during surgery (intraoperative MR imaging), influence the way patients are treated. Likewise, follow-up imaging (monitoring) of tumor patients by MR has become more effective, and experience has shown how to distinguish reactive changes from recurrent tumor. In the future, MR imaging may gain importance in the development of novel therapeutic concepts. (orig.)

  16. Signs & Symptoms (of Brain Tumors)

    Science.gov (United States)

    ... memory are often more noticeable than effects on long-term memory. Memory terms to know Short-term memory : Short-term memory is where we ... process by which our brains move information from short-term to long-term memory. Retrieval: The process by which previously learned information ...

  17. Peritumoral edema associated with metastatic brain tumor

    International Nuclear Information System (INIS)

    Shirotani, Toshiki; Takiguchi, Hiroshi; Shima, Katsuji; Chigasaki, Hiroo; Tajima, Atsushi; Watanabe, Satoru.

    1992-01-01

    Computed tomographic (CT) examinations were performed in 94 lesions of 50 patients with metastatic brain tumors. Peritumoral edema (A E ) and tumor area (A T ) were measured using the planimetric method on the CT scan films that demonstrated maximum size of the tumor. Then, the volume of the peritumoral edema (V E ) and the surface area of the tumor (S T ) were claculated from these data. Eighty-three brain lesions from lung cancers were subdivided into 49 adenocarcinomas, 11 squamous cell carcinomas, 16 small cell carcinomas and 7 large cell carcinomas. Eleven metastatic tumors from breast cancers were all adenocarcinomas. There was statistical correlation between the surface area of tumor and the volume of the peritumoral edema for the adenocarcinoma (r=0.4043, p E /S T ratios in small cell carcinomas were smaller then those in non-small cell carcinomas, when the volume of the tumor was larger than 10 mm 3 . Accordingly, we suggest that the volume of the peritumoral edema in the small cell carcinoma is generally smaller than that in others. (author)

  18. Radionecrosis after radiotherapy for brain tumor

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Maki, Yutaka; Tosa, Junichi; Tsuboi, Koji; Matsumura, Akira

    1984-01-01

    The neurological deterioration after radiotherapy of brain tumor may depend on radionecrosis or regrowth of the tumor. In the present study, five patients with brain tumor were irradiated with doses of 3,900 to 6,800 rads. The neurological deterioration appeared 3.5 to 46 months after radiotherapy in three patients, who received 5,000 to 5,680 rads, immediately after radiotherapy in one patient, who received 6,800 rads, and during radiotherapy in one patient, who received 3,900 rads. Ring enhancement was observed on sequential CT scans. This enhanced area was surgically removed and the correlation between histology and CT scans and superimposed dose distributions was studied in order to differentiate radionecrosis from regrowth of tumor. The radionecrosis was confirmed at the second operation in five patients, but regrowth of the tumor was also observed in the brain adjacent to radionecrosis in three out of five patients. Coagulation necrosis and fibrinoid necrosis were observed microscopically at the rim of the ring enhancement and necrotic and hyalinized debri were observed in the central low density area of the ring enhancement. Viable tumor cells were noted in the enhanced area adjacent to the ring enhancement on CT scans. Both radionecrosis and regrowth of tumor were observed in the dose distribution area of 3,500 to 6,120 rads on CT scans. This suggested that the superimposed dose distributions could not differentiate radionecrosis from tumor regrowth. Forty-eight cases of cerebral radionecrosis gathered from the literature were reviewed. (J.P.N.)

  19. Computerized tomographic evaluation of primary brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Ok; Lee, Jong Soon; Jeon, Doo Sung; Kim, Hong Soo; Rhee, Hak Song [Presbyterian Mediacal center, Cheonju (Korea, Republic of); Kim, Jong Deok [Inje Medical College, Paik Hospital, Pusan (Korea, Republic of)

    1985-10-15

    In a study of primary brain tumors 104 cases having satisfactory clinical, operative and histological proofs were analyzed by computerized tomography at Presbyterian Medical Center from May, 1982 to April 1985. The results were as follows: 1. The male to female ratio of primary brain tumor was 54 : 46. 2. The 2nd decade group (26%) was the most prevalent age group, followed by the 5th decade (16.3%), 1st decade (14.4%) , 3rd decade (12.5%), 4th decade (11.5%), 6th decade (10.6%), 7th decade (8.7%) in that order. 3. The incidence of primary brain tumors was found to be: glioma 64 cases (61.6%) among the GM, the most frequent 17 cases (16.3%), followed by meningioma 12 cases (11.5%), pituitary adenoma 10 cases (9.6%), craniopharyngioma 6 cases (5.8%), pinealoma and germinoma 3 cases (2.9%) respectively, and dermoid cyst 2 cases (1.9%) in that order. 4. The location of the primary brain tumors were as follows: cb. hemisphere (49%) of these 24.5% in parietal region, 11.9% in temporal region, 9.7% in frontal region, 3.0% in occipital region: juxtasella area (16.3%), cerebellar hemisphere (8.7%), parapineal and intraventricle (7.7%) respectively, cerebello-pontine angle area (5.8%), vermis and 4th ventricular region (4.8%). 5. There were no remarkable differences in the findings of pre- and post-contrast CT scanning of primary brain tumors computed with others.

  20. Gamma knife treatment of pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tatsuya; Kida, Yoshihisa; Tanaka, Takayuki; Oyama, Hirofumi (Komaki City Hospital, Hokkaido (Japan))

    1994-02-01

    Gamma knife radiosurgery was performed on 386 patients with intracranial lesions at Komaki City Hospital from May 1991 through December 1992. Forty three of the patients were under 15 years of age. Twenty six patients had arteriovenous malformations and 17 had brain tumors: 9 gliomas and 8 non-gliomatous tumors. The gliomas included 3 ependymomas, 2 benign astrocytomas, one ganglioglioma, one oligodendroglioma; one medulloblastoma and one glioblastoma multiforme. The non-gliomatous tumors included 3 pineal tumors, 2 craniopharyngiomas, 2 acoustic neurinomas, and one C-P angle epidermoid tumor. The male/female ratio was 12:5 and the mean diameter of the tumors was 19.3 mm. They were treated with a mean maximum dose of 32.5 Gy and a marginal dose of 17.1 Gy with a mean isocenter number of 4.9. The early results of single session treatment with Gamma knife of pediatric brain tumors were evaluated by repeated MRIs and changes of neurological signs during a mean follow-up period of 6.4 months. It was found that 5 of the 17 responded to treatment (29.5%), with partical response (PR) in 2 with craniopharyngioma and one with ganglioglioma. Central necrosis (CN) was present with optic glioma and one with neurinoma. In three patients (17.6%) the treatment was not effective. One with medulloblastoma and one with glioblastoma died at 4 and 6 months and the one with ependymoma was reoperated on after 3 months because of progression of the tumor (PG). The other nine patients (52.9%) were unchanged (NC). We must follow more patients to determine the effectiveness of gamma radiosurgery on these tumors. (author).

  1. Extrauterine Low-Grade Endometrial Stromal Sarcoma

    Directory of Open Access Journals (Sweden)

    Yu-Ju Chen

    2005-12-01

    Conclusions: Low-grade endometrial stromal sarcoma typically has an indolent clinical course and favorable prognosis. Surgical resection is the primary therapeutic approach, and adjuvant therapy with radiotherapy, chemotherapy, or progesterone therapy should be considered for the management of residual or recurrent low-grade endometrial stromal sarcomas.

  2. Stereotactic gamma radiosurgery of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tatsuya; Kida, Yoshihisa; Tanaka, Takayuki; Oyama, Hirofumi; Yoshida, Kazuo; Maesawa, Satoshi; Kai, Osamu; Nakamura, Mototoshi; Arahata, Masashige [Komaki City Hospital, Aichi (Japan)

    1996-06-01

    One thousand cases with various head and neck diseases have been treated by gamma radiosurgery at Komaki City Hospital since May 1991. Five hundred and sixty-eight out of 1,000 cases were neoplastic lesions which consisted of 173 cases of neurinoma, 108 of metastatic tumors, 103 of meningioma, 69 of gliomas, 27 of pituitary adenoma, 26 of craniopharyngioma, 13 of pineal tumors, 11 of chordoma, 6 of malignant lymphoma, 5 of hemangioblastoma and so on. The most effective result has been shown in metastatic brain tumors. The complete response (disappearance of the lesion) was obtained in more than 50% of the treated lesions, and the control rate of 85% was maintained for more than 12 months. Next effective results were shown in craniopharyngioma, malignant pineal tumors and malignant lymphoma. There was a group which showed moderate response but no tumor disappearance. Those were pituitary adenoma, acoustic neurinoma, meningioma and chordoma. Gliomas showed less response and even progression of tumor at relatively higher rate. It has been found that malignant gliomas showed difficult control of the tumor and progression rate of 70%, while benign gliomas showed the control rate of more than 90%. Besides intracranial lesions, malignant skull base tumors such as chordoma, naso-pharyngeal cancer, adenoid cystic cancer showed better response to gamma radiosurgery and higher control rate for longer period of time with high QOL compaired to conventional irradiation. (author)

  3. Delayed radiation necrosis of the brain simulating a brain tumor

    International Nuclear Information System (INIS)

    Ikeda, Hiroya; Kanai, Nobuhiro; Kamikawa, Kiyoo

    1976-01-01

    Two cases of delayed radiation necrosis of the brain are reported. Case 1 was a 50-year-old man who had right hemiparesis and disorientation 26 months after Linac irradiation (5,000 rad), preceded by an operation for right maxillar carcinoma. A left carotid angiogram demonstrated a left temporal mass lesion, extending to the frontal lobe. Case 2 was a 41-year-old man who had previously had an operation for right intraorbital plasmocytoma, followed by two Co irradiations (6,400 rad, and 5,000 rad). He had the signs and symptoms of intracranial hypertension 36 months after his last irradiation. A left carotid angiogram demonstrated a left temporal mass lesion. Both cases were treated by administration of steroid hormone (which alleviated the signs and symptoms) and by temporal lobectomy. Microscopic examinations showed necrosis of the brain tissues associated with hyaline degeneration of blood vessel walls and perivascular cell infiltration. The signs and symptoms of intracranial hypertension subsided postoperatively. Thirteen other cases the same as ours were collected from literature. They showed the signs and symptoms simulating a brain tumor (like a metastatic brain tumor) after irradiation to extracranial malignant tumors. Diagnosis of radiation necrosis was made by operation or autopsy. A follow-up for a long time is necessary, because the pathological changes in the brain may be progressive and extending in some cases, although decompressive operations for mass lesions give excellent results. (auth.)

  4. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas.

    Science.gov (United States)

    Sanai, Nader; Snyder, Laura A; Honea, Norissa J; Coons, Stephen W; Eschbacher, Jennifer M; Smith, Kris A; Spetzler, Robert F

    2011-10-01

    Greater extent of resection (EOR) for patients with low-grade glioma (LGG) corresponds with improved clinical outcome, yet remains a central challenge to the neurosurgical oncologist. Although 5-aminolevulinic acid (5-ALA)-induced tumor fluorescence is a strategy that can improve EOR in gliomas, only glioblastomas routinely fluoresce following 5-ALA administration. Intraoperative confocal microscopy adapts conventional confocal technology to a handheld probe that provides real-time fluorescent imaging at up to 1000× magnification. The authors report a combined approach in which intraoperative confocal microscopy is used to visualize 5-ALA tumor fluorescence in LGGs during the course of microsurgical resection. Following 5-ALA administration, patients with newly diagnosed LGG underwent microsurgical resection. Intraoperative confocal microscopy was conducted at the following points: 1) initial encounter with the tumor; 2) the midpoint of tumor resection; and 3) the presumed brain-tumor interface. Histopathological analysis of these sites correlated tumor infiltration with intraoperative cellular tumor fluorescence. Ten consecutive patients with WHO Grades I and II gliomas underwent microsurgical resection with 5-ALA and intraoperative confocal microscopy. Macroscopic tumor fluorescence was not evident in any patient. However, in each case, intraoperative confocal microscopy identified tumor fluorescence at a cellular level, a finding that corresponded to tumor infiltration on matched histological analyses. Intraoperative confocal microscopy can visualize cellular 5-ALA-induced tumor fluorescence within LGGs and at the brain-tumor interface. To assess the clinical value of 5-ALA for high-grade gliomas in conjunction with neuronavigation, and for LGGs in combination with intraoperative confocal microscopy and neuronavigation, a Phase IIIa randomized placebo-controlled trial (BALANCE) is underway at the authors' institution.

  5. Stereotactic irradiation for metastatic brain tumor

    International Nuclear Information System (INIS)

    Nomura, Ryutaro

    2017-01-01

    First, this paper reviewed the latest findings of stereotactic irradiation (STI) for metastatic brain tumors. Then, it described the results of randomized controlled trials for single or a few (2-4) metastasis in the following comparison tests: (1) comparison between whole brain radiotherapy (WBRT) alone group and (WBRT + STI) group, (2) comparison between STI alone group and (STI + WBRT) group, (3) comparison between STI alone group and (tumorectomy + WBRT) group, (4) comparison between (STI + WBRT) group and (tumorectomy + WBRT) group, and (5) between (tumorectomy + WBRT) group and (tumorectomy + STI) group. Among these, STI alone without WBRT has obtained a certain consensus. Against multiple metastatic brain tumors of 5 or more, when considering cognitive impairment and QOL loss by adding WBRT, it is general consensus that STI alone may be sufficient. At the authors' institution, cyber knife (CK) was introduced in 2008 and nearly 300 stereotactic radiotherapy for metastatic brain tumors have been performed annually. By adopting a robot arm and development of a lesion tracking system, the positional correction against the deviation of the bone margin of the skull is guaranteed in real time to ensure accuracy during irradiation, and hypofractionated stereotactic irradiation becomes easier. (A.O.)

  6. Infant brain tumors: incidence, survival, and the role of radiation based on Surveillance, Epidemiology, and End Results (SEER) Data.

    Science.gov (United States)

    Bishop, Andrew J; McDonald, Mark W; Chang, Andrew L; Esiashvili, Natia

    2012-01-01

    To evaluate the incidence of infant brain tumors and survival outcomes by disease and treatment variables. The Surveillance, Epidemiology, and End Results (SEER) Program November 2008 submission database provided age-adjusted incidence rates and individual case information for primary brain tumors diagnosed between 1973 and 2006 in infants less than 12 months of age. Between 1973 and 1986, the incidence of infant brain tumors increased from 16 to 40 cases per million (CPM), and from 1986 to 2006, the annual incidence rate averaged 35 CPM. Leading histologies by annual incidence in CPM were gliomas (13.8), medulloblastoma and primitive neuroectodermal tumors (6.6), and ependymomas (3.6). The annual incidence was higher in whites than in blacks (35.0 vs. 21.3 CPM). Infants with low-grade gliomas had the highest observed survival, and those with atypical teratoid rhabdoid tumors (ATRTs) or primary rhabdoid tumors of the brain had the lowest. Between 1979 and 1993, the annual rate of cases treated with radiation within the first 4 months from diagnosis declined from 20.5 CPM to incidence of infant brain tumors has been stable since 1986. Survival outcomes varied markedly by histology. For infants with medulloblastoma and ATRTs, improved survival was observed in patients treated with both surgery and early radiation compared with those treated with surgery alone. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Tumor sterilization dose and radiation induced change of the brain tissue in radiotherapy of brain tumors

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Maki, Yutaka; Takano, Shingo

    1987-01-01

    Ninety-seven patients with brain tumors (38 gliomas, 26 brain metastases, 18 sellar tumors, 15 others) were treated by cobalt gamma ray or proton radiotherapy. In this study, normal brain injury due to radiation was analysed in terms of time-dose-fractionation (TDF), nominal standard dose (NSD) by the Ellis formula and NeuNSD by a modification in which the N exponent was -0.44 and the T exponent was -0.06. Their calculated doses were analysed in relationship to the normal brain radiation induced change (RIC) and the tumor sterilization dose. All brain tumors with an exception of many patients with brain metastases were received a surgical extirpation subtotally or partially prior to radiotherapy. And all patients with glioma and brain metastasis received also immuno-chemotherapy in the usual manner during radiotherapy. The calculated dose expressed by NeuNSD and TDF showed a significant relationship between a therapeutic dose and a postradiation time in terms of the appearance of RIC. It was suggested that RIC was caused by a dose over 800 in NeuNSD and a dose over 70 in TDF. Furthermore, it was suggested that an aged patient and a patient who had the vulnerable brain tissue to radiation exposure in the irradiated field had the high risk of RIC. On the other hand, our results suggested that the tumor sterilization dose should be over 1,536 NeuNSD and the irradiated method should be further considered in addition to the radiobiological concepts for various brain tumors. (author)

  8. First experiences in treatment of low-grade glioma grade I and II with proton therapy

    International Nuclear Information System (INIS)

    Hauswald, Henrik; Rieken, Stefan; Ecker, Swantje; Kessel, Kerstin A; Herfarth, Klaus; Debus, Jürgen; Combs, Stephanie E

    2012-01-01

    To retrospectively assess feasibility and toxicity of proton therapy in patients with low-grade glioma (WHO °I/II). Proton beam therapy only administered in 19 patients (median age 29 years; 9 female, 10 male) for low-grade glioma between 2010 and 2011 was reviewed. In 6 cases proton therapy was performed due to tumor progression after biopsy, in 8 cases each due to tumor progression after (partial-) resection, and in 5 cases due to tumor progression after chemotherapy. Median total dose applied was 54 GyE (range, 48,6-54 GyE) in single fractions of median 1.8 GyE. Median clinical target volume was 99 cc (range, 6–463 cc) and treated using median 2 beams (range, 1–2). Proton therapy was finished as planned in all cases. At end of proton therapy, 13 patients showed focal alopecia, 6 patients reported mild fatigue, one patient with temporal tumor localization concentration deficits and speech errors and one more patient deficits in short-term memory. Four patients did not report any side effects. During follow-up, one patient presented with pseudo-progression showing worsening of general condition and brain edema 1–2 months after last irradiation and restitution after 6 months. In the present MR imaging (median follow-up 5 months; range 0–22 months) 12 patients had stable disease, 2 (1) patients partial (complete) remission, one more patient pseudo-progression (differential diagnosis: tumor progression) 4 weeks after irradiation without having had further follow-up imaging so far, and one patient tumor progression approximately 9 months after irradiation. Regarding early side effects, mild alopecia was the predominant finding. The rate of alopecia seems to be due to large treatment volumes as well as the anatomical locations of the target volumes and might be avoided by using multiple beams and the gantry in the future. Further evaluations including neuropsychological testing are in preparation

  9. [Isolation and identification of brain tumor stem cells from human brain neuroepithelial tumors].

    Science.gov (United States)

    Fang, Jia-sheng; Deng, Yong-wen; Li, Ming-chu; Chen, Feng-Hua; Wang, Yan-jin; Lu, Ming; Fang, Fang; Wu, Jun; Yang, Zhuan-yi; Zhou, Xang-yang; Wang, Fei; Chen, Cheng

    2007-01-30

    To establish a simplified culture system for the isolation of brain tumor stem cells (BTSCs) from the tumors of human neuroepithelial tissue, to observe the growth and differentiation pattern of BTSCs, and to investigate their expression of the specific markers. Twenty-six patients with brain neuroepithelial tumors underwent tumor resection. Two pieces of tumor tissues were taken from each tumor to be dissociated, triturated into single cells in sterile DMEM-F12 medium, and then filtered. The tumor cells were seeded at a concentration of 200,000 viable cells per mL into serum-free DMEM-F12 medium simply supplemented with B27, human basic fibroblast growth factor (20 microg/L), human epidermal growth factor (20 microg /L), insulin (4 U/L), L-glutamine, penicillin and streptomycin. After the primary brain tumor spheres (BTSs) were generated, they were triturated again and passed in fresh medium. Limiting dilution assay was performed to observe the monoclone formation. 5-bromodeoxyuridine (BrdU) incorporation test was performed to observe the proliferation of the BTS. The BTSCs were cultured in mitogen-free DMEM-F12 medium supplemented with 10% fetal bovine serum to observe their differentiation. Immunocytochemistry was used to examine the expression of CD133 and nestin, specific markers of BTSC, and the rate of CD133 positive cells. Only a minority of subsets of cells from the tumors of neuroepithelial tissue had the capacity to survive, proliferate, and generate free-floating neurosphere-like BTSs in the simplified serum-free medium. These cells attached to the poly-L-lysine coated coverslips in the serum-supplemented medium and differentiated. The BTSCs were CD133 and nestin positive. The rate of CD133 positive cells in the tumor specimens was (21 +/- 6.2)% - (38 +/- 7.0)%. A new simplified culture system for the isolation of BTSCs is established. The tumors of human neuroepithelial tissue contain CD133 and nestin positive tumor stem cells which can be isolated

  10. Spread of edema with brain tumors

    International Nuclear Information System (INIS)

    Hosoya, Takaaki

    1987-01-01

    Cerebral edema associated with brain tumors is visualized on CT as a hypodensity lesion involving mainly the white matter. The detailed features of its evolution were investigated in a review of CT examinations performed on 56 patients with brain tumors, with the following results. 1. The susceptibility to edema varied according to the types of fibers. Association fibers were more sensitive to edema than projection and commissural fibers. 2. The edema had a characteristic of spreading along not only the association fibers but also the projection and commissural fibers. 3. The spread of edema along the association fibers was interupted in sites of convergence of the fibers such as the external capsule and just beneath the central sulcus in the certrum semiovale. 4. In some cases with intra-axial tumors, the edema extended mainly in the projection and commissural fibers considered to be more resistant to it. For example, in cases with parietal and temporal intra-axial tumors, the posterior limb of the internal capsule was often more edematous than the external capsule. 5. The edema associated with meningioma had a characteristic of spreading mainly along the association fibers. When situated close to the corpus callosum, however, the commissural fibers were also involved. Edema extending mainly in the internal capsule, thus, was rarely observed in meningioma. 6. There was unique pattern of spread of edema in frontal tumors, which differentiated their CT pattern. Therefore, the location of the tumor could be correctly diagnosed by the pattern of the edema extension, even near the central sulcus or in the operculum region. (author)

  11. Targeting Malignant Brain Tumors with Antibodies

    Directory of Open Access Journals (Sweden)

    Rok Razpotnik

    2017-09-01

    Full Text Available Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs, and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT. Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs and neural stem cells (NSCs show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts, are making their way into glioma treatment as another type of cell

  12. Cathepsin D and Its Prognostic Value in Neuroepithelial Brain Tumors

    OpenAIRE

    Pigac, Biserka; Dmitrović, Branko; Marić, Svjetlana; Mašić, Silvija

    2012-01-01

    Expression of Cathepsin D (Cath D) in some primary neuroepithelial brain tumors and its prognostic value were studied. The research included 65 samples of human primary neuroepithelial brain tumors. There were 50 glial tumors (10 diffuse astrocytomas (DA), 15 anaplastic astrocytomas (AA), 25 glioblastomas (GB), 15 embryonic tumors (15 medulloblastomas (MB) as well as 5 samples of normal brain tissue. Immunohistochemical method was applied to monitor diffuse positive reaction in the cytoplasm ...

  13. Anatomical location differences between mutated and wild-type isocitrate dehydrogenase 1 in low-grade gliomas.

    Science.gov (United States)

    Yu, Jinhua; Shi, Zhifeng; Ji, Chunhong; Lian, Yuxi; Wang, Yuanyuan; Chen, Liang; Mao, Ying

    2017-10-01

    Anatomical location of gliomas has been considered as a factor implicating the contributions of a specific precursor cells during the tumor growth. Isocitrate dehydrogenase 1 (IDH1) is a pathognomonic biomarker with a significant impact on the development of gliomas and remarkable prognostic effect. The correlation between anatomical location of tumor and IDH1 states for low-grade gliomas was analyzed quantitatively in this study. Ninety-two patients diagnosed of low-grade glioma pathologically were recruited in this study, including 65 patients with IDH1-mutated glioma and 27 patients with wide-type IDH1. A convolutional neural network was designed to segment the tumor from three-dimensional magnetic resonance imaging images. Voxel-based lesion symptom mapping was then employed to study the tumor location distribution differences between gliomas with mutated and wild-type IDH1. In order to characterize the location differences quantitatively, the Automated Anatomical Labeling Atlas was used to partition the standard brain atlas into 116 anatomical volumes of interests (AVOIs). The percentages of tumors with different IDH1 states in 116 AVOIs were calculated and compared. Support vector machine and AdaBoost algorithms were used to estimate the IDH1 status based on the 116 location features of each patient. Experimental results proved that the quantitative tumor location measurement could be a very important group of imaging features in biomarker estimation based on radiomics analysis of glioma.

  14. Brain Tumor Database, a free relational database for collection and analysis of brain tumor patient information.

    Science.gov (United States)

    Bergamino, Maurizio; Hamilton, David J; Castelletti, Lara; Barletta, Laura; Castellan, Lucio

    2015-03-01

    In this study, we describe the development and utilization of a relational database designed to manage the clinical and radiological data of patients with brain tumors. The Brain Tumor Database was implemented using MySQL v.5.0, while the graphical user interface was created using PHP and HTML, thus making it easily accessible through a web browser. This web-based approach allows for multiple institutions to potentially access the database. The BT Database can record brain tumor patient information (e.g. clinical features, anatomical attributes, and radiological characteristics) and be used for clinical and research purposes. Analytic tools to automatically generate statistics and different plots are provided. The BT Database is a free and powerful user-friendly tool with a wide range of possible clinical and research applications in neurology and neurosurgery. The BT Database graphical user interface source code and manual are freely available at http://tumorsdatabase.altervista.org. © The Author(s) 2013.

  15. Primary brain tumor presenting as intracranial hemorrhage

    International Nuclear Information System (INIS)

    Tsunoda, Shigeru; Sakaki, Toshisuke; Miyamoto, Seiji; Kyoi, Kikuo; Utsumi, Shozaburo; Kamada, Kitaro; Inui, Shoji; Masuda, Akio.

    1989-01-01

    Ten cases of primary brain tumor presenting as intracranial hemorrhage were studied in terms of the radiological and histological findings. The cases having hemorrhage in the tumor, as established through CT or histologically, were excluded if their onsets were not sudden due to intracranial hemorrhages. The results obtained may be summarized as follows: 1) From an anatomical point of view, cerebral subcortical hemorrhages account for 80%; hemorrhages in the cerebellopontine angle, 10%, and hemorrhages in the basal ganglia, 10%. 2) Plain CT findings showed perifocal low-density areas within 24 hours after onset in all 10 cases. 3) Enhanced CT findings showed enhanced areas in 4 or 6 cases. 4) Angiographic findings revealed abnormalities besides the mass effect in 5 of the 10 cases. 4) Angiographic findings revealed abnormalities besides the mass effect in 5 of the 10 cases. 5) From a histological point of view, glioblastomas account for 30%; malignant astrocytomas, 20%; astrocytomas, 20%; malignant ependymomas, 10%; hemangioblastoma, 10%, and transitional meningiomas, 10%. In conclusion, a perifocal low-density area on CT within 24 hours after onset is the most meaningful indication of intracranial hemorrhage originating from a brain tumor. A histological 'perinuclear halo' in an astrocytoma as an artifact due to hemorrhage may often be misleading in diagnosing mixed oligo-astrocytomas. (author)

  16. Targeting Nanomedicine to Brain Tumors: Latest Progress and Achievements.

    Science.gov (United States)

    Van't Root, Moniek; Lowik, Clemens; Mezzanotte, Laura

    2017-01-01

    Targeting nanomedicine to brain tumors is hampered by the heterogeneity of brain tumors and the blood brain barrier. These represent the main reasons of unsuccessful treatments. Nanomedicine based approaches hold promise for improved brain tissue distribution of drugs and delivery of combination therapies. In this review, we describe the recent advancements and latest achievements in the use of nanocarriers, virus and cell-derived nanoparticles for targeted therapy of brain tumors. We provide successful examples of nanomedicine based approaches for direct targeting of receptors expressed in brain tumor cells or modulation of pathways involved in cell survival as well as approaches for indirect targeting of cells in the tumor stroma and immunotherapies. Although the field is at its infancy, clinical trials involving nanomedicine based approaches for brain tumors are ongoing and many others will start in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Regional cerebral blood flow measurement in brain tumors

    International Nuclear Information System (INIS)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-01-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of 133 Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors. (author)

  18. Regional cerebral blood flow measurement in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-10-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of /sup 133/Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors.

  19. Intraoperative MRI in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Choudhri, Asim F. [Le Bonheur Children' s Hospital, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Siddiqui, Adeel [University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Klimo, Paul; Boop, Frederick A. [University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Semmes-Murphey Neurologic and Spine Institute, Memphis, TN (United States); St. Jude Children' s Hospital, Division of Neurosurgery, Department of Surgery, Memphis, TN (United States)

    2015-09-15

    Intraoperative magnetic resonance imaging (iMRI) has emerged as an important tool in guiding the surgical management of children with brain tumors. Recent advances have allowed utilization of high field strength systems, including 3-tesla MRI, resulting in diagnostic-quality scans that can be performed while the child is on the operating table. By providing information about the possible presence of residual tumor, it allows the neurosurgeon to both identify and resect any remaining tumor that is thought to be safely accessible. By fusing the newly obtained images with the surgical guidance software, the images have the added value of aiding in navigation to any residual tumor. This is important because parenchyma often shifts during surgery. It also gives the neurosurgeon insight into whether any immediate postoperative complications have occurred. If any complications have occurred, the child is already in the operating room and precious minutes lost in transport and communications are saved. In this article we review the three main approaches to an iMRI system design. We discuss the possible roles for iMRI during intraoperative planning and provide guidance to help radiologists and neurosurgeons alike in the collaborative management of these children. (orig.)

  20. Intraoperative MRI in pediatric brain tumors

    International Nuclear Information System (INIS)

    Choudhri, Asim F.; Siddiqui, Adeel; Klimo, Paul; Boop, Frederick A.

    2015-01-01

    Intraoperative magnetic resonance imaging (iMRI) has emerged as an important tool in guiding the surgical management of children with brain tumors. Recent advances have allowed utilization of high field strength systems, including 3-tesla MRI, resulting in diagnostic-quality scans that can be performed while the child is on the operating table. By providing information about the possible presence of residual tumor, it allows the neurosurgeon to both identify and resect any remaining tumor that is thought to be safely accessible. By fusing the newly obtained images with the surgical guidance software, the images have the added value of aiding in navigation to any residual tumor. This is important because parenchyma often shifts during surgery. It also gives the neurosurgeon insight into whether any immediate postoperative complications have occurred. If any complications have occurred, the child is already in the operating room and precious minutes lost in transport and communications are saved. In this article we review the three main approaches to an iMRI system design. We discuss the possible roles for iMRI during intraoperative planning and provide guidance to help radiologists and neurosurgeons alike in the collaborative management of these children. (orig.)

  1. Photodynamic Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Akimoto, Jiro

    2016-01-01

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women's Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area.

  2. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    Science.gov (United States)

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  3. Processing of low-grade uranium ores

    International Nuclear Information System (INIS)

    Michel, P.

    1975-01-01

    Four types of low grade ores are studied. Low grade ores which must be extracted because they are enclosed in a normal grade deposit. Heap leaching is the processing method which is largely used. It allows to obtain solutions or preconcentrates which may be delivered at the nearest plant. Normal grade ores contained in a low amplitude deposit which can be processed using leaching as far as the operation does not need any large expensive equipment. Medium grade ores in medium amplitude deposits to which a simplified conventional process can be applied using fast heap leaching. Low grade ores in large deposits. The processing possibilities leading to use in place leaching are explained. The operating conditions of the method are studied (leaching agent, preparation of the ore deposit to obtain a good tightness with regard to the hydrological system and to have a good contact between ore and reagent) [fr

  4. Processing of low grade uranium ores

    International Nuclear Information System (INIS)

    Michel, P.

    1978-10-01

    Four types of low-grade ores are studied: (1) Low-grade ores that must be extracted because they are enclosed in a normal-grade deposit. Heap leaching is the processing method which is largely used. (2) Normal-grade ores contained in low-amplitude deposits. They can be processed using in-place leaching as far as the operation does not need any large and expensive equipment. (3) Medium-grade ores in medium-amplitude deposits. A simplified conventional process can be applied using fast heap leaching. (4) Low-grade ores in large deposits. The report explains processing possibilities leading in most cases to the use of in-place leaching. The operating conditions of this method are laid out, especially the selection of the leaching agents and the preparation of the ore deposit

  5. Preliminary SPECT study of I-123 labeled 3-iodo-O-methyl-L-α-methyltyrosine (OMIMT) in patients with brain tumor

    International Nuclear Information System (INIS)

    Choi, C. W.; Yang, S. D.; Woo, K. S.; Chung, W. S.; Lee, S. H.; Rhee, C. H.; Jang, J. S.; Hong, S. W.; Lim, S. M.

    1997-01-01

    Radioiodine labeled tyrosine analogues, such as L-3-[I-123]iodo-α-methyltyrosine, have been used for the imaging of brain tumors. We added one methyl-group to the L-3-α-methyltyrosine, expecting the increased cellular membrane permeability. The aim of this study was to evaluate the feasibility of OMIMT as an agent for tumor image. After synthesis of o-methyl-L-α-methyltyrosine (OMAMT), OMAMT was labeled with I-131/I-123 using Iodogen method. Fifteen female Fischer rats were implanted with the 9L gliosarcoma cell line into right thigh. The biodistribution was evaluated (30 min, 2hr, 24hr) after iv injection of 7.4 MBq I-131 labeled OMIMT. The tumor uptake was higher than the muscle uptake at every time point studied (3.74 vs 1.62%ID/g at 30 min and 0.04 vs 0.01 %ID/g at 24 hr, respectively). Tumor to blood ratios were 1.5 : 1 at 30 min, 2.3 : 1 at 2 hr and 0.9 : 1 at 24 hr. The kidney uptake was peaked at 30 min. Gamma camera images of 9L tumor-bearing rats were obtained at 30 min, 2 and 24 hr. Tumor was visualized as early as at 30 min. After the injection of 555-740MBq of [I-123] OMIMT, the brain SPECT image was obtained at 1 hr in patients with brain tumor (n=5, high grade tumor=3, low grade tumor=2. The average tumor-to-normal (T/N) ratios were 1.31 (range : 1.10-1.61) in high grade tumors and 1.04 90.81, 1.27, respectively) in low grade tumors. In conclusion, radioiodine labeled OMIMT might be useful as a tumor imaging agent

  6. Stereotactic iodine-125 brachytherapy for brain tumors: temporary versus permanent implantation

    Directory of Open Access Journals (Sweden)

    Ruge Maximilian I

    2012-06-01

    Full Text Available Abstract Stereotactic brachytherapy (SBT has been described in several publications as an effective, minimal invasive and safe highly focal treatment option in selected patients with well circumscribed brain tumors 40 cGy/h in combination with adjuvant external beam radiation and/or chemotherapy for the treatment of malignant gliomas and metastases resulted in increased rates of radiation induced adverse tissue changes requiring surgical intervention. Vice versa, such effects have been only minimally observed in numerous studies applying low dose rate (LDR regiments (3–8 cGy/h for low grade gliomas, metastases and other rare indications. Besides these observations, there are, however, no data available directly comparing the long term incidences of tissue changes after HDR and LDR and there is, furthermore, no evidence regarding a difference between temporary or permanent LDR implantation schemes. Thus, recommendations for effective and safe implantation schemes have to be investigated and compared in future studies.

  7. Brain tumor segmentation with Deep Neural Networks.

    Science.gov (United States)

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Diagnosis and prognosis of brain tumors in clinical trials

    OpenAIRE

    Gorlia, Thierry

    2013-01-01

    textabstractAccording to the Central Brain Registry Of The United States (CBTRUS) statistical report (February 2012) the incidence rate of all primary non malignant and malignant brain and central nervous system tumors is 19.89 cases per 100.000 (11.58 for non-malignant tumors and 7.31 for malignant tumors). Malignant brain tumors account for only 1% to 2% of all adult cancers. As a comparison, in 2012, the incidence of women breast cancer was 121.2 (per 100.000). Tumors of neuroepithelial ti...

  9. Radiotherapy for pediatric brain tumors: Standard of care, current clinical trials, and new directions

    International Nuclear Information System (INIS)

    Kun, Larry E.

    1996-01-01

    cooperative group trials will be presented with reference to data re surgical, radiotherapeutic, and chemotherapeutic components of modern therapy. The outcome of supratentorial malignant gliomas and classical brainstem gliomas remains unacceptable; data from recent studies and planned protocols will be presented to highlight current treatment standards. The impact of tumor extent and resectability in ependymoma and craniopharyngioma will be reviewed to emphasize current practice, clinical investigations, and evolving debate regarding the role of radiation therapy and introduction of precision techniques. The rationale for recommended radiation volume(s) for intracranial germinomas will be reviewed, as well as recent data and proposed studies addressing combined chemoradiation for germ cell tumors. Recognizing the unique risk:benefit ration in treating infants and young children with both low grade and malignant brain tumors, the indications for radiation therapy, timing, and potential modifications of therapy will be highlighted

  10. Feasibility of the evidence-based cognitive telerehabilitation program Remind for patients with primary brain tumors.

    Science.gov (United States)

    van der Linden, Sophie D; Sitskoorn, Margriet M; Rutten, Geert-Jan M; Gehring, Karin

    2018-05-01

    Many patients with primary brain tumors experience cognitive deficits. Cognitive rehabilitation programs focus on alleviating these deficits, but availability of such programs is limited. Our large randomized controlled trial (RCT) demonstrated positive effects of the cognitive rehabilitation program developed by our group. We converted the program into the iPad-based cognitive rehabilitation program ReMind, to increase its accessibility. The app incorporates psychoeducation, strategy training and retraining. This pilot study in patients with primary brain tumors evaluates the feasibility of the use of the ReMind-app in a clinical (research) setting in terms of accrual, attrition, adherence and patient satisfaction. The intervention commenced 3 months after resective surgery and patients were advised to spend 3 h per week on the program for 10 weeks. Of 28 eligible patients, 15 patients with presumed low-grade glioma or meningioma provided informed consent. Most important reason for decline was that patients (7) experienced no cognitive complaints. Participants completed on average 71% of the strategy training and 76% of the retraining. Some patients evaluated the retraining as too easy. Overall, 85% of the patients evaluated the intervention as "good" or "excellent". All patients indicated that they would recommend the program to other patients with brain tumors. The ReMind-app is the first evidence-based cognitive telerehabilitation program for adult patients with brain tumors and this pilot study suggests that postoperative cognitive rehabilitation via this app is feasible. Based on patients' feedback, we have expanded the retraining with more difficult exercises. We will evaluate the efficacy of ReMind in an RCT.

  11. Better utilization of low-grade woods

    Science.gov (United States)

    Peter Koch

    1957-01-01

    The objective of this paper is threefold: to outline briefly some of the avenues of approach so far employed in utilizing low-grade wood, to comment on the economic aspects of the problem, and finally, to speculate about what developments the future might bring to the field of utilization.

  12. Low-Grade Glioma Segmentation Based on CNN with Fully Connected CRF

    Directory of Open Access Journals (Sweden)

    Zeju Li

    2017-01-01

    Full Text Available This work proposed a novel automatic three-dimensional (3D magnetic resonance imaging (MRI segmentation method which would be widely used in the clinical diagnosis of the most common and aggressive brain tumor, namely, glioma. The method combined a multipathway convolutional neural network (CNN and fully connected conditional random field (CRF. Firstly, 3D information was introduced into the CNN which makes more accurate recognition of glioma with low contrast. Then, fully connected CRF was added as a postprocessing step which purposed more delicate delineation of glioma boundary. The method was applied to T2flair MRI images of 160 low-grade glioma patients. With 59 cases of data training and manual segmentation as the ground truth, the Dice similarity coefficient (DSC of our method was 0.85 for the test set of 101 MRI images. The results of our method were better than those of another state-of-the-art CNN method, which gained the DSC of 0.76 for the same dataset. It proved that our method could produce better results for the segmentation of low-grade gliomas.

  13. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  14. Obstacles to Brain Tumor Therapy: Key ABC Transporters

    Directory of Open Access Journals (Sweden)

    Juwina Wijaya

    2017-11-01

    Full Text Available The delivery of cancer chemotherapy to treat brain tumors remains a challenge, in part, because of the inherent biological barrier, the blood–brain barrier. While its presence and role as a protector of the normal brain parenchyma has been acknowledged for decades, it is only recently that the important transporter components, expressed in the tightly knit capillary endothelial cells, have been deciphered. These transporters are ATP-binding cassette (ABC transporters and, so far, the major clinically important ones that functionally contribute to the blood–brain barrier are ABCG2 and ABCB1. A further limitation to cancer therapy of brain tumors or brain metastases is the blood–tumor barrier, where tumors erect a barrier of transporters that further impede drug entry. The expression and regulation of these two transporters at these barriers, as well as tumor derived alteration in expression and/or mutation, are likely obstacles to effective therapy.

  15. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  16. Conformal proton radiation therapy for pediatric low-grade astrocytomas

    International Nuclear Information System (INIS)

    Hug, E.B.; Loma Linda Univ. Medical Center, Loma Linda, CA; Darthmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Muenter, M.W.; Archambeau, J.O.; DeVries, A.; Loredo, L.N.; Grove, R.I.; Slater, J.D.; Liwnicz, B.

    2002-01-01

    Background: To evaluate the safety and efficacy of proton radiation therapy (PRT) for intracranial low-grade astrocytomas, the authors analyzed the first 27 pediatric patients treated at Loma Linda University Medical Center (LLUMC). Patients and Method: Between September 1991 and August 1997, 27 patients (13 female, 14 male) underwent fractionated proton radiation therapy for progressive or recurrent low-grade astrocytoma. Age at time of treatment ranged from 2 to 18 years (mean: 8.7 years). Tumors were located centrally (diencephatic) in 15 patients, in the cerebral and cerebellar hemispheres in seven patients, and in the brainstem in five patients. 25/27 patients (92%) were treated for progressive, unresectable, or residual disease following subtotal resection. Tissue diagnosis was available in 23/27 patients (85%). Four patients with optic pathway tumors were treated without histologic confirmation. Target doses between 50.4 and 63.0 CGE (cobalt gray equivalent, mean: 55.2 CGE) were prescribed at 1.8 CGE per fraction, five treatments per week. Results: At a mean follow-up period of 3.3 years (0.6-6.8 years), 6/27 patients experienced local failure (all located within the irradiated field), and 4/27 patients had died. By anatomic site these data translated into rates of local control and survival of 87% (13/15 patients) and 93% (14/15 patients) for central tumors, 71% (5/7 patients) and 86% (6/7 patients) for hemispheric tumors, and 60% (3/5 patients) and 60% (3/5 patients) for tumors located in the brainstem. Proton radiation therapy was generally well tolerated. All children with local control maintained their performance status. One child with associated neurofibromatosis, Type 1, developed Moyamoya disease. All six patients with optic pathway tumors and useful vision maintained or improved their visual status. Conclusions: This report on pediatric low-grade astrocytomas confirms proton radiation therapy as a safe and efficacious 3-D conformal treatment

  17. Magnetic resonance imaging in brain-stem tumors

    International Nuclear Information System (INIS)

    Nomura, Mikio; Saito, Hisazumi; Akino, Minoru; Abe, Hiroshi.

    1988-01-01

    Four patients with brain-stem tumors underwent magnetic resonance imaging (MRI) before and after radiotherapy. The brain-stem tumors were seen as a low signal intensity on T1-weighted images and as a high signal intensity on T2-weighted images. A tumor and its anatomic involvement were more clearly visualized on MRI than on cuncurrently performed CT. Changes in tumor before and after radiotherapy could be determined by measuring the diameter of tumor on sagittal and coronal images. This allowed quantitative evaluation of the reduction of tumor in association with improvement of symptoms. The mean T1 value in the central part of tumors was shortened in all patients after radiotherapy. The results indicate that MRI may assist in determining the effect of radiotherapy for brain-stem tumors. (Namekawa, K)

  18. Childhood brain tumors: epidemiology, current management and future directions.

    Science.gov (United States)

    Pollack, Ian F; Jakacki, Regina I

    2011-07-26

    Brain tumors are the most common solid tumors in children. With the increasingly widespread availability of MRI, the incidence of childhood brain tumors seemed to rise in the 1980s, but has subsequently remained relatively stable. However, management of brain tumors in children has evolved substantially during this time, reflecting refinements in classification of tumors, delineation of risk groups within histological subsets of tumors, and incorporation of molecular techniques to further define tumor subgroups. Although considerable progress has been made in the outcomes of certain tumors, prognosis in other childhood brain tumor types is poor. Among the tumor groups with more-favorable outcomes, attention has been focused on reducing long-term morbidity without sacrificing survival rates. Studies for high-risk groups have examined the use of intensive therapy or novel, molecularly targeted approaches to improve disease control rates. In addition to reviewing the literature and providing an overview of the complexities in diagnosing childhood brain tumors, we will discuss advances in the treatment and categorization of several tumor types in which progress has been most apparent, as well as those in which improvements have been lacking. The latest insights from molecular correlative studies that hold potential for future refinements in therapy will also be discussed.

  19. Holocord low grade astrocytoma - Role of radical irradiation and chemotherapy

    International Nuclear Information System (INIS)

    Goyal, S.; Puri, T.; Julka, R.K.

    2015-01-01

    Spinal intradural tumors, especially those extending along the entire length of the spinal cord, termed as ‘holocord’ tumors are uncommon. Most of these are gliomas, with astrocytomas (low grade) predominating in children and ependymomas in adults. Other histologies, though reported, are even rarer. Management is debatable, with both surgery and radiotherapy of such extensive tumors posing challenges. We describe a case of a 14-year-old girl with holocord astrocytoma extending from cervicomedullary junction till lumbar spine, who recovered full neurological function following radical irradiation of entire spine followed by temozolomide-based chemotherapy. No grade 3/4 bone marrow morbidity was seen. Five years following treatment, she maintained normal neurological function and apparently normal pubertal and skeletal growth despite residual disease visible on imaging. Literature review of existing reports of holocord astrocytomas highlighting management and outcome is presented.

  20. First-line nitrosourea-based chemotherapy in symptomatic non-resectable supratentorial pure low-grade astrocytomas.

    Science.gov (United States)

    Frenay, M P; Fontaine, D; Vandenbos, F; Lebrun, C

    2005-09-01

    At the present time, there are no proven beneficial effects of chemotherapy (CT) for the treatment of pure low-grade astrocytomas. Brain radiotherapy (RT) still remains the standard treatment in order to reduce or delay tumor progression or symptoms, despite possible long-term neurologic complications. We report 10 patients, with histologically proven pure low-grade fibrillary astrocytomas, to which we administered a first-line nitrosourea-based CT. All patients were symptomatic with pharmaco-resistant epilepsy or neurologic symptoms, and had been rejected for neurosurgical resection. All patients with epilepsy had a clinical improvement with reduction in seizure frequency and 60% became seizure-free. CT was well tolerated; all patients developed myelosuppression with 40% of grade III/IV hematotoxicity. Seven were alive at the time of writing with a mean follow-up of 6.5 years (3.5-12) from first recorded symptoms. The three deceased patients died 7.5, 7.5, and 8.5 years from first symptoms. These results demonstrate that some patients with symptomatic non-resectable fibrillary low-grade astrocytomas can be treated with up-front CT to improve their neurologic status. This report suggests that benefits of CT on symptoms, survival, and quality of life should be prospectively compared with RT.

  1. Anticonvulsant therapy in brain-tumor related epilepsy

    Directory of Open Access Journals (Sweden)

    Fröscher Walter

    2016-06-01

    Full Text Available Background. The lifetime risk of patients with brain tumors to have focal epileptic seizures is 10-100%; the risk depends on different histology. Specific guidelines for drug treatment of brain tumor-related seizures have not yet been established.

  2. Brain Tumor Trials Collaborative | Center for Cancer Research

    Science.gov (United States)

    Brain Tumor Trials Collaborative In Pursuit of a Cure The mission of the BTTC is to develop and perform state-of-the-art clinical trials in a collaborative and collegial environment, advancing treatments for patients with brain tumors, merging good scientific method with concern for patient well-being and outcome.

  3. Interphone study - on mobile phones and brain tumors

    International Nuclear Information System (INIS)

    2010-01-01

    Interphone study is the largest study on mobile phone use and risk of brain tumors that have been implemented. The study does not provide reliable answers to whether there is an increased risk of brain tumors using the mobile phone, but is an important contribution. (AG)

  4. Diagnosis and prognosis of brain tumors in clinical trials

    NARCIS (Netherlands)

    T.S. Gorlia (Thierry)

    2013-01-01

    textabstractAccording to the Central Brain Registry Of The United States (CBTRUS) statistical report (February 2012) the incidence rate of all primary non malignant and malignant brain and central nervous system tumors is 19.89 cases per 100.000 (11.58 for non-malignant tumors and 7.31 for malignant

  5. Low-grade central osteosarcoma in proximal humerus: a rare entity

    Directory of Open Access Journals (Sweden)

    Tang F

    2017-10-01

    Full Text Available Fan Tang,1,2 Li Min,1,2 Yong Zhou,1 Yi Luo,1 Chongqi Tu1 1Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China; 2Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA Abstract: Low-grade central osteosarcoma is a rare subtype of tumor with low-grade malignancy. Currently, wide resection with negative resection margin is the standard treatment for this disease. The role of neoadjuvant chemotherapy in low-grade central osteosarcoma was controversial and was mostly considered for tumors containing high-grade focal areas. Local tumor recurrences often exhibited a tumor with higher histologic grade or differentiation with the potential for metastases. In low-grade central osteosarcoma, timely wide resection after definite diagnosis can result in 5-year survival for almost 90%. However, the relatively nonspecific radiological and pathological findings make diagnosis very difficult. MDM2 and CDK4 are specific and provide sensitive markers for the diagnosis of low-grade central osteosarcoma, helping to differentiate low-grade central osteosarcoma from some benign lesions, including fibrous dysplasia, bone giant cell tumor, and chondrosarcoma. Here, we report the case of a 19-year-old woman with low-grade central osteosarcoma located at the proximal humerus. The affected site was rare, but the sensitive biomarkers CDK4 and MDM2 were positive. The patient recovered well after wide tumor resection following a proximal humerus endoprosthesis replacement. Our case highlighted the management strategies in low-grade central osteosarcoma. Being familiar with radiographic features, understanding the biological characteristics, and mastering diagnostic biomarkers can help oncologists avoid embarrassing situations in treatment when this rare tumor is highly suspected, even when located at an uncommon site. The discussion in this report

  6. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  7. Stereotaxic external irradiation for brain tumors

    International Nuclear Information System (INIS)

    Kim, Y.H.; Fayos, J.V.; Houdek, P.V.; Landy, H.; Van Buren, J.

    1987-01-01

    A system has been developed to deliver precision radiation therapy to a limited volume of brain tissue. A CT-compatible nonmetallic headband, or ''halo,'' is secured to the skull with screw pins. A metal frame attached to the CT couch and the patient's head is secured to the couch by temporarily affixing the halo to the frame. A CT scan is obtained to determine the x,y,z coordinates of the brain lesion. The same halo, frame, and coordinates are used in daily treatment with 10-MVX accelerator and a coplanar arc rotation technique. Field size is determined to cover the target volume with the 90% isodose line. Verification films are obtained twice a week. On completion of treatment, the halo is removed. From December 1982 to January 1986, 14 patients were treated with this system. Six had pituitary tumors, two had craniopharyngiomas, and six had astrocytomas. The dose delivered ranged from 3,600 rad in 12 fractions to 6,250 rad in 25 fractions at a rate of one fraction per day, 5 days a week. Judging from the verification films, daily administration of intended radiation was extremely good. Superficial infection of the screw-pin sites healed without sequelae. All patients were alive at the last follow-up. This system is relatively simple yet able to deliver precision irradiation without any remarkable complications

  8. Classification of brain tumor extracts by high resolution ¹H MRS using partial least squares discriminant analysis

    Directory of Open Access Journals (Sweden)

    A.V. Faria

    2011-02-01

    Full Text Available High resolution proton nuclear magnetic resonance spectroscopy (¹H MRS can be used to detect biochemical changes in vitro caused by distinct pathologies. It can reveal distinct metabolic profiles of brain tumors although the accurate analysis and classification of different spectra remains a challenge. In this study, the pattern recognition method partial least squares discriminant analysis (PLS-DA was used to classify 11.7 T ¹H MRS spectra of brain tissue extracts from patients with brain tumors into four classes (high-grade neuroglial, low-grade neuroglial, non-neuroglial, and metastasis and a group of control brain tissue. PLS-DA revealed 9 metabolites as the most important in group differentiation: γ-aminobutyric acid, acetoacetate, alanine, creatine, glutamate/glutamine, glycine, myo-inositol, N-acetylaspartate, and choline compounds. Leave-one-out cross-validation showed that PLS-DA was efficient in group characterization. The metabolic patterns detected can be explained on the basis of previous multimodal studies of tumor metabolism and are consistent with neoplastic cell abnormalities possibly related to high turnover, resistance to apoptosis, osmotic stress and tumor tendency to use alternative energetic pathways such as glycolysis and ketogenesis.

  9. Study on intraoperative radiotherapy of brain tumors

    International Nuclear Information System (INIS)

    Uozumi, Akimasa

    1990-01-01

    Effects of a single large dose radiation on the brain of dogs were investigated for the purpose of determining the optimal dose and radiation field in intraoperative radiotherapy. The right parietal lobe of dogs (three groups, four dogs in each) were radiated at the dose of 30, 40 and 50 Gy respectively at the depth of 1.5 cm by 11 Nev electron beam with field size of 2 cm. CT and histopathological study were performed 2, 6, 12 and 24 months after radiation. L-hemiparesis developed 14 months after radiation in the 30 Gy group and 8 months in the 40 Gy group, 6 months in the 50 Gy group. All animals in the 40 Gy and 50 Gy groups died before 15 months of radiation. CT showed delayed radiation necrosis in all groups. Brain swelling and ventricular displacement in the radiated hemisphere and contralateral ventricular dilatation were depicted on plain CT. Diffuse heterogeneous contrast enhancement (CE) was observed on CE-CT. CT revealed disappearance of radiation necrosis in the 30 Gy group 24 months of radiation, suggesting that radiation necrosis may be dependent on the term after radiation. Histological findings of radiation necrosis were similar in all animals, and the vascular change preceding the parechymal necrosis was not observed. This supports the theory that the vascular alternation dose not play a major role in the production of radiation necrosis. The necrotic area grossly reflected the isodose curve and was observed in the radiation field with 15 to 20 Gy at the depth of 3 to 4.5 cm. Thus, the intraoperative radiotherapy should be planned on the basis of two such factors as electron beam energy and the field size, and the area out of the target should not be radiated at the dose of more than 15 Gy. The author believes that the information would contribute to safer and more effective application of intraoperative radiotherapy on malignant brain tumors. (J.P.N.) 63 refs

  10. Remodeling the blood–brain barrier microenvironment by natural products for brain tumor therapy

    Institute of Scientific and Technical Information of China (English)

    Xiao Zhao; Rujing Chen; Mei Liu; Jianfang Feng; Jun Chen; Kaili Hu

    2017-01-01

    Brain tumor incidence shows an upward trend in recent years; brain tumors account for 5% of adult tumors, while in children, this figure has increased to 70%. Moreover, 20%–30% of malignant tumors will eventually metastasize into the brain. Both benign and malignant tumors can cause an increase in intracranial pressure and brain tissue compression, leading to central nervous system(CNS) damage which endangers the patients’ lives. Despite the many approaches to treating brain tumors and the progress that has been made, only modest gains in survival time of brain tumor patients have been achieved. At present, chemotherapy is the treatment of choice for many cancers, but the special structure of the blood–brain barrier(BBB) limits most chemotherapeutic agents from passing through the BBB and penetrating into tumors in the brain. The BBB microenvironment contains numerous cell types, including endothelial cells, astrocytes, peripheral cells and microglia, and extracellular matrix(ECM). Many chemical components of natural products are reported to regulate the BBB microenvironment near brain tumors and assist in their treatment. This review focuses on the composition and function of the BBB microenvironment under both physiological and pathological conditions, and the current research progress in regulating the BBB microenvironment by natural products to promote the treatment of brain tumors.

  11. Improvement in cognitive function after surgery for low-grade glioma.

    Science.gov (United States)

    Barzilai, Ori; Ben Moshe, Shlomit; Sitt, Razi; Sela, Gal; Shofty, Ben; Ram, Zvi

    2018-03-23

    OBJECTIVE Cognition is a key component in health-related quality of life (HRQoL) and is currently incorporated as a major parameter of outcome assessment in patients treated for brain tumors. The effect of surgery on cognition and HRQoL remains debatable. The authors investigated the impact of resection of low-grade gliomas (LGGs) on cognition and the correlation with various histopathological markers. METHODS A retrospective analysis of patients with LGG who underwent craniotomy for tumor resection at a single institution between 2010 and 2014 was conducted. Of 192 who underwent resective surgery for LGG during this period, 49 had complete pre- and postoperative neurocognitive evaluations and were included in the analysis. These patients completed a full battery of neurocognitive tests (memory, language, attention and working memory, visuomotor organization, and executive functions) pre- and postoperatively. Tumor and surgical characteristics were analyzed, including volumetric measurements and histopathological markers (IDH, p53, GFAP). RESULTS Postoperatively, significant improvement was found in memory and executive functions. A subgroup analysis of patients with dominant-side tumors, most of whom underwent intraoperative awake mapping, revealed significant improvement in the same domains. Patients whose tumors were on the nondominant side displayed significant improvement only in memory functions. Positive staining for p53 testing was associated with improved language function and greater extent of resection in dominant-side tumors. GFAP positivity was associated with improved memory in patients whose tumors were on the nondominant side. No correlation was found between cognitive outcome and preoperative tumor volume, residual volume, extent of resection, or IDH1 status. CONCLUSIONS Resection of LGG significantly improves memory and executive function and thus is likely to improve functional outcome in addition to providing oncological benefit. GFAP and pP53

  12. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    Science.gov (United States)

    2017-07-27

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  13. NMR relaxation times in human brain tumors (preliminary results)

    International Nuclear Information System (INIS)

    Benoist, L.; Certaines, J. de; Chatel, M.; Menault, F.

    1981-01-01

    Since the early work of Damadian in 1971, proton NMR studies of tumors has been well documented. Present study concerns the spin-lattice T 1 and spin-spin T 2 relaxation times of normal dog brain according to the histological differentiation and of 35 human benignant or malignant tumors. The results principally show T 2 important variations between white and gray substance in normal brain but no discrimination between malignant and benignant tumors [fr

  14. Preliminary study of MR elastography in brain tumors

    International Nuclear Information System (INIS)

    Xu Lei; Gao Peiyi; Lin Yan; Han Jiancheng; Xi Zhinong; Shen Hao

    2008-01-01

    Objective: To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods: Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years) underwent brain MRE studies. Informed consent was obtained from all patients. A dedicated external force actuator for brain MRE study was developed. The actuator was fixed to the head coil. During scan, one side of the actuator was attached to the patients' head. Low frequency oscillation was produced by the actuator and caused shear waves propagating into brain tissue. The pulse sequence used in the study was phase-contrast gradient-echo sequence. Phase images of the brain were obtained and the shear waves within the brain were directly imaged. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity image. Consistency of brain tumors was evaluated at surgery and was classified as soft, intermediate, or hard with comparison to the white matter of the brain. Correspondence of MRE evaluation with operative results was studied. Results: The elastic modulus of the tumor was lower than that of white matter in 1 patient, higher in 11 patients, and similar in 2 patients. At surgery, the tumor manifested a soft consistency in 1 patient, hard consistency in 11 patients, intermediate consistency in 2 patients. The elasticity of tumors in 14 patients evaluated by MRE was correlated with the tumor consistency on the operation. Conclusion: MRE can noninvasively display the elasticity of brain tumors in vivo, and evaluate the brain tumor consistency before operation. (authors)

  15. Cognition Effects of Low-Grade Hypoxia

    Science.gov (United States)

    2016-07-01

    human short-term memory . Br J Anaesth. 1971; 43(6):548–552. 3. Crow TJ, Kelman GR. Psychological effects of mild acute hypoxia. Br J Anaesth. 1973; 45...Journal Article 3. DATES COVERED (From – To) Jan 2003 – Sep 2005 4. TITLE AND SUBTITLE Cognition Effects of Low-Grade Hypoxia 5a. CONTRACT NUMBER... cognitive function are reported in this paper. The study compared cognitive function during short exposures at four different altitudes. Ninety-one

  16. Uranium production from low grade Swedish shale

    International Nuclear Information System (INIS)

    Carlsson, O.

    1977-01-01

    In view of the present nuclear programmes a steep increase in uranium demand is foreseen which will pose serious problems for the uranium industry. The annual additions to uranium ore reserves must almost triple within the next 15 years in order to support the required production rates. Although there are good prospects for the discovery of further conventional deposits of uranium there is a growing interest in low grade uranium deposits. Large quantities of uranium exist in black shales, phosphates, granites, sea water and other unconventional sources. There are however factors which limit the utilization of these low grade materials. These factors include the extraction costs, the environmental constrains on mining and milling of huge amounts of ore, the development of technologies for the beneficiation of uranium and, in the case of very low grade materials, the energy balance. The availability of by-product uranium is limited by the production rate of the main product. The limitations differ very much according to types of ores, mining and milling methods and the surroundings. As an illustration a description is given of the Swedish Ranstad uranium shale project, its potential, constraints and technical solutions

  17. Infant Brain Tumors: Incidence, Survival, and the Role of Radiation Based on Surveillance, Epidemiology, and End Results (SEER) Data

    International Nuclear Information System (INIS)

    Bishop, Andrew J.; McDonald, Mark W.; Chang, Andrew L.; Esiashvili, Natia

    2012-01-01

    Purpose: To evaluate the incidence of infant brain tumors and survival outcomes by disease and treatment variables. Methods and Materials: The Surveillance, Epidemiology, and End Results (SEER) Program November 2008 submission database provided age-adjusted incidence rates and individual case information for primary brain tumors diagnosed between 1973 and 2006 in infants less than 12 months of age. Results: Between 1973 and 1986, the incidence of infant brain tumors increased from 16 to 40 cases per million (CPM), and from 1986 to 2006, the annual incidence rate averaged 35 CPM. Leading histologies by annual incidence in CPM were gliomas (13.8), medulloblastoma and primitive neuroectodermal tumors (6.6), and ependymomas (3.6). The annual incidence was higher in whites than in blacks (35.0 vs. 21.3 CPM). Infants with low-grade gliomas had the highest observed survival, and those with atypical teratoid rhabdoid tumors (ATRTs) or primary rhabdoid tumors of the brain had the lowest. Between 1979 and 1993, the annual rate of cases treated with radiation within the first 4 months from diagnosis declined from 20.5 CPM to <2 CPM. For infants with medulloblastoma, desmoplastic histology and treatment with both surgery and upfront radiation were associated with improved survival, but on multivariate regression, only combined surgery and radiation remained associated with improved survival, with a hazard ratio for death of 0.17 compared with surgery alone (p = 0.005). For ATRTs, those treated with surgery and upfront radiation had a 12-month survival of 100% compared with 24.4% for those treated with surgery alone (p = 0.016). For ependymomas survival was higher in patients treated in more recent decades (p = 0.001). Conclusion: The incidence of infant brain tumors has been stable since 1986. Survival outcomes varied markedly by histology. For infants with medulloblastoma and ATRTs, improved survival was observed in patients treated with both surgery and early radiation

  18. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    International Nuclear Information System (INIS)

    Hua Chiaho; Wu Shengjie; Chemaitilly, Wassim; Lukose, Renin C.; Merchant, Thomas E.

    2012-01-01

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test ≥7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  19. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hua Chiaho, E-mail: Chia-Ho.Hua@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu Shengjie [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Chemaitilly, Wassim [Division of Endocrinology, Department of Pediatric Medicine, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Lukose, Renin C.; Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  20. Detection of tumor recurrence using technetium99m-tetrofosmin brain SPECT in patients with previously irradiated brain tumors

    International Nuclear Information System (INIS)

    Llamas A; Reyes A; Uribe, L F; Martinez T

    2004-01-01

    Objective: to assess the clinical utility of brain SPECT with Tc-99m Tetrofosmin to differentiate between tumor recurrence and radionecrosis in patients with primary brain tumors previously treated with external beam radiotherapy. Materials and methods: thirteen patients with clinical or radiological suspicion of tumor recurrence were studied with brain SPECT using 20-mCi of Tc-99m Tetrofosmin. Obtained images were interpreted by consensus between two experienced observers and subsequently classified as positive or negative for tumor viability. Results were compared to those of conventional diagnostic imaging techniques. Diagnostic test values and 95% confidence intervals were quantified. Results: SPECT results included 7 true-positives, 5 true-negatives and 1 false negative result. Conclusions: Tc-99m Tetrofosmin brain SPECT night be a useful alternative to diagnose recurrent brain tumors, especially with non-conclusive clinical and radiological findings

  1. Fetal antigen 2 in primary and secondary brain tumors

    DEFF Research Database (Denmark)

    Rasmussen, H Boje; Teisner, B; Schrøder, H D

    1991-01-01

    Immunohistochemical deposition and distribution of fetal antigen 2 (FA2) was examined in normal brain tissue and in primary and metastatic tumors of the brain. In normal brain tissue FA2 was exclusively found linearly around the vessels, along pia and in arachnoidea. A similar localization was seen...

  2. Magnetic resonance imaging of low-grade fibromyxoid sarcoma

    International Nuclear Information System (INIS)

    Torriani, Martin; Ouellette, Hugue; Etchebehere, Mauricio; Amstalden, Eliane M.I.

    2006-01-01

    Low-grade fibromyxoid sarcoma (LGFMS) is a rare soft-tissue tumor with a deceptively benign histologic appearance affecting predominantly young adults during the fourth decade of life. (MR) imaging features of a surgically confirmed case of LGFMS, affecting the shoulder is presented. A 30-year-old man presented with a 20-year history of a painless slow-growing mass in the right shoulder. Magnetic resonance images were obtained on a 2.0T scanner (Elscint, Haifa, Israel), demonstrating a well-defined soft tissue mass measuring 12.0 x 7.0 x 9.0 cm located between the deltoid muscle, rotator-cuff muscles, and proximal humerus. The differential diagnosis of LGFMS includes several benign and malignant neoplasms containing variable amounts of myxoid and fibrous tissue. Histologically, the most important differential diagnosis is with myxofibrosarcoma. Low-grade fibromyxoid sarcoma is a rare soft tissue tumor with slow growth and deceptively benign histologic appearance. The possibility of LGFMS must be considered when elaborating differential diagnostic possibilities for young adults with a large soft tissue mass exhibiting MR imaging characteristics of intermixed fibrous and myxoid tissue

  3. Magnetic resonance imaging of low-grade fibromyxoid sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Torriani, Martin; Ouellette, Hugue [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States). Dept. of Radiology. Div. of Musculoskeletal Radiology; Etchebehere, Mauricio [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Ciencias Medicas. Dept. de Ortopedia; Amstalden, Eliane M.I. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Ciencias Medicas. Dept. de Patologia

    2006-06-15

    Low-grade fibromyxoid sarcoma (LGFMS) is a rare soft-tissue tumor with a deceptively benign histologic appearance affecting predominantly young adults during the fourth decade of life. (MR) imaging features of a surgically confirmed case of LGFMS, affecting the shoulder is presented. A 30-year-old man presented with a 20-year history of a painless slow-growing mass in the right shoulder. Magnetic resonance images were obtained on a 2.0T scanner (Elscint, Haifa, Israel), demonstrating a well-defined soft tissue mass measuring 12.0 x 7.0 x 9.0 cm located between the deltoid muscle, rotator-cuff muscles, and proximal humerus. The differential diagnosis of LGFMS includes several benign and malignant neoplasms containing variable amounts of myxoid and fibrous tissue. Histologically, the most important differential diagnosis is with myxofibrosarcoma. Low-grade fibromyxoid sarcoma is a rare soft tissue tumor with slow growth and deceptively benign histologic appearance. The possibility of LGFMS must be considered when elaborating differential diagnostic possibilities for young adults with a large soft tissue mass exhibiting MR imaging characteristics of intermixed fibrous and myxoid tissue.

  4. Factors influencing survival in patients with brain tumors treated with surgery and radiotherapy

    International Nuclear Information System (INIS)

    Chi Ramirez, Daysi; Chon Rivas, Ivonne; Leon Gonzalez, Roberto; Diaz Martinez, Jose Ramon; Silva, Jose; Pestana, Elia; Portilla, Ivette

    2006-01-01

    Factors influencing survival (SV) in patients with brain tumors (BT) have a predictive value and are an angle of study in neuro-oncology and biomedical research. A retrospective study was carried out in 59 consecutive between 16 and 70 years old patients, with histological diagnoses of BT who received external fractioned radiotherapy (RT), from December 1997 to February 2002. The main diagnoses were characterized and a statistical analysis was employed to correlate SV (in week) with age, histology, localization, tumor resection percentage, time between surgery and RT, doses, technique and duration of RT, and Karnofsky Performance Score at the end of RT. Mean SV of BT was 94,3 wks (gliomas 97,9 wks; hypophysis adenomas 163,2 wks and medulloblatomas 104,2 wks). Low grade gliomas had higher SV (129,7 wks) than high grade gliomas (57,1 wks). Histology (p=0.0004) and age (the younger the better SV) (p=0.036) were variables influencing SV. Conclusion: SV in patients with BT alter RT was influenced by histology and age in this study, but tumor resection percentage, time between surgery and RT doses, technique and duration of RT and Karnofsky Performance Sore at the end of RT did not influence in SV for these patients. (The author)

  5. Intra-individual comparison of F-18-FLT PET and F-18 FET PET in brain tumor patients

    International Nuclear Information System (INIS)

    Kim, S.; Cheon, G.J.; Cho, Y.S.; Kwak, H.S.; Lee, C.H.; Choi, C.W.; Lim, S.M.

    2004-01-01

    Full text: The nucleoside analogue 18F-3'-deoxy-3'-fluorothymidine (FLT) for cellular proliferation and the amino acid analogue O- (2'18F-fluoroethyl)-L-tyrosine (FET) are recently developed PET-tracer for tumor imaging. Previous studies have demonstrated that the diagnostic ability of FET PET better than FDG PET in patient with newly diagnosed or recurrent brain tumors after radiation therapy. To compare findings on FLT PET with FET PET, we prospectively undertook FLT, FET and FDG PET in same patient with suspected primary/metastatic and recurrent brain tumors. Seventeen studies (FLT +FET + FDG: 13, FLT+FDG: 3, FLT +FET: 1) in 16 consecutive patients (47 ± 8.3 years, M: F 10: 6) with brain tumor (3 for initial diagnosis, 6 for therapeutic response, 6 for detecting recurrence, 1 for diagnosis and recurrence both) were included. Brain tumors were 14 gliomas (6 high-grade, 9 low-grade by the WHO classification), 2 metastatic brain tumors and 1 CNS lymphoma. 18F-FDG, FLT and FET PET were performed within two weeks. Attenuation-corrected brain images were acquired 30 minutes after injection of 370-555 MBq FDG, FLT and FET with a dedicated PET scanner (ECAT HR+ scanner, Siemens-CTI, Knoxville, Tenn., USA). Maximum SUV (max SUV) and relative uptake defined by FLT and FET accumulation within the tumor in relation to a contra lateral control region (max SUV for tumor/mean SUV for contra lateral normal gray matter) were calculated. A total of 26 tumor foci (26 on FLT and FDG, 22 on FET) in 17 studies were analysed. In most of tumor foci (20 of 22) FLT and FET PET images showed a similar extent of tumor activity. In 2 tumor foci discrepant findings were noticed; intense FLT uptake with negative FLT uptake in primary CNS lymphoma and negative FLT uptake with mild FET uptake in low-grade astrocytoma. Overall positive FLT, FET and FDG uptakes were 85 % (22/26), 90 % (18/ 20) and 58 % (15/26) respectively. Max SUV and relative FLT/FET uptake: The mean max SUV of FLT (0.97 ± 0

  6. Hypofractionation Regimens for Stereotactic Radiotherapy for Large Brain Tumors

    International Nuclear Information System (INIS)

    Yuan Jiankui; Wang, Jian Z.; Lo, Simon; Grecula, John C.; Ammirati, Mario; Montebello, Joseph F.; Zhang Hualin; Gupta, Nilendu; Yuh, William T.C.; Mayr, Nina A.

    2008-01-01

    Purpose: To investigate equivalent regimens for hypofractionated stereotactic radiotherapy (HSRT) for brain tumor treatment and to provide dose-escalation guidance to maximize the tumor control within the normal brain tolerance. Methods and Materials: The linear-quadratic model, including the effect of nonuniform dose distributions, was used to evaluate the HSRT regimens. The α/β ratio was estimated using the Gammaknife stereotactic radiosurgery (GKSRS) and whole-brain radiotherapy experience for large brain tumors. The HSRT regimens were derived using two methods: (1) an equivalent tumor control approach, which matches the whole-brain radiotherapy experience for many fractions and merges it with the GKSRS data for few fractions; and (2) a normal-tissue tolerance approach, which takes advantages of the dose conformity and fractionation of HSRT to approach the maximal dose tolerance of the normal brain. Results: A plausible α/β ratio of 12 Gy for brain tumor and a volume parameter n of 0.23 for normal brain were derived from the GKSRS and whole-brain radiotherapy data. The HSRT prescription regimens for the isoeffect of tumor irradiation were calculated. The normal-brain equivalent uniform dose decreased as the number of fractions increased, because of the advantage of fractionation. The regimens for potential dose escalation of HSRT within the limits of normal-brain tolerance were derived. Conclusions: The designed hypofractionated regimens could be used as a preliminary guide for HSRT dose prescription for large brain tumors to mimic the GKSRS experience and for dose escalation trials. Clinical studies are necessary to further tune the model parameters and validate these regimens

  7. Differential diagnostic value of diffusion weighted imaging on brain abscess and necrotic or cystic brain tumors

    International Nuclear Information System (INIS)

    Zhang Xiaoya; Yin Jie; Wang Kunpeng; Zhang Jiandang; Liang Biling

    2009-01-01

    Objective: To investigate the value of diffusion weighted imaging (DWI)on brain abscess and necrotic or cystic brain tumors. Methods: 27 cases with brain abscesses and 33 cases with necrotic or cystic brain tumors (gliomas or metastases) were performed conventional MRI and DWI. Apparent diffusion coefficient (ADC) of region of interest (ROI) was measured and statistically tested. Sensitivity and specificity were calculated and compared with conventional MR and DWI. Results: Hyperintensity signal was seen on most brain abscesses. All necrotic or cystic brain tumors showed hypointensity signal on DWI. There was statistical significance on ADC of them. The sensitivity and specificity of conventional MRI was lower than that of DWI. Conclusion: DWI and ADC were useful in distinguishing brain abscessed from necrotic or cystic brain tumors, which was important in addition to conventional MRI. (authors)

  8. The Value of 5-Aminolevulinic Acid in Low-grade Gliomas and High-grade Gliomas Lacking Glioblastoma Imaging Features: An Analysis Based on Fluorescence, Magnetic Resonance Imaging, 18F-Fluoroethyl Tyrosine Positron Emission Tomography, and Tumor Molecular Factors.

    Science.gov (United States)

    Jaber, Mohammed; Wölfer, Johannes; Ewelt, Christian; Holling, Markus; Hasselblatt, Martin; Niederstadt, Thomas; Zoubi, Tarek; Weckesser, Matthias; Stummer, Walter

    2016-03-01

    Approximately 20% of grade II and most grade III gliomas fluoresce after 5-aminolevulinic acid (5-ALA) application. Conversely, approximately 30% of nonenhancing gliomas are actually high grade. The aim of this study was to identify preoperative factors (ie, age, enhancement, 18F-fluoroethyl tyrosine positron emission tomography [F-FET PET] uptake ratios) for predicting fluorescence in gliomas without typical glioblastomas imaging features and to determine whether fluorescence will allow prediction of tumor grade or molecular characteristics. Patients harboring gliomas without typical glioblastoma imaging features were given 5-ALA. Fluorescence was recorded intraoperatively, and biopsy specimens collected from fluorescing tissue. World Health Organization (WHO) grade, Ki-67/MIB-1 index, IDH1 (R132H) mutation status, O-methylguanine DNA methyltransferase (MGMT) promoter methylation status, and 1p/19q co-deletion status were assessed. Predictive factors for fluorescence were derived from preoperative magnetic resonance imaging and F-FET PET. Classification and regression tree analysis and receiver-operating-characteristic curves were generated for defining predictors. Of 166 tumors, 82 were diagnosed as WHO grade II, 76 as grade III, and 8 as glioblastomas grade IV. Contrast enhancement, tumor volume, and F-FET PET uptake ratio >1.85 predicted fluorescence. Fluorescence correlated with WHO grade (P fluorescing grade III gliomas was higher than in nonfluorescing tumors, whereas in fluorescing and nonfluorescing grade II tumors, no differences were noted. Age, tumor volume, and F-FET PET uptake are factors predicting 5-ALA-induced fluorescence in gliomas without typical glioblastoma imaging features. Fluorescence was associated with an increased Ki-67/MIB-1 index and high-grade pathology. Whether fluorescence in grade II gliomas identifies a subtype with worse prognosis remains to be determined.

  9. Blood Brain Barrier: A Challenge for Effectual Therapy of Brain Tumors

    OpenAIRE

    Bhowmik, Arijit; Khan, Rajni; Ghosh, Mrinal Kanti

    2015-01-01

    Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and n...

  10. Low grade gastric MALT lymphoma: Radiographic findings

    International Nuclear Information System (INIS)

    Brown, J.A.; Carson, B.W.; Gascoyne, R.D.; Cooperberg, P.L.; Connors, J.M.; Mason, A.C.

    2000-01-01

    AIMS: Gastric MALT (mucosa-associated lymphoid tissue) lymphoma is now recognized as a distinct entity within extranodal non-Hodgkin's lymphoma. The purpose of this study was to describe the radiographic findings in low grade gastric MALT lymphoma. MATERIALS AND METHODS: We retrospectively reviewed the radiographic findings in 22 cases of low-grade gastric MALT lymphoma. The study group consisted of 15 men and seven women (median age 68 years, range 41-91 years). Lesions were designated as infiltrative or polypoid by consensus of two radiologists. Polypoid lesions were categorized by number and size. Anatomical site within the stomach and presence of transpyloric or oesophagogastric extension was determined for each case. The presence of abdominal lymphadenopathy was categorized as regional or distant. The presence of Helicobacter pylori was determined from endoscopic and surgical biopsies. RESULTS: Computed tomography (CT) revealed abnormalities of the stomach in 19 cases of the 21 in which it was performed. There were 14 infiltrative lesions and five polypoid lesions. Of the 14 infiltrative lesions, the mean gastric wall thickness was 2.2 cm (range 0.8-6.0 cm). There were three single and two multiple polypoid lesions (mean size 2.2 cm, range 1.5-2.7 cm). Transpyloric extension was observed in two cases and oesophagogastric extension in one. Abdominal lymphadenopathy was observed in 10 of 21 patients. Helicobacter pylori was found in 19 of 22 cases (86%). CONCLUSION: Low grade B cell gastric MALT lymphomas present with an infiltrative form on CT in about three-quarters of cases and a polypoid pattern in the remainder. Abdominal lymphadenopathy is seen in approximately one-half of cases. There is a high association with Helicobacter pylori. Brown, J.A. 2000. Clinical Radiology 55, 384-389

  11. Sequential computed tomographic imaging of a transplantable rabbit brain tumor

    International Nuclear Information System (INIS)

    Kumar, A.J.; Rosenbaum, A.E.; Beck, T.J.; Ahn, H.S.; Anderson, J.

    1986-01-01

    The accuracy of CT imaging in evaluating VX-2 tumor growth in the rabbit brain was assessed. CT scanning was performed in 5 outbred New Zealand white male rabbits before and at 4, 7, 9 and 13 (in 3 animals) days after surgical implantation of 3 x 10 5 viable VX-2 tumor cells in the frontoparietal lobes. The CT studies were correlated with gross pathology in each. The tumor was visualized with CT in all 5 rabbits by the 9th day post implantation when the tumor ranged in size from 4-6 x 3-4 x 2-3 mm. Between the 9th and 13th day, the tumor increased 6-fold in two rabbits and 12-fold in the third rabbit. CT is a useful technique to evaluate brain tumor growth in this model and should be valuable in documenting the efficacy of chemotherapy on tumor growth. (orig.)

  12. Local recurrence of metastatic brain tumor after surgery

    International Nuclear Information System (INIS)

    Shinoura, Nobusada; Yamada, Ryoji; Okamoto, Koichiro; Nakamura, Osamu; Shitara, Nobuyuki; Karasawa, Katsuyuki

    2006-01-01

    We analyzed factors associated with the local recurrence of brain metastases after surgery. Forty-seven patients with 67 metastatic brain tumors underwent surgery between 1994 and 2001. The survival time in the ''no recurrence'' group (34.7 months) was significantly longer than that in the recurrence group (21.9 months) (p=0.0008; log rank test). The factors affecting the local recurrence of brain metastases after surgery were as follows: cyst (p=0.0156), dural invasion (p=0.0029) of tumors, failure to totally remove tumors (p=0.0040), and lack of post-surgical irradiation (p<0.0001). Sex, age, tumor histology, tumor size, pre-surgical radiation, dose (≥45 vs <45, ≥50 vs <50 Gy) and the method (local vs whole brain) of post-surgical radiation did not affect the local recurrence rate of brain metastases after surgery. To avoid early recurrences of metastatic brain tumors, the factors associated with local recurrence should be considered in providing optimal treatment of tumors by surgery. (author)

  13. Usefulness of dynamic magnetic resonance imaging in brain tumors

    International Nuclear Information System (INIS)

    Joo, Yang Gu; Suh, Soo Jhi; Zeon, Seok Kil; Woo, Sung Ku; Kim, Hong; Kim, Jung Sik; Lee, Sung Moon; Lee, Hee Jung; Takahashi, Mutsumasa

    1994-01-01

    To investigate the usefulness of dynamic MR imaging in the differential diagnosis of brain tumors. Dynamic MR imaging was performed in 43 patients with histopathologically proved brain tumors. Serial images were sequentially obtained every 30 seconds for 3-5 minutes with use of spin-echo technique(TR 200msec/TE 15msec) after rapid injection of Gd-DTPA in a dose of 0.1mmol/kg body weight. Dynamics of contrast enhancement of the brain tumors were analyzed visually and by the sequential contrast enhancement ratio(CER). On the dynamic MR imaging, contrast enhancement pattern of the gliomas showed gradual increase in signal intensity(SI) till 180 seconds and usually had a longer time to peak of the CER. The SI of metastatic brain tumors increased steeply till 30 seconds and then rapidly or gradually decreased and the tumors had a shorter time to peak of the CER. Meningiomas showed a rapid ascent in SI till 30 to 60 seconds and then made a plateau or slight descent of the CER. Lymphomas and germinomas showed relatively rapid increase of SI till 30 seconds and usually had a longer time peak of the CER. Dynamic MR imaging with Gd-DTPA may lead to further information about the brain tumors as the sequential contrast enhancement pattern and CER parameters seem to be helpful in discriminating among the brain tumors

  14. Application of 31P MR spectroscopy to the brain tumors

    International Nuclear Information System (INIS)

    Ha, Dong Ho; Choi, Sun Seob; Oh, Jong Young; Yoon, Seong Kuk; Kang, Myong Jin; Kim, Ki Uk

    2013-01-01

    To evaluate the clinical feasibility and obtain useful parameters of 3 1P magnetic resonance spectroscopy (MRS) study for making the differential diagnosis of brain tumors. Twenty-eight patients with brain tumorous lesions (22 cases of brain tumor and 6 cases of abscess) and 11 normal volunteers were included. The patients were classified into the astrocytoma group, lymphoma group, metastasis group and the abscess group. We obtained the intracellular pH and the metabolite ratios of phosphomonoesters/phosophodiesters (PME/PDE), PME/inorganic phosphate (Pi), PDE/Pi, PME/adenosine triphosphate (ATP), PDE/ATP, PME/phosphocreatine (PCr), PDE/PCr, PCr/ATP, PCr/Pi, and ATP/Pi, and evaluated the statistical significances. The brain tumors had a tendency of alkalization (pH = 7.28 ± 0.27, p = 0.090), especially the pH of the lymphoma was significantly increased (pH = 7.45 ± 0.32, p = 0.013). The brain tumor group showed increased PME/PDE ratio compared with that in the normal control group (p 0.012). The ratios of PME/PDE, PDE/Pi, PME/PCr and PDE/PCr showed statistically significant differences between each brain lesion groups (p 1 'P MRS, and the pH, PME/PDE, PDE/Pi, PME/PCr, and PDE/PCr ratios are helpful for differentiating among the different types of brain tumors.

  15. Clinical results of BNCT for malignant brain tumors in children

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Kageji, Teruyoshi; Mizobuchi, Yoshifumi; Kumada, Hiroaki; Nakagawa, Yoshiaki

    2009-01-01

    It is very difficult to treat the patients with malignant brain tumor in children, especially under 3 years, because the conventional irradiation cannot be applied due to the damage of normal brain tissue. However, boron neutron capture therapy (BNCT) has tumor selectivity such that it can make damage only in tumor cells. We evaluated the clinical results and courses in patients with malignant glioma under 15 years. Among 183 patients with brain tumors treated by our group using BSH-based intra-operative BNCT, 23 patients were under 15 years. They included 4 patients under 3 years. There were 3 glioblastomas (GBM), 6 anaplastic astrocytomas(AAS), 7 primitive neuroectodermal tumors (PNET), 6 pontine gliomas and 1 anaplastic ependymoma. All GBM and PNET patients died due to CSF and/or CNS dissemination without local tumor regrowth. All pontine glioma patients died due to regrowth of the tumor. Four of 6 anaplastic astrocytoma and 1 anaplastic ependymoma patients alive without tumor recurrence. BNCT can be applied to malignant brain tumors in children, especially under 3 years instead of conventional radiation. Although it can achieve the local control in the primary site, it cannot prevent CSF dissemination in patients with glioblastoma.

  16. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  17. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  18. Why does Jack, and not Jill, break his crown? Sex disparity in brain tumors

    OpenAIRE

    Sun, Tao; Warrington, Nicole M; Rubin, Joshua B

    2012-01-01

    Abstract It is often reported that brain tumors occur more frequently in males, and that males suffer a worse outcome from brain tumors than females. If correct, these observations suggest that sex plays a fundamental role in brain tumor biology. The following review of the literature regarding primary and metastatic brain tumors, reveals that brain tumors do occur more frequently in males compared to females regardless of age, tumor histology, or region of the world. Sexually dimorphic mecha...

  19. Examination of Blood-Brain Barrier (BBB) Integrity In A Mouse Brain Tumor Model

    Science.gov (United States)

    On, Ngoc; Mitchell, Ryan; Savant, Sanjot D.; Bachmeier, Corbin. J.; Hatch, Grant M.; Miller, Donald W.

    2013-01-01

    The present study evaluates, both functionally and biochemically, brain tumor-induced alterations in brain capillary endothelial cells. Brain tumors were induced in Balb/c mice via intracranial injection of Lewis Lung carcinoma (3LL) cells into the right hemisphere of the mouse brain using stereotaxic apparatus. Blood-brain barrier (BBB) permeability was assessed at various stages of tumor development, using both radiolabeled tracer permeability and magnetic resonance imaging (MRI) with gadolinium diethylene-triamine-pentaacetate contrast enhancement (Gad-DTPA). The expression of the drug efflux transporter, P-glycoprotein (P-gp), in the BBB at various stages of tumor development was also evaluated by Western blot and immunohistochemistry. Median mouse survival following tumor cell injection was 17 days. The permeability of the BBB to 3H-mannitol was similar in both brain hemispheres at 7 and 10 days post-injection. By day 15, there was a 2-fold increase in 3H-mannitol permeability in the tumor bearing hemispheres compared to the non-tumor hemispheres. Examination of BBB permeability with Gad-DTPA contrast enhanced MRI indicated cerebral vascular permeability changes were confined to the tumor area. The permeability increase observed at the later stages of tumor development correlated with an increase in cerebral vascular volume suggesting angiogenesis within the tumor bearing hemisphere. Furthermore, the Gad-DPTA enhancement observed within the tumor area was significantly less than Gad-DPTA enhancement within the circumventricular organs not protected by the BBB. Expression of P-gp in both the tumor bearing and non-tumor bearing portions of the brain appeared similar at all time points examined. These studies suggest that although BBB integrity is altered within the tumor site at later stages of development, the BBB is still functional and limiting in terms of solute and drug permeability in and around the tumor. PMID:23184143

  20. Brain tumor and CT, 1. Relationship between the consistency of a brain tumor and the CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, N.; Katada, K.; Shinomiya, Y.; Sano, H.; Kanno, T. (Fujita Gakuen Univ., School of Medicine, Toyoake, Aichi (Japan))

    1981-08-01

    It is very important for a neurosurgeon to know the consistency of a brain tumor preoperatively, since the information is of much use in indicating the likely difficulty of the operation, which operative tools should be selected, the amount of bleeding to be expected from the tumor, and so on. The authors, therefore, tried to evaluate the consistency of brain tumors preoperatively. Twenty-seven cases in which the margin of the tumor was made clear with a homogeneous stain were studied concerning the relationship between the tumor consistency and the CT findings. The results are as follows: 1) A higher CT number on a plain CT indicated a harder consistency of the tumor. 2) A lesser contrast index (CT number on enhancement CT/CT number on plain CT) showed a harder consistency of the tumor.

  1. FDTD analysis of a noninvasive hyperthermia system for brain tumors.

    Science.gov (United States)

    Yacoob, Sulafa M; Hassan, Noha S

    2012-08-14

    Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40-45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  2. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    Directory of Open Access Journals (Sweden)

    Yacoob Sulafa M

    2012-08-01

    Full Text Available Abstract Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  3. Brain tumor locating in 3D MR volume using symmetry

    Science.gov (United States)

    Dvorak, Pavel; Bartusek, Karel

    2014-03-01

    This work deals with the automatic determination of a brain tumor location in 3D magnetic resonance volumes. The aim of this work is not the precise segmentation of the tumor and its parts but only the detection of its location. This work is the first step in the tumor segmentation process, an important topic in neuro-image processing. The algorithm expects 3D magnetic resonance volumes of brain containing a tumor. The detection is based on locating the area that breaks the left-right symmetry of the brain. This is done by multi-resolution comparing of corresponding regions in left and right hemisphere. The output of the computation is the probabilistic map of the tumor location. The created algorithm was tested on 80 volumes from publicly available BRATS databases containing 3D brain volumes afflicted by a brain tumor. These pathological structures had various sizes and shapes and were located in various parts of the brain. The locating performance of the algorithm was 85% for T1-weighted volumes, 91% for T1-weighted contrast enhanced volumes, 96% for FLAIR and T2-wieghted volumes and 95% for their combinations.

  4. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis

    Directory of Open Access Journals (Sweden)

    Liya Zhao

    2016-01-01

    Full Text Available Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs. Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.

  5. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis.

    Science.gov (United States)

    Zhao, Liya; Jia, Kebin

    2016-01-01

    Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.

  6. Preclinical models to study the impact of the blood-brain barrier in brain tumor chemotherapy

    NARCIS (Netherlands)

    Vries, N.A. de

    2009-01-01

    High-grade gliomas, in particular Glioblastoma Multiforme (GBM), are the most common primary brain tumors in adults and among the deadliest of human cancers. Their location and the extensively infiltrative character of tumor cells into surrounding normal brain structures is an impediment for all

  7. Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors

    Science.gov (United States)

    2017-04-27

    Acoustic Schwannoma; Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymal Giant Cell Astrocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Supratentorial Ependymoma; Meningeal Melanocytoma; Newly Diagnosed Childhood Ependymoma; Recurrent Adult Brain Tumor; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Diffuse Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Fibrillary Astrocytoma; Recurrent Childhood Gemistocytic Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood

  8. [Neuronavigator-guided microsurgery for resection of brain tumors].

    Science.gov (United States)

    Zhang, Xiang; Zhang, Jianning; Fei, Zhou; Wu, Jingwen; Fu, Luoan; Qu, Yan; Liu, Weiping; Wang, Zhanxiang; Yang, Lisun; He, Xiaosheng; Zhen, Haining; Gao, Dakuan; Cao, Weidong; Liang, Jingwen

    2002-02-25

    To study locating accuracy for the brain tumors and their peri-structures by the neuronavigator and elucidate the microsurgical effects. 65 patients with intracranial tumors were microsurgically treated by the application of Stealth Station and Vector Vision system. The treatment effects were summarized and the neuronavigational accuracy was discussed. After mean fiducial error (MFE) and sustained accuracy (SA) were satisfied. Total tumor removal was achieved in 63 cases (97.0%), subtotal removal in 2 cases (3.0%). The neurological functions were improved in 56 cases (86.2%), unchanged obviously in 9 cases (13.8%). No case deteriorated and died in the group. Navigation systems are reliable and accurate in making microneurosurgical plans for brain tumors. And they can provide tracing of the tumor in the operation and guide the operator's manipulation. The techniques, which help total removal of the tumors and reduce the postoperative complications, are very useful in guarantee operation effects.

  9. Growth of Malignant Non-CNS Tumors Alters Brain Metabolome

    Science.gov (United States)

    Kovalchuk, Anna; Nersisyan, Lilit; Mandal, Rupasri; Wishart, David; Mancini, Maria; Sidransky, David; Kolb, Bryan; Kovalchuk, Olga

    2018-01-01

    Cancer survivors experience numerous treatment side effects that negatively affect their quality of life. Cognitive side effects are especially insidious, as they affect memory, cognition, and learning. Neurocognitive deficits occur prior to cancer treatment, arising even before cancer diagnosis, and we refer to them as “tumor brain.” Metabolomics is a new area of research that focuses on metabolome profiles and provides important mechanistic insights into various human diseases, including cancer, neurodegenerative diseases, and aging. Many neurological diseases and conditions affect metabolic processes in the brain. However, the tumor brain metabolome has never been analyzed. In our study we used direct flow injection/mass spectrometry (DI-MS) analysis to establish the effects of the growth of lung cancer, pancreatic cancer, and sarcoma on the brain metabolome of TumorGraft™ mice. We found that the growth of malignant non-CNS tumors impacted metabolic processes in the brain, affecting protein biosynthesis, and amino acid and sphingolipid metabolism. The observed metabolic changes were similar to those reported for neurodegenerative diseases and brain aging, and may have potential mechanistic value for future analysis of the tumor brain phenomenon. PMID:29515623

  10. Clinical impact of anatomo-functional evaluation of brain function during brain tumor surgery

    International Nuclear Information System (INIS)

    Mikuni, Nobuhiro; Kikuchi, Takayuki; Matsumoto, Atsushi; Yokoyama, Yohei; Takahashi, Jun; Hashimoto, Nobuo

    2009-01-01

    To attempt to improve surgical outcome of brain surgery, clinical significance of anatomo-functional evaluation of brain function during resection of brain tumors was assessed. Seventy four patients with glioma located near eloquent areas underwent surgery while awake. Intraoperative tractography-integrated functional neuronavigation and cortical/subcortical electrical stimulation were correlated with clinical symptoms during and after resection of tumors. Cortical functional areas were safely removed with negative electric stimulation and eloquent cortices could be removed in some circumstances. Subcortical functional mapping was difficult except for motor function. Studying cortical functional compensation allows more extensive removal of brain tumors located in the eloquent areas. (author)

  11. Growth of melanoma brain tumors monitored by photoacoustic microscopy

    Science.gov (United States)

    Staley, Jacob; Grogan, Patrick; Samadi, Abbas K.; Cui, Huizhong; Cohen, Mark S.; Yang, Xinmai

    2010-07-01

    Melanoma is a primary malignancy that is known to metastasize to the brain and often causes death. The ability to image the growth of brain melanoma in vivo can provide new insights into its evolution and response to therapies. In our study, we use a reflection mode photoacoustic microscopy (PAM) system to detect the growth of melanoma brain tumor in a small animal model. The melanoma tumor cells are implanted in the brain of a mouse at the beginning of the test. Then, PAM is used to scan the region of implantation in the mouse brain, and the growth of the melanoma is monitored until the death of the animal. It is demonstrated that PAM is capable of detecting and monitoring the brain melanoma growth noninvasively in vivo.

  12. Gamma knife radiosurgery for metastatic brain tumors from lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Toru; Ono, Junichi; Iuchi, Toshihiko [Chiba Cardiovascular Center, Ichihara (Japan). Chiba Cancer Center] (and others)

    2003-01-01

    The purpose of this retrospective study is to evaluate the effectiveness of gamma knife radiosurgery (GKS) alone for metastatic brain tumors from lung cancer. Two hundred thirty-one consecutive patients with metastatic brain tumors from lung cancer filling the following 4 criteria were analyzed for this study; no prior brain tumor treatment, 25 or fewer lesions, a maximum 5 tumors with diameter of 2 cm or more, no surgically inaccessible tumor 3 cm or greater in diameter. According to the same treatment protocol, large tumors ({>=} 3 cm) were surgically removed and all the other small lesions (<3 cm) were treated with GKS. New lesions were treated with repeated GKS. The tumor-progression-free, overall, neurological, lowered-QOL (quality of life)-free and new-lesion-free survivals were calculated with the Kaplan-Meier method. The poor prognostic factors for each survival were also analyzed with the Cox's proportional hazard model. The tumor control rate at 1 year was 96.5%. The estimated median overall survival time was 7.7 months. The first-year survival rates were 83.0% in neurological survival and 76.0% in lowered-QOL-free survival. The new-lesion-free survival at 1 year was 27.9%. Multivariate analysis revealed significant poor prognostic factors for neurological and lowered-QOL-free survivals were carcinomatous meningitis and >10 brain lesions. This study suggests the results of GKS for metastatic brain tumors from lung cancer are quite satisfactory considering prevention of neurological death and maintenance of QOL. But cases with carcinomatous meningitis and/or >10 brain lesions are not good candidates for GKS alone. (author)

  13. Microbial leaching of low grade copper ores

    International Nuclear Information System (INIS)

    Rauf, A.; Ashfaq, M.

    1991-01-01

    Biotechnology is regarded as one of the most promising and revolutionary solution to various problems which are generally faced in the extraction of metals from their ores such as high energy, capital costs and environmental pollution. The paper deals with the study of low grade copper ores for their beneficiation and extraction of copper. The ores used were chalcopyrite and oxidized copper ores. Microorganisms play a vital role in the solubilization of valuable contents from ores such as copper and other metals. Studies have been conducted on the indigenous copper ores by using thiobacillus ferro oxidans and thiobacillus thio oxidans. For comparison purpose some experiments have also been conducted by chemical leaching. The results of bacterial leaching are encouraging. (author)

  14. Intracardiac Low-grade Sarcoma Following Treatment for Ewing Sarcoma.

    Science.gov (United States)

    Ortiz, Michael V; Magnan, Heather; Slotkin, Emily K; Ambati, Srikanth R; Chou, Alexander J; Wexler, Leonard H; Meyers, Paul A; Walsh, Michael F; Heaton, Todd; Girardi, Leonard N; Wolden, Suzanne L; Price, Anita P; Kennedy, Jennifer A; Zehir, Ahmet; Hameed, Meera; Berger, Michael F; Kentsis, Alex; Shukla, Neerav

    2017-11-01

    A 16-year-old male was diagnosed with Ewing sarcoma of the ribcage with pulmonary metastases. Six months after completion of scheduled therapy, he was found to have a new intracardiac mass, presumed recurrent Ewing sarcoma. EWSR1 fusion was not detected by droplet digital polymerase chain reaction from blood plasma. After no improvement with salvage chemotherapy, he underwent surgical resection that identified a low-grade spindle cell sarcoma. Despite the near-synchronous presentation of 2 unrelated sarcomas, extensive genomic analyses did not reveal any unifying somatic or germline mutations nor any apparent cancer predisposition. This case also highlights the potential role of utilizing plasma cell-free DNA for diagnosing tumors in locations where biopsy confers high morbidity.

  15. Evolution of Brain Tumor and Stability of Geometric Invariants

    Directory of Open Access Journals (Sweden)

    K. Tawbe

    2008-01-01

    Full Text Available This paper presents a method to reconstruct and to calculate geometric invariants on brain tumors. The geometric invariants considered in the paper are the volume, the area, the discrete Gauss curvature, and the discrete mean curvature. The volume of a tumor is an important aspect that helps doctors to make a medical diagnosis. And as doctors seek a stable calculation, we propose to prove the stability of some invariants. Finally, we study the evolution of brain tumor as a function of time in two or three years depending on patients with MR images every three or six months.

  16. Awake craniotomy for brain tumor: indications, technique and benefits.

    Science.gov (United States)

    Dziedzic, Tomasz; Bernstein, Mark

    2014-12-01

    Increasing interest in the quality of life of patients after treatment of brain tumors has led to the exploration of methods that can improve intraoperative assessment of neurological status to avoid neurological deficits. The only method that can provide assessment of all eloquent areas of cerebral cortex and white matter is brain mapping during awake craniotomy. This method helps ensure that the quality of life and the neuro-oncological result of treatment are not compromised. Apart from the medical aspects of awake surgery, its economic issues are also favorable. Here, we review the main aspects of awake brain tumor surgery. Neurosurgical, neuropsychological, neurophysiological and anesthetic issues are briefly discussed.

  17. Factors affecting intellectual outcome in pediatric brain tumor patients

    International Nuclear Information System (INIS)

    Ellenberg, L.; McComb, J.G.; Siegel, S.E.; Stowe, S.

    1987-01-01

    A prospective study utilizing repeated intellectual testing was undertaken in 73 children with brain tumors consecutively admitted to Childrens Hospital of Los Angeles over a 3-year period to determine the effect of tumor location, extent of surgical resection, hydrocephalus, age of the child, radiation therapy, and chemotherapy on cognitive outcome. Forty-three patients were followed for at least two sequential intellectual assessments and provide the data for this study. Children with hemispheric tumors had the most general cognitive impairment. The degree of tumor resection, adequately treated hydrocephalus, and chemotherapy had no bearing on intellectual outcome. Age of the child affected outcome mainly as it related to radiation. Whole brain radiation therapy was associated with cognitive decline. This was especially true in children below 7 years of age, who experienced a very significant loss of function after whole brain radiation therapy

  18. Correlation between the progressive cytoplasmic expression of a novel small heat shock protein (Hsp16.2) and malignancy in brain tumors

    International Nuclear Information System (INIS)

    Pozsgai, Eva; Gomori, Eva; Szigeti, Andras; Boronkai, Arpad; Gallyas, Ferenc Jr; Sumegi, Balazs; Bellyei, Szabolcs

    2007-01-01

    Small heat shock proteins are molecular chaperones that protect proteins against stress-induced aggregation. They have also been found to have anti-apoptotic activity and to play a part in the development of tumors. Recently, we identified a new small heat shock protein, Hsp16.2 which displayed increased expression in neuroectodermal tumors. Our aim was to investigate the expression of Hsp16.2 in different types of brain tumors and to correlate its expression with the histological grade of the tumor. Immunohistochemistry with a polyclonal antibody to Hsp16.2 was carried out on formalin-fixed, paraffin-wax-embedded sections using the streptavidin-biotin method. 91 samples were examined and their histological grade was defined. According to the intensity of Hsp16.2 immunoreactivity, low (+), moderate (++), high (+++) or none (-) scores were given. Immunoblotting was carried out on 30 samples of brain tumors using SDS-polyacrylamide gel electrophoresis and Western-blotting. Low grade (grades 1–2) brain tumors displayed low cytoplasmic Hsp16.2 immunoreactivity, grade 3 tumors showed moderate cytoplasmic staining, while high grade (grade 4) tumors exhibited intensive cytoplasmic Hsp16.2 staining. Immunoblotting supported the above mentioned results. Normal brain tissue acted as a negative control for the experiment, since the cytoplasm did not stain for Hsp16.2. There was a positive correlation between the level of Hsp16.2 expression and the level of anaplasia in different malignant tissue samples. Hsp16.2 expression was directly correlated with the histological grade of brain tumors, therefore Hsp16.2 may have relevance as becoming a possible tumor marker

  19. Correlation between the progressive cytoplasmic expression of a novel small heat shock protein (Hsp16.2 and malignancy in brain tumors

    Directory of Open Access Journals (Sweden)

    Gallyas Ferenc

    2007-12-01

    Full Text Available Abstract Background Small heat shock proteins are molecular chaperones that protect proteins against stress-induced aggregation. They have also been found to have anti-apoptotic activity and to play a part in the development of tumors. Recently, we identified a new small heat shock protein, Hsp16.2 which displayed increased expression in neuroectodermal tumors. Our aim was to investigate the expression of Hsp16.2 in different types of brain tumors and to correlate its expression with the histological grade of the tumor. Methods Immunohistochemistry with a polyclonal antibody to Hsp16.2 was carried out on formalin-fixed, paraffin-wax-embedded sections using the streptavidin-biotin method. 91 samples were examined and their histological grade was defined. According to the intensity of Hsp16.2 immunoreactivity, low (+, moderate (++, high (+++ or none (- scores were given. Immunoblotting was carried out on 30 samples of brain tumors using SDS-polyacrylamide gel electrophoresis and Western-blotting. Results Low grade (grades 1–2 brain tumors displayed low cytoplasmic Hsp16.2 immunoreactivity, grade 3 tumors showed moderate cytoplasmic staining, while high grade (grade 4 tumors exhibited intensive cytoplasmic Hsp16.2 staining. Immunoblotting supported the above mentioned results. Normal brain tissue acted as a negative control for the experiment, since the cytoplasm did not stain for Hsp16.2. There was a positive correlation between the level of Hsp16.2 expression and the level of anaplasia in different malignant tissue samples. Conclusion Hsp16.2 expression was directly correlated with the histological grade of brain tumors, therefore Hsp16.2 may have relevance as becoming a possible tumor marker.

  20. Neuroradiolological diagnosis and follow-up of brain tumors

    International Nuclear Information System (INIS)

    Kummer, R. von

    1997-01-01

    Primary tumors of the brain and cerebral metastases cause considerable morbidity and mortality. To assess the chance for cure and to develop a valid concept of treatment, the exact assessment of the tumor's location, of the tumor's borders and malignancy is essential. Today, neuroradiological examination mainly with magnetic resonance imaging (MRI) allows an almost histological diagnosis and description of the tumor's extent. MRI is as well useful for studying the patient's short- and long-term follow-up clinical course. This is illustrated by 3 case histories. (orig.)

  1. MR imaging assisted radiation therapy planning of brain tumors

    International Nuclear Information System (INIS)

    Just, M.; Roesler, H.P.; Higer, H.P.; Kutzner, J.; Thelen, M.

    1990-01-01

    This paper reports on the improvement of the accuracy of treatment portals in radiation therapy of brain tumors with use of MR imaging. After proper processing, the parasagittal MR image showing the largest tumor size and the midline sagittal image were superimposed. With common anatomic landmarks of midline tomogram and lateral simulation radiograph, commensurate reference grids were laid over both images in identical positions. Tumor coordinates were then transferred from the synthesized MR image to the lateral radiograph. Rectangular fields or individual shielding blocks encompassing the tumor could be drawn directly. This new method was used in 17 patients, and results were compared with CT-assisted results

  2. Malignant primary germ-cell tumor of the brain

    International Nuclear Information System (INIS)

    Yamamoto, Toyoshiro; Sato, Shinichi; Nakao, Satoshi; Ban, Sadahiko; Namba, Koh

    1983-01-01

    The unusual case of a 15 year old boy with three discrete paraventricular germ-cell tumors is reported.FThe first tumor was located just lateral to the left thalamus and included a massive cystic part around it, the second tumor in the paraventricular region above the head of the left caudate nucleus and the third tumor in the medial part of the left parietal lobe.FTotal removal of all tumors was successfully accomplished in stages at four separate operations, namely, the first tumor was removed through the left transsylvian approach, the second tumor via left superior frontal gyrus and the third tumor via left superior frontal gyrus and left superior parietal lobule.FHistological examination revealed that the first tumor was teratoma, the second was choriocarcinoma and the third was germinoma.FPrimary germ-cell tumors of the brain can be divided into 5 groups: 1) germinoma; 2) embryonal carcinoma; 3) choriocarcinoma; 4) yolk-sac tumor; or 5) teratoma.FIn this case, a combination of three different histological patterns was seen. If malignant germ-cell tumor is supected on CT, aggressive extirpation should be done, not only to determine the exact diagnosis, but also to provide the basis for subsequent adjunctive therapy. (author)

  3. Brain and Spinal Tumors: Hope through Research

    Science.gov (United States)

    ... arm or leg. A sudden, marked change in handwriting may be a sign of a tumor. Balance ... coordination and balance, mental status, and changes in mood or behavior, among other abilities. Some tests require ...

  4. Subacute brain atrophy induced by radiation therapy to the malignant brain tumors

    International Nuclear Information System (INIS)

    Asai, Akio; Matsutani, Masao; Takakura, Kintomo.

    1987-01-01

    In order to analyze brain atrophy after radiation therapy to the brain tumors, we calculated a CSF-cranial volume ratio on CT scan as an index of brain atrophy, and estimated dementia-score by Hasegawa's method in 91 post-irradiated patients with malignant brain tumors. Radiation-induced brain atrophy was observed in 51 out of 91 patients (56 %) and dementia in 23 out of 47 patients (49 %). These two conditions were closely related, and observed significantly more often in aged and whole-brain-irradiated patients. As radiation-induced brain atrophy accompanied by dementia appeared 2 - 3 months after the completion of radiation therapy, it should be regarded as a subacute brain injury caused by radiation therapy. (author)

  5. Groupwise registration of MR brain images with tumors

    Science.gov (United States)

    Tang, Zhenyu; Wu, Yihong; Fan, Yong

    2017-09-01

    A novel groupwise image registration framework is developed for registering MR brain images with tumors. Our method iteratively estimates a normal-appearance counterpart for each tumor image to be registered and constructs a directed graph (digraph) of normal-appearance images to guide the groupwise image registration. Particularly, our method maps each tumor image to its normal appearance counterpart by identifying and inpainting brain tumor regions with intensity information estimated using a low-rank plus sparse matrix decomposition based image representation technique. The estimated normal-appearance images are groupwisely registered to a group center image guided by a digraph of images so that the total length of ‘image registration paths’ to be the minimum, and then the original tumor images are warped to the group center image using the resulting deformation fields. We have evaluated our method based on both simulated and real MR brain tumor images. The registration results were evaluated with overlap measures of corresponding brain regions and average entropy of image intensity information, and Wilcoxon signed rank tests were adopted to compare different methods with respect to their regional overlap measures. Compared with a groupwise image registration method that is applied to normal-appearance images estimated using the traditional low-rank plus sparse matrix decomposition based image inpainting, our method achieved higher image registration accuracy with statistical significance (p  =  7.02  ×  10-9).

  6. Treatment of malignant brain tumor. Today and tomorrow. Image-guided neurosurgery for brain tumor. A current perspective

    International Nuclear Information System (INIS)

    Kajita, Yasukazu; Fujii, Masazumi; Yoshida, Jun; Maesawa, Satoshi

    2008-01-01

    Although usefulness of the image-guided neurosurgery is well documented, there are scarce facilities having the actually operating system in Japan. Since 2006, authors' Nagoya University Hospital has had an operating room named ''Brain THEATER'', where an open MRI system APERTO (Hitachi-Medical Co.) and a navigation system Vector Vision (BrainLAB) are connected to conduct the complete image-guided neurosurgery for brain tumor by using the intraoperative MRI for continuously updating the residual tumor tissue to be dissected out. The room is pre- and intra-operatively supported by Departments of image analysis and of radiation technology in the University, and as well, is connected by net-working with another image-guided surgical room ''Brain Suite'' (Siemens 1.5 T MRI system: BrainLAB) in the neighboring facility, Nagoya Central Hospital. This paper describes the circumstances of the introduction of these systems in the Hospital, details of the image-guided surgery in the operation rooms with illustration of actual photos of the rooms and of pre-, intra- and post-operative images, outcomes of image-guided neurosurgery for brain tumor reported hitherto, image-guided neurosurgery for brain tumor's future perspectives involving robotic surgery and operation on the virtual 3D image including the net-worked one. Efforts should be made to further spread the system for performing the more non-invasive and precise surgery, and for conducting the diagnosis united with treatment. (R.T.)

  7. Performance Analysis of Unsupervised Clustering Methods for Brain Tumor Segmentation

    Directory of Open Access Journals (Sweden)

    Tushar H Jaware

    2013-10-01

    Full Text Available Medical image processing is the most challenging and emerging field of neuroscience. The ultimate goal of medical image analysis in brain MRI is to extract important clinical features that would improve methods of diagnosis & treatment of disease. This paper focuses on methods to detect & extract brain tumour from brain MR images. MATLAB is used to design, software tool for locating brain tumor, based on unsupervised clustering methods. K-Means clustering algorithm is implemented & tested on data base of 30 images. Performance evolution of unsupervised clusteringmethods is presented.

  8. Blood Brain Barrier: A Challenge for Effectual Therapy of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Arijit Bhowmik

    2015-01-01

    Full Text Available Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB. BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier.

  9. A noninvasive multimodal technique to monitor brain tumor vascularization

    Science.gov (United States)

    Saxena, Vishal; Gonzalez-Gomez, Ignacio; Laug, Walter E.

    2007-09-01

    Determination of tumor oxygenation at the microvascular level will provide important insight into tumor growth, angiogenesis, necrosis and therapeutic response and will facilitate to develop protocols for studying tumor behavior. The non-ionizing near infrared spectroscopy (NIRS) technique has the potential to differentiate lesion and hemoglobin dynamics; however, it has a limited spatial resolution. On the other hand, magnetic resonance imaging (MRI) has achieved high spatial resolution with excellent tissue discrimination but is more susceptible to limited ability to monitor the hemoglobin dynamics. In the present work, the vascular status and the pathophysiological changes that occur during tumor vascularization are studied in an orthotopic brain tumor model. A noninvasive multimodal approach based on the NIRS technique, namely steady state diffuse optical spectroscopy (SSDOS) along with MRI, is applied for monitoring the concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor region. The concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor vasculature are extracted at 15 discrete wavelengths in a spectral window of 675-780 nm. We found a direct correlation between tumor size, intratumoral microvessel density and tumor oxygenation. The relative decrease in tumor oxygenation with growth indicates that though blood vessels infiltrate and proliferate the tumor region, a hypoxic trend is clearly present.

  10. A noninvasive multimodal technique to monitor brain tumor vascularization

    International Nuclear Information System (INIS)

    Saxena, Vishal; Gonzalez-Gomez, Ignacio; Laug, Walter E

    2007-01-01

    Determination of tumor oxygenation at the microvascular level will provide important insight into tumor growth, angiogenesis, necrosis and therapeutic response and will facilitate to develop protocols for studying tumor behavior. The non-ionizing near infrared spectroscopy (NIRS) technique has the potential to differentiate lesion and hemoglobin dynamics; however, it has a limited spatial resolution. On the other hand, magnetic resonance imaging (MRI) has achieved high spatial resolution with excellent tissue discrimination but is more susceptible to limited ability to monitor the hemoglobin dynamics. In the present work, the vascular status and the pathophysiological changes that occur during tumor vascularization are studied in an orthotopic brain tumor model. A noninvasive multimodal approach based on the NIRS technique, namely steady state diffuse optical spectroscopy (SSDOS) along with MRI, is applied for monitoring the concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor region. The concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor vasculature are extracted at 15 discrete wavelengths in a spectral window of 675-780 nm. We found a direct correlation between tumor size, intratumoral microvessel density and tumor oxygenation. The relative decrease in tumor oxygenation with growth indicates that though blood vessels infiltrate and proliferate the tumor region, a hypoxic trend is clearly present

  11. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  12. Photon spectrum and absorbed dose in brain tumor.

    Science.gov (United States)

    Vega-Carrillo, Hector Rene; Silva-Sanchez, Angeles; Rivera-Montalvo, Teodoro

    2016-11-01

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is and 15.7 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 37.1 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Photon spectrum and absorbed dose in brain tumor

    International Nuclear Information System (INIS)

    Silva S, A.; Vega C, H. R.; Rivera M, T.

    2015-10-01

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  14. Irradiation effects on the tumor and adjacent tissues of brain tumor-bearing mice

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Maki, Yutaka; Tsunemoto, Hiroshi; Koike, Sachiko; Furukawa, Shigeo.

    1979-01-01

    C 3 H mice aged 56 - 70 days, weighing 27 - 37 g were used throughout this experiment. A transplantable fibrosarcoma arising spontaneously from C 3 H mice was used. For experiment, 10 4 tumor cells suspended in 0.025 ml of saline solution were injected into the cerebral hemisphere by a 26 gauge needle with a micrometer syringe under nembutal anesthesia. Whole brain irradiation was performed at 7 days after injection of the tumor cells and the radiation doses were 2,000 and 20,000 rads, respectively. The feature of x-rays were 200 kVp, 20 mA, 0.5 mm Cu + 0.5 mm Al filtration and TSD 20 cm. The dose-rate was 340 - 360 R/min. The articles of this study were as follows: a) Determination of LD 50 values for the mice, tumor-bearing in the brain or non-tumor-bearing; and b) Observation of clinical features and gross autopsy findings of the mice following irradiation. The LD 50 values for 2,000 rad irradiation in the tumor-bearing or non-tumor-bearing mice were 10.9 and 11.4 days, respectively. LD 50 values of 3.7 days and 4.3 days were the results for the tumor-bearing and non-tumor-bearing mice irradiated by 20,000 rad, respectively. On the other hand, the LD 50 value for the control group, i.e. non-irradiated mice, was 6.7 days. At postmortem examinations, gastrointestinal bleeding was observed frequently in mice bearing tumor in the brain. Whole brain irradiation is effective to prolong the life of tumor-bearing mice. However, in some instances, deaths have occurred earlier in tumor-bearing mice compared to the control group. (author)

  15. Brain mapping in tumors: intraoperative or extraoperative?

    Science.gov (United States)

    Duffau, Hugues

    2013-12-01

    In nontumoral epilepsy surgery, the main goal for all preoperative investigation is to first determine the epileptogenic zone, and then to analyze its relation to eloquent cortex, in order to control seizures while avoiding adverse postoperative neurologic outcome. To this end, in addition to neuropsychological assessment, functional neuroimaging and scalp electroencephalography, extraoperative recording, and electrical mapping, especially using subdural strip- or grid-electrodes, has been reported extensively. Nonetheless, in tumoral epilepsy surgery, the rationale is different. Indeed, the first aim is rather to maximize the extent of tumor resection while minimizing postsurgical morbidity, in order to increase the median survival as well as to preserve quality of life. As a consequence, as frequently seen in infiltrating tumors such as gliomas, where these lesions not only grow but also migrate along white matter tracts, the resection should be performed according to functional boundaries both at cortical and subcortical levels. With this in mind, extraoperative mapping by strips/grids is often not sufficient in tumoral surgery, since in essence, it allows study of the cortex but cannot map subcortical pathways. Therefore, intraoperative electrostimulation mapping, especially in awake patients, is more appropriate in tumor surgery, because this technique allows real-time detection of areas crucial for cerebral functions--eloquent cortex and fibers--throughout the resection. In summary, rather than choosing one or the other of different mapping techniques, methodology should be adapted to each pathology, that is, extraoperative mapping in nontumoral epilepsy surgery and intraoperative mapping in tumoral surgery. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  16. Regional cerebral blood flow in the patient with brain tumor

    International Nuclear Information System (INIS)

    Tsuchida, Shohei

    1993-01-01

    Regional cerebral blood flow (rCBF) was measured with xenon-enhanced CT (Xe-CT) in 21 cases of intracranial tumors (13 meningiomas, 5 gliomas, 3 metastatic brain tumors). Peritumoral edema was graded as mild, moderate or severe based on the extent of edema on CT and MRI. According to intratumoral blood flow distribution patterns, three patterns were classified as central type with relatively high blood flow at the center of the tumor, homogeneous type with an almost homogeneous blood flow distribution, and marginal type with relatively high blood flow at the periphery of the tumor. High grade astrocytoma and metastatic brain tumor showed marginal type blood flow and moderate or severe edema except in one case. Five meningiomas with severe peritumoral edema revealed marginal type blood flow and four with mild peritumoral edema showed central type blood flow, except for one case. No correlation was found between the extent of peritumoral edema and histological subtype, tumor size, location, duration of clinical history, vascularization on angiogram, and mean blood flow in the tumor. These results suggest that blood flow distribution patterns within the tumor may affect the extension of peritumoral edema. Pre- and postoperative rCBFs were evaluated with Xe-CT and IMP-SPECT in 7 cases, mean rCBF of peritumoral edema was 6.2 ml/100 g/min preoperatively, and discrepancy between rCBF on Xe-CT and that on IMP-SPECT was shown in the remote cortical region ipsilateral to the tumor. Postoperative rCBF revealed an improved blood flow in both adjacent and remote areas, suggesting that the decreased blood flow associated with brain tumors might be relieved after surgery. (author) 53 refs

  17. Recent technological advances in pediatric brain tumor surgery.

    Science.gov (United States)

    Zebian, Bassel; Vergani, Francesco; Lavrador, José Pedro; Mukherjee, Soumya; Kitchen, William John; Stagno, Vita; Chamilos, Christos; Pettorini, Benedetta; Mallucci, Conor

    2017-01-01

    X-rays and ventriculograms were the first imaging modalities used to localize intracranial lesions including brain tumors as far back as the 1880s. Subsequent advances in preoperative radiological localization included computed tomography (CT; 1971) and MRI (1977). Since then, other imaging modalities have been developed for clinical application although none as pivotal as CT and MRI. Intraoperative technological advances include the microscope, which has allowed precise surgery under magnification and improved lighting, and the endoscope, which has improved the treatment of hydrocephalus and allowed biopsy and complete resection of intraventricular, pituitary and pineal region tumors through a minimally invasive approach. Neuronavigation, intraoperative MRI, CT and ultrasound have increased the ability of the neurosurgeon to perform safe and maximal tumor resection. This may be facilitated by the use of fluorescing agents, which help define the tumor margin, and intraoperative neurophysiological monitoring, which helps identify and protect eloquent brain.

  18. The impact of dietary isoflavonoids on malignant brain tumors

    International Nuclear Information System (INIS)

    Sehm, Tina; Fan, Zheng; Weiss, Ruth; Schwarz, Marc; Engelhorn, Tobias; Hore, Nirjhar; Doerfler, Arnd; Buchfelder, Michael; Eyüpoglu, IIker Y; Savaskan, Nic E

    2014-01-01

    Poor prognosis and limited therapeutic options render malignant brain tumors one of the most devastating diseases in clinical medicine. Current treatment strategies attempt to expand the therapeutic repertoire through the use of multimodal treatment regimens. It is here that dietary fibers have been recently recognized as a supportive natural therapy in augmenting the body's response to tumor growth. Here, we investigated the impact of isoflavonoids on primary brain tumor cells. First, we treated glioma cell lines and primary astrocytes with various isoflavonoids and phytoestrogens. Cell viability in a dose-dependent manner was measured for biochanin A (BCA), genistein (GST), and secoisolariciresinol diglucoside (SDG). Dose–response action for the different isoflavonoids showed that BCA is highly effective on glioma cells and nontoxic for normal differentiated brain tissues. We further investigated BCA in ex vivo and in vivo experimentations. Organotypic brain slice cultures were performed and treated with BCA. For in vivo experiments, BCA was intraperitoneal injected in tumor-implanted Fisher rats. Tumor size and edema were measured and quantified by magnetic resonance imaging (MRI) scans. In vascular organotypic glioma brain slice cultures (VOGIM) we found that BCA operates antiangiogenic and neuroprotective. In vivo MRI scans demonstrated that administered BCA as a monotherapy was effective in reducing significantly tumor-induced brain edema and showed a trend for prolonged survival. Our results revealed that dietary isoflavonoids, in particular BCA, execute toxicity toward glioma cells, antiangiogenic, and coevally neuroprotective properties, and therefore augment the range of state-of-the-art multimodal treatment approach

  19. Aerobic Glycolysis as a Marker of Tumor Aggressiveness: Preliminary Data in High Grade Human Brain Tumors

    Directory of Open Access Journals (Sweden)

    Andrei G. Vlassenko

    2015-01-01

    Full Text Available Objectives. Glucose metabolism outside of oxidative phosphorylation, or aerobic glycolysis (AG, is a hallmark of active cancer cells that is not directly measured with standard 18F-fluorodeoxyglucose (FDG positron emission tomography (PET. In this study, we characterized tumor regions with elevated AG defined based on PET measurements of glucose and oxygen metabolism. Methods. Fourteen individuals with high-grade brain tumors underwent structural MR scans and PET measurements of cerebral blood flow (CBF, oxygen (CMRO2 and glucose (CMRGlu metabolism, and AG, using 15O-labeled CO, O2 and H2O, and FDG, and were compared to a normative cohort of 20 age-matched individuals. Results. Elevated AG was observed in most high-grade brain tumors and it was associated with decreased CMRO2 and CBF, but not with significant changes in CMRGlu. Elevated AG was a dramatic and early sign of tumor growth associated with decreased survival. AG changes associated with tumor growth were differentiated from the effects of nonneoplastic processes such as epileptic seizures. Conclusions. Our findings demonstrate that high-grade brain tumors exhibit elevated AG as a marker of tumor growth and aggressiveness. AG may detect areas of active tumor growth that are not evident on conventional FDG PET.

  20. Air pollution from traffic and risk for brain tumors

    DEFF Research Database (Denmark)

    Poulsen, Aslak Harbo; Sørensen, Mette; Andersen, Zorana J

    2016-01-01

    PURPOSE: Air pollution is an established lung carcinogen, and there is increasing evidence that air pollution also negatively affects the brain. We have previously reported an association between air pollution and risk of brain tumors in a cohort study based on only 95 cases. We set out...... to replicate that finding in a large nationwide case-control study. METHODS: We identified all 4,183 adult brain tumor cases in Denmark in the years 2000-2009 and 8,018 risk set sampled population controls matched on gender and year of birth. We extracted residential address histories and estimated mean...... residential nitrogen oxides (NOx) concentrations since 1971 with a validated dispersion model. Categorical and linear odds ratios (OR) and confidence intervals (CI) were calculated with conditional logistic regression models. RESULTS: The highest risk estimates for any brain cancer were observed among...

  1. Training stem cells for treatment of malignant brain tumors

    Institute of Scientific and Technical Information of China (English)

    Shengwen; Calvin; Li; Mustafa; H; Kabeer; Long; T; Vu; Vic; Keschrumrus; Hong; Zhen; Yin; Brent; A; Dethlefs; Jiang; F; Zhong; John; H; Weiss; William; G; Loudon

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for pa-tients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution(i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system.

  2. Gonadal status in male survivors following childhood brain tumors

    DEFF Research Database (Denmark)

    Schmiegelow, M; Lassen, S; Poulsen, H S

    2001-01-01

    The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males......The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males...

  3. Boron neutron capture therapy: Brain Tumor Treatment Evaluation Program

    International Nuclear Information System (INIS)

    Griebenow, M.L.; Dorn, R.V. III; Gavin, P.R.; Spickard, J.H.

    1988-01-01

    The United States (US) Department of Energy (DOE) recently initiated a focused, multidisciplined program to evaluate Boron Neutron Capture Therapy (BNCT) for the treatment of brain tumors. The program, centered at the DOE/endash/Idaho National Engineering Laboratory (INEL), will develop the analytical, diagnostic and treatment tools, and the database required for BNCT technical assessment. The integrated technology will be evaluated in a spontaneously-occurring canine brain-tumor model. Successful animal studies are expected to lead to human clinical trials within four to five years. 2 refs., 3 figs

  4. Boron neutron capture therapy for children with malignant brain tumor

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Komatsu, Hisao; Kageji, Teruyoshi; Tsuji, Fumio; Matsumoto, Keizo; Kitamura, Katsuji; Hatanaka, Hiroshi; Minobe, Takashi.

    1993-01-01

    Among the 131 cases with brain tumors treated by boron-neutron capture therapy (BNCT), seventeen were children. Eight supratentorial tumors included five astrocytomas(grade 2-4), two primitive neuroectodermal tumors (PNET) and one rhabdomyosarcoma. Seven pontine tumors included one astrocytoma, one PNET and 5 unverified gliomas. Two cerebellar tumors (PNET and astrocytoma) were also treated. All pontine tumors showed remarkable decrease in size after BNCT. However, most of them showed regrowth of the tumors because the neutrons were insufficient due to the depth. Four cases with cerebral tumor died of remote cell dissemination, although they all responded to BNCT. One of them survived 7 years after repeated BNCTs. An 11 years old girl with a large astrocytoma in the right frontal lobe has lived more than 11 years and is now a draftswoman at a civil engineering company after graduating from a technical college. An 8 years old girl with an astrocytoma in the left occipital lobe has no recurrence of the tumor for 2 years and attends on elementary school without mental and physical problems. Two children (one year old girl and four years old boy) with cerebellar tumors have shown showed an excellent growth after BNCT and had no neurological deficits. Mental and physical development in patients treated by BNCT is usually better than that in patients treated by conventional radiotherapy. (author)

  5. KRAS/BRAF Analysis in Ovarian Low-Grade Serous Carcinoma Having Synchronous All Pathological Precursor Regions

    Directory of Open Access Journals (Sweden)

    Kohei Nakamura

    2016-04-01

    Full Text Available Ovarian low-grade serous carcinoma is thought to begin as a serous cystadenoma or adenofibroma that progresses in a slow stepwise fashion. Among the low-grade serous carcinomas, there is a high frequency of activating mutations in the KRAS or BRAF genes; however, it remains unclear as to how these mutations contribute to tumor progression. This is the first report to track the histopathological progression of serous adenofibroma to low-grade serous carcinoma. Each stage was individually analyzed by pathological and molecular genetic methods to determine what differences occur between the distinct stages of progression.

  6. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  7. Brain tumor classification using Probabilistic Neural Network

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... Baghdad, Iraq. 1sami.hasan@coie.nahrainuniv.edu.iq ... The Human brain is the most amazing and complex thing known in the world [1]. ... achieved using gray level co-occurrence matrix (GLCM). This work is aimed to ...

  8. Analysis of p53- immunoreactivity in astrocytic brain tumors

    Directory of Open Access Journals (Sweden)

    Shinkarenko T.V.

    2016-12-01

    Full Text Available P53 is an antioncogene with the frequently occured mutations in human tumor cells, leading to corresponding protein overexpression which can be detected by immunohistochemistry. Researches dedicated to the investigation of possibilities of using this technique gave controversial results. The authors investigated features of p53 protein expression in astrocytic brain tumors with different degrees of malignancy. Analyzed the relationship of the expression level of p53 by tumor cells with clinical parameters and Ki-67 proliferation index (PI as well. Tissues were collected from 52 cases with diagnosed astrocytic brain tumors. The sections were immunohistochemically stained with p53 and Ki-67. For each marker, 1000 tumor cells were counted and the ratio of positive tumor cells was calculated using software package ImageJ 1,47v. In normal brain tissue p53- expression was not identified. p53-immunoreactive tumor cells were detected in 25% (1/4 pilocytic astrocytomas, 33.3% (2/6 of diffuse astrocytomas, 53.8% (7/13 anaplastic astrocytomas, 58.6% (17/29 glioblastomas. A high proportion of p53-immunoreactive cells (> 30% was observed only in glioblastomas. The level of p53-imunoreactivity was not related to the age, gender and Grade WHO (p> 0,05. Spearman correlation coefficient between the relative quantity of ki-67- and p53-immunoreactive nuclei showed weak direct correlation (0.023, but the one was not statistically significant (p> 0,05. The level of p53-imunoreactivity is not dependent from age and sex of patients, Grade (WHO and proliferative activity (p>0,05 but the high level of p53-immunoreactive cells (>30% is found in glioblastoma specimens only, that may be due to the accumulation of mutations in DNA of tumor cells. There is insignificant weak relationship between relative quantities of ki-67- and p53-immunoreactive tumor cells (p>0,05.

  9. Neuroradiologic work-up of brain tumors

    International Nuclear Information System (INIS)

    Fishbein, D.S.

    1988-01-01

    The presence of an intracranial tumor may be suspected or deduced from the clinical history and examination, or it may be discovered incidentally during investigation of another disorder. Once the suggestion is raised, a variety of neuroradiologic techniques are available to define the extent and nature of the lesion. The studies performed may allow a tissue diagnosis to be presumed, may serve as a guide to proposed surgical therapy, or may allow the course of a previously diagnosed lesion to be followed. This chapter discusses the utility of common neuroradiologic techniques and their specific indications in the work-up of intracranial tumors. Emphasis is placed upon tests that are most frequently utilized and have the greatest value

  10. Detecting brain tumor in pathological slides using hyperspectral imaging.

    Science.gov (United States)

    Ortega, Samuel; Fabelo, Himar; Camacho, Rafael; de la Luz Plaza, María; Callicó, Gustavo M; Sarmiento, Roberto

    2018-02-01

    Hyperspectral imaging (HSI) is an emerging technology for medical diagnosis. This research work presents a proof-of-concept on the use of HSI data to automatically detect human brain tumor tissue in pathological slides. The samples, consisting of hyperspectral cubes collected from 400 nm to 1000 nm, were acquired from ten different patients diagnosed with high-grade glioma. Based on the diagnosis provided by pathologists, a spectral library of normal and tumor tissues was created and processed using three different supervised classification algorithms. Results prove that HSI is a suitable technique to automatically detect high-grade tumors from pathological slides.

  11. Reorganization of Language Areas in Patient with a Frontal Lobe Low Grade Glioma – fMRI Case Study

    International Nuclear Information System (INIS)

    Kośla, Katarzyna; Bryszewski, Bartosz; Jaskólski, Dariusz; Błasiak-Kołacińska, Nina; Stefańczyk, Ludomir; Majos, Agata

    2015-01-01

    Functional magnetic resonance (fMRI) studies results in case of an adult patient with low grade glioma (LGG) in dominant hemisphere suggest brain plasticity process with acquisition of language functions by the non-dominant hemisphere speech regions. A 36-years old right-handed woman was admitted to the Department of Neurosurgery for surgical treatment of brain tumor. An MRI examination revealed a pathological mass in the left frontal lobe, in close topographical relationship to the Broca’s area. A left fronto-parietal craniotomy was performed, with an intraoperative awake language mapping procedure. A total resection of the pathological mass was achieved. The tumor was examined histologically as LGG. In the follow-up MRI exam 32 months after the operation a tumor recurrence was suggested. The fMRI exams performed preoperative and 3, 32 and 41 months after the operation showed changes in language regions activation patterns, with a progressive right-sided activation of Broca’s and Wernicke’s areas. Pre- and postoperative cognitive evaluation by a neuropsychologist did not detect any language impairment. We present a running process of reorganization of language areas in a patient after brain tumor resection, from strong left-sided to symmetrical lateralization. 1. FMRI results in comparison with the psychological status of the patient proved contribution of functional reorganization to the preservation of language performance. 2. A slow growing LGG as well as the recurrence of the tumor near the left Broca’s area might be the factors leading to reorganization of language-related areas by recruiting the right hemisphe

  12. Study on radiation necrosis following intraoperative radiotherapy for brain tumors

    International Nuclear Information System (INIS)

    Tanaka, Yoshiaki; Takeshita, Nagayuki; Niwa, Kohkichi; Kamata, Noriko; Matsuda, Tadayoshi; Matsutani, Masao

    1989-01-01

    Ninety-five patients with primary or metastatic brain tumors were treated with the intraoperative radiotherapy (IORT). In seven cases, surgery was performed a second time because of suspected of tumor recurrence, later found to be a radiation necrosis. Tumorous lesions were irradiated by IORT in the range of 15 Gy to 20 Gy together with external radiotherapy in the 30 Gy to 72 Gy range. In follow-up postcontrast CT studies, irregularly-shaped lesions appeared at the IORT site and increased in size with the perifocal low density area on subsequent scans. The images resembled those seen in tumor recurrence. Histopathologic changes seen during the follow-up surgery were thought to be mainly the result of radiation necrosis, though viable tumor cells at the marginal tumor site were one possible etiology. A coagulation necrosis with a fibrin exudate was observed in the IORT portal area and the vascular walls exhibited marked degeneration which is symptomatic of delayed radiation necrosis. Thus, post-IORT radiation necrosis is thought to be a direct reaction to this technique, and the delayed absorption of necrotic tissue to be a direct reaction to this technique, and the delayed absorption of necrotic tissue clearly indicates the possibility of adverse effects in its use for treatment of brain tumors. (author)

  13. Cyclosporin safety in a simplified rat brain tumor implantation model

    Directory of Open Access Journals (Sweden)

    Francisco H. C. Felix

    2012-01-01

    Full Text Available Brain cancer is the second neurological cause of death. A simplified animal brain tumor model using W256 (carcinoma 256, Walker cell line was developed to permit the testing of novel treatment modalities. Wistar rats had a cell tumor solution inoculated stereotactically in the basal ganglia (right subfrontal caudate. This model yielded tumor growth in 95% of the animals, and showed absence of extracranial metastasis and systemic infection. Survival median was 10 days. Estimated tumor volume was 17.08±6.7 mm³ on the 7th day and 67.25±19.8 mm³ on 9th day post-inoculation. Doubling time was 24.25 h. Tumor growth induced cachexia, but no hematological or biochemical alterations. This model behaved as an undifferentiated tumor and can be promising for studying tumor cell migration in the central nervous system. Dexamethasone 3.0 mg/kg/day diminished significantly survival in this model. Cyclosporine 10 mg/kg/day administration was safely tolerated.

  14. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2016-04-01

    Full Text Available Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents.

  15. American brain tumor patients treated with BNCT in Japan

    International Nuclear Information System (INIS)

    Laramore, G.E.; Griffin, B.R.; Spence, A.

    1995-01-01

    The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy

  16. Use of MicroRNA biomarkers to distinguish enchondroma from low-grade chondrosarcoma.

    Science.gov (United States)

    Zhang, Liang; Yang, Maozhou; Mayer, Theodore; Johnstone, Brian; Les, Clifford; Frisch, Nicholas; Parsons, Theodore; Mi, Qing-Sheng; Gibson, Gary

    2017-03-01

    Establishing a definitive diagnosis between benign enchondroma versus low-grade chondrosarcoma presents a potential challenge to both clinicians and pathologists. microRNAs (small non-coding RNAs) have proven to be effective biomarkers for the identification of tumors and tumor progression. We present analysis, both array and quantitative PCR, that shows consistently and substantially increased expression of two microRNAs, miRs-181a and -138, in low-grade chondrosarcomas compared with enchondromas. The data suggest these microRNAs would provide an analytical distinction between the chondrosarcoma and benign neoplasms that can be performed in formalin-fixed paraffin-embedded specimens. Together with recent publications, these data indicate that miRs-181a and -138 also play a role in tumor development and homeostasis and may provide new targets for the development of much needed therapeutic intervention.

  17. Conformal proton radiation therapy for pediatric low-grade astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Hug, E.B. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Radiation Medicine; Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Pediatrics and Dept. of Pathology; Darthmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States). Section of Radiation Oncology; Muenter, M.W.; Archambeau, J.O.; DeVries, A.; Loredo, L.N.; Grove, R.I.; Slater, J.D. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Radiation Medicine; Liwnicz, B. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Pathology

    2002-01-01

    Background: To evaluate the safety and efficacy of proton radiation therapy (PRT) for intracranial low-grade astrocytomas, the authors analyzed the first 27 pediatric patients treated at Loma Linda University Medical Center (LLUMC). Patients and Method: Between September 1991 and August 1997, 27 patients (13 female, 14 male) underwent fractionated proton radiation therapy for progressive or recurrent low-grade astrocytoma. Age at time of treatment ranged from 2 to 18 years (mean: 8.7 years). Tumors were located centrally (diencephatic) in 15 patients, in the cerebral and cerebellar hemispheres in seven patients, and in the brainstem in five patients. 25/27 patients (92%) were treated for progressive, unresectable, or residual disease following subtotal resection. Tissue diagnosis was available in 23/27 patients (85%). Four patients with optic pathway tumors were treated without histologic confirmation. Target doses between 50.4 and 63.0 CGE (cobalt gray equivalent, mean: 55.2 CGE) were prescribed at 1.8 CGE per fraction, five treatments per week. Results: At a mean follow-up period of 3.3 years (0.6-6.8 years), 6/27 patients experienced local failure (all located within the irradiated field), and 4/27 patients had died. By anatomic site these data translated into rates of local control and survival of 87% (13/15 patients) and 93% (14/15 patients) for central tumors, 71% (5/7 patients) and 86% (6/7 patients) for hemispheric tumors, and 60% (3/5 patients) and 60% (3/5 patients) for tumors located in the brainstem. Proton radiation therapy was generally well tolerated. All children with local control maintained their performance status. One child with associated neurofibromatosis, Type 1, developed Moyamoya disease. All six patients with optic pathway tumors and useful vision maintained or improved their visual status. Conclusions: This report on pediatric low-grade astrocytomas confirms proton radiation therapy as a safe and efficacious 3-D conformal treatment

  18. Cognitive impairments in patients with low grade gliomas and high grade gliomas

    Directory of Open Access Journals (Sweden)

    Eliane C. Miotto

    2011-08-01

    Full Text Available OBJECTIVE: The relationship between brain tumors and cognitive deficits is well established in the literature. However, studies investigating the cognitive status in low and high-grade gliomas patients are scarce, particularly in patients with average or lower educational level. This study aimed at investigating the cognitive functioning in a sample of patients with low and high-grade gliomas before surgical intervention. METHOD: The low-grade (G1, n=19 and high-grade glioma (G2, n=8 patients underwent a detailed neuropsychological assessment of memory, executive functions, visuo-perceptive and visuo-spatial abilities, intellectual level and language. RESULTS: There was a significant impairment on verbal and visual episodic memory, executive functions including mental flexibility, nominal and categorical verbal fluency and speed of information processing in G2. G1 showed only specific deficits on verbal and visual memory recall, mental flexibility and processing speed. CONCLUSION: These findings demonstrated different levels of impairments in the executive and memory domains in patients with low and high grade gliomas.

  19. Anxiety in the preoperative phase of awake brain tumor surgery

    NARCIS (Netherlands)

    Ruis, Carla; Huenges Wajer, I.M.C.; Robe, Pierre; van Zandvoort, Martine

    OBJECTIVE: Awake surgery emerges as a standard of care for brain tumors located in or near eloquent areas. Levels of preoperative anxiety in patients are important, because anxiety can influence cognitive performance and participation, hence altering the outcome of the procedure. In this study we

  20. Local anesthetics for brain tumor resection: Current perspectives

    NARCIS (Netherlands)

    J.W. Potters (Jan Willem); M. Klimek (Markus)

    2018-01-01

    textabstractThis review summarizes the added value of local anesthetics in patients undergoing craniotomy for brain tumor resection, which is a procedure that is carried out frequently in neurosurgical practice. The procedure can be carried out under general anesthesia, sedation with local

  1. Anxiety in the preoperative phase of awake brain tumor surgery

    NARCIS (Netherlands)

    Ruis, C.; Huenges Wajer, I.M.C.; Robe, Pierre; van Zandvoort, M.J.E.

    Objective Awake surgery emerges as a standard of care for brain tumors located in or near eloquent areas. Levels of preoperative anxiety in patients are important, because anxiety can influence cognitive performance and participation, hence altering the outcome of the procedure. In this study we

  2. Life satisfaction in adult survivors of childhood brain tumors.

    Science.gov (United States)

    Crom, Deborah B; Li, Zhenghong; Brinkman, Tara M; Hudson, Melissa M; Armstrong, Gregory T; Neglia, Joseph; Ness, Kirsten K

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, lifelong deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors' physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggest some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population-based matched controls. Chi-square tests, t tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated that life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors' general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population. © 2014 by Association of Pediatric Hematology/Oncology Nurses.

  3. Radiotherapy combined with Tegafur (FT-207s) for brain tumors

    International Nuclear Information System (INIS)

    Aoki, Yoshiro

    1981-01-01

    5-Fluorouracil (5-FU) has anti-tumor effects as an anti-metabolite, but it cannot pass the Blood-Brain-Barrier (BBB). FT-207 a masked-compound of 5-FU, is easily lipid soluble and is able to pass the BBB. Twenty eight patients of primary brain tumor and 8 patients of metastatic brain tumor were treated with irradiation combined with 750 mg of FT-207 suppository. Twenty four patients of primary brain tumor were treated only with irradiation as control. The mean survival time was 20.4 +- 11.8 months for the combined therapy group and 17.6 +- 8.6 months for the control. The concentration of FT-207 and 5-FU in serum and in cerebrospinal fluid (CSF) was investigated after administration of 750 mg of FT-207 suppository per annum. The maximum concentration of FT-207 and of 5-FU in serum was 20.4 +- 11.8 mcg/ml and 0.06 +- 0.02 mcg/ml, respectively. There were observed several side effects, such as anorexia, nausea, exanthema and etc. These side effects were not so great as to interrupt the therapy at the dose level of 750 mg of FT-207. However, at the dose of 1500 mg, one case showed disturbance of consciousness, to which attention should be called. (author)

  4. Gadolinium neutron capture therapy for brain tumors. Biological aspects

    International Nuclear Information System (INIS)

    Takagaki, Masao; Oda, Yoshifumi; Matsumoto, Masato; Kikuchi, Haruhiko; Kobayashi, Tooru; Kanda, Keiji; Ujeno, Yowri.

    1994-01-01

    This study investigated the tumoricidal effect of gadolinium neutron capture therapy (Gd-NCT) in in vitro and in vivo systems using Gd-DTPA. In in vitro study, a certain amount of Gd-DTPA, yielding 5000 ppm Gd-n, was added to human glioma cells, T98G, upon which thermal neutrons were exposed. After irradiation, the cells were incubated and the colonies were counted 10 days later. In in vivo study, Fisher-344 rats with experimentally induced gliosarcoma cells (9L) were exposed to thermal neutrons at a fluence rate of 3E+9/s for 1 h immediately after iv injection of Gd-DTPA. Two weeks after irradiation, brain samples were histologically examined. Tumor clearance of Gd-DTPA was also determined. In vitro analysis showed that a 1% survival level was obtained at 3.75E+12 (n/cm 2 ) for the Gd (+) medium and 2.50E+13 (n/cm 2 ) for the Gd (-) medium. In in vivo analysis, the concentration of Gd in 9L-rat brain tumor after iv injection of 0.2 mg/kg Gd-DTPA was found to be less than 100 ppm, but Gd-NCT on 9L-rat brain tumor administered with a ten-fold dose showed a substantial killing effect on tumor without serious injury to the normal brain structure. The killing effect of Gd-NCT was confirmed in in vitro and in vivo systems. (N.K.)

  5. Computed tomography in the CSF seeding of brain tumors

    International Nuclear Information System (INIS)

    Nakagawa, Yoshio; Fujimoto, Masahito; Naruse, Shoji; Ueda, Satoshi; Hirakawa, Kimiyoshi

    1981-01-01

    In the past three years nine cases of brain tumors with CSF seeding have been revealed by computed tomography (CT). We have been analyzing the CT pattern of CSF seeding, CSF cytology, and spinal metastasis. The brain tumors were classified as follows: five medulloblastomas, two glioblastomas, one germinoma, and one meningeal carcinomatosis. Their CT patterns were divided into three groups: 1) diffuse seeding of the basal cisterns. 2) invasion of the ventricular wall. 3) solitary metastasis in the ventricle. The subarachnoid seeding included four medulloblastomas and one meningeal carcinomatosis. The second type of seeding included two glioblastomas and one germinoma. One medulloblastoma had a single metastasis in the lateral ventricle. In the medulloblastomas, the diffuse seeding of the basal cisterns was more common than the invasion of the ventricular wall or solitary metastasis in the ventricle. Medulloblastomas were also accompanied by spinal metastasis. Because there were many cases of spinal metastasis in the first type of seeding, we concluded that there was a definite correlation between the CSF seeding of the basal cisterns and spinal metastasis. Needless to say, CT was the most important method for the diagnosis of the CSF seeding of brain tumors. However, because there was a case of CSF seeding which had not been demonstrated by CT, we also emphasized the importance of neurological examination and CSF cytology in the diagnosis of the CSF seeding of brain tumors. (author)

  6. Brain Tumor Segmentation Based on Random Forest

    Directory of Open Access Journals (Sweden)

    László Lefkovits

    2016-09-01

    Full Text Available In this article we present a discriminative model for tumor detection from multimodal MR images. The main part of the model is built around the random forest (RF classifier. We created an optimization algorithm able to select the important features for reducing the dimensionality of data. This method is also used to find out the training parameters used in the learning phase. The algorithm is based on random feature properties for evaluating the importance of the variable, the evolution of learning errors and the proximities between instances. The detection performances obtained have been compared with the most recent systems, offering similar results.

  7. Clinical study on brain tumors in the aged

    International Nuclear Information System (INIS)

    Teramoto, Akira; Manaka, Shinya; Takakura, Kintomo

    1981-01-01

    In order to investigate the clinical features and the prognosis of brain tumors in the aged, 132 cases over 60 years of age were studied from the consecutive series of 1,793 brain tumors in the University of Tokyo Hospital (1963 - 1979). The incidence of brain tumors in the aged was 7.4% on the whole, while it showed a significant increase from 4.8% (1960's) to 11.5% (the later half of 1970's). Histologically, meningiomas were the most common tumors (26%), followed by neurinomas (17%), pituitary adenomas (16%) and metastatic tumors (15%). Malignant gliomas were found more frequently than benign ones. There were more meningiomas as age advanced. The proportion and the number of meningioma cases has obviously increased in recent years when CT scanners became available. Symptoms of intracranial hypertention were found less frequently in aged patients although they were still common in cases of glioblastomas. The duration from onset to surgery was relatively long, especially in cases of neurinomas and pituitary adenomas. Two cases of astrocytomas belonged to the category of silent gliomas. Overall operative mortality rate was 10.6%, while it showed a marked decrease to 4.7% in the 1970's. Five-year survival rates were as follows: meningiomas (58%), pituitary adenomas (70%), neurinomas (80%), glioblastomas (20%) and astrocytomas (25%). As for functional prognoses, 30% of the patients showed poor states on ADL, mostly because of residual psychic disorders. (author)

  8. Combination radiotherapy in an orthotopic mouse brain tumor model.

    Science.gov (United States)

    Kramp, Tamalee R; Camphausen, Kevin

    2012-03-06

    Glioblastoma multiforme (GBM) are the most common and aggressive adult primary brain tumors. In recent years there has been substantial progress in the understanding of the mechanics of tumor invasion, and direct intracerebral inoculation of tumor provides the opportunity of observing the invasive process in a physiologically appropriate environment. As far as human brain tumors are concerned, the orthotopic models currently available are established either by stereotaxic injection of cell suspensions or implantation of a solid piece of tumor through a complicated craniotomy procedure. In our technique we harvest cells from tissue culture to create a cell suspension used to implant directly into the brain. The duration of the surgery is approximately 30 minutes, and as the mouse needs to be in a constant surgical plane, an injectable anesthetic is used. The mouse is placed in a stereotaxic jig made by Stoetling (figure 1). After the surgical area is cleaned and prepared, an incision is made; and the bregma is located to determine the location of the craniotomy. The location of the craniotomy is 2 mm to the right and 1 mm rostral to the bregma. The depth is 3 mm from the surface of the skull, and cells are injected at a rate of 2 μl every 2 minutes. The skin is sutured with 5-0 PDS, and the mouse is allowed to wake up on a heating pad. From our experience, depending on the cell line, treatment can take place from 7-10 days after surgery. Drug delivery is dependent on the drug composition. For radiation treatment the mice are anesthetized, and put into a custom made jig. Lead covers the mouse's body and exposes only the brain of the mouse. The study of tumorigenesis and the evaluation of new therapies for GBM require accurate and reproducible brain tumor animal models. Thus we use this orthotopic brain model to study the interaction of the microenvironment of the brain and the tumor, to test the effectiveness of different therapeutic agents with and without

  9. Chemo-radiotherapy for malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kochi, Masato; Ushio, Yukitaka [Kumamoto Univ. (Japan). School of Medicine

    2002-05-01

    Malignant gliomas: Randomized clinical trials conducted in the USA showed that radiotherapy plus chemotherapy with nitrosoureas offered a long-term survival advantage to patients younger than 60 years old with malignant gliomas. Combination chemotherapy, such as procarbazine/CCNU/vincristine (PCV) must be tested further, and intra-arterial chemotherapy with nitrosoureas offered no survival advantage. Combination chemotherapy with PCV showed efficacy for patients with anaplastic oligodendroglioma and anaplastic oligoastrocytoma. Medulloblastoma: The addition of chemotherapy to radiotherapy improved the survival of patients with poor risk medulloblastoma, and may reduce the required craniospinal radiation dose in patients with good risk medulloblastoma. Primary CNS lymphoma (PCNSL): Combination of chemotherapy with high-dose MTX and radiotherapy improved survival of patients with PCNSL; however, the neurotoxicity produced by this treatment modality is a serious problem in older patients. Intracranial germ cell tumors: The addition of chemotherapy to radiotherapy may produce long term survival with good quality of life in patients with germinoma. Neoadjuvant therapy consisting of chemotherapy and radiotherapy followed by complete surgical excision improved survival of patients with intracranial nongerminomatous germ cell tumors. (author)

  10. Chemo-radiotherapy for malignant brain tumors

    International Nuclear Information System (INIS)

    Kochi, Masato; Ushio, Yukitaka

    2002-01-01

    Malignant gliomas: Randomized clinical trials conducted in the USA showed that radiotherapy plus chemotherapy with nitrosoureas offered a long-term survival advantage to patients younger than 60 years old with malignant gliomas. Combination chemotherapy, such as procarbazine/CCNU/vincristine (PCV) must be tested further, and intra-arterial chemotherapy with nitrosoureas offered no survival advantage. Combination chemotherapy with PCV showed efficacy for patients with anaplastic oligodendroglioma and anaplastic oligoastrocytoma. Medulloblastoma: The addition of chemotherapy to radiotherapy improved the survival of patients with poor risk medulloblastoma, and may reduce the required craniospinal radiation dose in patients with good risk medulloblastoma. Primary CNS lymphoma (PCNSL): Combination of chemotherapy with high-dose MTX and radiotherapy improved survival of patients with PCNSL; however, the neurotoxicity produced by this treatment modality is a serious problem in older patients. Intracranial germ cell tumors: The addition of chemotherapy to radiotherapy may produce long term survival with good quality of life in patients with germinoma. Neoadjuvant therapy consisting of chemotherapy and radiotherapy followed by complete surgical excision improved survival of patients with intracranial nongerminomatous germ cell tumors. (author)

  11. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    Science.gov (United States)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  12. Brain Tumor Segmentation Using a Generative Model with an RBM Prior on Tumor Shape

    DEFF Research Database (Denmark)

    Agn, Mikael; Puonti, Oula; Rosenschöld, Per Munck af

    2016-01-01

    In this paper, we present a fully automated generative method for brain tumor segmentation in multi-modal magnetic resonance images. The method is based on the type of generative model often used for segmenting healthy brain tissues, where tissues are modeled by Gaussian mixture models combined...... the use of the intensity information in the training images. Experiments on public benchmark data of patients suffering from low- and high-grade gliomas show that the method performs well compared to current state-of-the-art methods, while not being tied to any specific imaging protocol....... with a spatial atlas-based tissue prior. We extend this basic model with a tumor prior, which uses convolutional restricted Boltzmann machines (cRBMs) to model the shape of both tumor core and complete tumor, which includes edema and core. The cRBMs are trained on expert segmentations of training images, without...

  13. Clinical Outcomes and Late Endocrine, Neurocognitive, and Visual Profiles of Proton Radiation for Pediatric Low-Grade Gliomas

    International Nuclear Information System (INIS)

    Greenberger, Benjamin A.; Pulsifer, Margaret B.; Ebb, David H.; MacDonald, Shannon M.; Jones, Robin M.; Butler, William E.; Huang, Mary S.; Marcus, Karen J.; Oberg, Jennifer A.; Tarbell, Nancy J.; Yock, Torunn I.

    2014-01-01

    Purpose/Objective(s): Primary low-grade gliomas are common brain tumors of childhood, many of which require radiation therapy (RT) as definitive treatment. Increased conformality of RT could decrease the incidence and severity of late effects. We report our experience with 32 pediatric patients treated with proton RT. Methods and Materials: Thirty-two pediatric patients with low-grade gliomas of the brain or spinal cord were treated with proton RT from 1995 to 2007. Sixteen patients received at least 1 regimen of chemotherapy before definitive RT. The median radiation dose was 52.2 Gy RBE (48.6-54 Gy RBE ). Results: The median age at treatment was 11.0 years (range, 2.7-21.5 years), with a median follow-up time of 7.6 years (range, 3.2-18.2 years). The 6-year and 8-year rates of progression-free survival were 89.7% and 82.8%, respectively, with an 8-year overall survival of 100%. For the subset of patients who received serial neurocognitive testing, there were no significant declines in Full-Scale Intelligence Quotient (P=.80), with a median neurocognitive testing interval of 4.5 years (range, 1.2-8.1 years) from baseline to follow-up, but subgroup analysis indicated some significant decline in neurocognitive outcomes for young children (<7 years) and those with significant dose to the left temporal lobe/hippocampus. The incidence of endocrinopathy correlated with a mean dose of ≥40 Gy RBE to the hypothalamus, pituitary, or optic chiasm. Stabilization or improvement of visual acuity was achieved in 83.3% of patients at risk for radiation-induced injury to the optic pathways. Conclusions: This report of late effects in children with low-grade gliomas after proton RT is encouraging. Proton RT appears to be associated with good clinical outcome, especially when the tumor location allows for increased sparing of the left temporal lobe, hippocampus, and hypothalamic-pituitary axis

  14. Clinical Outcomes and Late Endocrine, Neurocognitive, and Visual Profiles of Proton Radiation for Pediatric Low-Grade Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Greenberger, Benjamin A. [Harvard Medical School, Boston, Massachusetts (United States); Pulsifer, Margaret B. [Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts (United States); Ebb, David H. [Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts (United States); MacDonald, Shannon M. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Jones, Robin M. [Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts (United States); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (United States); Butler, William E. [Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (United States); Huang, Mary S. [Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts (United States); Marcus, Karen J. [Department of Radiation Oncology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Oberg, Jennifer A. [Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York (United States); Tarbell, Nancy J. [Harvard Medical School, Boston, Massachusetts (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Yock, Torunn I., E-mail: tyock@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-08-01

    Purpose/Objective(s): Primary low-grade gliomas are common brain tumors of childhood, many of which require radiation therapy (RT) as definitive treatment. Increased conformality of RT could decrease the incidence and severity of late effects. We report our experience with 32 pediatric patients treated with proton RT. Methods and Materials: Thirty-two pediatric patients with low-grade gliomas of the brain or spinal cord were treated with proton RT from 1995 to 2007. Sixteen patients received at least 1 regimen of chemotherapy before definitive RT. The median radiation dose was 52.2 Gy{sub RBE} (48.6-54 Gy{sub RBE}). Results: The median age at treatment was 11.0 years (range, 2.7-21.5 years), with a median follow-up time of 7.6 years (range, 3.2-18.2 years). The 6-year and 8-year rates of progression-free survival were 89.7% and 82.8%, respectively, with an 8-year overall survival of 100%. For the subset of patients who received serial neurocognitive testing, there were no significant declines in Full-Scale Intelligence Quotient (P=.80), with a median neurocognitive testing interval of 4.5 years (range, 1.2-8.1 years) from baseline to follow-up, but subgroup analysis indicated some significant decline in neurocognitive outcomes for young children (<7 years) and those with significant dose to the left temporal lobe/hippocampus. The incidence of endocrinopathy correlated with a mean dose of ≥40 Gy{sub RBE} to the hypothalamus, pituitary, or optic chiasm. Stabilization or improvement of visual acuity was achieved in 83.3% of patients at risk for radiation-induced injury to the optic pathways. Conclusions: This report of late effects in children with low-grade gliomas after proton RT is encouraging. Proton RT appears to be associated with good clinical outcome, especially when the tumor location allows for increased sparing of the left temporal lobe, hippocampus, and hypothalamic-pituitary axis.

  15. Low grade urothelial carcinoma mimicking basal cell hyperplasia and transitional metaplasia in needle prostate biopsy

    Directory of Open Access Journals (Sweden)

    Julian Arista-Nasr

    2016-04-01

    Full Text Available ABSTRACT Purpose The vast majority of urothelial carcinomas infiltrating the bladder are consistent with high-grade tumors that can be easily recognized as malignant in needle prostatic biopsies. In contrast, the histological changes of low-grade urothelial carcinomas in this kind of biopsy have not been studied. Materials and Methods We describe the clinicopathologic features of two patients with low-grade bladder carcinomas infiltrating the prostate. They reported dysuria and hematuria. Both had a slight elevation of the prostate specific antigen and induration of the prostatic lobes. Needle biopsies were performed. At endoscopy bladder tumors were found in both cases. Results Both biopsies showed nests of basophilic cells and cells with perinuclear clearing and slight atypia infiltrating acini and small prostatic ducts. The stroma exhibited extensive desmoplasia and chronic inflammation. The original diagnosis was basal cell hyperplasia and transitional metaplasia. The bladder tumors also showed low-grade urothelial carcinoma. In one case, the neoplasm infiltrated the lamina propria, and in another, the muscle layer. In both, a transurethral resection was performed for obstructive urinary symptoms. The neoplasms were positive for high molecular weight keratin (34BetaE12 and thrombomodulin. No metastases were found in either of the patients, and one of them has survived for five years. Conclusions The diagnosis of low-grade urothelial carcinoma in prostate needle biopsies is difficult and may simulate benign prostate lesions including basal cell hyperplasia and urothelial metaplasia. It is crucial to recognize low-grade urothelial carcinoma in needle biopsies because only an early diagnosis and aggressive treatment can improve the prognosis for these patients.

  16. Cytokine Gene Polymorphisms in Egyptian Cases with Brain Tumors

    International Nuclear Information System (INIS)

    Badr El-Din, N.K.; Abdel-Hady, E.K.; Salem, F.K.; Settin, A.; ALI, N.

    2009-01-01

    Background: Cytokines are proposed to play important roles in brain tumor biology as well as neuro degeneration or impaired neuronal function. Objectives: This work aimed to check the association of polymorphisms of cytokine genes in Egyptian cases with brain tumors. Methods: This work included 45 cases affected by brain tumors diagnosed as 24 benign and 21 malignant. Their median age was 45 years, and they were 20 males and 25 females. These cases were taken randomly from the Neurosurgery Department of Mansoura University Hospital, Egypt. Case genotypes were compared to 98 healthy unrelated controls from the same locality. DNA was amplified using PCR utilizing sequence specific primers (SSP) for detection of polymorphisms related to TNF-a-308 (G/A), IL-10-1082 (G/A), IL-6-174 (G/C) and IL-1Ra (VNTR) genes. Results: Cases affected with benign brain tumors showed a significant higher frequency of IL-10-1082 A/A [odds ratio (OR=8.0), p<0.001] and IL-6-174 C/C (OR=6.3, p=0.002) homozygous genotypes as compared to controls. Malignant cases, on the other hand, showed significantly higher frequency of IL-6-174 C/C (OR =4.8, p=0.002) homozygous genotype and TNF-a-308 A/A (OR=4.9, p<0.001) homozygous genotype when compared to controls. In the meantime, all cases showed no significant difference regarding the distribution of IL-1Ra VNTR genotype polymorphism compared to controls. Conclusions: Cytokine gene polymorphisms showed a pattern of association with brain tumors which may have potential impact on family counseling and disease management.

  17. Development of stereotactic mass spectrometry for brain tumor surgery.

    Science.gov (United States)

    Agar, Nathalie Y R; Golby, Alexandra J; Ligon, Keith L; Norton, Isaiah; Mohan, Vandana; Wiseman, Justin M; Tannenbaum, Allen; Jolesz, Ferenc A

    2011-02-01

    Surgery remains the first and most important treatment modality for the majority of solid tumors. Across a range of brain tumor types and grades, postoperative residual tumor has a great impact on prognosis. The principal challenge and objective of neurosurgical intervention is therefore to maximize tumor resection while minimizing the potential for neurological deficit by preserving critical tissue. To introduce the integration of desorption electrospray ionization mass spectrometry into surgery for in vivo molecular tissue characterization and intraoperative definition of tumor boundaries without systemic injection of contrast agents. Using a frameless stereotactic sampling approach and by integrating a 3-dimensional navigation system with an ultrasonic surgical probe, we obtained image-registered surgical specimens. The samples were analyzed with ambient desorption/ionization mass spectrometry and validated against standard histopathology. This new approach will enable neurosurgeons to detect tumor infiltration of the normal brain intraoperatively with mass spectrometry and to obtain spatially resolved molecular tissue characterization without any exogenous agent and with high sensitivity and specificity. Proof of concept is presented in using mass spectrometry intraoperatively for real-time measurement of molecular structure and using that tissue characterization method to detect tumor boundaries. Multiple sampling sites within the tumor mass were defined for a patient with a recurrent left frontal oligodendroglioma, World Health Organization grade II with chromosome 1p/19q codeletion, and mass spectrometry data indicated a correlation between lipid constitution and tumor cell prevalence. The mass spectrometry measurements reflect a complex molecular structure and are integrated with frameless stereotaxy and imaging, providing 3-dimensional molecular imaging without systemic injection of any agents, which can be implemented for surgical margins delineation of

  18. Non-tumor enhancement at the surgical margin on CT after the removal of brain tumors

    International Nuclear Information System (INIS)

    Adachi, Michito; Hosoya, Takaaki; Yamaguchi, Kohichi; Yamada, Kiyotada

    1992-01-01

    Marginal enhancement is occasionally seen at the surgical margin on CT after the total removal of brain tumors. This enhancement disappears in due time, and therefore we call it non-tumor enhancement. It is often difficult, however, to differentiate non-tumor enhancement from tumor recurrence. In this study, we attempted to determine the characteristics of non-tumor enhancement. The subjects of the study consisted of 15 patients with astrocytoma and one with metastatic tumor in whom sequential CT scans had been performed after total removal of the tumor. Based on the observation of these sequential CT scans, the characteristics of non-tumor enhancement were presumed to be as follows: (1) In four cases, enhancement at the surgical margin persisted more than four months after surgery and then disappeared. Therefore, these cases were considered non-tumor enhancement. Prolonged duration of enhancement such as that in these cases is not necessarily due to recurrence. Marginal enhancement within 3 mm in thickness and with a well-demarcated border like that of a flax is likely to be non-tumor enhancement. (author)

  19. Magnetic Resonance Fingerprinting of Adult Brain Tumors: Initial Experience

    Science.gov (United States)

    Badve, Chaitra; Yu, Alice; Dastmalchian, Sara; Rogers, Matthew; Ma, Dan; Jiang, Yun; Margevicius, Seunghee; Pahwa, Shivani; Lu, Ziang; Schluchter, Mark; Sunshine, Jeffrey; Griswold, Mark; Sloan, Andrew; Gulani, Vikas

    2016-01-01

    Background Magnetic resonance fingerprinting (MRF) allows rapid simultaneous quantification of T1 and T2 relaxation times. This study assesses the utility of MRF in differentiating between common types of adult intra-axial brain tumors. Methods MRF acquisition was performed in 31 patients with untreated intra-axial brain tumors: 17 glioblastomas, 6 WHO grade II lower-grade gliomas and 8 metastases. T1, T2 of the solid tumor (ST), immediate peritumoral white matter (PW), and contralateral white matter (CW) were summarized within each region of interest. Statistical comparisons on mean, standard deviation, skewness and kurtosis were performed using univariate Wilcoxon rank sum test across various tumor types. Bonferroni correction was used to correct for multiple comparisons testing. Multivariable logistic regression analysis was performed for discrimination between glioblastomas and metastases and area under the receiver operator curve (AUC) was calculated. Results Mean T2 values could differentiate solid tumor regions of lower-grade gliomas from metastases (mean±sd: 172±53ms and 105±27ms respectively, p =0.004, significant after Bonferroni correction). Mean T1 of PW surrounding lower-grade gliomas differed from PW around glioblastomas (mean±sd: 1066±218ms and 1578±331ms respectively, p=0.004, significant after Bonferroni correction). Logistic regression analysis revealed that mean T2 of ST offered best separation between glioblastomas and metastases with AUC of 0.86 (95% CI 0.69–1.00, p<0.0001). Conclusion MRF allows rapid simultaneous T1, T2 measurement in brain tumors and surrounding tissues. MRF based relaxometry can identify quantitative differences between solid-tumor regions of lower grade gliomas and metastases and between peritumoral regions of glioblastomas and lower grade gliomas. PMID:28034994

  20. Radiation treatment of brain tumors: Concepts and strategies

    International Nuclear Information System (INIS)

    Marks, J.E.

    1989-01-01

    Ionizing radiation has demonstrated clinical value for a multitude of CNS tumors. Application of the different physical modalities available has made it possible for the radiotherapist to concentrate the radiation in the region of the tumor with relative sparing of the surrounding normal tissues. Correlation of radiation dose with effect on cranial soft tissues, normal brain, and tumor has shown increasing effect with increasing dose. By using different physical modalities to alter the distribution of radiation dose, it is possible to increase the dose to the tumor and reduce the dose to the normal tissues. Alteration of the volume irradiated and the dose delivered to cranial soft tissues, normal brain, and tumor are strategies that have been effective in improving survival and decreasing complications. The quest for therapeutic gain using hyperbaric oxygen, neutrons, radiation sensitizers, chemotherapeutic agents, and BNCT has met with limited success. Both neoplastic and normal cells are affected simultaneously by all modalities of treatment, including ionizing radiation. Consequently, one is unable to totally depopulate a tumor without irreversibly damaging the normal tissues. In the case of radiation, it is the brain that limits delivery of curative doses, and in the case of chemical additives, it is other organ systems, such as bone marrow, liver, lung, kidneys, and peripheral nerves. Thus, the major obstacle in the treatment of malignant gliomas is our inability to preferentially affect the tumor with the modalities available. Until it is possible to directly target the neoplastic cell without affecting so many of the adjacent normal cells, the quest for therapeutic gain will go unrealized.72 references

  1. "Facilitated" amino acid transport is upregulated in brain tumors.

    Science.gov (United States)

    Miyagawa, T; Oku, T; Uehara, H; Desai, R; Beattie, B; Tjuvajev, J; Blasberg, R

    1998-05-01

    The goal of this study was to determine the magnitude of "facilitated" amino acid transport across tumor and brain capillaries and to evaluate whether amino acid transporter expression is "upregulated" in tumor vessels compared to capillaries in contralateral brain tissue. Aminocyclopentane carboxylic acid (ACPC), a non-metabolized [14C]-labeled amino acid, and a reference molecule for passive vascular permeability, [67Ga]-gallium-diethylenetriaminepentaacetic acid (Ga-DTPA), were used in these studies. Two experimental rat gliomas were studied (C6 and RG2). Brain tissue was rapidly processed for double label quantitative autoradiography 10 minutes after intravenous injection of ACPC and Ga-DTPA. Parametric images of blood-to-brain transport (K1ACPC and K1Ga-DTPA, microL/min/g) produced from the autoradiograms and the histology were obtained from the same tissue section. These three images were registered in an image array processor; regions of interest in tumor and contralateral brain were defined on morphologic criteria (histology) and were transferred to the autoradiographic images to obtain mean values. The facilitated component of ACPC transport (deltaK1ACPC) was calculated from the K1ACPC and K1Ga-DTPA data, and paired comparisons between tumor and contralateral brain were performed. ACPC flux, K1ACPC, across normal brain capillaries (22.6 +/- 8.1 microL/g/min) was >200-fold greater than that of Ga-DTPA (0.09 +/- 0.04 microL/g/min), and this difference was largely (approximately 90%) due to facilitated ACPC transport. Substantially higher K1ACPC values compared to corresponding K1DTPA values were also measured in C6 and RG2 gliomas. The deltaK1ACPC values for C6 glioma were more than twice that of contralateral brain cortex. K1ACPC and deltaK1ACPC values for RG2 gliomas was not significantly higher than that of contralateral cortex, although a approximately 2-fold difference in facilitated transport is obtained after normalization for differences in capillary

  2. Investigating Contingency Risk Factors of Brain Tumor in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    A Nazemi

    2014-12-01

    Conclusion: According to research results, several preventable and predictable factors are linked to pediatric brain tumors. Therefore, children prone to brain tumors are recommended to be examined and screened for these risk factors.

  3. Why does Jack, and not Jill, break his crown? Sex disparity in brain tumors.

    Science.gov (United States)

    Sun, Tao; Warrington, Nicole M; Rubin, Joshua B

    2012-01-25

    It is often reported that brain tumors occur more frequently in males, and that males suffer a worse outcome from brain tumors than females. If correct, these observations suggest that sex plays a fundamental role in brain tumor biology. The following review of the literature regarding primary and metastatic brain tumors, reveals that brain tumors do occur more frequently in males compared to females regardless of age, tumor histology, or region of the world. Sexually dimorphic mechanisms that might control tumor cell biology, as well as immune and brain microenvironmental responses to cancer, are explored as the basis for this sex disparity. Elucidating the mechanisms by which sex chromosomes and sex hormones impact on brain tumorigenesis and progression will advance our understanding of basic cancer biology and is likely to be essential for optimizing the care of brain tumor patients.

  4. Why does Jack, and not Jill, break his crown? Sex disparity in brain tumors

    Directory of Open Access Journals (Sweden)

    Sun Tao

    2012-01-01

    Full Text Available Abstract It is often reported that brain tumors occur more frequently in males, and that males suffer a worse outcome from brain tumors than females. If correct, these observations suggest that sex plays a fundamental role in brain tumor biology. The following review of the literature regarding primary and metastatic brain tumors, reveals that brain tumors do occur more frequently in males compared to females regardless of age, tumor histology, or region of the world. Sexually dimorphic mechanisms that might control tumor cell biology, as well as immune and brain microenvironmental responses to cancer, are explored as the basis for this sex disparity. Elucidating the mechanisms by which sex chromosomes and sex hormones impact on brain tumorigenesis and progression will advance our understanding of basic cancer biology and is likely to be essential for optimizing the care of brain tumor patients.

  5. Advance MRI for pediatric brain tumors with emphasis on clinical benefits

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo; Ra, Young Shin [Asan Medical Center, University of Ulsan College of Medicine, Seoul(Korea, Republic of)

    2017-01-15

    Conventional anatomic brain MRI is often limited in evaluating pediatric brain tumors, the most common solid tumors and a leading cause of death in children. Advanced brain MRI techniques have great potential to improve diagnostic performance in children with brain tumors and overcome diagnostic pitfalls resulting from diverse tumor pathologies as well as nonspecific or overlapped imaging findings. Advanced MRI techniques used for evaluating pediatric brain tumors include diffusion-weighted imaging, diffusion tensor imaging, functional MRI, perfusion imaging, spectroscopy, susceptibility-weighted imaging, and chemical exchange saturation transfer imaging. Because pediatric brain tumors differ from adult counterparts in various aspects, MRI protocols should be designed to achieve maximal clinical benefits in pediatric brain tumors. In this study, we review advanced MRI techniques and interpretation algorithms for pediatric brain tumors.

  6. Common genetic variations in cell cycle and DNA repair pathways associated with pediatric brain tumor susceptibility

    DEFF Research Database (Denmark)

    Fahmideh, Maral Adel; Lavebratt, Catharina; Schüz, Joachim

    2016-01-01

    Knowledge on the role of genetic polymorphisms in the etiology of pediatric brain tumors (PBTs) is limited. Therefore, we investigated the association between single nucleotide polymorphisms (SNPs), identified by candidate gene-association studies on adult brain tumors, and PBT risk. The study is...... cycle and DNA repair pathways variations associated with susceptibility to adult brain tumors also seem to be associated with PBT risk, suggesting pediatric and adult brain tumors might share similar etiological pathways....

  7. Measurement of P-31 MR relaxation times and concentrations in human brain and brain tumors

    International Nuclear Information System (INIS)

    Roth, K.; Naruse, S.; Hubesch, B.; Gober, I.; Lawry, T.; Boska, M.; Matson, G.B.; Weiner, M.W.

    1987-01-01

    Measurements of high-energy phosphates and pH were made in human brain and brain tumors using P-31 MR imaging. Using a Philips Gyroscan 1.5-T MRMRS, MR images were used to select a cuboidal volume of interest and P-31 MR spectra were obtained from that volume using the ISIS technique. An external quantitation standard was used. T 1 s were measured by inversion recovery. Quantitative values for metabolites were calculated using B 1 field plot of the head coil. The results for normal brain phosphates are as follows; adenosine triphosphate, 2.2 mM; phosphocreatin, 5.3 mM; inorganic phosphate, 1.6 mM. Preliminary studies with human brain tumors show a decrease of all phosphate compounds. These experiments are the first to quantitate metabolites in human brain

  8. Intraoperative ultrasound in determining the extent of resection of parenchymal brain tumors - a comparative study with computed tomography and histopathology

    International Nuclear Information System (INIS)

    Chacko, A.G.; Rajshekhar, V.; Kumar, N.K.S.; Athyal, R.; Chacko, G.

    2003-01-01

    Radical excision of parenchymal brain tumours is generally associated with a better long-term outcome; however, it is difficult to ascertain the extent of resection at surgery. We used intra-operative ultrasound [IOUS] to help detect residual tumour and define the tumour-brain interface. Thirty-five patients with parenchymal brain lesions including 11 low-grade and 22 high-grade tumours and 2 inflammatory granulomata were included in the study. The IOUS was used to localize tumours not seen on the surface, define their margins and assess the extent of resection at the end of surgery. Multiple samples from the tumour-brain interface which were reported as tumour or normal tissue an IOUS were submitted to histopathology. The IOUS findings were compared with a postoperative contrast enhanced computed tomogram [CT] and with histopathology. All tumours irrespective of histology were hyperechoic an IOUS. IOUS was useful in localizing those tumours not seen on the surface of the brain. In 71.4 % of cases IOUS was useful in defining their margins, however in the remaining cases the margins were ill-defined. The tumour margins were ill-defined in those treated previously by radiation. With regard to the extent of excision, after excluding the cases who were irradiated, it was found that in the 28 patients who had parenchymal neoplasms, there was concordance between the ultrasound findings and the postoperative CT scan in 23 cases. Of the 79 samples taken from the tumor-brain interface which were reported as tumour on ultrasound, 66 had histopathological evidence of tumour while 13 samples were negative for tumour. On the other hand, in the tissue sent from 17 sites where the IOUS showed no residual tumour, 2 were positive for tumour on histopathology while 15 were negative. In conclusion, IOUS is a cheap and useful real-time tool for localizing tumours not seen on the brain surface, for defining their margins and for determining the extent of resection. (author)

  9. Second Surgery in Insular Low-Grade Gliomas

    Directory of Open Access Journals (Sweden)

    Tamara Ius

    2015-01-01

    Full Text Available Background. Given the technical difficulties, a limited number of works have been published on insular gliomas surgery and risk factors for tumor recurrence (TR are poorly documented. Objective. The aim of the study was to determine TR in adult patients with initial diagnosis of insular Low-Grade Gliomas (LGGs that subsequently underwent second surgery. Methods. A consecutive series of 53 patients with insular LGGs was retrospectively reviewed; 23 patients had two operations for TR. Results. At the time of second surgery, almost half of the patients had experienced progression into high-grade gliomas (HGGs. Univariate analysis showed that TR is influenced by the following: extent of resection (EOR (P<0.002, ΔVT2T1 value (P<0.001, histological diagnosis of oligodendroglioma (P=0.017, and mutation of IDH1 (P=0.022. The multivariate analysis showed that EOR at first surgery was the independent predictor for TR (P<0.001. Conclusions. In patients with insular LGG the EOR at first surgery represents the major predictive factor for TR. At time of TR, more than 50% of cases had progressed in HGG, raising the question of the oncological management after the first surgery.

  10. Improved apparatus for neutron capture therapy of rat brain tumors

    International Nuclear Information System (INIS)

    Liu, Hungyuan B.; Joel, D.D.; Slatkin, D.N.; Coderre, J.A.

    1994-01-01

    The assembly for irradiating tumors in the rat brain at the thermal neutron beam port of the Brookhaven Medical Research Reactor was redesigned to lower the average whole-body dose from different components of concomitant radiation without changing the thermal neutron fluence at the brain tumor. At present, the tumor-bearing rat is positioned in a rat holder that functions as a whole-body radiation shield. A 2.54 cm-thick collimator with a centered conical aperture, 6 cm diameter tapering to 2 cm diameter, is used to restrict the size of the thermal neutron field. Using the present holder and collimator as a baseline design, Monte Carlo calculations and mixed-field dosimetry were used to assess new designs. The computations indicate that a 0.5 cm-thick plate, made of 6 Li 2 CO 3 dispersed in polyethylene (Li-poly), instead of the existing rat holder, will reduce the whole-body radiation dose. Other computations show that a 10.16 cm-thick (4 inches) Li-poly collimator, having a centered conical aperture of 12 cm diameter tapering to 2 cm diameter, would further reduce the whole-body dose. The proposed irradiation apparatus of tumors in the rat brain, although requiring a 2.3-fold longer irradiation time, would reduce the average whole-body dose to less than half of that from the existing irradiation assembly. 7 refs., 4 figs., 7 tabs

  11. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    International Nuclear Information System (INIS)

    Adam, Jean-Francois

    2005-01-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size 2 ) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal energy, for a

  12. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties.

    Science.gov (United States)

    Schlageter, K E; Molnar, P; Lapin, G D; Groothuis, D R

    1999-11-01

    We studied microvessel organization in five brain tumor models (ENU, MSV, RG-2, S635cl15, and D-54MG) and normal brain, including microvessel diameter (LMVD), intermicrovessel distance (IMVD), microvessel density (MVD), surface area (S(v)), and orientation. LMVD and IMVD were larger and MVD was lower in tumors than normal brain. S(v) in tumors overlapped normal brain values and orientation was random in both tumors and brain. ENU and RG-2 tumors and brain were studied by electron microscopy. Tumor microvessel wall was thicker than that of brain. ENU and normal brain microvessels were continuous and nonfenestrated. RG-2 microvessels contained fenestrations and endothelial gaps; the latter had a maximum major axis of 3.0 microm. Based on anatomic measurements, the pore area of RG-2 tumors was estimated at 7.4 x 10(-6) cm(2) g(-1) from fenestrations and 3.5 x 10(-5) cm(2) g(-1) from endothelial gaps. Increased permeability of RG-2 microvessels to macromolecules is most likely attributable to endothelial gaps. Three microvessel populations may occur in brain tumors: (1) continuous nonfenestrated, (2) continuous fenestrated, and (3) discontinuous (with or without fenestrations). The first group may be unique to brain tumors; the latter two are similar to microvessels found in systemic tumors. Since structure-function properties of brain tumor microvessels will affect drug delivery, studies of microvessel function should be incorporated into clinical trials of brain tumor therapy, especially those using macromolecules. Copyright 1999 Academic Press.

  13. Radiation therapy of 9L rat brain tumors

    International Nuclear Information System (INIS)

    Henderson, S.D.; Kimler, B.F.; Morantz, R.A.

    1981-01-01

    The effects of radiation therapy on normal rats and on rats burdened with 9L brain tumors have been studied. The heads of normal rats were x-irradiated with single exposures ranging from 1000 R to 2700 R. Following acute exposures greater than 2100 R, all animals died in 8 to 12 days. Approximately 30% of the animals survived beyond 12 days over the range of 1850 to 1950 R; following exposures less than 1850 R, all animals survived the acute radiation effects, and median survival times increased with decreasing exposure. Three fractionated radiation schedules were also studied: 2100 R or 3000 R in 10 equal fractions, and 3000 R in 6 equal fractions, each schedule being administered over a 2 week period. The first schedule produced a MST of greater than 1 1/2 years; the other schedules produced MSTs that were lower. It was determined that by applying a factor of 1.9, similar survival responses of normal rats were obtained with single as with fractionated radiation exposures. Animals burdened with 9L gliosarcoma brain tumors normally died of the disease process within 18 to 28 days ater tumor inoculation. Both single and fractionated radiation therapy resulted in a prolongation of survival of tumor-burdened rats. This prolongation was found to be linearly dependent upon the dose; but only minimally dependent upon the time after inoculation at which therapy was initiated, or upon the fractionation schedule that was used. As with normal animals, similar responses were obtained with single as with fractionated exposures when a factor (1.9) was applied. All tumor-bearing animals died prior to the time that death was observed in normal, irradiated rats. Thus, the 9L gliosarcoma rat brain tumor model can be used for the pre-clinical experimental investigation of new therapeutic schedules involving radiation therapy and adjuvant therapies

  14. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  15. Adverse effect after external radiotherapy for brain tumors

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Takano, Shingo; Yanaka, Kiyoyuki

    1989-01-01

    This report discusses the effects on normal brain tissue of radiotherapy in relation to age and irradiation dose as determined from whole-brain sections of the autopsied brains with tumors. Twenty four patients (7 glioblastomas, 2 benign gliomas, 12 brain metastases, 2 malignant lymphomas, and 1 pituitary adenoma) older than 65 years (aged), and 17 younger than 65 years (non-aged) were treated by cobalt- or linear accelerator radiotherapy. Nine patients without brain disease (4 aged and 5 non-aged) were used as a control group. The histological findings were evaluated by grading the small and capillary vessels, fibrinoid necrosis, and myelination in the white matter in whole-brain sections. Those findings were compared to the irradiation doses within all radiation fields in whole-brain sections corresponding to CT scans. Hyalinization of the small vessels was observed within the postradiation 12 months in fields exposed to total doses of less than 800 neuret. Hyalinization of the capillary vessels was greater in the irradiated group than in the control group. Demyelination was observed within the postradiation 12 months in fields irradiated by more than 800 neuret in aged patients and in fields irradiated by less than 800 neuret in non-aged patients. Fibrinoid necrosis was observed after the post-radiation 12 months in fields irradiated by less than 800 neuret in aged patients and in fields irradiated by more than 800 neuret in non-aged patients. It is worth noting that in non-aged patients with brain tumors, adverse effects of radiotherapy on vessels and parenchyma were very high even in low-dose radiation areas; and in aged patients fibrinoid necrosis, which indicates irreversible damage of vessels, was observed in low-dose radiation areas. (author)

  16. Desalination using low grade heat sources

    Science.gov (United States)

    Gude, Veera Gnaneswar

    A new, low temperature, energy-efficient and sustainable desalination system has been developed in this research. This system operates under near-vacuum conditions created by exploiting natural means of gravity and barometric pressure head. The system can be driven by low grade heat sources such as solar energy or waste heat streams. Both theoretical and experimental studies were conducted under this research to evaluate and demonstrate the feasibility of the proposed process. Theoretical studies included thermodynamic analysis and process modeling to evaluate the performance of the process using the following alternate energy sources for driving the process: solar thermal energy, solar photovoltaic/thermal energy, geothermal energy, and process waste heat emissions. Experimental studies included prototype scale demonstration of the process using grid power as well as solar photovoltaic/thermal sources. Finally, the feasibility of the process in reclaiming potable-quality water from the effluent of the city wastewater treatment plant was studied. The following results have been obtained from theoretical analysis and modeling: (1) The proposed process can produce up to 8 L/d of freshwater for 1 m2 area of solar collector and evaporation chamber respectively with a specific energy requirement of 3122 kJ for 1 kg of freshwater production. (2) Photovoltaic/thermal (PV/T) energy can produce up to 200 L/d of freshwater with a 25 m2 PV/T module which meets the electricity needs of 21 kWh/d of a typical household as well. This configuration requires a specific energy of 3122 kJ for 1 kg of freshwater production. (3) 100 kg/hr of geothermal water at 60°C as heat source can produce up to 60 L/d of freshwater with a specific energy requirement of 3078 kJ for 1 kg of freshwater production. (4) Waste heat released from an air conditioning system rated at 3.25 kW cooling, can produce up to 125 L/d of freshwater. This configuration requires an additional energy of 208 kJ/kg of

  17. Longitudinal Investigation of Adaptive Functioning following Conformal Irradiation for Pediatric Craniopharyngioma and Low-Grade Glioma

    Science.gov (United States)

    Netson, Kelli L.; Conklin, Heather M.; Wu, Shengjie; Xiong, Xiaoping; Merchant, Thomas E.

    2013-01-01

    Purpose Children treated for brain tumors with conformal radiation therapy experience preserved cognitive outcomes. Early evidence suggests that adaptive functions or independent living skills may be spared. This longitudinal investigation prospectively examined intellectual and adaptive functioning during the first 5 years following irradiation for childhood craniopharyngioma and low-grade glioma (LGG). The effect of visual impairment on adaptive outcomes was investigated. Methods and Materials Children with craniopharyngioma (n=62) and LGG (n=77) were treated using conformal or intensity-modulated radiation therapy. The median age was 8.05 years (3.21 years –17.64 years) and 8.09 years (2.20 years–19.27 years), respectively. Serial cognitive evaluations including measures of intelligence quotient (IQ) and the Vineland Adaptive Behavior Scales (VABS) were conducted at pre-irradiation baseline, 6 months after treatment, and annually through 5 years. A total of 588 evaluations were completed during the follow-up period. Results Baseline assessment revealed no deficits in IQ and VABS indices for children with craniopharyngioma, with significant (p craniopharyngioma. Children with LGG performed below population norms (p < .05) at baseline on VABS Communication, Daily Living Indices, and the Adaptive Behavior Composite, with significant (p < .05) longitudinal decline limited to VABS Communication. Older age at irradiation was a protective factor against longitudinal decline. Severe visual impairment did not independently correlate with poorer adaptive outcomes for either tumor group. Conclusions There was relative sparing of post-irradiation functional outcomes over time in this sample. Baseline differences in functional abilities prior to the initiation of irradiation suggested that other factors influence functional outcomes above and beyond the effects of irradiation. PMID:23245284

  18. Longitudinal Investigation of Adaptive Functioning Following Conformal Irradiation for Pediatric Craniopharyngioma and Low-Grade Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Netson, Kelli L. [Department of Psychiatry and Behavioral Sciences, Kansas University School of Medicine—Wichita, Kansas (United States); Conklin, Heather M. [Department of Psychology, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu, Shengjie; Xiong, Xiaoping [Department of Biostatistics, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [Division of Radiation Oncology, St Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2013-04-01

    Purpose: Children treated for brain tumors with conformal radiation therapy experience preserved cognitive outcomes. Early evidence suggests that adaptive functions or independent-living skills may be spared. This longitudinal investigation prospectively examined intellectual and adaptive functioning during the first 5 years following irradiation for childhood craniopharyngioma and low-grade glioma (LGG). The effect of visual impairment on adaptive outcomes was investigated. Methods and Materials: Children with craniopharyngioma (n=62) and LGG (n=77) were treated using conformal or intensity modulated radiation therapy. The median age was 8.05 years (3.21-17.64 years) and 8.09 years (2.20-19.27 years), respectively. Serial cognitive evaluations including measures of intelligence quotient (IQ) and the Vineland Adaptive Behavior Scales (VABS) were conducted at preirradiation baseline, 6 months after treatment, and annually through 5 years. Five hundred eighty-eight evaluations were completed during the follow-up period. Results: Baseline assessment revealed no deficits in IQ and VABS indices for children with craniopharyngioma, with significant (P<.05) longitudinal decline in VABS Communication and Socialization indices. Clinical factors associated with more rapid decline included females and preirradiation chemotherapy (interferon). The only change in VABS Daily Living Skills correlated with IQ change (r=0.34; P=.01) in children with craniopharyngioma. Children with LGG performed below population norms (P<.05) at baseline on VABS Communication, Daily Living Indices, and the Adaptive Behavior Composite, with significant (P<.05) longitudinal decline limited to VABS Communication. Older age at irradiation was a protective factor against longitudinal decline. Severe visual impairment did not independently correlate with poorer adaptive outcomes for either tumor group. Conclusions: There was relative sparing of postirradiation functional outcomes over time in this sample

  19. Longitudinal Investigation of Adaptive Functioning Following Conformal Irradiation for Pediatric Craniopharyngioma and Low-Grade Glioma

    International Nuclear Information System (INIS)

    Netson, Kelli L.; Conklin, Heather M.; Wu, Shengjie; Xiong, Xiaoping; Merchant, Thomas E.

    2013-01-01

    Purpose: Children treated for brain tumors with conformal radiation therapy experience preserved cognitive outcomes. Early evidence suggests that adaptive functions or independent-living skills may be spared. This longitudinal investigation prospectively examined intellectual and adaptive functioning during the first 5 years following irradiation for childhood craniopharyngioma and low-grade glioma (LGG). The effect of visual impairment on adaptive outcomes was investigated. Methods and Materials: Children with craniopharyngioma (n=62) and LGG (n=77) were treated using conformal or intensity modulated radiation therapy. The median age was 8.05 years (3.21-17.64 years) and 8.09 years (2.20-19.27 years), respectively. Serial cognitive evaluations including measures of intelligence quotient (IQ) and the Vineland Adaptive Behavior Scales (VABS) were conducted at preirradiation baseline, 6 months after treatment, and annually through 5 years. Five hundred eighty-eight evaluations were completed during the follow-up period. Results: Baseline assessment revealed no deficits in IQ and VABS indices for children with craniopharyngioma, with significant (P<.05) longitudinal decline in VABS Communication and Socialization indices. Clinical factors associated with more rapid decline included females and preirradiation chemotherapy (interferon). The only change in VABS Daily Living Skills correlated with IQ change (r=0.34; P=.01) in children with craniopharyngioma. Children with LGG performed below population norms (P<.05) at baseline on VABS Communication, Daily Living Indices, and the Adaptive Behavior Composite, with significant (P<.05) longitudinal decline limited to VABS Communication. Older age at irradiation was a protective factor against longitudinal decline. Severe visual impairment did not independently correlate with poorer adaptive outcomes for either tumor group. Conclusions: There was relative sparing of postirradiation functional outcomes over time in this sample

  20. Cellular phones and risk of brain tumors.

    Science.gov (United States)

    Frumkin, H; Jacobson, A; Gansler, T; Thun, M J

    2001-01-01

    As cellular telephones are a relatively new technology, we do not yet have long-term follow-up on their possible biological effects. However, the lack of ionizing radiation and the low energy level emitted from cell phones and absorbed by human tissues make it unlikely that these devices cause cancer. Moreover, several well-designed epidemiologic studies find no consistent association between cell phone use and brain cancer. It is impossible to prove that any product or exposure is absolutely safe, especially in the absence of very long-term follow-up. Accordingly, the following summary from the Food and Drug Administration Center for Devices and Radiological Health offers advice to people concerned about their risk: If there is a risk from these products--and at this point we do not know that there is--it is probably very small. But if people are concerned about avoiding even potential risks, there are simple steps they can take to do so. People who must conduct extended conversations in their cars every day could switch to a type of mobile phone that places more distance between their bodies and the source of the RF, since the exposure level drops off dramatically with distance. For example, they could switch to: a mobile phone in which the antenna is located outside the vehicle, a hand-held phone with a built-in antenna connected to a different antenna mounted on the outside of the car or built into a separate package, or a headset with a remote antenna to a mobile phone carried at the waist. Again the scientific data do not demonstrate that mobile phones are harmful. But if people are concerned about the radiofrequency energy from these products, taking the simple precautions outlined above can reduce any possible risk. In addition, people who are concerned might choose digital rather than analog telephones, since the former use lower RF levels.

  1. Clinical considerations for neutron capture therapy of brain tumors

    International Nuclear Information System (INIS)

    Madoc-Jones, H.; Wazer, D.E.; Zamenhof, R.G.; Harling, O.K.; Bernard, J.A. Jr.

    1990-01-01

    The radiotherapeutic management of primary brain tumors and metastatic melanoma in brain has had disappointing clinical results for many years. Although neutron capture therapy was tried in the US in the 1950s and 1960s, the results were not as hoped. However, with the newly developed capability to measure boron concentrations in blood and tissue both quickly and accurately, and with the advent of epithermal neutron beams obviating the need for scalp and skull reflection, it should not be possible to mount such a clinical trial of NCT again and avoid serious complications. As a prerequisite, it will be important to demonstrate the differential uptake of boron compound in brain tumor as compared with normal brain and its blood supply. If this can be done, then a trial of boron neutron capture therapy for brain tumors should be feasible. Because boronated phenylalanine has been demonstrated to be preferentially taken up by melanoma cells through the biosynthetic pathway for melanin, there is special interest in a trial of boron neutron capture therapy for metastatic melanoma in brain. Again, the use of an epithermal beam would make this a practical possibility. However, because any epithermal (or thermal) beam must contain a certain contaminating level of gamma rays, and because even a pure neutron beam cases gamma rays to be generated when it interacts with tissue, they think that it is essential to deliver treatments with an epithermal beam for boron neutron capture therapy in fractions in order to minimize the late-effects of low-LET gamma rays in the normal tissue

  2. OP17MICRORNA PROFILING USING SMALL RNA-SEQ IN PAEDIATRIC LOW GRADE GLIOMAS

    Science.gov (United States)

    Jeyapalan, Jennie N.; Jones, Tania A.; Tatevossian, Ruth G.; Qaddoumi, Ibrahim; Ellison, David W.; Sheer, Denise

    2014-01-01

    INTRODUCTION: MicroRNAs regulate gene expression by targeting mRNAs for translational repression or degradation at the post-transcriptional level. In paediatric low-grade gliomas a few key genetic mutations have been identified, including BRAF fusions, FGFR1 duplications and MYB rearrangements. Our aim in the current study is to profile aberrant microRNA expression in paediatric low-grade gliomas and determine the role of epigenetic changes in the aetiology and behaviour of these tumours. METHOD: MicroRNA profiling of tumour samples (6 pilocytic, 2 diffuse, 2 pilomyxoid astrocytomas) and normal brain controls (4 adult normal brain samples and a primary glial progenitor cell-line) was performed using small RNA sequencing. Bioinformatic analysis included sequence alignment, analysis of the number of reads (CPM, counts per million) and differential expression. RESULTS: Sequence alignment identified 695 microRNAs, whose expression was compared in tumours v. normal brain. PCA and hierarchical clustering showed separate groups for tumours and normal brain. Computational analysis identified approximately 400 differentially expressed microRNAs in the tumours compared to matched location controls. Our findings will then be validated and integrated with extensive genetic and epigenetic information we have previously obtained for the full tumour cohort. CONCLUSION: We have identified microRNAs that are differentially expressed in paediatric low-grade gliomas. As microRNAs are known to target genes involved in the initiation and progression of cancer, they provide critical information on tumour pathogenesis and are an important class of biomarkers.

  3. Low-grade osteosarcoma arising from cemento-ossifying fibroma: a case report.

    Science.gov (United States)

    Lee, Yong Bin; Kim, Nam-Kyoo; Kim, Jae-Young; Kim, Hyung Jun

    2015-02-01

    Cemento-ossifying fibromas are benign tumors, and, although cases of an aggressive type have been reported, no cases of cemento-ossifying fibroma transforming into osteosarcoma have been documented previously. Low-grade osteosarcoma is a rare type of primary bone tumor, representing 1%-2% of all osteosarcomas. A 45-year-old female patient was diagnosed with cemento-ossifying fibroma, treated with mass excision several times over a period of two years and eight months, and followed up. After biopsy gathered because of signs of recurrence, she was diagnosed with low-grade osteosarcoma. The patient underwent wide excision, segmental mandibulectomy, and reconstruction with fibula free flap. The aim of this report is to raise awareness of the possibility that cemento-ossifying fibroma can transform into osteosarcoma and of the consequent necessity for careful diagnosis and treatment planning.

  4. Diffuse low-grade glioma: a review on the new molecular classification, natural history and current management strategies.

    Science.gov (United States)

    Delgado-López, P D; Corrales-García, E M; Martino, J; Lastra-Aras, E; Dueñas-Polo, M T

    2017-08-01

    The management of diffuse supratentorial WHO grade II glioma remains a challenge because of the infiltrative nature of the tumor, which precludes curative therapy after total or even supratotal resection. When possible, functional-guided resection is the preferred initial treatment. Total and subtotal resections correlate with increased overall survival. High-risk patients (age >40, partial resection), especially IDH-mutated and 1p19q-codeleted oligodendroglial lesions, benefit from surgery plus adjuvant chemoradiation. Under the new 2016 WHO brain tumor classification, which now incorporates molecular parameters, all diffusely infiltrating gliomas are grouped together since they share specific genetic mutations and prognostic factors. Although low-grade gliomas cannot be regarded as benign tumors, large observational studies have shown that median survival can actually be doubled if an early, aggressive, multi-stage and personalized therapy is applied, as compared to prior wait-and-see policy series. Patients need an honest long-term therapeutic strategy that should ideally anticipate neurological, cognitive and histopathologic worsening.

  5. Intraosseous Polymorphous Low Grade Adenocarcinoma of the Mandible: Report of a Rare Case

    Directory of Open Access Journals (Sweden)

    SM R Prakash

    2010-01-01

    Full Text Available Polymorphous low-grade adenocarcinoma (PLGA is an entity under the subclassification of adenocarcinoma from salivary glands. PLGA is an unusual tumor that occur: in the minor salivary gland, particularity in the palate followed by buccal mucosa, upper lip, retromolar area and base of the tongue- The occurance of PLGA in locations other than these is exceedingly rare. We report a rare case of PLGA occuring in the anterior mandible. The clinical, radiographic, computed tomographic and histopathologic findings are discussed.

  6. Allergic Sensitization at School Age is a Systemic Low-grade Inflammatory Disorder

    DEFF Research Database (Denmark)

    Chawes, B. L.; Stokholm, J.; Schoos, A.-M. M.

    2017-01-01

    allergic sensitization. Methods High-sensitivity C-reactive protein (hs-CRP), interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), and chemokine (C-X-C motif) ligand 8 (CXCL8) were measured in plasma at age 6 months (N = 214) and 7 years (N = 277) in children from the Copenhagen Prospective...... sensitization in school-aged children suggesting systemic low-grade inflammation as a phenotypic characteristic of this early-onset NCD....

  7. Awake Craniotomy for Tumor Resection: Further Optimizing Therapy of Brain Tumors.

    Science.gov (United States)

    Mehdorn, H Maximilian; Schwartz, Felix; Becker, Juliane

    2017-01-01

    In recent years more and more data have emerged linking the most radical resection to prolonged survival in patients harboring brain tumors. Since total tumor resection could increase postoperative morbidity, many methods have been suggested to reduce the risk of postoperative neurological deficits: awake craniotomy with the possibility of continuous patient-surgeon communication is one of the possibilities of finding out how radical a tumor resection can possibly be without causing permanent harm to the patient.In 1994 we started to perform awake craniotomy for glioma resection. In 2005 the use of intraoperative high-field magnetic resonance imaging (MRI) was included in the standard tumor therapy protocol. Here we review our experience in performing awake surgery for gliomas, gained in 219 patients.Patient selection by the operating surgeon and a neuropsychologist is of primary importance: the patient should feel as if they are part of the surgical team fighting against the tumor. The patient will undergo extensive neuropsychological testing, functional MRI, and fiber tractography in order to define the relationship between the tumor and the functionally relevant brain areas. Attention needs to be given at which particular time during surgery the intraoperative MRI is performed. Results from part of our series (without and with ioMRI scan) are presented.

  8. Intelligence Deficits in Chinese Patients with Brain Tumor: The Impact of Tumor Resection

    Directory of Open Access Journals (Sweden)

    Chao Shen

    2013-01-01

    Full Text Available Background. Intelligence is much important for brain tumor patients after their operation, while the reports about surgical related intelligence deficits are not frequent. It is not only theoretically important but also meaningful for clinical practice. Methods. Wechsler Adult Intelligence Scale was employed to evaluate the intelligence of 103 patients with intracranial tumor and to compare the intelligence quotient (IQ, verbal IQ (VIQ, and performance IQ (PIQ between the intracerebral and extracerebral subgroups. Results. Although preoperative intelligence deficits appeared in all subgroups, IQ, VIQ, and PIQ were not found to have any significant difference between the intracerebral and extracerebral subgroups, but with VIQ lower than PIQ in all the subgroups. An immediate postoperative follow-up demonstrated a decline of IQ and PIQ in the extracerebral subgroup, but an improvement of VIQ in the right intracerebral subgroup. Pituitary adenoma resection exerted no effect on intelligence. In addition, age, years of education, and tumor size were found to play important roles. Conclusions. Brain tumors will impair IQ, VIQ, and PIQ. The extracerebral tumor resection can deteriorate IQ and PIQ. However, right intracerebral tumor resection is beneficial to VIQ, and transsphenoidal pituitary adenoma resection performs no effect on intelligence.

  9. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Federica Ciregia

    2017-08-01

    Full Text Available Extracellular vesicles (EVs can be classified into apoptotic bodies, microvesicles (MVs, and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM, neuroblastoma (NB, medulloblastoma (MB, and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis.

  10. Late sequelae in children treated for brain tumors and leukemia

    International Nuclear Information System (INIS)

    Jereb, B.; Petric-Grabnar, G.; Zadravec-Zaletel, L.; Korenjak, R.; Krzisnik, C.; Anzic, J.; Stare, J.

    1994-01-01

    Forty-two survivors treated at an age of 2-16 years for brain tumors or leukemia were, 4-21 years after treatment, subjected to an extensive follow-up investigation, including physical examination and interview; 35 of them also had endocrinological and 33 psychological evaluation. Hormonal deficiencies were found in about two-thirds of patients and were most common in those treated for brain tumors. The great majority had verbal intelligence quotient (VIQ) within normal range. Also, the performance intelligence quotients (PIQ) were normal in most patients. However, the results suggested that the primary intellectual capacity in children treated for cancer was not being fully utilized, their PIQ being on the average higher than their VIQ; this tendency was especially pronounced in the leukemia patients. (orig.)

  11. Late sequelae in children treated for brain tumors and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Jereb, B. (Institute of Oncology, Ljubljana (Slovenia)); Petric-Grabnar, G. (Institute of Oncology, Ljubljana (Slovenia)); Zadravec-Zaletel, L. (Institute of Oncology, Ljubljana (Slovenia)); Korenjak, R. (Clinical Center, Psychiatric Outpatient Dept., Ljubljana (Slovenia)); Krzisnik, C. (Clinical Center, Dept. of Pediatrics, Ljubljana (Slovenia)); Anzic, J. (Clinical Center, Dept. of Pediatrics, Ljubljana (Slovenia)); Stare, J. (Institute of Biomedical Informatics, Medical Faculty, Ljubljana (Slovenia))

    1994-01-01

    Forty-two survivors treated at an age of 2-16 years for brain tumors or leukemia were, 4-21 years after treatment, subjected to an extensive follow-up investigation, including physical examination and interview; 35 of them also had endocrinological and 33 psychological evaluation. Hormonal deficiencies were found in about two-thirds of patients and were most common in those treated for brain tumors. The great majority had verbal intelligence quotient (VIQ) within normal range. Also, the performance intelligence quotients (PIQ) were normal in most patients. However, the results suggested that the primary intellectual capacity in children treated for cancer was not being fully utilized, their PIQ being on the average higher than their VIQ; this tendency was especially pronounced in the leukemia patients. (orig.).

  12. Late sequelae in children treated for brain tumors and leukemia.

    Science.gov (United States)

    Jereb, B; Korenjak, R; Krzisnik, C; Petric-Grabnar, G; Zadravec-Zaletel, L; Anzic, J; Stare, J

    1994-01-01

    Forty-two survivors treated at an age of 2-16 years for brain tumors or leukemia were, 4-21 years after treatment, subjected to an extensive follow-up investigation, including physical examination and interview; 35 of them also had endocrinological and 33 psychological evaluation. Hormonal deficiencies were found in about two-thirds of patients and were most common in those treated for brain tumors. The great majority had verbal intelligence quotient (VIQ) within normal range. Also, the performance intelligence quotients (PIQ) were normal in most patients. However, the results suggested that the primary intellectual capacity in children treated for cancer was not being fully utilized, their PIQ being on the average higher than their VIQ; this tendency was especially pronounced in the leukemia patients.

  13. Single-incision laparoscopic cecectomy for low-grade appendiceal mucinous neoplasm after laparoscopic rectectomy

    Science.gov (United States)

    Fujino, Shiki; Miyoshi, Norikatsu; Noura, Shingo; Shingai, Tatsushi; Tomita, Yasuhiko; Ohue, Masayuki; Yano, Masahiko

    2014-01-01

    In this case report, we discuss single-incision laparoscopic cecectomy for low-grade appendiceal neoplasm after laparoscopic anterior resection for rectal cancer. The optimal surgical therapy for low-grade appendiceal neoplasm is controversial; currently, the options include appendectomy, cecectomy, right hemicolectomy, and open or laparoscopic surgery. Due to the risk of pseudomyxoma peritonei, complete resection without rupture is necessary. We have encountered 5 cases of low-grade appendiceal neoplasm and all 5 patients had no lymph node metastasis. We chose the appendectomy or cecectomy without lymph node dissection if preoperative imaging studies did not suspect malignancy. In the present case, we performed cecectomy without lymph node dissection by single-incision laparoscopic surgery (SILS), which is reported to be a reduced port surgery associated with decreased invasiveness and patient stress compared with conventional laparoscopic surgery. We are confident that SILS is a feasible alternative to traditional surgical procedures for borderline tumors, such as low-grade appendiceal neoplasms. PMID:24868331

  14. Specific features of epilepsy in children with brain tumors

    Directory of Open Access Journals (Sweden)

    G. V. Kalmykova

    2015-01-01

    Full Text Available Objective: to study the specific features of epilepsy in children and adolescents with brain tumors and to define the optimal tactics of management and antiepileptic therapy after surgical treatment. Patients and methods. Sixty-one patients aged 5 months to 15 years were examined. All the patients were diagnosed as having a brain tumor found in the presence of symptomatic epilepsy. They were all followed up for 5 years postsurgery or during their lifetime (in case of death. Comprehensive examination encompassing the assessment of history data and concomitant complaints, brain magnetic resonance imaging, video-EEC monitoring, and the neurological status (the presence of cognitive impairments and eye ground changes was done in all the cases. The probability of epileptic seizures in the clinical presentation of the disease, their semiology, and frequency were studied. Results and discussion. Epileptic seizures were the major complaint in all the patients at the first visit to their doctor. The disease occurred with status epilepticus in 9% of the patients. Different types of generalized seizures were more common (53%; p≥0.05. The tumor was located above the tentorium of the cerebellum in most examinees (77% and beneath it in the others (23%; p≤0.05. The significant clinical sign of a brain tumor in the epileptic children is focal neurological symptoms (72% of the cases. MRI was performed in children who had no focal neurological symptoms in the late periods. There was cerebrospinal fluid hypertension in 51% of the patients (p≥0.05 and cognitive impairments in 33% (p<0.05. The maximum number (74% of children with psycho-speech disorders and cognitive impairments were registered in the age group of 7–15 years. Eye ground changes characteristic of intracranial hypertension were identified in 19 epileptic children; they occurred in 27 patients more than 1 year after the onset of seizures. The late (few months-to-14 years diagnosis of a brain

  15. MRI of neurosyphilis presenting as brain tumor: A case report

    Directory of Open Access Journals (Sweden)

    Yuling Xi

    2015-12-01

    Full Text Available Syphilis has a broad spectrum of clinical manifestations, among which cerebral gumma is a kind of neurosyphilis. However, it is rare and can be cured by penicillin. We report a case of syphilitic gumma of which the patient was first suspected of brain tumor, but confirmed by surgery to be cerebral gumma due to neurosyphilis. Magnetic resonance imaging, which is thought to be one of the potential and specific diagnostic methods for neurosyphilis, is discussed.

  16. Local anesthetics for brain tumor resection: current perspectives

    Directory of Open Access Journals (Sweden)

    Potters JW

    2018-02-01

    Full Text Available Jan-Willem Potters, Markus Klimek Department of Anesthesiology, Erasmus MC, Rotterdam, The Netherlands Abstract: This review summarizes the added value of local anesthetics in patients undergoing craniotomy for brain tumor resection, which is a procedure that is carried out frequently in neurosurgical practice. The procedure can be carried out under general anesthesia, sedation with local anesthesia or under local anesthesia only. Literature shows a large variation in the postoperative pain intensity ranging from no postoperative analgesia requirement in two-thirds of the patients up to a rate of 96% of the patients suffering from severe postoperative pain. The only identified causative factor predicting higher postoperative pain scores is infratentorial surgery. Postoperative analgesia can be achieved with multimodal pain management where local anesthesia is associated with lower postoperative pain intensity, reduction in opioid requirement and prevention of development of chronic pain. In awake craniotomy patients, sufficient local anesthesia is a cornerstone of the procedure. An awake craniotomy and brain tumor resection can be carried out completely under local anesthesia only. However, the use of sedative drugs is common to improve patient comfort during craniotomy and closure. Local anesthesia for craniotomy can be performed by directly blocking the six different nerves that provide the sensory innervation of the scalp, or by local infiltration of the surgical site and the placement of the pins of the Mayfield clamp. Direct nerve block has potential complications and pitfalls and is technically more challenging, but mostly requires lower total doses of the local anesthetics than the doses required in surgical-site infiltration. Due to a lack of comparative studies, there is no evidence showing superiority of one technique versus the other. Besides the use of other local anesthetics for analgesia, intravenous lidocaine administration has

  17. Pediatric brain stem tumors: analysis of 25 cases

    International Nuclear Information System (INIS)

    Pinel, M.I.S.; Kalifa, C.; Sarrazin, D.; Lemerle, J.

    1985-01-01

    The charts of 25 pediatric patients with brain stem tumors have been reviewed. The use of computed tomography was found to have been valuable in diagnosis and follow-up, as well as in the design of radiation therapy portals. Radiotherapy and combination chemotherapy with VM-26 (4'-1 demethyl-epipodophyllo toxin B-D-thenylidene glucoside) and CCNU(1-2-chloroethyl-methyl-3-Cyclohexyl-1-nitrosourea) were the treatment employed. (M.A.C.) [pt

  18. Sigma and opioid receptors in human brain tumors

    International Nuclear Information System (INIS)

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J.

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using [ 3 H] 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: μ, [D-ala 2 , mePhe 4 , gly-ol 5 ] enkephalin (DAMGE); κ, ethylketocyclazocine (EKC) or U69,593; δ, [D-pen 2 , D-pen 5 ] enkephalin (DPDPE) or [D-ala 2 , D-leu 5 ] enkephalin (DADLE) with μ suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. κ opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed

  19. Sigma and opioid receptors in human brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J. (St. Louis Univ. School of Medicine, MO (USA))

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using ({sup 3}H) 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: {mu}, (D-ala{sup 2}, mePhe{sup 4}, gly-ol{sup 5}) enkephalin (DAMGE); {kappa}, ethylketocyclazocine (EKC) or U69,593; {delta}, (D-pen{sup 2}, D-pen{sup 5}) enkephalin (DPDPE) or (D-ala{sup 2}, D-leu{sup 5}) enkephalin (DADLE) with {mu} suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. {kappa} opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed.

  20. Epidemiology of brain tumors in childhood--a review

    International Nuclear Information System (INIS)

    Baldwin, Rachel Tobias; Preston-Martin, Susan

    2004-01-01

    Malignant brain tumors are the leading cause of cancer death among children and the second most common type of pediatric cancer. Despite several decades of epidemiologic investigation, the etiology of childhood brain tumors (CBT) is still largely unknown. A few genetic syndromes and ionizing radiation are established risk factors. Many environmental exposures and infectious agents have been suspected of playing a role in the development of CBT. This review, based on a search of the medical literature through August 2003, summarizes the epidemiologic evidence to date. The types of exposures discussed include ionizing radiation, N-nitroso compounds (NOC), pesticides, tobacco smoke, electromagnetic frequencies (EMF), infectious agents, medications, and parental occupational exposures. We have chosen to focus on perinatal exposures and review some of the recent evidence indicating that such exposures may play a significant role in the causation of CBT. The scientific community is rapidly learning more about the molecular mechanisms by which carcinogenesis occurs and how the brain develops. We believe that advances in genetic and molecular biologic technology, including improved histologic subtyping of tumors, will be of huge importance in the future of epidemiologic research and will lead to a more comprehensive understanding of CBT etiology. We discuss some of the early findings using these technologies

  1. Petrographic and Geochemical Study of Low Grade Metamorphic ...

    African Journals Online (AJOL)

    Key words: Low grade metamorphic rocks, Base metal mineralization, Petrography,. Hydrogeochemistry, Negash ... Use of mineral deposit genetic models has become an important ..... The clasts show elongation due to deformation, parallel.

  2. Peritumoral hemorrhage immediately after radiosurgery for metastatic brain tumor

    International Nuclear Information System (INIS)

    Uchino, Masafumi; Kitajima, Satoru; Miyazaki, Chikao; Otsuka, Takashi; Seiki, Yoshikatsu; Shibata, Iekado

    2003-01-01

    We report a case of a 44-year-old woman with metastatic brain tumors who suffered peri-tumoral hemorrhage soon after stereotactic radiosurgery (SRS). She had been suffering from breast cancer with multiple systemic metastasis. She started to have headache, nausea, dizziness and speech disturbance 1 month before admission. There was no bleeding tendency in the hematological examination and the patient was normotensive. Neurological examination disclosed headache and slightly aphasia. Magnetic resonance imaging showed a large round mass lesion in the left temporal lobe. It was a well-demarcated, highly enhanced mass, 45 mm in diameter. SRS was performed on four lesions in a single session (Main mass: maximum dose was 30 Gy in the center and 20 Gy in the margin of the tumor. Others: maximum 25 Gy margin 20 Gy). After radiosurgery, she had severe headache, nausea and vomiting and showed progression of aphasia. CT scan revealed a peritumoral hemorrhage. Conservative therapy was undertaken and the patient's symptoms improved. After 7 days, she was discharged, able to walk. The patient died of extensive distant metastasis 5 months after SRS. Acute transient swelling following conventional radiotherapy is a well-documented phenomenon. However, the present case indicates that such an occurrence is also possible in SRS. We have hypothesized that acute reactions such as brain swelling occur due to breakdown of the fragile vessels of the tumor or surrounding tissue. (author)

  3. Prospective study of neuropsychological sequelae in children with brain tumors

    International Nuclear Information System (INIS)

    Bordeaux, J.D.; Dowell, R.E. Jr.; Copeland, D.R.; Fletcher, J.M.; Francis, D.J.; van Eys, J.

    1988-01-01

    Surgery and radiotherapy are the primary modalities of treatment for pediatric brain tumors. Despite the widespread use of these treatments, little is known of their acute effects (within one year posttreatment) on neuropsychological functions. An understanding of acute treatment effects may provide valuable feedback to neurosurgeons and a baseline against which delayed sequelae may be evaluated. This study compares pre- and posttherapy neuropsychological test performance of pediatric brain tumor patients categorized into two groups on the basis of treatment modalities: surgery (n = 7) and radiotherapy (n = 7). Treatment groups were composed of children aged 56 to 196 months at the time of evaluation with heterogeneous tumor diagnoses and locations. Comparisons of pretherapy findings with normative values using confidence intervals indicated that both groups performed within the average range on most measures. Outstanding deficits at baseline were observed on tests of fine-motor, psychomotor, and timed language skills, and are likely to be attributable to tumor-related effects. Comparisons of pre- versus posttherapy neuropsychological test findings indicated no significant interval changes for either group. Results suggest that surgery and radiotherapy are not associated with acute effects on neuropsychological functions

  4. mTHPC-mediated photodynamic diagnosis of malignant brain tumors

    International Nuclear Information System (INIS)

    Zimmermann, A.

    2001-03-01

    Radical tumor resection is the basis for prolonged survival of patients suffering from malignant brain tumors such as glioblastoma multiform. We have carried out a phase II study involving 22 patients with malignant brain tumors to assess the feasibility and the effectiveness of the combination of intraoperative photodynamic diagnosis (PDD) and fluorescence-guided resection (FGR) mediated by the second generation photosensitizer meta-tetrahydroxyphenylchlorin (mTHPC). In addition, intraoperative photodynamic therapy (PDT) was performed. Several commercially available fluorescence diagnostic systems were investigated for their applicability for clinical practice. We have adapted and optimized a diagnostic system which includes a surgical microscope, an excitation light source (filtered to 370-440 nm), a video camera detection system, and a spectrometer for clear identification of the mTHPC fluorescence emission at 652 nm. Especially in regions of faint fluorescence it turned out to be essential to maximize the spectral information by optimizing and matching the spectral properties of all components, such as excitation source, camera and color filters. In summary, based on 138 tissue samples derived from 22 tumor specimens we have been able to achieve a sensitivity of 87.9 % and a specificity of 95.7 %. This study demonstrates that mTHPC-mediated intraoperative fluorescence-guided resection followed by photodynamic therapy is a feasible concept. (author)

  5. Uranium mobilization from low-grade ore by cyanobacteria

    International Nuclear Information System (INIS)

    Lorenz, M.G.; Krumbein, W.E.

    1985-01-01

    Three cyanobacterial isolates (two LPP-B forms and one Anabaena or Nostoc species) from different environments could mobilize uranium from low-grade ores. After 80 days, up to 18% uranium had been extracted from coal and 51% from a carbonate rock by the filamentous cyanobacterium OL3, a LPP-B form. Low growth requirements with regard to light and temperature optima make this strain a possible candidate for leaching neutral and alkaline low-grade uranium ores. (orig.)

  6. Uranium mobilization from low-grade ore by cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, M.G.; Krumbein, W.E.

    1985-04-01

    Three cyanobacterial isolates (two LPP-B forms and one Anabaena or Nostoc species) from different environments could mobilize uranium from low-grade ores. After 80 days, up to 18% uranium had been extracted from coal and 51% from a carbonate rock by the filamentous cyanobacterium OL3, a LPP-B form. Low growth requirements with regard to light and temperature optima make this strain a possible candidate for leaching neutral and alkaline low-grade uranium ores.

  7. Tumor metabolism, the ketogenic diet and β-hydroxybutyrate: novel approaches to adjuvant brain tumor therapy

    Directory of Open Access Journals (Sweden)

    Eric C. Woolf

    2016-11-01

    Full Text Available Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD. The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma.

  8. Volumetric multimodality neural network for brain tumor segmentation

    Science.gov (United States)

    Silvana Castillo, Laura; Alexandra Daza, Laura; Carlos Rivera, Luis; Arbeláez, Pablo

    2017-11-01

    Brain lesion segmentation is one of the hardest tasks to be solved in computer vision with an emphasis on the medical field. We present a convolutional neural network that produces a semantic segmentation of brain tumors, capable of processing volumetric data along with information from multiple MRI modalities at the same time. This results in the ability to learn from small training datasets and highly imbalanced data. Our method is based on DeepMedic, the state of the art in brain lesion segmentation. We develop a new architecture with more convolutional layers, organized in three parallel pathways with different input resolution, and additional fully connected layers. We tested our method over the 2015 BraTS Challenge dataset, reaching an average dice coefficient of 84%, while the standard DeepMedic implementation reached 74%.

  9. Prognostic factors for outcomes after whole-brain irradiation of brain metastases from relatively radioresistant tumors: a retrospective analysis

    NARCIS (Netherlands)

    Meyners, T.; Heisterkamp, C.; Kueter, J.D.; Veninga, T.; Stalpers, L.J.A.; Schild, S.E.; Rades, D.

    2010-01-01

    Background: This study investigated potential prognostic factors in patients treated with whole-brain irradiation (WBI) alone for brain metastases from relatively radioresistant tumors such as malignant melanoma, renal cell carcinoma, and colorectal cancer. Additionally, a potential benefit from

  10. Prognostic factors for outcomes after whole-brain irradiation of brain metastases from relatively radioresistant tumors: a retrospective analysis

    NARCIS (Netherlands)

    Meyners, Thekla; Heisterkamp, Christine; Kueter, Jan-Dirk; Veninga, Theo; Stalpers, Lukas J. A.; Schild, Steven E.; Rades, Dirk

    2010-01-01

    This study investigated potential prognostic factors in patients treated with whole-brain irradiation (WBI) alone for brain metastases from relatively radioresistant tumors such as malignant melanoma, renal cell carcinoma, and colorectal cancer. Additionally, a potential benefit from escalating the

  11. FLAIR MR sequence in the diagnosis and follow-up of low-grade astrocytomas

    Directory of Open Access Journals (Sweden)

    Stošić-Opinćal Tatjana

    2005-01-01

    Full Text Available Aim. To evaluate the sensitivity of fluid-attenuated inversion recovery (FLAIR sequence in the diagnosis and follow-up of the patients with low-grade astrocytomas compared with T2-weighted (T2W sequence. Methods. Twenty-four patients with biopsy- confirmed low-grade astrocytoma (age range, 15-66 years underwent T1- weighted (T1W, T2W and FLAIR imaging with a superconducting unit 1.0 T. FLAIR images were qualitatively evaluated by comparison with T2W images by the three experienced neuroradiologists. To evaluate the diagnostic value of FLAIR, the neuroradiologists individually assessed the possibilities of the detection of lesions, as well as the possibilities of the differentiation of tumor from the surrounding edema on FLAIR vs. T2W images. Every examiner ranked FLAIR sequence vs. T2W in three degrees: worse, equal and better. Results. The comparison of FLAIR with T2W spin-echo (SE images with regard to the detection of the lesions showed that 82.8% of FLAIR studies were superior, 17.2% were of similar diagnostic value, and none was inferior to the T2W images. The comparison of images with regard to the differentiation of tumor boundaries vs. surrounding edema showed that 92.5% of FLAIR studies were superior, 7.5% were of similar diagnostic value, and none was inferior to the T2W images. Conclusion. Our results were similar to the previous studies' results concerning the advantages of FLAIR sequence in the diagnosis of low grade astrocytomas over T2W sequence. FLAIR was better at showing different tumor components, and at distinguishing CSF from the cystic component, and the postoperative cavity, compared with T2W images. Our conclusion was that FLAIR could be routinely used in the evaluation and follow-up of low-grade astrocytomas.

  12. Assessment of functional status in children with brain tumors

    International Nuclear Information System (INIS)

    Sugita, Yasuo; Kobayashi, Seiichi; Uegaki, Masami; Katayama, Masahiko; Miyagi, Jun; Iryo, Osamu; Shigemori, Minoru; Kuramoto, Shinken; Ootsubo, Masaaki

    1987-01-01

    Thirty children treated for brain tumors between 1978 - 1985 at Kurume university hospital were evaluated for alternation in intellectual, emotional, and social function. They were 15 males and 15 females, aged 3 to 16 years, on the averaged 1.7 years after treatment. Twenty-eight children had no neurological deficits and 2 children had slight neurological deficits. It was possible for twenty-eight children to be evaluated for intelligence quotient by Wechsler Intelligence Scale for Children-revised and Tanaka-Binet. The median score and standard deviation of intelligence quotient (IQ) test in children with brain tumors were as follows; verbal IQ: 84 ± 16, performance IQ: 77 ± 20, full scale IQ: 80 ± 20. There children with brain tumors obtained significant low IQ scores than children (t-test, P < 0.01). Twenty-one (72 %) children showed subnormal IQ scores (IQ < 90) and 7 children showed normal IQ scores (IQ ≥ 90). Concerning social and emotional function, twelve children (45.7 %) showed abnormal behaviour. The median scores and standard deviation of IQ scores in cranial irradiated patients were as follows; verbal IQ: 79 ± 13, performance IQ: 71 ± 15, full scale IQ: 71 ± 14. Especially, ten of twelve cranial irradiated patients showed subnormal IQ scores. Also, cranial irradiated patients obtained significant low IQ scores than non-cranial irradiated patients (t-test, P < 0.05). Serial evaluation of three cranial irradiated patients revealed further deterioration without recurrence of tumor and hydrocephalus. The results are discussed to: (1) the effects and mechanism of cranial irradiation on cognitive development: (2) the relationship between cognitive dysfunction and irradiation methods. The effects and mechanism of cranial irradiation on cognitive dysfunction is considered to be not only injury of cortex but also injury of fiber tracts. Also, cognitive dysfunction is apt to be related to age of irradiated patients. (J.P.N.)

  13. Assessment of functional status in children with brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Sugita, Yasuo; Kobayashi, Seiichi; Uegaki, Masami; Katayama, Masahiko; Miyagi, Jun; Iryo, Osamu; Shigemori, Minoru; Kuramoto, Shinken; Ootsubo, Masaaki

    1987-06-01

    Thirty children treated for brain tumors between 1978 - 1985 at Kurume university hospital were evaluated for alternation in intellectual, emotional, and social function. They were 15 males and 15 females, aged 3 to 16 years, on the averaged 1.7 years after treatment. Twenty-eight children had no neurological deficits and 2 children had slight neurological deficits. It was possible for twenty-eight children to be evaluated for intelligence quotient by Wechsler Intelligence Scale for Children-revised and Tanaka-Binet. The median score and standard deviation of intelligence quotient (IQ) test in children with brain tumors were as follows; verbal IQ: 84 +- 16, performance IQ: 77 +- 20, full scale IQ: 80 +- 20. There children with brain tumors obtained significant low IQ scores than children (t-test, P < 0.01). Twenty-one (72 %) children showed subnormal IQ scores (IQ < 90) and 7 children showed normal IQ scores (IQ greater than or equal to 90). Concerning social and emotional function, twelve children (45.7 %) showed abnormal behaviour. The median scores and standard deviation of IQ scores in cranial irradiated patients were as follows; verbal IQ: 79 +- 13, performance IQ: 71 +- 15, full scale IQ: 71 +- 14. Especially, ten of twelve cranial irradiated patients showed subnormal IQ scores. Also, cranial irradiated patients obtained significant low IQ scores than non-cranial irradiated patients (t-test, P < 0.05). Serial evaluation of three cranial irradiated patients revealed further deterioration without recurrence of tumor and hydrocephalus. The results are discussed to: (1) the effects and mechanism of cranial irradiation on cognitive development: (2) the relationship between cognitive dysfunction and irradiation methods. The effects and mechanism of cranial irradiation on cognitive dysfunction is considered to be not only injury of cortex but also injury of fiber tracts. Also, cognitive dysfunction is apt to be related to age of irradiated patients. (J.P.N.).

  14. Hybrid Clustering And Boundary Value Refinement for Tumor Segmentation using Brain MRI

    Science.gov (United States)

    Gupta, Anjali; Pahuja, Gunjan

    2017-08-01

    The method of brain tumor segmentation is the separation of tumor area from Brain Magnetic Resonance (MR) images. There are number of methods already exist for segmentation of brain tumor efficiently. However it’s tedious task to identify the brain tumor from MR images. The segmentation process is extraction of different tumor tissues such as active, tumor, necrosis, and edema from the normal brain tissues such as gray matter (GM), white matter (WM), as well as cerebrospinal fluid (CSF). As per the survey study, most of time the brain tumors are detected easily from brain MR image using region based approach but required level of accuracy, abnormalities classification is not predictable. The segmentation of brain tumor consists of many stages. Manually segmenting the tumor from brain MR images is very time consuming hence there exist many challenges in manual segmentation. In this research paper, our main goal is to present the hybrid clustering which consists of Fuzzy C-Means Clustering (for accurate tumor detection) and level set method(for handling complex shapes) for the detection of exact shape of tumor in minimal computational time. using this approach we observe that for a certain set of images 0.9412 sec of time is taken to detect tumor which is very less in comparison to recent existing algorithm i.e. Hybrid clustering (Fuzzy C-Means and K Means clustering).

  15. Screening for psychological distress in adult primary brain tumor patients and caregivers: considerations for cancer care coordination

    Directory of Open Access Journals (Sweden)

    Wafa eTrad

    2015-09-01

    Full Text Available IntroductionThis study aimed to assess psychological distress (PD as scored by the Distress Thermometer (DT in adult primary brain tumor (PBT patients and caregivers in a clinic setting, and ascertain if any high risk sub-groups for PD exist. Material and MethodsFrom May 2012 to August 2013, n=96 patients and n=32 caregivers (CG underwent DT screening at diagnosis, and a differing cohort of n=12 patients and n=14 caregivers at first recurrence. Groups were described by diagnosis (high grade, low grade and benign, and English versus non-English speaking. Those with DT score≥4 met caseness criteria for referral to psycho-oncology services. One-way ANOVA tests were conducted to test for between group differences where appropriate.ResultsAt diagnosis and first recurrence, 37.5% and 75.0% (respectively of patients had DT scores above the cut-off for distress. At diagnosis, 78.1% of caregivers met caseness criteria for distress. All caregivers at recurrence met distress criterion. Patients with high grade glioma had significantly higher scores than those with a benign tumor. For patients at diagnosis, non-English speaking participants did not report significantly higher DT scores than English speaking participants.DiscussionPsychological distress is particularly elevated in caregivers, and in patients with high grade glioma at diagnosis. Effective PD screening, triage and referral by skilled care coordinators is vital to enable timely needs assessment, psychological support and effective intervention.

  16. Thermal dosimetry studies of ultrasonically induced hyperthermia in normal dog brain and in experimental brain tumors

    International Nuclear Information System (INIS)

    Britt, R.H.; Pounds, D.W.; Stuart, J.S.; Lyons, B.E.; Saxer, E.L.

    1984-01-01

    In a series of 16 acute experiments on pentobarbital anesthetized dogs, thermal distributions generated by ultrasonic heating using a 1 MHz PZT transducer were compared with intensity distributions mapped in a test tank. Relatively flat distributions from 1 to 3 cm have been mapped in normal dog brain using ''shaped'' intensity distributions generated from ultrasonic emission patterns which are formed by the interaction between compressional, transverse and flexural modes activated within the crystal. In contrast, these same intensity distributions generated marked temperature variations in 3 malignant brain tumors presumably due to variations in tumor blood flow. The results of this study suggest that a practical clinical system for uniform heating of large tumor volumes with varying volumes and geometries is not an achievable goal. The author's laboratory is developing a scanning ultrasonic rapid hyperthermia treatment system which will be able to sequentially heat small volume of tumor tissue either to temperatures which will sterilize tumor or to a more conventional thermal dose. Time-temperature studies of threshold for thermal damage in normal dog brain are currently in progress

  17. Detection of brain tumor margins using optical coherence tomography

    Science.gov (United States)

    Juarez-Chambi, Ronald M.; Kut, Carmen; Rico-Jimenez, Jesus; Campos-Delgado, Daniel U.; Quinones-Hinojosa, Alfredo; Li, Xingde; Jo, Javier

    2018-02-01

    In brain cancer surgery, it is critical to achieve extensive resection without compromising adjacent healthy, non-cancerous regions. Various technological advances have made major contributions in imaging, including intraoperative magnetic imaging (MRI) and computed tomography (CT). However, these technologies have pros and cons in providing quantitative, real-time and three-dimensional (3D) continuous guidance in brain cancer detection. Optical Coherence Tomography (OCT) is a non-invasive, label-free, cost-effective technique capable of imaging tissue in three dimensions and real time. The purpose of this study is to reliably and efficiently discriminate between non-cancer and cancer-infiltrated brain regions using OCT images. To this end, a mathematical model for quantitative evaluation known as the Blind End- Member and Abundances Extraction method (BEAE). This BEAE method is a constrained optimization technique which extracts spatial information from volumetric OCT images. Using this novel method, we are able to discriminate between cancerous and non-cancerous tissues and using logistic regression as a classifier for automatic brain tumor margin detection. Using this technique, we are able to achieve excellent performance using an extensive cross-validation of the training dataset (sensitivity 92.91% and specificity 98.15%) and again using an independent, blinded validation dataset (sensitivity 92.91% and specificity 86.36%). In summary, BEAE is well-suited to differentiate brain tissue which could support the guiding surgery process for tissue resection.

  18. Factors affecting radiation injury after interstitial brachytherapy for brain tumors

    International Nuclear Information System (INIS)

    Leibel, S.A.; Gutin, P.H.; Davis, R.L.

    1991-01-01

    The effects of brachytherapy on normal brain tissue are not easily delineated in the clinical setting because of the presence of concurrent radiation-induced changes in the coexistent brain tumor. Sequential morphologic studies performed after the implantation of radioactive sources into the brains of experimental animals have provided a better understanding of the character and magnitude of the structural changes produced by interstitial irradiation on normal brain tissue. Furthermore, the clinical experience accumulated thus far provides not only relevant information, but also some guidelines for future treatment policies. In this paper, the authors summarize the experimental findings and review the pathologic and clinical features of brain injury caused by interstitial brachytherapy. A number of studies in the older literature examined the effects of radioisotopes such as radium-226 (38--43), radon-22 (44--46), gold-198 (29,47--50), tantalum-182 (29,51,52) yttrium-9- (50,53,54), and cobalt-60 (29,50,55). This review is restricted to low- and high-activity encapsulated iodine-125 ( 125 I) and iridium-192 ( 192 Ir), the isotopes that are most commonly used in current clinical practice

  19. Exploratory case-control study of brain tumors in adults

    International Nuclear Information System (INIS)

    Burch, J.D.; Craib, K.J.; Choi, B.C.; Miller, A.B.; Risch, H.A.; Howe, G.R.

    1987-01-01

    An exploratory study of brain tumors in adults was carried out using 215 cases diagnosed in Southern Ontario between 1979 and 1982, with an individually matched, hospital control series. Significantly elevated risks were observed for reported use of spring water, drinking of wine, and consumption of pickled fish, together with a significant protective effect for the regular consumption of any of several types of fruit. While these factors are consistent with a role for N-nitroso compounds in the etiology of these tumors, for several other factors related to this hypothesis, no association was observed. Occupation in the rubber industry was associated with a significant relative risk of 9.0, though no other occupational associations were seen. Two previously unreported associations were with smoking nonfilter cigarettes with a significant trend and with the use of hair dyes or sprays. The data do not support an association between physical head trauma requiring medical attention and risk of brain tumors and indicate that exposure to ionizing radiation and vinyl chloride monomer does not contribute any appreciable fraction of attributable risk in the population studied. The findings warrant further detailed investigation in future epidemiologic studies

  20. Psychosocial profile of pediatric brain tumor survivors with neurocognitive complaints.

    Science.gov (United States)

    de Ruiter, Marieke Anna; Schouten-van Meeteren, Antoinette Yvonne Narda; van Vuurden, Dannis Gilbert; Maurice-Stam, Heleen; Gidding, Corrie; Beek, Laura Rachel; Granzen, Bernd; Oosterlaan, Jaap; Grootenhuis, Martha Alexandra

    2016-02-01

    With more children surviving a brain tumor, neurocognitive consequences of the tumor and its treatment become apparent, which could affect psychosocial functioning. The present study therefore aimed to assess psychosocial functioning of pediatric brain tumor survivors (PBTS) in detail. Psychosocial functioning of PBTS (8-18 years) with parent-reported neurocognitive complaints was compared to normative data on health-related quality of life (HRQOL), self-esteem, psychosocial adjustment, and executive functioning (one-sample t tests) and to a sibling control group on fatigue (independent-samples t test). Self-, parent-, and teacher-report questionnaires were included, where appropriate, providing complementary information. Eighty-two PBTS (mean age 13.4 years, SD 3.2, 49 % males) and 43 healthy siblings (mean age 14.3, SD 2.4, 40 % males) were included. As compared to the normative population, PBTS themselves reported decreased physical, psychological, and generic HRQOL (d = 0.39-0.62, p psychosocial adjustment seemed not to be affected. Parents of PBTS reported more psychosocial (d = 0.81, p psychosocial adjustment problems for female PBTS aged 8-11 years than for the female normative population (d = 0.69, p psychosocial problems, as reported by PBTS, parents, and teachers. Systematic screening of psychosocial functioning is necessary so that tailored support from professionals can be offered to PBTS with neurocognitive complaints.

  1. The fibrinolytic system facilitates tumor cell migration across the blood-brain barrier in experimental melanoma brain metastasis

    International Nuclear Information System (INIS)

    Perides, George; Zhuge, Yuzheng; Lin, Tina; Stins, Monique F; Bronson, Roderick T; Wu, Julian K

    2006-01-01

    Patients with metastatic tumors to the brain have a very poor prognosis. Increased metastatic potential has been associated with the fibrinolytic system. We investigated the role of the fibrinolytic enzyme plasmin in tumor cell migration across brain endothelial cells and growth of brain metastases in an experimental metastatic melanoma model. Metastatic tumors to the brain were established by direct injection into the striatum or by intracarotid injection of B16F10 mouse melanoma cells in C57Bl mice. The role of plasminogen in the ability of human melanoma cells to cross a human blood-brain barrier model was studied on a transwell system. Wild type mice treated with the plasmin inhibitor epsilon-aminocaproic acid (EACA) and plg -/- mice developed smaller tumors and survived longer than untreated wild type mice. Tumors metastasized to the brain of wild type mice treated with EACA and plg -/- less efficiently than in untreated wild type mice. No difference was observed in the tumor growth in any of the three groups of mice. Human melanoma cells were able to cross the human blood-brain barrier model in a plasmin dependent manner. Plasmin facilitates the development of tumor metastasis to the brain. Inhibition of the fibrinolytic system could be considered as means to prevent tumor metastasis to the brain

  2. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Neil V. Klinger

    2016-01-01

    Full Text Available Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin’s ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors.

  3. Intraosseous polymorphous low-grade adenocarcinoma of mandible: A rare entity

    Directory of Open Access Journals (Sweden)

    Gayathri Ramesh

    2012-01-01

    Full Text Available Polymorphous low-grade adenocarcinoma is a rare type of minor salivary gland malignancy. The characteristic features of these tumors are the varied histomorphology and the malignant, albeit indolent behavior. It occurs commonly in the minor salivary glands, with the palate (58.5% being the most common intra oral site. Maxillary area (2%, mandibular mucosal area (1.5% and posterior trigone region (0.5% are the least affected areas. An occasional case has been reported arising from an intraosseous location i.e the maxilla, and only two cases have been reported in the English literature originating from the mandible. One such very rare case of polymorphous low-grade adenocarcinoma of the mandible, which radiographically has a soap bubble appearance, is reported here.

  4. Low-grade myofibroblastic sarcoma arising in fibroadenoma of the breast-A case report.

    Science.gov (United States)

    Myong, Na-Hye; Min, Jun-Won

    2016-03-25

    Myofibroblastic sarcoma or myofibrosarcoma is a malignant tumor of myofibroblasts and known to develop rarely in the breast, but its underlying lesion and tumor cell origin have never been reported yet. A 61-year-old female presented with a gradually growing breast mass with well-demarcated ovoid nodular shape. The tumor was histologically characterized by fascicular-growing spindle cell proliferation with large areas of hyalinized fibrosis and focally ductal epithelial remnants embedded in myxoid stroma, mimicking a fibroadenomatous lesion. It had frequent mitoses of 5-16/10 high-power fields, hemorrhagic necrosis, and focally pericapsular invasion. The spindle cells were diffusely immunoreactive for fibronectin, smooth muscle actin, and calponin, which suggest a myofibroblastic origin. Multiple irregularly thickened vessels with medial or pericytic cell proliferation were found to be merged with the intrinsic tumor cells. The tumor could be diagnosed low-grade myofibroblastic sarcoma arising in an old fibroadenoma. We report a case of a low-grade mammary myofibrosarcoma that showed a background lesion of fibroadenoma first in the worldwide literature and suggest the pericytes or medial muscle cells of the intratumoral vessels as the cell origin of the myofibroblastic sarcoma.

  5. A neuropathology-based approach to epilepsy surgery in brain tumors and proposal for a new terminology use for long-term epilepsy-associated brain tumors

    NARCIS (Netherlands)

    Blumcke, Ingmar; Aronica, Eleonora; Urbach, Horst; Alexopoulos, Andreas; Gonzalez-Martinez, Jorge A.

    2014-01-01

    Every fourth patient submitted to epilepsy surgery suffers from a brain tumor. Microscopically, these neoplasms present with a wide-ranging spectrum of glial or glio-neuronal tumor subtypes. Gangliogliomas (GG) and dysembryoplastic neuroepithelial tumors (DNTs) are the most frequently recognized

  6. Ultrasonographic findings of low-grade endometrial stromal sarcoma of the uterus with a focus on cystic degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ga Eun; Rha, Sung Eun; Oh, Soon Nam; Lee, Ah Won; Lee, Keun Ho; Kim, Mee Ran [Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2016-03-15

    The goal of this study was to perform a retrospective analysis of the ultrasonographic findings associated with low-grade endometrial stromal sarcoma. Ten pathologically confirmed cases of low-grade endometrial stromal sarcoma at our institution from January 2007 to April 2014 were retrospectively reviewed. All patients underwent a preoperative transvaginal ultrasound. Two radiologists came to a consensus regarding the location, size, margin, and echogenicity of the tumor, as well as the presence of intratumoral cystic degeneration and its extent and configuration. Low-grade endometrial stromal sarcoma manifested as an intramural mass protruding into the endometrial cavity (n=6) or as a purely intramural mass (n=4). The maximal diameter of the lesion ranged from 4 to 9.1 cm (mean, 6.2 cm). The imaging features of low-grade endometrial stromal sarcoma were variable: six cases involved predominantly solid masses containing cystic degeneration, one was a predominantly unilocular cystic mass, two were ill-defined infiltrative solid masses, and one was a well-defined solid mass. Among the seven cases with internal cystic degeneration, five patients showed a multiseptated cystic area or a cystic area with multiple small clusters, while a unilocular cystic area within the tumor was found in two patients. Low-grade endometrial stromal sarcoma is associated with variable ultrasonographic findings with regard to the location, margin, and configuration of the lesion. Multiseptated cystic areas and multiple small areas of cystic degeneration are common.

  7. Contemporary management of low--grade glioma: a paradigm shift in neuro-oncology.

    Science.gov (United States)

    Hayhurst, Caroline

    2017-06-01

    Supratentorial diffuse intrinsic low-grade gliomas represent a distinct but heterogenous group of tumours, with the propensity to grow and to differentiate into malignant tumours. They have been historically viewed in the 'benign' spectrum of intrinsic brain tumours, so a watch-and-wait policy was often adopted. With recent advances in our understanding of the natural history of these tumours, combined with advances in surgical technique, an aggressive approach is now recommended. Increasing quality evidence of the impact of tumour resection and multicentre trials of adjuvant radiotherapy and chemotherapy have led to a new algorithm for low-grade glioma management. This review aims to outline the emerging evidence that has shifted neuro-oncology practice. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Growth hormone deficiency in children with brain tumors

    International Nuclear Information System (INIS)

    Shalet, S.M.; Beardwell, C.G.; Morris-Jones, P.; Bamford, F.N.; Ribeiro, G.G.; Pearson, D.

    1976-01-01

    Nine children with brain tumors are described who have received various combinations of treatment, including surgery, radiotherapy, and chemotherapy. Many of the children were noted to be of short stature. Endocrine assessment was carried out from 2 to 10 years after treatment. The combined results of insulin tolerance and Bovril stimulation tests show an impaired growth hormone response in six of the nine children. Bone age is retarded in all cases, and the present height is below the 10th percentile in five of the six. The cause of this growth hormone deficiency is obscure, but further studies are in progress

  9. Phenylalanine-coupled solid lipid nanoparticles for brain tumor targeting

    Energy Technology Data Exchange (ETDEWEB)

    Kharya, Parul; Jain, Ashish; Gulbake, Arvind; Shilpi, Satish; Jain, Ankit; Hurkat, Pooja [Dr. Hari Singh Gour University, Pharmaceutical Research Projects Laboratory, Department of Pharmaceutical Sciences (India); Majumdar, Subrata [Bose Institute, Division of Molecular Medicine (India); Jain, Sanjay K., E-mail: drskjainin@yahoo.com [Dr. Hari Singh Gour University, Pharmaceutical Research Projects Laboratory, Department of Pharmaceutical Sciences (India)

    2013-11-15

    The purpose of this study is to investigate the targeting potential of amino acid (phenylalanine)-coupled solid lipid nanoparticles (SLN) loaded with ionically complexed doxorubicin HCl (Dox). Ionic complexation was used to enhance the loading efficiency and release characteristics of water soluble form of Dox. l-Type amino acid transporters (LAT1) are highly expressed on blood brain barrier as well as on many brain cancer cells, thus targeting LAT1 using phenylalanine improved anticancer activity of prepared nanocarrier. The phenylalanine-coupled SLN were characterized by fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, particle size, zeta potential, entrapment efficiency and in vitro release. The particle size of the resulting SLN was found to be in the range of 163.3 ± 5.2 to 113.0 ± 2.6 nm, with a slightly negative surface charge. In ex vivo study on C6 glioma cell lines, the cellular cytotoxicity of the SLN was highly increased when coupled with phenylalanine. In addition, stealthing sheath of PEG present on the surface of the SLN enhanced the cellular uptake of the SLN on C6 glioma cell line. Results of biodistribution and fluorescence studies clearly revealed that phenylalanine-coupled SLN could deliver high amount of drug into the brain tumor cells and showed the brain-targeting potential.

  10. Utility and limitation of radiosurgery for metastatic brain tumors

    International Nuclear Information System (INIS)

    Kagawa, Kota; Kiya, Katsuzo; Satoh, Hideki; Mizoue, Tatsuya; Matsushige, Toshinori; Araki, Hayato; Akimitsu, Tomohide

    2003-01-01

    The purpose of this study was to evaluate the utility and limitations of radiosurgery for metastatic brain lesions, and to compare the clinical results of stereotactic radiosurgery (SRS) with those of whole-brain radiation therapy (WBRT) in 45 patients with metastatic brain tumors. The patients were divided into two groups: the SRS group (22 patients) and the WBRT group (23 patients). Mean survival was not significantly different between the two groups. However, in patients with 6 or more lesions, both survival time and recurrence-free time in the SRS group were inferior to those in the WBRT group. The main complication in the SRS group was perifocal edema, while dementia was seen in the WBRT group. The bedridden period was longer in the WBRT group than in the SRS group. Death caused by brain lesions was rare in both groups. From these results, SRS preserves high quality of life longer than WBRT, but SRS should be cautiously used in patients with 6 or more lesions. (author)

  11. Aberrant paramagnetic signals outside the tumor volume on routine surveillance MRI of brain tumor patients.

    Science.gov (United States)

    Yust-Katz, Shlomit; Inbar, Edna; Michaeli, Natalia; Limon, Dror; Siegal, Tali

    2017-09-01

    Late complications of cerebral radiation therapy (RT) involve vascular injury with acquired cavernous malformation, telangiectasias and damage to vascular walls which are well recognized in children. Its incidence in adults is unknown. Blood products and iron deposition that accompany vascular injury create paramagnetic effects on MRI. This study retrospectively investigated the frequency of paramagnetic lesions on routine surveillance MRI of adult brain tumor patients. MRI studies of 115 brain tumor patients were reviewed. Only studies containing sequences of either susceptibility weighted images or gradient echo or blood oxygenation level dependent imaging were included. Lesions inside the tumor volume were not considered. 68 studies fulfilled the above criteria and included 48 patients with previous RT (35 followed for >2 years and 13 for 1 year) and 20 patients who were not treated with RT. The median age at time of irradiation was 47 years. Aberrant paramagnetic lesions were found in 23/35 (65%) patients followed for >2 years after RT and in only 1/13 (8%) patients followed for 1-year after radiation (p = 0.03). The 1-year follow-up group did not differ from the control group [2/20 (9%)]. Most lesions were within the radiation field and none of the patients had related symptomatology. The number and incidence of these lesions increased with time and amounted to 75% over 3 years post RT. MRI paramagnetic signal aberrations are common findings in adult brain tumor patients that evolve over time after RT. The clinical significance of these lesions needs further investigation.

  12. Prediction of tumor-brain adhesion in intracranial meningiomas by MR imaging and DSA

    International Nuclear Information System (INIS)

    Takeguchi, Takashi; Miki, Hitoshi; Shimizu, Teruhiko; Kikuchi, Keiichi; Mochizuki, Teruhito; Ohue, Shiro; Ohnishi, Takanori

    2003-01-01

    The purpose of this study was to evaluate the usefulness of MRI (magnetic resonance imaging) and DSA (digital subtraction angiography) by using preoperative MRI and DSA findings in the examination of meningiomas before excision. In particular, we focused on their usefulness in predicting tumor-brain adhesion during surgery. The subjects were 36 patients with intracranial meningioma who underwent tumor excision at which time neurosurgeons examined the tumor-brain adhesion. Two neurosurgeons evaluated the degree of tumor-brain adhesion from operation records and videotapes recorded during surgery. Two neuroradiologists retrospectively evaluated the preoperative MRI findings including tumor diameter, signal intensity of the tumor parenchyma obtained with T 2 -weighted imaging (T 2 WI), characteristics of the tumor-brain interface, and degree of peritumoral brain edema. The vascular supply was also evaluated from the preoperative DSA findings. The relationship between these MRI and DSA findings and the degree of tumor-brain adhesion during surgery as classified by the neurosurgeons was statistically analyzed. The degree of peritumoral brain edema and the shapes and characteristics of the tumor-brain interface, including the findings of FLAIR (fluid-attenuated inversion recovery) imaging and vascular supply observed by DSA, were significantly correlated with tumor-brain adhesion. In particular, the shapes and characteristics of the tumor-brain interface as observed by T 1 -weighted imaging (T 1 WI), T2WI, and FLAIR, respectively, as well as the vascular supply observed by DSA, were closely correlated with the degree of tumor-brain adhesion encountered during surgery. According to these results, we developed a method of predicting tumor-brain adhesion that considers the shape of the tumor-brain interface revealed by MRI and the vascular supply revealed by DSA. We retrospectively examined the findings of MRI and DSA performed before excision of meningioma and clarified

  13. Comparison of two brain tumor-localizing MRI agent. GD-BOPTA and GD-DTPA. MRI and ICP study of rat brain tumor model

    International Nuclear Information System (INIS)

    Zhang, T.; Matsumura, A.; Yamamoto, T.; Yoshida, F.; Nose, T.

    2000-01-01

    In this study, we compared the behavior of Gd-BOPTA as a brain tumor selective contrast agent with Gd-DTPA in a common dose of 0.1 mmol/kg. We performed a MRI study using those two agent as contrast material, and we measured tissue Gd-concentrations by ICP-AES. As a result, Gd-BOPTA showed a better MRI enhancement in brain tumor. ICP showed significantly greater uptake of Gd-BOPTA in tumor samples, at all time course peaked at 5 minutes after administration, Gd being retained for a longer time in brain tumor till 2 hours, without rapid elimination as Gd-DTPA. We conclude that Gd-BOPTA is a new useful contrast material for MR imaging in brain tumor and an effective absorption agent for neutron capture therapy for further research. (author)

  14. FDG-PET on Irradiated Brain Tumor: Ten Years' Summary

    International Nuclear Information System (INIS)

    Wang, S.X.; Boethius, J.; Ericson, K.

    2006-01-01

    Purpose: To evaluate FDG-PET in post-radiotherapy differentiation of tumor recurrence/malignant degeneration and radiation reaction, and to assess the role of PET in terms of survival. Material and Methods: 117 consecutive patients with a total of 156 FDG-PET examinations with positive but non-diagnostic MRI and/or CT were included. Final diagnosis was based on histopathology or correlated with radiologic and clinical follow-up. Brain metastases from lung carcinomas were further studied separately. Survival time was analysed using the Kaplan-Meier method. Results: There were 61 true-positive, 2 false-positive, 15 false-negative, and 51 true-negative PET examinations; 5 positive and 22 negative PET examinations were indeterminate. The positive predictive value of a PET examination was 96% in all and 100% in brain metastases from lung carcinoma. The negative predictive value based on the histopathologic results was 55.6%. Survival time was significantly longer in patients with negative PET. Conclusion: FDG-PET is a valuable tool in the detection of tumor recurrence, especially lung carcinoma metastasis. FDG uptake is a prognostic marker

  15. Is outpatient brain tumor surgery feasible in India?

    Science.gov (United States)

    Turel, Mazda K; Bernstein, Mark

    2016-01-01

    The current trend in all fields of surgery is towards less invasive procedures with shorter hospital stays. The reasons for this change include convenience to patients, optimal resource utilization, and cost saving. Technological advances in neurosurgery, aided by improvements in anesthesia, have resulted in surgery that is faster, simpler, and safer with excellent perioperative recovery. As a result of improved outcomes, some centers are performing brain tumor surgery on an outpatient basis, wherein patients arrive at the hospital the morning of their procedure and leave the hospital the same evening, thus avoiding an overnight stay in the hospital. In addition to the medical benefits of the outpatient procedure, its impact on patient satisfaction is substantial. The economic benefits are extremely favorable for the patient, physician, as well as the hospital. In high volume centers, a day surgery program can exist alongside those for elective and emergency surgeries, providing another pathway for patient care. However, due to skepticism surrounding the medicolegal aspects, and how radical the concept at first sounds, these procedures have not gained widespread popularity. We provide an overview of outpatient brain tumor surgery in the western world, discussing the socioeconomic, medicolegal, and ethical issues related to its adaptability in a developing nation.

  16. Stereotactic interstitial brachytherapy for the treatment of oligodendroglial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    El Majdoub, Faycal; Neudorfer, Clemens; Maarouf, Mohammad [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University of Witten/Herdecke, Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Cologne-Merheim Medical Center (CMMC), Cologne (Germany); Blau, Tobias; Deckert, Martina [University Hospital of Cologne, Department of Neuropathology, Cologne (Germany); Hellmich, Martin [University Hospital of Cologne, Institute of Statistics, Informatics and Epidemiology, Cologne (Germany); Buehrle, Christian [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); Sturm, Volker [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University Hospital of Wurzburg, Department of Neurosurgery, Wuerzburg (Germany)

    2015-12-15

    We evaluated the treatment of oligodendroglial brain tumors with interstitial brachytherapy (IBT) using {sup 125}iodine seeds ({sup 125}I) and analyzed prognostic factors. Between January 1991 and December 2010, 63 patients (median age 43.3 years, range 20.8-63.4 years) suffering from oligodendroglial brain tumors were treated with {sup 125}I IBT either as primary, adjuvantly after incomplete resection, or as salvage therapy after tumor recurrence. Possible prognostic factors influencing disease progression and survival were retrospectively investigated. The actuarial 2-, 5-, and 10-year overall and progression-free survival rates after IBT for WHO II tumors were 96.9, 96.9, 89.8 % and 96.9, 93.8, 47.3 %; for WHO III tumors 90.3, 77, 54.9 % and 80.6, 58.4, 45.9 %, respectively. Magnetic resonance imaging demonstrated complete remission in 2 patients, partial remission in 13 patients, stable disease in 17 patients and tumor progression in 31 patients. Median time to progression for WHO II tumors was 87.6 months and for WHO III tumors 27.8 months. Neurological status improved in 10 patients and remained stable in 20 patients, while 9 patients deteriorated. There was no treatment-related mortality. Treatment-related morbidity was transient in 11 patients. WHO II, KPS ≥ 90 %, frontal location, and tumor surface dose > 50 Gy were associated with increased overall survival (p ≤ 0.05). Oligodendroglioma and frontal location were associated with a prolonged progression-free survival (p ≤ 0.05). Our study indicates that IBT achieves local control rates comparable to surgery and radio-/chemotherapy treatment, is minimally invasive, and safe. Due to the low rate of side effects, IBT may represent an attractive option as part of a multimodal treatment schedule, being supplementary to microsurgery or as a salvage therapy after chemotherapy and conventional irradiation. (orig.) [German] Die Behandlung oligodendroglialer Hirntumoren durch die interstitielle Brachytherapie

  17. Targeting Potassium Channels for Increasing Delivery of Imaging Agents and Therapeutics to Brain Tumors

    OpenAIRE

    Nagendra Sanyasihally Ningaraj; Divya eKhaitan

    2013-01-01

    Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/ capillaries that form the blood–brain barrier (BBB) not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB). Studies in our laboratory have identifi...

  18. Method of dry distillation of low-grade fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hellsing, G H; Wengstrom, R O.A.

    1920-05-20

    A method of dry distillation of low-grade fuels is characterized by having the process take place in a furnace that is charged alternately by partly cooled, red-hot, and fresh raw materials. The patent has one more claim.

  19. Low-grade hardwood lumber production, markets, and issues

    Science.gov (United States)

    Dan Cumbo; Robert Smith; Philip A. Araman

    2003-01-01

    Due to recent downturn in the economy and changes in traditional hardwood markets. U.S. hardwood manufacturers are facing significant difficulties. In particular, markets for low-grade lumber have been diminishing, while increased levels of the material are being produced at hardwood sawmills in the United States. A nationwide survey of hardwood lumber manufacturers...

  20. Rheology and extrusion of low-grade paper and sludge

    Science.gov (United States)

    C. Tim Scott; Stefan Zauscher; Daniel J. Klingenberg

    1999-01-01

    This paper discusses efforts to characterize the rheological properties of pulps that include low-grade wastepapers and papermill sludges to determine their potential for extrusion and conversion into useful products. We investigated apparent changes in viscosity associated with the addition of typical inorganic paper fillers (calcium carbonate, kaolin clay, and...

  1. An unusual cystic appearance of disseminated low-grade gliomas

    International Nuclear Information System (INIS)

    Huang, T.; Zimmerman, R.A.; Perilongo, G.; Kaufman, B.A.; Holden, K.R.; Carollo, C.; Kling Chong, W.K.

    2001-01-01

    We report five cases of pediatric disseminated low-grade gliomas of the brainstem or spinal cord that exhibited an unusual, cystic pattern. Leptomeningeal disease was present in three of these at diagnosis, and was detected shortly afterwards in the other two. Four patients are alive up to 5 years later, following minimal to no intervention, while one is dead. (orig.)

  2. Brain connectivity study of brain tumor patients using MR-PET data: preliminary results

    International Nuclear Information System (INIS)

    Mendes, Ana Carina; Ribeiro, Andre Santos; Oros-Peusquens, Ana Maria; Langen, Karl Josef; Shah, Jon; Ferreira, Hugo Alexandre

    2015-01-01

    Brain activity results from anatomical and functional connections that can be disrupted or altered due to trauma or lesion. This work presents a first approach on the study of whole-brain connectivity of brain tumor patients using the Multimodal Imaging Brain Connectivity (MIBCA) toolbox. Two patients with glioblastoma lesions located in the left hemisphere (one in the motor cortex and the other in the temporal lobe) underwent simultaneous MRI and dynamic PET scans using a 3T MRI scanner with a BrainPET insert. The following data was acquired: T1-w MPRAGE (1x1x1mm 3 ), DTI (dir=30, b=0,800s/mm2, 2x2x2mm 3 ), and dynamic 18F-FET PET. The MIBCA toolbox was used to automatically pre-process MRI-PET data and to derive imaging and connectivity metrics from the multimodal data. Computed metrics included: cortical thickness from T1-w data; mean diffusivity (MD), fractional anisotropy (FA), node degree, clustering coefficient and pairwise ROI fibre tracking (structural connectivity) from DTI data; and standardized uptake value (SUV) from PET data. For all the metrics, the differences between left and right hemispherical structures were obtained, followed by a 25% threshold (except for SUV thresholded at 15%). Data was visualized in a connectogram, and both structural connectivity and metrics were studied in regions surrounding lesions. Preliminary results showed increased SUV values in regions surrounding the tumor for both patients. Patients also showed changes in structural connectivity involving these regions and also other more spatially distant regions such as the putamen and the pallidum, including decreased number of fibers between the subcortical structures themselves and with frontal regions. These findings suggest that the presence of a tumor may alter both local and more distant structural connections. Presently, a larger patient sample is being studied along with the inclusion of a control group to test the consistency of the findings.

  3. Brain connectivity study of brain tumor patients using MR-PET data: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana Carina [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Ribeiro, Andre Santos [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Centre for Neuropsychopharmacology, Division of Brain Sciences, Department of Medicine, Imperial College London, London (United Kingdom); Oros-Peusquens, Ana Maria; Langen, Karl Josef; Shah, Jon [Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich (Germany); Ferreira, Hugo Alexandre [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal)

    2015-05-18

    Brain activity results from anatomical and functional connections that can be disrupted or altered due to trauma or lesion. This work presents a first approach on the study of whole-brain connectivity of brain tumor patients using the Multimodal Imaging Brain Connectivity (MIBCA) toolbox. Two patients with glioblastoma lesions located in the left hemisphere (one in the motor cortex and the other in the temporal lobe) underwent simultaneous MRI and dynamic PET scans using a 3T MRI scanner with a BrainPET insert. The following data was acquired: T1-w MPRAGE (1x1x1mm{sup 3}), DTI (dir=30, b=0,800s/mm2, 2x2x2mm{sup 3}), and dynamic 18F-FET PET. The MIBCA toolbox was used to automatically pre-process MRI-PET data and to derive imaging and connectivity metrics from the multimodal data. Computed metrics included: cortical thickness from T1-w data; mean diffusivity (MD), fractional anisotropy (FA), node degree, clustering coefficient and pairwise ROI fibre tracking (structural connectivity) from DTI data; and standardized uptake value (SUV) from PET data. For all the metrics, the differences between left and right hemispherical structures were obtained, followed by a 25% threshold (except for SUV thresholded at 15%). Data was visualized in a connectogram, and both structural connectivity and metrics were studied in regions surrounding lesions. Preliminary results showed increased SUV values in regions surrounding the tumor for both patients. Patients also showed changes in structural connectivity involving these regions and also other more spatially distant regions such as the putamen and the pallidum, including decreased number of fibers between the subcortical structures themselves and with frontal regions. These findings suggest that the presence of a tumor may alter both local and more distant structural connections. Presently, a larger patient sample is being studied along with the inclusion of a control group to test the consistency of the findings.

  4. Re-irradiation for metastatic brain tumors with whole-brain radiotherapy

    International Nuclear Information System (INIS)

    Akiba, Takeshi; Kunieda, Etsuo; Kogawa, Asuka; Komatsu, Tetsuya; Tamai, Yoshifumi; Ohizumi, Yukio

    2012-01-01

    The objective of this study was to determine whether second whole-brain irradiation is beneficial for patients previously treated with whole-brain irradiation. A retrospective analysis was done for 31 patients with brain metastases who had undergone re-irradiation. Initial whole-brain irradiation was performed with 30 Gy/10 fractions for 87% of these patients. Whole-brain re-irradiation was performed with 30 Gy/10 fractions for 42% of these patients (3-40 Gy/1-20 fractions). Three patients underwent a third whole-brain irradiation. The median interval between the initial irradiation and re-irradiation was 10 months (range: 2-69 months). The median survival time after re-irradiation was 4 months (range: 1-21 months). The symptomatic improvement rate after re-irradiation was 68%, and the partial and complete tumor response rate was 55%. Fifty-two percent of the patients developed Grade 1 acute reactions. On magnetic resonance imaging, brain atrophy was observed in 36% of these patients after the initial irradiation and 74% after re-irradiation. Grade ≥2 encephalopathy or cognitive disturbance was observed in 10 patients (32%) after re-irradiation. Based on univariate analysis, significant factors related to survival after re-irradiation were the location of the primary cancer (P=0.003) and the Karnofsky performance status at the time of re-irradiation (P=0.008). A Karnofsky performance status ≥70 was significant based on multivariate analysis (P=0.050). Whole-brain re-irradiation for brain metastases placed only a slight burden on patients and was effective for symptomatic improvement. However, their remaining survival time was limited and the incidence of cognitive disturbance was rather high. (author)

  5. Intralesional curettage of central low-grade chondrosarcoma: A midterm follow-up study.

    Science.gov (United States)

    Chen, Yi-Chou; Wu, Po-Kuei; Chen, Cheng-Fong; Chen, Wei-Ming

    2017-03-01

    The aim of this study was to review the experience of surgical treatment of low-grade chondrosarcoma and to assess the long-term oncological and functional outcomes between intralesional curettage and wide excision. We included 11 patients with central low-grade chondrosarcoma lesions treated with intralesional curettage or wide excision from 1998 to 2013. Seven patients were treated with intralesional curettage and local adjuvant treatment (Group A), and four patients were treated with wide excision and reconstructive surgery (Group B). The mean age of patients was 43.8±17.6 years (range, 20-71 years), and the mean duration of follow-up was 84.4±47.6 months (range, 48-194 months). Group A had a significantly lower complication rate than Group B; three complications were documented in Group B (0% vs. 75%, p=0.024). The operative time (177.1 hours vs. 366.3 hours, p=0.010) and the hospital stay (6.6 days vs. 12.5 days, p=0.010) were significantly shorter in Group A. There was one local recurrence in Group A without statistical significance. Also, there were no differences between intralesional curettage and wide excision with respect to the blood loss. No metastasis disease occurred in either group during the follow-up period. The Musculoskeletal Tumor Society (MSTS) scores in Groups A and B were 99.0±2.5 and 94.2±4.2, respectively, with statistically significant difference (p=0.048). Extended intralesional curettage has the benefits of good MSTS score, shorter operative time, shorter hospital stay, and lower complication rate without increasing local recurrence in central low-grade chondrosarcoma. For central low-grade chondrosarcoma, we suggest extended curettage to decrease soft tissue damage and surgical risk. Copyright © 2016. Published by Elsevier Taiwan LLC.

  6. Determination of intra-axial brain tumors cellularity through the analysis of T2 Relaxation time of brain tumors before surgery using MATLAB software.

    Science.gov (United States)

    Abdolmohammadi, Jamil; Shafiee, Mohsen; Faeghi, Fariborz; Arefan, Douman; Zali, Alireza; Motiei-Langroudi, Rouzbeh; Farshidfar, Zahra; Nazarlou, Ali Kiani; Tavakkoli, Ali; Yarham, Mohammad

    2016-08-01

    Timely diagnosis of brain tumors could considerably affect the process of patient treatment. To do so, para-clinical methods, particularly MRI, cannot be ignored. MRI has so far answered significant questions regarding tumor characteristics, as well as helping neurosurgeons. In order to detect the tumor cellularity, neuro-surgeons currently have to sample specimens by biopsy and then send them to the pathology unit. The aim of this study is to determine the tumor cellularity in the brain. In this cross-sectional study, 32 patients (18 males and 14 females from 18-77 y/o) were admitted to the neurosurgery department of Shohada-E Tajrish Hospital in Tehran, Iran from April 2012 to February 2014. In addition to routine pulse sequences, T2W Multi echo pulse sequences were taken and the images were analyzed using the MATLAB software to determine the brain tumor cellularity, compared with the biopsy. These findings illustrate the need for more T2 relaxation time decreases, the higher classes of tumors will stand out in the designed table. In this study, the results show T2 relaxation time with a 85% diagnostic weight, compared with the biopsy, to determine the brain tumor cellularity (p<0.05). Our results indicate that the T2 relaxation time feature is the best method to distinguish and present the degree of intra-axial brain tumors cellularity (85% accuracy compared to biopsy). The use of more data is recommended in order to increase the percent accuracy of this techniques.

  7. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake.

    Science.gov (United States)

    Flavahan, William A; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E; Weil, Robert J; Nakano, Ichiro; Sarkaria, Jann N; Stringer, Brett W; Day, Bryan W; Li, Meizhang; Lathia, Justin D; Rich, Jeremy N; Hjelmeland, Anita B

    2013-10-01

    Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) owing to preferential BTIC survival and to adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3, and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, tumor initiating cells may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may maintain the tumor hierarchy and portend poor prognosis.

  8. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization.

    Directory of Open Access Journals (Sweden)

    Daniel Y Joh

    Full Text Available Successful treatment of brain tumors such as glioblastoma multiforme (GBM is limited in large part by the cumulative dose of Radiation Therapy (RT that can be safely given and the blood-brain barrier (BBB, which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs. GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ~1.3. Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.

  9. Using Ferumoxytol-Enhanced MRI to Measure Inflammation in Patients With Brain Tumors or Other Conditions of the CNS

    Science.gov (United States)

    2017-08-30

    Brain Injury; Central Nervous System Degenerative Disorder; Central Nervous System Infectious Disorder; Central Nervous System Vascular Malformation; Hemorrhagic Cerebrovascular Accident; Ischemic Cerebrovascular Accident; Primary Brain Neoplasm; Brain Cancer; Brain Tumors

  10. Irradiation of meningioma: a prototype circumscribed tumor for planning high-dose irradiation of the brain

    International Nuclear Information System (INIS)

    Friedman, M.

    1977-01-01

    The purpose of this report is to provide specific data concerning the radiation dose required to destroy meningioma, and to demonstrate that radiation doses much greater than the alleged tolerance dose, can be administered to the brain in some patients. Most meninglomas are not responsive to irradiation, but, some surgically incurable lesions benefit from irradiation with radically high doses to small volumes of tissue. The arrest of 7 of 12 consecutive meningiomas in adults for periods of 2 to 17 years following maximum tumor doses up to 8800 R in 40 days is reported in this paper. All patients, when irradiated, had active tumor in the form of inoperable primary tumor, recurrence, or known postoperative residual tumor. Three of the successful results were achieved with orthovoltage radiation. The incidence of brain damage may be acceptable to the patient when it is related to arrest of tumor growth but he must be forewarned of possible brain damage. The factors influencing the radioresponsiveness of meningioma are: the required tumor lethal dose, histology and vascularity of the tumor, anatomical site in the brain, treatment technique for each tumor site, small size of the treated volume, growth rate of the tumor, displacement of normal brain tissue by tumor, inherent individual variations of tumor and normal tissues, quality of the radiation, and tolerance of normal brain tissues. The role of these factors is discussed in the light of modern radiobiological concepts

  11. Low-Grade Uterine Epithelioid Hemangioendothelioma Presented as a Submucosal Leiomyoma during Labor

    Directory of Open Access Journals (Sweden)

    Anastasios V. Koutsopoulos

    2013-01-01

    Full Text Available With the exception of leiomyomas, soft tissue tumors of the uterine corpus are not common. This is particularly true for vascular neoplasms, with the epithelioid hemangioendothelioma being a curiosity; not more than twenty-two cases of malignant hemangioendotheliomas have been reported in the literature so far, all of which were high-grade hemangioendotheliomas (hemangiosarcomas. We present herewith a unique case of low-grade epithelioid hemangioendothelioma of the uterus in a pregnant woman aged 29 years. The clinical, histological, and immunohistochemical characteristics of this entity, together with its differential diagnosis, are discussed.

  12. Nitrosourea-based chemotherapy for low grade gliomas failing initial treatment with temozolomide.

    Science.gov (United States)

    Kaloshi, Gentian; Sierra del Rio, Monica; Ducray, François; Psimaras, Dimitri; Idbaih, Ahmed; Laigle-Donadey, Florence; Taillibert, Sophie; Houillier, Caroline; Dehais, Caroline; Omuro, Antonio; Sanson, Marc; Delattre, Jean-Yves; Hoang-Xuan, Khe

    2010-12-01

    There is a growing evidence of using Temozolomide as upfront therapy for progressive low grade gliomas. No data exist on the efficacy of nitrosoureas as an alternative to radiotherapy in those patients who progress after Temozolomide. We retrospectively reviewed 30 patients with median age of 46 years. Twenty-one patients had pure oligodendrogliomas. Thirteen patients had a non-enhancing tumor at progression after Temozolomide. The chromosomes 1p/19q were co-deleted in 5 cases and retained in 10 cases. Response rate was 10% (3 minor responses achieved in non-enhancing tumors). Tolerance was acceptable (17% grade III and IV myelosupression). Median PFS was 6.5 months. Median OS from start of salvage treatment was 23.4 months. Tumors without contrast enhancement demonstrated a better prognosis than those with contrast enhancement both in term of PFS (P = 0.0003) and OS (P = 0.0006). Chromosomes 1p/19q codeletion was not predictive for objective response to salvage treatment but correlated with a better PFS (P = 0.02). In conclusion, salvage NU chemotherapy provide disappointing results in TMZ-pretreated low grade gliomas (LGG), which should be treated in priority by conventional radiotherapy especially in LGG that display contrast enhancement at progression.

  13. Radiotherapy, especially at young age, increases the risk for de novo brain tumors in patients treated for pituitary tumors

    NARCIS (Netherlands)

    Burman, Pia; Van Beek, André P.; Biller, Beverly M.K.; Camacho-Hubner, Cecilia; Mattsson, Anders F.

    Background: Excess mortality due to de novo malignant brain tumors was recently found in a national study of patients with hypopituitarism following treatment of pituitary tumors. Here, we examined a larger multi-national cohort to corroborate and extend this observation. Objective: To investigate

  14. Games of lives in surviving childhood brain tumors.

    Science.gov (United States)

    Chen, Chin-Mi; Chen, Yueh-Chih; Haase, Joan E

    2008-06-01

    The purpose of this phenomenological study was to describe the commonality of the lived experience of adolescent and young adult survivors (AYAS) of brain tumors in Taiwan from a sociocultural perspective. Seven AYAS aged 13 to 22 years, who had survived 5 to 10 years from the time of diagnosis, participated in this study. In consideration of their emotional duress, each participant was interviewed only once. The data revealed an essential structure: the game of life. The essential structure included six themes as follows: (a) no longer playing well, (b) wandering on the outer edges of social life, (c) helplessly struggling with role obligations, (d) rationally regulating the meaning of surviving, (e) winning a new social face, and (f) mastering the game of life. The findings suggest how nurses might help AYAS to succeed in psychosocial adjustment.

  15. Brain tumor segmentation based on a hybrid clustering technique

    Directory of Open Access Journals (Sweden)

    Eman Abdel-Maksoud

    2015-03-01

    This paper presents an efficient image segmentation approach using K-means clustering technique integrated with Fuzzy C-means algorithm. It is followed by thresholding and level set segmentation stages to provide an accurate brain tumor detection. The proposed technique can get benefits of the K-means clustering for image segmentation in the aspects of minimal computation time. In addition, it can get advantages of the Fuzzy C-means in the aspects of accuracy. The performance of the proposed image segmentation approach was evaluated by comparing it with some state of the art segmentation algorithms in case of accuracy, processing time, and performance. The accuracy was evaluated by comparing the results with the ground truth of each processed image. The experimental results clarify the effectiveness of our proposed approach to deal with a higher number of segmentation problems via improving the segmentation quality and accuracy in minimal execution time.

  16. Effect of selenium on malignant tumor cells of brain.

    Science.gov (United States)

    Zhu, Z; Kimura, M; Itokawa, Y; Nakatsu, S; Oda, Y; Kikuchi, H

    1995-07-01

    Some reports have demonstrated that selenium can inhibit tumorigenesis in some tissues of animal. However, little is known about the inhibitory effect on malignant tumor cells of brain. The purpose of our study was to determine the biological effect of selenium on growth of rat glioma and human glioblastoma cell lines. Cell lines C6 and A172 were obtained from Japanese Cancer Research Resources Bank, Tokyo, Japan (JCRB). Cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal calf serum at 37 degrees C in a humidified atmosphere of air and 5% CO2. Antiproliferative effects of selenium were evaluated using growth rate assay quantifying cell number by MTT assay. An antiproliferative effect of selenium was found in two cell lines, which was more effective on human A172 glioblastoma and less effective on rat C6 glioma.

  17. Investigating depression-like and metabolic parameters in a chronic low-grade inflammation model

    DEFF Research Database (Denmark)

    Fischer, C. W.; Elfving, B.; Lund, S.

    2012-01-01

    that elevated markers of inflammation predict a poor response to treatment. Furthermore, increasing evidences show that metabolic abnormalities such as obesity and diabetes mellitus type 2 are associated with a low-grade inflammation. Objectives: The aim of this study is to investigate the effects of a systemic...... levels of pro-inflammatory cytokines (TNF-alpha, IL-1, IL-6) together with the expression of enzymes involved in the tryptophan-kynurenine pathway, will be analyzed in specific brain regions using real-time qPCR. Body weight and food intake was measured once a week, while fasting glucose and insulin...

  18. Tumor cell killing effect of boronated dipeptide. Boromethylglycylphenylalanine on boron neutron capture therapy for malignant brain tumors

    International Nuclear Information System (INIS)

    Takagaki, Masao; Ono, Koji; Masunaga, Shinichiro; Kinashi, Yuko; Kobayashi, Toru; Oda, Yoshifumi; Kikuchi, Haruhiko; Spielvogel, B.F.

    1994-01-01

    The killing effect of Boron Neutron Capture Therapy; BNCT, is dependant on the boron concentration ratio of tumor to normal brain (T/N ratio), and also that of tumor to blood (T/B ratio). The clinical boron carrier of boro-captate (BSH) showed the large T/N ratio of ca. 8, however the T/B ratio was around 1, which indicated nonselective accumulation into tumor. Indeed high boron concentration of blood restrict the neutron irradiation dose in order to circumvent the normal endothelial damage, especially in the case of deeply seated tumor. Phenylalanine analogue of para borono-phenylalanine (BPA) is an effective boron carrier on BNCT for malignant melanoma. For the BNCT on brain tumors, however, BPA concentration in normal brain was reported to be intolerably high. In order to improve the T/N ratio of BPA in brain, therefore, a dipeptide of boromethylglycylphenylalanine (BMGP) was synthesized deriving from trimethylglycine conjugated with BPA. It is expected to be selectively accumulated into tumor with little uptake into normal brain. Because a dipeptide might not pass through the normal blood brain barrier (BBB). Its killing effect on cultured glioma cell, T98G, and its distribution in rat brain bearing 9L glioma have been investigated in this paper. The BNCT effect of BMGP on cultured cells was nearly triple in comparison with DL-BPA. The neutron dose yielding 1% survival ratio were 7x10 12 nvt for BMGP and 2x10 13 nvt for BPA respectively on BNCT after boron loading for 16 hrs in the same B-10 concentration of 20ppm. Quantitative study of boron concentration via the α-auto radiography and the prompt gamma ray assay on 9L brain tumor rats revealed that T/N ratio and T/B ratio are 12.0 and 3.0 respectively. Those values are excellent for BNCT use. (author)

  19. Cognitive deficits in long-term survivors of childhood brain tumors: Identification of predictive factors

    DEFF Research Database (Denmark)

    Reimers, Tonny Solveig; Ehrenfels, Susanne; Mortensen, Erik Lykke

    2003-01-01

    To describe cognitive function and to evaluate the association between potentially predictive factors and cognitive outcome in an unselected population of survivors of childhood brain tumors.......To describe cognitive function and to evaluate the association between potentially predictive factors and cognitive outcome in an unselected population of survivors of childhood brain tumors....

  20. Brain tumors in children and adolescents and exposure to animals and farm life

    DEFF Research Database (Denmark)

    Christensen, Jeppe Schultz; Mortensen, Laust Hvas; Röösli, Martin

    2012-01-01

    The etiology of brain tumors in children and adolescents is largely unknown, and very few environmental risk factors have been identified. The aim of this study was to examine the relationship between pre- or postnatal animal contacts or farm exposures and the risk of childhood brain tumors (CBTs...

  1. Caring for patients with brain tumor: The patient and care giver ...

    African Journals Online (AJOL)

    Background: Patients with brain tumors form a heterogeneous group in terms of clinical presentation and pathology. However, the impact of the disease on patients' families is often more homogenous and frequently quite profound. A considerable body of literature is available on the management of brain tumors and ...

  2. (18)F-Fluorodeoxyglucose PET/Computed Tomography for Primary Brain Tumors

    DEFF Research Database (Denmark)

    Antonsen Segtnan, Eivind; Hess, Søren; Grupe, Peter

    2015-01-01

    Structural imaging with computed tomography (CT) and MR imaging is the mainstay in primary diagnosis of primary brain tumors, but these modalities depend on morphologic appearance and an intact blood-brain barrier, and important aspects of tumor biology are not addressed. Such issues may...

  3. Transferrin receptor-1 and ferritin heavy and light chains in astrocytic brain tumors

    DEFF Research Database (Denmark)

    Rosager, Ann Mari; Sørensen, Mia D; Dahlrot, Rikke H

    2017-01-01

    Astrocytic brain tumors are the most frequent primary brain tumors. Treatment with radio- and chemotherapy has increased survival making prognostic biomarkers increasingly important. The aim of the present study was to investigate the expression and prognostic value of transferrin receptor-1 (TfR...

  4. Automatic Brain Tumor Detection in T2-weighted Magnetic Resonance Images

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Pavel; Kropatsch, W.G.; Bartušek, Karel

    2013-01-01

    Roč. 13, č. 5 (2013), s. 223-230 ISSN 1335-8871 R&D Projects: GA ČR GAP102/12/1104; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Brain tumor * Brain tumor detection * Symmetry analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.162, year: 2013

  5. Right inferior frontal gyrus activation is associated with memory improvement in patients with left frontal low-grade glioma resection.

    Directory of Open Access Journals (Sweden)

    Eliane C Miotto

    Full Text Available Patients with low-grade glioma (LGG have been studied as a model of functional brain reorganization due to their slow-growing nature. However, there is no information regarding which brain areas are involved during verbal memory encoding after extensive left frontal LGG resection. In addition, it remains unknown whether these patients can improve their memory performance after instructions to apply efficient strategies. The neural correlates of verbal memory encoding were investigated in patients who had undergone extensive left frontal lobe (LFL LGG resections and healthy controls using fMRI both before and after directed instructions were given for semantic organizational strategies. Participants were scanned during the encoding of word lists under three different conditions before and after a brief period of practice. The conditions included semantically unrelated (UR, related-non-structured (RNS, and related-structured words (RS, allowing for different levels of semantic organization. All participants improved on memory recall and semantic strategy application after the instructions for the RNS condition. Healthy subjects showed increased activation in the left inferior frontal gyrus (IFG and middle frontal gyrus (MFG during encoding for the RNS condition after the instructions. Patients with LFL excisions demonstrated increased activation in the right IFG for the RNS condition after instructions were given for the semantic strategies. Despite extensive damage in relevant areas that support verbal memory encoding and semantic strategy applications, patients that had undergone resections for LFL tumor could recruit the right-sided contralateral homologous areas after instructions were given and semantic strategies were practiced. These results provide insights into changes in brain activation areas typically implicated in verbal memory encoding and semantic processing.

  6. Right inferior frontal gyrus activation is associated with memory improvement in patients with left frontal low-grade glioma resection.

    Science.gov (United States)

    Miotto, Eliane C; Balardin, Joana B; Vieira, Gilson; Sato, Joao R; Martin, Maria da Graça M; Scaff, Milberto; Teixeira, Manoel J; Junior, Edson Amaro

    2014-01-01

    Patients with low-grade glioma (LGG) have been studied as a model of functional brain reorganization due to their slow-growing nature. However, there is no information regarding which brain areas are involved during verbal memory encoding after extensive left frontal LGG resection. In addition, it remains unknown whether these patients can improve their memory performance after instructions to apply efficient strategies. The neural correlates of verbal memory encoding were investigated in patients who had undergone extensive left frontal lobe (LFL) LGG resections and healthy controls using fMRI both before and after directed instructions were given for semantic organizational strategies. Participants were scanned during the encoding of word lists under three different conditions before and after a brief period of practice. The conditions included semantically unrelated (UR), related-non-structured (RNS), and related-structured words (RS), allowing for different levels of semantic organization. All participants improved on memory recall and semantic strategy application after the instructions for the RNS condition. Healthy subjects showed increased activation in the left inferior frontal gyrus (IFG) and middle frontal gyrus (MFG) during encoding for the RNS condition after the instructions. Patients with LFL excisions demonstrated increased activation in the right IFG for the RNS condition after instructions were given for the semantic strategies. Despite extensive damage in relevant areas that support verbal memory encoding and semantic strategy applications, patients that had undergone resections for LFL tumor could recruit the right-sided contralateral homologous areas after instructions were given and semantic strategies were practiced. These results provide insights into changes in brain activation areas typically implicated in verbal memory encoding and semantic processing.

  7. Low grade uranium deposits of India - a bane or boon

    International Nuclear Information System (INIS)

    Chaki, Anjan

    2010-01-01

    Uranium resources of the world is estimated to be 5.5 million tonnes and the proven resources in India forms 3% of the world resources. The biggest uranium deposit is the Olympic dam deposit in Australia, which contains nearly one million tonnes of 0.04% U 3 O 8 , while the highest grade of nearly 20% is established in the McArthur river deposit, Canada. Another very high grade deposit, the Cigar lake deposit, is established in Canada with an average grade of nearly 18%. Most of the uranium deposits established in India so far falls under the category of low grade. These low grade uranium deposits are distributed mainly in Singhbhum Shear Zone, eastern India; in parts of Chhattisgarh; Southern parts of Meghalaya; Cuddapah Basin, Andhra Pradesh; in parts of Karnataka and Aravalli- and Delhi Supergroups, Rajasthan and Haryana. These deposits are mainly hydrothermal vein type, stratabound type and unconformity related. The Singhbhum Shear Zone, Jharkhand hosts a seventeen low grade uranium deposits, aggregating about 30% of Indian uranium resources. The uranium mineralisation hosted by Vempalle dolostone extends over 160 km belt along southwestern margin of Cuddapah Basin in Andhra Pradesh and accounts 23% of the Indian resources. Though the dolostone hosted Tummalapalle uranium deposit was established in the early nineties, because of techno-economic constraints, the deposit remained dormant. As a consequence of the development of an innovative pressure alkali beneficiation process, the deposit became economically viable and a mine and mill are being constructed here. Recent exploration inputs are leading to prove a number of low grade uranium deposits in the extension areas of Tummalapalle. Nearly 10 blocks have been identified within a 30 km belt which are being actively explored and a large uranium deposit has already been proved in this province. The deposit at Tummalapalle and adjoining areas is likely to become the second biggest deposit in the world. The

  8. hTe exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches

    Institute of Scientific and Technical Information of China (English)

    Vivek Agrahari

    2017-01-01

    Delivering therapeutics to the central nervous system (CNS) and brain-tumor has been a major challenge. hTe current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in provid-ing signiifcant beneifts to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier (BBB). hTe BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nan-otherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer signiifcant ad vantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are brielfy discussed. hTe drug transport mechanisms at the BBB are outlined. hTe approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic ap-proaches for their enhanced clinical application in brain-tumor therapy are discussed.

  9. The exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches

    Directory of Open Access Journals (Sweden)

    Vivek Agrahari

    2017-01-01

    Full Text Available Delivering therapeutics to the central nervous system (CNS and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in providing significant benefits to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier (BBB. The BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nanotherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer significant advantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are briefly discussed. The drug transport mechanisms at the BBB are outlined. The approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic approaches for their enhanced clinical application in brain-tumor therapy are discussed.

  10. Targeting the PD-1 pathway in pediatric solid tumors and brain tumors

    Directory of Open Access Journals (Sweden)

    Wagner LM

    2017-04-01

    Full Text Available Lars M Wagner,1 Val R Adams2 1Division of Pediatric Hematology/Oncology, 2Department of Pharmacy Practice and Science, University of Kentucky, Lexington, KY, USA Abstract: While remarkable advances have been made in the treatment of pediatric leukemia over the past decades, new therapies are needed for children with advanced solid tumors and high-grade brain tumors who fail standard chemotherapy regimens. Immunotherapy with immune checkpoint inhibitors acting through the programmed cell death-1 (PD-1 pathway has shown efficacy in some chemotherapy-resistant adult cancers, generating interest that these agents may also be helpful to treat certain refractory pediatric malignancies. In this manuscript we review current strategies for targeting the PD-1 pathway, highlighting putative biomarkers and the rationale for investigation of these drugs to treat common pediatric tumors such as sarcoma, neuroblastoma, and high-grade glioma. We summarize the completed and ongoing clinical trial data available, and suggest potential applications for further study. Keywords: PD-1, nivolumab, pembrolizumab, pediatric, sarcoma, neuroblastoma, glioma

  11. Advances in Brain Tumor Surgery for Glioblastoma in Adults

    Directory of Open Access Journals (Sweden)

    Montserrat Lara-Velazquez

    2017-12-01

    Full Text Available Glioblastoma (GBM is the most common primary intracranial neoplasia, and is characterized by its extremely poor prognosis. Despite maximum surgery, chemotherapy, and radiation, the histological heterogeneity of GBM makes total eradication impossible, due to residual cancer cells invading the parenchyma, which is not otherwise seen in radiographic images. Even with gross total resection, the heterogeneity and the dormant nature of brain tumor initiating cells allow for therapeutic evasion, contributing to its recurrence and malignant progression, and severely impacting survival. Visual delimitation of the tumor’s margins with common surgical techniques is a challenge faced by many surgeons. In an attempt to achieve optimal safe resection, advances in approaches allowing intraoperative analysis of cancer and non-cancer tissue have been developed and applied in humans resulting in improved outcomes. In addition, functional paradigms based on stimulation techniques to map the brain’s electrical activity have optimized glioma resection in eloquent areas such as the Broca’s, Wernike’s and perirolandic areas. In this review, we will elaborate on the current standard therapy for newly diagnosed and recurrent glioblastoma with a focus on surgical approaches. We will describe current technologies used for glioma resection, such as awake craniotomy, fluorescence guided surgery, laser interstitial thermal therapy and intraoperative mass spectrometry. Additionally, we will describe a newly developed tool that has shown promising results in preclinical experiments for brain cancer: optical coherence tomography.

  12. Study of Inter- and Intra-fraction Motion in Brain Tumor Patients Undergoing VMAT Treatment

    International Nuclear Information System (INIS)

    Ascencion Ybarra, Y.; Alfonso Laguardia, R.; Yartsev, S.

    2015-01-01

    Conforming dose to the tumor and sparing normal tissue can be challenging for brain tumors with complex shapes in close proximity to critical structures. The goal of this study was to evaluate the inter- and intra-fraction motion in brain tumor patients undergoing volumetric modulated arc therapy (VMAT). The image matching software was found to be very sensitive to the choice of the region of matching. It is recommended to use the same region of interest for comparing the image sets and perform the automatic matching based on bony landmarks in brain tumor cases. (Author)

  13. Actinide recovery from waste and low-grade sources

    International Nuclear Information System (INIS)

    Navratil, J.D.; Schulz, W.W.

    1982-01-01

    Actinide and nuclear fuel cycle operations generate a variety of process waste streams. New methods are needed to remove and recover actinides. More interest is also being expressed in recovering uranium from oceans, phosphoric acid, and other low grade sources. To meet the need for an up-to-date status report in the area of actinide recovery from waste and low grade sources, these papers were brought together. The papers provide an authoritative, in-depth coverage of an important area of nuclear and industrial and engineering chemistry which cover the following topics: uranium recovery from oceans and phosphoric acid; recovery of actinides from solids and liquid wastes; plutonium scrap recovery technology; and other new developments in actinide recovery processes

  14. 99mTc-MIBI-SPECT-studies in the evaluation of brain tumors

    International Nuclear Information System (INIS)

    Ambrus, E.; Pavics, L.; Gruenwald, F.; Barath, B.; Tiszlavicz, L.; Bender, H.; Menzel, C.; Almasi, L.; Lang, J.; Bodosi, M.; Biersack, H.J.; Csernay, L.

    1994-01-01

    Brain SPECT studies were performed 5 and 60 minutes after 99m Tc-MIBI administration in 41 patients with brain tumors confirmed by CT and surgical removal (13 meningeomas, 8 astrocytomas grades I-III, 10 glioblastomas, 10 metastases). 99m Tc-MIBI uptake was found in 32 out of 41 brain tumors. According to the semiquantitative SPECT analysis, the tumor/non tumor radios revealed a statistically significant difference in the early tracer uptake between meningeomas and astrocytomas (+4.73±2.91 vs -1.75±0.75, p 99m Tc-MIBI uptake and its changes with time. We concluded that the combination of an early and late 99m Tc-MIBI brain SPECT may be helpful in the non invasive histological classification of brain tumors and the determination of the grade of theirs malignancy. (orig.) [de

  15. Evaluation of B1 inhomogeneity effect on DCE-MRI data analysis of brain tumor patients at 3T.

    Science.gov (United States)

    Sengupta, Anirban; Gupta, Rakesh Kumar; Singh, Anup

    2017-12-02

    Dynamic-contrast-enhanced (DCE) MRI data acquired using gradient echo based sequences is affected by errors in flip angle (FA) due to transmit B 1 inhomogeneity (B 1 inh). The purpose of the study was to evaluate the effect of B 1 inh on quantitative analysis of DCE-MRI data of human brain tumor patients and to evaluate the clinical significance of B 1 inh correction of perfusion parameters (PPs) on tumor grading. An MRI study was conducted on 35 glioma patients at 3T. The patients had histologically confirmed glioma with 23 high-grade (HG) and 12 low-grade (LG). Data for B 1 -mapping, T 1 -mapping and DCE-MRI were acquired. Relative B 1 maps (B 1rel ) were generated using the saturated-double-angle method. T 1 -maps were computed using the variable flip-angle method. Post-processing was performed for conversion of signal-intensity time (S(t)) curve to concentration-time (C(t)) curve followed by tracer kinetic analysis (K trans , Ve, Vp, Kep) and first pass analysis (CBV, CBF) using the general tracer-kinetic model. DCE-MRI data was analyzed without and with B 1 inh correction and errors in PPs were computed. Receiver-operating-characteristic (ROC) analysis was performed on HG and LG patients. Simulations were carried out to understand the effect of B 1 inhomogeneity on DCE-MRI data analysis in a systematic way. S(t) curves mimicking those in tumor tissue, were generated and FA errors were introduced followed by error analysis of PPs. Dependence of FA-based errors on the concentration of contrast agent and on the duration of DCE-MRI data was also studied. Simulations were also done to obtain K trans of glioma patients at different B 1rel values and see whether grading is affected or not. Current study shows that B 1rel value higher than nominal results in an overestimation of C(t) curves as well as derived PPs and vice versa. Moreover, at same B 1rel values, errors were large for larger values of C(t). Simulation results showed that grade of patients can change

  16. Underground bioleaching: extracting from low-grade ore

    International Nuclear Information System (INIS)

    McCready, R.G.L.

    1986-01-01

    In 1984, Denison Mines began a research and demonstration project on the engineering aspects of bacterial leaching of low-grade uranium ore at Elliot Lake. The leaching solution was acidic mine water enriched in bacterial nutrients and innoculated with Thiobacillus ferrooxidans. Leaching of one stope was found to be impeded by fungi of the genus penicillium. Although fungal growth on leaching stopes must be prevented, research is proceeding on the potential use of the fungi to concentrate uranium from bioleaching solutions

  17. Properties of concrete blocks prepared with low grade recycled aggregates.

    Science.gov (United States)

    Poon, Chi-Sun; Kou, Shi-cong; Wan, Hui-wen; Etxeberria, Miren

    2009-08-01

    Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste. In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 degrees C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks.

  18. Low grade inflammation inhibits VEGF induced HUVECs migration in p53 dependent manner

    International Nuclear Information System (INIS)

    Panta, Sushil; Yamakuchi, Munekazu; Shimizu, Toshiaki; Takenouchi, Kazunori; Oyama, Yoko; Koriyama, Toyoyasu; Kojo, Tsuyoshi; Hashiguchi, Teruto

    2017-01-01

    In the course of studying crosstalk between inflammation and angiogenesis, high doses of pro-inflammatory factors have been reported to induce apoptosis in cells. Under normal circumstances also the pro-inflammatory cytokines are being released in low doses and are actively involved in cell signaling pathways. We studied the effects of low grade inflammation in growth factor induced angiogenesis using tumor necrosis factor alfa (TNFα) and vascular endothelial growth factor A (VEGF) respectively. We found that low dose of TNFα can inhibit VEGF induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Low dose of TNFα induces mild upregulation and moreover nuclear localization of tumor suppressor protein 53 (P53) which causes decrease in inhibitor of DNA binding-1 (Id1) expression and shuttling to the cytoplasm. In absence of Id1, HUVECs fail to upregulate β 3 -integrin and cell migration is decreased. Connecting low dose of TNFα induced p53 to β 3 -integrin through Id1, we present additional link in cross talk between inflammation and angiogenesis. - Highlights: • Low grade inflammation (low dose of TNF alfa) inhibits VEGF induced endothelial cells migration. • The low grade inflammation with VEGF treatment upregulates P53 to a nonlethal level. • P53 activation inhibits Id1 shuttling to the cytoplasm in endothelial cells. • Inhibition of Id1 resulted in downregulation of β 3 -integrin which cause decrease in cell migration. • Inflammation and angiogenesis might cross-talk by P53 – Id1 – β 3 -integrin pathway in endothelial cells.

  19. Low grade uranium ores as potential sources of raw material

    International Nuclear Information System (INIS)

    Venzlaff, H.

    1976-01-01

    Reports on the uranium requirement and the uranium reserves show that, even if the demand were to be stretched out slightly, the rate of new discoveries of uranium would have to be doubled or even tripled within a few years in order to ensure supply. Despite some spectacular discoveries of large scale deposits in Australia it must be said that only very few truly new uranium provinces have been discovered over the past twenty years. In this situation more attention is now being devoted to low grade uranium depositis, to findings whose concentration does not exceed 1,000 ppm. These deposits contain quantities of uranium many times larger than the deposits that can now be mined at prices up to 30/lb of U 3 O 8 . Even now low grade uranium ore is being mined as a byproduct, with the actual valuable mineral producing most of the income from mining activities. However, if one strikes a balance in this situation, one finds that only part of the requirement can be met in this way. Hence, all possibilities must be exhausted to mine uranium as a byproduct, new techniques of uranium production from low grade ores must be developed, and also conventional prospection must be intensified, if the continuity of supply of the nuclear power stations in the eighties and nineties is to be guaranteed. (orig.) [de

  20. Recovery of Tungsten and Molybdenum from Low-Grade Scheelite

    Science.gov (United States)

    Li, Yongli; Yang, Jinhong; Zhao, Zhongwei

    2017-10-01

    With most high-quality tungsten ores being exhausted, the enhancement of low-grade scheelite concentrates processing has attracted a great deal of attention. The objective of this study is to develop a method to maximize the recovery tungsten and molybdenum from a low-grade scheelite via a new acid leaching process followed by solvent extraction. Under optimal conditions (350 g/L H2SO4, 95°C, and 2 h), approximately 99.8% of tungsten and 98% of molybdenum were leached out. In the subsequent solvent extraction process, more than 99% of the tungsten and molybdenum were extracted with a co-extraction system (50% TBP, 30% HDEHP, and 10% 2-octanol in kerosene) using a three-stage cross-flow extraction. The raffinate can be recycled for the next leaching process after replenishing the H2SO4 to the initial value (approximately 350 g/L). Based on these results, a conceptual flowsheet is presented to recover tungsten and molybdenum from the low-grade scheelite.

  1. Inter-hemispheric language functional reorganization in low-grade glioma patients after tumour surgery.

    Science.gov (United States)

    Kristo, Gert; Raemaekers, Mathijs; Rutten, Geert-Jan; de Gelder, Beatrice; Ramsey, Nick F

    2015-03-01

    Despite many claims of functional reorganization following tumour surgery, empirical studies that investigate changes in functional activation patterns are rare. This study investigates whether functional recovery following surgical treatment in patients with a low-grade glioma in the left hemisphere is linked to inter-hemispheric reorganization. Based on literature, we hypothesized that reorganization would induce changes in the spatial pattern of activation specifically in tumour homologue brain areas in the healthy right hemisphere. An experimental group (EG) of 14 patients with a glioma in the left hemisphere near language related brain areas, and a control group of 6 patients with a glioma in the right, non-language dominant hemisphere were scanned before and after resection. In addition, an age and gender matched second control group of 18 healthy volunteers was scanned twice. A verb generation task was used to map language related areas and a novel technique was used for data analysis. Contrary to our hypothesis, we found that functional recovery following surgery of low-grade gliomas cannot be linked to functional reorganization in language homologue brain areas in the healthy, right hemisphere. Although elevated changes in the activation pattern were found in patients after surgery, these were largest in brain areas in proximity to the surgical resection, and were very similar to the spatial pattern of the brain shift following surgery. This suggests that the apparent perilesional functional reorganization is mostly caused by the brain shift as a consequence of surgery. Perilesional functional reorganization can however not be excluded. The study suggests that language recovery after transient post-surgical language deficits involves recovery of functioning of the presurgical language system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. 3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set.

    Science.gov (United States)

    Popuri, Karteek; Cobzas, Dana; Murtha, Albert; Jägersand, Martin

    2012-07-01

    Brain tumor segmentation is a required step before any radiation treatment or surgery. When performed manually, segmentation is time consuming and prone to human errors. Therefore, there have been significant efforts to automate the process. But, automatic tumor segmentation from MRI data is a particularly challenging task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. In our work, we propose an automatic brain tumor segmentation method that addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multidimensional feature set. Then, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this work is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned region statistics in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters from the normal brain region to be in the tumor region. This leads to a better disambiguation of the tumor from brain tissue. We evaluated the performance of our automatic segmentation method on 15 real MRI scans of brain tumor patients, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Validation with the expert segmentation labels yielded encouraging results: Jaccard (58%), Precision (81%), Recall (67%), Hausdorff distance (24 mm). Using priors on the brain/tumor appearance, our proposed automatic 3D variational

  3. Phosphaturic mesenchymal tumor of the brain without tumor-induced osteomalacia in an 8-year-old girl: case report.

    Science.gov (United States)

    Ellis, Mark B; Gridley, Daniel; Lal, Suresh; Nair, Geetha R; Feiz-Erfan, Iman

    2016-05-01

    Phosphaturic mesenchymal tumor (mixed connective tissue variant) (PMT-MCT) are tumors that may cause tumor-induced osteomalacia and rarely appear intracranially. The authors describe the case of an 8-year-old girl who was found to have PMT-MCT with involvement of the cerebellar hemisphere and a small tumor pedicle breaching the dura mater and involving the skull. This was removed surgically in gross-total fashion without further complication. Histologically the tumor was confirmed to be a PMT-MCT. There was no evidence of tumor-induced osteomalacia. At the 42-month follow-up, the patient is doing well, has no abnormalities, and is free of recurrence. PMT-MCTs are rare tumors that may involve the brain parenchyma. A gross-total resection may be effective to cure these lesions.

  4. Brain tumors in children and teenagers up to 18 in CT

    International Nuclear Information System (INIS)

    Kabula, S.; Trzcinska, I.; Lasek, W.; Goszczynski, W.; Nawrot, M.; Boron, Z.

    1995-01-01

    The results of the CT investigation in children and teenagers up to 18, made in 1990-1994 were exposed to retrospective analysis: 2279 children were examined. The computer research proved the pathological changes in case 1205 people - 52%. In this group 58 children turned out to suffer from brain tumors. The most frequent tumor spatted was: astrocytoma (8), ependymoma (5), oligodendroglioma (3). The brain tumors happen to appear more often in case of boys (34) than in case of girls (22). (author)

  5. Genetic and modifying factors that determine the risk of brain tumors

    DEFF Research Database (Denmark)

    Montelli, Terezinha de Cresci Braga; Peraçoli, Maria Terezinha Serrão; Rogatto, Silvia Regina

    2011-01-01

    of tumor escape, CNS tumor immunology, immune defects that impair anti-tumor systemic immunity in brain tumor patients and local immuno-suppressive factors within CNS are also reviewed. New hope to treatment perspectives, as dendritic-cell-based vaccines is summarized too. Concluding, it seems well...... responses can alert immune system. However, it is necessary to clarify if individuals with both constitutional defects in immune functions and genetic instability have higher risk of developing brain tumors. Cytogenetic prospective studies and gene copy number variations analysis also must be performed...

  6. Third harmonic generation imaging for fast, label-free pathology of human brain tumors

    NARCIS (Netherlands)

    Kuzmin, N.V.; Wesseling, P.; Hamer, P.C.; Noske, D.P.; Galgano, G.D.; Mansvelder, H.D.; Baayen, J.C.; Groot, M.L.

    2016-01-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third

  7. Third harmonic generation imaging for fast, label-free pathology of human brain tumors

    NARCIS (Netherlands)

    Kuzmin, N. V.; Wesseling, P.; Hamer, P. C de Witt; Noske, D. P.; Galgano, G. D.; Mansvelder, H. D.; Baayen, J. C.; Groot, M. L.

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third

  8. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  9. Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage

    Science.gov (United States)

    Lin, Pei-Yi; Hagan, Katherine; Fenoglio, Angela; Grant, P. Ellen; Franceschini, Maria Angela

    2016-05-01

    Low-grade germinal matrix-intraventricular hemorrhage (GM-IVH) is the most common complication in extremely premature neonates. The occurrence of GM-IVH is highly associated with hemodynamic instability in the premature brain, yet the long-term impact of low-grade GM-IVH on cerebral blood flow and neuronal health have not been fully investigated. We used an innovative combination of frequency-domain near infrared spectroscopy and diffuse correlation spectroscopy (FDNIRS-DCS) to measure cerebral oxygen saturation (SO2) and an index of cerebral blood flow (CBFi) at the infant’s bedside and compute an index of cerebral oxygen metabolism (CMRO2i). We enrolled twenty extremely low gestational age (ELGA) neonates (seven with low-grade GM-IVH) and monitored them weekly until they reached full-term equivalent age. During their hospital stay, we observed consistently lower CBFi and CMRO2i in ELGA neonates with low-grade GM-IVH compared to neonates without hemorrhages. Furthermore, lower CBFi and CMRO2i in the former group persists even after the resolution of the hemorrhage. In contrast, SO2 does not differ between groups. Thus, CBFi and CMRO2i may have better sensitivity than SO2 in detecting GM-IVH-related effects on infant brain development. FDNIRS-DCS methods may have clinical benefit for monitoring the evolution of GM-IVH, evaluating treatment response, and potentially predicting neurodevelopmental outcome.

  10. The unique case-report of metachronous brain tumors of different histology

    Directory of Open Access Journals (Sweden)

    А. М. Zaitsev

    2013-01-01

    Full Text Available  The case of unusual course of brain tumor process – metachronous development of breast cancer brain metastasis and then development of malignant glioma is reported. The surgical treatment for both tumors were performed with intraoperative fluorescence diagnosis and photodynamic therapy. Due to multimodality treatment the patient was alive for 15 months from diagnosis of IV stage breast cancer (brain metastasis. 

  11. Activation analysis study on subcellular distribution of trace elements in human brain tumor

    International Nuclear Information System (INIS)

    Zheng Jian; Zhuan Guisun; Wang Yongji; Dong Mo; Zhang Fulin

    1992-01-01

    The concentrations of up to 11 elements in subcellular fractions of human brain (normal and malignant tumor) have been determined by a combination of gradient centrifugation and INAA methods. Samples of human brain were homogenized in a glass homogenizer tube, the homogenate was separated into nuclei, mitochondrial, myelin, synaptosome fractions, and these fractions were then analyzed using the INAA method. The discussions of elemental subcelleular distributions in human brain malignant tumor are presented in this paper. (author) 11 refs.; 2 figs.; 4 tabs

  12. Radiographic differentiation of enchondroma from low-grade chondrosarcoma in the fibula

    Energy Technology Data Exchange (ETDEWEB)

    Kendell, Scott D. [Department of Radiology, Duke University, Box 3808, 27710, Durham, North Carolina (United States); Department of Radiology E-2, Mayo Clinic, 200 First Street, 55905, SW Rochester, Minnesota (United States); Collins, Mark S.; Adkins, Mark C.; Sundaram, Murali; Unni, Krishnan K. [Department of Radiology E-2, Mayo Clinic, 200 First Street, 55905, SW Rochester, Minnesota (United States)

    2004-08-01

    To evaluate demographic and radiographic features that may differentiate between enchondroma and low-grade chondrosarcoma of the fibula. The radiographs of ninety-three histologically-confirmed cartilaginous tumors of the fibula were retrospectively reviewed along with demographic information as to patient age and gender. Fifty-four enchondromas and thirty-nine low-grade chondrosarcomas were included in the study. Multiple previously-established radiographic features distinguishing enchondroma from chondrosarcoma were evaluated in each fibular tumor in a consensus manner by two experienced, board-certified and fellowship-trained musculoskeletal radiologists. Five radiographic features were shown to statistically favor chondrosarcoma over enchondroma in the fibula. These were soft-tissue mass (p<0.0001), periosteal reaction (p=0.008), cortical disruption in the juxta-articular fibula (p=0.0133), cortical thickening (p=0.032), and tumor size greater than 4 cm (p=0.0046). No statistically-significant demographic differences were found between patients with enchondroma and chondrosarcoma of the fibula. When two or more of the identified features of malignancy are identified in the same patient, chondrosarcoma is 2.4 times more likely than in those patients exhibiting none of the features of malignancy. Soft-tissue mass, periosteal reaction, cortical disruption in the juxta-articular fibula, cortical thickening, and tumor size greater than 4 cm indicate chondrosarcoma over enchondroma of the fibula. Radiographs demonstrating more than one of the identified malignant features are more likely to be due to chondrosarcoma than radiographs demonstrating none or only one of the identified features. No unique malignant features of chondrosarcoma in the fibula were observed when compared to previous descriptions of these tumors in the long and short tubular bones of the appendicular skeleton. (orig.)

  13. Radiographic differentiation of enchondroma from low-grade chondrosarcoma in the fibula

    International Nuclear Information System (INIS)

    Kendell, Scott D.; Collins, Mark S.; Adkins, Mark C.; Sundaram, Murali; Unni, Krishnan K.

    2004-01-01

    To evaluate demographic and radiographic features that may differentiate between enchondroma and low-grade chondrosarcoma of the fibula. The radiographs of ninety-three histologically-confirmed cartilaginous tumors of the fibula were retrospectively reviewed along with demographic information as to patient age and gender. Fifty-four enchondromas and thirty-nine low-grade chondrosarcomas were included in the study. Multiple previously-established radiographic features distinguishing enchondroma from chondrosarcoma were evaluated in each fibular tumor in a consensus manner by two experienced, board-certified and fellowship-trained musculoskeletal radiologists. Five radiographic features were shown to statistically favor chondrosarcoma over enchondroma in the fibula. These were soft-tissue mass (p<0.0001), periosteal reaction (p=0.008), cortical disruption in the juxta-articular fibula (p=0.0133), cortical thickening (p=0.032), and tumor size greater than 4 cm (p=0.0046). No statistically-significant demographic differences were found between patients with enchondroma and chondrosarcoma of the fibula. When two or more of the identified features of malignancy are identified in the same patient, chondrosarcoma is 2.4 times more likely than in those patients exhibiting none of the features of malignancy. Soft-tissue mass, periosteal reaction, cortical disruption in the juxta-articular fibula, cortical thickening, and tumor size greater than 4 cm indicate chondrosarcoma over enchondroma of the fibula. Radiographs demonstrating more than one of the identified malignant features are more likely to be due to chondrosarcoma than radiographs demonstrating none or only one of the identified features. No unique malignant features of chondrosarcoma in the fibula were observed when compared to previous descriptions of these tumors in the long and short tubular bones of the appendicular skeleton. (orig.)

  14. [Low grade renal trauma (Part II): diagnostic validity of ultrasonography].

    Science.gov (United States)

    Grill, R; Báca, V; Otcenásek, M; Zátura, F

    2010-04-01

    The aim of the study was to verify whether ultrasonography can be considered a reliable method for the diagnosis of low-grade renal trauma. The group investigated included patients with grade I or grade II blunt renal trauma, as classified by the AAST grading system, in whom ultrasonography alone or in conjunction with computed tomography was used as a primary diagnostic method. B-mode ultrasound with a transabdominal probe working at frequencies of 2.5 to 5.0 MHz was used. Every finding of post-traumatic changes in the renal tissues, i.e., post-contusion hypotonic infiltration of the renal parenchyma or subcapsular haematoma, was included. The results were statistically evaluated by the Chi-square test with the level of significance set at 5%, using Epi Info Version 6 CZ software. The group comprised 112 patients (43 women, 69 men) aged between 17 and 82 years (average, 38 years). It was possible to diagnose grade I or grade II renal injury by ultrasonography in only 60 (54%) of them. The statistical significance of ultrasonography as the only imaging method for the diagnosis of low-grade renal injury was not confirmed (p=0.543) Low-grade renal trauma is a problem from the diagnostic point of view. It usually does not require revision surgery and, if found during repeat surgery for more serious injury of another organ, it usually does not receive attention. Therefore, the macroscopic presentation of grade I and grade II renal injury is poorly understood, nor are their microscopic findings known, because during revision surgery these the traumatised kidneys are not usually removed and their injuries at autopsy on the patients who died of multiple trauma are not recorded either. The results of this study demonstrated that the validity of ultrasonography for the diagnosis of low-grade renal injury is not significant, because this examination can reveal only some of the renal injuries such as perirenal haematoma. An injury to the renal parenchyma is also indicated by

  15. A study of perifocal low-density area in metastatic brain tumor

    International Nuclear Information System (INIS)

    Suzuki, Ryuta; Okada, Kodai; Hiratsuka, Hideo; Inaba, Yutaka; Tsuyumu, Matsutaira.

    1980-01-01

    It is well known that vasogenic brain edema often develops in brain tumors, head injuries, and inflammatory brain lesions. In order to investigate the development and resolution of vasogenic brain edema, some CT findings of metastatic brain tumors were studied in detail. 20 cases of metastatic brain tumors of the past three years were examined by means of a CT scan. In almost all the cases there was a perifocal low-density area (PFL) in the CT findings. In the tumors which were cystic and/or located in the infratentorial space, PFL was not present or, if present, only slightly so. On the contrary, in the tumors which were nodular and/or in the supratentorial space, PFL was present extensively. In the supratentorial metastasis, PFL seemed to be restricted within the white matter and not to involve the gray matter nor such midline structures as basal ganglia and corpus callosum. Besides, PFL was always in contact with the lateral ventricular wall. These results show that PFL in the metastatic tumors resembles in shape the experimental cold-induced brain edema in cats. PFL is presumed to represent vasogenic brain edema; these findings support the hypothesis that the main mechanism of the resolution of vasogenic brain edema is the drainage of the edema fluid into the ventricular CSF. (author)

  16. Study of perifocal low-density area in metastatic brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, R; Okada, K; Hiratsuka, H; Inaba, Y [Tokyo Medical and Dental Univ. (Japan). School of Medicine; Tsuyumu, M

    1980-04-01

    It is well known that vasogenic brain edema often develops in brain tumors, head injuries, and inflammatory brain lesions. In order to investigate the development and resolution of vasogenic brain edema, some CT findings of metastatic brain tumors were studied in detail. 20 cases of metastatic brain tumors of the past three years were examined by means of a CT scan. In almost all the cases there was a perifocal low-density area (PFL) in the CT findings. In the tumors which were cystic and/or located in the infratentorial space, PFL was not present or, if present, only slightly so. On the contrary, in the tumors which were nodular and/or in the supratentorial space, PFL was present extensively. In the supratentorial metastasis, PFL seemed to be restricted within the white matter and not to involve the gray matter nor such midline structures as basal ganglia and corpus callosum. Besides, PFL was always in contact with the lateral ventricular wall. These results show that PFL in the metastatic tumors resembles in shape the experimental cold-induced brain edema in cats. PFL is presumed to represent vasogenic brain edema; these findings support the hypothesis that the main mechanism of the resolution of vasogenic brain edema is the drainage of the edema fluid into the ventricular CSF.

  17. Regional glucose utilization and blood flow in experimental brain tumors studied by double tracer autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Kato, A.; Sako, K.; Diksic, M.; Yamamoto, Y.L.; Feindel, W.

    1985-01-01

    Coupling of regional glucose utilization (GLU) and blood flow (CBF) was examined in rats with implanted brain tumors (AA ascites tumor) by quantitative double tracer autoradiography using YF-2-fluorodeoxyglucose and 14C-iodoantipyrine. Four to 13 days after implantation, the animals were injected with the two tracers to obtain autoradiograms from the same brain section before and after the decay of YF. The autoradiograms were then analyzed by an image processor to obtain a metabolic coupling index (MCI = GLU/CBF). In the tumor, high GLU and low CBF were uncoupled to give a high MCI which implied anerobic glycolysis. In large tumors, the CBF was even lower. In the peri-tumoral region, GLU was reduced and reduction was lowest around the larger tumors. CBF in the peri-tumoral region was also reduced, but this reduction became less as the distance from the tumor margin increased. The GLU and CBF of white matter was little influenced by the presence of tumors except for some reduction in these values in relation to the larger tumors. The MCI in the tumor was higher than in the cortex of the same as well as the opposite hemisphere. These findings indicate that the metabolism and blood flow of the tumor and surrounding brain are variable and directly related to tumor size.

  18. Net-based data transfer and automatic image fusion of metabolic (PET) and morphologic (CT/MRI) images for radiosurgical planning of brain tumors

    International Nuclear Information System (INIS)

    Baum, R.P.; Przetak, C.; Schmuecking, M.; Klener, G.; Surber, G.; Hamm, K.

    2002-01-01

    Aim: The main purpose of radiosurgery in comparison to conventional radiotherapy of brain tumors is to reach a higher radiation dose in the tumor and sparing normal brain tissue as much as possible. To reach this aim it is crucial to define the target volume extremely accurately. For this purpose, MRI and CT examinations are used for radiotherapy planning. In certain cases, however, metabolic information obtained by positron emission tomography (PET) may be useful to achieve a higher therapeutic accuracy by sparing important brain structures. This can be the case, i.e. in low grade astrocytomas for exact delineation of vital tumor as well as in differentiating scaring tissue from tumor recurrence and edema after operation. For this purpose, radiolabeled aminoacid analogues (e.g. C-11 methionine) and recently O-2-[ 18 F] Fluorethyl-L-Tyrosin (F-18 FET) have been introduced as PET tracers to detect the area of highest tumor metabolism which allows to obtain additional information as compared to FDG-PET that reflects the local glucose metabolism. In these cases, anatomical and metabolic data have to be combined with the technique of digital image fusion to exactly determine the target volume, the isodoses and the area where the highest dose has to be applied. Materials: We have set up a data transfer from the PET Center of the Zentralklinik Bad Berka with the Department of Stereotactic Radiation at the Helios Klinik Erfurt (distance approx. 25 km) to enable this kind of image fusion. PET data (ECAT EXACT 47, Siemens/CTI) are transferred to a workstation (NOVALIS) in the Dept. of Stereotactic Radiation to be co-registered with the CT or MRI data of the patient. All PET images are in DICOM format (obtained by using a HERMES computer, Nuclear Diagnostics, Sweden) and can easily be introduced into the NOVALIS workstation. The software uses the optimation of mutual information to achieve a good fusion quality. Sometimes manual corrections have to be performed to get an

  19. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality

    NARCIS (Netherlands)

    Jansma, J. M.; Ramsey, N.; Rutten, G.J.M.

    2015-01-01

    Aim. Language dominance is an important factor for clinical decision making in brain tumor surgery. Functional MM can provide detailed information about the organization of language in the brain. One often used measure derived from fMRI data is the laterality index (LI). The LI is typically based on

  20. Low Grade Peritoneal Mucinous Carcinomatosis Associated with Human Papilloma Virus Infection: Case Report

    Science.gov (United States)

    Gatalica, Zoran; Foster, Jason M.; Loggie, Brian W.

    2008-01-01

    Pseudomyxoma peritonei is a clinical syndrome characterized by peritoneal dissemination of a mucinous tumor with mucinous ascites. The vast majority of the pseudomyxoma peritoneis are associated with mucinous neoplasms of the appendix. We describe a case of pseudomyxoma peritonei associated with mucinous adenocarcinoma of the cervix in a 60-year-old woman. The patient developed low grade mucinous peritoneal carcinomatosis 8 years after hysterectomy for cervical adenocarcinoma. No other primary mucinous tumor was identified and peritoneal carcinomatosis tested positive for high-risk human papilloma virus (HPV), showing both integrated and episomal pattern. HPV has been previously associated with development of cervical carcinomas (both squamous and mucinous) but neither has cervical adenocarcinoma nor HPV been implicated in development of pseudomyxoma peritonei. To the best of our knowledge, this is the first description of HPV-associated malignancy presenting as pseudomyxoma peritonei. PMID:18925701

  1. Low-grade Glioma Surgery in Intraoperative Magnetic Resonance Imaging: Results of a Multicenter Retrospective Assessment of the German Study Group for Intraoperative Magnetic Resonance Imaging.

    Science.gov (United States)

    Coburger, Jan; Merkel, Andreas; Scherer, Moritz; Schwartz, Felix; Gessler, Florian; Roder, Constantin; Pala, Andrej; König, Ralph; Bullinger, Lars; Nagel, Gabriele; Jungk, Christine; Bisdas, Sotirios; Nabavi, Arya; Ganslandt, Oliver; Seifert, Volker; Tatagiba, Marcos; Senft, Christian; Mehdorn, Maximilian; Unterberg, Andreas W; Rössler, Karl; Wirtz, Christian Rainer

    2016-06-01

    The ideal treatment strategy for low-grade gliomas (LGGs) is a controversial topic. Additionally, only smaller single-center series dealing with the concept of intraoperative magnetic resonance imaging (iMRI) have been published. To investigate determinants for patient outcome and progression-free-survival (PFS) after iMRI-guided surgery for LGGs in a multicenter retrospective study initiated by the German Study Group for Intraoperative Magnetic Resonance Imaging. A retrospective consecutive assessment of patients treated for LGGs (World Health Organization grade II) with iMRI-guided resection at 6 neurosurgical centers was performed. Eloquent location, extent of resection, first-line adjuvant treatment, neurophysiological monitoring, awake brain surgery, intraoperative ultrasound, and field-strength of iMRI were analyzed, as well as progression-free survival (PFS), new permanent neurological deficits, and complications. Multivariate binary logistic and Cox regression models were calculated to evaluate determinants of PFS, gross total resection (GTR), and adjuvant treatment. A total of 288 patients met the inclusion criteria. On multivariate analysis, GTR significantly increased PFS (hazard ratio, 0.44; P surgery. Patients with accidentally left tumor remnants showed a similar prognosis compared with patients harboring only partially resectable tumors. Use of high-field iMRI was significantly associated with GTR. However, the field strength of iMRI did not affect PFS. EoR, extent of resectionFLAIR, fluid-attenuated inversion recoveryGTR, gross total resectionIDH1, isocitrate dehydrogenase 1iMRI, intraoperative magnetic resonance imagingLGG, low-grade gliomaMGMT, methylguanine-deoxyribonucleic acid methyltransferasenPND, new permanent neurological deficitOS, overall survivalPFS, progression-free survivalSTR, subtotal resectionWHO, World Health Organization.

  2. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell......Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via...... intracellular signaling. This cytokine exerts its functions via interaction with two receptors: type-1 receptor (TNFR1) and type-2 receptor (TNFR2). In this work, the inflammatory response after a freeze injury (cryolesion) in the cortex was studied in wild-type (WT) animals and in mice lacking TNFR1 (TNFR1 KO...... signaling also affected the expression of apoptosis/cell death-related genes (Fas, Rip, p53), matrix metalloproteinases (MMP3, MMP9, MMP12), and their inhibitors (TIMP1), suggesting a role of TNFR1 in extracellular matrix remodeling after injury. However, GDNF, NGF, and BDNF expression were not affected...

  3. Examination of human brain tumors in situ with image-localized H-1 MR spectroscopy

    International Nuclear Information System (INIS)

    Luyten, P.R.; Segebarth, C.; Baleriaux, D.; Den Hollander, J.A.

    1987-01-01

    Human brain tumors were examined in situ by combined imaging and H-1 MR spectroscopy at 1.5 T. Water-suppressed localized H-1 MR spectra obtained from the brains of normal volunteers show resonances from lactate, N-acetyl aspartate (NAA), creatine, and choline. Several patients suffering from different brain tumors were examined, showing spectral changes in the region of 0.5-1.5 ppm; spectral editing showed that these changes were not due to lactic acid, but to lipid signals. The NAA signal was decreased in the tumors as compared with normal brain. This study shows that H-1 MR spectroscopy can monitor submillimolar changes in chemical composition of human brain tumors in situ

  4. Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants.

    Science.gov (United States)

    Pareja, Fresia; Geyer, Felipe C; Marchiò, Caterina; Burke, Kathleen A; Weigelt, Britta; Reis-Filho, Jorge S

    2016-01-01

    Triple-negative breast cancers (TNBCs), defined by lack of expression of estrogen receptor, progesterone receptor and HER2, account for 12-17% of breast cancers and are clinically perceived as a discrete breast cancer subgroup. Nonetheless, TNBC has been shown to constitute a vastly heterogeneous disease encompassing a wide spectrum of entities with marked genetic, transcriptional, histological and clinical differences. Although most TNBCs are high-grade tumors, there are well-characterized low-grade TNBCs that have an indolent clinical course, whose natural history, molecular features and optimal therapy vastly differ from those of high-grade TNBCs. Secretory and adenoid cystic carcinomas are two histologic types of TNBCs underpinned by specific fusion genes; these tumors have an indolent clinical behavior and lack all of the cardinal molecular features of high-grade triple-negative disease. Recent studies of rare entities, including lesions once believed to constitute mere benign breast disease (e.g., microglandular adenosis), have resulted in the identification of potential precursors of TNBC and suggested the existence of a family of low-grade triple-negative lesions that, despite having low-grade morphology and indolent clinical behavior, have been shown to harbor the complex genomic landscape of common forms of TNBC, and may progress to high-grade disease. In this review, we describe the heterogeneity of TNBC and focus on the histologic and molecular features of low-grade forms of TNBC. Germane to addressing the challenges posed by the so-called triple-negative disease is the realization that TNBC is merely a descriptive term, and that low-grade types of TNBC may be driven by distinct sets of genetic alterations.

  5. Low grade papillary transitional cell carcinoma pelvic recurrence masquerading as high grade invasive carcinoma, ten years after radical cystectomy

    Directory of Open Access Journals (Sweden)

    Mortazavi Amir

    2008-09-01

    Full Text Available Abstract Background Tumor recurrence following radical cystectomy for a low-grade superficial transitional cell carcinoma (TCC is exceedingly uncommon and has not been reported previously. Case presentation We describe a case of a young male presenting with anorexia, weight loss and a large, painful locally destructive pelvic recurrence, ten years after radical cystoprostatectomy. The pathology was consistent with a low-grade urothelial carcinoma. After an unsuccessful treatment with cisplatin-based chemotherapy, the patient underwent a curative intent hemipelvectomy with complete excision of tumor and is disease free at one year follow-up. Conclusion A literature review related to this unusual presentation is reported and a surgical solutions over chemotherapy and radiotherapy is proposed.

  6. Comparison of {sup 18}F-FET and {sup 18}F-FDG PET in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Pauleit, Dirk; Stoffels, Gabriele [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, D-52425 Juelich (Germany); Bachofner, Ansgar [Clinic of Nuclear Medicine, Heinrich-Heine-University, D-40001 Duesseldorf (Germany); Floeth, Frank W.; Sabel, Michael [Department of Neurosurgery, Heinrich-Heine-University, D-40001 Duesseldorf (Germany); Herzog, Hans; Tellmann, Lutz [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, D-52425 Juelich (Germany); Jansen, Paul [Institute of Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Reifenberger, Guido [Department of Neuropathology, Heinrich-Heine-University, D-40001 Duesseldorf (Germany); Hamacher, Kurt; Coenen, Heinz H. [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, D-52425 Juelich (Germany); Langen, Karl-Josef [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, D-52425 Juelich (Germany)], E-mail: k.j.langen@fz-juelich.de

    2009-10-15

    The purpose of this study was to compare the diagnostic value of positron emission tomography (PET) using [{sup 18}F]-fluorodeoxyglucose ({sup 18}F-FDG) and O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine ({sup 18}F-FET) in patients with brain lesions suspicious of cerebral gliomas. Methods: Fifty-two patients with suspicion of cerebral glioma were included in this study. From 30 to 50 min after injection of 180 MBq {sup 18}F-FET, a first PET scan ({sup 18}F-FET scan) was performed. Thereafter, 240 MBq {sup 18}F-FDG was injected and a second PET scan was acquired from 30 to 60 min after the second injection ({sup 18}F-FET/{sup 18}F-FDG scan). The cerebral accumulation of {sup 18}F-FDG was calculated by decay corrected subtraction of the {sup 18}F-FET scan from the {sup 18}F-FET/{sup 18}F-FDG scan. Tracer uptake was evaluated by visual scoring and by lesion-to-background (L/B) ratios. The imaging results were compared with the histological results and prognosis. Results: Histology revealed 24 low-grade gliomas (LGG) of World Health Organization (WHO) Grade II and 19 high-grade gliomas (HGG) of WHO Grade III or IV, as well as nine others, mainly benign histologies. The gliomas showed increased {sup 18}F-FET uptake (>normal brain) in 86% and increased {sup 18}F-FDG uptake (>white matter) in 35%. {sup 18}F-FET PET provided diagnostically useful delineation of tumor extent while this was impractical with {sup 18}F-FDG due to high tracer uptake in the gray matter. A local maximum in the tumor area for biopsy guidance could be identified with {sup 18}F-FET in 76% and with {sup 18}F-FDG in 28%. The L/B ratios showed significant differences between LGG and HGG for both tracers but considerable overlap so that reliable preoperative grading was not possible. A significant correlation of tracer uptake with overall survival was found with {sup 18}F-FDG only. In some benign lesions like abscesses, increased uptake was observed for both tracers indicating a limited specificity of both

  7. Treatment optimization of a brain tumor in BNCT by Monte Carlo method

    International Nuclear Information System (INIS)

    Nejat, S.; Binesh, A.; Karimian, A.

    2012-01-01

    Brain cancers are one of the most important diseases. BNCT (Boron Neutron Capture Therapy) is used to brain tumor treatment. In this method the 1 0B (n,α) 7 Li reaction is used. The purpose of this study is absorbed dose evaluation of tumoral and healthy parts of brain. To achieve this aim the brain was simulated by a cylindrical phantom with the dimensions of 20 cm in diameter and height. In BNCT treatment the BSH (Na 2 B 12 H 11 SH) is injected to the human body and absorbed in the healthy and tumoral parts by the ratios of 18 and 65 ppm respectively. So in this research the absorption of BSH in tumoral and healthy parts of brain was considered as the mentioned ratio. Then the neutron with the energy range of 50 eV - 10 keV was exposed to the brain and maximum absorbed dose in healthy and tumoral parts of brain were calculated for a cylindrical tumor with the thickness of about 1 cm which was considered in 5.5 cm depth of brain. This research showed the suitable energy to treat this tumor by BNCT is interval 4 keV- 6keV. The average of dose which is met with healthy and tumor tissue was gained for 6 keV energy of brain 1.18x10 -12 cGy/n and 5.98x10 -12 cGy/n respectively. Maximum of dose which is met with healthy tissue was 4.3 Gy which is much less than standard amount 12.6 Gy. Therefore BNCT method is known as an effective way in the therapy of this kind of tumor. (authors)

  8. Cognitive rehabilitation training in patients with brain tumor-related epilepsy and cognitive deficits: a pilot study.

    Science.gov (United States)

    Maschio, Marta; Dinapoli, Loredana; Fabi, Alessandra; Giannarelli, Diana; Cantelmi, Tonino

    2015-11-01

    The aim of this pilot observational study was to evaluate effect of cognitive rehabilitation training (RehabTr) on cognitive performances in patients with brain tumor-related epilepsy (BTRE) and cognitive disturbances. Medical inclusion criteria: patients (M/F) ≥ 18 years ≤ 75 with symptomatic seizures due to primary brain tumors or brain metastases in stable treatment with antiepileptic drugs; previous surgical resection or biopsy; >70 Karnofsky Performance Status; stable oncological disease. Eligible patients recruited from 100 consecutive patients with BTRE at first visit to our Center from 2011 to 2012. All recruited patients were administered battery of neuropsychological tests exploring various cognitive domains. Patients considered to have a neuropsychological deficit were those with at least one test score for a given domain indicative of impairment. Thirty patients out of 100 showed cognitive deficits, and were offered participation in RehabTr, of which 16 accepted (5 low grade glioma, 4 high grade glioma, 2 glioblastoma, 2 meningioma and 3 metastases) and 14 declined for various reasons. The RehabTr consisted of one weekly individual session of 1 h, for a total of 10 weeks, carried out by a trained psychologist. The functions trained were: memory, attention, visuo-spatial functions, language and reasoning by means of Training NeuroPsicologico (TNP(®)) software. To evaluate the effect of the RehabTr, the same battery of tests was administered directly after cognitive rehabilitation (T1), and at six-month follow-up (T2). Statistical analysis with Student T test for paired data showed that short-term verbal memory, episodic memory, fluency and long term visuo-spatial memory improved immediately after the T1 and remained stable at T2. At final follow-up all patients showed an improvement in at least one domain that had been lower than normal at baseline. Our results demonstrated a positive effect of rehabilitative training at different times, and, for

  9. Radiotherapy for pediatric brain tumors: Standards of care, current clinical trials, and new directions

    International Nuclear Information System (INIS)

    Goldwein, Joel W.

    1995-01-01

    The objectives of the course are to evaluate the role of radiation therapy in the treatment of pediatric brain tumors. Areas where the role is evolving will be identified, and the results of clinical trials which been mounted to clarify radiotherapy's role will be reviewed. Brain tumors are the second most common malignancy of childhood after leukemias and lymphomas. However, they remain the most common group of childhood tumors to require radiation therapy. Therefore, a thorough understanding of these tumors, and the appropriate role of surgery, radiation and chemotherapy is critical. Issues surrounding the management of sequelae are no less important. The role of radiotherapy for the treatment of these tumors is far different from that for adults. These differences relate to the profound potential for sequelae from therapy, the higher overall cure rates, and the utility of multimodality therapies. In addition, the rarity of childhood brain tumors compared with adults' makes them more difficult to study. In this session, the following issues will be reviewed; 1. Incidence of pediatric brain tumors, 2. General issues regarding symptoms, diagnosis, diagnostic tests and evaluation, 3. Importance of a team approach, 4. General issues regarding treatment sequelae, 5. Specific tumor types/entities; a. Cerebellar Astrocytomas b. Benign and malignant Gliomas including brainstem and chiasmatic lesions c. Primitive Neuroectodermal Tumors (PNET) and Medulloblastoma d. Ependymomas e. Craniopharyngiomas f. Germ cell tumors g. Miscellaneous and rare pediatric brain tumors 6. Management of sequelae 7. New and future directions a. Treatment of infants b. The expanding role of chemotherapy c. Advances in radiotherapy. The attendees will complete the course with a better understanding of the role that radiation therapy plays in the treatment of pediatric brain tumors. They will be knowledgeable in the foundation for that role, and the changes which are likely to take place in the

  10. An epidemiologic survey on brain tumors in Kerman from 1997 to 2001

    Directory of Open Access Journals (Sweden)

    Hamed Reihani kermani

    2004-09-01

    Full Text Available Central nervous system tumors contain neoplastic and nonneoplastic lesions. Incidence of brain tumors has increased in all age groups in recent 20 years. Developments of medical devices such as CT scan, MRI and varying of classification are important causes of this raising. The present study evaluates epidemiology of brain tumors from 1997 to 2001 in Kerman. In a cross sectional study all files of neurosurgery department, in Kerman Bahonar Hospital and from 1997 to 2001, were inquired. Variables such as age, sex and histological considerations were evaluated. A total of 338 tumors were studied. The most common tumor was glial (35%, and meningioma was the second common tumor (26.3%. The other tumors were anaplastic astrocytoma, astrocytoma, pituitary adenoma, aucostic neorinoma, medulloblastoma, ependymoma, choroid plexus carcinoma, craniopharyngioma, lymphoma, sarcoma and anaplastic ependymoma. There was statistical significant difference between tumors and sex and age (p<0.05. Age and sex distribution of brain tumors is compatible with other studies in many countries. These findings suggest that prevalence of brain tumors in Kerman has increased in recent years because of diagnostic methods have improved and other medical devices are available.

  11. Persistent low-grade inflammation and regular exercise

    DEFF Research Database (Denmark)

    Astrom, Maj-Briit; Feigh, Michael; Pedersen, Bente Klarlund

    2010-01-01

    Persistent low-grade systemic inflammation is a feature of chronic diseases such as cardiovascular disease (CVD), type 2 diabetes and dementia and evidence exists that inflammation is a causal factor in the development of insulin resistance and atherosclerosis. Regular exercise offers protection ...... diabetes and dementia. We suggest that the anti-inflammatory effects of exercise may be mediated via a long-term effect of exercise leading to a reduction in visceral fat mass and/or by induction of anti-inflammatory cytokines with each bout of exercise....

  12. Selective recovery of titanium dioxide from low grade sources

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2006-09-01

    Full Text Available that is too fine for use in the chloride process  Perovskite (CaTiO3) resources in Colorado3. The main problem with utilizing a low-grade resource is the amount of chemical wastes produced per unit of pigment of produced. If a TiO2 bearing feedstock... The mineralogical form of the titanium oxide species affects the thermodynamic equilibrium of the reaction. Calcium titanate, CaTiO3 (Perovskite) is more stable than magnesium titanate MgTiO3, (Geikilite) which is more stable than titanium dioxide or ilmenite (Fe...

  13. Experimental Study on Purification of Low Grade Diatomite

    Science.gov (United States)

    Xiao, Liguang; Pang, Bo

    2017-04-01

    This paper presented an innovation for purification of low grade diatomite(DE) by grinding, ultrasonic pretreatment, acid leaching of closed stirring and calcination. The optimum process parameters of DE purification were obtained, the characterizations of original and purified DE were determined by SEM and BET. The results showed that the specific surface area of DE increased from 12.65m2/g to 23.23m2/g, which increased by 45.54%. SEM analysis revealed that the pore structure of purified DE was dredged highly.

  14. Addressing brain tumors with targeted gold nanoparticles: a new gold standard for hydrophobic drug delivery?

    Science.gov (United States)

    Cheng, Yu; Meyers, Joseph D; Agnes, Richard S; Doane, Tennyson L; Kenney, Malcolm E; Broome, Ann-Marie; Burda, Clemens; Basilion, James P

    2011-08-22

    EGF-modified Au NP-Pc 4 conjugates showed 10-fold improved selectivity to the brain tumor compared to untargeted conjugates. The hydrophobic photodynamic therapy drug Pc 4 can be delivered efficiently into glioma brain tumors by EGF peptide-targeted Au NPs. Compared to the untargeted conjugates, EGF-Au NP-Pc 4 conjugates showed 10-fold improved selectivity to the brain tumor. This delivery system holds promise for future delivery of a wider range of hydrophobic therapeutic drugs for the treatment of hard-to-reach cancers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Brain tumor radiosurgery. Current status and strategies to enhance the effect of radiosurgery

    International Nuclear Information System (INIS)

    Niranjan, A.; Lunsford, L.D.; Gobbel, G.T.; Kondziolka, D.; Maitz, A.; Flickinger, J.C.

    2000-01-01

    First, the current status of brain tumor radiosurgery is reviewed, and radiosurgery for brain tumors, including benign tumors, malignant tumors, primary glial tumors, and metastatic tumors, is described. Rapid developments in neuroimaging, stereotactic techniques, and robotic technology in the last decade have contributed to improved results and wider applications of radiosurgery. Radiosurgery has become the preferred management modality for many intracranial tumors, including schwannomas, meningiomas, and metastatic tumors. Although radiosurgery provides survival benefits in patients with diffuse malignant brain tumors, cure is still not possible. Microscopic tumor infiltration into surrounding normal tissue is the main cause of recurrence. Additional strategies are needed to specifically target tumor cells. Next, strategies to enhance the effect of radiosurgery are reviewed. Whereas the long-term clinical results of radiosurgery have established its role in the treatment of benign tumors, additional strategies are needed to improve cell killing in malignant brain tumors and to protect normal surrounding brain. The first strategy included the use of various agents to protect normal brain while delivering a high dose to the tumor cells, but finding an effective radioprotective agent has been problematic. Pentobarbital and 21-aminosteroid (21-AS) are presented as examples. The second strategy for radiation protection aimed at the repair of radiation-induced damage to the normal brain. The cause of radiation-induced breakdown of normal tissue is unclear. The white matter and the cerebral vasculature appear to be particularly susceptible to radiation. Oligodendrocytes and endothelial cells may be critical targets of radiation. The authors hypothesize that radiation-induced damage to these cell types can be repaired by neural stem cells. They also describe the use of tumor necrosis factor alpha (TNF-alpha) and neural stem cells as a means of enhancing the effect of

  16. Neuropathological biomarker candidates in brain tumors: key issues for translational efficiency.

    Science.gov (United States)

    Hainfellner, J A; Heinzl, H

    2010-01-01

    Brain tumors comprise a large spectrum of rare malignancies in children and adults that are often associated with severe neurological symptoms and fatal outcome. Neuropathological tumor typing provides both prognostic and predictive tissue information which is the basis for optimal postoperative patient management and therapy. Molecular biomarkers may extend and refine prognostic and predictive information in a brain tumor case, providing more individualized and optimized treatment options. In the recent past a few neuropathological brain tumor biomarkers have translated smoothly into clinical use whereas many candidates show protracted translation. We investigated the causes of protracted translation of candidate brain tumor biomarkers. Considering the research environment from personal, social and systemic perspectives we identified eight determinants of translational success: methodology, funding, statistics, organization, phases of research, cooperation, self-reflection, and scientific progeny. Smoothly translating biomarkers are associated with low degrees of translational complexity whereas biomarkers with protracted translation are associated with high degrees. Key issues for translational efficiency of neuropathological brain tumor biomarker research seem to be related to (i) the strict orientation to the mission of medical research, that is the improval of medical practice as primordial purpose of research, (ii) definition of research priorities according to clinical needs, and (iii) absorption of translational complexities by means of operatively beneficial standards. To this end, concrete actions should comprise adequate scientific education of young investigators, and shaping of integrative diagnostics and therapy research both on the local level and the level of influential international brain tumor research platforms.

  17. An accurate segmentation method for volumetry of brain tumor in 3D MRI

    Science.gov (United States)

    Wang, Jiahui; Li, Qiang; Hirai, Toshinori; Katsuragawa, Shigehiko; Li, Feng; Doi, Kunio

    2008-03-01

    Accurate volumetry of brain tumors in magnetic resonance imaging (MRI) is important for evaluating the interval changes in tumor volumes during and after treatment, and also for planning of radiation therapy. In this study, an automated volumetry method for brain tumors in MRI was developed by use of a new three-dimensional (3-D) image segmentation technique. First, the central location of a tumor was identified by a radiologist, and then a volume of interest (VOI) was determined automatically. To substantially simplify tumor segmentation, we transformed the 3-D image of the tumor into a two-dimensional (2-D) image by use of a "spiral-scanning" technique, in which a radial line originating from the center of the tumor scanned the 3-D image spirally from the "north pole" to the "south pole". The voxels scanned by the radial line provided a transformed 2-D image. We employed dynamic programming to delineate an "optimal" outline of the tumor in the transformed 2-D image. We then transformed the optimal outline back into 3-D image space to determine the volume of the tumor. The volumetry method was trained and evaluated by use of 16 cases with 35 brain tumors. The agreement between tumor volumes provided by computer and a radiologist was employed as a performance metric. Our method provided relatively accurate results with a mean agreement value of 88%.

  18. {sup 18}F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiaoyuan; Park, Ryan; Shahinian, Anthony H.; Tohme, Michel; Khankaldyyan, Vazgen; Bozorgzadeh, Mohammed H.; Bading, James R.; Moats, Rex; Laug, Walter E.; Conti, Peter S. E-mail: pconti@usc.edu

    2004-02-01

    Brain tumors are highly angiogenesis dependent. The cell adhesion receptor integrin {alpha}{sub v}{beta}{sub 3} is overexpressed in glioma and activated endothelial cells and plays an important role in brain tumor growth, spread and angiogenesis. Suitably labeled {alpha}{sub v}{beta}{sub 3}-integrin antagonists may therefore be useful for imaging brain tumor associated angiogenesis. Cyclic RGD peptide c(RGDyK) was labeled with {sup 18}F via N-succinimidyl-4-[{sup 18}F]fluorobenzoate through the side-chain {epsilon}-amino group of the lysine residue. The radiotracer was evaluated in vivo for its tumor targeting efficacy and pharmacokinetics in subcutaneously implanted U87MG and orthotopically implanted U251T glioblastoma nude mouse models by means of microPET, quantitative autoradiography and direct tissue sampling. The N-4-[{sup 18}F]fluorobenzoyl-RGD ([{sup 18}F]FB-RGD) was produced in less than 2 h with 20-25% decay-corrected yields and specific activity of 230 GBq/{mu}mol at end of synthesis. The tracer showed very rapid blood clearance and both hepatobiliary and renal excretion. Tumor-to-muscle uptake ratio at 30 min was approximately 5 in the subcutaneous U87MG tumor model. MicroPET imaging with the orthotopic U251T brain tumor model revealed very high tumor-to-brain ratio, with virtually no uptake in the normal brain. Successful blocking of tumor uptake of [{sup 18}F]FB-RGD in the presence of excess amount of c(RGDyK) revealed receptor specific activity accumulation. Hence, N-4-[{sup 18}F]fluorobenzoyl labeled cyclic RGD peptide [{sup 18}F]FB-RGD is a potential tracer for imaging {alpha}{sub v}{beta}{sub 3}-integrin positive tumors in brain and other anatomic locations.

  19. Targeting Potassium Channels for Increasing Delivery of Imaging Agents and Therapeutics to Brain Tumors

    Directory of Open Access Journals (Sweden)

    Nagendra Sanyasihally Ningaraj

    2013-05-01

    Full Text Available Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/ capillaries that form the blood–brain barrier (BBB not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB. Studies in our laboratory have identified significant differences in the expression levels of certain genes and proteins between normal and brain tumor capillary endothelial cells. In this study, we validated the non-invasive and clinically relevant Dynamic Contrast Enhancing-Magnetic Resonance Imaging (DCE-MRI method with invasive, clinically irrelevant but highly accurate Quantitative Autoradiography (QAR method using rat glioma model. We also showed that DCE-MRI metric of tissue vessel perfusion-permeability is sensitive to changes in blood vessel permeability following administration of calcium-activated potassium (BKCa channel activator NS-1619. Our results show that human gliomas and brain tumor endothelial cells that overexpress BKCa channels can be targeted for increased BTB permeability for MRI enhancing agents to brain tumors. We conclude that monitoring the outcome of increased MRI enhancing agents’ delivery to microsatellites and leading tumor edges in glioma patients would lead to beneficial clinical outcome.

  20. A survey of MRI-based medical image analysis for brain tumor studies

    Science.gov (United States)

    Bauer, Stefan; Wiest, Roland; Nolte, Lutz-P.; Reyes, Mauricio

    2013-07-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines.

  1. A survey of MRI-based medical image analysis for brain tumor studies

    International Nuclear Information System (INIS)

    Bauer, Stefan; Nolte, Lutz-P; Reyes, Mauricio; Wiest, Roland

    2013-01-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines. (topical review)

  2. Low-grade energy of the ground for civil engineering

    Directory of Open Access Journals (Sweden)

    Potienko Natalia

    2017-01-01

    Full Text Available The article researches issues related to the relevance of applying renewable energy sources for civil engineering. The aim of the work is the study of modern approaches to designing buildings, using low-grade energy of the ground. The research methodology is based on the complex analysis of international design experience and on identifying the strengths and weaknesses of objects that use low-grade heat. We have identified the prospects of applying it for domestic construction practice. The state policy in the field of the efficient use of energy resources has been analyzed, and the vector of energy-saving programs development for the Samara Region has been defined. The research describes the impact of using geothermal energy on the architectural and planning solutions of buildings, as well as the peculiar features of the latter’s design, which are related primarily to the increase of energy efficiency. As a result, in the article a conclusion is made that the objects under investigation may be considered as one of the vectors of sustainable architecture development.

  3. A comparison of two low grade heat recovery options

    International Nuclear Information System (INIS)

    Walsh, Conor; Thornley, Patricia

    2013-01-01

    Low grade heat (LGH) recovery is one way of increasing industrial energy efficiency and reducing associated greenhouse gas emissions. The organic Rankine cycle (ORC) and condensing boiler are two options that can be used to recover low grade heat ( 2 annually, but the high carbon intensity of the coking process means this has a negligible influence (<1%) on the overall process lifecycle impacts. However, if the electricity generated offsets the external purchasing of electricity this results in favourable economic payback periods of between 3 and 6 years. The operation of a condensing boiler within a woodchip boiler reduces the fuel required to achieve an increased thermal output. The thermal efficiency gains reduce the lifecycle impacts by between 11 and 21%, and reflect payback periods as low as 1.5–2 years, depending on the condenser type and wood supply chain. The two case studies are used to highlight the difficulty in identifying LGH recovery solutions that satisfy multiple environmental, economic and wider objectives

  4. Ethanol and other oxygenateds from low grade carbonaceous resources

    Energy Technology Data Exchange (ETDEWEB)

    Joo, O.S.; Jung, K.D.; Han, S.H. [Korea Institute of Science and Technology, Seoul (Korea, Democratic People`s Republic of)] [and others

    1995-12-31

    Anhydrous ethanol and other oxygenates of C2 up can be produced quite competitively from low grade carbonaceous resources in high yield via gasification, methanol synthesis, carbonylation of methanol an hydrogenation consecutively. Gas phase carbonylation of methanol to form methyl acetate is the key step for the whole process. Methyl acetate can be produced very selectively in one step gas phase reaction on a fixed bed