WorldWideScience

Sample records for low-energy scanning microcolumn

  1. Optimization of electrostatic lens systems for low-energy scanning microcolumn applications

    International Nuclear Information System (INIS)

    Oh, Tae-Sik; Kim, Dae-Wook; Ahn, Seungjoon; Kim, Young Chul; Kim, Ho-Seob; Ahn, Seong Joon

    2008-01-01

    The optimization of a low-energy scanning microcolumn is proposed by adopting a modified Einzel lens sandwiched between an aligner and a deflector. The modified Einzel lens is composed of four electrodes, and the two center electrodes are specially designed quadrupole lenses having keyhole type rather than circular apertures. The outer electrodes of the Einzel lens having circular apertures are grounded, and the quadrupole lens is operated by applying the quadrupole voltages. The effects of the separated deflector system and the static quadrupole lens were investigated by analyzing the scanning electron beam spot at the target, and the results show that the proposed system can improve the performance of the scanning microcolumn

  2. Low energy microcolumn for large field view inspection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Chul [Department of Optometry, Eulji University, 212 Yangji-dong, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-713 (Korea, Republic of); Ahn, Seung-Joon; Oh, Tae-Sik; Kim, Dae-Wook [Department of Nanoscience, Sun Moon University 100 Kalsan-ri, Tangjeong-myun, Asan-si, Chungnam 336-708 (Korea, Republic of); Kim, Ho-Seob, E-mail: hskim3@sunmoon.ac.kr [Department of Nanoscience, Sun Moon University 100 Kalsan-ri, Tangjeong-myun, Asan-si, Chungnam 336-708 (Korea, Republic of); Jang, Won Kweon [Division of Electronic, Computer and Communication Engineering, Hanseo University 360 DaeKook-ri, Haemi-myun, Seosan-si, Chungnam 356-706 (Korea, Republic of)

    2011-12-15

    Since the development of microcolumn system, it attracted much attention because multiple microcolumns can be assembled into arrayed form, which is expected to generate multiple electron beams and overcome the disadvantage of electron beam inspection equipments, low throughput . However, it is not easy to apply a microcolumn to the practical inspection or testing equipment since its scanning area is too small. Even if the arrayed operation using multiple microcolumns can overcome this limit, it requires complicated supporting systems and related technologies to operate a number of microcolumns simultaneously. Therefore, we tried to modify microcolumn design itself so that it can have a large field of view. In this work, two kinds of modified columns will be suggested and the preliminary results showing their performance of scanning large area will be discussed. -- Highlights: Black-Right-Pointing-Pointer Two types of microcolumn designs to achieve a large field of view are fabricated. Black-Right-Pointing-Pointer Field of view of a microcolumn increases linearly with the working distance. Black-Right-Pointing-Pointer New designed microcolumns can be developed as a low energy column system for large view inspections.

  3. Overview of the low energy accelerator scanning system

    International Nuclear Information System (INIS)

    Leo Kwee Wah; Lojius Lombigit; Muhamad Zahidee Taat; Abu Bakar Ghazali; Mohd Rizal Ibrahim; Mohd Rizal Chulan Md Chulan; Azaman Ahmad; Abdul Halim Baijan; Rokiah Mohd Sabri

    2009-01-01

    This paper describes the specification of the low energy accelerator (Baby-EBM; Electron Beam Machine) scanning system. It comprises a discussion of coil inductance measurement, power supply design and the test results. The scanning horn system was completely assembled and tested; it was found that the system is able to scan the beam across the scanning window with a required beam profile. (Author)

  4. Scanning ion microscopy with low energy lithium ions

    International Nuclear Information System (INIS)

    Twedt, Kevin A.; Chen, Lei; McClelland, Jabez J.

    2014-01-01

    Using an ion source based on photoionization of laser-cooled lithium atoms, we have developed a scanning ion microscope with probe sizes of a few tens of nanometers and beam energies from 500 eV to 5 keV. These beam energies are much lower than the typical operating energies of the helium ion microscope or gallium focused ion beam systems. We demonstrate how low energy can be advantageous in ion microscopy when detecting backscattered ions, due to a decreased interaction volume and the potential for surface sensitive composition analysis. As an example application that demonstrates these advantages, we non-destructively image the removal of a thin residual resist layer during plasma etching in a nano-imprint lithography process. - Highlights: • We use an ion source based on photoionization of laser-cooled lithium atoms. • The ion source makes possible a low energy (500 eV to 5 keV) scanning ion microscope. • Low energy is preferred for ion microscopy with backscattered ions. • We use the microscope to image a thin resist used in nano-imprint lithography

  5. Photocatalytic and photoelectrochemical performance of Ta{sub 3}N{sub 5} microcolumn films fabricated using facile reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Der-Hwa [Department of Materials Science and Engineering, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan (China); Chang, Kao-Shuo, E-mail: kschang@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan (China); Promotion Center for Global Materials Research, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan (China)

    2016-08-21

    This paper presents the photocatalytic and photoelectrochemical (PEC) properties of Ta{sub 3}N{sub 5} microcolumn films. The highlights include (1) overcoming the fundamental barrier of standard reactive sputtering for fabricating microcolumns; (2) preventing unnecessary complexity from complicating facile sputtering; (3) an alternative but effective approach for fabricating Ta{sub 3}N{sub 5} without using caustic NH{sub 3} gases; (4) investigating morphology tuning for favorable photocatalysis and PEC reactions; and (5) elucidating the relationships of the structures, morphologies, and properties of Ta{sub 3}N{sub 5} microcolumns. High-resolution transmission electron microscopy and selective-area electron diffraction verified the polycrystallinity of Ta{sub 3}N{sub 5} microcolumns, of which the elemental compositions and stoichiometry were measured using electron-probe energy dispersive spectroscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy. The corresponding band gap was determined to be approximately 2.1 eV. The sample exhibited a superior photodegradation capability; the photodegradation rate constant k was determined to be approximately 1.4 times higher than that of P25 under UV irradiation. A photocatalytic and PEC cycling test indicated the photodegradation reusability and photostability of the Ta{sub 3}N{sub 5} microcolumns. The incident photon-to-current efficiency performance reached 6%, suggesting that these microcolumns hold potential for application in PEC devices.

  6. Very low energy scanning electron microscopy in nanotechnology

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Hovorka, Miloš; Mika, Filip; Mikmeková, Eliška; Mikmeková, Šárka; Pokorná, Zuzana; Frank, Luděk

    2012-01-01

    Roč. 9, 8/9 (2012), s. 695-716 ISSN 1475-7435 R&D Projects: GA MŠk OE08012; GA MŠk ED0017/01/01; GA AV ČR IAA100650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : scanning electron microscopy * very low energy electrons * cathode lens * grain contrast * strain contrast * imaging of participates * dopant contrast * very low energy STEM * graphene Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.087, year: 2012

  7. Microcolumns with self-assembled particle frits for proteomics

    DEFF Research Database (Denmark)

    Ishihama, Yasushi; Rappsilber, Juri; Andersen, Jens S

    2002-01-01

    LC-MS-MS experiments in proteomics are usually performed with packed microcolumns employing frits or outlets smaller than the particle diameter to retain the packing material. We have developed packed microcolumns using self-assembled particles (SAPs) as frits that are smaller than the size...... of the outlet. A five to one ratio of outlet size to particle diameter appears to be the upper maximum. In these situations the particles assembled into an arch over the outlet like the stones in a stone bridge. When 3 microm particles were packed into a tapered column with an 8 microm outlet, two particles...

  8. Synthetic CT: Simulating low dose single and dual energy protocols from a dual energy scan

    International Nuclear Information System (INIS)

    Wang, Adam S.; Pelc, Norbert J.

    2011-01-01

    Purpose: The choice of CT protocol can greatly impact patient dose and image quality. Since acquiring multiple scans at different techniques on a given patient is undesirable, the ability to predict image quality changes starting from a high quality exam can be quite useful. While existing methods allow one to generate simulated images of lower exposure (mAs) from an acquired CT exam, the authors present and validate a new method called synthetic CT that can generate realistic images of a patient at arbitrary low dose protocols (kVp, mAs, and filtration) for both single and dual energy scans. Methods: The synthetic CT algorithm is derived by carefully ensuring that the expected signal and noise are accurate for the simulated protocol. The method relies on the observation that the material decomposition from a dual energy CT scan allows the transmission of an arbitrary spectrum to be predicted. It requires an initial dual energy scan of the patient to either synthesize raw projections of a single energy scan or synthesize the material decompositions of a dual energy scan. The initial dual energy scan contributes inherent noise to the synthesized projections that must be accounted for before adding more noise to simulate low dose protocols. Therefore, synthetic CT is subject to the constraint that the synthesized data have noise greater than the inherent noise. The authors experimentally validated the synthetic CT algorithm across a range of protocols using a dual energy scan of an acrylic phantom with solutions of different iodine concentrations. An initial 80/140 kVp dual energy scan of the phantom provided the material decomposition necessary to synthesize images at 100 kVp and at 120 kVp, across a range of mAs values. They compared these synthesized single energy scans of the phantom to actual scans at the same protocols. Furthermore, material decompositions of a 100/120 kVp dual energy scan are synthesized by adding correlated noise to the initial material

  9. Practical Use of Scanning Low Energy Electron Microscope (SLEEM)

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Mikmeková, Eliška; Mikmeková, Šárka; Konvalina, Ivo; Frank, Luděk

    2016-01-01

    Roč. 22, S3 (2016), s. 1650-1651 ISSN 1431-9276 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : scanning low energy * SLEEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.891, year: 2016

  10. Low Energy Scanned Electron-Beam Dose Distribution in Thin Layers

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Hjortenberg, P. E.; Pedersen, Walther Batsberg

    1975-01-01

    Thin radiochromic dye film dosimeters, calibrated by means of calorimetry, make possible the determination of absorbed-dose distributions due to low-energy scanned electron beam penetrations in moderately thin coatings and laminar media. For electrons of a few hundred keV, calibrated dosimeters...... of about 30–60 μm thickness may be used in stacks or interleaved between layers of materials of interest and supply a sufficient number of experimental data points throughout the depth of penetration of electrons to provide a depth-dose curve. Depth doses may be resolved in various polymer layers...... on different backings (wood, aluminum, and iron) for scanned electron beams (Emax = 400 keV) having a broad energy spectrum and diffuse incidence, such as those used in radiation curing of coatings, textiles, plastics, etc. Theoretical calculations of such distributions of energy depositions are relatively...

  11. Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement

    International Nuclear Information System (INIS)

    Lin, J C; Chang, T K; Yang, J H; Jeng, J H; Lee, D L; Jiang, S B

    2009-01-01

    Micrometer Ni–Cu alloy columns have been fabricated by the micro-anode-guided electroplating (MAGE) process in the citrate bath. The surface morphology and chemical composition of the micro-columns were determined by copper concentration in the bath and by the electrical bias of MAGE. When fabricated in a bath of dilute copper (i.e. 4 mM) at lower voltages (e.g. 3.8 and 4.0 V), the alloy micro-columns revealed uniform diameter and smooth appearance. The alloy composition demonstrated an increase in the wt% ratio of Ni/Cu from 75/25, 80/20, 83/17 to 87/13 with increasing electrical bias from 3.8, 4.0, 4.2 to 4.4 V. However, it decreases from 75/25, 57/43 to 47/53 with increasing copper concentration from 4, 8 to 12 mM in the bath. Citrate plays a role in forming complexes with nickel and copper at similar reduction potentials, thus reducing simultaneously to Ni–Cu alloy. The mechanism for fabricating alloy micro-columns could be delineated on the basis of cathodic polarization of the complexes. A couple of micro-columns were fabricated using MAGE in constructing a pure copper micro-column on the top of a Ni/Cu (at 47/53) alloy micro-column. This micro-thermocouple provides a satisfactory measurement with good sensitivity and precision

  12. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    International Nuclear Information System (INIS)

    Chen Yong; Luo Guanghong; Diao Jiajie; Chornoguz, Olesya; Reeves, Mark; Vertes, Akos

    2007-01-01

    Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12±1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3xω Nd:YAG laser in air, SF 6 or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to ∼2 μm in SF 6 gas and to ∼5 μm in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly (∼10x) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits

  13. A new microcolumn-type microchip for examining the expression of chimeric fusion genes using a nucleic acid sandwich hybridization technique.

    Science.gov (United States)

    Ohnishi, Michihiro; Sasaki, Naoyuki; Kishimoto, Takuya; Watanabe, Hidetoshi; Takagi, Masatoshi; Mizutani, Shuki; Kishii, Noriyuki; Yasuda, Akio

    2014-11-01

    We report a new type of microcolumn installed in a microchip. The architecture allows use of a nucleic acid sandwich hybridization technique to detect a messenger RNA (mRNA) chain as a target. Data are presented that demonstrate that the expression of a chimeric fusion gene can be detected. The microcolumn was filled with semi-transparent microbeads made of agarose gel that acted as carriers, allowing increased efficiency of the optical detection of fluorescence from the microcolumn. The hybrid between the target trapped on the microbeads and a probe DNA labeled with a fluorescent dye was detected by measuring the intensity of the fluorescence from the microcolumn directly. These results demonstrate an easy and simple method for determining the expression of chimeric fusion genes with no preamplification. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Q Sepharose micro-column chromatography: A simple screening method for identifying beta thalassemia traits and hemoglobin E carriers.

    Science.gov (United States)

    Wong, Peerapon; Sritippayawan, Suchila; Suwannakhon, Narutchala; Tapprom, Akamon; Deoisares, Rawisut; Sanguansermsri, Torpong

    2016-11-01

    For beta thalassemia control program in pregnancy, mass screening of the carrier state by determination of the hemoglobin (Hb) A 2 and Hb E proportions and mutation analysis is a preferred method for making prenatal diagnoses. Q Sepharose micro-column chromatography, developed for the determination of Hb A 2 and Hb E for screening purposes, was compared with high performance liquid chromatography (HPLC) to ascertain its relative accuracy and reliability. Results using Q Sepharose micro-column chromatography in 350 blood specimens, including 50 samples genetically proven to be beta thalassemia heterozygotes, were compared to HPLC for validation. An additional study was conducted to test a clinical application on a large-scale survey for beta thalassemia in 1581 pregnant women and their spouses. The mean (±SD) Hb A 2 proportions in the normal and genetically proven beta thalassemia heterozygotes were 2.70±0.40% and 6.30±1.23%, respectively, as determined by Q-Sepharose micro-column chromatography, and 2.65±0.31% and 5.37±0.96%, respectively, as determined by HPLC. The mean Hb E proportions in the Hb E heterozygotes were 23.25±4.13% and 24.72±3.5% as determined by Q Sepharose micro-column chromatography and HPLC, respectively. In the large-scale survey for beta thalassemia, 23 at risk couples were detected. Seven affected fetuses were identified by prenatal diagnosis. Q Sepharose micro-column chromatography was found to be reliable, reproducible and well-suited for large-scale surveys. Additionally, by being reusable and convenient, this simple and economical chromatography method may be an alternative means to screen for beta thalassemia and Hb E carriers in the mass population. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  15. Implementation of dual energy CT scanning

    International Nuclear Information System (INIS)

    Marshall, W.; Hall, E.; Doost-Hoseini, A.; Alvarez, R.; Macovski, A.; Cassel, D.

    1984-01-01

    A prereconstruction method for dual energy (PREDECT) analysis of CT scans is described. In theory, this method can (a) eliminate beam hardening and produce an accuracy comparable with monoenergetic scans and (b) provide the effective atomic number and electron density of any voxel scanned. The implementation proves these statements and eliminates some of the objectionable noise. A phantom was constructed with a cylindrical sleeve-like compartment containing known amounts of high atomic number material simulating a removable skull. Conventional scans, with and without this beam hardener, were done of a water bath containing tubes of high electron and high atomic number material. Dual energy scans were then done for PREDECT. To increase the effective separation of the low and high energy beams by using more appropriate tube filtration, a beam filter changer was fabricated containing erbium, tungsten, aluminum, and steel. Erbium, tungsten, and steel were used at high energy and aluminum, steel, and erbium at low energy for data acquisition. The reconstructions were compared visually and numerically for noise levels with the original steel only filtration. A decrease was found in noise down to approximately one-half the prior level when erbium/aluminum or tungsten/aluminum replaced the steel/steel filter. Erbium and tungsten were equally effective. Steel/erbium and steel/aluminum also significantly reduced image noise. The noise in the photoelectric (P) and Compton (C) images is negatively correlated. At any pixel, if the noise is positive in the P image, it is most probably negative in the C. Using this fact, the noise was reduced by postreconstruction processing

  16. Analysis of drug-protein binding using on-line immunoextraction and high-performance affinity microcolumns: Studies with normal and glycated human serum albumin.

    Science.gov (United States)

    Matsuda, Ryan; Jobe, Donald; Beyersdorf, Jared; Hage, David S

    2015-10-16

    A method combining on-line immunoextraction microcolumns with high-performance affinity chromatography (HPAC) was developed and tested for use in examining drug-protein interactions with normal or modified proteins. Normal human serum albumin (HSA) and glycated HSA were used as model proteins for this work. High-performance immunoextraction microcolumns with sizes of 1.0-2.0 cm × 2.1mm i.d. and containing anti-HSA polyclonal antibodies were developed and tested for their ability to bind normal HSA or glycated HSA. These microcolumns were able to extract up to 82-93% for either type of protein at 0.05-0.10 mL/min and had a binding capacity of 0.34-0.42 nmol HSA for a 1.0 cm × 2.1mm i.d. microcolumn. The immunoextraction microcolumns and their adsorbed proteins were tested for use in various approaches for drug binding studies. Frontal analysis was used with the adsorbed HSA/glycated HSA to measure the overall affinities of these proteins for the drugs warfarin and gliclazide, giving comparable values to those obtained previously using similar protein preparations that had been covalently immobilized within HPAC columns. Zonal elution competition studies with gliclazide were next performed to examine the specific interactions of this drug at Sudlow sites I and II of the adsorbed proteins. These results were also comparable to those noted in prior work with covalently immobilized samples of normal HSA or glycated HSA. These experiments indicated that drug-protein binding studies can be carried out by using on-line immunoextraction microcolumns with HPAC. The same method could be used in the future with clinical samples and other drugs or proteins of interest in pharmaceutical studies or biomedical research. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Stability of inorganic mercury and methylmercury on yeast-silica gel microcolumns: field sampling capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Corona, M. [Universidad Complutense de Madrid (Spain). Dept. de Quimica Analitica

    2000-11-01

    The stability of methylmercury and inorganic mercury retained on yeast-silica gel microcolumns was established and compared with the stability of these species in solution. Yeast-silica gel columns with the retained analytes were stored for two months at three different temperatures: -20 C, 4 C and room temperature. At regular time intervals, both mercury species were eluted and quantified by cold vapor atomic absorption spectrometry (CVAAS). Methylmercury was found stable in the columns over the two-month period at the three different temperatures tested while the concentration of inorganic mercury decreased after one week's storage even at -20 C. These results are of great interest since the use of these microcolumns allows the preconcentration and storage of mercury species until analysis, thus saving laboratory space and avoiding the problems associated with maintaining species integrity in aqueous solution. (orig.)

  18. Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays

    Science.gov (United States)

    Vertes, Akos; Walker, Bennett N.

    2013-09-10

    The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.

  19. Determination of trace lithium in uranium compounds by adsorption on activated alumina using a micro-column method.

    Science.gov (United States)

    Luo, Ming-Biao; Li, Bo-Ping; Yang, Zhi; Liu, Wei; Sun, Yu-Zhen

    2008-08-01

    A novel method using a micro-column packed with active alumina as solid phase was proposed for separation of trace lithium from uranium compounds prior to determination. The method is based on a preliminary chromatographic separation of the total amount of uranium. This separation involves passing the solution containing sodium carbonate through active alumina and then eluting the trace lithium retained by the solid phase with a solution of sulfuric acid. Two modes, off-line and on-line micro-column preconcentration, were performed. In conjunction with atomic absorption spectrometry, this on-line preconcentration technique allows a determination of lithium at 10(-9) level. Both off-line and on-line mode operation conditions were investigated in separation and determination of trace lithium by micro-column method (length of column bed, flow rate, etc.). The adsorption capacity of activated alumina was found to be 343 microg g(-1) for lithium. Under the optimal operation condition, the detection limit (DL) of on-line preconcentration corresponding to three times the standard deviation of the blank (S/N = 3) was found to be 1.3 ng mL(-1) and the RSD of this method is 3.32% (n = 5). The on-line calibration graph was linear over the range 20 - 200 ng mL(-1). A good preconcentration factor 820 was achieved by experiment under the on-line mode. The developed method was applied to the analysis of trace lithium in nuclear grade uranium compounds.

  20. Dual energy scanning beam laminographic x-radiography

    Science.gov (United States)

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  1. Exploring the Nuclear Phase Diagram with Beam Energy Scans

    International Nuclear Information System (INIS)

    Horvat, Stephen

    2017-01-01

    The nuclear phase diagram is mapped using beam energy scans of relativistic heavy-ion collisions. This mapping is possible because different collision energies develop along different trajectories through the phase diagram. High energy collisions will evolve though a crossover phase transition according to lattice QCD, but lower collision energies may traverse a first order phase transition. There are hints for this first order phase transition and its critical endpoint, but further measurements and theoretical guidance is needed. In addition to mapping the phase transition, beam energy scans allow us to see if we can turn off the signatures of deconfinement. If an observable is a real signature for the formation of the deconfined state called quark-gluon plasma, then it should turn off at sufficiently low collision energies. In this summary talk I will show the current state of the field using beam energy scan results from RHIC and SPS, I will show where precise theoretical guidance is needed for understanding recent measurements, and I will motivate the need for more data and new measurements from FAIR, NICA, RHIC, and the SPS. (paper)

  2. Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays

    Science.gov (United States)

    Vertes, Akos [Reston, VA; Chen, Yong [San Diego, CA

    2011-12-27

    The present invention provides a method of producing a laser-patterned silicon surface, especially silicon wafers for use in laser desorption ionization (LDI-MS) (including MALDI-MS and SELDI-MS), devices containing the same, and methods of testing samples employing the same. The surface is prepared by subjecting a silicon substrate to multiple laser shots from a high-power picosecond or femtosecond laser while in a processing environment, e.g., underwater, and generates a remarkable homogenous microcolumn array capable of providing an improved substrate for LDI-MS.

  3. Micro-column plasma emission liquid chromatograph. [Patent application

    Science.gov (United States)

    Gay, D.D.

    1982-08-12

    In a direct current plasma emission spectrometer for use in combination with a microcolumn liquid chromatograph, an improved plasma source unit is claimed. The plasma source unit includes a quartz capillary tube having an inlet means, outlet off gas means and a pair of spaced electrodes defining a plasma region in the tube. The inlet means is connected to and adapted to receive eluant of the liquid chromatograph along with a stream of plasma-forming gas. There is an opening through the wall of the capillary tube penetrating into the plasma region. A soft glass capillary light pipe is disposed at the opening, is connected to the spectrometer, and is adapted to transmit light passing from the plasma region to the spectrometer. There is also a source of electromotive force connected to the electrodes sufficient to initiate and sustain a plasma in the plasma region of the tube.

  4. The structure of formate on TiO{sub 2}(110) by scanned-energy and scanned-angle photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Thevuthasan, S.; Kim, Y.J.; Herman, G.S. [Pacific Northwest National Laboratory, Richland, WA (United States)] [and others

    1997-04-01

    There is a considerable interest in understanding the interaction of small organic molecules with oxide surfaces. The chemistry of formate interactions with TiO{sub 2}(110) has been investigated by several groups, but there is little information on the structure of the adsorbate/surface complex. Recently the authors combined high-energy x-ray photoelectron diffraction (XPD) measurements at PNNL with low-energy scanned-angle and scanned-energy photoelectron diffraction measurements at the ALS to investigate the structure of the formate ion on TiO{sub 2}(110) in detail. The high-energy XPD results reveal that formate binds through the oxygens in a bidentate fashion to Ti cation rows along the [001] direction with an O-C-O bond angle of about 126{degrees}. Low-energy photoelectron diffraction data, which is briefly described below, was used to identify the specific bonding geometry, including the bond length between the Ti cation and the oxygen in the formate.

  5. A design for a subminiature, low energy scanning electron microscope with atomic resolution

    International Nuclear Information System (INIS)

    Eastham, D. A.; Edmondson, P.; Greene, S.; Donnelly, S.; Olsson, E.; Svensson, K.; Bleloch, A.

    2009-01-01

    We describe a type of scanning electron microscope that works by directly imaging the electron field-emission sites on a nanotip. Electrons are extracted from the nanotip through a nanoscale aperture, accelerated in a high electric field, and focused to a spot using a microscale Einzel lens. If the whole microscope (accelerating section and lens) and the focal length are both restricted in size to below 10 μm, then computer simulations show that the effects of aberration are extremely small and it is possible to have a system with approximately unit magnification at electron energies as low as 300 eV. Thus a typical emission site of 1 nm diameter will produce an image of the same size, and an atomic emission site will give a resolution of 0.1-0.2 nm (1-2 A). Also, because the beam is not allowed to expand beyond 100 nm in diameter, the depth of field is large and the contribution to the beam spot size from chromatic aberrations is less than 0.02 nm (0.2 A) for 500 eV electrons. Since it is now entirely possible to make stable atomic sized emitters (nanopyramids), it is expected that this instrument will have atomic resolution. Furthermore the brightness of the beam is determined only by the field emission and can be up to 1x10 6 times larger than in a typical (high energy) electron microscope. The advantages of this low energy, bright-beam electron microscope with atomic resolution are described and include the possibility of it being used to rapidly sequence the human genome from a single strand of DNA as well as being able to identify atomic species directly from the elastic scattering of electrons

  6. Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams

    International Nuclear Information System (INIS)

    Sawakuchi, Gabriel O; Titt, Uwe; Mirkovic, Dragan; Ciangaru, George; Zhu, X Ronald; Sahoo, Narayan; Gillin, Michael T; Mohan, Radhe

    2010-01-01

    Scanned proton pencil beams carry a low-dose envelope that extends several centimeters from the individual beam's central axis. Thus, the total delivered dose depends on the size of the target volume and the corresponding number and intensity of beams necessary to cover the target volume uniformly. This dependence must be considered in dose calculation algorithms used by treatment planning systems. In this work, we investigated the sources of particles contributing to the low-dose envelope using the Monte Carlo technique. We used a validated model of our institution's scanning beam line to determine the contributions to the low-dose envelope from secondary particles created in a water phantom and particles scattered in beam line components. Our results suggested that, for high-energy beams, secondary particles produced by nuclear interactions in the water phantom are the major contributors to the low-dose envelope. For low-energy beams, the low-dose envelope is dominated by particles undergoing multiple Coulomb scattering in the beam line components and water phantom. Clearly, in the latter situation, the low-dose envelope depends directly on beam line design features. Finally, we investigated the dosimetric consequences of the low-dose envelope. Our results showed that if not modeled properly the low-dose envelope may cause clinically relevant dose disturbance in the target volume. This work suggested that this low-dose envelope is beam line specific for low-energy beams, should be thoroughly experimentally characterized and validated during commissioning of the treatment planning system, and therefore is of great concern for accurate delivery of proton scanning beam doses.

  7. Exploring the QCD Phase Structure with Beam Energy Scan in Heavy-ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaofeng, E-mail: xfluo@mail.ccnu.edu.cn

    2016-12-15

    Beam energy scan programs in heavy-ion collisions aim to explore the QCD phase structure at high baryon density. Sensitive observables are applied to probe the signatures of the QCD phase transition and critical point in heavy-ion collisions at RHIC and SPS. Intriguing structures, such as dip, peak and oscillation, have been observed in the energy dependence of various observables. In this paper, an overview is given and corresponding physics implications will be discussed for the experimental highlights from the beam energy scan programs at the STAR, PHENIX and NA61/SHINE experiments. Furthermore, the beam energy scan phase II at RHIC (2019–2020) and other future experimental facilities for studying the physics at low energies will be also discussed.

  8. Assessment of pancreatic adenocarcinoma: use of low-dose whole pancreatic CT perfusion and individualized dual-energy CT scanning

    International Nuclear Information System (INIS)

    Li, Hai-ou; Guo, Jun; Li, Xiao; Qi, Yao-dong; Wang, Xi-ming; Xu, Zhuo-dong; Liu, Cheng; Chen, Jiu-hong

    2015-01-01

    The objective of this study was to investigate the value of low-dose whole pancreatic computed tomography (CT) perfusion integrated with individualized dual-energy CT (DECT) scanning in the diagnosis of pancreatic adenocarcinoma. Twenty patients with pancreatic adenocarcinoma underwent pancreatic CT perfusion as well as individualized dual-phase DECT pancreatic scans. Perfusion characteristics of non-tumourous pancreatic parenchyma and pancreatic adenocarcinoma were analysed. Weighted-average 120 kVp images and the optimal monoenergetic images in dual phase were reconstructed and the contrast noise ratio (CNR) of pancreas-to-tumour were compared. There were significant difference on blood flow as well as blood volume between pancreatic adenocarcinoma and the non-tumourous pancreatic parenchyma (P < 0.05), whereas no difference on permeability (P > 0.05). CNRs of pancreas-to-tumour in individualized pancreatic phase were significantly higher than those in venous phase (P < 0.05), and CNRs of optimal monoenergetic images were higher than those on weighted-average 120 kVp images (P < 0.05) in both phase. Total effective radiation dose of CT examination was around 9.32–13.75 mSv. Low-dose whole pancreatic CT perfusion can provide functional information, and the individualized pancreatic phase DECT scan is the optimal method for detecting pancreatic adenocarcinomas. The integration of the two techniques has great value in clinical application.

  9. Arrays of 3D micro-columns generated by laser ablation of Ta and steel: modelling of a black body emitter

    Energy Technology Data Exchange (ETDEWEB)

    Bensaoula, A.; Boney, C.; Pillai, R.; Starikov, D. [Texas Center for Superconductivity and Advanced Materials, University of Houston, Houston, TX (United States); Shafeev, G.A.; Simakin, A.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991, Moscow (Russian Federation)

    2004-09-01

    Three-dimensional extended arrays of micro-columns are generated on the surface of Ta and several stainless steels by their ablation by radiation of a Cu vapor laser either in vacuum or in air. The reflectivity of the arrays is tested in both visible and near-IR regions using the facilities at NASA Johnson Space Center. The reflectivity of the laser-treated areas was found to be very low (0.03-0.08) in the range 250-2800 nm. The emissivity of 3D arrays measured at elevated temperatures is close to the emissivity of a calibrated black body emitter. The effects of the experimental conditions of ablation (laser fluence, environment, etc.) on the integral optical characteristics of the generated arrays are discussed. (orig.)

  10. Early Stages of Pulsed-Laser Growth of Silicon Microcolumns and Microcones in Air and SF6

    International Nuclear Information System (INIS)

    Fowlkes, J.D.; Lowndes, D.H.; Pedraza, A.J.

    1999-01-01

    Dense arrays of high-aspect-ratio silicon microcolumns and microcones are formed by cumulative nanosecond pulsed excimer laser irradiation of single-crystal silicon in oxidizing atmospheres such as air and SF 6 . Growth of such surface microstructures requires a redeposition model and also involves elements of self-organization. The shape of the microstructures, i.e. straight columns vs steeply sloping cones and connecting walls, is governed by the type and concentration of the oxidizing species, e.g. oxygen vs fluorine. Growth is believed to occur by a catalyst-free VLS (vapor-liquid-solid) mechanism that involves repetitive melting of the tips of the columns/cones and deposition there of the ablated flux of Si-containing vapor. Results are presented of a new investigation of how such different final microstructures as microcolumns or microcones joined by walls nucleate and develop. The changes in silicon surface morphology were systematically determined and compared as the number of pulsed KrF (248 nm) laser shots was increased from 25 to several thousand in both air and SF 6 . The experiments in air and SF 6 reveal significant differences in initial surface cracking and pattern formation. Consequently, local protrusions are first produced and column or cone/wall growth is initiated by different processes and at different rates. Differences in the spatial organization of column or cone/wall growth also are apparent

  11. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    Science.gov (United States)

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection.

  12. Low-dose computed tomography image restoration using previous normal-dose scan

    International Nuclear Information System (INIS)

    Ma, Jianhua; Huang, Jing; Feng, Qianjin; Zhang, Hua; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan

    2011-01-01

    Purpose: In current computed tomography (CT) examinations, the associated x-ray radiation dose is of a significant concern to patients and operators. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) or kVp parameter (or delivering less x-ray energy to the body) as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and the noise would propagate into the CT image if no adequate noise control is applied during image reconstruction. Since a normal-dose high diagnostic CT image scanned previously may be available in some clinical applications, such as CT perfusion imaging and CT angiography (CTA), this paper presents an innovative way to utilize the normal-dose scan as a priori information to induce signal restoration of the current low-dose CT image series. Methods: Unlike conventional local operations on neighboring image voxels, nonlocal means (NLM) algorithm utilizes the redundancy of information across the whole image. This paper adapts the NLM to utilize the redundancy of information in the previous normal-dose scan and further exploits ways to optimize the nonlocal weights for low-dose image restoration in the NLM framework. The resulting algorithm is called the previous normal-dose scan induced nonlocal means (ndiNLM). Because of the optimized nature of nonlocal weights calculation, the ndiNLM algorithm does not depend heavily on image registration between the current low-dose and the previous normal-dose CT scans. Furthermore, the smoothing parameter involved in the ndiNLM algorithm can be adaptively estimated based on the image noise relationship between the current low-dose and the previous normal-dose scanning protocols. Results: Qualitative and quantitative evaluations were carried out on a physical phantom as well as clinical abdominal and brain perfusion CT scans in terms of accuracy and resolution properties. The gain by the use

  13. Safe Active Scanning for Energy Delivery Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Helms, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salazar, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scheibel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Engels, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reiger, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into the details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.

  14. Algorithm-enabled partial-angular-scan configurations for dual-energy CT.

    Science.gov (United States)

    Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2018-05-01

    We seek to investigate an optimization-based one-step method for image reconstruction that explicitly compensates for nonlinear spectral response (i.e., the beam-hardening effect) in dual-energy CT, to investigate the feasibility of the one-step method for enabling two dual-energy partial-angular-scan configurations, referred to as the short- and half-scan configurations, on standard CT scanners without involving additional hardware, and to investigate the potential of the short- and half-scan configurations in reducing imaging dose and scan time in a single-kVp-switch full-scan configuration in which two full rotations are made for collection of dual-energy data. We use the one-step method to reconstruct images directly from dual-energy data through solving a nonconvex optimization program that specifies the images to be reconstructed in dual-energy CT. Dual-energy full-scan data are generated from numerical phantoms and collected from physical phantoms with the standard single-kVp-switch full-scan configuration, whereas dual-energy short- and half-scan data are extracted from the corresponding full-scan data. Besides visual inspection and profile-plot comparison, the reconstructed images are analyzed also in quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation. Following the performance of a computer-simulation study to verify that the one-step method can reconstruct numerically accurately basis and monochromatic images of numerical phantoms, we reconstruct basis and monochromatic images by using the one-step method from real data of physical phantoms collected with the full-, short-, and half-scan configurations. Subjective inspection based upon visualization and profile-plot comparison reveals that monochromatic images, which are used often in practical applications, reconstructed from the full-, short-, and half-scan data are largely visually comparable except for some

  15. Precision shape modification of nanodevices with a low-energy electron beam

    Science.gov (United States)

    Zettl, Alex; Yuzvinsky, Thomas David; Fennimore, Adam

    2010-03-09

    Methods of shape modifying a nanodevice by contacting it with a low-energy focused electron beam are disclosed here. In one embodiment, a nanodevice may be permanently reformed to a different geometry through an application of a deforming force and a low-energy focused electron beam. With the addition of an assist gas, material may be removed from the nanodevice through application of the low-energy focused electron beam. The independent methods of shape modification and material removal may be used either individually or simultaneously. Precision cuts with accuracies as high as 10 nm may be achieved through the use of precision low-energy Scanning Electron Microscope scan beams. These methods may be used in an automated system to produce nanodevices of very precise dimensions. These methods may be used to produce nanodevices of carbon-based, silicon-based, or other compositions by varying the assist gas.

  16. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Thingholm, Tine E; Jensen, Ole N

    2005-01-01

    based on TiO2microcolumns and peptide loading in 2,5-dihydroxybenzoic acid (DHB). The effect of DHB was a very efficient reduction in the binding of nonphosphorylated peptides to TiO2 while retaining its high binding affinity for phosphorylated peptides. Thus, inclusion of DHB dramatically increased...... the selectivity of the enrichment of phosphorylated peptides by TiO2. We demonstrated that this new procedure was more selective for binding phosphorylated peptides than IMAC using MALDI mass spectrometry. In addition, we showed that LC-ESI-MSMS was biased toward monophosphorylated peptides, whereas MALDI MS...... was not. Other substituted aromatic carboxylic acids were also capable of specifically reducing binding of nonphosphorylated peptides, whereas phosphoric acid reduced binding of both phosphorylated and nonphosphorylated peptides. A putative mechanism for this intriguing effect is presented....

  17. Fabrication of miniaturized electrostatic deflectors using LIGA

    International Nuclear Information System (INIS)

    Jackson, K.H.; Khan-Malek, C.; Muray, L.P.

    1997-01-01

    Miniaturized electron beam columns (open-quotes microcolumnsclose quotes) have been demonstrated to be suitable candidates for scanning electron microscopy (SEM), e-beam lithography and other high resolution, low voltage applications. In the present technology, microcolumns consist of open-quotes selectively scaledclose quotes micro-sized lenses and apertures, fabricated from silicon membranes with e-beam lithography, reactive ion beam etching and other semiconductor thin-film techniques. These miniaturized electron-optical elements provide significant advantages over conventional optics in performance and ease of fabrication. Since lens aberrations scale roughly with size, it is possible to fabricate simple microcolumns with extremely high brightness sources and electrostatic objective lenses, with resolution and beam current comparable to conventional e-beam columns. Moreover since microcolumns typically operate at low voltages (1 KeV), the proximity effects encountered in e-beam lithography become negligible. For high throughput applications, batch fabrication methods may be used to build large parallel arrays of microcolumns. To date, the best reported performance with a 1 keV cold field emission cathode, is 30 nm resolution at a working distance of 2mm in a 3.5mm column. Fabrication of the microcolumn deflector and stigmator, however, have remained beyond the capabilities of conventional machining operations and semiconductor processing technology. This work examines the LIGA process as a superior alternative to fabrication of the deflectors, especially in terms of degree of miniaturization, dimensional control, placement accuracy, run-out, facet smoothness and choice of suitable materials. LIGA is a combination of deep X-ray lithography, electroplating, and injection molding processes which allow the fabrication of microstructures

  18. WE-DE-BRA-10: Development of a Novel Scanning Beam Low-Energy Intraoperative Radiation Therapy (SBIORT) System for Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wears, B; Mohiuddin, I; Flynn, R; Waldron, T; Kim, Y; Allen, B; Xia, J [University of Iowa Hospitals and Clinics, Iowa City, IA (United States)

    2016-06-15

    Purpose: Developing a compact collimator system and validating a 3D surface imaging module for a scanning beam low-energy x-ray radiation therapy (SBIORT) system that enables delivery of non-uniform radiation dose to targets with irregular shapes intraoperatively. Methods: SBIORT consists of a low energy x-ray source, a custom compact collimator module, a robotic arm, and a 3D surface imaging module. The 3D surface imaging system (structure sensor) is utilized for treatment planning and motion monitoring of the surgical cavity. SBIORT can deliver non-uniform dose distributions by dynamically moving the x-ray source assembly along optimal paths with various collimator apertures. The compact collimator utilizes a dynamic shutter mechanism to form a variable square aperture. The accuracy and reproducibility of the collimator were evaluated using a high accuracy encoder and a high resolution camera platform. The dosimetrical characteristics of the collimator prototype were evaluated using EBT3 films with a Pantak Therapax unit. The accuracy and clinical feasibility of the 3D imaging system were evaluated using a phantom and a cadaver cavity. Results: The SBIORT collimator has a compact size: 66 mm diameter and 10 mm thickness with the maximum aperture of 20 mm. The mechanical experiment indicated the average accuracy of leaf position was 0.08 mm with a reproducibility of 0.25 mm at 95% confidence level. The dosimetry study indicated the collimator had a penumbra of 0.35 mm with a leaf transmission of 0.5%. 3D surface scans can be acquired in 5 seconds. The average difference between the acquired 3D surface and the ground truth is 1 mm with a standard deviation of 0.6 mm. Conclusion: This work demonstrates the feasibility of the compact collimator and 3D scanning system for the SBIORT. SBIORT is a way of delivering IORT with a compact system that requires minimum shielding of the procedure room. This research is supported by the University of Iowa Internal Funding

  19. Determination of the sulfur mustard hydrolysis product thiodiglycol by microcolumn liquid chromatography coupled on-line with sulfur flame photometric detection using large-volume injections and peak

    NARCIS (Netherlands)

    Hooijschuur, E.W.J.; Kientz, C.E.; Brinkman, U.A.T.

    1999-01-01

    A selective, direct and relatively rapid method has been developed for the determination of thiodiglycol (TDG) in aqueous samples. TDG is the main hydrolysis product of the chemical warfare agent sulfur mustard. The method of analysis is based on the on-line coupling of reversed-phase microcolumn

  20. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    Science.gov (United States)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  1. The use of titanium dioxide micro-columns to selectively isolate phosphopeptides from proteolytic digests

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Larsen, Martin R

    2009-01-01

    Titanium dioxide has very high affinity for phosphopeptides and it has become an efficient alternative to already existing methods for phosphopeptide enrichment from complex samples. Peptide loading in a highly acidic environment in the presence of 2,5-dihydroxybenzoic acid (DHB), phthalic acid......, or glycolic acid has been shown to improve selectivity significantly by reducing unspecific binding from nonphosphorylated peptides. The enriched phosphopeptides bound to the titanium dioxide are subsequently eluted from the micro-column using an alkaline buffer. Titanium dioxide chromatography is extremely...... tolerant towards most buffers used in biological experiments. It is highly robust and as such it has become one of the methods of choice in large-scale phospho-proteomics. Here we describe the protocol for phosphopeptide enrichment using titanium dioxide chromatography followed by desalting...

  2. On-line dynamic fractionation and automatic determination of inorganic phosphorous in environmental solid substrates exploiting sequential injection microcolumn extraction and flow injection analysi

    DEFF Research Database (Denmark)

    Buanuam, Janya; Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    Sequential injection microcolumn extraction (SI-MCE) based on the implementation of a soil containing microcartridge as external reactor in a sequential injection network is, for the first time, proposed for dynamic fractionation of macronutrients in environmental solids, as exemplified by the pa......Sequential injection microcolumn extraction (SI-MCE) based on the implementation of a soil containing microcartridge as external reactor in a sequential injection network is, for the first time, proposed for dynamic fractionation of macronutrients in environmental solids, as exemplified...... by the partitioning of inorganic phosphorous in agricultural soils. The on-line fractionation method capitalises on the accurate metering and sequential exposure of the various extractants to the solid sample by application of programmable flow as precisely coordinated by a syringe pump. Three different soil phase...... associations for phosphorus, that is, exchangeable, Al- and Fe-bound and Ca-bound fractions, were elucidated by accommodation in the flow manifold of the 3 steps of the Hietjles-Litjkema (HL) scheme involving the use of 1.0 M NH4Cl, 0.1 M NaOH and 0.5 M HCl, respectively, as sequential leaching reagents...

  3. Preprocessing of A-scan GPR data based on energy features

    Science.gov (United States)

    Dogan, Mesut; Turhan-Sayan, Gonul

    2016-05-01

    There is an increasing demand for noninvasive real-time detection and classification of buried objects in various civil and military applications. The problem of detection and annihilation of landmines is particularly important due to strong safety concerns. The requirement for a fast real-time decision process is as important as the requirements for high detection rates and low false alarm rates. In this paper, we introduce and demonstrate a computationally simple, timeefficient, energy-based preprocessing approach that can be used in ground penetrating radar (GPR) applications to eliminate reflections from the air-ground boundary and to locate the buried objects, simultaneously, at one easy step. The instantaneous power signals, the total energy values and the cumulative energy curves are extracted from the A-scan GPR data. The cumulative energy curves, in particular, are shown to be useful to detect the presence and location of buried objects in a fast and simple way while preserving the spectral content of the original A-scan data for further steps of physics-based target classification. The proposed method is demonstrated using the GPR data collected at the facilities of IPA Defense, Ankara at outdoor test lanes. Cylindrically shaped plastic containers were buried in fine-medium sand to simulate buried landmines. These plastic containers were half-filled by ammonium nitrate including metal pins. Results of this pilot study are demonstrated to be highly promising to motivate further research for the use of energy-based preprocessing features in landmine detection problem.

  4. An image scanning device using radiating energy

    International Nuclear Information System (INIS)

    Jacob, Daniel.

    1976-01-01

    Said invention relates to an image scanning device using radiating energy. More particularly, it relates to a device for generating a scanning beam of rectangular cross section from a γ or X-ray source. Said invention can be applied to radiographic units of the 'microdose' type used by airline staffs and others for the fast efficient inspection of luggage and parcels in view of detecting hidden things [fr

  5. Quick-E-scan: A methodology for the energy scan of SMEs

    International Nuclear Information System (INIS)

    Cagno, E.; Trucco, P.; Trianni, A.; Sala, G.

    2010-01-01

    This paper introduces the Quick-E-Scan methodology that has been developed to achieve the operational energy efficiency of small and medium enterprises (SMEs), characterized by being scarcely disposed to long energy audits and by a limited budget for energy management programs. On one side, through dividing the firm into functional units - either service (lighting, HVAC, etc.) or production units - the main consuming areas are identified and a criticality index is defined; conversely, an enhancement index highlights the gap of each unit towards the best available techniques (BATs) in energy management programs. Finally, a priority index, created with the junction of the two indexes, points out the most profitable areas in which energy saving measures should be implemented. The methodology, particularly quick and simple, has been successfully tested in 38 SMEs in Northern Italy.

  6. Microcolumn high pressure liquid chromatography with a glass-frit nebulizer interface for plasma emission detection

    International Nuclear Information System (INIS)

    Ibrahim, M.; Nisamaneepong, W.; Caruso, J.

    1985-01-01

    Microcolumn high pressure liquid chromatography (micro-HPLC) is rapidly gaining recognition as a practical separation tool for organometallic compounds. The use of the inductively coupled plasma (ICP) as a detector for micro-HPLC is studied. Several miniaturized glass-frit nebulizers are investigated as interfaces between the output of the microbore column and the ICP torch. Their performance with aqueous and methanolic solutions is evaluated by direct nebulization and flow injection analysis. The most efficient of these nebulizers is used in the micro-HPLC/ICP study of some Cd, Pb, and Zn organometallic compounds. Detection limits of 1.92 ng of Pb for tetramethyllead and 5.01 ng of Pb for tetraethyllead are obtained and compared with regular HPLC/ICP of these same compounds. Approximately equivalent detection limits were obtained when using a microwave induced plasma as an alternate plasma source

  7. Towards low carbon business park energy systems: Classification of techno-economic energy models

    International Nuclear Information System (INIS)

    Timmerman, Jonas; Vandevelde, Lieven; Van Eetvelde, Greet

    2014-01-01

    To mitigate climate destabilisation, human-induced greenhouse gas emissions urgently need to be curbed. A major share of these emissions originates from the industry and energy sectors. Hence, a low carbon shift in industrial and business park energy systems is called for. Low carbon business parks minimise energy-related carbon dioxide emissions by maximal exploitation of local renewable energy production, enhanced energy efficiency, and inter-firm heat exchange, combined in a collective energy system. The holistic approach of techno-economic energy models facilitates the design of such systems, while yielding an optimal trade-off between energetic, economic and environmental performances. However, no models custom-tailored for industrial park energy systems are detected in literature. In this paper, existing energy model classifications are scanned for adequate model characteristics and accordingly, a confined number of models are selected and described. Subsequently, a practical typology is proposed, existing of energy system evolution, optimisation, simulation, accounting and integration models, and key model features are compared. Finally, important features for a business park energy model are identified. - Highlights: • A holistic perspective on (low carbon) business park energy systems is introduced. • A new categorisation of techno-economic energy models is proposed. • Model characteristics are described per model category. • Essential model features for business park energy system modelling are identified. • A strategy towards a techno-economic energy model for business parks is proposed

  8. Investigation of ultra low-dose scans in the context of quantum-counting clinical CT

    Science.gov (United States)

    Weidinger, T.; Buzug, T. M.; Flohr, T.; Fung, G. S. K.; Kappler, S.; Stierstorfer, K.; Tsui, B. M. W.

    2012-03-01

    In clinical computed tomography (CT), images from patient examinations taken with conventional scanners exhibit noise characteristics governed by electronics noise, when scanning strongly attenuating obese patients or with an ultra-low X-ray dose. Unlike CT systems based on energy integrating detectors, a system with a quantum counting detector does not suffer from this drawback. Instead, the noise from the electronics mainly affects the spectral resolution of these detectors. Therefore, it does not contribute to the image noise in spectrally non-resolved CT images. This promises improved image quality due to image noise reduction in scans obtained from clinical CT examinations with lowest X-ray tube currents or obese patients. To quantify the benefits of quantum counting detectors in clinical CT we have carried out an extensive simulation study of the complete scanning and reconstruction process for both kinds of detectors. The simulation chain encompasses modeling of the X-ray source, beam attenuation in the patient, and calculation of the detector response. Moreover, in each case the subsequent image preprocessing and reconstruction is modeled as well. The simulation-based, theoretical evaluation is validated by experiments with a novel prototype quantum counting system and a Siemens Definition Flash scanner with a conventional energy integrating CT detector. We demonstrate and quantify the improvement from image noise reduction achievable with quantum counting techniques in CT examinations with ultra-low X-ray dose and strong attenuation.

  9. Low-energy foil aberration corrector

    International Nuclear Information System (INIS)

    Aken, R.H. van; Hagen, C.W.; Barth, J.E.; Kruit, P.

    2002-01-01

    A spherical and chromatic aberration corrector for electron microscopes is proposed, consisting of a thin foil sandwiched between two apertures. The electrons are retarded at the foil to almost zero energy, so that they can travel ballistically through the foil. It is shown that such a low-voltage corrector has a negative spherical aberration for not too large distances between aperture and foil, as well as a negative chromatic aberration. For various distances the third- and fifth-order spherical aberration coefficients and the first- and second-order chromatic aberration coefficients are calculated using ray tracing. Provided that the foils have sufficient electron transmission the corrector is able to correct the third-order spherical aberration and the first-order chromatic aberration of a typical low-voltage scanning electron microscope. Preliminary results show that the fifth-order spherical aberration and the second-order chromatic aberration can be kept sufficiently low

  10. Automated bone removal in CT angiography: Comparison of methods based on single energy and dual energy scans

    International Nuclear Information System (INIS)

    Straten, Marcel van; Schaap, Michiel; Dijkshoorn, Marcel L.; Greuter, Marcel J.; Lugt, Aad van der; Krestin, Gabriel P.; Niessen, Wiro J.

    2011-01-01

    Purpose: To evaluate dual energy based methods for bone removal in computed tomography angiography (CTA) images and compare these with single energy based methods that use an additional, nonenhanced, CT scan. Methods: Four different bone removal methods were applied to CT scans of an anthropomorphic thorax phantom, acquired with a second generation dual source CT scanner. The methods differed by the way information on the presence of bone was obtained (either by using an additional, nonenhanced scan or by scanning with two tube voltages at the same time) and by the way the bone was removed from the CTA images (either by masking or subtracting the bone). The phantom contained parts which mimic vessels of various diameters in direct contact with bone. Both a quantitative and qualitative analysis of image quality after bone removal was performed. Image quality was quantified by the contrast-to-noise ratio (CNR) normalized to the square root of the dose (CNRD). At locations where vessels touch bone, the quality of the bone removal and the vessel preservation were visually assessed. The dual energy based methods were assessed with and without the addition of a 0.4 mm tin filter to the high voltage x-ray tube filtration. For each bone removal method, the dose required to obtain a certain CNR after bone removal was compared with the dose of a reference scan with the same CNR but without automated bone removal. The CNRD value of the reference scan was maximized by choosing the lowest tube voltage available. Results: All methods removed the bone completely. CNRD values were higher for the masking based methods than for the subtraction based methods. Single energy based methods had a higher CNRD value than the corresponding dual energy based methods. For the subtraction based dual energy method, tin filtration improved the CNRD value with approximately 50%. For the masking based dual energy method, it was easier to differentiate between iodine and bone when tin filtration

  11. In-Situ Microprobe Observations of Dispersed Oil with Low-Temperature Low-Vacuum Scanning Electron Microscope

    International Nuclear Information System (INIS)

    Mohsen, H.T.

    2010-01-01

    A low cost cryostat stage from high heat capacity material is designed and constructed, in attempt to apply size distribution techniques for examination of oil dispersions. Different materials were tested according to their heat capacity to keep the liquid under investigation in frozen state as long as possible during the introduction of the cryostat stage to the low-vacuum scanning electron microscope. Different concentrations of non ionic surfactant were added to artificially contaminated with 10000 ppm Balayeam base oil in 3.5 % saline water, where oil and dispersing liquid have been added and shacked well to be investigated under the microscope as fine frozen droplets. The efficiency of dispersion was examined using low temperature low-vacuum scanning electron microscope. The shape and size distributions of freeze oil droplets were studied by digital imaging processing technique in conjunction with scanning electron microscope counting method. Also elemental concentration of oil droplets was analyzed.

  12. Impact of low-energy CT imaging on selection of positive oral contrast media concentration.

    Science.gov (United States)

    Patino, Manuel; Murcia, Diana J; Iamurri, Andrea Prochowski; Kambadakone, Avinash R; Hahn, Peter F; Sahani, Dushyant V

    2017-05-01

    To determine to what extent low-energy CT imaging affects attenuation of gastrointestinal tract (GIT) opacified with positive oral contrast media (OCM). Second, to establish optimal OCM concentrations for low-energy diagnostic CT exams. One hundred patients (38 men and 62 women; age 62 ± 11 years; BMI 26 ± 5) with positive OCM-enhanced 120-kVp single-energy CT (SECT), and follow-up 100-kVp acquisitions (group A; n = 50), or 40-70-keV reconstructions from rapid kV switching-single-source dual-energy CT (ssDECT) (group B; n = 50) were included. Luminal attenuation from different GIT segments was compared between exams. Standard dose of three OCM and diluted solutions (75%, 50%, and 25% concentrations) were introduced serially in a gastrointestinal phantom and scanned using SECT (120, 100, and 80 kVp) and DECT (80/140 kVp) acquisitions on a ssDECT scanner. Luminal attenuation was obtained on SECT and DECT images (40-70 keV), and compared to 120-kVp scans with standard OCM concentrations. Luminal attenuation was higher on 100-kVp (328 HU) and on 40-60-keV images (410-924 HU) in comparison to 120-kVp scans (298 HU) in groups A and B (p < 0.05). Phantom: There was an inverse correlation between luminal attenuation and X-ray energy, increasing up to 527 HU on low-kVp and 999 HU on low-keV images (p < 0.05). 25% and 50% diluted OCM solutions provided similar or higher attenuation than 120 kVp, at low kVp and keV, respectively. Low-energy CT imaging increases the attenuation of GIT opacified with positive OCM, permitting reduction of 25%-75% OCM concentration.

  13. The application of micro-column solid phase extraction techniques for the determination of rare earth elements in actinide containing matrices

    International Nuclear Information System (INIS)

    Carney, K.P.; Cummings, D.G.

    1995-01-01

    The design and characterization of an argon segmented-solid phase extraction system is described. A 200 ul volume micro-column has been constructed for the preconcentration of rare earth elements (REEs) from salt matrices containing uranium. An inductively coupled plasma atomic emission spectrometer has been utilized for simultaneous detection of Sr, Y and the REEs (namely Ce, Eu, La, Nd, Pr, Sm) at levels ranging from 5- to 2000 ppm in LiCl/KCl samples containing U. Preconcentration factors of 100 fold have been demonstrated. The precision, linear dynamic range and column performance of the system will be presented. (author). 5 refs., 5 figs., 3 tabs

  14. Virtual substitution scan via single-step free energy perturbation.

    Science.gov (United States)

    Chiang, Ying-Chih; Wang, Yi

    2016-02-05

    With the rapid expansion of our computing power, molecular dynamics (MD) simulations ranging from hundreds of nanoseconds to microseconds or even milliseconds have become increasingly common. The majority of these long trajectories are obtained from plain (vanilla) MD simulations, where no enhanced sampling or free energy calculation method is employed. To promote the 'recycling' of these trajectories, we developed the Virtual Substitution Scan (VSS) toolkit as a plugin of the open-source visualization and analysis software VMD. Based on the single-step free energy perturbation (sFEP) method, VSS enables the user to post-process a vanilla MD trajectory for a fast free energy scan of substituting aryl hydrogens by small functional groups. Dihedrals of the functional groups are sampled explicitly in VSS, which improves the performance of the calculation and is found particularly important for certain groups. As a proof-of-concept demonstration, we employ VSS to compute the solvation free energy change upon substituting the hydrogen of a benzene molecule by 12 small functional groups frequently considered in lead optimization. Additionally, VSS is used to compute the relative binding free energy of four selected ligands of the T4 lysozyme. Overall, the computational cost of VSS is only a fraction of the corresponding multi-step FEP (mFEP) calculation, while its results agree reasonably well with those of mFEP, indicating that VSS offers a promising tool for rapid free energy scan of small functional group substitutions. This article is protected by copyright. All rights reserved. © 2016 Wiley Periodicals, Inc.

  15. Selective extraction of phospholipids from dairy products by micro-solid phase extraction based on titanium dioxide microcolumns followed by MALDI-TOF-MS analysis

    DEFF Research Database (Denmark)

    Calvano, Cosima; Jensen, Ole; Zambonin, Carlo

    2009-01-01

    A new micro-solid phase extraction (micro-SPE) procedure based on titanium dioxide microcolumns was developed for the selective extraction of phospholipids (PLs) from dairy products before matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. All...... the extraction steps (loading, washing, and elution) have been optimized using a synthetic mixture of PLs standard and the procedure was subsequently applied to food samples such as milk, chocolate milk and butter. The whole method demonstrated to be simpler than traditional approaches and it appears very...

  16. Studies of superconductors using a low-temperature, high-field scanning tunneling microscope

    International Nuclear Information System (INIS)

    Kirtley, J.R.; Feenstra, R.M.; Fein, A.P.

    1988-01-01

    We have developed a scanning tunneling microscope (STM) capable of operating at temperatures as low as 0.4 K and fields as high as 8 T. We have used this STM to study the energy gap of the high-T/sub c/ superconductors La--Sr--Cu--O and Y--Ba--Cu--O. We find that the reduced gap for these oxide superconductors falls in the range 3<2Δ/k/sub B/T/sub c/<7, for polycrystalline, single-crystal, and thin-film samples. We have also simultaneously imaged the surface topography and superconducting energy gap for thin films of the granular superconductor NbN. We occasionally see regions with smaller best-fit gaps that correlate with surface topographical features, but have been unable so far to image flux vortices

  17. Development of a scanning nearfield optical microscope for low-temperature investigations of semiconductor nanostructures

    International Nuclear Information System (INIS)

    Hodeck, Kai Friedrich

    2009-01-01

    In the present work the electronic structure of MOCVD-grown InGaAs/GaAs and InAs/GaAs quantum dots which are characterized by a particularly low ground state transition energy, was investigated using Scanning Nearfield Optical Microscopy (SNOM). The pivotal question of the presented investigations is, which influence the interaction of the confined carriers has on the energy states of the biexcitons and the multiexcitons in a quantum dot. Therefore, photoluminescence spectra of single quantum dots were investigated under varying excitation intensity at different temperatures between 5 K and 300 K. The construction of a novel scanning nearfield microscope especially for low temperatures allowed the investigation of single quantum dots. Due to significant improvements of the positioning technology and the shear-force distance control between the sample and the nearfield probe a stable scanning of the quantum dot samples at 5 K could be demonstrated, showing a lateral optical resolution of 200 nm. This way, in the photoluminescence spectroscopy of single quantum dots the thermal linewidth broadening of the detected light was reduced down to a value of less than 1 meV, which allowed the identification of the transitions of biexcitons and multiexcitons. On the basis of the performed measurements, for the InGaAs/GaAs quantum dots a biexciton state was identified, with variable binding energies of 2-7 meV. Furthermore, a positively charged trion state with a binding energy of 11 meV was observed, showing high emission intensity, which can be assigned to the sample doping. Accordingly, for the positively charged biexciton state a binding energy of 11 meV can be announced. For the investigated InAs/GaAs quantum dots a biexciton state with binding energies of 3-4 meV was found. Some of the investigated InAs/GaAs quantum dots showed the formation of positively charged states, in particular of a trion state with a binding energy of 3 meV, and of the positively charged

  18. Development of a scanning nearfield optical microscope for low-temperature investigations of semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hodeck, Kai Friedrich

    2009-02-19

    In the present work the electronic structure of MOCVD-grown InGaAs/GaAs and InAs/GaAs quantum dots which are characterized by a particularly low ground state transition energy, was investigated using Scanning Nearfield Optical Microscopy (SNOM). The pivotal question of the presented investigations is, which influence the interaction of the confined carriers has on the energy states of the biexcitons and the multiexcitons in a quantum dot. Therefore, photoluminescence spectra of single quantum dots were investigated under varying excitation intensity at different temperatures between 5 K and 300 K. The construction of a novel scanning nearfield microscope especially for low temperatures allowed the investigation of single quantum dots. Due to significant improvements of the positioning technology and the shear-force distance control between the sample and the nearfield probe a stable scanning of the quantum dot samples at 5 K could be demonstrated, showing a lateral optical resolution of 200 nm. This way, in the photoluminescence spectroscopy of single quantum dots the thermal linewidth broadening of the detected light was reduced down to a value of less than 1 meV, which allowed the identification of the transitions of biexcitons and multiexcitons. On the basis of the performed measurements, for the InGaAs/GaAs quantum dots a biexciton state was identified, with variable binding energies of 2-7 meV. Furthermore, a positively charged trion state with a binding energy of 11 meV was observed, showing high emission intensity, which can be assigned to the sample doping. Accordingly, for the positively charged biexciton state a binding energy of 11 meV can be announced. For the investigated InAs/GaAs quantum dots a biexciton state with binding energies of 3-4 meV was found. Some of the investigated InAs/GaAs quantum dots showed the formation of positively charged states, in particular of a trion state with a binding energy of 3 meV, and of the positively charged

  19. Low Energy Contrast of Metal Matrix Composite in SEM

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Matsuda, K.; Hrnčiřík, Petr; Müllerová, Ilona

    2003-01-01

    Roč. 9, Sup. 3 (2003), s. 328 - 329 ISSN 1431-9276. [MC 2003. Dresden, 07.09.2003-12.09.2003] R&D Projects: GA AV ČR IAA1065304 Institutional research plan: CEZ:AV0Z2065902 Keywords : low energy contrasts * scanning electron microscope * aluminium alloys Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.648, year: 2003

  20. Some practical aspects of dual-energy CT scanning

    Energy Technology Data Exchange (ETDEWEB)

    Dunscombe, P.B.; Katz, D.E.; Stacey, A.J. (Charing Cross Group of Hospitals, London (UK))

    1984-01-01

    Using the dual-energy scanning method developed by Brooks (1977), and making slow x-ray scans at 100 kVp, 35 mA and 140 kVp, 20 mA, measurements were made of electron density and effective atomic number in the lumbar spines of 36 patients aged from 22 to 87 years, and not known to be suffering from conditions which result in osteoporosis or osteomalacia. The authors discuss in detail the sources of experimental error which contributed to the large measured spread of normal values of electron density and effective atomic number.

  1. Investigation into Generation of Micro Features by Localised Electrochemical Deposition

    Science.gov (United States)

    Debnath, Subhrajit; Laskar, Hanimur Rahaman; Bhattacharyya, B.

    2017-11-01

    With the fast advancement of technology, localised electrochemical deposition (LECD) is becoming very advantageous in generating high aspect ratio micro features to meet the steep demand in modern precision industries of the present world. Except many other advantages, this technology is highly uncomplicated and economical for fabricating metal micro-parts with in micron ranges. In the present study, copper micro-columns have been fabricated utilizing LECD process. Different process parameters such as voltage, frequency, duty ratio and electrolyte concentration, which affect the deposition performance have been identified and their effects on deposition performances such as deposition rate, height and diameter of the micro-columns have been experimentally investigated. Taguchi's methodology has been used to study the effects as well as to obtain the optimum values of process parameters so that localised deposition with best performance can be achieved. Moreover, the generated micro-columns were carefully observed under optical and scanning electron microscope from where the surface quality of the deposited micro-columns has been studied qualitatively. Also, an array of copper micro-columns has been fabricated on stainless steel (SS-304) substrate for further exploration of LECD process capability.

  2. Fast IMRT with narrow high energy scanned photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, Bjoern; Straaring t, Sara Janek; Holmberg, Rickard; Naefstadius, Peder; Brahme, Anders [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm (Sweden); Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm, Sweden and Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden)

    2011-08-15

    Purpose: Since the first publications on intensity modulated radiation therapy (IMRT) in the early 1980s almost all efforts have been focused on fairly time consuming dynamic or segmental multileaf collimation. With narrow fast scanned photon beams, the flexibility and accuracy in beam shaping increases, not least in combination with fast penumbra trimming multileaf collimators. Previously, experiments have been performed with full range targets, generating a broad bremsstrahlung beam, in combination with multileaf collimators or material compensators. In the present publication, the first measurements with fast narrow high energy (50 MV) scanned photon beams are presented indicating an interesting performance increase even though some of the hardware used were suboptimal. Methods: Inverse therapy planning was used to calculate optimal scanning patterns to generate dose distributions with interesting properties for fast IMRT. To fully utilize the dose distributional advantages with scanned beams, it is necessary to use narrow high energy beams from a thin bremsstrahlung target and a powerful purging magnet capable of deflecting the transmitted electron beam away from the generated photons onto a dedicated electron collector. During the present measurements the scanning system, purging magnet, and electron collimator in the treatment head of the MM50 racetrack accelerator was used with 3-6 mm thick bremsstrahlung targets of beryllium. The dose distributions were measured with diodes in water and with EDR2 film in PMMA. Monte Carlo simulations with geant4 were used to study the influence of the electrons transmitted through the target on the photon pencil beam kernel. Results: The full width at half-maximum (FWHM) of the scanned photon beam was 34 mm measured at isocenter, below 9.5 cm of water, 1 m from the 3 mm Be bremsstrahlung target. To generate a homogeneous dose distribution in a 10 x 10 cm{sup 2} field, the authors used a spot matrix of 100 equal intensity

  3. Some practical aspects of dual-energy CT scanning

    International Nuclear Information System (INIS)

    Dunscombe, P.B.; Katz, D.E.; Stacey, A.J.

    1984-01-01

    Using the dual-energy scanning method developed by Brooks (1977), and making slow x-ray scans at 100 kVp, 35 mA and 140 kVp, 20 mA, measurements were made of electron density and effective atomic number in the lumbar spines of 36 patients aged from 22 to 87 years, and not known to be suffering from conditions which result in osteoporosis or osteomalacia. The authors discuss in detail the sources of experimental error which contributed to the large measured spread of normal values of electron density and effective atomic number. (U.K.)

  4. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    The distribution of arsenic (As) and cadmium (Cd) in himematsutake was analyzed using scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX). The atomic percentage of the metals was confirmed by inductively coupled plasma-mass spectrometer (ICP-MS). Results show that the accumulation of ...

  5. Optimal Scanning Protocols for Dual-Energy CT Angiography in Peripheral Arterial Stents: An in Vitro Phantom Study

    Directory of Open Access Journals (Sweden)

    Abdulrahman Almutairi

    2015-05-01

    Full Text Available Objective: To identify the optimal dual-energy computed tomography (DECT scanning protocol for peripheral arterial stents while achieving a low radiation dose, while still maintaining diagnostic image quality, as determined by an in vitro phantom study. Methods: Dual-energy scans in monochromatic spectral imaging mode were performed on a peripheral arterial phantom with use of three gemstone spectral imaging (GSI protocols, three pitch values, and four kiloelectron volts (keV ranges. A total of 15 stents of different sizes, materials, and designs were deployed in the phantom. Image noise, the signal-to-noise ratio (SNR, different levels of adaptive statistical iterative reconstruction (ASIR, and the four levels of monochromatic energy for DECT imaging of peripheral arterial stents were measured and compared to determine the optimal protocols. Results: A total of 36 scans with 180 datasets were reconstructed from a combination of different protocols. There was a significant reduction of image noise with a higher SNR from monochromatic energy images between 65 and 70 keV in all investigated preset GSI protocols (p < 0.05. In addition, significant effects were found from the main effect analysis for these factors: GSI, pitch, and keV (p = 0.001. In contrast, there was significant interaction on the unstented area between GSI and ASIR (p = 0.015 and a very high significant difference between keV and ASIR (p < 0.001. A radiation dose reduction of 50% was achieved. Conclusions: The optimal scanning protocol and energy level in the phantom study were GSI-48, pitch value 0.984, and 65 keV, which resulted in lower image noise and a lower radiation dose, but with acceptable diagnostic images.

  6. Ultra low-K shrinkage behavior when under electron beam in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lorut, F.; Imbert, G. [ST Microelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Roggero, A. [Centre National d' Etudes Spatiales, 18 Avenue Edouard Belin, 31400 Toulouse (France)

    2013-08-28

    In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, with a densification of the layer and a loss of carbon and hydrogen elements being observed.

  7. Dynamic Low-Vacuum Scanning Electron Microscope Freeze Drying Observation for Fresh Water Algae

    International Nuclear Information System (INIS)

    Mohsen, H.T.; Ghaly, W.A.; Zahran, N.F.; Helal, A.I.

    2010-01-01

    A new perpetration method for serving in dynamic examinations of the fresh water algae is developed in connection with the Low-Vacuum Scanning Electron Microscope (LV-SEM) freeze drying technique. Specimens are collected from fresh water of Ismailia channel then transferred directly to freeze by liquid nitrogen and dried in the chamber of the scanning electron microscope in the low vacuum mode. Scanning electron micrographs revealed that the drying method presented the microstructure of algae. Dehydration in a graded ethanol series is not necessary in the new method. Dried algae specimen is observed in SEM high vacuum mode after conductive coating at higher resolution. Low-vacuum SEM freeze drying technique is a simple, time-saving and reproducible method for scanning electron microscopy that is applicable to various aquatic microorganisms covered with soft tissues.

  8. Analysis of the response dependence of Ebt3 radiochromic film with energy, dose rate, wavelength, scanning mode and humidity

    International Nuclear Information System (INIS)

    Leon M, E. Y.; Camacho L, M. A.; Herrera G, J. A.; Garcia G, O. A.; Villarreal B, J. E.

    2016-10-01

    With the development of new modalities in radiotherapy treatments, the use of radiochromic films has increased considerably. Because the characteristics that presented, they are suitable for quality control and dose measurement. In this work and analysis of the dependence of the response of Ebt3 radiochromic films with energy, dose rate, wavelength, scan mode and humidity, for a dose range of 0-70 Gy is presented. According to the results, the response of Ebt3 radiochromic films has low dependence on energy, dose rate, scan mode and humidity. However, the sensitivity of the response Ebt3 radiochromic films has a high dependence on the wavelength of the optical system used for reading. (Author)

  9. Proceedings of RIKEN BNL Resarch Center Workshop: Fluctuations, Correlations and RHIC Low Energy Runs

    Energy Technology Data Exchange (ETDEWEB)

    Karsch, F.; Kojo, T.; Mukherjee, S.; Stephanov, M.; Xu, N.

    2011-10-27

    Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that at zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical

  10. RF Phase Scan for Beam Energy Measurement of KOMAC DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hansung; Kwon, Hyeokjung; Kim, Seonggu; Lee, Seokgeun; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The energy gain through the drift tube linac is a function of the synchronous phase, therefore, the output beam energy from DTL can be affected by the RF phase setting in low-level RF (LLRF) system. The DTL at Korea Multi-purpose Accelerator Complex (KOMAC) consists of 11 tanks and the RF phase setting in each tank should be matched for synchronous acceleration in successive tanks. That means a proper setting of RF phase in each DTL tank is critical for efficient and loss-free operation. The matching RF phase can be determined based on the output energy measurement from the DTL tank. The beam energy can be measured by several methods. For example, we can use a bending magnet to determine the beam energy because the higher momentum of beam means the less deflection angle in the fixed magnetic field. By measuring the range of proton beam through a material with known stopping power also can be utilized to determine the beam energy. We used a well-known time-of-flight method to determine the output beam energy from the DTL tank by measuring beam phase with a beam position monitor (BPM). Based on the energy measurement results, proper RF operating point could be obtained. We performed a RF phase scan to determine the output beam energy from KOMAC DTL by using a time-of-flight method and to set RF operating point precisely. The measured beam energy was compared with a beam dynamics simulation and showed a good agreement. RF phase setting is critical issue for the efficient operation of the proton accelerator, we have a plan to implement and integrate the RF phase measurement system into an accelerator control system for future need.

  11. Contrast at Very Low Energies of the Gold/Carbon Specimen for Resolution Testing

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Frank, Luděk

    2004-01-01

    Roč. 25, 18/24 (2004), s. 18-24 ISSN 0161-0457 R&D Projects: GA AV ČR IAA1065304 Keywords : scanning electron microscope * very low energy * cathode lens Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.892, year: 2004

  12. Highly efficient proteome analysis with combination of protein pre-fractionation by preparative microscale solution isoelectric focusing and identification by μRPLC-MS/MS with serially coupled long microcolumn.

    Science.gov (United States)

    Tao, Dingyin; Sun, Liangliang; Zhu, Guijie; Liang, Yu; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2011-01-01

    To improve the efficiency of proteome analysis, a strategy with the combination of protein pre-fractionation by preparative microscale solution isoelectric focusing, peptide separation by μRPLC with serially coupled long microcolumn and protein identification by ESI-MS/MS was proposed. By preparative microscale solution isoelectric focusing technique, proteins extracted from whole cell lysates of Escherichia coli were fractionated into five chambers divided by isoelectric membranes, respectively with pH range from 3.0 to 4.6, 4.6 to 5.4, 5.4 to 6.2, 6.2 to 7.0 and 7.0 to 10.0. Compared to the traditional on-gel IFF, the protein recovery could be obviously improved to over 95%. Subsequently, the enriched and fractionated proteins in each chamber were digested, and further separated by a 30-cm long serially coupled RP microcolumn. Through the detection by ESI-MS/MS, about 200 proteins were identified in each fraction, and in total 835 proteins were identified even with one-dimensional μRPLC-MS/MS system. All these results demonstrate that by such a combination strategy, highly efficient proteome analysis could be achieved, not only due to the in-solution protein enrichment and pre-fractionation with improved protein recovery but also owing to the increased separation capacity of serially coupled long μRPLC columns. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates

    Science.gov (United States)

    Dhillon, Navdeep Singh

    The modern world is run by semiconductor-based electronic systems. Due to continuous improvements in semiconductor device fabrication, there is a clear trend in the market towards the development of electronic devices and components that not only deliver enhanced computing power, but are also more compact. Thermal management has emerged as the primary challenge in this scenario where heat flux dissipation of electronic chips is increasing exponentially, but conventional cooling solutions such as conduction and convection are no longer feasible. To keep device junction temperatures within the safe operating limit, there is an urgent requirement for ultra-high-conductivity thermal substrates that not only absorb and transport large heat fluxes, but can also provide localized cooling to thermal hotspots. This dissertation describes the design, modeling, and fabrication of a phase change-based, planar, ultra-thin, passive thermal transport system that is inspired by the concept of loop heat pipes and capillary pumped loops. Fabricated on silicon and Pyrex wafers using microfabrication techniques, the micro-columnated loop heat pipe (muCLHP) can be integrated directly with densely packed or multiply-stacked electronic substrates, to provide localized high-heat-flux thermal management. The muCLHP employs a dual-scale coherent porous silicon(CPS)-based micro-columnated wicking structure, where the primary CPS wick provides large capillary forces for fluid transport, while a secondary surface-wick maximizes the rate of thin-film evaporation. To overcome the wick thickness limitation encountered in conventional loop heat pipes, strategies based on MEMS surface micromachining techniques were developed to reduce parasitic heat flow from the evaporator to the compensation chamber of the device. Finite element analysis was used to confirm this reduction in a planar evaporator design, thus enabling the generation of a large motive temperature head for continuous device operation

  14. Unsynchronized scanning with a low-cost laser range finder for real-time range imaging

    Science.gov (United States)

    Hatipoglu, Isa; Nakhmani, Arie

    2017-06-01

    Range imaging plays an essential role in many fields: 3D modeling, robotics, heritage, agriculture, forestry, reverse engineering. One of the most popular range-measuring technologies is laser scanner due to its several advantages: long range, high precision, real-time measurement capabilities, and no dependence on lighting conditions. However, laser scanners are very costly. Their high cost prevents widespread use in applications. Due to the latest developments in technology, now, low-cost, reliable, faster, and light-weight 1D laser range finders (LRFs) are available. A low-cost 1D LRF with a scanning mechanism, providing the ability of laser beam steering for additional dimensions, enables to capture a depth map. In this work, we present an unsynchronized scanning with a low-cost LRF to decrease scanning period and reduce vibrations caused by stop-scan in synchronized scanning. Moreover, we developed an algorithm for alignment of unsynchronized raw data and proposed range image post-processing framework. The proposed technique enables to have a range imaging system for a fraction of the price of its counterparts. The results prove that the proposed method can fulfill the need for a low-cost laser scanning for range imaging for static environments because the most significant limitation of the method is the scanning period which is about 2 minutes for 55,000 range points (resolution of 250x220 image). In contrast, scanning the same image takes around 4 minutes in synchronized scanning. Once faster, longer range, and narrow beam LRFs are available, the methods proposed in this work can produce better results.

  15. Probing Free-Energy Surfaces with Differential Scanning Calorimetry

    Science.gov (United States)

    Sanchez-Ruiz, Jose M.

    2011-05-01

    Many aspects of protein folding can be understood in terms of projections of the highly dimensional energy landscape onto a few (or even only one) particularly relevant coordinates. These free-energy surfaces can be probed conveniently from experimental differential scanning calorimetry (DSC) thermograms, as DSC provides a direct relation with the protein partition function. Free-energy surfaces thus obtained are consistent with two fundamental scenarios predicted by the energy-landscape perspective: (a) well-defined macrostates separated by significant free-energy barriers, in some cases, and, in many other cases, (b) marginal or even vanishingly small barriers, which furthermore show a good correlation with kinetics for fast- and ultrafast-folding proteins. Overall, the potential of DSC to assess free-energy surfaces for a wide variety of proteins makes it possible to address fundamental issues, such as the molecular basis of the barrier modulations produced by natural selection in response to functional requirements or to ensure kinetic stability.

  16. Direct nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation.

    Science.gov (United States)

    El Mel, Abdel-Aziz; Stephant, Nicolas; Gautier, Romain

    2016-10-06

    In this communication, we report on the growth, direct writing and nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation using a scanning electron microscope. The nanoblocks are produced by placing a droplet of an ethylene glycol solution containing silver nitrate and polyvinylpyrrolidone diluted in ethanol directly on a hot substrate heated up to 150 °C. Upon complete evaporation of the droplet, nanospheres, nano- and micro-triangles and nanoblocks made of silver-containing polymers, form over the substrate surface. Considering the nanoblocks as a model system, we demonstrate that such nanostructures are extremely sensitive to the e-beam extracted from the source of a scanning electron microscope operating at low acceleration voltages (between 5 and 7 kV). This sensitivity allows us to efficiently create various nanopatterns (e.g. arrays of holes, oblique slits and nanotrenches) in the material under e-beam irradiation. In addition to the possibility of writing, the nanoblocks revealed a self-healing ability allowing them to recover a relatively smooth surface after etching. Thanks to these properties, such nanomaterials can be used as a support for data writing and erasing on the nanoscale under low energy electron beam irradiation.

  17. hepawk - A language for scanning high energy physics events

    International Nuclear Information System (INIS)

    Ohl, T.

    1992-01-01

    We present the programming language hepawk, designed for convenient scanning of data structures arising in the simulation of high energy physics events. The interpreter for this language has been implemented in FORTRAN-77, therefore hepawk runs on any machine with a FORTRAN-77 compiler. (orig.)

  18. Calculated and experimental low-loss electron energy loss spectra of dislocations in diamond and GaN

    CERN Document Server

    Jones, R; Gutiérrez-Sosa, A; Bangert, U; Heggie, M I; Blumenau, A T; Frauenheim, T; Briddon, P R

    2002-01-01

    First-principles calculations of electron energy loss (EEL) spectra for bulk GaN and diamond are compared with experimental spectra acquired with a scanning tunnelling electron microscope offering ultra-high-energy resolution in low-loss energy spectroscopy. The theoretical bulk low-loss EEL spectra, in the E sub g to 10 eV range, are in good agreement with experimental data. Spatially resolved spectra from dislocated regions in both materials are distinct from bulk spectra. The main effects are, however, confined to energy losses lying above the band edge. The calculated spectra for low-energy dislocations in diamond are consistent with the experimental observations, but difficulties remain in understanding the spectra of threading dislocations in GaN.

  19. Low energy intense electron beams with extra-low energy spread

    International Nuclear Information System (INIS)

    Aleksandrov, A.V.; Calabrese, R.; Ciullo, G.; Dikansky, N.S.; Guidi, V.; Kot, N.C.; Kudelainen, V.I.; Lamanna, G.; Lebedev, V.A.; Logachov, P.V.; Tecchio, L.; Yang, B.

    1994-01-01

    Maximum achievable intensity for low energy electron beams is a feature that is not very often compatible with low energy spread. We show that a proper choice of the source and the acceleration optics allows one to match them together. In this scheme, a GaAs photocathode excited by a single-mode infrared laser and adiabatic acceleration in fully magnetised optics enables the production of a low-energy-spread electron beam with relatively high intensity. The technological problems associated with the method are discussed together with its limitations. (orig.)

  20. Mass spectrometric protein characterization in proteome analysis using GELoader tip micro-columns packed with various chromatographic material

    International Nuclear Information System (INIS)

    Larsen, M.R.

    2001-01-01

    In the early 90'ies mass spectrometry (MS) was introduced as a tool for identifying proteins in protein sequence databases. Since then it has become an integrated tool in protein characterization and is today routinely used to identify proteins separated by gel electrophoresis. A two-tiered mass spectrometric protein identification strategy has recently been proposed. In the first strategy peptide mass maps obtained from the protein of interest are compared with theoretically derived peptide mass maps from proteins in protein sequence databases. If the protein cannot be identified by this strategy, tandem mass spectrometric sequencing is used to generate enough sequence data to identify the protein in protein sequence databases or expressed sequence tag (EST) databases. However, the above strategies primarily identify a protein relatively to the DNA sequence, in which no information about e.g. post-translational modifications (PTMs) is stored. PTMs are known to modify the function, location, solubility and activity of proteins in the cell, and they are therefore very important for understanding living cells. More than 200 different PTMs are known, of which glycosylation, phosphorylation and proteolytic processing are the most common ones. Mass spectrometric analysis of PTMs on gel-separated proteins requires a higher amount of protein than for identification only. In addition, higher sequence coverage from the peptide mass maps or pre-purification of the modified peptides prior to MS analysis, is necessary for detection of putative modified peptides. In this study a multi-tiered strategy, in which GELoader tip micro-columns packed with increasingly more hydrophobic chromatographic material are used in combination with mass spectrometry, is described. The ultimate aim was to gain increased sequence coverage from peptide mixtures derived from gel-separated proteins, in order to locate modified peptides. Graphite powder is described as an alternative to traditional

  1. Study of multi-layered graphene by ultra-low energy SEM/STEM

    Czech Academy of Sciences Publication Activity Database

    Mikmeková, Eliška; Frank, Luděk; Müllerová, Ilona; Li, B. W.; Ruoff, R. S.; Lejeune, M.

    2016-01-01

    Roč. 63, March 2016 (2016), s. 136-142 ISSN 0925-9635 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212 EU Projects: European Commission(XE) 606988 - SIMDALEE2 Institutional support: RVO:68081731 Keywords : scanning ultra low energy electron microscopy * graphene * contamination * CVD Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.561, year: 2016

  2. Exploitation of Contrasts in Low Energy SEM to Reveal True Microstructure

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Mikmeková, Šárka; Mikmeková, Eliška; Pokorná, Zuzana; Frank, Luděk

    2014-01-01

    Roč. 20, S3 (2014), s. 858-859 ISSN 1431-9276 R&D Projects: GA TA ČR TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : scanning low energy electron microscopy * contrast * cathode lens Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.877, year: 2014

  3. Bone scan: A useful test for evaluating patients with low back pain

    International Nuclear Information System (INIS)

    Collier, B.D.; Kir, K.M.; Mills, B.J.A.; Patel, N.C.; Pochis, W.T.; Onsel, C.; Liu, Y.; Turoglu, H.T.

    1990-01-01

    For many years it has been known that the sensitivity of bone scanning to the presence of destructive bony lesions favors its use in screning for bone metastases and osteomyelitis. More recently bone scanning has been routinely employed in evaluating benign skeletal pathology that may be the cause of low back pain. Bone scanning can play an important part identifying the cause of pain, clarifying the significance of radiographic findings, and evaluating the results of spinal surgery. This expansion of the role of nuclear medicine in diagnosing and managing low back pain is based in part upon novel diagnostic applications of 99m Tc-methylene diphosphonate, a radiopharmaceutical that has been available for over 15 years. Equally important for this development, however, has been the recent availability of SPECT, a tomographic imaging technique that can be used to display the spine in a series of 6- to 8-mm thick sections. Slightly more than one-half of newly purchased gamma cameras are rotating systems suitable for bone SPECT studies. Thus, many community hospitals can now perform state-of-the-art bone scans for low back pain. (orig.)

  4. Simulations and measurements in scanning electron microscopes at low electron energy

    Czech Academy of Sciences Publication Activity Database

    Walker, C.; Frank, Luděk; Müllerová, Ilona

    2016-01-01

    Roč. 38, č. 6 (2016), s. 802-818 ISSN 0161-0457 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 EU Projects: European Commission(XE) 606988 - SIMDALEE2 Institutional support: RVO:68081731 Keywords : Monte Carlo modeling * scanned probe * computer simulation * electron-solid interactions * surface analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.345, year: 2016

  5. Wave Optical Calculation of Probe Size in Low Energy Scanning Electron Microscope

    Czech Academy of Sciences Publication Activity Database

    Radlička, Tomáš

    2015-01-01

    Roč. 21, S4 (2015), s. 212-217 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : scanning electron microscope * optical calculation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  6. Sharing of secondary electrons by in-lens and out-lens detector in low-voltage scanning electron microscope equipped with immersion lens.

    Science.gov (United States)

    Kumagai, Kazuhiro; Sekiguchi, Takashi

    2009-03-01

    To understand secondary electron (SE) image formation with in-lens and out-lens detector in low-voltage scanning electron microscopy (LV-SEM), we have evaluated SE signals of an in-lens and an out-lens detector in LV-SEM. From the energy distribution spectra of SEs with various boosting voltages of the immersion lens system, we revealed that the electrostatic field of the immersion lens mainly collects electrons with energy lower than 40eV, acting as a low-pass filter. This effect is also observed as a contrast change in LV-SEM images taken by in-lens and out-lens detectors.

  7. Charge-coupled device area detector for low energy electrons

    International Nuclear Information System (INIS)

    Horacek, Miroslav

    2003-01-01

    A fast position-sensitive detector was designed for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope (SLEEM), based on a thinned back-side directly electron-bombarded charged-coupled device (CCD) sensor (EBCCD). The principle of the SLEEM operation and the motivation for the development of the detector are explained. The electronics of the detector is described as well as the methods used for the measurement of the electron-bombarded gain and of the dark signal. The EBCCD gain of 565 for electron energy 5 keV and dynamic range 59 dB for short integration time up to 10 ms at room temperature were obtained. The energy dependence of EBCCD gain and the detection efficiency are presented for electron energy between 2 and 5 keV, and the integration time dependence of the output signals under dark conditions is given for integration time from 1 to 500 ms

  8. Application of low-dose radiation protocols in survey CT scans

    International Nuclear Information System (INIS)

    Fu Qiang; Liu Ting; Lu Tao; Xu Ke; Zhang Lin

    2009-01-01

    Objective: To characterize the protocols with low-dose radiation in survey CT scans for localization. Methods: Eighty standard adult patients, head and body phantoms were recruited. Default protocols provided by operator's manual setting were that all the tube voltage for head, chest, abdomen and lumbar was 120 kV; the tube currents were 20,10,20 and 40 mA, respectively. Values of kV and mA in the low-dose experiments were optimized according to the device options. For chest and abdomen, the tube position were compared between default (0 degree) and 180 degree. Phantoms were scanned with above protocols, and the radiation doses were measured respectively. Paired t-test were used for comparisons of standard deviation in CT value, noise and exposure surface dose (ESD) between group with default protocols and group with optimized protocols. Results: The optimized protocols in low-dose CT survey scans were 80 kV, 10 mA for head, 80 kV, 10 mA for chest, 80 kV, 10 mA for abdomen and 100 kV, 10 mA for lumbar. The values of ESD for phantom scan in default and optimized protocols were 0.38 mGy/0.16 mGy in head, 0.30 mGy/0.20 mGy in chest, 0.74 mGy/0.30 mGy in abdomen and 0.81 mGy/0.44 mGy in lumbar, respectively. Compared with default protocols, the optimized protocols reduced the radiation doses 59%, 33%, 59% and 46% in head, chest, abdomen and lumbar. When tube position changed from 0 degree to 180 degree, the ESD were 0.24 mGy/0.20 mGy for chest; 0.37 mGy/0.30 mGy for abdomen, and the radiation doses were reduced 20% and 17%. Conclusion: A certain amount of image noise is increased in low-dose protocols, but image quality is still acceptable without problem in CT localization. The reduction of radiation dose and the radiation harm to patients are the superiority. (authors)

  9. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    Science.gov (United States)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  10. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke; Li, Zhean; Chen, Xiangjun, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-08-15

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  11. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-01-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  12. Low-energy electron scattering from molecules, biomolecules and surfaces

    CERN Document Server

    Carsky, Petr

    2011-01-01

    Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. Furthermore, the development of the scanning tunneling microscope highlights the role of such collisions in the condensed phase, in surface processing, and in the development of nanotechnology.Low-Energy Electron Scattering from Molecules, Biomolecule

  13. Fully low voltage and large area searching scanning tunneling microscope

    International Nuclear Information System (INIS)

    Pang, Zongqiang; Wang, Jihui; Lu, Qingyou

    2009-01-01

    We present a novel scanning tunneling microscope (STM), which allows the tip to travel a large distance (millimeters) on the sample and take images (to find microscopic targets) anywhere it reaches without losing atomic resolution. This broad range searching capability, together with the coarse approach and scan motion, is all done with only one single piezoelectric tube scanner as well as with only low voltages (<15 V). Simple structure, low interference and high precision are thus achieved. To this end, a pillar and a tube scanner are mounted in parallel on a base with one ball glued on the pillar top and two balls glued on the scanner top. These three balls form a narrow triangle, which supports a triangular slider piece. By inertial stepping, the scanner can move the slider toward the pillar (coarse approach) or rotate the slider about the pillar (travel along sample surface). Since all the stepping motions are driven by the scanner's lateral bending which is large per unit voltage, high voltages are unnecessary. The technology is also applicable to scanning force microscopes (SFM) such as atomic force microscopes (AFM), etc

  14. Helium ion microscopy and energy selective scanning electron microscopy - two advanced microscopy techniques with complementary applications

    Science.gov (United States)

    Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.

    2014-06-01

    Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.

  15. Role of technetium-99m planar bone scanning in the evaluation of low back pain

    International Nuclear Information System (INIS)

    Valdez, D.C.; Johnson, R.G.

    1994-01-01

    The records of 1018 patients with low back pain in a tertiary spine referral practice were reviewed. One hundred thirty-nine out of 1018 (13.6%) underwent technetium-99m planar bone scannings as part of their investigation. Seventy-three out of 139 scans (52%) showed increased uptake in some area, but only 27 out of 139 (19.4%) showed increased uptake specifically in the low back. Scans consistently yielded no findings with reference to the back when the prescan diagnosis was spinal stenosis, lumbar pain syndrome, herniated nucleus pulposus, or postlaminectomy syndrome. Some scans gave positive findings in patients with a diagnosis of degenerative disc disease, pseudoarthrosis, spondylolisthesis, fracture, infection, metabolic disorder, or tumor. Positive scans were generally obtained early after presentation (within 3 months) and negative scans obtained later (after 6 months), suggesting that clinical suspicion is still the main indication for early scanning. Planar bone scanning was helpful in both diagnosis and therapeutic decision-making in many conditions. (orig.)

  16. Application of dual-energy scanning technique with dual-source CT in pulmonary mass lesions

    International Nuclear Information System (INIS)

    Jiang Jie; Xu Yiming; He Bo; Xie Xiaojie; Han Dan

    2012-01-01

    Objective: To explore the feasibility of DSCT dual-energy technique in pulmonary mass lesions. Methods: A total of 100 patients with pulmonary masses underwent conventional plain CT scan and dual-energy enhanced CT scan. The virtual non-contrast (VNC) images were obtained at post-processing workstation.The mean CT value,enhancement value,signal to noise ratio (SNR), image quality and radiation dose of pulmonary masses were compared between the two scan techniques using F or t test and the detectability of lesions was compared using Wilcoxon test. Results: There was no statistically significant difference among VNC (A) (32.89 ± 12.58) HU,VNC (S) (30.86 ± 9.60) HU and conventional plain images (35.89 ± 9.99) HU in mean CT value of mass (F =2.08, P>0.05). There was statistically significant difference among VNC (A) (3.29 ± 1.45), VNC (S) (3.93 ± 1.49) and conventional plain image (4.61 ± 1.50) in SNR (F =6.01, P<0.05), which of conventional plain scan was higher than that of VNC.The enhancement value of mass in conventional enhanced scan (60.74 ± 13.9) HU and distribution of iodine from VNC (A) (58.26 ± 31.99) HU was no statistically significant difference (t=0.48, P>0.05), but there was a significant difference between conventional enhanced scan (56.51 ± 17.94) HU and distribution of iodine from VNC (S) (52.65 ± 16.78) HU (t=4.45, P<0.05). There was no statistically significant difference among conventional plain scan (4.69 ± 0.06) and VNC (A) (4.60 ± 0.09), VNC (S) (4.61 ±0.11) in image quality at mediastinal window (F=3.014, P>0.05). The appearance, size, internal features of mass (such as necrosis, calcification and cavity) were showed the same in conventional plain scan, VNC (A) and VNC (S). Of 41 patients with hilar mass, 18 patients were found to have lobular and segmental perfusion decrease or defect. Perfusion defect area was found in 59 patients with peripheral lung mass. The radiation dose of dual-energy enhanced scan was lower than that of

  17. On the modification of metal/ceramic interfaces by low energy ion/atom bombardment during film growth

    International Nuclear Information System (INIS)

    Rigsbee, J.M.; Scott, P.A.; Knipe, R.K.; Hock, V.F.

    1986-01-01

    Elemental Cu and Ti films have been deposited onto ceramic substrates with a plasma-aided physical vapor deposition (ion-plating) process. This paper discusses how the structure and chemistry of the metallic film and the metal/ceramic interface are modified by low energy ion and neutral atom bombardment. Emphasis is placed on determining how low energy ion/neutral atom bombardment affects the strength of the metal/ceramic interface. Analyses of the film, interface and substrate regions have employed scanning Auger microprobe, secondary ion mass spectroscopy, SEM/STEM-energy dispersive X-ray and TEM/STEM imaging and microdiffraction techniques. (Auth.)

  18. Low resolution scans can provide a sufficiently accurate, cost- and time-effective alternative to high resolution scans for 3D shape analyses

    Directory of Open Access Journals (Sweden)

    Ariel E. Marcy

    2018-06-01

    Full Text Available Background Advances in 3D shape capture technology have made powerful shape analyses, such as geometric morphometrics, more feasible. While the highly accurate micro-computed tomography (µCT scanners have been the “gold standard,” recent improvements in 3D surface scanners may make this technology a faster, portable, and cost-effective alternative. Several studies have already compared the two devices but all use relatively large specimens such as human crania. Here we perform shape analyses on Australia’s smallest rodent to test whether a 3D scanner produces similar results to a µCT scanner. Methods We captured 19 delicate mouse (Pseudomys delicatulus crania with a µCT scanner and a 3D scanner for geometric morphometrics. We ran multiple Procrustes ANOVAs to test how variation due to scan device compared to other sources such as biologically relevant variation and operator error. We quantified operator error as levels of variation and repeatability. Further, we tested if the two devices performed differently at classifying individuals based on sexual dimorphism. Finally, we inspected scatterplots of principal component analysis (PCA scores for non-random patterns. Results In all Procrustes ANOVAs, regardless of factors included, differences between individuals contributed the most to total variation. The PCA plots reflect this in how the individuals are dispersed. Including only the symmetric component of shape increased the biological signal relative to variation due to device and due to error. 3D scans showed a higher level of operator error as evidenced by a greater spread of their replicates on the PCA, a higher level of multivariate variation, and a lower repeatability score. However, the 3D scan and µCT scan datasets performed identically in classifying individuals based on intra-specific patterns of sexual dimorphism. Discussion Compared to µCT scans, we find that even low resolution 3D scans of very small specimens are

  19. Low-energy district heating in energy-efficient building areas

    International Nuclear Information System (INIS)

    Dalla Rosa, A.; Christensen, J.E.

    2011-01-01

    This paper presents an innovative low-energy district heating (DH) concept based on low-temperature operation. The decreased heating demand from low-energy buildings affects the cost-effectiveness of traditionally-designed DH systems, so we carried out a case study of the annual energy performance of a low-energy network for low-energy houses in Denmark. We took into account the effect of human behaviour on energy demand, the effect of the number of buildings connected to the network, a socio-economic comparison with ground source heat pumps, and opportunities for the optimization of the network design, and operational temperature and pressure. In the north-European climate, we found that human behaviour can lead to 50% higher heating demand and 60% higher heating power than those anticipated in the reference values in the standard calculations for energy demand patterns in energy-efficient buildings. This considerable impact of human behaviour should clearly be included in energy simulations. We also showed that low-energy DH systems are robust systems that ensure security of supply for each customer in a cost-effective and environmentally friendly way in areas with linear heat density down to 0.20 MWh/(m year), and that the levelized cost of energy in low-energy DH supply is competitive with a scenario based on ground source heat pumps. The investment costs represent up to three quarters of the overall expenditure, over a time horizon of 30 years; so, the implementation of an energy system that fully relies on renewable energy needs substantial capital investment, but in the long term this is sustainable from the environmental and socio-economic points of view. Having demonstrated the value of the low-energy DH concept, we evaluated various possible designs with the aim of finding the optimal solution with regard to economic and energy efficiency issues. Here we showed the advantage of low supply and return temperatures, their effect on energy efficiency and that

  20. Extraction of topographic and material contrasts on surfaces from SEM images obtained by energy filtering detection with low-energy primary electrons

    International Nuclear Information System (INIS)

    Nagoshi, Masayasu; Aoyama, Tomohiro; Sato, Kaoru

    2013-01-01

    Secondary electron microscope (SEM) images have been obtained for practical materials using low primary electron energies and an in-lens type annular detector with changing negative bias voltage supplied to a grid placed in front of the detector. The kinetic-energy distribution of the detected electrons was evaluated by the gradient of the bias-energy dependence of the brightness of the images. This is divided into mainly two parts at about 500 V, high and low brightness in the low- and high-energy regions, respectively and shows difference among the surface regions having different composition and topography. The combination of the negative grid bias and the pixel-by-pixel image subtraction provides the band-pass filtered images and extracts the material and topographic information of the specimen surfaces. -- Highlights: ► Scanning electron (SE) images contain many kind of information on material surfaces. ► We investigate energy-filtered SE images for practical materials. ► The brightness of the images is divided into two parts by the bias voltage. ► Topographic and material contrasts are extracted by subtracting the filtered images.

  1. Solar-assisted low energy dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Esbensen, T V

    1980-02-01

    The Zero Energy House Group was formed as a subproject of the CCMS Solar Energy Pilot Study in 1974 by seven participating countries experimenting with solar-assisted low-energy dwellings for temperate and northern European climatic conditions. A Zero Energy House is one in which solar energy is used to meet the reduced energy needs of buildings incorporating various thermal energy conservation features. This final report of the Zero Energy House Group includes brief descriptions of 13 major low-energy dwellings in the participating CCMS countries. An overall assessment of the state-of-the-art in solar-assisted low-energy dwellings is also included.

  2. Energy-Specific Optimization of Attenuation Thresholds for Low-Energy Virtual Monoenergetic Images in Renal Lesion Evaluation.

    Science.gov (United States)

    Patel, Bhavik N; Farjat, Alfredo; Schabel, Christoph; Duvnjak, Petar; Mileto, Achille; Ramirez-Giraldo, Juan Carlos; Marin, Daniele

    2018-05-01

    The purpose of this study was to determine in vitro and in vivo the optimal threshold for renal lesion vascularity at low-energy (40-60 keV) virtual monoenergetic imaging. A rod simulating unenhanced renal parenchymal attenuation (35 HU) was fitted with a syringe containing water. Three iodinated solutions (0.38, 0.57, and 0.76 mg I/mL) were inserted into another rod that simulated enhanced renal parenchyma (180 HU). Rods were inserted into cylindric phantoms of three different body sizes and scanned with single- and dual-energy MDCT. In addition, 102 patients (32 men, 70 women; mean age, 66.8 ± 12.9 [SD] years) with 112 renal lesions (67 nonvascular, 45 vascular) measuring 1.1-8.9 cm underwent single-energy unenhanced and contrast-enhanced dual-energy CT. Optimal threshold attenuation values that differentiated vascular from nonvascular lesions at 40-60 keV were determined. Mean optimal threshold values were 30.2 ± 3.6 (standard error), 20.9 ± 1.3, and 16.1 ± 1.0 HU in the phantom, and 35.9 ± 3.6, 25.4 ± 1.8, and 17.8 ± 1.8 HU in the patients at 40, 50, and 60 keV. Sensitivity and specificity for the thresholds did not change significantly between low-energy and 70-keV virtual monoenergetic imaging (sensitivity, 87-98%; specificity, 90-91%). The AUC from 40 to 70 keV was 0.96 (95% CI, 0.93-0.99) to 0.98 (95% CI, 0.95-1.00). Low-energy virtual monoenergetic imaging at energy-specific optimized attenuation thresholds can be used for reliable characterization of renal lesions.

  3. Simple and efficient scanning tunneling luminescence detection at low-temperature

    NARCIS (Netherlands)

    Keizer, J.G.; Garleff, J.K.; Koenraad, P.M.

    2009-01-01

    We have designed and built an optical system to collect light that is generated in the tunneling region of a low-temperature scanning tunneling microscope. The optical system consists of an in situ lens placed approximately 1.5 cm from the tunneling region and an ex situ optical lens system to

  4. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    Science.gov (United States)

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  5. Electron emission from materials at low excitation energies

    International Nuclear Information System (INIS)

    Urma, N.; Kijek, M.; Millar, J.J.

    1996-01-01

    Full text: An experimental system has been designed and developed with the purpose of measuring the total electron emission yield from materials at low energy excitation. In the first instance the reliability of the system was checked by measuring the total electron emission yield for a well defined surface (aluminium 99.45%). The obtained data was in the expected range given by the literature, and consequently the system will be used further for measuring the total electron yield for a range of materials with interest in the instrumentation industry. We intend to measure the total electron emission yield under electron bombardment as a function of incident electron energy up to 1200 eV, angle of incidence, state of the surface and environment to which the surface has been exposed. Dependence of emission on total electron irradiated dose is also of interest. For many practical application of the 'Secondary Electron Emission', the total electron yield is desired to be as large as possible. The above phenomenon has practical applicability in electron multiplier tube and Scanning electron microscopy - when by means of the variation of the yield of the emitted electrons one may produce visible images of small sample areas. The electron multiplier tube, is a device which utilises the above effect to detect and amplify both single particles and low currents streams of charged particles. The majority of electron tubes use electrons with low energy, hundreds of eV. Not a lot has been published in the literature about this regime and also about the emission when the impinging electrons have small energy, up to 1 KeV. The information obtained from the experimental measurements concerning the total electron emission yield is used to asses the investigated materials as a potential electron emitting surfaces or dynodes in an electron multiplier tube

  6. Scanning probes for new energy materials: probing local structure and function

    NARCIS (Netherlands)

    Balke, N.; Bonnell, D.; Ginger, D.S.; Kemerink, M.

    2012-01-01

    The design and control of materials properties, often at the nanoscale, are the foundation of many new strategies for energy generation, storage, and efficiency. Scanning probe microscopy (SPM) has evolved into a very large toolbox for the characterization of properties spanning size scales from

  7. Scanning Electron Microscopy with Samples in an Electric Field

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Hovorka, Miloš; Mikmeková, Šárka; Mikmeková, Eliška; Müllerová, Ilona; Pokorná, Zuzana

    2012-01-01

    Roč. 5, č. 12 (2012), s. 2731-2756 ISSN 1996-1944 R&D Projects: GA ČR GAP108/11/2270; GA TA ČR TE01020118; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : scanning electron microscopy * slow electrons * low energy SEM * low energy STEM * cathode lens Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.247, year: 2012

  8. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    International Nuclear Information System (INIS)

    Hayashi, Y.; Hirose, Y.; Seno, Y.

    2016-01-01

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 "3 voxels was obtained.

  9. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: y-hayashi@mosk.tytlabs.co.jp; Hirose, Y.; Seno, Y. [Toyota Central R& D Toyota Central R& D Labs., Inc., 41-1 Nagakute Aichi 480-1192 Japan (Japan)

    2016-07-27

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 {sup 3} voxels was obtained.

  10. Low-energy district heating in energy-efficient building areas

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Christensen, Jørgen Erik

    2011-01-01

    of a low-energy network for low-energy houses in Denmark. We took into account the effect of human behaviour on energy demand, the effect of the number of buildings connected to the network, a socio-economic comparison with ground source heat pumps, and opportunities for the optimization of the network...... to 0.20 MWh/(m year), and that the levelized cost of energy in low-energy DH supply is competitive with a scenario based on ground source heat pumps. The investment costs represent up to three quarters of the overall expenditure, over a time horizon of 30 years; so, the implementation of an energy...... system that fully relies on renewable energy needs substantial capital investment, but in the long term this is sustainable from the environmental and socio-economic points of view. Having demonstrated the value of the low-energy DH concept, we evaluated various possible designs with the aim of finding...

  11. On the defect structure due to low energy ion bombardment of graphite

    Science.gov (United States)

    Marton, D.; Bu, H.; Boyd, K. J.; Todorov, S. S.; Al-Bayati, A. H.; Rabalais, J. W.

    1995-03-01

    Graphite surfaces cleaved perpendicular to the c axis have been irradiated with low doses of Ar + ions at 50 eV kinetic energy and perpendicular incidence. Scanning tunneling micrographs (STM) of these irradiated surfaces exhibited dome-like features as well as point defects. These dome-like features retain undisturbed graphite periodicity. This finding is attributed to the stopping of ions between the first and second graphite sheets. The possibility of doping semiconductors at extremely shallow depths is raised.

  12. Occupant satisfaction with new low-energy houses

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Jensen, Ole Michael; Kristensen, Lars

    2012-01-01

    The development and the erection of low-energy buildings have been intensified in recent years. Still, there are only few studies of the energy performance and occupant satisfaction with living in low-energy houses. A questionnaire survey was therefore carried out among occupants of low-energy ho......The development and the erection of low-energy buildings have been intensified in recent years. Still, there are only few studies of the energy performance and occupant satisfaction with living in low-energy houses. A questionnaire survey was therefore carried out among occupants of low......-energy houses. The purpose was to study occupant satisfaction with new low-energy houses concerning i.a. the perceived indoor climate and the technical installations for heating and ventilation. The survey showed an overall satisfaction with the new low-energy houses, but also that there were problems...... occupant satisfaction in existing and future low-energy houses are given....

  13. Microcolumn-based speciation analysis of thallium in soil and green cabbage.

    Science.gov (United States)

    Jia, Yanlong; Xiao, Tangfu; Sun, Jialong; Yang, Fei; Baveye, Philippe C

    2018-07-15

    Thallium (Tl) is a toxic trace metal, whose geochemical behavior and biological effects are closely controlled by its chemical speciation in the environment. However, little tends to be known about this speciation of Tl in soil and plant systems that directly affect the safety of food supplies. In this context, the objective of the present study was to elaborate an efficient method to separate and detect Tl(I) and Tl(III) species for soil and plant samples. This method involves the selective adsorption of Tl(I) on microcolumns filled with immobilized oxine, in the presence of DTPA (diethylenetriaminepentaacetic acid), followed by DTPA-enhanced ultrasonic and heating-induced extraction, coupled with ICP-MS detection. The method was characterized by a LOD of 0.037 μg/L for Tl(I) and 0.18 μg/L for Tl(III) in 10  mL samples. With this method, a second objective of the research was to assess the speciation of Tl in pot and field soils and in green cabbage crops. Experimental results suggest that DTPA extracted Tl was mainly present as Tl(I) in soils (>95%). Tl in hyperaccumulator plant green cabbage was also mainly present as Tl(I) (>90%). With respect to Tl uptake in plants, this study provides direct evidence that green cabbage mainly takes up Tl(I) from soil, and transports it into the aboveground organs. In soils, Tl(III) is reduced to Tl(I) even at the surface where the chemical environment promotes oxidation. This observation is conducive to understanding the mechanisms of Tl isotope fractionation in the soil-plant system. Based on geochemical fraction studies, the reducible fraction was the main source of Tl getting accumulated by plants. These results indicate that the improved analytical method presented in this study offers an economical, simple, fast, and sensitive approach for the separation of Tl species present in soils at trace levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Low-Temperature Reduction of Graphene Oxide: Electrical Conductance and Scanning Kelvin Probe Force Microscopy

    Science.gov (United States)

    Slobodian, Oleksandr M.; Lytvyn, Peter M.; Nikolenko, Andrii S.; Naseka, Victor M.; Khyzhun, Oleg Yu.; Vasin, Andrey V.; Sevostianov, Stanislav V.; Nazarov, Alexei N.

    2018-05-01

    Graphene oxide (GO) films were formed by drop-casting method and were studied by FTIR spectroscopy, micro-Raman spectroscopy (mRS), X-ray photoelectron spectroscopy (XPS), four-points probe method, atomic force microscopy (AFM), and scanning Kelvin probe force (SKPFM) microscopy after low-temperature annealing at ambient conditions. It was shown that in temperature range from 50 to 250 °C the electrical resistivity of the GO films decreases by seven orders of magnitude and is governed by two processes with activation energies of 6.22 and 1.65 eV, respectively. It was shown that the first process is mainly associated with water and OH groups desorption reducing the thickness of the film by 35% and causing the resistivity decrease by five orders of magnitude. The corresponding activation energy is the effective value determined by desorption and electrical connection of GO flakes from different layers. The second process is mainly associated with desorption of oxygen epoxy and alkoxy groups connected with carbon located in the basal plane of GO. AFM and SKPFM methods showed that during the second process, first, the surface of GO plane is destroyed forming nanostructured surface with low work function and then at higher temperature a flat carbon plane is formed that results in an increase of the work function of reduced GO.

  15. Low Energy Conference 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    11 of the 19 presentations have been indexed for the database. The following national organisations jointly organised the Low-energy Conference 2009: The Norwegian Society for the Conservation of Nature, the Norwegian Society of Engineers and Technologists, Norwegian Technology, the Federation of Norwegian Industries and the Low-Energy Program. Energy efficiency is often given little attention in the ongoing debates concerning different initiatives in order to reduce greenhouse emissions. The aim of the conference was to set energy efficiency on the agenda as an important environmental instrument. Both the Intergovernmental Panel on Climate Change - IPCC and the International Energy Agency - IEA regard energy efficiency as one of the fastest and most effective ways of reducing greenhouse emissions. Despite of this little is done. Many countries are ahead of Norway - why are we lagging behind? The Low-Energy conference has a broad approach: Nigel Jollands from the International Energy Agency -IEA puts energy efficiency in a global perspective. Soeren Rise from Teqniq in Denmark informs about the Danes' energy saving agreement, which appears to have been a success. The conference increased the competencies on concrete energy efficiency solutions, how to speed up the marketing of energy-friendly buildings and technologies, possibilities through industry and the impact of EU-directives and other instruments in order to trigger the potential. The conference closed with a discussion panel of leading energy politicians. The conference contributed to raise the debate in advance of the General election in Norway and the climate negotiations in Copenhagen during the autumn 2009. (EW)

  16. Application of piezoceramic materials in low temperature scanning tunnel microscope

    International Nuclear Information System (INIS)

    Volodin, A.P.; Panich, A.E.

    1989-01-01

    Temperature dependences of the voltage-to-movement conversion coefficients for piezoceramic domestic materials PKR and TsTS-19 are measured using a capacitance dilatometer in the 0.4< T<300K temperature range. Anisotropy of thermal expansion of materials determined by the polarization vector is observed. Some recommendations concerning the use of the given materials in low-temperature scanning tunnel microscopes are given

  17. A proximal retarding field analyzer for scanning probe energy loss spectroscopy

    Science.gov (United States)

    Bauer, Karl; Murphy, Shane; Palmer, Richard E.

    2017-03-01

    A compact proximal retarding field analyzer for scanning probe energy loss spectroscopy measurements is described. Using the scanning tunneling microscope (STM) tip as a field emission (FE) electron source in conjunction with this analyzer, which is placed at a glancing angle to the surface plane, FE sample current and electron reflectivity imaging may be performed simultaneously. This is demonstrated in measurements of Ag nanostructures prepared on graphite by electron-beam lithography, where a material contrast of 13% is observed, with a lateral resolution of 25 nm, between the silver and graphite in electron reflectivity images. Topological contrast mechanisms such as edge enhancement and shadowing are also observed, giving rise to additional features in the electron reflectivity images. The same instrument configuration has been used to measure electron energy loss spectra on bare graphite, where the zero loss peak, π band plasmon loss peak and secondary electron peaks are observed. Using this simple and compact analyzer an STM, with sufficient open access to the tip-sample junction, may easily be augmented to provide simultaneous elemental and topographic mapping, supplementing STM image measurements with FE sample current and electron reflectivity images, as well as electron energy loss spectroscopy measurements, in the same instrument.

  18. Electron response of some low-Z scintillators in wide energy range

    International Nuclear Information System (INIS)

    Swiderski, L; Marcinkowski, R; Moszynski, M; Czarnacki, W; Szawlowski, M; Szczesniak, T; Pausch, G; Plettner, C; Roemer, K

    2012-01-01

    Light yield nonproportionality and the intrinsic resolution of some low atomic number scintillators were studied by means of the Wide Angle Compton Coincidence (WACC) technique. The plastic and liquid scintillator response to Compton electrons was measured in the energy range of 10 keV up to 4 MeV, whereas a CaF 2 :Eu sample was scanned from 3 keV up to 1 MeV. The nonproportionality of the CaF 2 :Eu light yield has characteristics typical for inorganic scintillators of the multivalent halides group, whereas tested organic scintillators show steeply increasing nonproportionality without saturation point. This is in contrast to the behavior of all known inorganic scintillators having their nonproportionality curves at saturation above energies between tens and several hundred keV.

  19. Electron response of some low-Z scintillators in wide energy range

    Science.gov (United States)

    Swiderski, L.; Marcinkowski, R.; Moszynski, M.; Czarnacki, W.; Szawlowski, M.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.

    2012-06-01

    Light yield nonproportionality and the intrinsic resolution of some low atomic number scintillators were studied by means of the Wide Angle Compton Coincidence (WACC) technique. The plastic and liquid scintillator response to Compton electrons was measured in the energy range of 10 keV up to 4 MeV, whereas a CaF2:Eu sample was scanned from 3 keV up to 1 MeV. The nonproportionality of the CaF2:Eu light yield has characteristics typical for inorganic scintillators of the multivalent halides group, whereas tested organic scintillators show steeply increasing nonproportionality without saturation point. This is in contrast to the behavior of all known inorganic scintillators having their nonproportionality curves at saturation above energies between tens and several hundred keV.

  20. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark

    DEFF Research Database (Denmark)

    Hansen, David Christoffer; Seco, Joao; Sørensen, Thomas Sangild

    2015-01-01

    Background. Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in...... development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. Material and methods. A CT calibration phantom and an abdomen cross section...... phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling...

  1. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    Science.gov (United States)

    Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou

    2013-11-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  2. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    International Nuclear Information System (INIS)

    Wang, Qi; Wang, Junting; Lu, Qingyou; Hou, Yubin

    2013-01-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d 31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices

  3. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability.

    Science.gov (United States)

    Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou

    2013-11-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  4. Utilizing a sequential injection system furnished with an extraction microcolumn as a novel approach for executing sequential extractions of metal species in solid samples

    DEFF Research Database (Denmark)

    Chomchoei, R.; Hansen, Elo Harald; Shiowatana, J.

    2007-01-01

    This communication presents a novel approach to perform sequential extraction of elements in solid samples by using a sequential injection (SI) system incorporating a specially designed extraction microcolumn. Based on the operation of the syringe pump, different modes of extraction are potentially...... that the system entails many advantages such as being fully automated, and besides being characterised by rapidity, ease of operation and robustness, it is less prone to risks of contamination and personal errors as encountered in traditional batch systems. Moreover, improvement of the precision and accuracy...... of the chemical fractionation of metal in solids as compared with previous reports are obtained. The system ensures that extraction is performed at designated pH values. Variation of sample weight to column volume ratios do not affect the amounts of extractable metals, nor do extraction flow rates ranging from 50...

  5. Very low energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Very low energy geothermics correspond to temperatures below 30 C and has been developed to cover heating and cooling needs of recent individual houses or tertiary industries using heat pumps and low depth aquifers (<100 m). Geothermal heat pumps industry has made great strides in European Northern countries, China, Japan and the United States of America. Geothermal heat pumps are less energy consuming than air heat pumps and require less cooling fluid and maintenance. The Aquapac procedure has been developed in France in 1983 by the AFME (French Energy Control Agency), EdF and the BRGM (Geologic and Mining Research Office) to encourage the use of geothermal heat pump for domestic and sanitary water heating and to make a survey of low-depth aquifers in the whole french territory. The decay of energy costs that started in 1986 has led to a loss of interest for the Aquapac procedure, even in the tertiary industries for which the air-conditioning demand is growing up. (J.S.). 1 tab

  6. SSC High Energy Booster resonance corrector and dynamic tune scanning simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P.; Machida, S.

    1993-05-01

    A resonance correction system for the High Energy Booster (HEB) of the Superconducting Super Collider (SSCL) was investigated by means of dynamic multiparticle tracking. In the simulation the operating tune is scanned as a function of time so that the bunch goes through a resonance. The performance of the half integer and third integer resonance correction system is demonstrated.

  7. Optimum energies for dual-energy computed tomography

    International Nuclear Information System (INIS)

    Talbert, A.J.; Brooks, R.A.; Morgenthaler, D.G.

    1980-01-01

    By performing a dual-energy scan, separate information can be obtained on the Compton and photoelectric components of attenuation for an unknown material. This procedure has been analysed for the optimum energies, and for the optimum dose distribution between the two scans. It was found that an equal dose at both energies was a good compromise, compared with optimising the dose distributing for either the Compton or photoelectric components individually. For monoenergetic beams, it was found that low energy of 40 keV produced minimum noise when using high-energy beams of 80 to 100 keV. This was true whether one maintained constant integral dose or constant surface dose. A low energy of 50 keV which is more nearly attainable in practice, produced almost as good a degree of accuracy. The analysis can be extended to polyenergetic beams by the inclusion of a noise factor. The above results were qualitatively unchanged, although the noise was increased by about 20% with integral dose equivalence and 50% with surface dose equivalence. It is very important to make the spectra as narrow as possible, especially at the low energy, in order to minimise the noise. (author)

  8. Microprocessor system to recover data from a self-scanning photodiode array

    International Nuclear Information System (INIS)

    Koppel, L.N.; Gadd, T.J.

    1975-01-01

    A microprocessor system developed at Lawrence Livermore Laboratory has expedited the recovery of data describing the low energy x-ray spectra radiated by laser-fusion targets. An Intel microprocessor controls the digitization and scanning of the data stream of an x-ray-sensitive self-scanning photodiode array incorporated in a crystal diffraction spectrometer

  9. Microprocessor-controlled scanning densitometer system

    International Nuclear Information System (INIS)

    Shurtliff, R.W.

    1980-04-01

    An Automated Scanning Densitometer System has been developed by uniting a microprocessor with a low energy x-ray densitometer system. The microprocessor controls the detector movement, provides self-calibration, compensates raw readings to provide time-linear output, controls both data storage and the host computer interface, and provides measurement output in engineering units for immediate reading. The densitometer, when used in a scanning mode, is a precision reference instrument that provides chordal average density measurements over the cross section of a pipe under steady-state flow conditions. Results have shown an improvement over the original densitometer in reliability and repeatability of the system, an a factor-of-five improvement in accuracy

  10. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark.

    Science.gov (United States)

    Hansen, David C; Seco, Joao; Sørensen, Thomas Sangild; Petersen, Jørgen Breede Baltzer; Wildberger, Joachim E; Verhaegen, Frank; Landry, Guillaume

    2015-01-01

    Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. A CT calibration phantom and an abdomen cross section phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling of detectors and the corresponding noise characteristics. Stopping power maps were calculated for all three scans, and compared with the ground truth stopping power from the phantoms. Proton CT gave slightly better stopping power estimates than the dual energy CT method, with root mean square errors of 0.2% and 0.5% (for each phantom) compared to 0.5% and 0.9%. Single energy CT root mean square errors were 2.7% and 1.6%. Maximal errors for proton, dual energy and single energy CT were 0.51%, 1.7% and 7.4%, respectively. Better stopping power estimates could significantly reduce the range errors in proton therapy, but requires a large improvement in current methods which may be achievable with proton CT.

  11. A method for extraction of crystallography-related information from a data cube of very-low-energy electron micrographs

    Czech Academy of Sciences Publication Activity Database

    Knápek, Alexandr; Pokorná, Zuzana

    2015-01-01

    Roč. 148, JAN 2015 (2015), s. 52-56 ISSN 0304-3991 R&D Projects: GA MŠk(CZ) LO1212 Keywords : Very low energy * Scanning electron microscopy * SLEEM * Data cube * Image processing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.874, year: 2015

  12. Regional Energy Planning Tool for Renewable Integrated Low-Energy District Heating Systems

    DEFF Research Database (Denmark)

    Tol, Hakan; Dincer, Ibrahim; Svendsen, Svend

    2013-01-01

    Low-energy district heating systems, operating at low temperature of 55 °C as supply and 25°C as return, can be the energy solution as being the prevailing heating infrastructure in urban areas, considering future energy schemesaiming at increased exploitation of renewable energy sources together...... with low-energy houses in focus with intensified energy efficiency measures. Employing low-temperature operation allows the ease to exploit not only any type of heat source but also low-grade sources, i.e., renewable and industrial waste heat, which would otherwise be lost. In this chapter, a regional...... energy planning tool is described considered with various energy conversion systems based on renewable energy sources to be supplied to an integrated energy infrastructure involving a low-energy district heating, a district cooling, and an electricity grid. The developed tool is performed for two case...

  13. The Low-Energy Neutrino Factory

    International Nuclear Information System (INIS)

    Brass, Alan; Geer, Steve; Ellis, Malcolm; Mena, Olga; Pascoli, Silvia

    2008-01-01

    To date most studies of Neutrino Factories have focused on facilities where the energy of the muon in the storage ring has been in the range of 25-50 GeV. In this paper we present a concept for a Low-Energy (∼ 4 GeV) neutrino factory. For baselines of O(1000 km), the rich oscillation pattern at low neutrino interaction energy (0.5 - ∼3 GeV) provides the unique performance of this facility with regard to its sensitivity to CP violation and the determination of the neutrino mass hierarchy. A unique neutrino detector is needed, however, in order to exploit this oscillation pattern. We will describe the basic accelerator facility, demonstrate the methodology of the analysis and give an estimate on how well the Low-Energy neutrino factory can measure θ 13 , CP violation and the mass hierarchy. We will also describe the detector concept that is used, show a preliminary analysis regarding its performance and indicate what R and D is still needed. Finally we will show how the Low-Energy neutrino factory could be a step towards an energy frontier muon collider.

  14. Application of low dose radiation and low concentration contrast media in enhanced CT scans in children with congenital heart disease.

    Science.gov (United States)

    Liu, Zhimin; Song, Lei; Yu, Tong; Gao, Jun; Zhang, Qifeng; Jiang, Ling; Liu, Yong; Peng, Yun

    2016-09-01

    The aim of this study was to explore the feasibility of using low dose radiation and low concentration contrast media in enhanced CT examinations in children with congenital heart disease. Ninety patients with congenital heart disease were randomly divided into three groups of 30 patients each who underwent contrast-enhanced cardiac scans on a Discovery CT750 HD scanner. Group A received 270 mg I/mL iodixanol, and group B received 320 mg I/mL iodixanol contrast media and was scanned with prospective ECG triggering mode. Group C received 320 mg I/mL iodixanol and was scanned with conventional retrospective ECG gating mode. The same weight-based contrast injection protocol was used for all three groups. Images were reconstructed using a 30% adaptive statistical iterative reconstruction (ASIR) algorithm and a 50% ASIR in groups A and B and a 30% ASIR in group C. The subjective and objective image quality evaluations, diagnostic accuracies, radiation doses and amounts of contrast media in the three groups were measured and compared. All images in the three groups met the diagnostic requirements, with the same diagnostic accuracy and image quality scores greater than 3 in a 4-point scoring system. However, ventricular enhancement and the objective noise, signal-to-noise ratio, contrast-to-noise ratio and subjective image quality scores in group C were better than those in groups A and B (all Pcontrast dose (14% lower than that of groups B and C). Enhanced CT scan images with low dose radiation and low concentration contrast media can meet the diagnostic requirements for examining children with congenital heart disease while reducing the potential risk of radiation damage and contrast-induced nephropathy. © 2016 John Wiley & Sons Ltd.

  15. SpineAnalyzer™ is an accurate and precise method of vertebral fracture detection and classification on dual-energy lateral vertebral assessment scans

    International Nuclear Information System (INIS)

    Birch, C.; Knapp, K.; Hopkins, S.; Gallimore, S.; Rock, B.

    2015-01-01

    Osteoporotic fractures of the spine are associated with significant morbidity, are highly predictive of hip fractures, but frequently do not present clinically. When there is a low to moderate clinical suspicion of vertebral fracture, which would not justify acquisition of a radiograph, vertebral fracture assessment (VFA) using Dual-energy X-ray Absorptiometry (DXA) offers a low-dose opportunity for diagnosis. Different approaches to the classification of vertebral fractures have been documented. The aim of this study was to measure the precision and accuracy of SpineAnalyzer™, a quantitative morphometry software program. Lateral vertebral assessment images of 64 men were analysed using SpineAnalyzer™ and standard GE Lunar software. The images were also analysed by two expert readers using a semi-quantitative approach. Agreement between groups ranged from 95.99% to 98.60%. The intra-rater precision for the application of SpineAnalyzer™ to vertebrae was poor in the upper thoracic regions, but good elsewhere. SpineAnalyzer™ is a reproducible and accurate method for measuring vertebral height and quantifying vertebral fractures from VFA scans. - Highlights: • Vertebral fracture assessment (VFA) using Dual-energy X-ray Absorptiometry (DXA) offers a low-dose opportunity for diagnosis. • Agreement between VFA software (SpineAnalyzer™) and expert readers is high. • Intra-rater precision of SpineAnalyzer™ applied to upper thoracic vertebrae is poor, but good elsewhere. • SpineAnalyzer™ is reproducible and accurate for vertebral height measurement and fracture quantification from VFA scans

  16. Clinical Application of Colour Modulation of Gamma Energy and Depth by Dual-Channel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, E.; Ben-Porath, M. [Veterans Administration Hospital, Hines, IL (United States)

    1969-01-15

    A dual-channel scanning system has been described permitting the simultaneous imaging in individual color of the distribution of two gamma-emitting radioisotopes. In those cases where two organs are adjacent and concentrate the same isotope, they may be displayed in separate color if one of the organs concentrates another gamma-emitting isotope with a different energy. This is accomplished by individual color readout of this isotope and the display of the subtraction of this isotope from the common isotope in another color. By using two facing scintillation probes on either side of the individual being scanned, two overlapping organs at different depths concentrating the same isotope can be color differentiated by a dual-channel playout of each probe. The principal application of these dual-channel scanning methods to date has been the simultaneous display of the liver and pancreas in individual colors using {sup 198}Au and {sup 75}selenomethionine. Characteristic scans have been obtained which differentiate a number of disease states from the normal pancreas and liver. The pancreatic and liver diseases studied and characterized are carcinoma of the pancreas, pancreatic insufficiency, acute recurrent pancreatitis, pancreatic pseudocyst and Laennec's cirrhosis, hepatoma and metastatic malignancy in the liver. The uptake of {sup 75}selenomethionine in malignant lesions in many instances produces positive scans of these tumors in contrasting color to the liver. Depth discrimination in color with the two-probe system has permitted the lateralization of intracranial lesions, the color of the display being proportional to the depth of the lesion. The discrimination of depth and gamma-ray energy by dual-channel color scanning and its general application in visualizing other organs has been accomplished. (author)

  17. A low-power pressure-and temperature-programmed separation system for a micro gas chromatograph.

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, Richard D. (University of Michigan, Ann Arbor, MI); Robinson, Alex Lockwood (Advanced Sensor Technologies, Albuquerque, NM); Lambertus, Gordon R. (University of Michigan, Ann Arbor, MI); Potkay, Joseph A. (University of Michigan, Ann Arbor, MI); Wise, Kensall D. (University of Michigan, Ann Arbor, MI)

    2006-10-01

    This thesis presents the theory, design, fabrication and testing of the microvalves and columns necessary in a pressure- and temperature-programmed micro gas chromatograph ({micro}GC). Two microcolumn designs are investigated: a bonded Si-glass column having a rectangular cross section and a vapor-deposited silicon oxynitride (Sion) column having a roughly circular cross section. Both microcolumns contain integrated heaters and sensors for rapid, controlled heating. The 3.2 cm x 3.2 cm, 3 m-long silicon-glass column, coated with a non-polar polydimethylsiloxane (PDMS) stationary phase, separates 30 volatile organic compounds (VOCs) in less than 6 min. This is the most efficient micromachined column reported to date, producing greater than 4000 plates/m. The 2.7 mm x 1.4 mm Sion column eliminates the glass sealing plate and silicon substrate using deposited dielectrics and is the lowest power and fastest GC column reported to date; it requires only 11 mW to raise the column temperature by 100 C and has a response time of 11s and natural temperature ramp rate of 580 C/min. A 1 m-long PDMS-coated Sion microcolumn separates 10 VOCs in 52s. A system-based design approach was used for both columns.

  18. Structure determination of Ga As (110) p (1 x 1) - Sb using scanned-energy photoelectron diffraction

    International Nuclear Information System (INIS)

    Ascolani, H.; Asensio, M.C.; Fritzsche, W.

    1996-01-01

    Photoelectron diffraction (PD) in the scanned-energy mode has proven to be a powerfull tool for structural determination of the first few surface layers. The scanned-energy mode involves the measurement of the intensity of photoelectrons emitted from a core level as a function of the incident photon energy for different emission directions. The atom specificity of PD allows the investigation of the local structure of adsorbed atoms without interference of the substrate. In addition, if a measurable chemical shift exists, this technique is also able to discriminate between atoms of the same species adsorbed in inequivalent sites. The Ga As (110) p (1x1)-Sb (1 ML) surface represents a prototype system to study atom adsorption on III-V semiconductors. The epitaxial continued layer structure (ECLS) is generally accepted as the geometry corresponding to this surface, although some authors have claimed that the p 3 model forms a stable geometry equivalent to the ECLS, and that it provides an equally good description of their experimental results. So far, the conclusions about the atomic structure of this surface had been derived on the basis of indirect methods. This work exploits to the utmost the possibilities of analysis offered by the scanned-energy PD technique, namely, chemical shift analysis and direct inversion. The energy spectrum of Sb-4d photoelectrons emitted from the Ga As (110)-p (1x1) Sb surface has two chemically-shifted components. We have inverted the scanned-energy photoelectron diffraction data corresponding to these two components to obtain the positions of the Ga and As atoms which are nearest neighbors of two inequivalent Sb atoms. Our results contradict various models proposed for this surface and are consistent only with the ECLS. For a more detailed atomic structure determination, the best fit between experiment and multiple-scattering calculations was determined by a trial-and-error procedure. (author)

  19. Electron dynamics of Cs covered Cu(111). A scanning tunneling spectroscopy inverstigation at low temperatures

    International Nuclear Information System (INIS)

    Hofe, T. von

    2005-01-01

    During this Ph.D. a scanning tunneling microscope operating in ultra-high vacuum and at low temperatures was assembled and modified to allow operation at variable temperatures. Also, an additional vibration isolation stage was conceived and mounted. Measurements were performed on Cu(111)-Cs for different coverages. For a coverage of Θ=0:05 ML, the layer shows a commensurate (√(19) x √(19)R23.4 ) structure which may be stabilized by surface-state mediated adatom interactions. For higher coverages, the layer is incommensurate and rotated with respect to the substrate, where the angle of rotation depends on the coverage. At the saturation coverage Θ=0:25 ML, the layer, although commensurate, reveals many defects. The binding energy of the quantum well state (QWS) confined to the Cs layer decreases with increasing coverage as has been observed before for other systems. The lifetime of the QWS decreases with increasing binding energy. The comparatively short lifetime for Cu(111)-p(2 x 2)Cs led to the introduction of Brillouin Zone Backfolding as a new lifetime-limiting process. Acquisition of dispersion relations of the QWS for different coverages revealed that the effective mass of the excitations increases with decreasing binding energy. (Orig.)

  20. A low energy solar town

    International Nuclear Information System (INIS)

    Svendsen, Svend; Balocco, Carla

    1998-01-01

    The use of solar energy at large scale is necessary to support the energy savings and a more efficient energy use, like besides the quality of the ambient and the quality of the available energy sources. The solar heating systems with seasonal storage can be combined with heat from refuse incineration plants and other renewable heat sources. These systems combined with district heating are an example of the sustainable energy planning and the reduction of the environmental stress. Strategies for sustainability in the settlements can be defined by and energy model to planning that individuates development and economic and financial supports to. The aim of the work concerns the development of a small sun city with no use of fossil fuels. The new low energy solar town is an idealised urban an energy system. The studied settlement regards one thousand new low-energy houses supplied by a district heating with a central solar heating system with seasonal heat storage. The heating and ventilation demand in the studied low energy buildings are less than 40 kWh/m 2 /year, the electricity demand is less than 2000 kWh per house year. The result of the work is an useful tool to the energy planning of the urban areas and it is also a necessary support to the political and energetic decisions. (EG) 58 refs

  1. A low energy solar town

    Energy Technology Data Exchange (ETDEWEB)

    Svendsen, Svend; Balocco, Carla

    1998-12-31

    The use of solar energy at large scale is necessary to support the energy savings and a more efficient energy use, like besides the quality of the ambient and the quality of the available energy sources. The solar heating systems with seasonal storage can be combined with heat from refuse incineration plants and other renewable heat sources. These systems combined with district heating are an example of the sustainable energy planning and the reduction of the environmental stress. Strategies for sustainability in the settlements can be defined by and energy model to planning that individuates development and economic and financial supports to. The aim of the work concerns the development of a small sun city with no use of fossil fuels. The new low energy solar town is an idealised urban an energy system. The studied settlement regards one thousand new low-energy houses supplied by a district heating with a central solar heating system with seasonal heat storage. The heating and ventilation demand in the studied low energy buildings are less than 40 kWh/m{sup 2}/year, the electricity demand is less than 2000 kWh per house year. The result of the work is an useful tool to the energy planning of the urban areas and it is also a necessary support to the political and energetic decisions. (EG) 58 refs.

  2. A quantitative theory of the Hounsfield unit and its application to dual energy scanning.

    Science.gov (United States)

    Brooks, R A

    1977-10-01

    A standard definition is proposed for the Hounsfield number. Any number in computed tomography can be converted to the Hounsfield scale after performing a simple calibration using air and water. The energy dependence of the Hounsfield number, H, is given by the expression H = (Hc + Hp Q)/(1 + Q), where Hc and Hp are the Compton and photoelectric coefficients of the material being measured, expressed in Hounsfield units, and Q is the "quality factor" of the scanner. Q can be measured by performing a scan of a single calibrating material, such as a potassium iodine solution. By applying this analysis to dual energy scans, the Compton and photoelectric coefficients of an unknown substance may easily be obtained. This can lead to a limited degree of chemical identification.

  3. Impact of number of repeated scans on model observer performance for a low-contrast detection task in computed tomography.

    Science.gov (United States)

    Ma, Chi; Yu, Lifeng; Chen, Baiyu; Favazza, Christopher; Leng, Shuai; McCollough, Cynthia

    2016-04-01

    Channelized Hotelling observer (CHO) models have been shown to correlate well with human observers for several phantom-based detection/classification tasks in clinical computed tomography (CT). A large number of repeated scans were used to achieve an accurate estimate of the model's template. The purpose of this study is to investigate how the experimental and CHO model parameters affect the minimum required number of repeated scans. A phantom containing 21 low-contrast objects was scanned on a 128-slice CT scanner at three dose levels. Each scan was repeated 100 times. For each experimental configuration, the low-contrast detectability, quantified as the area under receiver operating characteristic curve, [Formula: see text], was calculated using a previously validated CHO with randomly selected subsets of scans, ranging from 10 to 100. Using [Formula: see text] from the 100 scans as the reference, the accuracy from a smaller number of scans was determined. Our results demonstrated that the minimum number of repeated scans increased when the radiation dose level decreased, object size and contrast level decreased, and the number of channels increased. As a general trend, it increased as the low-contrast detectability decreased. This study provides a basis for the experimental design of task-based image quality assessment in clinical CT using CHO.

  4. Financing low carbon energy access in Africa

    International Nuclear Information System (INIS)

    Gujba, Haruna; Thorne, Steve; Mulugetta, Yacob; Rai, Kavita; Sokona, Youba

    2012-01-01

    Modern energy access in Africa is critical to meeting a wide range of developmental challenges including poverty reduction and the Millennium Development Goals (MDGs). Despite having a huge amount and variety of energy resources, modern energy access in the continent is abysmal, especially Sub-Saharan Africa. Only about 31% of the Sub-Saharan African population have access to electricity while traditional biomass energy accounts for over 80% of energy consumption in many Sub-Saharan African countries. With energy use per capita among the lowest in the world, there is no doubt that Africa will need to increase its energy consumption to drive economic growth and human development. Africa also faces a severe threat from global climate change with vulnerabilities in several key areas or sectors in the continent including agriculture, water supply, energy, etc. Low carbon development provides opportunities for African countries to improve and expand access to modern energy services while also building low-emission and climate-resilient economies. However, access to finance from different sources will be critical in achieving these objectives. This paper sets out to explore the financial instruments available for low carbon energy access in Africa including the opportunities, markets and risks in low carbon energy investments in the continent. - Highlights: ► Access to finance will be critical to achieving low carbon energy access in Africa. ► Domestic finance will be important in leveraging private finance. ► Private sector participation in modern and clean energy in Africa is still low. ► Many financing mechanisms exist for low carbon energy access in Africa. ► The right institutional frameworks are critical to achieving low carbon energy access in Africa.

  5. Beam diagnostics for low energy beams

    Directory of Open Access Journals (Sweden)

    J. Harasimowicz

    2012-12-01

    Full Text Available Low-energetic ion and antimatter beams are very attractive for a number of fundamental studies. The diagnostics of such beams, however, is a challenge due to low currents down to only a few thousands of particles per second and significant fraction of energy loss in matter at keV beam energies. A modular set of particle detectors has been developed to suit the particular beam diagnostic needs of the ultralow-energy storage ring (USR at the future facility for low-energy antiproton and ion research, accommodating very low beam intensities at energies down to 20 keV. The detectors include beam-profile monitors based on scintillating screens and secondary electron emission, sensitive Faraday cups for absolute intensity measurements, and capacitive pickups for beam position monitoring. In this paper, the design of all detectors is presented in detail and results from beam measurements are shown. The resolution limits of all detectors are described and options for further improvement summarized. Whilst initially developed for the USR, the instrumentation described in this paper is also well suited for use in other low-intensity, low-energy accelerators, storage rings, and beam lines.

  6. Improved detection of hydrophilic phosphopeptides using graphite powder microcolumns and mass spectrometry: evidence for in vivo doubly phosphorylated dynamin I and dynamin III

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Graham, Mark E; Robinson, Phillip J

    2004-01-01

    A common strategy in proteomics to improve the number and quality of peptides detected by mass spectrometry (MS) is to desalt and concentrate proteolytic digests using reversed phase (RP) chromatography prior to analysis. However, this does not allow for detection of small or hydrophilic peptides...... a large improvement in the detection of small amounts of phosphopeptides by MS and the approach has major implications for both small- and large-scale projects in phosphoproteomics.......A common strategy in proteomics to improve the number and quality of peptides detected by mass spectrometry (MS) is to desalt and concentrate proteolytic digests using reversed phase (RP) chromatography prior to analysis. However, this does not allow for detection of small or hydrophilic peptides......, or peptides altered in hydrophilicity such as phosphopeptides. We used microcolumns to compare the ability of RP resin or graphite powder to retain phosphopeptides. A number of standard phosphopeptides and a biologically relevant phosphoprotein, dynamin I, were analyzed. MS revealed that some phosphopeptides...

  7. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

    KAUST Repository

    Govyadinov, Alexander A.

    2017-07-14

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  8. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope.

    Science.gov (United States)

    Govyadinov, Alexander A; Konečná, Andrea; Chuvilin, Andrey; Vélez, Saül; Dolado, Irene; Nikitin, Alexey Y; Lopatin, Sergei; Casanova, Fèlix; Hueso, Luis E; Aizpurua, Javier; Hillenbrand, Rainer

    2017-07-21

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  9. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

    KAUST Repository

    Govyadinov, Alexander A.; Konečná , Andrea; Chuvilin, Andrey; Vé lez, Saü l; Dolado, Irene; Nikitin, Alexey Y.; Lopatin, Sergei; Casanova, Fè lix; Hueso, Luis E.; Aizpurua, Javier; Hillenbrand, Rainer

    2017-01-01

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  10. Low energy analysis techniques for CUORE

    Energy Technology Data Exchange (ETDEWEB)

    Alduino, C.; Avignone, F.T.; Chott, N.; Creswick, R.J.; Rosenfeld, C.; Wilson, J. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Alfonso, K.; Huang, H.Z.; Sakai, M.; Schmidt, J. [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); Artusa, D.R.; Rusconi, C. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Azzolini, O.; Camacho, A.; Keppel, G.; Palmieri, V.; Pira, C. [INFN-Laboratori Nazionali di Legnaro, Padua (Italy); Bari, G.; Deninno, M.M. [INFN-Sezione di Bologna, Bologna (Italy); Beeman, J.W. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); Bellini, F.; Cosmelli, C.; Ferroni, F.; Piperno, G. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN-Sezione di Roma, Rome (Italy); Benato, G.; Singh, V. [University of California, Department of Physics, Berkeley, CA (United States); Bersani, A.; Caminata, A. [INFN-Sezione di Genova, Genoa (Italy); Biassoni, M.; Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Chiesa, D.; Clemenza, M.; Faverzani, M.; Fiorini, E.; Gironi, L.; Gotti, C.; Maino, M.; Nastasi, M.; Nucciotti, A.; Pavan, M.; Pozzi, S.; Sisti, M.; Terranova, F.; Zanotti, L. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN-Sezione di Milano Bicocca, Milan (Italy); Branca, A.; Taffarello, L. [INFN-Sezione di Padova, Padua (Italy); Bucci, C.; Cappelli, L.; D' Addabbo, A.; Gorla, P.; Pattavina, L.; Pirro, S. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Canonica, L. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Massachusetts Institute of Technology, Cambridge, MA (United States); Cao, X.G.; Fang, D.Q.; Ma, Y.G.; Wang, H.W.; Zhang, G.Q. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai (China); Cardani, L.; Casali, N.; Dafinei, I.; Morganti, S.; Mosteiro, P.J.; Tomei, C.; Vignati, M. [INFN-Sezione di Roma, Rome (Italy); Copello, S.; Di Domizio, S.; Marini, L.; Pallavicini, M. [INFN-Sezione di Genova, Genoa (Italy); Universita di Genova, Dipartimento di Fisica, Genoa (Italy); Cremonesi, O.; Ferri, E.; Giachero, A.; Pessina, G.; Previtali, E. [INFN-Sezione di Milano Bicocca, Milan (Italy); Cushman, J.S.; Davis, C.J.; Heeger, K.M.; Lim, K.E.; Maruyama, R.H. [Yale University, Department of Physics, New Haven, CT (United States); D' Aguanno, D.; Pagliarone, C.E. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Universita degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Ingegneria Civile e Meccanica, Cassino (Italy); Dell' Oro, S. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); INFN-Gran Sasso Science Institute, L' Aquila (Italy); Di Vacri, M.L.; Santone, D. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Universita dell' Aquila, Dipartimento di Scienze Fisiche e Chimiche, L' Aquila (Italy); Drobizhev, A.; Hennings-Yeomans, R.; Kolomensky, Yu.G.; Wagaarachchi, S.L. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Franceschi, M.A.; Ligi, C.; Napolitano, T. [INFN-Laboratori Nazionali di Frascati, Rome (Italy); Freedman, S.J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Fujikawa, B.K.; Mei, Y.; Schmidt, B.; Smith, A.R.; Welliver, B. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Giuliani, A.; Novati, V. [Universite Paris-Saclay, CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Orsay (France); Gladstone, L.; Leder, A.; Ouellet, J.L.; Winslow, L.A. [Massachusetts Institute of Technology, Cambridge, MA (United States); Gutierrez, T.D. [California Polytechnic State University, Physics Department, San Luis Obispo, CA (United States); Haller, E.E. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); University of California, Department of Materials Science and Engineering, Berkeley, CA (United States); Han, K. [Shanghai Jiao Tong University, Department of Physics and Astronomy, Shanghai (China); Hansen, E. [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); Massachusetts Institute of Technology, Cambridge, MA (United States); Kadel, R. [Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Martinez, M. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN-Sezione di Roma, Rome (Italy); Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Saragossa (Spain); Moggi, N.; Zucchelli, S. [INFN-Sezione di Bologna, Bologna (Italy); Universita di Bologna - Alma Mater Studiorum, Dipartimento di Fisica e Astronomia, Bologna (IT); Nones, C. [CEA/Saclay, Service de Physique des Particules, Gif-sur-Yvette (FR); Norman, E.B.; Wang, B.S. [Lawrence Livermore National Laboratory, Livermore, CA (US); University of California, Department of Nuclear Engineering, Berkeley, CA (US); O' Donnell, T. [Virginia Polytechnic Institute and State University, Center for Neutrino Physics, Blacksburg, VA (US); Sangiorgio, S.; Scielzo, N.D. [Lawrence Livermore National Laboratory, Livermore, CA (US); Wise, T. [Yale University, Department of Physics, New Haven, CT (US); University of Wisconsin, Department of Physics, Madison, WI (US); Woodcraft, A. [University of Edinburgh, SUPA, Institute for Astronomy, Edinburgh (GB); Zimmermann, S. [Lawrence Berkeley National Laboratory, Engineering Division, Berkeley, CA (US)

    2017-12-15

    CUORE is a tonne-scale cryogenic detector operating at the Laboratori Nazionali del Gran Sasso (LNGS) that uses tellurium dioxide bolometers to search for neutrinoless double-beta decay of {sup 130}Te. CUORE is also suitable to search for low energy rare events such as solar axions or WIMP scattering, thanks to its ultra-low background and large target mass. However, to conduct such sensitive searches requires improving the energy threshold to 10 keV. In this paper, we describe the analysis techniques developed for the low energy analysis of CUORE-like detectors, using the data acquired from November 2013 to March 2015 by CUORE-0, a single-tower prototype designed to validate the assembly procedure and new cleaning techniques of CUORE. We explain the energy threshold optimization, continuous monitoring of the trigger efficiency, data and event selection, and energy calibration at low energies in detail. We also present the low energy background spectrum of CUORE-0 below 60 keV. Finally, we report the sensitivity of CUORE to WIMP annual modulation using the CUORE-0 energy threshold and background, as well as an estimate of the uncertainty on the nuclear quenching factor from nuclear recoils in CUORE-0. (orig.)

  11. Performance of low-temperature district heating for low-energy houses

    DEFF Research Database (Denmark)

    Brand, Marek; Dalla Rosa, Alessandro; Svendsen, Svend

    2010-01-01

    A Low Energy District Heating (LEDH) network supplying district heating water with temperature 50°C was built in Lærkehaven-Lystrup, Denmark, as a part of the ongoing “Energy Technology Development and Demonstration Programme” [EUDP, 2008] focused on “CO2-reduction in low energy buildings and com...

  12. Single molecule manipulation at low temperature and laser scanning tunnelling photo-induced processes analysis through time-resolved studies

    International Nuclear Information System (INIS)

    Riedel, Damien

    2010-01-01

    This paper describes, firstly, the statistical analysis used to determine the processes that occur during the manipulation of a single molecule through electronically induced excitations with a low temperature (5 K) scanning tunnelling microscope (STM). Various molecular operation examples are described and the ability to probe the ensuing molecular manipulation dynamics is discussed within the excitation context. It is, in particular, shown that such studies can reveal reversible manipulation for tuning dynamics through variation of the excitation energy. Secondly, the photo-induced process arising from the irradiation of the STM junction is also studied through feedback loop dynamics analysis, allowing us to distinguish between photo-thermally and photo-electronically induced signals.

  13. Low-dose dual-energy cone-beam CT using a total-variation minimization algorithm

    International Nuclear Information System (INIS)

    Min, Jong Hwan

    2011-02-01

    Dual-energy cone-beam CT is an important imaging modality in diagnostic applications, and may also find its use in other application such as therapeutic image guidance. Despite of its clinical values, relatively high radiation dose of dual-energy scan may pose a challenge to its wide use. In this work, we investigated a low-dose, pre-reconstruction type of dual-energy cone-beam CT (CBCT) using a total-variation minimization algorithm for image reconstruction. An empirical dual-energy calibration method was used to prepare material-specific projection data. Raw data at high and low tube voltages are converted into a set of basis functions which can be linearly combined to produce material-specific data using the coefficients obtained through the calibration process. From much fewer views than are conventionally used, material specific images are reconstructed by use of the total-variation minimization algorithm. An experimental study was performed to demonstrate the feasibility of the proposed method using a micro-CT system. We have reconstructed images of the phantoms from only 90 projections acquired at tube voltages of 40 kVp and 90 kVp each. Aluminum-only and acryl-only images were successfully decomposed. We evaluated the quality of the reconstructed images by use of contrast-to-noise ratio and detectability. A low-dose dual-energy CBCT can be realized via the proposed method by greatly reducing the number of projections

  14. Photothermal Investigation of Micro-Uniformity Problems Caused by Different Scan Systems

    International Nuclear Information System (INIS)

    Geiler, Hans; Brand, Klaus; Selle, Hans-Joachim

    2008-01-01

    To study beam scanning and beam profiling effects low energy implants of Boron (25 keV) and high energy implants of Helium (5.4 MeV) were carried out by use of different scanning systems including mechanical, electrostatic and hybrid scanning. The sensitivity of photothermal measurement by use of the excess carrier wave in the depth up to 50 μm is proved for buried damage detection and compared with the effect in shallow damage profiles. The micro-mapping capability of the photothermal techniques allows the detection of dose variations in a sub-mm-scale without Moire effects from mapping steps. Conclusion for advanced dose monitoring by multi-frequency photothermal methods will be derived.

  15. Low Energy Neutrino Cross Sections

    International Nuclear Information System (INIS)

    Zeller, G.P.

    2004-01-01

    Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy

  16. Ultra-low energy Ar+ beam applied for SIMS depth profile analysis of layered nanostructures

    International Nuclear Information System (INIS)

    Konarski, P.; Mierzejewska, A.; Iwanejko, I.

    2001-01-01

    Secondary ion mass spectrometry (SIMS) depth profile analyses of flat layered nanostructures: 10 nm Ta 2 O 3 /Ta and 20 nm (10 x B 4 C/Mo)/Si as well as microparticles of core (illite) - shell (rutile) structure, performed with the use of ultra-low energy ion beam (180-880 eV, Ar + ), are presented. The profiles were obtained using 'mesa' scanning technique and also sample rotation. Depth profile resolution below 1 nanometer was obtained for flat nanostructures. Presented experimental results are compared with Monte Carlo sputtering simulations of analysed structures. A method of finding beam energy, optimal for the best resolution SIMS depth profile analysis, is suggested. (author)

  17. [Application of second generation dual-source computed tomography dual-energy scan mode in detecting pancreatic adenocarcinoma].

    Science.gov (United States)

    Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu

    2010-12-01

    To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.

  18. Low-energy ion outflow modulated by the solar wind energy input

    Science.gov (United States)

    Li, Kun; Wei, Yong; Andre, Mats; Eriksson, Anders; Haaland, Stein; Kronberg, Elena; Nilsson, Hans; Maes, Lukas

    2017-04-01

    Due to the spacecraft charging issue, it has been difficult to measure low-energy ions of ionospheric origin in the magnetosphere. A recent study taking advantage of the spacecraft electric potential has found that the previously 'hidden' low-energy ions is dominant in the magnetosphere. This comprehensive dataset of low-energy ions allows us to study the relationship between the ionospheric outflow and energy input from the solar wind (ɛ). In this study, we discuss the ratios of the solar wind energy input to the energy of the ionospheric outflow. We show that the ɛ controls the ionospheric outflow when the ɛ is high, while the ionospheric outflow does not systematically change with the ɛ when the ɛ is low.

  19. Low-energy Electro-weak Reactions

    International Nuclear Information System (INIS)

    Gazit, Doron

    2012-01-01

    Chiral effective field theory (EFT) provides a systematic and controlled approach to low-energy nuclear physics. Here, we use chiral EFT to calculate low-energy weak Gamow-Teller transitions. We put special emphasis on the role of two-body (2b) weak currents within the nucleus and discuss their applications in predicting physical observables.

  20. The steering and manipulation of ion beams for low-energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Beanland, D.G.; Freeman, J.H.

    1976-01-01

    Both electrostatic and magnetic fields are used in low-energy accelerators. Electrostatic fields are essential in the acceleration stages and they are commonly used for ion beam scanning and focussing. Magnetic fields are only infrequently used as lenses, but they are essential for mass analysis and are sometimes employed for beam steering. The electrostatic mirror is a versatile and compact lens which has hitherto received little attention for the controlled manipulation of heavy ions. In addition to energy analysis it can be used to steer, focus and scan such beams and its flexibility and usefulness can be further increased by shaping the electrostatic field in the mirror space. The use of a computer programme to model the focussing behaviour of a variety of lens shapes is described and it is shown that the focal properties of the mirror can be controlled to produce a parallel, convergent or divergent output beam. The use of mirrors for two-dimensional beam focusing is also outlined. To permit the use of the mirror system with heavy ions an apertured front plate, without field-defining gauzes, was utilized. In consequence an additional electrode was incorporated in the lens structure to prevent penetration of the positive electric field along the beam axes outside the mirror space. This factor and the compact design of the mirror, contributed to the minimisation of space-charge defocussing effects which normally militate against the use of such electrostatic lenses with high intensity ion beams. The results of experiments confirming the computer predictions are briefly described and, in conclusion some possible applications of electrostatic mirrors in electromagnetic isotope separators and low energy accelerators are outlined. (Auth.)

  1. Low-energy mechanical ventilation

    DEFF Research Database (Denmark)

    Andersen, Claus Wessel; Hviid, Christian Anker

    2014-01-01

    and with as little energy consumption as 41.1 kWh/m2/year including heating and all building services with no use of renewable energy such as PVcells or solar heating. One of the key means of reaching the objectives was to implement mechanical ventilation with low pressure loss and therefore low energy consumption....... The project consists of two buildings, building one is 6 stories high, and building two is 4 stories high. The buildings have a gross area of 50,500 m2 including underground parking. The ventilation and indoor climate concept was to use mechanical ventilation together with mechanical cooling and fanassisted......, with an average of 1.1 kJ/m3. The yearly mean SFP based on estimated runtime is approx. 0.8 kJ/m3. The case shows the unlocked potential that lies within mechanical ventilation for nearzero energy consuming buildings....

  2. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    Science.gov (United States)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  3. Scanning of irradiated silicon detectors using $\\alpha$ particles and low energy protons

    CERN Document Server

    Casse, G L; Glaser, M; Kohout, Z; Konícek, J; Lemeilleur, F; Leroy, C; Linhart, V; Mares, J J; Pospísil, S; Roy, P; Sopko, B; Sinor, M; Svejda, J; Vorobel, V; Wilhelm, I

    1999-01-01

    In a spectroscopic study of non-irradiated and proton-irradiated silicon diodes, the detectors were illuminated from the front side and from the rear side by various alpha particle sources (mainly ThC') and by monoenergetic protons with energies from 1.0 to 2.5~MeV. Their response characteristics have been studied as a function of the incoming particle energy and the applied bias voltage. The charge collection efficiency was determined as a function of fluence

  4. Free energy and stability of macromolecules studied by the double scanning simulation procedure

    International Nuclear Information System (INIS)

    Meirovitch, H.; Vasquez, M.; Scheraga, H.A.

    1990-01-01

    The double scanning method (DSM) is a computer simulation technique suggested recently by Meirovitch [J. Chem. Phys. 89, 2514 (1988)]. This method is a variant of the usual or ''single'' scanning method (SSM) of the same author, which was extended by us to polypeptides [Biopolymers 27, 1189 (1988); this paper is designated here as paper II]. The two methods are step-by-step construction procedures from which the entropy and the free energy can be estimated. The transition probabilities are obtained by scanning the so-called ''future'' chains, which are continuations of the chain in future steps up to a maximum of b steps. With the SSM, the process is carried out by exact enumeration of the future chains; this is time consuming, and therefore b is limited to small values. With the DSM, on the other hand, only a relatively small sample of the future chains is generated by applying an additional scanning procedure. This enables one to increase b at the expense of approximating the transition probabilities. Increasing of b, however, is important in order to treat medium- and long-range interactions more properly. In this paper (as in our paper II), we apply the DSM to a model of decaglycine without solvent, described by the potential energy function ECEPP at 100 and 300 K. Using the SSM with the maximal value, b=4, we found in paper II that, at 100 K, the α helix rather than the statistical coil is the most stable state. The present DSM simulation at T=100 K (based on b=5) is more efficient than the SSM, and a structure with significantly lower energy than that of the α helix is found. It is argued that b can be increased further to 7 at this temperature. At 300 K the DSM, like the SSM, shows that the statistical coil is the most stable state of decaglycine. However, the DSM is found to be less efficient than the SSM

  5. Note: Microelectrode-shielding tip for scanning probe electron energy spectroscopy

    Science.gov (United States)

    Huang, Wei; Li, Zhean; Xu, Chunkai; Liu, Jian; Xu, Chunye; Chen, Xiangjun

    2018-04-01

    We report a novel microelectrode-shielding tip (ME tip) for scanning probe electron energy spectroscopy (SPEES). The shielding effect of this tip is studied through comparing the detection efficiency with the normal tip by both experiment and simulation. The results show that the backscattering count rate detected by the SPEES instrument using the normal tip begins to decrease as the tip approaches to the sample surface within 21 μm, while that using the ME tip only starts to drop off within 1 μm. This indicates that the electron energy spectra can be measured with the ME tip at a much closer tip-sample distance. Furthermore, it is also demonstrated that the ME tip can be used to obtain topography of the sample surface in situ simultaneously.

  6. Damaging Effect of Low Energy N+ Implantation on Aspergillus niger Spores

    International Nuclear Information System (INIS)

    Wang Lisheng; Cai Kezhou; Cheng Maoji; Chen Lijuan; Liu Xuelan; Zhang Shuqing; Yu Zengliang

    2007-01-01

    The mutant effects of a keV range nitrogen ion (N + ) beam on enzyme-producing probiotics were studied, particularly with regard to the induction in the genome. The electron spin resonance (ESR) results showed that the signal of ESR spectrum existed in both implanted and non-implanted spores, and the yields of free radicals increased in a dose-dependent manner. The ionic etching and dilapidation of cell wall could be observed distinctly through the scanning electron microscope (SEM). The mutagenic effect on genome indicated that N + implantation could make base mutation. This study provided an insight into the roles low-energy ions might play in inducing mutagenesis of micro-organisms

  7. Quickscan potential of heat pumps for energy conservation in cultivation with low energy consumption; Quickscan potentie van warmtepompen voor energiebesparing bij teelten met een laag energieverbruik

    Energy Technology Data Exchange (ETDEWEB)

    De Ruijter, J.A.F.

    2012-06-15

    In the title quick scan the use of a heat pump has been calculated for two low-energy crops: radish and the cold cultivation of pot plants. With model calculations two types of heat pump are calculated: an electric heat pump and a gas-engine-driven heat pump. The payback period of a heat pump in low-energy crops is too long considering the current market [Dutch] In de quickscan is het gebruik van een warmtepomp doorgerekend voor twee energiearme teelten: radijs en koude teelt van potplanten. Met modelberekeningen zijn twee types warmtepomp beoordeeld, een elektrische en een gasmotorgedreven warmtepomp. De terugverdientijd van een warmtepomp in energiearme teelten is onder de huidige marktomstandigheden te lang.

  8. Low energy supersymmetry phenomenology

    CERN Document Server

    Baer, H.; Chen, C.H.; Eberl, H.; Feng, J.L.; Fujii, K.; Gunion, John F.; Kamon, T.; Kao, C.; Lopez, J.L.; Majerotto, W.; McIntyre, P.; Munroe, Ray B.; Murayama, H.; Paige, F.; Porod, W.; Sender, J.; Sopczak, A.; Tata, X.; Tsukamoto, T.; White, J.

    1996-01-01

    We summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, we evaluate the capabilities of various e^+e^-, p\\bar p and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, we discuss capabilities of future facilities to dis-entangle the anticipated spectrum of super-particles and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. We comment upon the complementarity of proposed hadron and e^+e^- machines for a comprehensive study of low energy supersymmetry.

  9. Low energy supersymmetry phenomenology

    International Nuclear Information System (INIS)

    Baer, H.; Chen, C.H.; Gunion, J.; Kamon, T.; Lopez, J.L.; Kao, C.

    1995-04-01

    The authors summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, they evaluate the capabilities of various e + e - , p bar p and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, they discuss capabilities of future facilities to disentangle the anticipated spectrum of super-particles, and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. The authors then comment upon the complementarity of proposed hadron and e + e - machines for a comprehensive study of low energy supersymmetry

  10. Formation of hot spots in a superconductor observed by low-temperature scanning electron microscopy

    International Nuclear Information System (INIS)

    Eichele, R.; Seifert, H.; Huebener, R.P.

    1981-01-01

    Low-temperature scanning electron microscopy can be used for the direct observation of hot spots in a superconductor. Experiments performed at 2.10 K with tim films demonstrating the method are reported

  11. Prioritizing low-carbon energy sources to enhance China’s energy security

    International Nuclear Information System (INIS)

    Ren, Jingzheng; Sovacool, Benjamin K.

    2015-01-01

    Highlights: • Four dimensions and ten metrics are used for energy security assessment. • Both qualitative and quantitative metrics are considered for energy security. • AHP has been used to quantify qualitative metrics. • TOPSIS method has been used for prioritize the low-carbon energy sources. • Sensitivity analysis and integrated ranking have been carried out. - Abstract: This paper explores how low-carbon systems compare to each other in terms of their net effect on Chinese energy security, and how they ought to be ranked and strategized into an optimal and integrated resource plan. The paper utilizes Analytic Hierarchy Process (AHP) to first determine the relative performances of hydroelectricity, wind energy, solar energy, biomass energy, and nuclear power with respect to the energy security dimensions of availability, affordability, accessibility, and acceptability. Both qualitative and quantitative metrics are considered. It relies on AHP to calculate the relative weights of the qualitative metrics attached to these dimensions of energy security for each of our five low carbon energy sources. Then, energy security performance is determined by aggregating multiple, weighted metrics into a generic index based on the method of TOPSIS and then tweaked with a sensitivity analysis. Finally, an integrated method has been developed to rank the low-carbon energy systems from most to least important, with major implications for Chinese decision-makers and stakeholders. We conclude that hydroelectricity and wind power are the two low-carbon energy sources with the most potential to enhance China’s energy security. By contrast, nuclear and solar power have the least potential

  12. On-line preconcentration system using a microcolumn packed with Alizarin Red S-modified alumina for zinc determination by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    A.M. Haji Shabani

    2009-01-01

    Full Text Available A simple and sensitive on-line flow injection system for determination of zinc with FAAS has been described. The method is based on the separation and preconcentration of zinc on a microcolumn of immobilized Alizarin Red S on alumina. The adsorbed analyte is then eluted with 250 µL of nitric acid (1 mol L-1 and is transported to flame atomic absorption spectrometer for quantification. The effect of pH, sample and eluent flow rates and presence of various cations and anions on the retention of zinc was investigated. The sorption of zinc was quantitative in the pH range of 5.5-8.5. For a sample volume of 25 mL an enrichment factor of 144 and a detection limit (3S of 0.2 µg L-1 was obtained. The precision (RSD, n=7 was 3.0% at the 20 µg L-1 level. The developed system was successfully applied to the determination of zinc in water samples, hair, urine and saliva.

  13. Superconducting phonon spectroscopy using a low-temperature scanning tunneling microscope

    Science.gov (United States)

    Leduc, H. G.; Kaiser, W. J.; Hunt, B. D.; Bell, L. D.; Jaklevic, R. C.

    1989-01-01

    The low-temperature scanning tunneling microscope (STM) system described by LeDuc et al. (1987) was used to observe the phonon density of states effects in a superconductor. Using techniques based on those employed in macroscopic tunneling spectroscopy, electron tunneling current-voltage (I-V) spectra were measured for NbN and Pb, and dI/dV vs V spectra were measured using standard analog derivative techniques. I-V measurements on NbN and Pb samples under typical STM conditions showed no evidence for multiparticle tunneling effects.

  14. Small-size low-temperature scanning tunnel microscope

    International Nuclear Information System (INIS)

    Al'tfeder, I.B.; Khajkin, M.S.

    1989-01-01

    A small-size scanning tunnel microscope, designed for operation in transport helium-filled Dewar flasks is described. The microscope design contains a device moving the pin to the tested sample surface and a piezoelectric fine positioning device. High vibration protection of the microscope is provided by its suspension using silk threads. The small-size scanning tunnel microscope provides for atomic resolution

  15. The 2-ID-B intermediate-energy scanning X-ray microscope at the APS

    International Nuclear Information System (INIS)

    McNulty, I.; Paterson, D.; Arko, J.; Erdmann, M.; Goetze, K.; Ilinski, P.; Mooney, T.; Vogt, S.; Xu, S.; Frigo, S.P.; Stampfl, A.P.J.; Wang, Y.

    2002-01-01

    The intermediate-energy scanning x-ray microscope at beamline 2-ID-B at the Advanced Photon Source is a dedicated instrument for materials and biological research. The microscope uses a zone plate lens to focus coherent 1-4 keV x-rays to a 60 nm focal spot of 10 9 photons/s onto the sample. It records simultaneous transmission and energy-resolved fluorescence images. We have used the microscope for nano-tomography of chips and micro-spectroscopy of cells. (authors)

  16. Energy sharing and sputtering in low-energy collision cascades

    International Nuclear Information System (INIS)

    Weller, R.A.; Weller, M.R.

    1982-01-01

    Using a non-linear transport equation to describe the energy-sharing process in an isotropic collision cascade, we have numerically calculated sputtered particle velocity spectra for several very low energy (=< 10 eV) primary recoil distributions. Our formulation of the sputtering process is essentially that used in the linear model and our equations yield the familiar linear model results in the appropriate limit. Discrepancies between our calculations and the linear model results in other cases may be understood by considering the effects of the linear model assumptions on the sputtering yield at very low energies. Our calculations are also compared with recent experimental results investigating ion-explosion sputtering. The results of this comparison support the conclusion that in insulators sputtering is initiated by very low energy recoil atoms when the energy of the incident beam is high enough that the stopping power is dominated by the electronic contribution. The calculations also suggest that energy spectra similar to those for evaporation may result from non-equilibrium processes but that the apparent temperatures of evaporation are not related in a simple way to any real temperature within the target. (author)

  17. Comparison of scatter rejection and low-contrast performance of scan equalization digital radiography (SEDR), slot-scan digital radiography, and full-field digital radiography systems for chest phantom imaging

    International Nuclear Information System (INIS)

    Liu Xinming; Shaw, Chris C.; Lai, Chao-Jen; Wang Tianpeng

    2011-01-01

    Purpose: To investigate and compare the scatter rejection properties and low-contrast performance of the scan equalization digital radiography (SEDR) technique to the slot-scan and conventional full-field digital radiography techniques for chest imaging. Methods: A prototype SEDR system was designed and constructed with an a-Se flat-panel (FP) detector to improve image quality in heavily attenuating regions of an anthropomorphic chest phantom. Slot-scanning geometry was used to reject scattered radiation without attenuating primary x rays. The readout scheme of the FP was modified to erase accumulated scatter signals prior to image readout. A 24-segment beam width modulator was developed to regulate x-ray exposures regionally and compensate for the low x-ray flux in heavily attenuating regions. To measure the scatter-to-primary ratios (SPRs), a 2 mm thick lead plate with a 2-D array of aperture holes was used to measure the primary signals, which were then subtracted from those obtained without the lead plate to determine scatter components. A 2-D array of aluminum beads (3 mm in diameter) was used as the low-contrast objects to measure the contrast ratios (CRs) and contrast-to-noise ratios (CNRs) for evaluating the low-contrast performance in chest phantom images. A set of two images acquired with the same techniques were subtracted from each other to measure the noise levels. SPRs, CRs, and CNRs of the SEDR images were measured in four anatomical regions of chest phantom images and compared to those of slot-scan images and full-field images acquired with and without antiscatter grid. Results: The percentage reduction of SPR (percentage of SPRs reduced with scatter removal/rejection methods relative to that for nongrid full-field imaging) averaged over four anatomical regions was measured to be 80%, 83%, and 71% for SEDR, slot-scan, and full-field with grid, respectively. The average CR over four regions was found to improve over that for nongrid full

  18. Comparison of scatter rejection and low-contrast performance of scan equalization digital radiography (SEDR), slot-scan digital radiography, and full-field digital radiography systems for chest phantom imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xinming; Shaw, Chris C.; Lai, Chao-Jen; Wang Tianpeng [Department of Imaging Physics, Digital Imaging Research Laboratory, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2011-01-15

    Purpose: To investigate and compare the scatter rejection properties and low-contrast performance of the scan equalization digital radiography (SEDR) technique to the slot-scan and conventional full-field digital radiography techniques for chest imaging. Methods: A prototype SEDR system was designed and constructed with an a-Se flat-panel (FP) detector to improve image quality in heavily attenuating regions of an anthropomorphic chest phantom. Slot-scanning geometry was used to reject scattered radiation without attenuating primary x rays. The readout scheme of the FP was modified to erase accumulated scatter signals prior to image readout. A 24-segment beam width modulator was developed to regulate x-ray exposures regionally and compensate for the low x-ray flux in heavily attenuating regions. To measure the scatter-to-primary ratios (SPRs), a 2 mm thick lead plate with a 2-D array of aperture holes was used to measure the primary signals, which were then subtracted from those obtained without the lead plate to determine scatter components. A 2-D array of aluminum beads (3 mm in diameter) was used as the low-contrast objects to measure the contrast ratios (CRs) and contrast-to-noise ratios (CNRs) for evaluating the low-contrast performance in chest phantom images. A set of two images acquired with the same techniques were subtracted from each other to measure the noise levels. SPRs, CRs, and CNRs of the SEDR images were measured in four anatomical regions of chest phantom images and compared to those of slot-scan images and full-field images acquired with and without antiscatter grid. Results: The percentage reduction of SPR (percentage of SPRs reduced with scatter removal/rejection methods relative to that for nongrid full-field imaging) averaged over four anatomical regions was measured to be 80%, 83%, and 71% for SEDR, slot-scan, and full-field with grid, respectively. The average CR over four regions was found to improve over that for nongrid full

  19. Coupling sequential injection on-line preconcentration by means of a renewable microcolumn with ion-exchange beads with detection by electrothermal atomic absorption spectrometry. Comparing the performance of eluting the loaded beads with transporting them directly into the graphite tube

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2001-01-01

    The design of a flow injection/sequential injection (FIA/SIA) on-line preconcentration system incorporating a renewable microcolumn with ion-exchange beads and interfaced with an electrothermal atomic absorption spectrometry (ETAAS) detector is described, and its practical applicability.......4% for the procedure in which the loaded beads are transported directly to the graphite furnace for pyrolysis and atomization, and even improved in comparison to the traditional unidirectional and bidirectional repetitive elution procedures which under comparable conditions yield R.S.D.-values of 5.8 and 4...

  20. The place of the CT scan in the three concept view (TCV) of the low back syndrome

    International Nuclear Information System (INIS)

    Geldermann, P.W.

    1982-01-01

    From the historical lines along which our thinking about low back pain developed, three concepts can be deduced: radicular, stenotic and axial. The patient with a low back pain syndrome (LBS) should be seen with this three concept view (TCV) in mind. Modern insight into the degenerative process of the low back support this concept. The clinical syndromes illustrating these concepts, radicular syndromes, Neurogenic Peripheral Intermittent Claudication (NPIC), and axial low back pain, can intermingle. To determine the place of the CT scan in the process of diagnosis of the LBS, we carried out a total of 56 CT-examinations on about 200 low back patients with various indications. The results are discussed. In addition to radiological suppositions, NPIC plays an important part in deciding whether or not to perform a CT scan. (Author)

  1. Low-Level Detection of Poly(amidoamine) PAMAM Dendrimers Using Immunoimaging Scanning Probe Microscopy

    OpenAIRE

    Cason, Chevelle A.; Fabré, Thomas A.; Buhrlage, Andrew; Haik, Kristi L.; Bullen, Heather A.

    2012-01-01

    Immunoimaging scanning probe microscopy was utilized for the low-level detection and quantification of biotinylated G4 poly(amidoamine) PAMAM dendrimers. Results were compared to those of high-performance liquid chromatography (HPLC) and found to provide a vastly improved analytical method for the low-level detection of dendrimers, improving the limit of detection by a factor of 1000 (LOD = 2.5 × 10−13 moles). The biorecognition method is reproducible and shows high specificity and good accur...

  2. 3-d chemical imaging using angle-scan nanotomography in a soft X-ray scanning transmission X-ray microscope

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A.P.; Johansson, G.A. [McMaster, BIMR, Hamilton (Canada); Mitchell, G.E. [Dow Chemical, Analytical Science, Midland, MI (United States); Keefe, M.H. [Dow Chemical, Dow Latex, Midland, MI (United States); Tyliszcak, T. [LBNL, Advanced Light Source, Berkeley, CA (United States)

    2008-08-15

    Three-dimensional chemical mapping using angle scan nanotomography in a soft X-ray scanning transmission X-ray microscope (STXM) has been used to investigate the spatial distributions of a low density polyacrylate polyelectrolyte ionomer inside submicron sized polystyrene microspheres. Acquisition of tomograms at multiple photon energies provides true, quantifiable 3-d chemical sensitivity. Both pre-O 1s and C 1s results are shown. The study reveals aspects of the 3-d distribution of the polyelectrolyte that were inferred indirectly or had not been known prior to this study. The potential and challenges for extension of the technique to studies of other polymeric and to biological systems is discussed. (orig.)

  3. New cooperative mechanisms of low-energy nuclear reactions using super low-energy external field

    International Nuclear Information System (INIS)

    Gareev, F.A.; Zhidkova, I.E.

    2006-01-01

    We propose a new mechanism of LENR: cooperative processes in the whole system, nuclei + atoms + condensed matter, can occur at a smaller threshold energies than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low-energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution of inner energy of the whole system. (author)

  4. New Cooperative Mechanisms of Low-Energy Nuclear Reactions Using Super Low-Energy External Field

    Science.gov (United States)

    Gareev, F. A.; Zhidkova, I. E.

    We propose a new mechanism of LENR: cooperative processes in the whole system, nuclei + atoms + condensed matter, can occur at a smaller threshold energies than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low-energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution of inner energy of the whole system.

  5. Vibration Isolation Study in Scanning Probe Microscopy Part I: Low Frequency

    International Nuclear Information System (INIS)

    Oliva, A.I.; Espinosa-Faller, F.J.; Aguilar, M.

    1998-01-01

    A study of a low frequency isolation device based in a pneumatic system is presented. It consists of four cylinders which are closed and sealed with an elastic membrane on which the load is applied. Each cylinder made of PVC is formed by two chambers divided by a plate with a small hole for communication and damping. Air contained into chambers acts, in combination with the the elastic membranes, as a damper. Scanning probe techniques can be supported by this device in order to reduce the low frequency noises that affects them. Advantages of this isolator are discussed and compared. A theoretical approximation for this model is presented and compared with the experimental results obtained and show that it can isolate noises up to ∼ 2 Hz. The low frequency isolator has stability and fast response to external perturbations. This simple and economical low frequency isolator can be reproduced easily and its design depends on the work specific requirements. (Author) 9 refs

  6. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian [ITN Energy Systems, Inc., Littleton, CO (United States); Hollingsworth, Russell [ITN Energy Systems, Inc., Littleton, CO (United States)

    2015-03-31

    Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, the cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of

  7. Low-energy buildings on mainstream market terms

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Elle, Morten; Hoffmann, Birgitte

    2008-01-01

    implementation of strict energy performance requirements in mainstream building. The paper describes how the municipality of Egedal experienced a collapse in regulation for low-energy buildings and what struggles it had to take on in order to convince the mainstream building industry and their customers......This paper looks into the challenge of actually implementing energy efficient technologies and concepts in mainstream new build. The aim of the paper is to point out some of the provisos of promoting low-energy buildings on mainstream market terms, emphasising the need to understand forces working...... against implementation of low-energy buildings. The study is based on actor-network theory, emphasising the relations and struggles that form the basis for pushing for low-energy buildings. The paper is based on a case study of the proactive attempt of a Danish municipality to force through an actual...

  8. Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy.

    Science.gov (United States)

    Masters, Robert C; Pearson, Andrew J; Glen, Tom S; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M; Lidzey, David G; Rodenburg, Cornelia

    2015-04-24

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials.

  9. Sub-nanometre resolution imaging of polymer–fullerene photovoltaic blends using energy-filtered scanning electron microscopy

    Science.gov (United States)

    Masters, Robert C.; Pearson, Andrew J.; Glen, Tom S.; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M.; Lidzey, David G.; Rodenburg, Cornelia

    2015-01-01

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials. PMID:25906738

  10. Targeted computerised tomography scanning of the ankle syndesmosis with low dose radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kotwal, Rahul [Princess of Wales Hospital, Bridgend (United Kingdom); Rath, Narendra [Royal Gwent Hospital, Newport (United Kingdom); Paringe, Vishal; Hemmadi, Sandeep; Thomas, Rhys; Lyons, Kath [University Hospital of Wales, Cardiff (United Kingdom)

    2016-03-15

    To devise a new protocol for targeted CT scanning of the distal tibiofibular syndesmosis with minimal radiation exposure to patients. We also aimed to correlate the reduction of the syndesmosis as seen on CT scans with the functional outcome of patients. Prospective study. Forty adults undergoing surgical stabilisation of an acute distal tibiofibular syndesmosis injury were recruited. A targeted five-cut computerised tomography scan protocol was developed. The radiation exposure to the patient with this protocol was only 0.002 mSv. Scans were performed 12 weeks after surgery. The contralateral ankle of every patient was used as a control to determine the accuracy of the reduction of the syndesmosis for that individual patient. American Orthopaedic Foot and Ankle Society (AOFAS) scores were obtained at a minimum of 1 year after surgery. After considering the exclusions, 36 patients formed the study group. A wide variation was observed in the anatomy of the normal syndesmosis. If we considered a difference of more than 2 mm between the normal and injured syndesmosis relationship as significant, 15 (41.6 %) of our patients had a significant difference between the injured and normal sides. AOFAS scores were available for 13 of these patients and were good to excellent in 11(84.6 %). Our study describes a reliable new CT scanning technique for the distal tibiofibular syndesmosis using only five cuts and a low-radiation-dose protocol. Clinical correlation of the findings on the scan with functional outcomes suggests that routine post-operative CT of the syndesmosis is probably not justified. (orig.)

  11. Targeted computerised tomography scanning of the ankle syndesmosis with low dose radiation exposure

    International Nuclear Information System (INIS)

    Kotwal, Rahul; Rath, Narendra; Paringe, Vishal; Hemmadi, Sandeep; Thomas, Rhys; Lyons, Kath

    2016-01-01

    To devise a new protocol for targeted CT scanning of the distal tibiofibular syndesmosis with minimal radiation exposure to patients. We also aimed to correlate the reduction of the syndesmosis as seen on CT scans with the functional outcome of patients. Prospective study. Forty adults undergoing surgical stabilisation of an acute distal tibiofibular syndesmosis injury were recruited. A targeted five-cut computerised tomography scan protocol was developed. The radiation exposure to the patient with this protocol was only 0.002 mSv. Scans were performed 12 weeks after surgery. The contralateral ankle of every patient was used as a control to determine the accuracy of the reduction of the syndesmosis for that individual patient. American Orthopaedic Foot and Ankle Society (AOFAS) scores were obtained at a minimum of 1 year after surgery. After considering the exclusions, 36 patients formed the study group. A wide variation was observed in the anatomy of the normal syndesmosis. If we considered a difference of more than 2 mm between the normal and injured syndesmosis relationship as significant, 15 (41.6 %) of our patients had a significant difference between the injured and normal sides. AOFAS scores were available for 13 of these patients and were good to excellent in 11(84.6 %). Our study describes a reliable new CT scanning technique for the distal tibiofibular syndesmosis using only five cuts and a low-radiation-dose protocol. Clinical correlation of the findings on the scan with functional outcomes suggests that routine post-operative CT of the syndesmosis is probably not justified. (orig.)

  12. Errors in dual-energy X-ray scanning of the hip because of nonuniform fat distribution.

    Science.gov (United States)

    Tothill, Peter; Weir, Nicholas; Loveland, John

    2014-01-01

    The variable proportion of fat in overlying soft tissue is a potential source of error in dual-energy X-ray absorptiometry (DXA) measurements of bone mineral. The effect on spine scanning has previously been assessed from cadaver studies and from computed tomography (CT) scans of soft tissue distribution. We have now applied the latter technique to DXA hip scanning. The CT scans performed for clinical purposes were used to derive mean adipose tissue thicknesses over bone and background areas for total hip and femoral neck. The former was always lower. More importantly, the fat thickness differences varied among subjects. Errors because of bone marrow fat were deduced from CT measurements of marrow thickness and assumed fat proportions of marrow. The effect of these differences on measured bone mineral density was deduced from phantom measurements of the bone equivalence of fat. Uncertainties of around 0.06g/cm(2) are similar to those previously reported for spine scanning and the results from cadaver measurements. They should be considered in assessing the diagnostic accuracy of DXA scanning. Copyright © 2014 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  13. Natural gas in low energy house Zittau

    International Nuclear Information System (INIS)

    Maertens, L.; Koschack, A.

    1999-01-01

    This paper describes a low-energy house in Zittau, Germany. The house consists of two parts A and B. Part A is heated by means of gas boilers and condensed boilers, while part B is solar heated. Energy for heating and warming of tap water is an important part of the primary energy consumption in Germany. Therefore, one way of reducing the CO2 emissions is to reduce the heat losses of buildings through outer facades and air ventilation, to use regenerative energy sources, to use fuels with low CO2 emissivity like natural gas, and to install efficient heating- and hot water preparation systems. The low-energy house in Zittau is used for energy research

  14. Energy performance of the low-energy house in Greenland

    DEFF Research Database (Denmark)

    Kragh, Jesper; Svendsen, Svend

    2005-01-01

    by ventilation heat recovery (90% efficiency) specially designed for arctic conditions, by using thicker insulation in walls (300 mm) and roof/floor (350 mm), and by using solar hot water heating (3250 kWh/year). The building is intended to enhance sustainability in the building sector in Greenland....... energy gain, efficient ventilation system with heat recovery and solar heating. In this paper the results of a calculation of the energy consumption of low-energy house is presented. The calculation was done using the program BSim2002 [1] and a new weather test reference year based on climatic data......The object of the low-energy house in Sisimiut in Greenland was to build a house with an energy consumption less than 80 kWh/m² corresponding to half the energy frame of the coming building code. Therefore the focus in this project has been on large insulation thicknesses, windows with high net...

  15. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  16. Air Tightness and Energy Performance of an Arctic Low-Energy House

    DEFF Research Database (Denmark)

    Rode, Carsten; Vladyková, Petra; Kotol, Martin

    2010-01-01

    A low-energy house has been built in Sisimiut, Greenland, five years ago. An ambitious target was set for its low energy consumption for heating: 80 kWh/(m2∙a). But unfortunately, the house has used more energy than planned, approximately 140 kWh/(m2∙a). Although higher than anticipated, this is ...

  17. Architecture and energy. Towards a 2020 low-energy strategy; Arkitektur og energi mod en 2020-lavenergistrategi

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R.

    2011-07-01

    In the movement towards a 2020 low-energy strategy a more nuanced design process is needed where energy conservation measures are merged and integrated with the need for good thermal indoor climate and good daylight conditions in architecture as a whole. This publication gives an idea on how architects can integrate low-energy strategies step by step early in the design process by utilizing the architecture's spatial and passive energy-saving properties to meet the 2020 low-energy class. (LN)

  18. Low-energy QCD

    International Nuclear Information System (INIS)

    Ecker, G.

    1995-11-01

    After a brief introduction to chiral perturbation theory, the effective field theory of the standard model at low energies, two recent applications are reviewed: elastic pion-pion scattering to two-loop accuracy and the complete renormalized pion-nucleon Lagrangian to O(P 3 ) in the chiral expansion. (author)

  19. Application of low enthalpy geothermal energy

    International Nuclear Information System (INIS)

    Stancher, B.; Giannone, G.

    2007-01-01

    Geothermal energy comes from the superficial layers of the Earth's crust; it can be exploited in several ways, depending on its temperature. Many systems have been developed to use this clean and renewable energy resource. This paper deals with a particular application of low enthalpy geothermal energy in Latisana (district of Udine NE, Italy). The Latisana's indoor stadium is equipped with geothermal plant that uses low temperature water (29-30 0 ) to provide heating. Economic analysis shows that the cost of its plant is comparable to the cost powered by other kinds of renewable energy resources

  20. Low-energy office buildings using existing technology. Simulations with low internal heat gains

    Energy Technology Data Exchange (ETDEWEB)

    Flodberg, Kajsa; Blomsterberg, Aake; Dubois, Marie-Claude [Lund Univ. (Sweden). Div. of Energy and Building Design

    2012-11-01

    Although low-energy and nearly zero-energy residential houses have been built in Sweden in the past decade, there are very few examples of low-energy office buildings. This paper investigates the design features affecting energy use in office buildings and suggests the optimal low-energy design from a Swedish perspective. Dynamic simulations have been carried out with IDA ICE 4 on a typical narrow office building with perimeter cell rooms. The results from the parametric study reveal that the most important design features for energy saving are demand-controlled ventilation as well as limited glazing on the facade. Further energy-saving features are efficient lighting and office equipment which strongly reduce user-related electricity and cooling energy. Together, the simulation results suggest that about 48% energy can be saved compared to a new office building built according to the Swedish building code. Thus, it is possible, using a combination of simple and well-known building technologies and configurations, to have very low energy use in new office buildings. If renewable energy sources, such as solar energy and wind power, are added, there is a potential for the annual energy production to exceed the annual energy consumption and a net zero-energy building can be reached. One aspect of the results concerns user-related electricity, which becomes a major energy post in very low-energy offices and which is rarely regulated in building codes today. This results not only in high electricity use, but also in large internal heat gains and unnecessary high cooling loads given the high latitude and cold climate. (orig.)

  1. Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Actis, S [Paul-Scherrer-Institute Wuerenlingen and Villigen, Villigen (Switzerland); Arbuzov, A [Joint Institute for Nuclear Research, Dubna (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Balossini, G [Pavia Univ. (Italy). Dipt. di Fisica Nucleare e Teorica; INFN, Pavia [IT; and others

    2009-12-15

    We present the achievements of the last years of the experimental and theoretical groups working on hadronic cross section measurements at the low energy e{sup +}e{sup -} colliders in Beijing, Frascati, Ithaca, Novosibirsk, Stanford and Tsukuba and on {tau} decays. We sketch the prospects in these fields for the years to come. We emphasise the status and the precision of the Monte Carlo generators used to analyse the hadronic cross section measurements obtained as well with energy scans as with radiative return, to determine luminosities and {tau} decays. The radiative corrections fully or approximately implemented in the various codes and the contribution of the vacuum polarisation are discussed. (orig.)

  2. Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data

    International Nuclear Information System (INIS)

    Actis, S.; Arbuzov, A.

    2009-12-01

    We present the achievements of the last years of the experimental and theoretical groups working on hadronic cross section measurements at the low energy e + e - colliders in Beijing, Frascati, Ithaca, Novosibirsk, Stanford and Tsukuba and on τ decays. We sketch the prospects in these fields for the years to come. We emphasise the status and the precision of the Monte Carlo generators used to analyse the hadronic cross section measurements obtained as well with energy scans as with radiative return, to determine luminosities and τ decays. The radiative corrections fully or approximately implemented in the various codes and the contribution of the vacuum polarisation are discussed. (orig.)

  3. Lateral ordering of PTCDA on the clean and the oxygen pre-covered Cu(100) surface investigated by scanning tunneling microscopy and low energy electron diffraction.

    Science.gov (United States)

    Gärtner, Stefan; Fiedler, Benjamin; Bauer, Oliver; Marele, Antonela; Sokolowski, Moritz M

    2014-01-01

    We have investigated the adsorption of perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA) on the clean and on the oxygen pre-covered Cu(100) surface [referred to as (√2 × 2√2)R45° - 2O/Cu(100)] by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). Our results confirm the (4√2 × 5√2)R45° superstructure of PTCDA/Cu(100) reported by A. Schmidt et al. [J. Phys. Chem. 1995, 99,11770-11779]. However, contrary to Schmidt et al., we have no indication for a dissociation of the PTCDA upon adsorption, and we propose a detailed structure model with two intact PTCDA molecules within the unit cell. Domains of high lateral order are obtained, if the deposition is performed at 400 K. For deposition at room temperature, a significant density of nucleation defects is found pointing to a strong interaction of PTCDA with Cu(100). Quite differently, after preadsorption of oxygen and formation of the (√2 × 2√2)R45° - 2O/Cu(100) superstructure on Cu(100), PTCDA forms an incommensurate monolayer with a structure that corresponds well to that of PTCDA bulk lattice planes.

  4. Lateral ordering of PTCDA on the clean and the oxygen pre-covered Cu(100 surface investigated by scanning tunneling microscopy and low energy electron diffraction

    Directory of Open Access Journals (Sweden)

    Stefan Gärtner

    2014-09-01

    Full Text Available We have investigated the adsorption of perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA on the clean and on the oxygen pre-covered Cu(100 surface [referred to as (√2 × 2√2R45° – 2O/Cu(100] by scanning tunneling microscopy (STM and low energy electron diffraction (LEED. Our results confirm the (4√2 × 5√2R45° superstructure of PTCDA/Cu(100 reported by A. Schmidt et al. [J. Phys. Chem. 1995, 99,11770–11779]. However, contrary to Schmidt et al., we have no indication for a dissociation of the PTCDA upon adsorption, and we propose a detailed structure model with two intact PTCDA molecules within the unit cell. Domains of high lateral order are obtained, if the deposition is performed at 400 K. For deposition at room temperature, a significant density of nucleation defects is found pointing to a strong interaction of PTCDA with Cu(100. Quite differently, after preadsorption of oxygen and formation of the (√2 × 2√2R45° – 2O/Cu(100 superstructure on Cu(100, PTCDA forms an incommensurate monolayer with a structure that corresponds well to that of PTCDA bulk lattice planes.

  5. Determination of line edge roughness in low-dose top-down scanning electron microscopy images

    NARCIS (Netherlands)

    Verduin, T.; Kruit, P.; Hagen, C.W.

    2014-01-01

    We investigated the off-line metrology for line edge roughness (LER) determination by using the discrete power spectral density (PSD). The study specifically addresses low-dose scanning electron microscopy (SEM) images in order to reduce the acquisition time and the risk of resist shrinkage. The

  6. Exploring the Hidden Sector @ Low Energies

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Over the years we have accumulated a large number of indications for physics beyond the standard model. This new physics is often sought-after at high masses and energies. Here collider experiments can bring decisive insights. However, over recent years it has become increasingly clear that new physics can also appear at low energy, but extremely weak coupling. Experiments and observations at this `low energy frontier' therefore provide a powerful tool to gain insight into fundamental physics, which is complementary to accelerators.

  7. Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol

    International Nuclear Information System (INIS)

    Thomas, C.; Patschan, O.; Nagele, U.; Stenzl, A.; Ketelsen, D.; Tsiflikas, I.; Reimann, A.; Brodoefel, H.; Claussen, C.; Kopp, A.; Heuschmid, M.; Schlemmer, H.P.; Buchgeister, M.

    2009-01-01

    The efficiency and radiation dose of a low-dose dual-energy (DE) CT protocol for the evaluation of urinary calculus disease were evaluated. A low-dose dual-source DE-CT renal calculi protocol (140 kV, 46 mAs; 80 kV, 210 mAs) was derived from the single-energy (SE) CT protocol used in our institution for the detection of renal calculi (120 kV, 75 mAs). An Alderson-Rando phantom was equipped with thermoluminescence dosimeters and examined by CT with both protocols. The effective doses were calculated. Fifty-one patients with suspected or known urinary calculus disease underwent DE-CT. DE analysis was performed if calculi were detected using a dedicated software tool. Results were compared to chemical analysis after invasive calculus extraction. An effective dose of 3.43 mSv (male) and 5.30 mSv (female) was measured in the phantom for the DE protocol (vs. 3.17/4.57 mSv for the SE protocol). Urinary calculi were found in 34 patients; in 28 patients, calculi were removed and analyzed (23 patients with calcified calculi, three with uric acid calculi, one with 2,8-dihyxdroxyadenine-calculi, one patient with a mixed struvite calculus). DE analysis was able to distinguish between calcified and non-calcified calculi in all cases. In conclusion, dual-energy urinary calculus analysis is effective also with a low-dose protocol. The protocol tested in this study reliably identified calcified urinary calculi in vivo. (orig.)

  8. Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol.

    Science.gov (United States)

    Thomas, C; Patschan, O; Ketelsen, D; Tsiflikas, I; Reimann, A; Brodoefel, H; Buchgeister, M; Nagele, U; Stenzl, A; Claussen, C; Kopp, A; Heuschmid, M; Schlemmer, H-P

    2009-06-01

    The efficiency and radiation dose of a low-dose dual-energy (DE) CT protocol for the evaluation of urinary calculus disease were evaluated. A low-dose dual-source DE-CT renal calculi protocol (140 kV, 46 mAs; 80 kV, 210 mAs) was derived from the single-energy (SE) CT protocol used in our institution for the detection of renal calculi (120 kV, 75 mAs). An Alderson-Rando phantom was equipped with thermoluminescence dosimeters and examined by CT with both protocols. The effective doses were calculated. Fifty-one patients with suspected or known urinary calculus disease underwent DE-CT. DE analysis was performed if calculi were detected using a dedicated software tool. Results were compared to chemical analysis after invasive calculus extraction. An effective dose of 3.43 mSv (male) and 5.30 mSv (female) was measured in the phantom for the DE protocol (vs. 3.17/4.57 mSv for the SE protocol). Urinary calculi were found in 34 patients; in 28 patients, calculi were removed and analyzed (23 patients with calcified calculi, three with uric acid calculi, one with 2,8-dihyxdroxyadenine-calculi, one patient with a mixed struvite calculus). DE analysis was able to distinguish between calcified and non-calcified calculi in all cases. In conclusion, dual-energy urinary calculus analysis is effective also with a low-dose protocol. The protocol tested in this study reliably identified calcified urinary calculi in vivo.

  9. Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C. [University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Patschan, O.; Nagele, U.; Stenzl, A. [University of Tuebingen, Department of Urology, Tuebingen (Germany); Ketelsen, D.; Tsiflikas, I.; Reimann, A.; Brodoefel, H.; Claussen, C.; Kopp, A.; Heuschmid, M.; Schlemmer, H.P. [University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Buchgeister, M. [University of Tuebingen, Medical Physics, Department of Radiation Oncology, Tuebingen (Germany)

    2009-06-15

    The efficiency and radiation dose of a low-dose dual-energy (DE) CT protocol for the evaluation of urinary calculus disease were evaluated. A low-dose dual-source DE-CT renal calculi protocol (140 kV, 46 mAs; 80 kV, 210 mAs) was derived from the single-energy (SE) CT protocol used in our institution for the detection of renal calculi (120 kV, 75 mAs). An Alderson-Rando phantom was equipped with thermoluminescence dosimeters and examined by CT with both protocols. The effective doses were calculated. Fifty-one patients with suspected or known urinary calculus disease underwent DE-CT. DE analysis was performed if calculi were detected using a dedicated software tool. Results were compared to chemical analysis after invasive calculus extraction. An effective dose of 3.43 mSv (male) and 5.30 mSv (female) was measured in the phantom for the DE protocol (vs. 3.17/4.57 mSv for the SE protocol). Urinary calculi were found in 34 patients; in 28 patients, calculi were removed and analyzed (23 patients with calcified calculi, three with uric acid calculi, one with 2,8-dihyxdroxyadenine-calculi, one patient with a mixed struvite calculus). DE analysis was able to distinguish between calcified and non-calcified calculi in all cases. In conclusion, dual-energy urinary calculus analysis is effective also with a low-dose protocol. The protocol tested in this study reliably identified calcified urinary calculi in vivo. (orig.)

  10. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    OpenAIRE

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; Wang, H.; Wilson, K.; Zhang, S.

    2012-01-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods and surface resistance resolution of ~ 1 micro-Ohm at 3.3 GHz. A signal-to-noise ratio of about 10 dB was...

  11. Nanoscale Energy-Filtered Scanning Confocal Electron Microscopy Using a Double-Aberration-Corrected Transmission Electron Microscope

    International Nuclear Information System (INIS)

    Wang Peng; Behan, Gavin; Kirkland, Angus I.; Nellist, Peter D.; Takeguchi, Masaki; Hashimoto, Ayako; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2010-01-01

    We demonstrate that a transmission electron microscope fitted with two spherical-aberration correctors can be operated as an energy-filtered scanning confocal electron microscope. A method for establishing this mode is described and initial results showing 3D chemical mapping with nanoscale sensitivity to height and thickness changes in a carbon film are presented. Importantly, uncorrected chromatic aberration does not limit the depth resolution of this technique and moreover performs an energy-filtering role, which is explained in terms of a combined depth and energy-loss response function.

  12. Colon distension and scan protocol for CT-colonography: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Boellaard, Thierry N., E-mail: t.n.boellaard@amc.uva.nl [Department of Radiology, Academic Medical Center, University of Amsterdam, PB 22660, 1100 DD Amsterdam (Netherlands); Haan, Margriet C. de, E-mail: m.c.dehaan@amc.uva.nl [Department of Radiology, Academic Medical Center, University of Amsterdam, PB 22660, 1100 DD Amsterdam (Netherlands); Venema, Henk W., E-mail: h.w.venema@amc.uva.nl [Department of Radiology, Academic Medical Center, University of Amsterdam, PB 22660, 1100 DD Amsterdam (Netherlands); Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, PB 22660, 1100 DD Amsterdam (Netherlands); Stoker, Jaap, E-mail: j.stoker@amc.uva.nl [Department of Radiology, Academic Medical Center, University of Amsterdam, PB 22660, 1100 DD Amsterdam (Netherlands)

    2013-08-15

    This article reviews two important aspects of CT-colonography, namely colonic distension and scan parameters. Adequate distension should be obtained to visualize the complete colonic lumen and optimal scan parameters should be used to prevent unnecessary radiation burden. For optimal distension, automatic carbon dioxide insufflation should be performed, preferably via a thin, flexible catheter. Hyoscine butylbromide is – when available – the preferred spasmolytic agent because of the positive effect on insufflation and pain/burden and its low costs. Scans in two positions are required for adequate distension and high polyp sensitivity and decubitus position may be used as an alternative for patients unable to lie in prone position. The great intrinsic contrast between air or tagging and polyps allows the use of low radiation dose. Low-dose protocol without intravenous contrast should be used when extracolonic findings are deemed unimportant. In patients suspected for colorectal cancer, normal abdominal CT scan protocols and intravenous contrast should be used in supine position for the evaluation of extracolonic findings. Dose reduction can be obtained by lowering the tube current and/or voltage. Tube current modulation reduces the radiation dose (except in obese patients), and should be used when available. Iterative reconstructions is a promising dose reducing tool and dual-energy CT is currently evaluated for its applications in CT-colonography. This review also provides our institution's insufflation procedure and scan parameters.

  13. Computed Tomography of the Head and Neck Region for Tumor Staging-Comparison of Dual-Source, Dual-Energy and Low-Kilovolt, Single-Energy Acquisitions.

    Science.gov (United States)

    May, Matthias Stefan; Bruegel, Joscha; Brand, Michael; Wiesmueller, Marco; Krauss, Bernhard; Allmendinger, Thomas; Uder, Michael; Wuest, Wolfgang

    2017-09-01

    The aim of this study was to intra-individually compare the image quality obtained by dual-source, dual-energy (DSDE) computed tomography (CT) examinations and different virtual monoenergetic reconstructions to a low single-energy (SE) scan. Third-generation DSDE-CT was performed in 49 patients with histologically proven malignant disease of the head and neck region. Weighted average images (WAIs) and virtual monoenergetic images (VMIs) for low (40 and 60 keV) and high (120 and 190 keV) energies were reconstructed. A second scan aligned to the jaw, covering the oral cavity, was performed for every patient to reduce artifacts caused by dental hardware using a SE-CT protocol with 70-kV tube voltages and matching radiation dose settings. Objective image quality was evaluated by calculating contrast-to-noise ratios. Subjective image quality was evaluated by experienced radiologists. Highest contrast-to-noise ratios for vessel and tumor attenuation were obtained in 40-keV VMI (all P image quality was also highest for 40-keV, but differences to 60-keV VMI, WAI, and 70-kV SE were nonsignificant (all P > 0.05). High kiloelectron volt VMIs reduce metal artifacts with only limited diagnostic impact because of insufficiency in case of severe dental hardware. CTDIvol did not differ significantly between both examination protocols (DSDE: 18.6 mGy; 70-kV SE: 19.4 mGy; P = 0.10). High overall image quality for tumor delineation in head and neck imaging were obtained with 40-keV VMI. However, 70-kV SE examinations are an alternative and modified projections aligned to the jaw are recommended in case of severe artifacts caused by dental hardware.

  14. Coulomb effects in low-energy nuclear fragmentation

    Science.gov (United States)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  15. Evaluation of Image Quality in Low Tube-Voltage Chest CT Scan

    International Nuclear Information System (INIS)

    Kim, Hyun Ju; Cho, Jae Hwan; Park, Cheol Soo

    2010-01-01

    The patients who visited this department for pulmonary disease and need CT scans for Follow-up to observe change of CT value, evaluation of image quality and decrease of radiation dose as change of kVp. Subjects were the patients of 20 persons visited this department for pulmonary disease and Somatom Sensation 16(Semens, Enlarge, Germany) was used. Measurement of CT value as change of kVp was done by setting up ROI diameter of 1cm at the height of thyroid, aortic arch, right pulmonary artery in arterial phase image using 100 kVp, measuring 3 times, and recorded the average. CT value of phantom was measured by scanning phantoms which means contrast media diluted by normal saline by various ratio with tube voltage of 80 kVp, 100 kVp, 120 kVp, 140 kVp and recorded the average of 3 CT values of center of phantom image. In analysing radiation dose, CTDIVOL values of the latest arterial phase image of 120 kVp and as this research set that of 100 kVp were analyzed comparatively. 2 observers graded quality of chest images by 5 degrees (Unacceptable, Suboptimal, Adequate, Good, Excellent). CT value of chest image increased at 100 kVp by 14.06%∼27.26% in each ROI than 120 kVp. CT value of phantom increased as tube voltage lowered at various concentration of contrast media. CTDIVOL decreased at 100 kVp(5.00 mGy) by 36% than 120 kVp(7.80 mGy) in radiation dose analysis. here were 0 Unacceptable, 1 Suboptimal, 3 Adequate, 10 Good, 6 Excellent in totally 20 persons. Chest CT scanning with low kilo-voltage for patients who need CT scan repeatedly can bring images valuable for diagnose, and decrease radiation dose against patients

  16. Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Hali, E-mail: hamorris@ualberta.ca; Menon, Geetha; Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-07-15

    Purpose: Radiochromic film dosimetry is typically performed for high energy photons and moderate doses characterizing external beam radiotherapy (XRT). The purpose of this study was to investigate the accuracy of previously established film calibration procedures used in XRT when applied to low-energy, seed-based brachytherapy at higher doses, and to determine necessary modifications to achieve similar accuracy in absolute dose measurements. Methods: Gafchromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 75 kVp, 200 kVp, 6 MV, and (∼28 keV) I-125 photon sources. For the latter irradiations a custom phantom was built to hold a single I-125 seed. Film pieces were scanned with an Epson 10000XL flatbed scanner and the resulting 48-bit RGB TIFF images were analyzed using both FilmQA Pro software andMATLAB. Calibration curves relating dose and optical density via a rational functional form for all three color channels at each irradiation energy were determined with and without the inclusion of uncertainties in the measured optical densities and dose values. The accuracy of calibration curve variations obtained using piecewise fitting, a reduced film measurement area for I-125 irradiation, and a reduced number of dose levels was also investigated. The energy dependence of the film lot used was also analyzed by calculating normalized optical density values. Results: Slight differences were found in the resulting calibration curves for the various fitting methods used. The accuracy of the calibration curves was found to improve at low doses and worsen at high doses when including uncertainties in optical densities and doses, which may better represent the variability that could be seen in film optical density measurements. When exposing the films to doses > 8 Gy, two-segment piecewise fitting was found to be necessary to achieve similar accuracies in absolute dose measurements as when using smaller dose ranges. When reducing the film measurement

  17. Note on an energy scanning system for a Van de Graaff or a tandem accelerator

    International Nuclear Information System (INIS)

    Camplan, J.

    1987-01-01

    In a system including one electrostatic deflector, one magnet and a second electrostatic deflector used for energy scanning of particles outgoing from a tandem or a Van de Graaff accelerator, we derive equations linking positions and deflexions of the two deflectors. (orig.)

  18. Cystic Fibrosis: Are Volumetric Ultra-Low-Dose Expiratory CT Scans Sufficient for Monitoring Related Lung Disease?

    DEFF Research Database (Denmark)

    Loeve, Martine; Lequin, Maarten H; Bruijne, Marleen de

    2009-01-01

    Purpose: To assess whether chest computed tomography (CT) scores from ultra-low-dose end-expiratory scans alone could suffice for assessment of all cystic fibrosis (CF)-related structural lung abnormalities. Materials and Methods: In this institutional review board–approved study, 20 patients...... with CF aged 6–20 years (eight males, 12 females) underwent low-dose end-inspiratory CT and ultra-low-dose end-expiratory CT. Informed consent was obtained. Scans were randomized and scored by using the Brody-II CT scoring system to assess bronchiectasis, airway wall thickening, mucus plugging......-Altman plots. Results: Median age was 12.6 years (range, 6.3–20.3 years), median forced expiratory volume in 1 second was 100% (range, 46%–127%) of the predicted value, and median forced vital capacity was 99% (range, 61%–123%) of the predicted value. Very good agreement was observed between end...

  19. Two cases of thrombosed giant middle cerebral aneurysms presenting an unusual low-density area on a CT scan

    International Nuclear Information System (INIS)

    Fuwa, Isao; Matsukado, Yasuhiko; Otsuka, Tadahiro; Kodama, Takafumi; Wada, Hidetaka.

    1985-01-01

    We describe two cases of thrombosed giant middle cerebral aneurysms presenting an unusual low-density area on a CT scan. The first case was a 53-year-old woman who presented progressive motor difficulty and mental disturbance. A CT scan showed a large, round, high-density area with a clear margin in the right temporal and paraventricular regions. A low-density area extended around the large high-density lesion, and the ventricular system was shifted to the contralateral side. A thrombosed giant aneurysm with significant brain edema was confirmed surgically. The second case was a 66-year-old woman who had a history of severe headache and vomiting. A CT scan showed a ring-like calcification located in the right basal ganglia. A cystic low density, which compressed the right anterior horn, was observed in the right frontal region. Right carotid angiography revealed an aneurysm arising from the M 1 portion. The patient died before surgical intervention; however, neuroradiological examination indicated a liquefied clot in the thrombosed giant aneurysm. The etiology of the unusual low density was discussed in relation to the CT findings of the giant aneurysm. (author)

  20. Two cases of thrombosed giant middle cerebral aneurysms presenting an unusual low-density area on a CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Fuwa, Isao; Matsukado, Yasuhiko; Otsuka, Tadahiro; Kodama, Takafumi; Wada, Hidetaka

    1985-12-01

    We describe two cases of thrombosed giant middle cerebral aneurysms presenting an unusual low-density area on a CT scan. The first case was a 53-year-old woman who presented progressive motor difficulty and mental disturbance. A CT scan showed a large, round, high-density area with a clear margin in the right temporal and paraventricular regions. A low-density area extended around the large high-density lesion, and the ventricular system was shifted to the contralateral side. A thrombosed giant aneurysm with significant brain edema was confirmed surgically. The second case was a 66-year-old woman who had a history of severe headache and vomiting. A CT scan showed a ring-like calcification located in the right basal ganglia. A cystic low density, which compressed the right anterior horn, was observed in the right frontal region. Right carotid angiography revealed an aneurysm arising from the M/sub 1/ portion. The patient died before surgical intervention; however, neuroradiological examination indicated a liquefied clot in the thrombosed giant aneurysm. The etiology of the unusual low density was discussed in relation to the CT findings of the giant aneurysm.

  1. The low-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Low-energy geothermal resources are characterized by temperatures ranging from 30 to 100 C. The principal worldwide applications are: towns and greenhouses heating, spa bathing, agriculture products drying, etc.. Sources depth ranges from 1500 to 2500 m in porous and permeable formations (sandstones, sands, conglomerates, limestones..) carrying aquifers. The worldwide installed power was of about 11500 MWth in 1990, with an annual production of about 36000 GWh (about 1% of worldwide energy consumption). The annual production rate is estimated to 10% and would represent a 30000 and 80000 MWth power in 2000 and 2010, respectively. In France, low-energy geothermal resources are encountered principally in Mesozoic sediments of the Parisian and Aquitanian basins. French geothermics has developed during the last 30 years and principally between 1980 and 1985 after the second petroleum crack. After 1985, the decay of fossil fuel costs and the development of corrosion problems in the geothermal wells have led to the abandonment of the less productive fields and to the study of technical solutions to solve the corrosion problems. (J.S.). 1 fig., 5 photos

  2. Advanced optical system for scanning-spot photorefractive keratectomy (PRK)

    Science.gov (United States)

    Mrochen, Michael; Wullner, Christian; Semchishen, Vladimir A.; Seiler, Theo

    1999-06-01

    Purpose: The goal of this presentation is to discuss the use of the Light Shaping Beam Homogenizer in an optical system for scanning-spot PRK. Methods: The basic principle of the LSBH is the transformation of any incident intensity distribution by light scattering on an irregular microlens structure z = f(x,y). The relief of this microlens structure is determined by a defined statistical function, i.e. it is defined by the mean root-squared tilt σ of the surface relief. Therefore, the beam evolution after the LSBH and in the focal plane of an imaging lens was measured for various root-squared tilts. Beside this, an optical setup for scanning-spot PRK was assembled according to the theoretical and experimental results. Results: The divergence, homogeneity and the Gaussian radius of the intensity distribution in the treatment plane of the scanning-spot PRK laser system is mainly characterized by dependent on root-mean-square tilt σ of the LSBH, as it will be explained by the theoretical description of the LSBH. Conclusions: The LSBH represents a simple, low cost beam homogenizer with low energy losses, for scanning-spot excimer laser systems.

  3. Damaging Effect of Low Energy N{sup +} Implantation on Aspergillus niger Spores

    Energy Technology Data Exchange (ETDEWEB)

    Lisheng, Wang [Department of Animal Science and Technology, Anhui Agricultural University, Hefei 230036 (China); Kezhou, Cai [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Maoji, Cheng [Department of Animal Science and Technology, Anhui Agricultural University, Hefei 230036 (China); Lijuan, Chen [Department of Animal Science and Technology, Anhui Agricultural University, Hefei 230036 (China); Xuelan, Liu [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Shuqing, Zhang [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Zengliang, Yu [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China)

    2007-06-15

    The mutant effects of a keV range nitrogen ion (N{sup +}) beam on enzyme-producing probiotics were studied, particularly with regard to the induction in the genome. The electron spin resonance (ESR) results showed that the signal of ESR spectrum existed in both implanted and non-implanted spores, and the yields of free radicals increased in a dose-dependent manner. The ionic etching and dilapidation of cell wall could be observed distinctly through the scanning electron microscope (SEM). The mutagenic effect on genome indicated that N{sup +} implantation could make base mutation. This study provided an insight into the roles low-energy ions might play in inducing mutagenesis of micro-organisms.

  4. Low-energy effective action for the superstring

    International Nuclear Information System (INIS)

    Burgess, C.P.; Font, A.; Quevedo, F.

    1986-01-01

    We construct the low-energy D=4, N=1 supergravity that arises in superstring theories for an arbitrary number of generations. The coupling of all massless modes that carry low-energy gauge quantum numbers are calculated by truncating the heavy Kaluza-Klein modes of the ten-dimensional effective field theory. The resulting action is compared to the most general effective action compatible with the symmetries of the underlying ten-dimensional field (and string) theories. This comparison indicates which features of the truncation correctly approximate the exact low-energy action. (orig.)

  5. Low-temperature transitions in cod and tuna determined by differential scanning calorimetry

    DEFF Research Database (Denmark)

    Jensen, Kristina Nedenskov; Jørgensen, Bo; Nielsen, Jette

    2003-01-01

    Differential scanning calorimetry measurements have revealed different thermal transitions in cod and tuna samples. Transition temperatures detected Lit -11degreesC, -15degreesC and -21degreesC were highly dependent on the annealing temperature. In tuna muscle an additional transition was observed...... at -72degreesC. This transition appeared differently than the thermal events observed at higher temperatures, as it spanned a broad temperature interval of 25degreesC. The transition was comparable to low-temperature glass transitions reported in protein-rich systems. No transition at this low...... temperature was detected in cod samples. The transitions observed at higher temperatures (-11degreesC to -21degreesC) may possibly stein from a glassy matrix containing muscle proteins. However, the presence of a glass transition at - 11degreesC was in disagreement with the low storage stability at -18degrees...

  6. Aligned ion implantation using scanning probes

    International Nuclear Information System (INIS)

    Persaud, A.

    2006-01-01

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail. (orig.)

  7. Aligned ion implementation using scanning probes

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, A

    2006-12-12

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail. (orig.)

  8. Response function and optimum configuration of semiconductor backscattered-electron detectors for scanning electron microscopes

    International Nuclear Information System (INIS)

    Rau, E. I.; Orlikovskiy, N. A.; Ivanova, E. S.

    2012-01-01

    A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1–50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.

  9. Low energy particle composition

    International Nuclear Information System (INIS)

    Gloeckler, G.

    1975-01-01

    More than 50 papers presented at this Conference dealt with the composition of low energy particles. The topics can be divided roughly into two broad categories. The first is the study of the energy spectra and composition of the steady or 'quiet-time' particle flux, whose origin is at this time unknown. The second category includes the study of particles and photons which are associated with solar flares or active regions on the sun. (orig.) [de

  10. Investigation of multilayered nanocomposites as low energy X-Rays attenuators

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Liliane; Batista, Adriana S.M.; Nascimento, Jefferson P.; Furtado, Clascídia A.; Faria, Luiz O., E-mail: asfisica@gmail.com, E-mail: adriananuclear@yahoo.com.br, E-mail: farialo@cdtn.br, E-mail: nascimentopatricio@yahoo.com.br, E-mail: clas@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The development of radiation attenuating materials has application in radioprotection and conditioning of short-lived waste. Polymeric materials can serve as a matrix for the dispersion of nanomaterials with good attenuation features, resulting in lightweight, conformable, flexible and easy-to-process materials. Thus, some well-known shielding materials could be used in low proportion for the formation of new materials. On the other hand, nanostructured carbon materials, such as graphene oxide (GO) and carbon nanotubes (NTCs), have been reported recently to show enhanced attenuation properties. In this sense, polymeric matrixes provide the necessary flexibility for use in various applications that require molding. For the present work, poly(vinylidene fluoride) [PVDF] homopolymers and its fluorinated copolymers were filled with nanosized metallic and graphene oxides in order to produce nanocomposites with increased low energy X-ray attenuation efficiency. Film samples of PVDF/reduced Graphene Oxide [PVDF/rGO] and Poly(vinylidene fluoride – tryfluorethylene)/Barium Oxide [P(VDF-TrFE)/BaO] were synthesized. In a second step, the samples were then sandwiched between Kapton® layers and exposed to X-rays source (8.5 keV). The samples were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The attenuation coefficient was evaluated and compared with the attenuation of the individual constituents. It was observed an increase in the linear attenuation coefficient of the layered materials, justifying further investigation of these nanostructured composites as X-ray or gamma radiation attenuators. (author)

  11. Investigation of multilayered nanocomposites as low energy X-Rays attenuators

    International Nuclear Information System (INIS)

    Silva, Liliane; Batista, Adriana S.M.; Nascimento, Jefferson P.; Furtado, Clascídia A.; Faria, Luiz O.

    2017-01-01

    The development of radiation attenuating materials has application in radioprotection and conditioning of short-lived waste. Polymeric materials can serve as a matrix for the dispersion of nanomaterials with good attenuation features, resulting in lightweight, conformable, flexible and easy-to-process materials. Thus, some well-known shielding materials could be used in low proportion for the formation of new materials. On the other hand, nanostructured carbon materials, such as graphene oxide (GO) and carbon nanotubes (NTCs), have been reported recently to show enhanced attenuation properties. In this sense, polymeric matrixes provide the necessary flexibility for use in various applications that require molding. For the present work, poly(vinylidene fluoride) [PVDF] homopolymers and its fluorinated copolymers were filled with nanosized metallic and graphene oxides in order to produce nanocomposites with increased low energy X-ray attenuation efficiency. Film samples of PVDF/reduced Graphene Oxide [PVDF/rGO] and Poly(vinylidene fluoride – tryfluorethylene)/Barium Oxide [P(VDF-TrFE)/BaO] were synthesized. In a second step, the samples were then sandwiched between Kapton® layers and exposed to X-rays source (8.5 keV). The samples were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The attenuation coefficient was evaluated and compared with the attenuation of the individual constituents. It was observed an increase in the linear attenuation coefficient of the layered materials, justifying further investigation of these nanostructured composites as X-ray or gamma radiation attenuators. (author)

  12. A primer on Higgs boson low-energy theorems

    International Nuclear Information System (INIS)

    Dawson, S.; Haber, H.E.; California Univ., Santa Cruz, CA

    1989-05-01

    We give a pedagogical review of Higgs boson low-energy theorems and their applications in the study of light Higgs boson interactions with mesons and baryons. In particular, it is shown how to combine the chiral Lagrangian method with the Higgs low-energy theorems to obtain predictions for the interaction of Higgs bosons and pseudoscalar mesons. Finally, we discuss the relation between the low-energy theorems and a technique which makes use of the trace of the QCD energy-momentum tensor. 35 refs

  13. Augmentation of Quick-EXAFS measurement facility at the energy scanning EXAFS beamline at INDUS-2 SRS

    Energy Technology Data Exchange (ETDEWEB)

    Poswal, A. K., E-mail: poswalashwini@gmail.com; Agrawal, Ankur; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai -400085 (India)

    2015-06-24

    In this paper implementation of Quick-EXAFS data acquisition facility at the Energy Scanning EXAFS beamline(BL-09) at INDUS-2 synchrotron source, Indore is presented. By adopting a continuous-scan mode in the Double Crystal monochromator (DCM), a high signal-to-noise ratio is maintained and the acquisition time is reduced to few seconds. The quality of spectra and repeatability is checked by measuring standards. The present mode of data acquisition would enable EXAFS measurement for in-situ studies even in fluorescence mode.

  14. Tip preparation for usage in an ultra-low temperature UHV scanning tunneling microscope

    Directory of Open Access Journals (Sweden)

    S. Ernst, S. Wirth, M. Rams, V. Dolocan and F. Steglich

    2007-01-01

    Full Text Available This work deals with the preparation and characterization of tungsten tips for the use in UHV low-temperature scanning tunneling microscopy and spectroscopy (STM and STS, respectively. These specific environments require in situ facilities for tip conditioning, for further sharpening of the tips, as well as for reliable tip characterization. The implemented conditioning methods include direct resistive annealing, annealing by electron bombardment, and self-sputtering with noble gas ions. Moreover, results from in situ tip characterization by field emission and STM experiments were compared to ex situ scanning electron microscopy. Using the so-prepared tips, high resolution STM images and tunneling spectra were obtained in a temperature range from ambient down to 350 mK, partially with applied magnetic field, on a variety of materials.

  15. Emission Trading System in the SER Energy Agreement for Sustainable Growth. Macro-economic calculation by means of WorldScan; ETS in het SER Energieakkoord. Macro-economische doorrekening met WorldScan

    Energy Technology Data Exchange (ETDEWEB)

    Brink, C. [Planbureau voor de Leefomgeving PBL, Den Haag (Netherlands)

    2013-09-01

    The Dutch National Energy Agreement for Sustainable Growth aims at strengthening the European system for emissions trading by a more strict emission ceiling. Also, the agreement aims at guarantee the competitiveness of global energy intensive businesses by adjusting the allocation method for emission rights. In the calculations for the energy agreement this is reflected in the adjustment of the ETS pricing path. In this memo the calculations with the equilibrium model WordlScan are described and presented [Dutch] Het Nationaal Energieakkoord voor Duurzame Groei zet in op een versterking van het Europees systeem voor emissiehandel (ETS) door aanscherpen van het emissieplafond. Verder wil het akkoord de concurrentiepositie van het mondiaal opererende energie-intensieve bedrijfsleven borgen door aanpassing van de allocatiemethode voor emissierechten. In de doorrekening van het Energieakkoord is deze inzet tot uitdrukking gebracht in een aanpassing van het ETS-prijspad. Deze notitie beschrijft de berekeningen met het algemeen evenwichtsmodel WorldScan waar deze aanpassing van het ETS-prijspad op is gebaseerd.

  16. Low-energy heavy-ion reactions: Some recent developments

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1989-01-01

    We address three areas: behavior of the optical model at low energies and associated phenomena, fusion at near- and sub-barrier energies; where does fusion occur?, and recent examples of explicit coupled-channels effects at low energies. 74 refs., 18 figs

  17. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    Science.gov (United States)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  18. Scanning transmission low-energy electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Hovorka, Miloš; Konvalina, Ivo; Unčovský, M.; Frank, Luděk

    2011-01-01

    Roč. 55, č. 4 (2011), 2:1-6 ISSN 0018-8646 R&D Projects: GA AV ČR IAA100650902; GA MŠk ED0017/01/01 Institutional research plan: CEZ:AV0Z20650511 Keywords : TEM * STEM * SEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.723, year: 2011

  19. What is a low-energy house and who cares?

    Energy Technology Data Exchange (ETDEWEB)

    Litt, B.R.

    1994-12-01

    Most energy analysts view low-energy houses as good things, yet differ in their expectations of what exactly a low energy house is. There are two intertwining threads to this report. The first is an evaluation of 50 buildings that have been claimed to be low-energy residences, for which monitored energy performance data have been collected. These data represent the preliminary effort in the ongoing update of the Buildings Energy-Use Compilation and Analysis (BECA) data base for new residences. The second thread concerns the definition of a low-energy house. After the elements of a definition are presented, their implications for actors involved in providing housing are identified. Several more tractable definitions are applied to the houses in this compilation. The outcomes illustrate ways in which different interests are served by various definitions. Different definitions can yield very different energy rankings. No single definition of a low-energy house is universally applicable.

  20. Can Low-Resolution Airborne Laser Scanning Data Be Used to Model Stream Rating Curves?

    Directory of Open Access Journals (Sweden)

    Steve W. Lyon

    2015-03-01

    Full Text Available This pilot study explores the potential of using low-resolution (0.2 points/m2 airborne laser scanning (ALS-derived elevation data to model stream rating curves. Rating curves, which allow the functional translation of stream water depth into discharge, making them integral to water resource monitoring efforts, were modeled using a physics-based approach that captures basic geometric measurements to establish flow resistance due to implicit channel roughness. We tested synthetically thinned high-resolution (more than 2 points/m2 ALS data as a proxy for low-resolution data at a point density equivalent to that obtained within most national-scale ALS strategies. Our results show that the errors incurred due to the effect of low-resolution versus high-resolution ALS data were less than those due to flow measurement and empirical rating curve fitting uncertainties. As such, although there likely are scale and technical limitations to consider, it is theoretically possible to generate rating curves in a river network from ALS data of the resolution anticipated within national-scale ALS schemes (at least for rivers with relatively simple geometries. This is promising, since generating rating curves from ALS scans would greatly enhance our ability to monitor streamflow by simplifying the overall effort required.

  1. Can low-resolution airborne laser scanning data be used to model stream rating curves?

    Science.gov (United States)

    Lyon, Steve; Nathanson, Marcus; Lam, Norris; Dahlke, Helen; Rutzinger, Martin; Kean, Jason W.; Laudon, Hjalmar

    2015-01-01

    This pilot study explores the potential of using low-resolution (0.2 points/m2) airborne laser scanning (ALS)-derived elevation data to model stream rating curves. Rating curves, which allow the functional translation of stream water depth into discharge, making them integral to water resource monitoring efforts, were modeled using a physics-based approach that captures basic geometric measurements to establish flow resistance due to implicit channel roughness. We tested synthetically thinned high-resolution (more than 2 points/m2) ALS data as a proxy for low-resolution data at a point density equivalent to that obtained within most national-scale ALS strategies. Our results show that the errors incurred due to the effect of low-resolution versus high-resolution ALS data were less than those due to flow measurement and empirical rating curve fitting uncertainties. As such, although there likely are scale and technical limitations to consider, it is theoretically possible to generate rating curves in a river network from ALS data of the resolution anticipated within national-scale ALS schemes (at least for rivers with relatively simple geometries). This is promising, since generating rating curves from ALS scans would greatly enhance our ability to monitor streamflow by simplifying the overall effort required.

  2. States of low energy on Robertson-Walker spacetimes

    International Nuclear Information System (INIS)

    Olbermann, Heiner

    2007-01-01

    We construct a new class of physical states of the free Klein-Gordon field in Robertson-Walker spacetimes. This is done by minimizing the expectation value of smeared stress-energy. We get an explicit expression for the state depending on the smearing function. We call it a state of low energy. States of low energy are an improvement of the concept of adiabatic vacua on Robertson-Walker spacetimes. The latter are approximations of the former. It is shown that states of low energy are Hadamard states

  3. High-sensitivity visualization of localized electric fields using low-energy electron beam deflection

    Science.gov (United States)

    Jeong, Samuel; Ito, Yoshikazu; Edwards, Gary; Fujita, Jun-ichi

    2018-06-01

    The visualization of localized electronic charges on nanocatalysts is expected to yield fundamental information about catalytic reaction mechanisms. We have developed a high-sensitivity detection technique for the visualization of localized charges on a catalyst and their corresponding electric field distribution, using a low-energy beam of 1 to 5 keV electrons and a high-sensitivity scanning transmission electron microscope (STEM) detector. The highest sensitivity for visualizing a localized electric field was ∼0.08 V/µm at a distance of ∼17 µm from a localized charge at 1 keV of the primary electron energy, and a weak local electric field produced by 200 electrons accumulated on the carbon nanotube (CNT) apex can be visualized. We also observed that Au nanoparticles distributed on a CNT forest tended to accumulate a certain amount of charges, about 150 electrons, at a ‑2 V bias.

  4. Study on the application of low energy U-window

    International Nuclear Information System (INIS)

    Li Binghai; Liu Shikai; Chen Guosheng

    2012-01-01

    For using the low energy U-window information, based on the theory and experiment, the advantage of identifying the subtle anomaly that the low energy U-window information has given is discussed, the method of drawing the low energy U-window information is stated; a method of calibration and obtaining the calibration parameters was developed which was applied to Dongsheng region. The result indicated that the anomaly of low energy U-window information upon known field is more easy identified by comparing with the standard three windows U-window information, which proved the practicability of the method of low energy U-windows information. (authors)

  5. Low-energy scattering data for oxygen

    International Nuclear Information System (INIS)

    Kopecky, S.; Plompen, A.J.M.

    2014-01-01

    A survey of literature data of the scattering lengths of oxygen is performed, and these values are compared to low-energy precise total cross-section data. To check the quality of the data and the correctness of the relation between coherent scattering lengths and low-energy total cross-sections the situation is examined first for carbon. A value and uncertainty for the coherent scattering length of oxygen is recommended for use in future evaluations of 16 O. This coherent scattering length is fully consistent with the high-precision, low-energy total cross-section data. The consistency requires the use of a larger uncertainty than claimed in the most accurate cross-section papers. This larger uncertainty is nevertheless very small and well within the requirements of applications of this cross-section. The recommended value is b c ( 16 O) = 5.816±0.015 fm and the associated total cross-section for the neutron-energy range 0.5 to 2 000 eV is 3.765±0.025 b. The stated uncertainties are one standard deviation total uncertainty. (authors)

  6. Contrast Dose and Radiation Dose Reduction in Abdominal Enhanced Computerized Tomography Scans with Single-phase Dual-energy Spectral Computerized Tomography Mode for Children with Solid Tumors

    OpenAIRE

    Tong Yu; Jun Gao; Zhi-Min Liu; Qi-Feng Zhang; Yong Liu; Ling Jiang; Yun Peng

    2017-01-01

    Background: Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors...

  7. Virtual compton scattering at low energy

    International Nuclear Information System (INIS)

    Lhuillier, D.

    1997-09-01

    The work described in this PhD is a study of the Virtual Compton scattering (VCS) off the proton at low energy, below pion production threshold. Our experiment has been carried out at MAMI in the collaboration with the help of two high resolution spectrometers. Experimentally, the VCS process is the electroproduction of photons off a liquid hydrogen target. First results of data analysis including radiative corrections are presented and compared with low energy theorem prediction. VCS is an extension of the Real Compton Scattering. The virtuality of the incoming photon allows us to access new observables of the nucleon internal structure which are complementarity to the elastic form factors: the generalized polarizabilities (GP). They are function of the squared invariant mass of the virtual photo. The mass limit of these observables restore the usual electric and magnetic polarizabilities. Our experiment is the first measurement of the VCS process at a virtual photon mass equals 0.33 Ge V square. The experimental development presents the analysis method. The high precision needed in the absolute cross-section measurement required an accurate estimate of radiative corrections to the VCS. This new calculation, which has been performed in the dimensional regulation scheme, composes the theoretical part of this thesis. At low q', preliminary results agree with low energy theorem prediction. At higher q', substraction of low energy theorem contribution to extract GP is discussed. (author)

  8. Low temperature ultrahigh vacuum cross-sectional scanning tunneling microscope for luminescence measurements

    International Nuclear Information System (INIS)

    Khang, Yoonho; Park, Yeonjoon; Salmeron, Miquel; Weber, Eicke R.

    1999-01-01

    We have constructed a scanning tunneling microscope with simultaneous light collection capabilities in order to investigate the opto-electronic properties of semiconductors. The microscope has in situ sample cleavage mechanism for cross-sectional sample. In order to reach low temperature (4 K), we used a specially designed cryostat. The efficiency of light collection generated in the tip-surface junction was greatly improved by use of a small parabolic mirror with the tip located at its focal point. (c) 1999 American Institute of Physics

  9. Low cost, microcontroller based heating device for multi-wavelength differential scanning fluorimetry.

    Science.gov (United States)

    Hoeser, Jo; Gnandt, Emmanuel; Friedrich, Thorsten

    2018-01-23

    Differential scanning fluorimetry is a popular method to estimate the stability of a protein in distinct buffer conditions by determining its 'melting point'. The method requires a temperature controlled fluorescence spectrometer or a RT-PCR machine. Here, we introduce a low-budget version of a microcontroller based heating device implemented into a 96-well plate reader that is connected to a standard fluorescence spectrometer. We demonstrate its potential to determine the 'melting point' of soluble and membranous proteins at various buffer conditions.

  10. Energy-microfinance intervention for low income households in India

    Science.gov (United States)

    Rao, P. Sharath Chandra

    In India, limited energy access and energy inequity hamper the lives of low income households. Traditional fuels such as firewood and dung cake account for 84 percent and 32 percent of the rural and urban household cooking energy (NSSO, 2007). With 412 million people without access to electricity in 2005, India hosts the world's largest such population (IEA, 2007). But, low income households still spend 9 - 11.7 percent1 of their incomes on inefficient forms of energy while wealthy households spend less than 5 percent on better energy products (Saghir, 2005). Renewable energy technologies coupled with innovative financial products can address the energy access problem facing the low income households in India (MacLean & Siegel, 2007; REEEP, 2009). Nevertheless, the low income households continue to face low access to mainstream finance for purchasing renewable energy technology at terms that meet their monthly energy related expenditure (ESMAP, 2004a; SEEP, 2008a) and low or no access to energy services (Ailawadi & Bhattacharyya, 2006; Modi et. al., 2006). The lack of energy-finance options has left the marginalized population with little means to break the dependence on traditional fuels. This dissertation proposes an energy microfinance intervention to address the present situation. It designed a loan product dedicated to the purchase of renewable energy technologies while taking into account the low and irregular cash flows of the low income households. The arguments presented in this dissertation are based on a six-month pilot project using this product designed and developed by the author in conjunction with a microfinance institution and its low income clients and Energy Service Companies in the state of Karnataka. Finding the right stakeholders and establishing a joint agreement, obtaining grant money for conducting the technology dissemination workshops and forming a clear procedure for commissioning the project, are the key lessons learnt from this study

  11. Precursor and Neutral Loss Scans in an RF Scanning Linear Quadrupole Ion Trap

    Science.gov (United States)

    Snyder, Dalton T.; Szalwinski, Lucas J.; Schrader, Robert L.; Pirro, Valentina; Hilger, Ryan; Cooks, R. Graham

    2018-03-01

    Methodology for performing precursor and neutral loss scans in an RF scanning linear quadrupole ion trap is described and compared to the unconventional ac frequency scan technique. In the RF scanning variant, precursor ions are mass selectively excited by a fixed frequency resonance excitation signal at low Mathieu q while the RF amplitude is ramped linearly to pass ions through the point of excitation such that the excited ion's m/z varies linearly with time. Ironically, a nonlinear ac frequency scan is still required for ejection of the product ions since their frequencies vary nonlinearly with the linearly varying RF amplitude. In the case of the precursor scan, the ejection frequency must be scanned so that it is fixed on a product ion m/z throughout the RF scan, whereas in the neutral loss scan, it must be scanned to maintain a constant mass offset from the excited precursor ions. Both simultaneous and sequential permutation scans are possible; only the former are demonstrated here. The scans described are performed on a variety of samples using different ionization sources: protonated amphetamine ions generated by nanoelectrospray ionization (nESI), explosives ionized by low-temperature plasma (LTP), and chemical warfare agent simulants sampled from a surface and analyzed with swab touch spray (TS). We lastly conclude that the ac frequency scan variant of these MS/MS scans is preferred due to electronic simplicity. In an accompanying manuscript, we thus describe the implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 using constant RF voltage. [Figure not available: see fulltext.

  12. High energy devices versus low energy devices in orthopedics treatment modalities

    Science.gov (United States)

    Schultheiss, Reiner

    2003-10-01

    The orthopedic consensus group defined in 1997 the 42 most likely relevant parameters of orthopedic shock wave devices. The idea of this approach was to correlate the different clinical outcomes with the physical properties of the different devices with respect to their acoustical waves. Several changes in the hypothesis of the dose effect relationship have been noticed since the first orthopedic treatments. The relation started with the maximum pressure p+, followed by the total energy, the energy density; and finally the single treatment approach using high, and then the multiple treatment method using low energy. Motivated by the reimbursement situation in Germany some manufacturers began to redefine high and low energy devices independent of the treatment modality. The OssaTron as a high energy, single treatment electro hydraulic device gained FDA approval as the first orthopedic ESWT device for plantar fasciitis and, more recently, for lateral epicondylitis. Two low energy devices have now also gained FDA approval based upon a single treatment. Comparing the acoustic data, differences between the OssaTron and the other devices are obvious and will be elaborated upon. Cluster analysis of the outcomes and the acoustical data are presented and new concepts will be suggested.

  13. Implications of net energy-return-on-investment for a low-carbon energy transition

    Science.gov (United States)

    King, Lewis C.; van den Bergh, Jeroen C. J. M.

    2018-04-01

    Low-carbon energy transitions aim to stay within a carbon budget that limits potential climate change to 2 °C—or well below—through a substantial growth in renewable energy sources alongside improved energy efficiency and carbon capture and storage. Current scenarios tend to overlook their low net energy returns compared to the existing fossil fuel infrastructure. Correcting from gross to net energy, we show that a low-carbon transition would probably lead to a 24-31% decline in net energy per capita by 2050, which implies a strong reversal of the recent rising trends of 0.5% per annum. Unless vast end-use efficiency savings can be achieved in the coming decades, current lifestyles might be impaired. To maintain the present net energy returns, solar and wind renewable power sources should grow two to three times faster than in other proposals. We suggest a new indicator, `energy return on carbon', to assist in maximizing the net energy from the remaining carbon budget.

  14. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Federičová, P.; Harlenderová, A.; Kocmánek, Martin; Kvapil, J.; Lidrych, J.; Rusňák, Jan; Rusňáková, O.; Šaur, Miroslav; Šimko, Miroslav; Šumbera, Michal; Trzeciak, B. A.

    2017-01-01

    Roč. 96, č. 4 (2017), č. článku 044904. ISSN 2469-9985 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * RHIC * Beam Energy Scan Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 3.820, year: 2016

  15. Energy loss and thermalization of low-energy electrons

    International Nuclear Information System (INIS)

    LaVerne, J.A.; Mozumder, A.; Notre Dame Univ., IN

    1984-01-01

    Various processes involved in the moderation of low-energy electrons (< 10 keV in energy) have been delineated in gaseous and liquid media. The discussion proceeds in two stages. The first stage ends and the second stage begins when the electron energy equals the first excitation potential of the medium. The second stage ends with thermalization. Cross sections for electronic excitation and for the excitation (and de-excitation) of sub-electronic processes have been evaluated and incorporated in suitable stopping power and transport theories. Comparison between experiment and theory and intercomparisons between theories and experiments have been provided where possible. (author)

  16. The application and shielding value of low-dose CT scanning in hypoxic ischemic encephalopathy of neonate

    International Nuclear Information System (INIS)

    Wu Aiqin; Zheng Wenlong; Xu Chongyong; Cheng Jianmin; Chen Yu; Chen Tinggang

    2006-01-01

    Objective: To investigate the application and shielding value of multi-slice spiral CT scanning with low-dose in hypoxic ischemic encephalopathy (HIE) of neonate. Methods: 60 neonates with HIE diagnosed by clinic were prospectively selected and randomly divided into two groups averagely. The technical parameters were tube tension 120 kV, slice thickness and gap 6 mm, conventional tube current 250 mAs and low dose 50 mAs. Weighted CT dose index (CTDI w ) and dose length product (DLP) were compared to each other. The image noise were analyzed with water phantom of children's skull. The mean and standard deviation of CT value were statistically analyzed. The image quality was blindly evaluated in two different dose groups. Results: (1) The mAs, CTDI w and DLP in low dose group were 20 % of conventional dose group; (2) The noise of water phantom in low dose group was larger than in conventional dose group with the significant difference (t=34.533, P < 0.01 ); (3) The imaging quality in low dose group was mostly better, but inferior to conventional dose group, while there is no poor images to influence the diagnosis of HIE. Conclusions: The low dose scanning will be practical in diagnosis of HIE, and beneficial to protect the newborn which corresponds to the optimizing principle of ICRP in medical radiation protection. (authors)

  17. Enhancement Mechanisms of Low Energy Nuclear Reactions

    OpenAIRE

    Gareev, F. A.; Zhidkova, I. E.

    2005-01-01

    The review of possible stimulation mechanisms of LENR (low energy nuclear reaction) is represented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle [1] and based on its different enhancement mechanisms of reaction rates are responsible for these processes [2]. The excitation and ionization of atoms may play role as a trigger for LENR. Superlow energy o...

  18. Low-energy nuclear physics

    International Nuclear Information System (INIS)

    1985-01-01

    The 1985 annual report of the Schuster Laboratory, Manchester University, England, on low-energy nuclear physics, is presented. The report includes experiments involving: high spin states, nuclei far from stability, reactions and fission, spectroscopy and related subjects. Technical developments are also described. (U.K.)

  19. Novel low-dose imaging technique for characterizing atomic structures through scanning transmission electron microscope

    Science.gov (United States)

    Su, Chia-Ping; Syu, Wei-Jhe; Hsiao, Chien-Nan; Lai, Ping-Shan; Chen, Chien-Chun

    2017-08-01

    To investigate dislocations or heterostructures across interfaces is now of great interest to condensed matter and materials scientists. With the advances in aberration-corrected electron optics, the scanning transmission electron microscope has demonstrated its excellent capability of characterizing atomic structures within nanomaterials, and well-resolved atomic-resolution images can be obtained through long-exposure data acquisition. However, the sample drifting, carbon contamination, and radiation damage hinder further analysis, such as deriving three-dimensional (3D) structures from a series of images. In this study, a method for obtaining atomic-resolution images with significantly reduced exposure time was developed, using which an original high-resolution image with approximately one tenth the electron dose can be obtained by combining a fast-scan high-magnification image and a slow-scan low-magnification image. The feasibility of obtaining 3D atomic structures using the proposed approach was demonstrated through multislice simulation. Finally, the feasibility and accuracy of image restoration were experimentally verified. This general method cannot only apply to electron microscopy but also benefit to image radiation-sensitive materials using various light sources.

  20. A Low-Energy Ring Lattice Design

    International Nuclear Information System (INIS)

    Cai, Yunhai

    2002-01-01

    The PEP-N project at SLAC [1] consists of a Very Low-Energy small electron Ring (VLER) that will collide with the low-energy 3.1 GeV positron beam (LER) of PEP-II, producing center-of-mass energies between the 1.1 GeV and the J/ψ. The beams will collide head-on and will be separated in the detector magnetic field which is part of the Interaction Region [2]. The IP β functions were chosen such as to optimize both luminosity and beam-beam tune shifts, while keeping the LER tune shifts small. This paper describes the lattice design of the VLER for the ''baseline'' at 500 MeV

  1. Liver scanning with sup(99m)Tc-phytate

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, A; Isobe, Y; Kobayashi, T; (Keio Univ., Tokyo (Japan). School of Medicine); Kinoshita, Fumio; Shibata, Masayoshi

    1975-03-01

    /sup 198/Au-colloid has been widely used for liver scanning in Japan but it is not the best scanning agent because of the large exposure dose to the patient. The authors performed a few basic experiments with sup(99m)Tc-phytate, the preparation of which is very easy. The labeling efficiency was found to be 97.5% immediately after preparation and it remained fairly stable for a period of time. As a result, the compound can be used up to 6 hours after preparation without fear of chemical instability. Liver scanning with sup(99m)Tc-phytate was done on 116 patients and was compared with /sup 198/Au-colloid liver-scanning. Scans made with sup(99m)Tc were found to be superior to those made with /sup 198/Au in the resolution of surface defects in the liver, while at increasing depths the resolution with sup(99m)Tc dropped rapidly, apparently due to absorption of its relatively low energy photon. This indicates the importance of taking multidirectional views. The degrees of splenic concentration of sup(99m)Tc-phytate were fairly close to those of /sup 198/Au-colloid. Therefore, liver scanning with sup(99m)Tc-phytate is useful in the diagnostic evaluation of diffuse parenchymal liver disease.

  2. Liver scanning with sup(99m)Tc-phytate

    International Nuclear Information System (INIS)

    Kubo, Atsushi; Isobe, Yoshinori; Kobayashi, Takeshi; Kinoshita, Fumio; Shibata, Masayoshi.

    1975-01-01

    198 Au-colloid has been widely used for liver scanning in Japan but it is not the best scanning agent because of the large exposure dose to the patient. The authors performed a few basic experiments with sup(99m)Tc-phytate, the preparation of which is very easy. The labeling efficiency was found to be 97.5% immediately after preparation and it remained fairly stable for a period of time. As a result, the compound can be used up to 6 hours after preparation without fear of chemical instability. Liver scanning with sup(99m)Tc-phytate was done on 116 patients and was compared with 198 Au-colloid liver-scanning. Scans made with sup(99m)Tc were found to be superior to those made with 198 Au in the resolution of surface defects in the liver, while at increasing depths the resolution with sup(99m)Tc dropped rapidly, apparently due to absorption of its relatively low energy photon. This indicates the importance of taking multidirectional views. The degrees of splenic concentration of sup(99m)Tc-phytate were fairly close to those of 198 Au-colloid. Therefore, liver scanning with sup(99m)Tc-phytate is useful in the diagnostic evaluation of diffuse parenchymal liver disease. (auth.)

  3. Low-energy physics of high-temperature superconductors

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1992-01-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the ''universality'' of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter

  4. Scanning microscopies of superconductors at very low temperatures

    International Nuclear Information System (INIS)

    Crespo, V.; Maldonado, A.; Galvis, J.A.; Kulkarni, P.; Guillamon, I.; Rodrigo, J.G.; Suderow, H.; Vieira, S.; Banerjee, S.; Rodiere, P.

    2012-01-01

    We discuss basics of Scanning Tunneling Microscopy and Spectroscopy (STM/S) of the superconducting state with normal and superconducting tips. We present a new method to measure the local variations in the Andreev reflection amplitude between a superconducting tip and the sample. This method is termed Scanning Andreev Reflection Spectroscopy (SAS). We also briefly discuss vortex imaging with STM/S under an applied current through the sample, and show the vortex lattice as a function of the angle between the magnetic field and sample’s surface.

  5. Atomic species recognition on oxide surfaces using low temperature scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zong Min, E-mail: mzmncit@163.com [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Shi, Yun Bo; Mu, Ji Liang; Qu, Zhang; Zhang, Xiao Ming; Qin, Li [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Liu, Jun, E-mail: liuj@nuc.edu.cn [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China)

    2017-02-01

    Highlights: • The coexisted phase of p(2 × 1)and c(6 × 2) on Cu(110)-O surface using AFM under UHV at low temperature. • Two different c(6 × 2) phase depending on the status of the tip apex. • Electronic state of tip seriously effect the resolution and stability of the sample surface. - Abstract: In scanning probe microscopy (SPM), the chemical properties and sharpness of the tips of the cantilever greatly influence the scanning of a sample surface. Variation in the chemical properties of the sharp tip apex can induce transformation of the SPM images. In this research, we explore the relationship between the tip and the structure of a sample surface using dynamic atomic force microscopy (AFM) on a Cu(110)-O surface under ultra-high vacuum (UHV) at low temperature (78 K). We observed two different c(6 × 2) phase types in which super-Cu atoms show as a bright spot when the tip apex is of O atoms and O atoms show as a bright spot when the tip apex is of Cu atoms. We also found that the electronic state of the tip has a serious effect on the resolution and stability of the sample surface, and provide an explanation for these phenomena. This technique can be used to identify atom species on sample surfaces, and represents an important development in the SPM technique.

  6. Characterisation Of The Beam Plasma In High Current, Low Energy Ion Beams For Implanters

    International Nuclear Information System (INIS)

    Fiala, J.; Armour, D. G.; Berg, J. A. van der; Holmes, A. J. T.; Goldberg, R. D.; Collart, E. H. J.

    2006-01-01

    The effective transport of high current, positive ion beams at low energies in ion implanters requires the a high level of space charge compensation. The self-induced or forced introduction of electrons is known to result in the creation of a so-called beam plasma through which the beam propagates. Despite the ability of beams at energies above about 3-5 keV to create their own neutralising plasmas and the development of highly effective, plasma based neutralising systems for low energy beams, very little is known about the nature of beam plasmas and how their characteristics and capabilities depend on beam current, beam energy and beamline pressure. These issues have been addressed in a detailed scanning Langmuir probe study of the plasmas created in beams passing through the post-analysis section of a commercial, high current ion implanter. Combined with Faraday cup measurements of the rate of loss of beam current in the same region due to charge exchange and scattering collisions, the probe data have provided a valuable insight into the nature of the slow ion and electron production and loss processes. Two distinct electron energy distribution functions are observed with electron temperatures ≥ 25 V and around 1 eV. The fast electrons observed must be produced in their energetic state. By studying the properties of the beam plasma as a function of the beam and beamline parameters, information on the ways in which the plasma and the beam interact to reduce beam blow-up and retain a stable plasma has been obtained

  7. Atypical retardation patterns in scanning laser polarimetry are associated with low peripapillary choroidal thickness.

    Science.gov (United States)

    Tornow, Ralf P; Schrems, Wolfgang A; Bendschneider, Delia; Horn, Folkert K; Mayer, Markus; Mardin, Christian Y; Lämmer, Robert

    2011-09-29

    Scanning laser polarimetry (SLP) results can be affected by an atypical retardation pattern (ARP). One reason for an ARP is the birefringence of the sclera. The purpose of this study was to investigate the influence of the peripapillary choroidal thickness (pChTh) on the occurrence of ARP. One hundred ten healthy subjects were investigated with SLP and spectral domain OCT. pChTh was measured in B-scan images at 768 positions using semiautomatic software. Values were averaged to 32 sectors and the total peripapillary mean. Subjects were divided into four groups according to the typical scan score (TSS) provided by the GDxVCC: group 1 TSS, 100; group 2 TSS, 90-99; group 3 TSS, 80-89; group 4 TSS, <80. Mean pChTh (± SD) in 110 healthy subjects was 141 μm (±49 μm). There was a significant correlation between pChTh and TSS (r = 0.608; P < 0.001). In TSS groups 1 to 4, mean pChTh was 168 μm (±38 μm), 148 μm (± 48 μm), 119 μm (±35 μm), and 92 (±42 μm). Mean pChTh of TSS groups 3 and 4 was significantly lower than that of TSS group 1 (P < 0.001). Low values of TSS resulting from the appearance of ARP in SLP are associated with low peripapillary choroidal thickness. Reduced choroidal thickness may result in an increased amount of confounding light getting to the SLP light detectors.

  8. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    Science.gov (United States)

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; Wang, H.; Wilson, K.; Zhang, S.

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ˜1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  9. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity.

    Science.gov (United States)

    Ciovati, G; Anlage, Steven M; Baldwin, C; Cheng, G; Flood, R; Jordan, K; Kneisel, P; Morrone, M; Nemes, G; Turlington, L; Wang, H; Wilson, K; Zhang, S

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ~1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  10. Surface sterilization by low energy electron beams

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Tabei, Masae

    1989-01-01

    The germicidal effectiveness of low energy electron beams (175 KV) against bacterial cells was investigated. The dry spores of Bacillus pumilus ATCC 27142 and Bacillus globigii ATCC 9372 inoculated on carrier materials and irradiated by gamma rays showed the exponential type of survival curves whereas they showed sigmoidal ones when exposed to low energy electron beams. When similarly irradiated, the wet spores inoculated on membrane filter showed the same survival curves as the dry spores inoculated on carrier materials. The wet vegetative cells of Escherichia coli ATCC 25922 showed exponential curves when exposed to gamma and electron beam irradiation. Low energy electron beams in air showed little differences from nitrogen stream in their germicidal effectiveness against dry spores of B. pumilus. The D values of B. pumilus spores inoculated on metal plates decreased as the amounts of backscattering electrons from the plates increased. There was adequate correlation between the D value (linear region of survival curve), average D value (6D/6) and 1% survival dose and backscattering factor. Depth dose profile and backscatterig dose of low energy electron beams were measured by radiochromic dye film dosimeter (RCD). These figures were not always in accord with the observed germicidal effectiveness against B. pumilus spores because of varying thickness of RCD and spores inoculated on carrier material. The dry spores were very thin and this thinness was useful in evaluating the behavior of low energy electrons. (author)

  11. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations

    International Nuclear Information System (INIS)

    Montes, C.; Hernandez, J.; Gomez-Caminero, F.; Garcia, S.; Martin, C.; Rosero, A.; Tamayo, P.

    2013-01-01

    Hybrid imaging, such as single photon emission computed tomography (SPECT)/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose. (author)

  12. Simultaneous measurement of refractive index and thickness distributions using low-coherence digital holography and vertical scanning

    International Nuclear Information System (INIS)

    Watanabe, Kaho; Ohshima, Masashi; Nomura, Takanori

    2014-01-01

    The simultaneous measurement method of a refractive index distribution and a thickness distribution using low-coherence digital holography with a vertical scanning is proposed. The proposed method consists of a combination of digital holography and low-coherence interferometry. The introduction of a datum plane enables the measurement of both a refractive index distribution and a thickness distribution. By the optical experiment, the potential of the proposed method is confirmed. (paper)

  13. Development of Soil Compaction Analysis Software (SCAN Integrating a Low Cost GPS Receiver and Compactometer

    Directory of Open Access Journals (Sweden)

    Dongha Lee

    2012-02-01

    Full Text Available A software for soil compaction analysis (SCAN has been developed for evaluating the compaction states using the data from the GPS as well as a compactometer attached on the roller. The SCAN is distinguished from other previous software for intelligent compaction (IC in that it can use the results from various types of GPS positioning methods, and it also has an optimal structure for remotely managing the large amounts of data gathered from numerous rollers. For this, several methods were developed: (1 improving the accuracy of low cost GPS receiver’s positioning results; (2 modeling the trajectory of a moving roller using a GPS receiver’s results and linking it with the data from the compactometer; and (3 extracting the information regarding the compaction states of the ground from the modeled trajectory, using spatial analysis methods. The SCAN was verified throughout various field compaction tests, and it has been confirmed that it can be a very effective tool in evaluating field compaction states.

  14. Quantum scattering at low energies

    DEFF Research Database (Denmark)

    Derezinski, Jan; Skibsted, Erik

    For a class of negative slowly decaying potentials, including with , we study the quantum mechanical scattering theory in the low-energy regime. Using modifiers of the Isozaki--Kitada type we show that scattering theory is well behaved on the {\\it whole} continuous spectrum of the Hamiltonian......, including the energy . We show that the --matrices are well-defined and strongly continuous down to the zero energy threshold. Similarly, we prove that the wave matrices and generalized eigenfunctions are norm continuous down to the zero energy if we use appropriate weighted spaces. These results are used...... from positive energies to the limiting energy . This change corresponds to the behaviour of the classical orbits. Under stronger conditions we extract the leading term of the asymptotics of the kernel of at its singularities; this leading term defines a Fourier integral operator in the sense...

  15. Beam Energy Scan of Specific Heat Through Temperature Fluctuations in Heavy Ion Collisions

    Science.gov (United States)

    Basu, Sumit; Nandi, Basanta K.; Chatterjee, Sandeep; Chatterjee, Rupa; Nayak, Tapan

    2016-01-01

    Temperature fluctuations may have two distinct origins, first, quantum fluctuations that are initial state fluctuations, and second, thermodynamical fluctuations. We discuss a method of extracting the thermodynamic temperature from the mean transverse momentum of pions, by using controllable parameters such as centrality of the system, and range of the transverse momenta. Event-by-event fluctuations in global temperature over a large phase space provide the specific heat of the system. We present Beam Energy Scan of specific heat from data, AMPT and HRG model prediction. Experimental results from NA49, STAR, PHENIX, PHOBOS and ALICE are combined to obtain the specific heat as a function of beam energy. These results are compared to calculations from AMPT event generator, HRG model and lattice calculations, respectively.

  16. Design of scanning motion control system for high-energy X-ray industrial CT

    International Nuclear Information System (INIS)

    Duan Liming

    2008-01-01

    A scanning motion control system was developed for the high-energy X-ray industrial computerized tomography (CT). The system consists of an industrial control computer, a counter card, a control card, servo drivers, servo motors, working platforms, gratings and control software. Based on windows driver model(WDM) mode, the composition of the driver pro- gram for the system was studied. Took the motor control card as an example, the method to develop the driver program was researched, and the intercourse process between the device driver program and the user-program was analyzed. The real-time control of the system was implemented using the WDM driver. The real-time performance and reliability of the system can satisfy the requirement of high-energy X-ray industrial CT. (authors)

  17. Theorems of low energy in Compton scattering

    International Nuclear Information System (INIS)

    Chahine, J.

    1984-01-01

    We have obtained the low energy theorems in Compton scattering to third and fouth order in the frequency of the incident photon. Next we calculated the polarized cross section to third order and the unpolarized to fourth order in terms of partial amplitudes not covered by the low energy theorems, what will permit the experimental determination of these partial amplitudes. (Author) [pt

  18. Ultra-low-energy wide electron exposure unit

    International Nuclear Information System (INIS)

    Yonago, Akinobu; Oono, Yukihiko; Tokunaga, Kazutoshi; Kishimoto, Junichi; Wakamoto, Ikuo

    2001-01-01

    Heat and ultraviolet ray processes are used in surface dryness of paint, surface treatment of construction materials and surface sterilization of food containers. A process using a low-energy wide-area electron beam (EB) has been developed that features high speed and low drive cost. EB processing is not widespread in general industry, however, due to high equipment cost and difficult maintenance. We developed an ultra-low-energy wide-area electron beam exposure unit, the Mitsubishi Wide Electron Exposure Unit (MIWEL) to solve these problems. (author)

  19. Photon energy-fluence correction factor in low energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)

    2017-07-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  20. Photon energy-fluence correction factor in low energy brachytherapy

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Yoriyaz, Hélio; Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D tis ) and dose-to-water (D w ). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the 125 I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  1. DCARR: a spectrograph for measuring low-energy x rays

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    DCARR, the Differential Critical Angle Reflection Refraction detector system, is described. This detector was designed to measure low-energy x rays, 500 to 5000 eV, with a high degree of resolution, 250 eV. DCARR was developed because these low-energy measurements are of interest in the diagnostics of x-radiation in nuclear tests and available equipment could not make measurements at this low an energy in field tests. DCARR is a versatile piece of equipment that can also be used as a laboratory tool, such as in measuring the low-energy x rays emitted by lasers and various x-ray machines

  2. Classification of low energy houses in Danish Building Regulations

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2005-01-01

    The new Danish Building Regulations (Building Regulations, 2005) introduces the total energy consumption, i.e. energy use for heating, ventilation, cooling and domestic hot water, for buildings as a measure for the energy efficiency of new buildings, i.e. moving away from the former U-value demands....... In addition to the minimum requirements for new buildings, the new Building Regulations also specify requirements for characterizing a building as either low energy building class 1 or low energy building class 2. This paper describes a type-house that is presently being built in Denmark. The type......-house easily meets the requirements for being categorized as a low energy building class 1, and the paper investigates how much U-values can be increased if the type-house were to fulfil the requirements for a low energy building class 2 or a building that just fulfils the minimum demands....

  3. Low-energy neutrino measurements

    Indian Academy of Sciences (India)

    2012-10-05

    Oct 5, 2012 ... Abstract. Low-energy solar neutrino detection plays a fundamental role in ... the experimental point of view, there are multiple ways to shed light among the different .... compared to the two metallicity expectations [16]. ..... from the Earth; solar neutrinos; indirect dark matter searches) and GeV physics (pro-.

  4. Low-energy neutrino measurements

    Indian Academy of Sciences (India)

    Low-energy solar neutrino detection plays a fundamental role in understanding both solar astrophysics and particle physics. After introducing the open questions on both fields, we review here the major results of the last two years and expectations for the near future from Borexino, Super-Kamiokande, SNO and KamLAND ...

  5. Radionuclide scanning

    International Nuclear Information System (INIS)

    Shapiro, B.

    1986-01-01

    Radionuclide scanning is the production of images of normal and diseased tissues and organs by means of the gamma-ray emissions from radiopharmaceutical agents having specific distributions in the body. The gamma rays are detected at the body surface by a variety of instruments that convert the invisible rays into visible patterns representing the distribution of the radionuclide in the body. The patterns, or images, obtained can be interpreted to provide or to aid diagnoses, to follow the course of disease, and to monitor the management of various illnesses. Scanning is a sensitive technique, but its specificity may be low when interpreted alone. To be used most successfully, radionuclide scanning must be interpreted in conjunction with other techniques, such as bone radiographs with bone scans, chest radiographs with lung scans, and ultrasonic studies with thyroid scans. Interpretation is also enhanced by providing pertinent clinical information because the distribution of radiopharmaceutical agents can be altered by drugs and by various procedures besides physiologic and pathologic conditions. Discussion of the patient with the radionuclide scanning specialist prior to the study and review of the results with that specialist after the study are beneficial

  6. Low energy ion-molecule reactions

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, J.M. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  7. A fast event preprocessor for the Simbol-X Low-Energy Detector

    Science.gov (United States)

    Schanz, T.; Tenzer, C.; Kendziorra, E.; Santangelo, A.

    2008-07-01

    The Simbol-X1 Low Energy Detector (LED), a 128 × 128 pixel DEPFET array, will be read out very fast (8000 frames/second). This requires a very fast onboard data preprocessing of the raw data. We present an FPGA based Event Preprocessor (EPP) which can fulfill this requirements. The design is developed in the hardware description language VHDL and can be later ported on an ASIC technology. The EPP performs a pixel related offset correction and can apply different energy thresholds to each pixel of the frame. It also provides a line related common-mode correction to reduce noise that is unavoidably caused by the analog readout chip of the DEPFET. An integrated pattern detector can block all invalid pixel patterns. The EPP has an internal pipeline structure and can perform all operation in realtime (< 2 μs per line of 64 pixel) with a base clock frequency of 100 MHz. It is utilizing a fast median-value detection algorithm for common-mode correction and a new pattern scanning algorithm to select only valid events. Both new algorithms were developed during the last year at our institute.

  8. Very low-energy and low-fluence ion beam bombardment of naked plasmid DNA

    International Nuclear Information System (INIS)

    Norarat, R.; Semsang, N.; Anuntalabhochai, S.; Yu, L.D.

    2009-01-01

    Ion beam bombardment of biological organisms has been recently applied to mutation breeding of both agricultural and horticultural plants. In order to explore relevant mechanisms, this study employed low-energy ion beams to bombard naked plasmid DNA. The study aimed at simulation of the final stage of the process of the ion beam bombardment of real cells to check whether and how very low-energy and low-fluence of ions can induce mutation. Argon and nitrogen ions at 5 keV and 2.5 keV respectively bombarded naked plasmid DNA pGFP to very low-fluences, an order of 10 13 ions/cm 2 . Subsequently, DNA states were analyzed using electrophoresis. Results provided evidences that the very low-energy and low-fluence ion bombardment indeed altered the DNA structure from supercoil to short linear fragments through multiple double strand breaks and thus induced mutation, which was confirmed by transfer of the bombarded DNA into bacteria Escherichia coli and subsequent expression of the marker gene.

  9. Periodic and uniform nanogratings formed on cemented carbide by femtosecond laser scanning

    International Nuclear Information System (INIS)

    Lian, Yunsong; Deng, Jianxin; Xing, Youqiang; Lei, Shuting; Yu, Xiaoming

    2013-01-01

    Periodic and uniform nanogratings are fabricated by femtosecond laser scanning on cemented carbide. Specifically, three experiments are designed to study the influence of single pulse energy, scanning speed, and scanning spacing on the period and the uniformity of the formed nanogratings. The results show that the sample with single pulse energy of 2 μJ, scanning speed of 1000 μm/s, and scanning spacing of 5 μm shows the best quality of nanogratings among all the tested samples at different processing parameters. The uniformity of the nanogratings is largely determined by single pulse energy, scanning speed, and scanning spacing. Single pulse energy and scanning speed significantly affect the period of the nanogratings, whereas the period of the nanogratings maintains a fixed value under different scanning spacings. The period of the nanogratings increases gradually with the decrease of the single pulse energy and the increase of the scanning speed, respectively.

  10. Internal defibrillation: pain perception of low energy shocks.

    Science.gov (United States)

    Steinhaus, David M; Cardinal, Debbie S; Mongeon, Luc; Musley, Shailesh Kumar; Foley, Laura; Corrigan, Susie

    2002-07-01

    Recently, device-based low energy cardoversion shocks have been used as therapy for AF. However, discomfort from internal low energy electrical shocks is poorly understood. The aim of this study was to evaluate pain perception with low energy internal discharges. Eighteen patients with ICD devices for malignant ventricular arrhythmias were recruited to receive shocks of 0.4 and 2 J in the nonsedated state. Discharges were delivered in a blinded, random order and questionnaires were used to determine discomfort levels and tolerability. Patients perceived discharges at these energies as relatively uncomfortable, averaging a score of 7.3 on a discomfort scale of 0-10, and could not distinguish 0.4-J shocks from 2-J shocks. Second shocks were perceived as more uncomfortable than initial discharges, regardless of the order in which the shocks were delivered. Despite the perceived discomfort, 83% of patients stated that they would tolerate discharges of this magnitude once per month, and 44% would tolerate weekly discharges. Patients perceive low energy discharges as painful and cannot distinguish between shocks of 0.4 and 2 J. The results suggest that ICD systems developed to treat atrial tachyarrhythmias should minimize the number of shocks delivered to terminate an atrial tachyarrhythmia episode. The majority of the patients tolerated low energy shocks provided the discharges are infrequent (once per month).

  11. Quantum scattering at low energies

    DEFF Research Database (Denmark)

    Derezinski, Jan; Skibsted, Erik

    2009-01-01

    For a class of negative slowly decaying potentials, including V(x):=−γ|x|−μ with 0quantum mechanical scattering theory in the low-energy regime. Using appropriate modifiers of the Isozaki–Kitada type we show that scattering theory is well behaved on the whole continuous spectrum...... of the Hamiltonian, including the energy 0. We show that the modified scattering matrices S(λ) are well-defined and strongly continuous down to the zero energy threshold. Similarly, we prove that the modified wave matrices and generalized eigenfunctions are norm continuous down to the zero energy if we use...... of the kernel of S(λ) experiences an abrupt change from passing from positive energies λ to the limiting energy λ=0 . This change corresponds to the behaviour of the classical orbits. Under stronger conditions one can extract the leading term of the asymptotics of the kernel of S(λ) at its singularities....

  12. Extra Low ENergy Antiproton

    CERN Multimedia

    To produce dense antiproton beams at very low energies (110 keV), it has been proposed to install a small decelerator ring between the existing AD ring and the experimental area. Phase-space blowup during deceleration is compensated by electron cooling such that the final emittances are comparable to the 5MeV beam presently delivered by the AD. An immediate consequence is a significant increase in the number of trapped antiprotons at the experiments as outlined in the proposal CERN/SPSC-2009-026; SPCS-P-338. This report describes the machine parameters and layout of the proposal ELENA (Extra Low ENergy Antiproton)ring also gives an approximate estimate of cost and manpower needs. Since the initial estimate, published in 2007 (CERN-AB-2007-079), the ELENA design has evolved considerably. This is due to a new location in the AD hall to acommodate for the possibility of another experimental zone, as suggested by the SPCS, and also due to improvements in the ring optics and layout. The cost estimate that is prese...

  13. Low energy class 1 typehouses according to the Danish building regulations

    DEFF Research Database (Denmark)

    Rose, Jørgen; Kragh, Jesper; Svendsen, Svend

    2008-01-01

    In 2005 the Danish Building regulations introduced two low energy classes for buildings in addition to tightened minimum requirements. The low energy class 1 and low energy class 2 correspond to total energy use, i.e. energy use for heating, ventilation, cooling and domestic hot water, as 50......% and 75% of the minimum requirement respectively. The main purpose of introducing the low energy classes were to further support and encourage the development of low energy buildings in Denmark. In 2010 it is expected that demands in the Building Regulations are tightened by 25-30% and in 2015...... it is expected that the minimum demand will correspond to the low energy class 1 demands of today. In order to secure this development in the building regulations, it is essential to support the development of low energy solutions and demonstrate that the goal is well within reach of the Danish building industry...

  14. Universality in low energy three-body systems

    International Nuclear Information System (INIS)

    Amorim, A.E.A.; Tomio, L; Frederico, T.

    1997-01-01

    The renormalizability of the quantum theory of non-relativistic three-body system with zero range interaction, warranties that all the low-energy three-body properties are well defined and the low-energy two-body and only one three-body physical information are known. Considering this observation, we have shown that the conditions for the occurrence of Efimov states can be easily reached with any model of short range potential where the three-body ground state and the corresponding binding energy of the subsystems are kept fixed. This approach was applied to the recently discovered halo nuclei. (author)

  15. Low-energy meson physics (chiral theory)

    International Nuclear Information System (INIS)

    Volkov, M.K.; Pervushin, V.N.

    1976-01-01

    A quantum chiral theory which allows to obtain low-energy expansions of various hadron processes without introducing arbitrary parameters into the theory with the exception of hadron masses and interaction constants is presented. A hypothesis about the dynamic symmetry of strong interactions is suggested. The interaction lagrangian is derived which satisfies conditions of the dynamic symmetry. Examples of the use of the quantum chiral theory for describing low-energy processes of meson interaction are given. It is noted that the results obtained reproduce the actual qualitative pattern of various physical processes and in most cases result in good quantitative agreement with experiments

  16. Clinical applications of scanning electron microscopy and energy dispersive X-ray analysis in dermatology--an up-date

    International Nuclear Information System (INIS)

    Forslind, B.

    1988-01-01

    Dermatological papers comprising scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis data published 1983 through 1986 in international journals are reviewed, as an update to our 1984 paper on Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology. The present paper not only deals with a review of recent publications in this area but also presents the application of microincineration to hair and cryosectioned freeze-dried skin specimens. Examples of the increased contrast obtained in hair cross sections are presented and a discussion on the feasibility of microincineration at analysis of hair and skin cross sections is given. Particle probe analysis (EDX: energy dispersive X-ray analysis and PMP: proton microprobe analysis) as applied to hair and skin samples are presented with stress put on the proton probe analysis. The complementarity of EDX and PMP is demonstrated and future applications are suggested. 75 references

  17. Energy neutral and low power wireless communications

    Science.gov (United States)

    Orhan, Oner

    Wireless sensor nodes are typically designed to have low cost and small size. These design objectives impose restrictions on the capacity and efficiency of the transceiver components and energy storage units that can be used. As a result, energy becomes a bottleneck and continuous operation of the sensor network requires frequent battery replacements, increasing the maintenance cost. Energy harvesting and energy efficient transceiver architectures are able to overcome these challenges by collecting energy from the environment and utilizing the energy in an intelligent manner. However, due to the nature of the ambient energy sources, the amount of useful energy that can be harvested is limited and unreliable. Consequently, optimal management of the harvested energy and design of low power transceivers pose new challenges for wireless network design and operation. The first part of this dissertation is on energy neutral wireless networking, where optimal transmission schemes under different system setups and objectives are investigated. First, throughput maximization for energy harvesting two-hop networks with decode-and-forward half-duplex relays is studied. For a system with two parallel relays, various combinations of the following four transmission modes are considered: Broadcast from the source, multi-access from the relays, and successive relaying phases I and II. Next, the energy cost of the processing circuitry as well as the transmission energy are taken into account for communication over a broadband fading channel powered by an energy harvesting transmitter. Under this setup, throughput maximization, energy maximization, and transmission completion time minimization problems are studied. Finally, source and channel coding for an energy-limited wireless sensor node is investigated under various energy constraints including energy harvesting, processing and sampling costs. For each objective, optimal transmission policies are formulated as the solutions of a

  18. The specification and the operation characteristics of the low energy accelerator in JAERI-TRCRE

    International Nuclear Information System (INIS)

    Haruyama, Yasuyuki; Yotsumoto, Keiichi; Okamoto, Jiro

    1993-06-01

    The low energy accelerator system of JAERI TRCRE is of a non scanned type electron accelerator, manufactured by NISSIN HIGH VOLTAGE Co., LTD. The system consists of an oil filled d.c.high voltage generator, semicylindrical acceleration chamber in which a linear cathode is supported coaxially, and the products handling conveyor. The high voltage generator and the acceleration chamber are connected by a flexible cable. A batch irradiation can be carried out using the conveyor in inert gases. The output of the accelerator is 300 kV, 100 mA and the beam width is 60 cm. The specification, the operation procedure, and the operation characteristics of the system are described. (author)

  19. Recent results on event-by-event fluctuations from the RHIC Beam Energy Scan program in the STAR experiment

    International Nuclear Information System (INIS)

    Sahoo, Nihar Ranjan

    2014-01-01

    Event-by-event fluctuations of global observables in relativistic heavy-ion collisions are studied as probes for the QCD phase transition and as tools to search for critical phenomena near the phase boundary. Dynamical fluctuations in mean transverse momentum, identified particle ratios and conserved quantities (such as net-charge, net-baryon) are expected to provide signatures of a de-confined state of matter. Non-monotonic behavior in the higher-moments of conserved quantities as a function of beam energy and collision centrality are proposed as signatures of the QCD critical point. To study the QCD phase transition and locate the critical point, the STAR experiment at RHIC has collected a large amount of data for Au+Au collisions from √S_N_N = 7.7 - 200 GeV in the RHIC Beam Energy Scan (BES) program. We present the recent beam energy scan results on dynamical fluctuations of particle ratios and two-particle transverse momentum correlations at mid-rapidity. Higher-moments of the net-charge and net-proton multiplicity distributions as a function of beam energy will be presented. We give a summary of what has been learnt so far and future prospectives for the BES-II program.

  20. Analytical investigation of low temperature lift energy conversion systems with renewable energy source

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard

    2014-01-01

    The efficiency of the renewable energy powered energy conversion system is typically low due to its moderate heat source temperature. Therefore, improving its energy efficiency is essential. In this study, the performance of the energy conversion system with renewable energy source was theoretically investigated in order to explore its design aspect. For this purpose, a computer model of n-stage low temperature lift energy conversion (LTLEC) system was developed. The results showed that under given operating conditions such as temperatures and mass flow rates of heat source and heat sink fluids the unit power generation of the system increased with the number of stage, and it became saturated when the number of staging reached four. Investigation of several possible working fluids for the optimum stage LTLEC system revealed that ethanol could be an alternative to ammonia. The heat exchanger effectiveness is a critical factor on the system performance. The power generation was increased by 7.83% for the evaporator and 9.94% for the condenser with 10% increase of heat exchanger effectiveness. When these low temperature source fluids are applied to the LTLEC system, the heat exchanger performance would be very critical and it has to be designed accordingly. - Highlights: •Energy conversion system with renewable energy is analytically investigated. •A model of multi-stage low temperature lift energy conversion systems was developed. •The system performance increases as the stage number is increased. •The unit power generation is increased with increase of HX effectiveness. •Ethanol is found to be a good alternative to ammonia

  1. SU-E-I-41: Dictionary Learning Based Quantitative Reconstruction for Low-Dose Dual-Energy CT (DECT)

    International Nuclear Information System (INIS)

    Xu, Q; Xing, L; Xiong, G; Elmore, K; Min, J

    2015-01-01

    Purpose: DECT collects two sets of projection data under higher and lower energies. With appropriates composition methods on linear attenuation coefficients, quantitative information about the object, such as density, can be obtained. In reality, one of the important problems in DECT is the radiation dose due to doubled scans. This work is aimed at establishing a dictionary learning based reconstruction framework for DECT for improved image quality while reducing the imaging dose. Methods: In our method, two dictionaries were learned respectively from the high-energy and lowenergy image datasets of similar objects under normal dose in advance. The linear attenuation coefficient was decomposed into two basis components with material based composition method. An iterative reconstruction framework was employed. Two basis components were alternately updated with DECT datasets and dictionary learning based sparse constraints. After one updating step under the dataset fidelity constraints, both high-energy and low-energy images can be obtained from the two basis components. Sparse constraints based on the learned dictionaries were applied to the high- and low-energy images to update the two basis components. The iterative calculation continues until a pre-set number of iteration was reached. Results: We evaluated the proposed dictionary learning method with dual energy images collected using a DECT scanner. We re-projected the projection data with added Poisson noise to reflect the low-dose situation. The results obtained by the proposed method were compared with that obtained using FBP based method and TV based method. It was found that the proposed approach yield better results than other methods with higher resolution and less noise. Conclusion: The use of dictionary learned from DECT images under normal dose is valuable and leads to improved results with much lower imaging dose

  2. SU-E-I-41: Dictionary Learning Based Quantitative Reconstruction for Low-Dose Dual-Energy CT (DECT)

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q [School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Department of Radiation Oncology, Stanford University, Stanford, CA 94305 (United States); Xing, L [Department of Radiation Oncology, Stanford University, Stanford, CA 94305 (United States); Xiong, G; Elmore, K; Min, J [Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medical College, New York, NY (United States)

    2015-06-15

    Purpose: DECT collects two sets of projection data under higher and lower energies. With appropriates composition methods on linear attenuation coefficients, quantitative information about the object, such as density, can be obtained. In reality, one of the important problems in DECT is the radiation dose due to doubled scans. This work is aimed at establishing a dictionary learning based reconstruction framework for DECT for improved image quality while reducing the imaging dose. Methods: In our method, two dictionaries were learned respectively from the high-energy and lowenergy image datasets of similar objects under normal dose in advance. The linear attenuation coefficient was decomposed into two basis components with material based composition method. An iterative reconstruction framework was employed. Two basis components were alternately updated with DECT datasets and dictionary learning based sparse constraints. After one updating step under the dataset fidelity constraints, both high-energy and low-energy images can be obtained from the two basis components. Sparse constraints based on the learned dictionaries were applied to the high- and low-energy images to update the two basis components. The iterative calculation continues until a pre-set number of iteration was reached. Results: We evaluated the proposed dictionary learning method with dual energy images collected using a DECT scanner. We re-projected the projection data with added Poisson noise to reflect the low-dose situation. The results obtained by the proposed method were compared with that obtained using FBP based method and TV based method. It was found that the proposed approach yield better results than other methods with higher resolution and less noise. Conclusion: The use of dictionary learned from DECT images under normal dose is valuable and leads to improved results with much lower imaging dose.

  3. Multi-energy spectral CT: adding value in emergency body imaging.

    Science.gov (United States)

    Punjabi, Gopal V

    2018-04-01

    Most vendors offer scanners capable of dual- or multi-energy computed tomography (CT) imaging. Advantages of multi-energy CT scanning include superior tissue characterization, detection of subtle iodine uptake differences, and opportunities to reduce contrast dose. However, utilization of this technology in the emergency department (ED) remains low. The purpose of this pictorial essay is to illustrate the value of multi-energy CT scanning in emergency body imaging.

  4. Low-energy hadronic interactions beyond the current algebra approach

    International Nuclear Information System (INIS)

    Ivanov, A.N.; Troitskaya, N.I.; Nagy, M.

    1993-06-01

    The new low-energy AP 3 -interaction, which is produced by convergent box-constituent-quark-loop diagrams, is obtained within chiral perturbation theory at the quark level (CHPT) q with linear realization of chiral U(3) x U(3) symmetry. Its contributions to processes of low-energy interactions of low-lying mesons are investigated. The new interaction goes beyond the framework of the low-energy current algebra approach and of the effective chiral Lagrangians with linear realization of chiral symmetry, constructed at the hadronic level. (author). 17 refs, 3 figs

  5. The low energy detector of Simbol-X

    Science.gov (United States)

    Lechner, P.; Andricek, L.; Briel, U.; Hasinger, G.; Heinzinger, K.; Herrmann, S.; Huber, H.; Kendziorra, E.; Lauf, T.; Lutz, G.; Richter, R.; Santangelo, A.; Schaller, G.; Schnecke, M.; Schopper, F.; Segneri, G.; Strüder, L.; Treis, J.

    2008-07-01

    Simbol-X is a French-Italian-German hard energy X-ray mission with a projected launch in 2014. Being sensitive in the energy range from 500 eV to 80 keV it will cover the sensitivity gap beyond the energy interval of today's telescopes XMM-Newton and Chandra. Simbol-X will use an imaging telescope of nested Wolter-I mirrors. To provide a focal length of 20 m it will be the first mission of two independent mirror and detector spacecrafts in autonomous formation flight. The detector spacecraft's payload is composed of an imaging silicon low energy detector in front of a pixelated cadmium-telluride hard energy detector. Both have a sensitive area of 8 × 8 cm2 to cover a 12 arcmin field of view and a pixel size of 625 × 625 μm2 adapted to the telescope's resolution of 20 arcsec. The additional LED specifications are: high energy resolution, high quantum efficiency, fast readout and optional window mode, monolithic device with 100 % fill factor and suspension mounting, and operation at warm temperature. To match these requirements the low energy detector is composed of 'active macro pixels', combining the large, scalable area of a Silicon Drift Detector and the low-noise, on-demand readout of an integrated DEPFET amplifier. Flight representative prototypes have been processed at the MPI semiconductor laboratory, and the prototype's measured performance demonstrates the technology readiness.

  6. Demonstration of low-energy district heating for low-energy buildings in EnergyFlexHouse. Subreport 1; Demonstration af lavenergifjernvarme til lavenergibyggeri i energyflexhouse. Delrapport 1

    Energy Technology Data Exchange (ETDEWEB)

    Holm Christiansen, C.

    2011-05-15

    This report concerns demonstration of a new concept for low temperature district heating to low energy buildings with district heating flow temperatures on just above 50 deg. C. The concept was developed in a previous energy research project under the EFP-2007-programme supported by the Danish Energy Agency. New types of prototypes for district heating consumer substations and district heating pipes in very small dimensions were developed and manufactured. Demonstration has been carried out in the Danish Technological Institute test houses 'EnergyFlexHouse' with the objective of analyzing and evaluating the performance of the concept in a real low energy house. The EnergyFlexHouse is actually two houses either each designed to be energy neutral with PV's but also fulfilling the Danish building codes low energy class 2015 requirements without the PV's. The two houses are called 'Lab' and 'Family' and are supplied with district heating from a small local distribution network. The tests are carried out in the 'Lab' house connected with a district heating branch twin pipe with two service pipes of just 10 mm inner diameter/14 mm outer diameter and with outer casing diameter of 110 mm corresponding to series 2 insulation. An accumulator consumer substation with a 175 liter storage tank on the primary side (district heating side) has been subject to tests. Tree different tapping patterns of domestic hot water were performed including tapping patterns based on the European standard PrEN50440. Generally the results show that balancing the primary loading flow in relation to actual tapping patterns and domestic hot water consumption is important in order to keep the district heating return temperature as low as possible. Based on the results different options are proposed in order to optimize the operation of the consumer substation. Recently a new project under the EUDP 2010-II has received grant to continue improving and

  7. Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps

    Science.gov (United States)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1992-01-01

    To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.

  8. A topological screening heuristic for low-energy, high-index surfaces

    Science.gov (United States)

    Sun, Wenhao; Ceder, Gerbrand

    2018-03-01

    Robust ab initio investigations of nanoparticle surface properties require a method to identify candidate low-energy surface facets a priori. By assuming that low-energy surfaces are planes with high atomic density, we devise an efficient algorithm to screen for low-energy surface orientations, even if they have high (hkl) miller indices. We successfully predict the observed low-energy, high-index { 10 12 bar } and { 10 1 bar 4 } surfaces of hematite α-Fe2O3, the {311} surfaces of cuprite Cu2O, and the {112} surfaces of anatase TiO2. We further tabulate candidate low-energy surface orientations for nine of the most common binary oxide structures. Screened surfaces are found to be generally applicable across isostructural compounds with varying chemistries, although relative surface energies between facets may vary based on the preferred coordination of the surface atoms.

  9. Dosimetry of low-energy beta radiation

    International Nuclear Information System (INIS)

    Borg, J.

    1996-08-01

    Useful techniques and procedures for determination of absorbed doses from exposure in a low-energy β radiation field were studied and evaluated in this project. The four different techniques included were β spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical low-energy β radiation field a moderated spectrum from a 14 C source (E β , max =156 keV) was chosen for the study. The measured response of a Si(Li) detector to photons (bremsstrahlung) showed fine agreement with the MC calculated photon response, whereas the difference between measured and MC calculated responses to electrons indicates an additional dead layer thickness of about 12 μm in the Si(Li) detector. The depth-dose profiles measured with extrapolation chambers at two laboratories agreed very well, and it was confirmed that the fitting procedure previously reported for 147 Pm depth-dose profiles is also suitable for β radiation from 14 C. An increasing difference between measured and MC calculated dose rates for increasing absorber thickness was found, which is explained by limitations of the EGS4 code for transport of very low-energy electrons (below 10-20 keV). Finally a study of the thermally stimulated exoelectron emission (TSEE) response of BeO thin film dosemeters to β radiation for radiation fields with maximum β energies ranging from 67 keV to 2.27 MeV is reported. For maximum β energies below approximately 500 keV, a decrease in the response amounting to about 20% was observed. It is thus concluded that a β dose higher than about 10 μGy can be measured with these dosemeters to within 0 to -20% independently of the βenergy for E β , max values down to 67 keV. (au) 12 tabs., 38 ills., 71 refs

  10. Special raster scanning for reduction of charging effects in scanning electron microscopy.

    Science.gov (United States)

    Suzuki, Kazuhiko; Oho, Eisaku

    2014-01-01

    A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.

  11. Molecular excited states from the SCAN functional

    Science.gov (United States)

    Tozer, David J.; Peach, Michael J. G.

    2018-06-01

    The performance of the strongly constrained and appropriately normed (SCAN) meta-generalised gradient approximation exchange-correlation functional is investigated for the calculation of time-dependent density-functional theory molecular excitation energies of local, charge-transfer and Rydberg character, together with the excited ? potential energy curve in H2. The SCAN results frequently resemble those obtained using a global hybrid functional, with either a standard or increased fraction of exact orbital exchange. For local excitations, SCAN can exhibit significant triplet instability problems, resulting in imaginary triplet excitation energies for a number of cases. The Tamm-Dancoff approximation offers a simple approach to improve the situation, but the excitation energies are still significantly underestimated. Understanding the origin of these (near)-triplet instabilities may provide useful insight into future functional development.

  12. Targeting Low-Energy Ballistic Lunar Transfers

    Science.gov (United States)

    Parker, Jeffrey S.

    2010-01-01

    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  13. Database of Low-e Storm Window Energy Performance across U.S. Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Thomas D.; Cort, Katherine A.

    2014-09-04

    This is an update of a report that describes process, assumptions, and modeling results produced Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone.

  14. Nitriding of AISI 4140 steel by a low energy broad ion source

    International Nuclear Information System (INIS)

    Ochoa, E. A.; Figueroa, C. A.; Alvarez, F.

    2006-01-01

    A comprehensive study of the thermochemical nitriding process of steel AISI 4140 by low energy ion implantation (Kaufmann cell) is reported. Different times of implantation were employed and the studied samples were characterized by x-ray diffraction, in situ photoemission electron spectroscopy, scanning electron microscopy, and hardness (nanoindentation) measurements. The linear relationship between nitrogen content and hardness was verified. The structure of the nitrided layer was characterized yielding that the compound layer is formed by coarse precipitates, around small grains, constituted principally by ε-Fe 2-3 N and γ-Fe 4 N phases and the diffusion zone is formed by fine precipitates, around big grains of the original martensitic phase, constituted principally by γ-Fe 4 N phase. Finally, a diffusion model for multiphase systems was applied to determine effective diffusion coefficients of nitrogen in the different phases

  15. A new scanning system for alpha decay events as calibration sources for range-energy relation in nuclear emulsion

    Science.gov (United States)

    Yoshida, J.; Kinbara, S.; Mishina, A.; Nakazawa, K.; Soe, M. K.; Theint, A. M. M.; Tint, K. T.

    2017-03-01

    A new scanning system named "Vertex picker" has been developed to rapid collect alpha decay events, which are calibration sources for the range-energy relation in nuclear emulsion. A computer-controlled optical microscope scans emulsion layers exhaustively, and a high-speed and high-resolution camera takes their micrographs. A dedicated image processing picks out vertex-like shapes. Practical operations of alpha decay search were demonstrated by emulsion sheets of the KEK-PS E373 experiment. Alpha decays of nearly 28 events were detected in eye-check work on a PC monitor per hour. This yield is nearly 20 times more effective than that by the conventional eye-scan method. The speed and quality is acceptable for the coming new experiment, J-PARC E07.

  16. A new scanning system for alpha decay events as calibration sources for range-energy relation in nuclear emulsion

    International Nuclear Information System (INIS)

    Yoshida, J.; Kinbara, S.; Mishina, A.; Nakazawa, K.; Soe, M.K.; Theint, A.M.M.; Tint, K.T.

    2017-01-01

    A new scanning system named “Vertex picker” has been developed to rapid collect alpha decay events, which are calibration sources for the range-energy relation in nuclear emulsion. A computer-controlled optical microscope scans emulsion layers exhaustively, and a high-speed and high-resolution camera takes their micrographs. A dedicated image processing picks out vertex-like shapes. Practical operations of alpha decay search were demonstrated by emulsion sheets of the KEK-PS E373 experiment. Alpha decays of nearly 28 events were detected in eye-check work on a PC monitor per hour. This yield is nearly 20 times more effective than that by the conventional eye-scan method. The speed and quality is acceptable for the coming new experiment, J-PARC E07.

  17. Current status of low energy EB machine

    International Nuclear Information System (INIS)

    Toshiro Nishikimi; Shuichi Taniguchi; Kenichi Mizusawa

    1999-01-01

    Electron beam processing systems have been in use in a variety of applications such as curing of paints and printing inks, crosslinking of PE products, treating of rubber tire and so on. Low energy electron processing systems have become popular as self-shielded machines, which are compact and easy to use and do not require special facility as an irradiation room. This manuscript introduces the status of low energy EB (electron beam) machine through Nissin's products current

  18. Energy Efficiency and Renewable Energy in Low-Income Communities

    Science.gov (United States)

    State and local governments can provide benefits to low-income communities by investing in energy efficiency. Use the Program Finder table to identify those programs that reach the sectors and audiences of interest in your organization.

  19. Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage

    International Nuclear Information System (INIS)

    Tang, Xiaofen; Li, Wei; Zhang, Xingxiang; Shi, Haifeng

    2014-01-01

    Microencapsulated phase change material with a low supercooling degree is one of the increasing important researches as well as industrial application for thermal energy storage. This study develops a novel and low supercooling microencapsulated n-octadecane (MicroC18) with n-octadecyl methacrylate (ODMA)–methacrylic acid (MAA) copolymer as shell using suspension-like polymerization. The fabrication and properties of MicroC18 were characterized by using a field-emission scanning electron microscope (FE-SEM), Fourier transformed infrared spectroscopy (FTIR), particle size distribution analysis, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The MicroC18 with spherical shapes and an average diameter of 1.60–1.68 μm are fabricated. The onset crystallizing temperatures of MicroC18 are only 4 °C below that of n-octadecane. The unique copolymer shell has a significant impact on the low supercooling of MicroC18. The n-octadecane in all of the samples crystalizes by heterogeneous nucleation. The content of n-octadecane in the microcapsules is low; however, the microcapsules still exhibit high enthalpy through the contribution of the shells. At a monomers/n-octadecane mass ratio is 2:1, as used in the recipes, the MicroC18 with highest phase change enthalpy was obtained. The temperature of thermal resistant of MicroC18 is approximately 235.6 °C, which is affected by the thickness of the polymer shell. - Highlights: • Microencapsulated n-octadecane with comb-like copolymer shell has low supercooling. • The unique shell plays a significant role in suppressing supercooling. • The types of cross-linker affect morphologies and heat enthalpies of microcapsules. • Microcapsules exhibit high phase change enthalpies and thermal stabilities

  20. Energy generation in convective shells of low mass, low metallicity stars

    International Nuclear Information System (INIS)

    Bazan, G.

    1989-01-01

    We report on the non-negligible energy generation from the 13 C neutron source and neutron capture reactions in low mass, low metallicity AGB stars. About 10 4 L circle-dot are generated within the thermal pulse convective shell by the combination of the 13 C(α, n) 16 O rate and the sum of the Y(Z,A)(n,γ)Y(Z,A + 1) reactions and beta decays. The inclusion of this energy source in an AGB thermal pulse evolution is shown to alter the evolution of the convective shell boundaries, and, hence, how the 13 C is ingested into the convective shell. Also, the duration of the pulse itself is reduced by the additional energy input. The nucleosynthetic consequences are discussed for these evolutionary changes. 17 refs., 5 figs

  1. Atomic Oxygen Energy in Low Frequency Hyperthermal Plasma Ashers

    Science.gov (United States)

    Banks, Bruce A.; Miller, Sharon K R.; Kneubel, Christian A.

    2014-01-01

    Experimental and analytical analysis of the atomic oxygen erosion of pyrolytic graphite as well as Monte Carlo computational modeling of the erosion of Kapton H (DuPont, Wilmington, DE) polyimide was performed to determine the hyperthermal energy of low frequency (30 to 35 kHz) plasma ashers operating on air. It was concluded that hyperthermal energies in the range of 0.3 to 0.9 eV are produced in the low frequency air plasmas which results in texturing similar to that in low Earth orbit (LEO). Monte Carlo computational modeling also indicated that such low energy directed ions are fully capable of producing the experimentally observed textured surfaces in low frequency plasmas.

  2. High-intensity low energy titanium ion implantation into zirconium alloy

    Science.gov (United States)

    Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.

    2018-05-01

    This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.

  3. Aquilion ONE / ViSION Edition CT scanner realizing 3D dynamic observation with low-dose scanning

    International Nuclear Information System (INIS)

    Kazama, Masahiro; Saito, Yasuo

    2015-01-01

    Computed tomography (CT) scanners have been continuously advancing as essential diagnostic imaging equipment for the diagnosis and treatment of a variety of diseases, including the three major disease classes of cerebrovascular disease, cardiovascular disease, and cancer. Through the development of helical CT scanners and multislice CT scanners, Toshiba Medical Systems Corporation has developed the Aquilion ONE, a CT scanner with a scanning range of up to 160 mm per rotation that can obtain three-dimensional (3D) images of the brain, heart, and other organs in a single rotation. We have now developed the Aquilion ONE / ViSION Edition, a next-generation 320-row multislice CT scanner incorporating the latest technologies that achieves a shorter scanning time and significant reduction in dose compared with conventional products. This product with its low-dose scanning technology will contribute to the practical realization of new diagnosis and treatment modalities employing four-dimensional (4D) data based on 3D dynamic observations through continuous rotations. (author)

  4. Low-energy-consumption hybrid lasers for silicon photonics

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Ran, Qijiang; Mørk, Jesper

    2012-01-01

    Physics and characteristics of a hybrid vertical-cavity laser that can be an on-chip Si light source with high speed and low energy consumption are discussed.......Physics and characteristics of a hybrid vertical-cavity laser that can be an on-chip Si light source with high speed and low energy consumption are discussed....

  5. LEAP [Low-Energy Antiproton]: A balloon-borne search for low-energy cosmic-ray antiprotons

    International Nuclear Information System (INIS)

    Moats, A.R.M.

    1989-01-01

    The LEAP (Low-Energy Antiproton) experiment is a search for cosmic-ray antiprotons in the 120 MeV to 1.2 GeV kinetic energy range. The motivation for this project was the result announced by Buffington et. al. (1981) that indicated an anomalously high antiproton flux below 300 MeV; this result has compelled theorists to propose sources of primary antiprotons above the small secondary antiproton flux produced by high energy cosmic-ray collisions with nuclei in the interstellar medium. LEAP consisted of the NMSU magnetic spectrometer, a time-of-flight system designed at Goddard Space Flight Center, two scintillation detectors, and a Cherenkov counter designed and built at the University of Arizona. Analysis of flight data performed by the high-energy astrophysics group at Goddard Space Flight Center revealed no antiproton candidates found in the 120 MeV to 360 MeV range; 3 possible antiproton candidate events were found in the 500 MeV to 1.2 GeV range in an analysis done here at the University of Arizona. However, since it will be necessary to sharpen the calibration on all of the LEAP systems in order to positively identify these events as antiprotons, only an upper limit has been determined at present. Thus, combining the analyses performed at the University of Arizona and Goddard Space Flight Center, 90% confidence upper limits of 3.5 x 10 -5 in the 120 MeV to 360 MeV range and 2.3 x 10 -4 in the 500 MeV to 1.2 GeV range for the antiproton/proton ratio is indicated by the LEAP results. LEAP disagrees sharply with the results of the Buffington group, indicating a low antiproton flux at these energies

  6. Reproducibility of trabecular bone score with different scan modes using dual-energy X-ray absorptiometry: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Bandirali, Michele; Messina, Carmelo [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milano (Italy); Di Leo, Giovanni [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Pastor Lopez, Maria Juana; Ulivieri, Fabio M. [Servizio di Medicina Nucleare, Ospedale Maggiore, Mineralometria Ossea Computerizzata e Ambulatorio Malattie Metabolismo Minerale e Osseo, Milano (Italy); Mai, Alessandro [Universita degli Studi di Milano, Tecniche di Radiologia Medica, per Immagini e Radioterapia, Milano (Italy); Sardanelli, Francesco [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese (Italy)

    2014-08-12

    The trabecular bone score (TBS) accounts for the bone microarchitecture and is calculated on dual-energy X-ray absorptiometry (DXA). We estimated the reproducibility of the TBS using different scan modes compared to the reproducibility bone mineral density (BMD). A spine phantom was used with a Hologic QDR-Discovery A densitometer. For each scan mode [fast array, array, high definition (HD)], 25 scans were automatically performed without phantom repositioning; a further 25 scans were performed with phantom repositioning. For each scan, the TBS was obtained. The coefficient of variation (CoV) was calculated as the ratio between standard deviation and mean; percent least significant change (LSC%) as 2.8 x CoV; reproducibility as the complement to 100 % of LSC%. Differences among scan modes were assessed using ANOVA. Without phantom repositioning, the mean TBS (mm{sup -1}) was: 1.352 (fast array), 1.321 (array), and 1.360 (HD); with phantom repositioning, it was 1.345, 1.332, and 1.362, respectively. Reproducibility of the TBS without phantom repositioning was 97.7 % (fast array), 98.3 % (array), and 98.2 % (HD); with phantom repositioning, it was 97.9 %, 98.7 %, and 98.4 %, respectively. LSC% was ≤2.26 %. Differences among scan modes were all statistically significant (p ≤ 0.019). Reproducibility of BMD was 99.1 % with all scan modes, while LSC% was from 0.86 % to 0.91 %. Reproducibility error of the TBS was 2-3-fold higher than that of BMD. Although statistically significant, differences in TBS among scan modes were within the highest LSC%. Thus, the three scan modes can be considered interchangeable. (orig.)

  7. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion ...

  8. Virtual compton scattering at low energy; Diffusion compton virtuelle a basse energie

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D

    1997-09-01

    The work described in this PhD is a study of the Virtual Compton scattering (VCS) off the proton at low energy, below pion production threshold. Our experiment has been carried out at MAMI in the collaboration with the help of two high resolution spectrometers. Experimentally, the VCS process is the electroproduction of photons off a liquid hydrogen target. First results of data analysis including radiative corrections are presented and compared with low energy theorem prediction. VCS is an extension of the Real Compton Scattering. The virtuality of the incoming photon allows us to access new observables of the nucleon internal structure which are complementarity to the elastic form factors: the generalized polarizabilities (GP). They are function of the squared invariant mass of the virtual photo. The mass limit of these observables restore the usual electric and magnetic polarizabilities. Our experiment is the first measurement of the VCS process at a virtual photon mass equals 0.33 Ge V square. The experimental development presents the analysis method. The high precision needed in the absolute cross-section measurement required an accurate estimate of radiative corrections to the VCS. This new calculation, which has been performed in the dimensional regulation scheme, composes the theoretical part of this thesis. At low q', preliminary results agree with low energy theorem prediction. At higher q', substraction of low energy theorem contribution to extract GP is discussed. (author)

  9. Virtual compton scattering at low energy; Diffusion compton virtuelle a basse energie

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D

    1997-09-01

    The work described in this PhD is a study of the Virtual Compton scattering (VCS) off the proton at low energy, below pion production threshold. Our experiment has been carried out at MAMI in the collaboration with the help of two high resolution spectrometers. Experimentally, the VCS process is the electroproduction of photons off a liquid hydrogen target. First results of data analysis including radiative corrections are presented and compared with low energy theorem prediction. VCS is an extension of the Real Compton Scattering. The virtuality of the incoming photon allows us to access new observables of the nucleon internal structure which are complementarity to the elastic form factors: the generalized polarizabilities (GP). They are function of the squared invariant mass of the virtual photo. The mass limit of these observables restore the usual electric and magnetic polarizabilities. Our experiment is the first measurement of the VCS process at a virtual photon mass equals 0.33 Ge V square. The experimental development presents the analysis method. The high precision needed in the absolute cross-section measurement required an accurate estimate of radiative corrections to the VCS. This new calculation, which has been performed in the dimensional regulation scheme, composes the theoretical part of this thesis. At low q', preliminary results agree with low energy theorem prediction. At higher q', substraction of low energy theorem contribution to extract GP is discussed. (author)

  10. Energy Savings of Low-E Storm Windows and Panels across US Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Thomas D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    This report builds off of previous modeling work related to low-e storm windows used to create a "Database of U.S. Climate-Based Analysis for Low-E Storm Windows." This work updates similar studies using new fuel costs and examining the separate contributions of reduced air leakage and reduced coefficients of overall heat transfer and solar heat gain. In this report we examine the energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates, excluding the impact from infiltration reductions, which tend to vary using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by climate zone.

  11. An analysis of a low-energy, low-water use community in Mexico City

    Science.gov (United States)

    Bermudez Alcocer, Jose Luis

    This study investigated how to determine a potential scenario to reduce energy, water and transportation use in Mexico City by implementing low-energy, low-water use communities. The proposed mixed-use community has multi-family apartments and a small grocery store. The research included the analysis of: case studies, energy simulation, and hand calculations for water, transportation and cost analysis. The previous case studies reviewed include: communities in Mexico City, Mexico, Austin, Texas, Phoenix, Arizona, New York City, New York and San Diego, California in terms of successful low-energy, low-water use projects. The analysis and comparison of these centers showed that the Multifamiliar Miguel Aleman is an excellent candidate to be examined for Mexico City. This technical potential study evaluated energy conserving measures such as low-energy appliances and efficient lighting that could be applied to the apartments in Mexico City to reduce energy-use. The use of the simulations and manual calculations showed that the application of the mixed-use concept was successful in reducing the energy and water use and the corresponding carbon footprint. Finally, this technical potential study showed taking people out of their cars as a result of the presence of the on-site grocery store, small recreation center and park on the ground floor also reduced their overall transportation energy-use. The improvement of the whole community (i.e., apartments plus grocery store) using energy-efficient measures provided a reduction of 70 percent of energy from the base-case. In addition a 69 percent reduction in water-use was achieved by using water-saving fixtures and greywater reuse technologies for the complex. The combination of high-efficiency automobiles and the presence of the on-site grocery store, small recreation center and park potentially reduced the transportation energy-use by 65 percent. The analysis showed an energy cost reduction of 82 percent reduction for

  12. TH-CD-209-10: Scanning Proton Arc Therapy (SPArc) - The First Robust and Delivery-Efficient Spot Scanning Proton Arc Therapy

    International Nuclear Information System (INIS)

    Ding, X; Li, X; Zhang, J; Kabolizadeh, P; Stevens, C; Yan, D

    2016-01-01

    Purpose: To develop a delivery-efficient proton spot-scanning arc therapy technique with robust plan quality. Methods: We developed a Scanning Proton Arc(SPArc) optimization algorithm integrated with (1)Control point re-sampling by splitting control point into adjacent sub-control points; (2)Energy layer re-distribution by assigning the original energy layers to the new sub-control points; (3)Energy layer filtration by deleting low MU weighting energy layers; (4)Energy layer re-sampling by sampling additional layers to ensure the optimal solution. A bilateral head and neck oropharynx case and a non-mobile lung target case were tested. Plan quality and total estimated delivery time were compared to original robust optimized multi-field step-and-shoot arc plan without SPArc optimization (Arcmulti-field) and standard robust optimized Intensity Modulated Proton Therapy(IMPT) plans. Dose-Volume-Histograms (DVH) of target and Organ-at-Risks (OARs) were analyzed along with all worst case scenarios. Total delivery time was calculated based on the assumption of a 360 degree gantry room with 1 RPM rotation speed, 2ms spot switching time, beam current 1nA, minimum spot weighting 0.01 MU, energy-layer-switching-time (ELST) from 0.5 to 4s. Results: Compared to IMPT, SPArc delivered less integral dose(−14% lung and −8% oropharynx). For lung case, SPArc reduced 60% of skin max dose, 35% of rib max dose and 15% of lung mean dose. Conformity Index is improved from 7.6(IMPT) to 4.0(SPArc). Compared to Arcmulti-field, SPArc reduced number of energy layers by 61%(276 layers in lung) and 80%(1008 layers in oropharynx) while kept the same robust plan quality. With ELST from 0.5s to 4s, it reduced 55%–60% of Arcmulti-field delivery time for the lung case and 56%–67% for the oropharynx case. Conclusion: SPArc is the first robust and delivery-efficient proton spot-scanning arc therapy technique which could be implemented in routine clinic. For modern proton machine with ELST close

  13. Energy Consumption and Indoor Climate Measurements in New Low-Energy Houses

    DEFF Research Database (Denmark)

    Mørck, Ove; Andersen, Karen Holmegaard; Bergsøe, Niels Christian

    2013-01-01

    The CLASS1 project commenced in 2007 and involves 5 countries: Denmark, Estonia, France, Italy and Romania. Originally, 442 dwellings, a kindergarten and an activity centre for elderly people were to be designed and constructed as "low-energy class 1" houses according to requirements set by the M......The CLASS1 project commenced in 2007 and involves 5 countries: Denmark, Estonia, France, Italy and Romania. Originally, 442 dwellings, a kindergarten and an activity centre for elderly people were to be designed and constructed as "low-energy class 1" houses according to requirements set...... dwellings and a CO2-neutral district heating network will not be constructed within the timeframe of the project Therefore, a contingency plan was developed introducing the renovation of public buildings and large-scale implementation of solar cells on public buildings of the municipality. The CLASS 1...... project used the requirements to low-energy buildings as a driving force for the technological development of 6 different key building components/technologies: windows, slab and foundation insulation systems, bio-mass gasification, local district heating distribution networks, ventilation heat recovery...

  14. The Simbol-X Low Energy Detector

    International Nuclear Information System (INIS)

    Lechner, Peter

    2009-01-01

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  15. The Simbol-X Low Energy Detector

    Science.gov (United States)

    Lechner, Peter

    2009-05-01

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  16. Low Cost Multi-Sensor Robot Laser Scanning System and its Accuracy Investigations for Indoor Mapping Application

    Science.gov (United States)

    Chen, C.; Zou, X.; Tian, M.; Li, J.; Wu, W.; Song, Y.; Dai, W.; Yang, B.

    2017-11-01

    In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.

  17. Coupling on-line preconcentration by ion-exchange with ETAAS. A novel flow injection approach based on the use of a renewable microcolumn as demonstrated for the determination of nickel in environmental and biological samples

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2000-01-01

    microcolumn incorporated within an integrated micro FI-system, the column is loaded with a defined volume of small beads of an SP Sephadex C-25 cation-exchange resin and subsequently exposed to a metered amount of sample solution. However, instead of eluting the retained analyte from the organic ion-exchange......A novel way of exploiting flow injection/sequential injection (FIA/SIA) on-line ion-exchange preconcentration with detection by electrothermal atomic absorption spectrometry (ETAAS) is described and demonstrated for the determination of trace-levels of nickel. Based on the use of a renewable...... resin, the beads are along with 30 mul of carrier (buffer) solution transported via air segmentation directly into the graphite tube, where they are ashed during the pyrolysis and atomization process. The ETAAS determination is performed in parallel with the preconcentration process of the ensuing...

  18. Experimentation with low-energy positron beams

    International Nuclear Information System (INIS)

    Mills, A.P. Jr.

    1983-01-01

    The capability of studying the interactions of positrons with surfaces has recently been exploited by using ultra-high-vacuum techniques. The result has been a new understanding of how positrons interact with surfaces and because of this we are now able to make much stronger fluxes of slow positrons. The higher beam strengths in turn are opening up new possibilities for experimentation on surfaces and solids and for studying the atomic physics of positronium and positron-molecule scattering at low energies. The lectures are intended to review some of the history of this subject and to outline the present state of our knowledge of experimentation with low-energy positron beams. (orig./TW)

  19. Modulation transfer function and detective quantum efficiency of electron bombarded charge coupled device detector for low energy electrons

    International Nuclear Information System (INIS)

    Horacek, Miroslav

    2005-01-01

    The use of a thinned back-side illuminated charge coupled device chip as two-dimensional sensor working in direct electron bombarded mode at optimum energy of the incident signal electrons is demonstrated and the measurements of the modulation transfer function (MTF) and detective quantum efficiency (DQE) are described. The MTF was measured for energy of electrons 4 keV using an edge projection method and a stripe projection method. The decrease of the MTF for a maximum spatial frequency of 20.8 cycles/mm, corresponding to the pixel size 24x24 μm, is 0.75≅-2.5 dB, and it is approximately the same for both horizontal and vertical directions. DQE was measured using an empty image and the mixing factor method. Empty images were acquired for energies of electrons from 2 to 5 keV and for various doses, ranging from nearly dark image to a nearly saturated one. DQE increases with increasing energy of bombarded electrons and reaches 0.92 for electron energy of 5 keV. For this energy the detector will be used for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope

  20. LINAC4 low energy beam measurements

    CERN Document Server

    Hein, L M; Lallement, J B; Lombardi, A M; Midttun, O; Posocco, P; Scrivens, R

    2012-01-01

    Linac4 is a 160 MeV normal-conducting linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton Linac (Linac2) as linear injector for the CERN accelerators. The low energy part, comprising a 45 keV Low Energy Beam Transport system (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) is being assembled in a dedicated test stand for pre-commissioning with a proton beam. During 2011 extensive measurements were done after the source and after the LEBT with the aim of preparing the RFQ commissioning and validating the simulation tools, indispensable for future source upgrades. The measurements have been thoroughly simulated with a multi-particle code, including 2D magnetic field maps, error studies, steering studies and the generation of beam distribution from measurements. Emittance, acceptance and transmission measurements will be presented and compared to the results of the simulations.

  1. Low-energy electron irradiation assisted diffusion of gold nanoparticles in polymer matrix

    International Nuclear Information System (INIS)

    Deore, Avinash V.; Bhoraskar, V.N.; Dhole, S.D.

    2014-01-01

    A simple and controllable method to synthesize nanoparticles in the surface region of polymers was used by low energy electron irradiation. Using this method, gold nanoparticles have been synthesized by irradiating gold coated PVA (Polyvinyl Alcohol) sheets. This method was easy in operation and even period of few minutes was sufficient to obtain the nanoparticles. The coatings (∼10 μm) made from a mixture of ethanol and HAuCl 4 on PVA sheets (∼150 μm) by simple drop cast method were irradiated with 30 keV electrons, at room temperature and 10 −6 mbar vacuum level. The electron fluence was varied from coating to coating in the range of 0 to 24×10 15 e/cm 2 . The irradiated samples were characterized by the UV–Vis, XRD, SEM and RBS techniques. The plasmon absorption peak at ∼539 nm in UV–Vis spectra was an evidence for the initiation of the growth of gold nanoparticles. The X-ray diffraction results and the blue shift in the plasmon absorption peak reveal that the size of nanoparticles could be tailored in the range from 58 to 40 nm by varying the electron fluence. The diffusion of gold in the PVA was confirmed by the Rutherford backscattering spectroscopy and scanning electron microscopy techniques. This method of synthesis of metal nanoparticles by low energy electron beam irradiation has the key importance in the development of new fabrication techniques for nanomaterials. - Highlights: • The results indicate that low energy electrons can effectively be used for the synthesis of nanoparticles of different sizes. • This study leads to a definite conclusion that gold nanoparticles have been synthesized in surface region of the PVA sheet. • The size of nanoparticles decreases with increasing electron fluence. • The depth of diffusion of Au atoms at maximum fluence was found to be ∼1.5 μm

  2. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    In the future energy system a considerable increase in the penetration of renewable energy is expected, challenging the stability of the system, as both production and consumption will have fluctuating patterns. Hence, the concept of energy flexibility will be necessary in order for the consumption...... to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study...... the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...

  3. Coulomb and Nuclear Breakup at Low Energies: Scaling Laws

    Directory of Open Access Journals (Sweden)

    Hussein M. S.

    2013-12-01

    Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.

  4. Low energy ion implantation and high energy heavy ion irradiation in C60 films

    International Nuclear Information System (INIS)

    Narayanan, K.L.; Yamaguchi, M.; Dharmarasu, N.; Kojima, N.; Kanjilal, D.

    2001-01-01

    C 60 films have been bombarded with low energy boron ions and high energy swift heavy ions (SHI) of silver and oxygen at different doses. Raman scattering and Fourier transform infrared (FTIR) studies were carried out on the virgin and irradiated films and the results are in good agreement with each other. The films subject to low energy boron ion implantation showed destruction of the bukky balls whereas the films subject to high energy ion irradiation did not show appreciable effects on their structure. These results indicate that C 60 films are more prone to defects by elastic collision and subsequent implantation at lower energy. Irradiation at higher energy was less effective in creating appreciable defects through electronic excitation by inelastic collisions at similar energy density

  5. Low-energy antiprotons physics and the FLAIR facility

    International Nuclear Information System (INIS)

    Widmann, E

    2015-01-01

    FLAIR, the Facility for low-energy antiproton and ion research has been proposed in 2004 as an extension of the planned FAIR facility at Darmstadt, Germany. FLAIR was not included into the modularized start version of FAIR, but the recent installation of the CRYRING storage ring at GSI Darmstadt has opened new perspectives for physics with low-energy antiprotons at FAIR. (paper)

  6. Case Study of a Low-Energy District Heating Network in Energy-Efficient Settlements in Denmark

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Christensen, Jørgen Erik

    for low-energy houses in Denmark was investigated. We considered the influence of the human behavior on the energy demand, the importance of the degree of buildings connected to the network and a socio-economical comparison with ground source heat pumps. In the North European climate, the human behavior...... customer in a cost-effective and environmentally friendly way in areas with linear heat density down to 0.20 MWh/(m.year). This suggests that the mandatory connection of low-energy buildings to DH in specific areas, by means of detailed energy planning, would improve the energy efficiency and the overall...... socio-economy and it is strategic for effective energy policy. The levelised cost of energy in case of low-energy DH supply is competitive with the scenario based on ground source heat pumps. The investment costs represent up to three quarters of the overall expenditure, over a time horizon of 30 years...

  7. Electric and Magnetic Dipole Strength at Low Energy

    Science.gov (United States)

    Sieja, K.

    2017-08-01

    A low-energy enhancement of radiative strength functions was deduced from recent experiments in several mass regions of nuclei, which is believed to impact considerably the calculated neutron capture rates. In this Letter we investigate the behavior of the low-energy γ -ray strength of the Sc 44 isotope, for the first time taking into account both electric and magnetic dipole contributions obtained coherently in the same theoretical approach. The calculations are performed using the large-scale shell-model framework in a full 1 ℏω s d -p f -g d s model space. Our results corroborate previous theoretical findings for the low-energy enhancement of the M 1 strength but show quite different behavior for the E 1 strength.

  8. Positron impact ionization of atomic hydrogen at low energies

    Indian Academy of Sciences (India)

    The study of low energy ionization of atomic hydrogen has undergone a rapid ... Three distinct theories for describing low energy ionization can now .... clear evidence that the backward peak for ΘЅѕ = 180° is due to positron-nucleus scat-.

  9. PHYSICS WITH ULTRA-LOW ENERGY ANTIPROTONS

    Energy Technology Data Exchange (ETDEWEB)

    M. HOLZSCHEITER

    2001-02-01

    In this report the author describes the current status of the antiproton deceleration (AD) facility at CERN, and highlights the physics program with ultra-low energy antiproton at this installation. He also comments on future possibilities provided higher intensity antiproton beams become available at Fermilab, and review possibilities for initial experiments using direct degrading of high energy antiprotons in material has been developed and proven at CERN.

  10. Food irradiation by low energy electrons

    International Nuclear Information System (INIS)

    Bird, J.R.

    1985-01-01

    For some special cases, the use of low energy electrons has advantages over the use of gamma-rays or higher energy electrons for the direct irradiation of food. These advantages arise from details of the interaction processes which are responsible for the production of physical, chemical and biological effects. Factors involved include depth of penetration, dose distribution, irradiation geometry, the possible production of radioactivity and costs

  11. Perceptional and socio-economic factors in adoption of low energy houses

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Nair, Gireesh; Gustavsson, Leif [Ecotechnology, Mid Sweden Univ., Oestersund (Sweden)

    2009-07-01

    Diffusion of low energy houses reduces greenhouse emission from residential sector. However, adoption of such houses depends on the perception of the potential buyers. In this paper we have analyzed Swedish homeowners' perception of low energy houses. Data was collected in 2008 from a mail-in questionnaire survey of about 3000 owners of detached houses. Results showed that about 39% of respondents, especially young, educated or whose household income was high, would consider buying a low energy house. Majority of the respondents agreed that a low energy house in comparison to a conventional house has lower operating energy cost, but higher investment cost. Majority thought that low energy houses do not have lower resale value, lower aesthetic appearance, or greater operational difficulty

  12. Personal experience with whole-body, low-dosage, digital X-ray scanning (LODOX-Statscan in trauma

    Directory of Open Access Journals (Sweden)

    Zimmermann Heinz

    2009-09-01

    Full Text Available Abstract Background Lodox-Statscan is a whole-body, skeletal and soft-tissue, low-dose X-ray scanner Anterior-posterior and lateral thoraco-abdominal studies are obtained in 3-5 minutes with only about one-third of the radiation required for conventional radiography. Since its approval by the Food and Drug Administration (FDA in the USA, several trauma centers have incorporated this technology into their Advanced Trauma Life Support protocols. This review provides a brief overview of the system, and describes the authors' own experience with the system. Methods We performed a PubMed search to retrieve all references with 'Lodox' and 'Stat-scan' used as search terms. We furthermore used the google search engine to identify existing alternatives. To the best of our knowledge, this is the only FDA-approved device of its kind currently used in trauma. Results and Conclusion The intention of our review has been to sensitize the readership that such alternative devices exist. The key message is that low dosage full body radiography may be an alternative to conventional resuscitation room radiography which is usually a prelude to CT scanning (ATLS algorithm. The combination of both is radiation intensive and therefore we consider any reduction of radiation a success. But only the future will show whether LS will survive in the face of low-dose radiation CT scanners and magnetic resonance imaging devices that may eventually completely replace conventional radiography.

  13. Vision for a low-impact renewable energy future for Canada

    International Nuclear Information System (INIS)

    2003-11-01

    The Clean Air Renewable Energy Coalition promotes the development of the renewable energy industry in Canada. The Coalition's vision for low-impact renewable energy focuses on green forms of electricity to provide not only light, heat and power, but to produce hydrogen fuel that could be used in fuel cell technologies. Low-impact renewable energy is a non-depleting resource with minimal environmental impacts. It includes wind energy, hydro energy, geothermal energy, biomass, tidal energy, and solar energy. The Coalition's goal is to have low-impact renewable energy account for at least 7 per cent of Canada's electricity production by 2010, and 15 per cent by 2020. It is currently at 1 per cent. This goal can be achieved by: defining a comprehensive renewable energy vision for Canada; setting long term targets for renewable energy in Canada; committing to a package of long term incentives; developing partnerships between all levels of government to increase financial investments in renewable energy projects; and, recognizing the potential for renewable energy in a carbon-constrained economy. refs., tabs

  14. The present state and perspectives of low-energy heavy ion biology

    International Nuclear Information System (INIS)

    Yuan Chengling; Yu Zengliang

    2004-01-01

    The interaction between low-energy ions and matter has been concerned rarely comparing to that of high-energy ions. It is even more unusual to find studies of the interaction of low-energy ions and complicated organisms. However, the discovery of bioeffects induced by ion beam implantation has opened a new branch in the field of ion beam applications in the life science--Low-energy Heavy Ion Biology. The mutagenic effect of low energy heavy ions was firstly reported in 1986 in rice. Since then, a damage mechanism involved in energy absorption, mass deposition, and charge exchange has been proposed. Accumulating evidence has indicated that these three factors are key determinants in the bioeffects induced by low energy heavy ions, which has opened new opportunities for mutational breeding, gene transferring, cell modification, and cell fusion. In recent years, the ion beam implantation technique has been widely applied in many fields, and increasing research interest in the field has been seen. The authors summarize recent advances in research on the role of low-energy ions in terms of the mechanisms and applications

  15. Low Energy Nuclear Reactions: 2007 Update

    Science.gov (United States)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  16. Low energy plasma observations at synchronous orbit

    International Nuclear Information System (INIS)

    Reasoner, D.L.; Lennartsson, W.

    1977-08-01

    The University of California at San Diego Auroral Particles Experiment on the ATS-6 Satellite in synchronous orbit has detected a low-energy plasma population which is separate and distinct from both the ring current and plasma sheet populations. These observations suggest that this plasma is the outer zone of the plasmasphere. During magnetically active periods, this low energy plasma is often observed flowing sunward. In the dusk sector, enhanced plasma flow is often observed for 1-2 hours prior to the onset of a substorm-associated particle injection. (author)

  17. Low-Energy Building Design Guidelines: Energy-Efficient Design for New Federal Facilities

    International Nuclear Information System (INIS)

    Zachman, W.; Carlisle, N.

    2001-01-01

    This guidebook has been prepared primarily for Federal energy managers to provide practical information for applying the principles of low-energy, whole-building design in new Federal buildings. An important objective of this guidebook is to teach energy managers how to be advocates for renewable energy and energy-efficient technologies, and how to apply specific strategies during each phase of a given project's time line. These key action items are broken out by phase and appear in abbreviated form in this guidebook

  18. A Low Energy Intelligent Clustering Protocol for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Li, Qiao; Cui, Lingguo; Zhang, Baihai

    2010-01-01

    LEACH (low-energy adaptive clustering hierarchy) is a well-known self-organizing, adaptive clustering protocol of wireless sensor networks. However it has some shortcomings when it faces such problems as the cluster construction and energy management. In this paper, LEICP (low energy intelligent...

  19. Low-energy electron microdosimetry of CS-137

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.

    1980-09-01

    The mass of tissue irradiated by an internal emitter depends upon the distribution of the radionuclide within the organism and the type of radiation emitted. The range (95% absorption) of low-energy electron effectively defines the sensitive volume in which the energy of the emitted electron is deposited. Accordingly, in the case of Auger electron microdosimetry of internal emitters the correct definition of the sensitive volume is of paramount importance. The amount of energy delivered by the monoenergetic electrons emitted by the decay system 137 Cs → sup(137m)Ba to spherical volumes of water-like tissue media of radii equivalent to the estimated ranges of those electrons in water is calculated and discussed as far as the variations of the estimated ranges of electrons as a function of the initial energy of emission are concerned. Although there are still many uncertainties on the actual ranges of low-energy electrons, one can state confidently that the ranges of the Auger electrons of the decay system 137 Cs → 137 sup(m) Ba → 137 Ba can be considered to be in the same order of magnitude of the diameter of a cell. The energy deposition in spherical volumes of water-like tissue media, considered equivalent to the sensitive volumes for the Auger electrons of the decay system 137 Cs → 137 sub(m) Ba → 137 Ba, range for several orders of magnitude from 10 2 to about 10 10 times higher than the energy deposition in similar media by the internal conversion electrons of this decay system. If equivalent variations of energy deposition per unit mass occur when the masses considered are cellular, and subcellular structures, then the effects into the sensitive volume should be taken into biological consideration as far as the microdosimetry of low-energy electrons (approximately equal to 10 keV) is considered, whenever there is internal localization of Auger emitters. (Author) [pt

  20. Inside bluetooth low energy

    CERN Document Server

    Gupta, Naresh

    2013-01-01

    Bluetooth Low Energy (LE) is one of the latest enhancement to Bluetooth technology and, as the name suggests, it is aimed at ultra low power devices, such as heart rate monitors, thermometers, and sensors. Due to very low power consumption, devices compliant with this standard can operate for several years on coin cell batteries without the need for recharging. This cutting-edge book helps you understand the whats , whys , and hows of Bluetooth LE. It includes a broad view of the technology, identifies the various building blocks, and explains how they come together. You also find discussions on Bluetooth basics, providing the background information needed to master Bluetooth LE.The book explains the architecture of Bluetooth LE stack and the functionality provided by each of the layers. You find expert guidance in setting up your own system in a quick and efficient manner with inexpensive, easily available hardware and just a couple of PCs running Linux. This unique volume features two chapters that are dedi...

  1. Consumer Unit for Low Energy District Heating Net

    DEFF Research Database (Denmark)

    Paulsen, Otto; Fan, Jianhua; Furbo, Simon

    2008-01-01

    to reduce heat loss in the network. The consumer’s installation is a unit type with an accumulation tank for smoothing the heat load related to the domestic hot water. The building heat load is delivered by an under-floor heating system. The heavy under-floor heating system is assumed to smooth the room...... heat load on a daily basis, having a flow temperature control based on outdoor climate. The unit is designed for a near constant district heating water flow. The paper describes two concepts. The analyses are based on TRNSYS (Klein et al., 2006) simulation, supplied with laboratory verification......A low energy/ low temperature consumer installation is designed and analyzed. The consumer type is a low energy single family house 145 m2 with annual energy consumption in the range of 7000 kWh, incl. domestic hot water in a 2800 degree day climate. The network is an extreme low temperature system...

  2. Study on low-energy sputtering near the threshold energy by molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    C. Yan

    2012-09-01

    Full Text Available Using molecular dynamics simulation, we have studied the low-energy sputtering at the energies near the sputtering threshold. Different projectile-target combinations of noble metal atoms (Cu, Ag, Au, Ni, Pd, and Pt are simulated in the range of incident energy from 0.1 to 200 eV. It is found that the threshold energies for sputtering are different for the cases of M1 < M2 and M1 ≥ M2, where M1 and M2 are atomic mass of projectile and target atoms, respectively. The sputtering yields are found to have a linear dependence on the reduced incident energy, but the dependence behaviors are different for the both cases. The two new formulas are suggested to describe the energy dependences of the both cases by fitting the simulation results with the determined threshold energies. With the study on the energy dependences of sticking probabilities and traces of the projectiles and recoils, we propose two different mechanisms to describe the sputtering behavior of low-energy atoms near the threshold energy for the cases of M1 < M2 and M1 ≥ M2, respectively.

  3. Scanning tunneling spectroscopy of Co adsorbates on superconducting Pb nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Regis; Caminale, Michael; Oka, Hirofumi; Stepniak, Agnieszka; Leon Vanegas, Augusto A.; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2015-07-01

    Superconductivity in low-dimensional structures has become an active research area. In order to understand the superconducting pairing, long-standing work has been devoted to the pair breaking effect, where magnetic impurities break Cooper pair singlets. We performed scanning tunneling spectroscopy at low temperature on Co adsorbates on superconducting Pb nanoislands. On the Co adsorbates, we observe spectral features in the superconductor's energy gap, which we attribute to magnetic impurity induced bound states, a hallmark of the pair breaking effect. We discuss the response of the superconducting islands to the presence of Co adsorbates.

  4. Ultra-low energy storage ring at FLAIR

    International Nuclear Information System (INIS)

    Welsch, Carsten P.; Papash, A. I.; Gorda, O.; Harasimowicz, J.; Karamyshev, O.; Karamysheva, G.; Newton, D.; Panniello, M.; Putignano, M.; Siggel-King, M. R. F.; Smirnov, A.

    2012-01-01

    The Ultra-low energy electrostatic Storage Ring (USR) at the future Facility for Low-energy Antiproton and Ion Research (FLAIR) will provide cooled beams of antiprotons in the energy range between 300 keV down to 20 keV and possibly less. The USR has been completely redesigned over the past three years. The ring structure is based on a “split achromat” lattice that allows in-ring experiments with internal gas jet target. Beam parameters might be adjusted in a wide range: from very short pulses in the nanosecond regime to a Coasting beam. In addition, a combined fast and slow extraction scheme was developed that allows for providing external experiments with cooled beams of different time structure. Detailed investigations of the USR, including studies into the ring’s long term beam dynamics, life time, equilibrium momentum spread and equilibrium lateral spread during collisions with an internal target were carried out. New tools and beam handling techniques for diagnostics of ultra-low energy ions at beam intensities less than 10 6 were developed by the QUASAR Group. In this paper, progress on the USR project will be presented with an emphasis on the expected beam parameters available to the experiments at FLAIR.

  5. Distribution Analysis of the Local Critical Temperature and Current Density in YBCO Coated Conductors using Low-temperature Scanning Laser and Hall Probe Microscopy

    International Nuclear Information System (INIS)

    Park, S. K.; Cho, B. R.; Park, H. Y.; Ri, H. C.

    2011-01-01

    Distribution of the local critical temperature and current density in YBCO coated conductors were analyzed using Low-temperature Scanning Laser and Hall Probe Microscopy (LTSLHPM). We prepared YBCO coated conductors of various bridge types to study the spatial distribution of the critical temperature and the current density in single and multi bridges. LTSLHPM system was modified for detailed linescan or two-dimensional scan both scanning laser and scanning Hall probe method simultaneously. We analyzed the local critical temperature of single and multi bridges from series of several linescans of scanning laser microscopy. We also investigated local current density and hysteresis curve of single bridge from experimental results of scanning Hall probe microscopy.

  6. ANALYSIS OF DRUG-PROTEIN BINDING BY ULTRAFAST AFFINITY CHROMATOGRAPHY USING IMMOBILIZED HUMAN SERUM ALBUMIN

    Science.gov (United States)

    Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.

    2010-01-01

    Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701

  7. Low energy, low cost, efficient CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Trachtenberg; Lihong Bao; David A. Smith; Remy Dumortier [Carbozyme, Inc., Monmouth Junction, NJ (United States)

    2006-07-01

    This paper discusses the development and some characteristics of a new, enzyme-based, contained liquid membrane contactor to capture CO{sub 2}. The enzyme carbonic anhydrase catalyzes the removal of CO{sub 2} while the membrane contactor increases the surface area to allow the reduction of the size of the system. The modular system design is easily scaled to any required size reducing the investment costs. The system captures CO{sub 2} at a low energy and low cost promising to be a cost effective technology for CO{sub 2} capture. 5 refs., 7 figs.

  8. Contrast Dose and Radiation Dose Reduction in Abdominal Enhanced Computerized Tomography Scans with Single-phase Dual-energy Spectral Computerized Tomography Mode for Children with Solid Tumors.

    Science.gov (United States)

    Yu, Tong; Gao, Jun; Liu, Zhi-Min; Zhang, Qi-Feng; Liu, Yong; Jiang, Ling; Peng, Yun

    2017-04-05

    Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors. Forty-five patients with solid tumors who had initial CT (Group B) and follow-up CT (Group A) after chemotherapy were enrolled. The initial diagnostic CT scan (Group B) was performed using the standard two-phase enhanced CT with 320 mgI/ml concentration contrast, and the follow-up scan (Group A) was performed using a single-phase enhanced CT at 45 s after the beginning of the 270 mgI/ml contrast injection using spectral mode. Forty percent ASiR was used for the images in Group B and monochromatic images with energy levels ≥60 keV in Group A. In addition, filtered back-projection (FBP) reconstruction was used for monochromatic images hounsfield unit (HU). The abdominal organs of Groups A and B had similar degrees of absolute and relative enhancement (t = 0.36 and -1.716 for liver, -0.153 and -1.546 for pancreas, and 2.427 and 0.866 for renal cortex, all P> 0.05). Signal-to-noise ratio of the abdominal organs was significantly lower in Group A than in Group B (t = -8.11 for liver, -7.83 for pancreas, and -5.38 for renal cortex, all P 3, indicating clinically acceptable image quality. Single-phase, dual-energy spectral CT used for children with solid abdominal tumors can reduce contrast dose and radiation dose and can also maintain clinically acceptable image quality.

  9. The effective QCD theory at low energy; La theorie effective de QCD a basse energie

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, M. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1995-12-31

    Quantum chromodynamics is studied here in the range of low energies. The Chiral perturbation theory is presented, this theory is based on a thorough study of QCD symmetry, of general field theory principles and of S-matrices. Ward identities are defined within the scope of current algebras and by using functional method. Their consequences on Chiral structure of QCD emptiness and on strong interaction at low energies are studied. The pion-pion diffusion at low energies is treated as an example. (A.C.) 70 refs.

  10. Photon strength and the low-energy enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wiedeking, M. [iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Hatarik, R.; Lesher, S. R.; Scielzo, N. D. [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Krtička, M. [Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, Prague 8 (Czech Republic); Allmond, J. M. [Department of Physics, University of Richmond, Virginia 23173 (United States); Basunia, M. S.; Fallon, P.; Firestone, R. B.; Lake, P. T.; Lee, I-Y.; Paschalis, S.; Petri, M.; Phair, L. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Goldblum, B. L. [Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States)

    2014-08-14

    Several measurements in medium mass nuclei have reported a low-energy enhancement in the photon strength function. Although, much effort has been invested in unraveling the mysteries of this effect, its physical origin is still not conclusively understood. Here, a completely model-independent experimental approach to investigate the existence of this enhancement is presented. The experiment was designed to study statistical feeding from the quasi-continuum (below the neutron separation energy) to individual low-lying discrete levels in {sup 95}Mo produced in the (d, p) reaction. A key aspect to successfully study gamma decay from the region of high-level density is the detection and extraction of correlated particle-gamma-gamma events which was accomplished using an array of Clover HPGe detectors and large area annular silicon detectors. The entrance channel excitation energy into the residual nucleus produced in the reaction was inferred from the detected proton energies in the silicon detectors. Gating on gamma-transitions originating from low-lying discrete levels specifies the state fed by statistical gamma-rays. Any particle-gamma-gamma event in combination with specific energy sum requirements ensures a clean and unambiguous determination of the initial and final state of the observed gamma rays. With these requirements the statistical feeding to individual discrete levels is extracted on an event-by-event basis. The results are presented and compared to {sup 95}Mo photon strength function data measured at the University of Oslo.

  11. Characterizing high-energy-formed particulates with the scanning electron microscope/energy dispersive spectrometer system. Progress report, March--September 1977

    International Nuclear Information System (INIS)

    Casey, A.W.; Biermann, A.H.

    1977-01-01

    A method is being sought that will allow the differentiation between particulates formed in implosions and particulates formed in explosions. The scanning electron microscope (SEM) and energy dispersive x-ray analysis (EDS) were used to measure and compare particle size, shape, surface morphology, and composition. Implosion and explosion detonations yielded spherical, smooth particles within the same size range. Although the particle size, shape, and morphology were the same for comparable samples of different detonation type, there were distinct differences in composition. It is not certain whether differences in composition reflect differences in device components or differences in the nature of the detonation

  12. A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    Science.gov (United States)

    Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin; Li, Xianfeng

    2017-11-20

    Flow batteries (FBs) are one of the most promising stationary energy-storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc-iron FB with very low cost and high energy density is presented. By using highly soluble FeCl 2 /ZnBr 2 species, a charge energy density of 56.30 Wh L -1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe 3+ /Fe 2+ . The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm -2 and the battery can run stably for more than 100 cycles. Furthermore, a low-cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB is a promising candidate for stationary energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Low-Energy Building Design Guidelines: Energy-Efficient Design for New Federal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Zachman, W.; Carlisle, N.

    2001-07-19

    This guidebook has been prepared primarily for Federal energy managers to provide practical information for applying the principles of low-energy, whole-building design in new Federal buildings. An important objective of this guidebook is to teach energy managers how to be advocates for renewable energy and energy-efficient technologies, and how to apply specific strategies during each phase of a given project's time line. These key action items are broken out by phase and appear in abbreviated form in this guidebook.

  14. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E. [Stanford University, Stanford, California 94309 (United States)

    1997-08-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H{endash}Si bond on the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C{endash}Si bond length of 1.85{plus_minus}0.05{Angstrom}. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. {copyright} {ital 1997 American Institute of Physics.}

  15. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    International Nuclear Information System (INIS)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E.

    1997-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H endash Si bond on the H endash Si(111) surface, and (ii) replacement of Cl on the Cl endash Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C endash Si bond length of 1.85±0.05 Angstrom. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. copyright 1997 American Institute of Physics

  16. Compounds Labelled with Low-Energy Gamma-Ray Emitters for Medical Isotope Scanning; Gammagraphie au Moyen de Composes Marques avec des Emetteurs Gamma de Faible Energie; Soedineniya, ispol'zuemye pri meditsinskom izotopnom skennirovanii, mechennye s pomoshch'yu gamma-izluchatelej nizkoj ehnergii; Compuestos Marcados con Emisores Gamma de Baja Energia para la Exploracion Medica Mediante Isotopos

    Energy Technology Data Exchange (ETDEWEB)

    Scheer, K. E.; Zum Winkel, K.; Georgi, M. [Czerny-Krankenhaus der Universitat Heidelberg, Federal Republic of Germany (Germany)

    1964-10-15

    Low-energy gamma emitters have a special merit for medical scintillation scanning for the following reasons: (1) The lead shielding of the collimators is much more effective. Multiple focusing thin-walled hole collimators can therefore be used, making a higher geometrical resolution possible and, therefore, the detection of smaller lesions. (2) The absorption of the radiation within the body tissue limits the depth of visibility of lesions. In extended organs like the liver, the superposition of radiation originating from the back of the organ is avoided. This allows a better detection of more superficial lesions. The most important low-energy gamma-emitting nuclide is I{sup 125}. For thyroid scanning, it is used in the form of iodide. A suitable compound for liver scanning is I{sup 125}-labelled Rose Bengal. An alternative compound is I{sup 125} -CAI (heat denatured albumin). For kidney scanning I{sup 125}-Hippuran was found to be suitable when injected intramuscularly with hyaluronidase to ensure a uniform level of radioactivity in the kidneys. Another useful low-energy gamma-emitting nuclide for medical scanning is Hg{sup 197} which may be used as chloride for kidney and spleen scanning. Special precautions must be taken to avoid overlying of kidney and spleen. A higher quality scan is obtained with Hg{sup 197}-labelled Neohydrin. This compound is also useful for brain-tumour localization. Typical scans of thyroid, liver, spleen, kidney and brain tumours obtained with low-energy gamma emitters and conventional nuclides and compounds are presented and the merits of the former are discussed. (author) [French] Les emetteurs gamma de faible energie presentent un interet particulier en gammagraphie, pour les raisons suivantes: 1. L'ecran en plomb des collimateurs est beaucoup plus efficace. On peut donc utiliser des collimateurs a focalisation a canaux multiples, et a parois minces, qui permettent d'avoir un excellent pouvoir de resolution et, par consequent, de

  17. National Roadmaps for promotion of very low-energy house concepts

    Energy Technology Data Exchange (ETDEWEB)

    Buvik, Karin

    2012-07-01

    This report is meant to contribute to the preparation of National Energy Efficiency Action Plans (NEEAPs), which are tools supporting the implementation of energy efficiency improvement policies. The NEEAPs are considered one of the cornerstones of the Energy End-use Efficiency and Energy Services Directive. Previous publications from the NorthPass project report from studies of existing concepts and building standards in the participating countries, and analyses of main challenges in aiming to increase the market share of very low-energy houses. In this report a short overview of the current situation is given, and measures are proposed to support the implementation of the nearly Zero-Energy Building level, as described in the recast of the Energy Performance of Building Directive. Necessary steps towards a successful implementation will vary within the participating countries; involving technological, financial and policy implications in various degrees. The eight North European countries, participating in the NorthPass project, have similarities and differences. The four Nordic countries have several similarities regarding market penetration of very low-energy houses, as well as activities implemented by the authorities. Poland and the Baltic States have similarities in terms of market situation which is different from the Nordic countries. In the Nordic countries, the path towards the EU 2020 targets has, to a large extent, been chosen, focusing on step by step tightening of building codes, financial incentives and training of actors in the building sector. A discussion is going on about how to affect changes in customers' preferences, which would lead to a growing demand for very low-energy residential buildings. The situation in Poland and the Baltic countries is more problematic, as only few very low energy houses have been built so far. However, a growing interest in energy savings seems to arise, as the energy consumption is considerably high and the

  18. Energy analyzer for Auger electron spectroscopy and low-energy backscattering ion spectroscopy

    International Nuclear Information System (INIS)

    Volkov, S.S.; Gorelik, V.A.; Gutenko, V.T.; Protopopov, O.D.; Trubitsin, A.A.; Shuvalova, Z.A.; Yakushev, G.A.

    1988-01-01

    Energy analyzer for electron Auger spectroscopy and low-energy backscattering ion spectroscopy is described. Analyzer presents one-cascade variant of cylindrical mirror with second-order focusing. Energy relative resolution is continuously adjusted within 0.2-1.2% limits. Signal/noise relation by Cu Auger-line at 1 muA current of exciting beam changes upper limit of range 150-450

  19. Low-energy limit of two-scale field theories

    International Nuclear Information System (INIS)

    Leon, J.; Perez-Mercader, J.; Sanchez, M.F.

    1991-01-01

    We present a full and self-contained discussion of the decoupling theorem applied to several general models in four-dimensional field theory. We compute in each case the low-energy effective action and show the explicit one-loop expressions for each of the effective parameters. We find that for suitable conditions one can always build an effective low-energy theory where the conditions of the decoupling theorem are satisfied

  20. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    Science.gov (United States)

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Creation of the precision magnetic spectrometer SCAN-3

    Directory of Open Access Journals (Sweden)

    Afanasiev S.V.

    2017-01-01

    Full Text Available The new JINR project [1] is aimed at studies of highly excited nuclear matter created in nuclei by a high-energy deuteron beam. The matter is studied through observation of its particular decay products - pairs of energetic particles with a wide opening angle, close to 180°. The new precision hybrid magnetic spectrometer SCAN-3 is to be built for detecting charged (π±, K±, p and neutral (n particles produced at the JINR Nuclotron internal target in dA collisions. One of the main and complex tasks is a study of low-energy ηA interaction and a search for η-bound states (η-mesic nuclei. Basic elements of the spectrometer and its characteristics are discussed in the article.

  2. Creation of the precision magnetic spectrometer SCAN-3

    Science.gov (United States)

    Afanasiev, S. V.; Anisimov, Yu. S.; Baldin, A. A.; Berlev, A. I.; Dryablov, D. K.; Dubinchik, B. V.; Elishev, A. F.; Fateev, O. V.; Igamkulov, Z. A.; Krechetov, Yu. F.; Kudashkin, I. V.; Kuznechov, S. N.; Malakhov, A. I.; Smirnov, V. A.; Shimansky, S. S.; Kliman, J.; Matousek, V.; Gmutsa, S.; Turzo, I.; Cruceru, I.; Cruceru, M.; Constantin, F.; Niolescu, G.; Ciolacu, L.; Paraipan, M.; Vokál, S.; Vrláková, J.; Baskov, V. A.; Lebedev, A. I.; L'vov, A. I.; Pavlyuchenko, L. N.; Polyansky, V. V.; Rzhanov, E. V.; Sidorin, S. S.; Sokol, G. A.; Glavanakov, I. V.; Tabachenko, A. N.; Jomurodov, D. M.; Bekmirzaev, R. N.; Ibadov, R. M.; Sultanov, M. U.

    2017-03-01

    The new JINR project [1] is aimed at studies of highly excited nuclear matter created in nuclei by a high-energy deuteron beam. The matter is studied through observation of its particular decay products - pairs of energetic particles with a wide opening angle, close to 180°. The new precision hybrid magnetic spectrometer SCAN-3 is to be built for detecting charged (π±, K±, p) and neutral (n) particles produced at the JINR Nuclotron internal target in dA collisions. One of the main and complex tasks is a study of low-energy ηA interaction and a search for η-bound states (η-mesic nuclei). Basic elements of the spectrometer and its characteristics are discussed in the article.

  3. Revealing low-energy part of the beta spectra

    International Nuclear Information System (INIS)

    Selvi, S.; Celiktas, C.

    2002-01-01

    An effective method is proposed to separate electronic noise from the beta-particle spectra revealing lower energy part of the spectra. The available methods for reducing the noise problem cut the noise along with the low-energy part of the beta spectra by using a discriminator. Our setup eliminates this undesirable effect by shifting the noise toward the lowest energy scale leaving the low-energy part of spectra undisturbed. We achieved this noise-pulse-separation by treating the noise as a pulse so that we can exploit the application of the pulse-shape analyzer equipment used for pulse shape identification of particles and rejection of defective pulses. To the best of our knowledge this method of the noise separation is a novel approach

  4. Preferences for a third-trimester ultrasound scan in a low-risk obstetric population: a discrete choice experiment.

    Science.gov (United States)

    Lynn, Fiona A; Crealey, Grainne E; Alderdice, Fiona A; McElnay, James C

    2015-10-01

    Establish maternal preferences for a third-trimester ultrasound scan in a healthy, low-risk pregnant population. Cross-sectional study incorporating a discrete choice experiment. A large, urban maternity hospital in Northern Ireland. One hundred and forty-six women in their second trimester of pregnancy. A discrete choice experiment was designed to elicit preferences for four attributes of a third-trimester ultrasound scan: health-care professional conducting the scan, detection rate for abnormal foetal growth, provision of non-medical information, cost. Additional data collected included age, marital status, socio-economic status, obstetric history, pregnancy-specific stress levels, perceived health and whether pregnancy was planned. Analysis was undertaken using a mixed logit model with interaction effects. Women's preferences for, and trade-offs between, the attributes of a hypothetical scan and indirect willingness-to-pay estimates. Women had significant positive preference for higher rate of detection, lower cost and provision of non-medical information, with no significant value placed on scan operator. Interaction effects revealed subgroups that valued the scan most: women experiencing their first pregnancy, women reporting higher levels of stress, an adverse obstetric history and older women. Women were able to trade on aspects of care and place relative importance on clinical, non-clinical outcomes and processes of service delivery, thus highlighting the potential of using health utilities in the development of services from a clinical, economic and social perspective. Specifically, maternal preferences exhibited provide valuable information for designing a randomized trial of effectiveness and insight for clinical and policy decision makers to inform woman-centred care. © 2013 Blackwell Publishing Ltd.

  5. DOD low energy model installation program

    International Nuclear Information System (INIS)

    Fournier, D.F. Jr.

    1993-01-01

    The Model Low Energy Installation Program is a demonstration of an installation-wide, comprehensive energy conservation program that meets the Department of Defense (DoD) energy management goals of reducing energy usage and costs by at least 20%. It employs the required strategies for meeting these goals, quantifies the environmental compliance benefits resulting from energy conservation and serves as a prototype for DoD wide application. This project will develop both analysis tools and implementation procedures as well as demonstrate the effectiveness of a comprehensive, coordinated energy conservation program based on state-of-the-art technologies. A military installation is in reality a small to medium sized city. It generally has a complete utilities infrastructure including water supply and distribution, sewage collection and treatment, electrical supply and distribution, central heating and cooling plants with thermal distribution, and a natural gas distribution system. These utilities are quite extensive and actually consume about 10-15% of the energy on the facility not counting the energy going into the central plants

  6. Gallium-67 imaging with low collimators and energy weighted acquisition

    International Nuclear Information System (INIS)

    Hamill, J.J.; DeVito, R.P.

    1990-01-01

    This paper reports that the medium and high energy collimators used in 67 Ga imaging have poorer resolution than low-energy collimators, such as the LEAP. The low energy collimators could be used for gallium imaging if the background under the 93 and 185 keV peaks could be reduced without degrading the signal-to-noise ratio unacceptably. energy weighted acquisition provides a means of accomplishing this background reduction. The authors have developed weighing functions for gallium imaging through LEAP and high resolution collimators. The resolution of the low energy collimators is realized while the background is comparable to, or better than, the background in normal, energy-window imaging with the medium energy collimator. The pixel noise is somewhat greater than the Poisson noise in normal gallium imaging, and some noise correlations, or noise texture, is introduced

  7. Low energy dynamics of self-dual A1 strings

    International Nuclear Information System (INIS)

    Gustavsson, Andreas

    2003-01-01

    We examine the interrelation between the (2,0) supersymmetric six-dimensional effective action for the A 1 theory, and the corresponding low-energy theory for the collective coordinates associated to selfdual BPS strings. We argue that this low energy theory is a two-dimensional N=4 supersymmetric sigma model

  8. A Study of the Magnetic Dipole Field of LEP during the 1995 Energy Scan

    CERN Document Server

    Dehning, Bernd; Geitz, M A

    1996-01-01

    In preparation for the 1995 LEP energy scan additional instrumentation was installed in two tunnel dipoles to monitor the time evolution of the magnetic field during experimental fills. Significant increase of the bending field superimposed by day-time dependent fluctuations on a minute time scale were revealed. These unexpected features could be correlated with earth currents captured by the LEP vacuum chamber and the ground cable. The currents are produced in particular by trains circulating in the Geneva area. This study presents a summary of our understanding of the LEP dipole field.

  9. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2017-10-01

    We present measurements of bulk properties of the matter produced in Au+Au collisions at √{sN N}=7.7 ,11.5 ,19.6 ,27 , and 39 GeV using identified hadrons (π±, K±, p , and p ¯) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (|y |<0.1 ) results for multiplicity densities d N /d y , average transverse momenta 〈pT〉 , and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.

  10. European national strategies to move towards very low energy buildings

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    high energy performance. It is important to stress the need for MS to introduce a national or regional definition of very low energy buildings in their building regulation and to develop a national strategy towards this level of energy performance to become the standard. This market transformation...... the ambition in the EU Action plan - to develop an EU strategy towards very low energy houses. The current recast of the EPBD is an opportunity, which must not be missed to introduce the requirement to MS to define very low energy buildings and a national strategy towards this level of energy performance....... A strategy for improved energy efficiency of existing buildings is a necessity if the energy consumption is to be reduced significantly over a limited period of time. The life time of buildings ranges from 50 to 100 years and improvement of the existing building stock will thus have much higher impact than...

  11. Energy and exergy analysis of low temperature district heating network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand...... energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply.......Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network...

  12. Enhancement mechanisms of low energy nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gareev, F. A.; Zhidkova, I.E.; Ratis, Yu.L. [Joint Institute for Nuclear Research, JINR, 6 Joliot Curie Street, Dubna, Moscow Region 141980 (Russian Federation)

    2006-07-01

    The full review of Russian low energy nuclear reactors is represented. We have concluded that transmutation of nuclei at low energies, LENR, is possible in the framework of the modern physical theory - excitation and ionization of atoms and universal resonance synchronization principle are responsible for it. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics. The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor reproducibility of experimental data is due to the fact that LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical reproducibility principle should be reconsidered for LENR experiments. Poor reproducibility and unexplained results do not means that the experiment is wrong.

  13. Enhancement mechanisms of low energy nuclear reactions

    International Nuclear Information System (INIS)

    Gareev, F. A.; Zhidkova, I.E.; Ratis, Yu.L.

    2006-01-01

    The full review of Russian low energy nuclear reactors is represented. We have concluded that transmutation of nuclei at low energies, LENR, is possible in the framework of the modern physical theory - excitation and ionization of atoms and universal resonance synchronization principle are responsible for it. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics. The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor reproducibility of experimental data is due to the fact that LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical reproducibility principle should be reconsidered for LENR experiments. Poor reproducibility and unexplained results do not means that the experiment is wrong

  14. Fundamental physics with low-energy neutrons

    International Nuclear Information System (INIS)

    Barrón-Palos, Libertad

    2016-01-01

    Low-energy neutrons are playing a prominent role in a growing number of fundamental physics studies. This paper provides a brief description of the physics that some of the experiments in the area are addressing. (paper)

  15. Occupant Experiences and Satisfaction with New Low-Energy Houses

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Thomsen, Kirsten Engelund; Mørck, Ove

    2013-01-01

    -energy houses that meet the future lower energy requirements of the planned Danish Building Regulations 2015. The purpose was to study experiences and satisfaction among occupants living in new low-energy houses. It included i.a. overall satisfaction, perceived indoor climate and experiences and satisfaction...... be addressed in order to make low-energy houses attractive to ordinary people. Occupants experienced among other things noise from the technical installations and that it was too hot in summer and too cold in winter, that there were a series of problems with the technical installations and that their use...

  16. Variations of Low-energy Ion Distributions Measured in the Heliosheath

    International Nuclear Information System (INIS)

    Decker, R. B.; Roelof, E. C.; Hill, M. E.; Krimigis, S. M.

    2010-01-01

    This report is an update of low-energy ion intensities and angular distributions measured recently by the Low Energy Charged Particle instruments on the Voyager 1 and 2 spacecraft in the inner heliosheath.

  17. The Phobos low energy telescope charged particle experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marsden, R.G.; Henrion, J.P.G.; Wenzel, K.P. (European Space Agency, Noordwijk (Netherlands). Space Science Dept.); Afonin, V.V. (AN SSSR, Moscow (USSR). Inst. Kosmicheskikh Issledovanij); Balazs, A.; Erdoes, G.; Rusznyak, P.; Somogyi, A.; Szalai, S.; Varga, A.; Varhalmi, L. (Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics); Richter, A.K.; Witte, M. (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany, F.R.))

    1990-05-01

    The Low Energy Telescope (LET) experiment on board the Phobos 1 and 2 spacecraft measures the flux, energy spectra and elemental composition of solar energetic particles and cosmic ray nuclei from hydrogen up to iron in the energy range {proportional to}1 to {proportional to}75 MeV/n. The LET sensor system comprises a double dE/dX vs E solid-state detector telescope surrounded by a cylindrical plastic scintillator anticoincidence shield, and the instrument is equipped with a comprehensive particle identifier and event priority system that enables rare nuclei to be analysed in preference to the more common species. Isotope separation for light nuclei such as He is also achieved. The sensor is mounted on a rotating platform to enable coarse anisotropy measurements of low energy protons to be made. (orig.).

  18. Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy.

    Science.gov (United States)

    Wang, Tuo; Vaxenburg, Roman; Liu, Wenyong; Rupich, Sara M; Lifshitz, Efrat; Efros, Alexander L; Talapin, Dmitri V; Sibener, S J

    2015-01-27

    The electronic structure of single InSb quantum dots (QDs) with diameters between 3 and 7 nm was investigated using atomic force microscopy (AFM) and scanning tunneling spectroscopy (STS). In this size regime, InSb QDs show strong quantum confinement effects which lead to discrete energy levels on both valence and conduction band states. Decrease of the QD size increases the measured band gap and the spacing between energy levels. Multiplets of equally spaced resonance peaks are observed in the tunneling spectra. There, multiplets originate from degeneracy lifting induced by QD charging. The tunneling spectra of InSb QDs are qualitatively different from those observed in the STS of other III-V materials, for example, InAs QDs, with similar band gap energy. Theoretical calculations suggest the electron tunneling occurs through the states connected with L-valley of InSb QDs rather than through states of the Γ-valley. This observation calls for better understanding of the role of indirect valleys in strongly quantum-confined III-V nanomaterials.

  19. Cooperative Enhancement Mechanisms of Low Energy Nuclear Reactions Using Superlow Energy External Fields

    OpenAIRE

    Gareev, F. A.; Zhidkova, I. E.

    2006-01-01

    We proposed a new mechanism of LENR: cooperative processes in whole system - nuclei+atoms+condensed matter can occur at smaller threshold energies then corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution inner energy of whole system.

  20. Pion nucleon interaction at low energy

    International Nuclear Information System (INIS)

    Banerjee, M.K.

    1979-03-01

    A theory of the πN interaction at low energy is described. An analogy is made with an unusual approach to potential scattering theory. Phase shifts, cross sections, and scattering amplitudes and lengths are calculated. 28 references

  1. Can low-carbon societies deliver on energy security?

    International Nuclear Information System (INIS)

    Jewell, Jessica

    2015-01-01

    The impact of low-carbon policies on energy security depends on both the timing and intensity of these policies, and the definition of energy security: security of what?; security for whom?; and security from which threats? The priorities of the EU’s 2030 climate/energy package and energy security show little if any alignment. Global climate stabilization policies benefit the energy security of India, China, and the EU, but may have negative impacts on export revenues of the U.S. and other energy exporters.

  2. Lung scans with significant perfusion defects limited to matching pleural effusions have a low probability of pulmonary embolism

    International Nuclear Information System (INIS)

    Datz, F.L.; Bedont, R.A.; Taylor, A.

    1985-01-01

    Patients with a pleural effusion on chest x-ray often undergo a lung scan to exclude pulmonary embolism (PE). According to other studies, when the scan shows a perfusion defect equal in size to a radiographic abnormality on chest x-ray, the scan should be classified as indeterminate or intermediate probability for PE. However, since those studies dealt primarily with alveolar infiltrates rather than pleural effusions, the authors undertook a retrospective study to determine the probability of PE in patients with pleural effusion and a matching perfusion defect. The authors reviewed 451 scans and x-rays of patients studied for suspected PE. Of those, 53 had moderate or large perfusion defects secondary to pleural effusion without other significant (>25% of a segment) effusion without other significant (>25% of a segment) defects on the scan. Final diagnosis was confirmed by pulmonary angiography (16), thoracentesis (40), venography (11), other radiographic and laboratory studies, and clinical course. Of the 53 patients, only 2 patients had venous thrombotic disease. One patient had PE on pulmonary angiography, the other patient had thrombophlebitis on venography. The remainder of the patients had effusions due to congestive heart failure (12), malignancy (12), infection (7), trauma (7), collegen vascular disease (7), sympathetic effusion (3) and unknown etiology (3). The authors conclude that lung scans with significant perfusion defects limited to matching pleural effusions on chest x-ray have a low probability for PE

  3. Development of a low energy micro sheet forming machine

    Science.gov (United States)

    Razali, A. R.; Ann, C. T.; Shariff, H. M.; Kasim, N. I.; Musa, M. A.; Ahmad, A. F.

    2017-10-01

    It is expected that with the miniaturization of materials being processed, energy consumption is also being `miniaturized' proportionally. The focus of this study was to design a low energy micro-sheet-forming machine for thin sheet metal application and fabricate a low direct current powered micro-sheet-forming machine. A prototype of low energy system for a micro-sheet-forming machine which includes mechanical and electronic elements was developed. The machine was tested for its performance in terms of natural frequency, punching forces, punching speed and capability, energy consumption (single punch and frequency-time based). Based on the experiments, the machine can do 600 stroke per minute and the process is unaffected by the machine's natural frequency. It was also found that sub-Joule of power was required for a single stroke of punching/blanking process. Up to 100micron thick carbon steel shim was successfully tested and punched. It concludes that low power forming machine is feasible to be developed and be used to replace high powered machineries to form micro-products/parts.

  4. Immediate Dose-Response Effect of High-Energy Versus Low-Energy Extracorporeal Shock Wave Therapy on Cutaneous Microcirculation.

    Science.gov (United States)

    Kraemer, Robert; Sorg, Heiko; Forstmeier, Vinzent; Knobloch, Karsten; Liodaki, Eirini; Stang, Felix Hagen; Mailaender, Peter; Kisch, Tobias

    2016-12-01

    Elucidation of the precise mechanisms and therapeutic options of extracorporeal shock wave therapy (ESWT) is only at the beginning. Although immediate real-time effects of ESWT on cutaneous hemodynamics have recently been described, the dose response to different ESWT energies in cutaneous microcirculation has never been examined. Thirty-nine Sprague-Dawley rats were randomly assigned to three groups that received either focused high-energy shock waves (group A: total of 1000 impulses, 10 J) to the lower leg of the hind limb, focused low-energy shock waves (group B: total of 300 impulses, 1 J) or placebo shock wave treatment (group C: 0 impulses, 0 J) using a multimodality shock wave delivery system (Duolith SD-1 T-Top, Storz Medical, Tägerwilen, Switzerland). Immediate microcirculatory effects were assessed with the O2C (oxygen to see) system (LEA Medizintechnik, Giessen, Germany) before and for 20 min after application of ESWT. Cutaneous tissue oxygen saturation increased significantly higher after high-energy ESWT than after low-energy and placebo ESWT (A: 29.4% vs. B: 17.3% vs. C: 3.3%; p = 0.003). Capillary blood velocity was significantly higher after high-energy ESWT and lower after low-energy ESWT versus placebo ESWT (group A: 17.8% vs. group B: -22.1% vs. group C: -5.0%, p = 0.045). Post-capillary venous filling pressure was significantly enhanced in the high-energy ESWT group in contrast to the low-energy ESWT and placebo groups (group A: 25% vs. group B: 2% vs. group C: -4%, p = 0.001). Both high-energy and low-energy ESWT affect cutaneous hemodynamics in a standard rat model. High-energy ESWT significantly increases parameters of cutaneous microcirculation immediately after application, resulting in higher tissue oxygen saturation, venous filling pressure and blood velocity, which suggests higher tissue perfusion with enhanced oxygen saturation, in contrast to low-energy as well as placebo ESWT. Low-energy ESWT also increased tissue oxygen

  5. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    International Nuclear Information System (INIS)

    Steurer, Wolfram; Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard

    2014-01-01

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K

  6. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard [IBM Research-Zurich, 8803 Rüschlikon (Switzerland)

    2014-02-15

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  7. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope.

    Science.gov (United States)

    Steurer, Wolfram; Gross, Leo; Schlittler, Reto R; Meyer, Gerhard

    2014-02-01

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  8. Energy and exergy analysis of low temperature district heating network

    International Nuclear Information System (INIS)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand. The space heating demand is supplied through floor heating in the bathroom and low temperature radiators in the rest of rooms. The network thermal and hydraulic conditions are simulated under steady state. A district heating network design and simulation code is developed to incorporate the network optimization procedure and the network simultaneous factor. Through the simulation, the overall system energy and exergy efficiencies are calculated and the exergy losses for the major district heating system components are identified. Based on the results, suggestions are given to further reduce the system energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply. -- Highlights: ► Exergy and energy analysis for low and medium temperature district heating systems. ► Different district heating network dimensioning methods are analyzed. ► Major exergy losses are identified in the district heating network and the in-house substations. ► Advantages to apply low temperature district heating are highlighted through exergy analysis. ► The influence of thermal by-pass on system exergy/energy performance is analyzed.

  9. Diagnostic accuracy of cone-beam computed tomography scans with high- and low-resolution modes for the detection of root perforations.

    Science.gov (United States)

    Shokri, Abbas; Eskandarloo, Amir; Norouzi, Marouf; Poorolajal, Jalal; Majidi, Gelareh; Aliyaly, Alireza

    2018-03-01

    This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact (control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.

  10. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector

    NARCIS (Netherlands)

    Kermeli, Katerina; Graus, Wina H J; Worrell, Ernst

    2014-01-01

    The adoption of energy efficiency measures can significantly reduce industrial energy use. This study estimates the future industrial energy consumption under two energy demand scenarios: (1) a reference scenario that follows business as usual trends and (2) a low energy demand scenario that takes

  11. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    Abele, M.

    1983-01-01

    A computerized tomographic scanning apparatus suitable for diagnosis and for improving target identification in stereotactic neurosurgery is described. It consists of a base, a source of penetrating energy, a detector which produces scanning signals and detector positioning means. A frame with top and bottom arms secures the detector and source to the top and bottom arms respectively. A drive mechanism rotates the frame about an axis along which the frame may also be moved. Finally, the detector may be moved relative to the bottom arm in a direction contrary to the rotation of the frame. (U.K.)

  12. Mechanism of long-range penetration of low-energy ions in botanic samples

    International Nuclear Information System (INIS)

    Liu Feng; Wang Yugang; Xue Jianming; Wang Sixue; Du Guanghua; Yan Sha; Zhao Weijiang

    2002-01-01

    The authors present experimental evidence to reveal the mechanism of long-range penetration of low-energy ions in botanic samples. In the 100 keV Ar + ion transmission measurement, the result confirmed that low-energy ions could penetrate at least 60 μm thick kidney bean slices with the probability of about 1.0 x 10 -5 . The energy spectrum of 1 MeV He + ions penetrating botanic samples has shown that there is a peak of the count of ions with little energy loss. The probability of the low-energy ions penetrating the botanic sample is almost the same as that of the high-energy ions penetrating the same samples with little energy loss. The results indicate that there are some micro-regions with mass thickness less than the projectile range of low-energy ions in the botanic samples and they result in the long-range penetration of low-energy ions in botanic samples

  13. Analysis of low energy beta-emitters

    International Nuclear Information System (INIS)

    Murphy, D.L.

    1979-10-01

    A survey was made of the instruments used for the determination of low energy beta radioactivity. Techniques commonly used are gas flow proportional counting, liquid scintillation counting, solid scintillation counting, and internal ionization chamber counting, solid state detector counting, and radiochemical separation followed by counting using one of the preceeding techniques. The first four techniques were examined and compared with each other. The sensitivities of the techniques were compared on the basis of the detection limits quoted for instruments described in the technical and reviewed literature. The detection limits were then related to the occupational and public individual maximum levels for air and water. Attention is focused primarily on the continuous monitoring of air for 3 H and 85 Kr, a medium energy β-emitter. It is clear that several continuous air monitoring instruments are readily available for measuring low energy β concentrations, even in presence of certain other activity, at occupational levels. However, these instruments do not typically have sensitivities comparable to the public individual levels. Moreover, their capabilities for giving results in real time and for differentiating among the radionuclides actually present is limited

  14. Low energy x-ray spectrometer

    International Nuclear Information System (INIS)

    Woodruff, W.R.

    1981-01-01

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni Lα 1 2 lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures

  15. Proton channeling in Au at low energies

    International Nuclear Information System (INIS)

    Valdes, J.E.; Vargas, P.

    1996-01-01

    The electronic energy loss for low velocity protons channeled in the direction single crystal Au is calculated. The spatial distribution of valence electronic density in Au is calculated using Tight Binding Linear Muffin Tin Method. The proton trajectories are determined by numerical integration of the classical motion equation, and the energy loss is evaluated using the calculated valence electronic density in the friction term. The results allow to describe qualitatively the non linear behavior of energy loss with ion velocity observed experimentally. (author)

  16. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Schmidt, Dietrich; Kallert, Anna; Blesl, Markus

    2017-01-01

    of the building stock. Low temperature district heating (LTDH) can contribute significantly to a more efficient use of energy resources as well as better integration of renewable energy (e.g. geothermal or solar heat), and surplus heat (e.g. industrial waste heat) into the heating sector. LTDH offers prospects......The building sector is responsible for more than one third of the final energy consumption of societies and produces the largest amount of greenhouse gas emissions of all sectors. This is due to the utilisation of combustion processes of mainly fossil fuels to satisfy the heating demand...... for both the demand side (community building structure) and the supply side (network properties or energy sources). Especially in connection with buildings that demand only low temperatures for space heating. The utilisation of lower temperatures reduces losses in pipelines and can increase the overall...

  17. Windows in Low Energy Houses. Size Matters

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Mari-Louise

    2004-06-01

    A generally accepted way of building passive houses has been to have small windows facing north and a large glass facade to the south. This is to minimize losses on the north side while gaining as much solar heat as possible on the south. In spring 2001, twenty terraced houses were built outside Goeteborg partly in this way. The indoor temperature is kept at a comfortable level by passive methods, using solar gains and internal gains from household appliances and occupants. Heat losses are very low, since the building envelope is well insulated and since modern coated triple-glazed windows have been installed. The purpose of this work is to investigate how decreasing the window size facing south and increasing the window size facing north in low energy houses will influence the energy consumption and maximum power needed to keep the indoor temperature between 23 and 26 deg C. Different climates and orientations have been investigated and so have the influence of occupancy and window type. A dynamic building simulation tool, DEROB, has been used and the simulations indicate an extremely low energy demand for the houses. The results show that the size of the energy efficient windows does not have a major influence on the heating demand in winter, but is of relevant signification looking at the cooling need in summer. This indicates that instead of the traditional technique of building passive houses it is possible to enlarge the window area facing north and get better lighting conditions. To decrease the energy need for cooling, there is an optimal window size facing south that is smaller than the original size of the investigated buildings.

  18. A compact sub-Kelvin ultrahigh vacuum scanning tunneling microscope with high energy resolution and high stability.

    Science.gov (United States)

    Zhang, L; Miyamachi, T; Tomanić, T; Dehm, R; Wulfhekel, W

    2011-10-01

    We designed a scanning tunneling microscope working at sub-Kelvin temperatures in ultrahigh vacuum (UHV) in order to study the magnetic properties on the nanoscale. An entirely homebuilt three-stage cryostat is used to cool down the microscope head. The first stage is cooled with liquid nitrogen, the second stage with liquid (4)He. The third stage uses a closed-cycle Joule-Thomson refrigerator of a cooling power of 1 mW. A base temperature of 930 mK at the microscope head was achieved using expansion of (4)He, which can be reduced to ≈400 mK when using (3)He. The cryostat has a low liquid helium consumption of only 38 ml/h and standing times of up to 280 h. The fast cooling down of the samples (3 h) guarantees high sample throughput. Test experiments with a superconducting tip show a high energy resolution of 0.3 meV when performing scanning tunneling spectroscopy. The vertical stability of the tunnel junction is well below 1 pm (peak to peak) and the electric noise floor of tunneling current is about 6fA/√Hz. Atomic resolution with a tunneling current of 1 pA and 1 mV was achieved on Au(111). The lateral drift of the microscope at stable temperature is below 20 pm/h. A superconducting spilt-coil magnet allows to apply an out-of-plane magnetic field of up to 3 T at the sample surface. The flux vortices of a Nb(110) sample were clearly resolved in a map of differential conductance at 1.1 K and a magnetic field of 0.21 T. The setup is designed for in situ preparation of tip and samples under UHV condition.

  19. Low Energy Nuclear Reactions?

    CERN Multimedia

    CERN. Geneva; Faccini, R.

    2014-01-01

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  20. Scanning tunnelling spectroscopy of low pentacene coverage on the Ag/Si(111)-(√3 x √3) surface

    International Nuclear Information System (INIS)

    Guaino, Ph; Cafolla, A A; McDonald, O; Carty, D; Sheerin, G; Hughes, G

    2003-01-01

    The low coverage S1 phase of pentacene deposited on Ag/Si(111)-(√3 x √3) has been investigated at room temperature by scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS). Current-voltage data were acquired simultaneously with STM images for this phase. The normalized conductivity reveals two pronounced peaks at -1.10 and +2.25 V relative to the Fermi level. These peaks are attributed to resonant tunnelling through the highest occupied molecular orbital and lowest unoccupied molecular orbital molecular levels of the pentacene layer. The electronic properties of this interface are discussed in relation to results obtained for pentacene adsorbed on other metallic surfaces

  1. Ultra Low Energy Binary Decision Diagram Circuits Using Few Electron Transistors

    Science.gov (United States)

    Saripalli, Vinay; Narayanan, Vijay; Datta, Suman

    Novel medical applications involving embedded sensors, require ultra low energy dissipation with low-to-moderate performance (10kHz-100MHz) driving the conventional MOSFETs into sub-threshold operation regime. In this paper, we present an alternate ultra-low power computing architecture using Binary Decision Diagram based logic circuits implemented using Single Electron Transistors (SETs) operating in the Coulomb blockade regime with very low supply voltages. We evaluate the energy - performance tradeoff metrics of such BDD circuits using time domain Monte Carlo simulations and compare them with the energy-optimized CMOS logic circuits. Simulation results show that the proposed approach achieves better energy-delay characteristics than CMOS realizations.

  2. Energy gap and surface structure of superconducting diamond films probed by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Nishizaki, Terukazu; Takano, Yoshihiko; Nagao, Masanori; Takenouchi, Tomohiro; Kawarada, Hiroshi; Kobayashi, Norio

    2007-01-01

    We have performed scanning tunneling microscopy/spectroscopy (STM/STS) experiments on (1 1 1)-oriented epitaxial films of heavily boron-doped diamond at T = 0.47 K. The STM topography shows two kinds of atomic structures: a hydrogenated 1 x 1 structure, C(1 1 1)1 x 1:H, and an amorphous structure. On the C(1 1 1)1 x 1:H region, the tunneling spectra show superconducting property with the energy gap Δ = 0.83 meV. The obtained gap ratio 2Δ/k B T c = 3.57 is consistent with the weak-coupling BCS theory

  3. Impact of liberalization on private financed energy research. From scan to image. Final report

    International Nuclear Information System (INIS)

    De Graaff, R.J.; Dullens, M.; Benner, J.H.B.; Klaassen, M.A.W.; Schneider, H.C.

    2000-01-01

    The consequences of the liberalization process in the market for research and development in the Dutch electricity and natural gas sector are discussed. The main questions of the study are (1) what are the developments in those sectors, and (2) what can be learned from the experiences of liberalized energy markets in other countries and existing commercial petroleum and natural gas companies. The results are based on a literature study and interviews by telephone with experts in the field in seven countries (the 'scan-phase'). The results of the seven countries (Denmark, United Kingdom, Sweden, Germany, Norway, USA, Netherlands, and the European Union as a whole) are presented in the form of fact sheets. The most important leads and subjects were explored in detail by means of personal interviews with representatives from the energy sector in Sweden and England (the 'image-phase'). 52 refs

  4. Toward a low-energy development concept for the Third World

    Energy Technology Data Exchange (ETDEWEB)

    Heierli, U

    1976-02-01

    The author discusses the perspectives of development concepts after the energy crisis, which caused a considerable rise in energy prices, including prices of fertilizers and other energy-intensive products, and shattered the dream of the ''industrialization of the whole world.'' He outlines approaches--for the sake of both greater efficiency in terms of input-output ratio of energy in different technologies and more equality, which cannot be achieved by energy-intensive development strategies--to a low-energy development strategy, which, of course, also implies a reduction of energy consumption in highly industrialized countries. The accent in low-energy development strategies has to be on decentralization so as to check urbanization and the consequent infrastructural demand, especially relating to transportation, and ecological disequilibrium.

  5. Low energy antiproton experiments - A review

    NARCIS (Netherlands)

    Jungmann, KP; Yamazaki, Y; Wada, M

    2005-01-01

    Low energy antiprotons offer excellent opportunities to study properties of fundamental forces and symmetries in nature. Experiments with them can contribute substantially to deepen our fundamental knowledge in atomic, nuclear and particle physics. Searches for new interactions can be carried out by

  6. Studies in Low-Energy Nuclear Science

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  7. Heavy ion reactions at low energies

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    Some general features of the heavy ion reactions at low energies are presented. Some kinds of processes are studied, such as: elastic scattering, peripherical reactions, deep inelastic collisions and fusion. Both, theoretical and experimental perspectives on this field are discussed. (L.C.) [pt

  8. Round Gating for Low Energy Block Ciphers

    DEFF Research Database (Denmark)

    Banik, Subhadeep; Bogdanov, Andrey; Regazzoni, Francesco

    2016-01-01

    design techniques for implementing block ciphers in a low energy fashion. We concentrate on round based implementation and we discuss how gating, applied at round level can affect and improve the energy consumption of the most common lightweight block cipher currently used in the internet of things....... Additionally, we discuss how to needed gating wave can be generated. Experimental results show that our technique is able to reduce the energy consumption in most block ciphers by over 60% while incurring only a minimal overhead in hardware....

  9. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy.

    Science.gov (United States)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  10. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R., E-mail: smitha2@ohio.edu [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States)

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  11. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-01-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  12. New Cooperative Mechanisms of Low Energy Nuclear Reactions Using Superlow Energy External Fields

    OpenAIRE

    Gareev, F. A.; Zhidkova, I. E.

    2005-01-01

    We proposed a new mechanism of LENR: cooperative processes in whole system - nuclei+atoms+condensed matter can occur at smaller threshold then corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution inner energy of whole system.

  13. A real-time low energy electron calorimeter

    International Nuclear Information System (INIS)

    Mod Ali, N.; Smith, F.A.

    1999-01-01

    A real-time low energy electron calorimeter with a thin film window has been designed and fabricated to facilitate a reliable method of dose assessment for electron beam energies down to 200 keV. The work was initiated by the Radiation Physics Group of Queen Mary and Westfield College in collaboration with the National Physical Laboratory (NPL), Teddington. Irradiations were performed on the low and medium electron energy electron accelerators at the Malaysian Institute for Nuclear Technology Research (MINT). Calorimeter response was initially tested using the on-line temperature measurements for a 500-keV electron beam. The system was later redesigned by incorporating a data-logger to use on the self-shielded 200-keV beam. In use, the final version of the calorimeter could start logging temperature a short time before the calorimeter passed under the beam and continue measurements throughout the irradiation. Data could be easily retrieved at the end of the exposure. (author)

  14. Track structure analysis illustrating the prominent role of low-energy electrons in radiobiological effects of low-LET radiations

    International Nuclear Information System (INIS)

    Nikjoo, H.; Goodhead, D.T.

    1991-01-01

    Monte Carlo track structure methods have been used to illustrate the importance of low-energy electrons produced by low-LET radiations. It is shown that these low-energy secondary electrons contribute substantially to the dose in all low-LET irradiations and are particularly efficient at producing highly localized clusters of atomic damage which may be responsible for a major part of the biological effectiveness of low-LET radiations. The data generated by Monte Carlo track structure techniques and by earlier semi-analytical methods based on the LET concept have been compared in terms of cumulative and differential fractions of total dose absorbed as a function of electron energy. The data show that low-energy secondary electrons account for up to nearly 50% of the total dose imparted to a medium when irradiated with electrons or photons. (author)

  15. Directions of organisational and low-cost energy saving of engineering enterprises

    Directory of Open Access Journals (Sweden)

    Dzhedzhula Viacheslav V.

    2014-01-01

    Full Text Available The article analyses directions of energy saving of industrial enterprises. Taking into account the tendency to continuous growth of cost of energy resources, introduction of measures that would allow reduction of energy consumption of enterprises is an urgent task. One of the most important obstacles in the process of introduction of energy efficient solutions are fund limits and low awareness of owners and managers of industrial enterprises. The article offers a new classification of energy saving measures: apart from traditional expense and organisation measures it introduces the low-cost measures notion. It offers to consider low-cost those measures that are realised by the enterprise by means of own funds, moreover, their repayment term is not more than one year. It offers analytical expression for identification of annual funds saving from introduction of low-cost measures. It considers the process of identification of saving of funds from introduction of some of the main low-cost measures in detail: replacement of lighting units, balancing of ventilation networks and elimination of water leakages from pipelines and water supply equipment. Based on the analysis of bibliography information the article provides a list of main measures on energy saving, which could be referred to the low-cost ones. The proposed approaches would allow paying more attention to practical aspects of realisation of the concept of energy saving in the industry.

  16. Assessment of pulmonary function using pixel indexes of multiple-slice spiral CT low-dose two-phase scanning in chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Zhang Lihua; Wang Yunhua; Jiang Zhongbiao; Zhang Lejun; Sun Wanli; Zhang Chunming

    2012-01-01

    Objective: To explore the values of pixel indexes (PI) with multiple-slice spiral CT low-dose two-phase scanning for assessing the pulmonary function in chronic obstructive pulmonary disease (COPD). Methods: Thirty-six patients with COPD (COPD group)and 30 healthy people (control group)underwent pulmonary function test (PFT). Chest 64-MSCT low-dose (50 mAs) scanning at full inspiration and expiration, routine scanning (100 mAs) at inspiration were performed. The effective dose (ED) was calculated. The lung was divided into three regions (upper, middle, lower). PI of lung were divided into five groups: -960--1024, -910--960, -800--910, -700--800, -400--700. The PI -910 (sum of the PI under -910 HU) of low-dose scanning at each region were measured and calculated using pulmo software. All PI included PIin -910 , PIiex -910 , PIin -910 -PIiex -910 , PIiex -910 /PIin -910 and (PIin -910 -PIiex -910 )/PIin -910 . All patients underwent PFT within 3 days after 64-MSCT canning, FEV1% and FEV1/FVC were selected for comparison. Results: The PIin in three regions (-960 - -1024, -910 - -960, -800 - -910) were statistically significant between normal and COPD groups (U=0.00, 57.00, 20.50, P<0.01). The PIex in all regions were statistically significant (U=0.00, 0.00, 71.52, 191.00, 6.00, P<0.01). PI -910--1024 at expiration and inspiration were correlated with FEV1% and FEV1/FVC (r=-0.548, -0.664, -0.752, -0.781, P<0.01). PIin -910 , PIex -910 ,PIiex -910 /PIin -910 , (PIin -910 -PIex -910 )/PIin -910 had a good correlation with FEV1% and FEV1/FVC (r=-0.548, -0.664, -0.752, -0.781, -0.674, -0.642, 0.674, 0.642, P<0.01). Conclusion: Pixel indexes of 64-MSCT low-dose two-phase scanning can be used to evaluate pulmonary function in COPD patients. (authors)

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... energy. top of page What are some common uses of the procedure? The thyroid scan is used ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  18. The role of a low-energy–density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting

    International Nuclear Information System (INIS)

    Li, X.P.; Kang, C.W.; Huang, H.; Sercombe, T.B.

    2014-01-01

    Highlights: • We proposed a re-scan strategy to prevent crack propagation in SLM. • The re-scan should be carried out at a low laser energy density. • The underlying mechanism is through reduction and relief of residual stresses. • Lowered temperature gradient and superplasticity account for reduction of stress. • For the first time, a crack-free BMGCs gear with a large size was produced. - Abstract: In this paper, we have investigated the use of a re-scanning strategy to prevent propagation of macro-cracks during the selective laser melting of an Al 85 Ni 5 Y 6 Co 2 Fe 2 bulk metallic glass composites (BMGCs). These cracks form as a result of the high residual stress caused by the rapid heating and cooling of the material by the laser beam. Unlike crystalline materials, the BMGCs possess a supercooled liquid region in which the residual stress can be relieved by plastic flow. We show that by using a high power initial scan (designed to melt the material) followed by a lower power re-scan (for stress relief) cracking can be prevented. Using this approach, crack-free Al 85 Ni 5 Y 6 Co 2 Fe 2 BMGCs components have been fabricated, including a gear with a diameter ∼25 mm and height ∼10 mm

  19. Development of decay energy spectroscopy using low temperature detectors.

    Science.gov (United States)

    Jang, Y S; Kim, G B; Kim, K J; Kim, M S; Lee, H J; Lee, J S; Lee, K B; Lee, M K; Lee, S J; Ri, H C; Yoon, W S; Yuryev, Y N; Kim, Y H

    2012-09-01

    We have developed a high-resolution detection technique for measuring the energy and activity of alpha decay events using low-temperature detectors. A small amount of source material containing alpha-emitting radionuclides was enclosed in a 4π metal absorber. The energy of the alpha particles as well as that of the recoiled nuclides, low-energy electrons, and low-energy x-rays and γ-rays was converted into thermal energy of the gold absorber. A metallic magnetic calorimeter serving as a fast and sensitive thermometer was thermally attached to the metal absorber. In the present report, experimental demonstrations of Q spectroscopy were made with a new meander-type magnetic calorimeter. The thermal connection between the temperature sensor and the absorber was established with annealed gold wires. Each alpha decay event in the absorber resulted in a temperature increase of the absorber and the temperature sensor. Using the spectrum measured for a drop of (226)Ra solution in a 4π gold absorber, all of the alpha emitters in the sample were identified with a demonstration of good detector linearity. The resolution of the (226)Ra spectrum showed a 3.3 keV FWHM at its Q value together with an expected gamma escape peak at the energy shifted by its γ-ray energy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The low-energy-beam and ion-trap facility at NSCL/MSU

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S. E-mail: schwarz@nscl.msu.edu; Bollen, G.; Lawton, D.; Lofy, P.; Morrissey, D.J.; Ottarson, J.; Ringle, R.; Schury, P.; Sun, T.; Varentsov, V.; Weissman, L

    2003-05-01

    The goal of the low-energy-beam and ion-trap (LEBIT) project is to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. This beam manipulation will be done by a combination of a high-pressure gas stopping cell and a radio-frequency quadrupole ion accumulator and buncher. The first experimental program to profit from the low-energy beams produced will be high-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system. The status of the project is presented with an emphasis on recent stopping tests range of 100 MeV/A {sup 40}Ar{sup 18+} ions in a gas cell.

  1. The low-energy-beam and ion-trap facility at NSCL/MSU

    International Nuclear Information System (INIS)

    Schwarz, S.; Bollen, G.; Lawton, D.; Lofy, P.; Morrissey, D.J.; Ottarson, J.; Ringle, R.; Schury, P.; Sun, T.; Varentsov, V.; Weissman, L.

    2003-01-01

    The goal of the low-energy-beam and ion-trap (LEBIT) project is to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. This beam manipulation will be done by a combination of a high-pressure gas stopping cell and a radio-frequency quadrupole ion accumulator and buncher. The first experimental program to profit from the low-energy beams produced will be high-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system. The status of the project is presented with an emphasis on recent stopping tests range of 100 MeV/A 40 Ar 18+ ions in a gas cell

  2. Renewable energy in energy efficient, low-pollution systems

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Bengt

    1997-03-01

    Energy use accounts for the dominating fraction of total sulphur dioxide (SO{sub 2}), nitrogen oxide (NO{sub x}), volatile organic compounds (VOCs) and carbon dioxide (CO{sub 2}) emissions. In this thesis, different strategies for reducing these emissions are evaluated, using a bottom-up approach. CO{sub 2} emissions from electricity and heat production in western Scania, Sweden, can be reduced by 25% and the emissions of acidifying gases (SO{sub 2} and NO{sub x}) by 50% by the year 2010, compared with 1988 levels, using energy systems based on efficient end-use technologies, cogeneration of heat and electricity, renewable energy sources and low-pollution energy conversion technologies. Exhaust-pipe NO{sub x} emissions from the Swedish transportation sector can be reduced by 50 percent by the year 2015, compared with 1991, by implementing the best available vehicle technologies. Exhaust-pipe emissions of CO{sub 2} can be stabilized at the 1991 level. With further technical development and the use of fuels from renewable sources of energy, NO{sub x} emissions can be reduced by 75 percent and CO{sub 2} emissions by 80 percent compared with 1991 levels. Swedish biomass resources are large, and, assuming production conditions around 2015, about 200 TWh/year could be utilised for energy. Major reductions in CO{sub 2} emissions could be achieved by substituting biomass for fossil fuels in heat, electricity and transportation fuel production. Transportation fuels produced from cellulosic biomass are likely to be less expensive than transportation fuels from conventional biomass feedstocks such as oil plants, sugar-beet and cereals. 90 refs, 3 figs, 5 tabs

  3. Electronuclear amplifiers with low-energy proton beams

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Shelaev, I.A.

    1998-01-01

    The use of proton accelerators with energy 200-300 MeV in subcritical electronuclear systems seems more preferable in comparison with more complicated and expensive machines with energy about 1 GeV, which are considered as favourite now. Such an approach allows one to build comparatively simple electronuclear plants in particular, for a safety and profitable incineration of plutonium from power plants and spells, in fact, a new strategy of electronuclear technology. Potentialities of the use of low-energy accelerators are illustrated by an electronuclear arrangements designed now in Dubna

  4. Point-of-Care Phalangeal Bone Mineral Density Measurement Can Reduce the Need of Dual-Energy X-Ray Absorptiometry Scanning in Danish Women at Risk of Fracture

    DEFF Research Database (Denmark)

    Holmberg, Teresa; Bech, Mickael; Gram, Jeppe

    2016-01-01

    Identifying persons with a high risk of osteoporotic fractures remains a challenge. DXA uptake in women with elevated risk of osteoporosis seems to be depending on distance to scanning facilities. This study aimed to investigate the ability of a small portable scanner in identifying women...... with reduced bone mineral density (BMD), and to define triage thresholds for pre-selection. Total hip and lumbar spine BMD was measured by dual-energy X-ray absorptiometry and phalangeal BMD by radiographic absorptiometry in 121 Danish women with intermediate or high 10-year fracture probability (aged 61...... and only 6 % of women in the low-risk group would be false negatives....

  5. Nuclear structure studies with low-energy light ions: fundamental and applied

    International Nuclear Information System (INIS)

    Mazumdar, I.

    2016-01-01

    Studies in low and medium energy nuclear physics have been dominated by heavy-ion induced reactions for last five decades. Heavy-ion induced nuclear reactions have enriched our knowledge of the structural evolutions and intricacies of reaction dynamics of the nuclear many-body systems. However, the emergence and rise of heavy-ion physics have seen a general decline in studies with low- and medium-energy light-ion beams. The harsh reality of dwindling number of low-energy light ion facilities adversely affect research in nuclear physics. Very low-energy and high current light-ion facilities immediately conjures up in our minds the studies in nuclear astrophysics. Measurements of light-ion capture cross sections and astrophysical S factors are the major themes of research at most of the light-ion facilities. However, the importance low energy light-ion beams is multifarious. A variety of measurements providing vital support and inputs to heavy-ion research can only be carried out at the low-energy, light-ion facilities. Light-ion beams are also useful for generation of mono-energetic neutron beams. In this talk I will draw from some of our recent measurements to show the importance of light-ion beams in nuclear astrophysics and also in applied nuclear physics. (author)

  6. Low Temperature Scanning Force Microscopy of the Si(111)-( 7x7) Surface

    International Nuclear Information System (INIS)

    Lantz, M. A.; Hug, H. J.; Schendel, P. J. A. van; Hoffmann, R.; Martin, S.; Baratoff, A.; Abdurixit, A.; Guentherodt, H.-J.; Gerber, Ch.

    2000-01-01

    A low temperature scanning force microscope (SFM) operating in a dynamic mode in ultrahigh vacuum was used to study the Si(111)-(7x7) surface at 7.2 K. Not only the twelve adatoms but also the six rest atoms of the unit cell are clearly resolved for the first time with SFM. In addition, the first measurements of the short range chemical bonding forces above specific atomic sites are presented. The data are in good agreement with first principles computations and indicate that the nearest atoms in the tip and sample relax significantly when the tip is within a few Angstrom of the surface. (c) 2000 The American Physical Society

  7. Can Low Energy Electrons Affect High Energy Physics Accelerators?

    International Nuclear Information System (INIS)

    Cimino, Roberto

    2004-01-01

    The properties of the electrons participating in the build up of an electron cloud (EC) inside the beam-pipe have become an increasingly important issue for present and future accelerators whose performance may be limited by this effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber. Thus, the accurate modeling of these surface properties is an indispensible input to simulation codes aimed at the correct prediction of build-up thresholds, electron-induced instability or EC heat load. In this letter, we present the results of surface measurements performed on a prototype of the beam screen adopted for the Large Hadron Collider (LHC), which presently is under construction at CERN. We have measured the total secondary electron yield (SEY) as well as the related energy distribution curves (EDC) of the secondary electrons as a function of incident electron energy. Attention has been paid, for the first time in this context, to the probability at which low-energy electrons (<∼ 20 eV) impacting on the wall create secondaries or are elastically reflected. It is shown that the ratio of reflected to true-secondary electrons increases for decreasing energy and that the SEY approaches unity in the limit of zero primary electron energy

  8. Determining the phonon energy of highly oriented pyrolytic graphite by scanning tunneling microscope light emission spectroscopy

    Science.gov (United States)

    Uehara, Yoichi; Michimata, Junichi; Watanabe, Shota; Katano, Satoshi; Inaoka, Takeshi

    2018-03-01

    We have investigated the scanning tunneling microscope (STM) light emission spectra of isolated single Ag nanoparticles lying on highly oriented pyrolytic graphite (HOPG). The STM light emission spectra exhibited two types of spectral structures (step-like and periodic). Comparisons of the observed structures and theoretical predictions indicate that the phonon energy of the ZO mode of HOPG [M. Mohr et al., Phys. Rev. B 76, 035439 (2007)] can be determined from the energy difference between the cutoff of STM light emission and the step in the former structure, and from the period of the latter structure. Since the role of the Ag nanoparticles does not depend on the substrate materials, this method will enable the phonon energies of various materials to be measured by STM light emission spectroscopy. The spatial resolution is comparable to the lateral size of the individual Ag nanoparticles (that is, a few nm).

  9. Analysis of Power System Low Frequency Oscillation Based on Energy Shift Theory

    Science.gov (United States)

    Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing

    2018-01-01

    In this paper, a new method for analyzing low-frequency oscillation between analytic areas based on energy coefficient is proposed. The concept of energy coefficient is proposed by constructing the energy function, and the low-frequency oscillation is analyzed according to the energy coefficient under the current operating conditions; meanwhile, the concept of model energy is proposed to analyze the energy exchange behavior between two generators. Not only does this method provide an explanation of low-frequency oscillation from the energy point of view, but also it helps further reveal the dynamic behavior of complex power systems. The case analysis of four-machine two-area and the power system of Jilin Power Grid proves the correctness and effectiveness of the proposed method in low-frequency oscillation analysis of power system.

  10. Study of energy dependence of a extrapolation chamber in low energy X-rays beams

    International Nuclear Information System (INIS)

    Bastos, Fernanda M.; Silva, Teogenes A. da

    2014-01-01

    This work was with the main objective to study the energy dependence of extrapolation chamber in low energy X-rays to determine the value of the uncertainty associated with the variation of the incident radiation energy in the measures in which it is used. For studying the dependence of energy, were conducted comparative ionization current measurements between the extrapolation chamber and two ionization chambers: a chamber mammography, RC6M model, Radcal with energy dependence less than 5% and a 2575 model radioprotection chamber NE Technology; both chambers have very thin windows, allowing its application in low power beams. Measurements were made at four different depths of 1.0 to 4.0 mm extrapolation chamber, 1.0 mm interval, for each reference radiation. The study showed that there is a variable energy dependence on the volume of the extrapolation chamber. In other analysis, it is concluded that the energy dependence of extrapolation chamber becomes smaller when using the slope of the ionization current versus depth for the different radiation reference; this shows that the extrapolation technique, used for the absorbed dose calculation, reduces the uncertainty associated with the influence of the response variation with energy radiation

  11. New insights gained on mechanisms of low-energy proton-induced SEUs by minimizing energy straggle

    International Nuclear Information System (INIS)

    Dodds, Nathaniel Anson; Dodd, Paul E.; Shaneyfelt, Marty R.; Sexton, Frederick W.; Martinez, Marino J.; Black, Jeffrey D.; Marshall, P. W.; Reed, R. A.; McCurdy, M. W.; Weller, R. A.; Pellish, J. A.; Rodbell, K. P.; Gordon, M. S.

    2015-01-01

    In this study, we present low-energy proton single-event upset (SEU) data on a 65 nm SOI SRAM whose substrate has been completely removed. Since the protons only had to penetrate a very thin buried oxide layer, these measurements were affected by far less energy loss, energy straggle, flux attrition, and angular scattering than previous datasets. The minimization of these common sources of experimental interference allows more direct interpretation of the data and deeper insight into SEU mechanisms. The results show a strong angular dependence, demonstrate that energy straggle, flux attrition, and angular scattering affect the measured SEU cross sections, and prove that proton direct ionization is the dominant mechanism for low-energy proton-induced SEUs in these circuits

  12. Large solid angle detectors (low energy)

    International Nuclear Information System (INIS)

    L'Hote, D.

    1988-01-01

    This lecture deals with large solid angle detectors used in low energy experiments (mainly in Nuclear Physics). The reasons for using such detectors are discussed, and several basic principles of their design are presented. Finally, two examples of data analysis from such detectors are given [fr

  13. Low-complex energy-aware image communication in visual sensor networks

    Science.gov (United States)

    Phamila, Yesudhas Asnath Victy; Amutha, Ramachandran

    2013-10-01

    A low-complex, low bit rate, energy-efficient image compression algorithm explicitly designed for resource-constrained visual sensor networks applied for surveillance, battle field, habitat monitoring, etc. is presented, where voluminous amount of image data has to be communicated over a bandwidth-limited wireless medium. The proposed method overcomes the energy limitation of individual nodes and is investigated in terms of image quality, entropy, processing time, overall energy consumption, and system lifetime. This algorithm is highly energy efficient and extremely fast since it applies energy-aware zonal binary discrete cosine transform (DCT) that computes only the few required significant coefficients and codes them using enhanced complementary Golomb Rice code without using any floating point operations. Experiments are performed using the Atmel Atmega128 and MSP430 processors to measure the resultant energy savings. Simulation results show that the proposed energy-aware fast zonal transform consumes only 0.3% of energy needed by conventional DCT. This algorithm consumes only 6% of energy needed by Independent JPEG Group (fast) version, and it suits for embedded systems requiring low power consumption. The proposed scheme is unique since it significantly enhances the lifetime of the camera sensor node and the network without any need for distributed processing as was traditionally required in existing algorithms.

  14. Low-energy ion beam extraction and transport: Experiment--computer comparison

    International Nuclear Information System (INIS)

    Spaedtke, P.; Brown, I.; Fojas, P.

    1994-01-01

    Ion beam formation at low energy (∼1 keV or so) is more difficult to accomplish than at high energy because of beam blowup by space-charge forces in the uncompensated region within the extractor, an effect which is yet more pronounced for heavy ions and for high beam current density. For the same reasons, the extracted ion beam is more strongly subject to space charge blowup than higher energy beams if it is not space-charge neutralized to a high degree. A version of vacuum arc ion source with an extractor that produces low-energy metal ion beams at relatively high current (∼0.5--10 kV at up to ∼100 mA) using a multi-aperture, accel--decel extractor configuration has been created. The experimentally observed beam extraction characteristics of this source is compared with those predicted using the AXCEL-INP code, and the implied downstream beam transport with theoretical expectations. It is concluded that the low-energy extractor performance is in reasonable agreement with the code, and that good downstream space charge neutralization is obtained. Here, the code and the experimental results are described, and the features that contribute to good low-energy performance are discussed

  15. Dynamics of anion-molecule reactions at low energy

    International Nuclear Information System (INIS)

    Mikosch, J.

    2007-11-01

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S N 2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S N 2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S N 2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S N 2 mechanism involving CH 3 -rotation. (orig.)

  16. Dynamics of anion-molecule reactions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikosch, J.

    2007-11-15

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S{sub N}2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S{sub N}2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S{sub N}2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S{sub N}2 mechanism involving CH{sub 3}-rotation. (orig.)

  17. District Heating in Areas with Low Energy Houses

    DEFF Research Database (Denmark)

    Tol, Hakan Ibrahim

    -energy houses involved, together with the idea of utilizing booster pumps in the district heating network and (ii) use of network layouts of either a branched (tree-like) or a looped type. The methods developed were applied in a case study, the data of which was provided by the municipality of Roskilde...... in Denmark. The second case study was aimed at solving another regional energy planning scheme, one concerned with already existing houses, the heat requirements of which were currently being met by use of a natural gas grid or a conventional high-temperature district heating network. The idea considered......This PhD thesis presents a summary of a three-year PhD project involving three case studies, each pertaining to a typical regional Danish energy planning scheme with regard to the extensive use of low-energy district heating systems, operating at temperatures as low as 55°C for supply and 25°C...

  18. Study of gamma irradiated polyethylenes by temperature modulated differential scanning calorimetry

    International Nuclear Information System (INIS)

    Secerov, B.; Galovic, S.; Trifunovic, S.; Milicevic, D.; Suljovrujic, E.

    2011-01-01

    Complete text of publication follows. The various polyethylenes (PEs) and effects of high energy radiation on theirs structures were widely studied in the past using conventional Differential Scanning Calorimetry (DSC) measurements. In this work, we applied the Temperature Modulated Differential Scanning Calorimetry (TMDSC) technique in order to obtain more information about the influence of initial structural differences and gamma radiation on the evolution in structure and thermal properties of different polyethylenes. For this reason, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) samples were exposed to gamma radiation, in air, to a wide range of absorbed doses (up to 2400 kGy). The separation of the total heat flow TMDSC signal into a reversing and nonreversing part enabled to observed the low temperature enthalpy relaxation (related to the existence of the 'rigid amorphous phase') and recrystallization processes as well as to follow their and/or radiation-induced evolution of melting in a more revealing manner compared to the case of the conventional DSC. Consequently, our results indicate that TMDSC could improve the understanding of radiation-induced effects in polymers.

  19. Passive and low energy cooling techniques for the Czech Republic

    NARCIS (Netherlands)

    Lain, M.; Hensen, J.L.M.; Santamouris, M.

    2005-01-01

    This paper deals with the applicability of passive and low energy cooling technologies in the Czech Republic. The work includes climate analysis as well as buildings and systems analysis in order to estimate the potential of passive and low energy cooling technologies. The latter is based on case

  20. Improving Indoor Localization Using Bluetooth Low Energy Beacons

    Directory of Open Access Journals (Sweden)

    Pavel Kriz

    2016-01-01

    Full Text Available The paper describes basic principles of a radio-based indoor localization and focuses on the improvement of its results with the aid of a new Bluetooth Low Energy technology. The advantage of this technology lies in its support by contemporary mobile devices, especially by smartphones and tablets. We have implemented a distributed system for collecting radio fingerprints by mobile devices with the Android operating system. This system enables volunteers to create radio-maps and update them continuously. New Bluetooth Low Energy transmitters (Apple uses its “iBeacon” brand name for these devices have been installed on the floor of the building in addition to existing WiFi access points. The localization of stationary objects based on WiFi, Bluetooth Low Energy, and their combination has been evaluated using the data measured during the experiment in the building. Several configurations of the transmitters’ arrangement, several ways of combination of the data from both technologies, and other parameters influencing the accuracy of the stationary localization have been tested.

  1. Sub-pixel analysis to support graphic security after scanning at low resolution

    Science.gov (United States)

    Haas, Bertrand; Cordery, Robert; Gou, Hongmei; Decker, Steve

    2006-02-01

    Whether in the domain of audio, video or finance, our world tends to become increasingly digital. However, for diverse reasons, the transition from analog to digital is often much extended in time, and proceeds by long steps (and sometimes never completes). One such step is the conversion of information on analog media to digital information. We focus in this paper on the conversion (scanning) of printed documents to digital images. Analog media have the advantage over digital channels that they can harbor much imperceptible information that can be used for fraud detection and forensic purposes. But this secondary information usually fails to be retrieved during the conversion step. This is particularly relevant since the Check-21 act (Check Clearing for the 21st Century act) became effective in 2004 and allows images of checks to be handled by banks as usual paper checks. We use here this situation of check scanning as our primary benchmark for graphic security features after scanning. We will first present a quick review of the most common graphic security features currently found on checks, with their specific purpose, qualities and disadvantages, and we demonstrate their poor survivability after scanning in the average scanning conditions expected from the Check-21 Act. We will then present a novel method of measurement of distances between and rotations of line elements in a scanned image: Based on an appropriate print model, we refine direct measurements to an accuracy beyond the size of a scanning pixel, so we can then determine expected distances, periodicity, sharpness and print quality of known characters, symbols and other graphic elements in a document image. Finally we will apply our method to fraud detection of documents after gray-scale scanning at 300dpi resolution. We show in particular that alterations on legitimate checks or copies of checks can be successfully detected by measuring with sub-pixel accuracy the irregularities inherently introduced

  2. The low-energy-beam and ion-trap facility at NSCL/MSU

    CERN Document Server

    Schwarz, S; Lawton, D; Lofy, P; Morrissey, D J; Ottarson, J; Ringle, R; Schury, P; Sun, T; Varentsov, V; Weissman, L

    2003-01-01

    The goal of the low-energy-beam and ion-trap (LEBIT) project is to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. This beam manipulation will be done by a combination of a high-pressure gas stopping cell and a radio-frequency quadrupole ion accumulator and buncher. The first experimental program to profit from the low-energy beams produced will be high-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system. The status of the project is presented with an emphasis on recent stopping tests range of 100 MeV/A sup 4 sup 0 Ar sup 1 sup 8 sup + ions in a gas cell.

  3. Low energy current accumulator for high-energy proton rings

    International Nuclear Information System (INIS)

    Month, M.

    1977-01-01

    Building current in high-energy p-p colliding beam machines is most appropriately done in a low-energy (small circumference) current accumulator. Three significant factors favor such a procedure: First, large rings tend to be susceptible to unstable longitudinal density oscillations. These can be avoided by pumping up the beam in the accumulator. When the current stack is injected into the storage ring, potentially harmful instability is essentially neutralized. Second, high-field magnets characteristic of future high energy proton rings are designed with superconducting coils within the iron magnetic shield. This means coil construction and placement errors propagate rapidly within the beam aperture. An intermediate ''stacking ring'' allows the minimum use of the superconducting ring aperture. Finally, the coils are vulnerable to radiation heating and possible magnet quenching. By minimizing beam manipulaion in the superconducting environment and using only the central portion of the beam aperture, coil vulnerability can be put at a minimum

  4. Economics of Renewable Energy Integration and Energy Storage via Low Load Diesel Application

    Directory of Open Access Journals (Sweden)

    James Hamilton

    2018-04-01

    Full Text Available One-quarter of the world’s population lives without access to electricity. Unfortunately, the generation technology most commonly employed to advance rural electrification, diesel generation, carries considerable commercial and ecological risks. One approach used to address both the cost and pollution of diesel generation is renewable energy (RE integration. However, to successfully integrate RE, both the stochastic nature of the RE resource and the operating characteristics of diesel generation require careful consideration. Typically, diesel generation is configured to run heavily loaded, achieving peak efficiencies within 70–80% of rated capacity. Diesel generation is also commonly sized to peak demand. These characteristics serve to constrain the possible RE penetration. While energy storage can relieve the constraint, this adds cost and complexity to the system. This paper identifies an alternative approach, redefining the low load capability of diesel generation. Low load diesel (LLD allows a diesel engine to operate across its full capacity in support of improved RE utilization. LLD uses existing diesel assets, resulting in a reduced-cost, low-complexity substitute. This paper presents an economic analysis of LLD, with results compared to conventional energy storage applications. The results identify a novel pathway for consumers to transition from low to medium levels of RE penetration, without additional cost or system complexity.

  5. Scanning ion irradiation of polyimide films

    Energy Technology Data Exchange (ETDEWEB)

    Luecken, Stefan; Koval, Yuri; Mueller, Paul [Department of Physics and Interdisciplinary Center for Molecular Materials (ICMM), Universitaet Erlangen-Nuernberg (Germany)

    2012-07-01

    Recently we found, that the surface of nearly any polymer can be converted into conductive material by low energy ion irradiation. The graphitized layer consists of nanometer sized graphene and graphite flakes. In order to enhance the conductivity and to increase the size of the flakes we applied a novel method of scanning irradiation. We investigated the influence of various irradiation parameters on the conductivity of the graphitized layer. We show, that the conductance vs. temperature can be described in terms of weak Anderson localization. At approximately 70 K, a crossover occurs from 2-dimensional to 3-dimensional behavior. This can be explained by a decrease of the Thouless length with increasing temperature. The crossover temperature can be used to estimate the thickness of the graphitized layer.

  6. Low-energy cosmic rays in the Orion region

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    The recently observed nuclear gamma-ray line emission from the Orion complex implies a high flux of low-energy cosmic rays (LECR) with unusual abundance. This cosmic ray component would dominate the energy density, pressure, and ionising power of cosmic rays, and thus would have a strong impact...

  7. Nuclear energy for a low-carbon France

    International Nuclear Information System (INIS)

    Faudon, Valerie; Jouette, Isabelle; Le Ngoc, Boris

    2015-01-01

    This publication states the opinion of the SFEN (the French Society of Nuclear Energy) about the implementation of the French Multi-year Energy Programming (PPE). The authors first outline that the PPE must firstly aim at reducing greenhouse gas emissions. As a second point, they outline that the PPE must remain flexible in order to be able to face uncertainties related to supply (growth of renewable energies) and demand (economic recovery, pace of energetic installation renewal), and to guard against energy-related events (oil shocks, Russian-Ukrainian crisis, and so on) through a right planning of the energy mix diversification with taking the improvement of economic and technological performance of renewable energies into account. As a third point, they outline that nuclear energy is the base of a low-carbon France. They finally discuss perspectives to strengthen this base by a sustained investment in the nuclear fleet, in the fuel recycling sector, and in research for the development of a new generation of reactors

  8. Energy harvesting from low frequency applications using piezoelectric materials

    International Nuclear Information System (INIS)

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel

    2014-01-01

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters

  9. A monochromatic, aberration-corrected, dual-beam low energy electron microscope.

    Science.gov (United States)

    Mankos, Marian; Shadman, Khashayar

    2013-07-01

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The Marshall Space Flight Center Low-Energy Ion Facility: a preliminary report

    International Nuclear Information System (INIS)

    Biddle, A.P.; Reynolds, J.W.; Chisholm, W.L. Jr.; Hunt, R.D.

    1983-10-01

    The Low-Energy Ion Facility (LEIF) is designed for laboratory research of low-energy ion beams similar to those present in the magnetosphere. In addition, it provides the ability to develop and calibrate low-energy, less than 50 eV, plasma instrumentation over its full range of energy, mass, flux, and arrival angle. The current status of this evolving resource is described. It also provides necessary information to allow users to utilize it most efficiently

  11. Low-energy limit of the extended Linear Sigma Model

    Energy Technology Data Exchange (ETDEWEB)

    Divotgey, Florian [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Kovacs, Peter [Wigner Research Center for Physics, Hungarian Academy of Sciences, Institute for Particle and Nuclear Physics, Budapest (Hungary); GSI Helmholtzzentrum fuer Schwerionenforschung, ExtreMe Matter Institute, Darmstadt (Germany); Giacosa, Francesco [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Jan-Kochanowski University, Institute of Physics, Kielce (Poland); Rischke, Dirk H. [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); University of Science and Technology of China, Interdisciplinary Center for Theoretical Study and Department of Modern Physics, Hefei, Anhui (China)

    2018-01-15

    The extended Linear Sigma Model is an effective hadronic model based on the linear realization of chiral symmetry SU(N{sub f}){sub L} x SU(N{sub f}){sub R}, with (pseudo)scalar and (axial-)vector mesons as degrees of freedom. In this paper, we study the low-energy limit of the extended Linear Sigma Model (eLSM) for N{sub f} = flavors by integrating out all fields except for the pions, the (pseudo-)Nambu-Goldstone bosons of chiral symmetry breaking. The resulting low-energy effective action is identical to Chiral Perturbation Theory (ChPT) after choosing a representative for the coset space generated by chiral symmetry breaking and expanding it in powers of (derivatives of) the pion fields. The tree-level values of the coupling constants of the effective low-energy action agree remarkably well with those of ChPT. (orig.)

  12. Dual energy X-ray absorptiometry spine scans to determine abdominal fat in postmenopausal women.

    Science.gov (United States)

    Bea, J W; Blew, R M; Going, S B; Hsu, C-H; Lee, M C; Lee, V R; Caan, B J; Kwan, M L; Lohman, T G

    2016-11-01

    Body composition may be a better predictor of chronic disease risk than body mass index (BMI) in older populations. We sought to validate spine fat fraction (%) from dual energy X-ray absorptiometry (DXA) spine scans as a proxy for total abdominal fat. Total body DXA scan abdominal fat regions of interest (ROI) that have been previously validated by magnetic resonance imaging were assessed among healthy, postmenopausal women who also had antero-posterior spine scans (n = 103). ROIs were (1) lumbar vertebrae L2-L4 and (2) L2-Iliac Crest (L2-IC), manually selected by two independent raters, and (3) trunk, auto-selected by DXA software. Intra-class correlation coefficients evaluated intra and inter-rater reliability on a random subset (N = 25). Linear regression models, validated by bootstrapping, assessed the relationship between spine fat fraction (%) and total abdominal fat (%) ROIs. Mean age, BMI, and total body fat were 66.1 ± 4.8 y, 25.8 ± 3.8 kg/m 2 and 40.0 ± 6.6%, respectively. There were no significant differences within or between raters. Linear regression models adjusted for several participant and scan characteristics were equivalent to using only BMI and spine fat fraction. The model predicted L2-L4 (Adj. R 2 : 0.83) and L2-IC (Adj. R 2 : 0.84) abdominal fat (%) well; the adjusted R 2 for trunk fat (%) was 0.78. Model validation demonstrated minimal over-fitting (Adj. R 2 : 0.82, 0.83, and 0.77 for L2-L4, L2-IC, and trunk fat, respectively). The strong correlation between spine fat fraction and DXA abdominal fat measures make it suitable for further development in postmenopausal chronic disease risk prediction models. Am. J. Hum. Biol. 28:918-926, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Scanning tunneling microscopic images and scanning tunneling spectra for coupled rectangular quantum corrals

    International Nuclear Information System (INIS)

    Mitsuoka, Shigenori; Tamura, Akira

    2011-01-01

    Assuming that an electron confined by double δ-function barriers lies in a quasi-stationary state, we derived eigenstates and eigenenergies of the electron. Such an electron has a complex eigenenergy, and the imaginary part naturally leads to the lifetime of the electron associated with tunneling through barriers. We applied this point of view to the electron confined in a rectangular quantum corral (QC) on a noble metal surface, and obtained scanning tunneling microscopic images and a scanning tunneling spectrum consistent with experimental ones. We investigated the electron states confined in coupled QCs and obtained the coupled states constructed with bonding and anti-bonding states. Using those energy levels and wavefunctions we specified scanning tunneling microscope (STM) images and scanning tunneling spectra (STS) for the doubly and triply coupled QCs. In addition we pointed out the feature of resonant electron states associated with the same QCs at both ends of the triply coupled QCs.

  14. Low-energy particle production and residual nuclei production from high-energy hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Alsmiller, F.S.; Alsmiller, R.G. Jr.; Hermann, O.W.

    1987-01-01

    The high-energy hadron-nucleus collision model, EVENTQ, has been modified to include a calculation of the excitation and kinetic energy of the residual compound nucleus. The specific purpose of the modification is to make it possible to use the model in the high-energy radiation transport code, HETC, which, in conjunction with MORSE, is used to transport the low energy particles. It is assumed that the nucleons in the nucleus move in a one-dimensional potential well and have the momentum distribution of a degenerate Fermi gas. The low energy particles produced by the deexcitation of the residual compound nucleus, and the final residual nucleus, are determined from an evaporation model. Comparisons of multiplicities and residual nuclei distributions with experimental data are given. The ''grey'' particles, i.e., charged particles with 0.25 < β < 0.7, are in good agreement with experimental data but the residual nuclei distributions are not. 12 refs., 3 figs

  15. Scanning WorldScan. Final report on the presentation and evaluation of WorldScan, a model of the WORLD economy for SCenario ANalysis

    International Nuclear Information System (INIS)

    Geurts, B.; Gielen, A.; Nahuis, R.; Tang, P.; Timmer, H.

    1997-01-01

    An overview is given of the efforts made to present and evaluate WorldScan, a long-term model of the world economy, developed at the Dutch Central Planning Bureau (CPB). One of the pivotal activities was the organisation of a peer review of the model during a two-day workshop. The reviewers were selected both from the academic and the policy field. The main recommendations of that review were (a) not to pursue a formal, full-scale linkage between WorldScan and the RIVM-developed climate model IMAGE. Instead, WorldScan should be used for separate economic analyses, which is input in the climate model; (b) to make more precise choices with respect to the underlying theories the time horizon of the analyses; (c) to improve the empirical base of WorldScan; and (d) to enhance the use of WorldScan for policy analyses on behalf of international policy fora. The review proved to be very beneficial for the evolution of WorldScan. Implementation of some of the recommendations has led to increased use of the model by international institutions. Since the review, WorldScan has been used on behalf of the European Union (EU), the Organisation for Economic Cooperation and Development (OECD), the Energy Modelling Forum (EMF), the Centre for Global Trade Analysis (GTAP), the Chinese Academy of Social Sciences (CASS) and Indian Planning Commission (IPC). 110 refs

  16. Atomic resolution ultrafast scanning tunneling microscope with scan rate breaking the resonant frequency of a quartz tuning fork resonator.

    Science.gov (United States)

    Li, Quanfeng; Lu, Qingyou

    2011-05-01

    We present an ultra-fast scanning tunneling microscope with atomic resolution at 26 kHz scan rate which surpasses the resonant frequency of the quartz tuning fork resonator used as the fast scan actuator. The main improvements employed in achieving this new record are (1) fully low voltage design (2) independent scan control and data acquisition, where the tuning fork (carrying a tip) is blindly driven to scan by a function generator with the scan voltage and tunneling current (I(T)) being measured as image data (this is unlike the traditional point-by-point move and measure method where data acquisition and scan control are switched many times).

  17. Intense low energy positron beams

    International Nuclear Information System (INIS)

    Lynn, K.G.; Jacobsen, F.M.

    1993-01-01

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e + beams exist producing of the order of 10 8 - 10 9 e + /sec. Several laboratories are aiming at high intensity, high brightness e + beams with intensities greater than 10 9 e + /sec and current densities of the order of 10 13 - 10 14 e + sec - 1 cm -2 . Intense e + beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B + moderators or by increasing the available activity of B + particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e + collisions with atoms and molecules. Within solid state physics high intensity, high brightness e + beams are in demand in areas such as the re-emission e + microscope, two dimensional angular correlation of annihilation radiation, low energy e + diffraction and other fields. Intense e + beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies

  18. New Haven, Connecticut: Targeting Low-Income Household Energy Savings (City Energy: From Data to Decisions)

    Energy Technology Data Exchange (ETDEWEB)

    Strategic Priorities and Impact Analysis Team, Office of Strategic Programs

    2017-11-01

    This fact sheet "New Haven, Connecticut: Targeting Low-Income Household Energy Savings" explains how the City of New Haven used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  19. Dual energy X-ray absorptiometry spine scans to determine abdominal fat in post-menopausal women

    Science.gov (United States)

    Bea, J. W.; Blew, R. M.; Going, S. B.; Hsu, C-H; Lee, M. C.; Lee, V. R.; Caan, B.J.; Kwan, M.L.; Lohman, T. G.

    2016-01-01

    Body composition may be a better predictor of chronic disease risk than body mass index (BMI) in older populations. Objectives We sought to validate spine fat fraction (%) from dual energy X-ray absorptiometry (DXA) spine scans as a proxy for total abdominal fat. Methods Total body DXA scan abdominal fat regions of interest (ROI) that have been previously validated by magnetic resonance imaging were assessed among healthy, postmenopausal women who also had antero-posterior spine scans (n=103). ROIs were 1) lumbar vertebrae L2-L4 and 2) L2-Iliac Crest (L2-IC), manually selected by two independent raters, and 3) trunk, auto-selected by DXA software. Intra-class correlation coefficients evaluated intra and inter-rater reliability on a random subset (N=25). Linear regression models, validated by bootstrapping, assessed the relationship between spine fat fraction (%) and total abdominal fat (%) ROIs. Results Mean age, BMI and total body fat were: 66.1 ± 4.8y, 25.8 ± 3.8kg/m2 and 40.0 ± 6.6%, respectively. There were no significant differences within or between raters. Linear regression models adjusted for several participant and scan characteristics were equivalent to using only BMI and spine fat fraction. The model predicted L2-L4 (Adj. R2: 0.83) and L2-IC (Adj.R2:0.84) abdominal fat (%) well; the adjusted R2 for trunk fat (%) was 0.78. Model validation demonstrated minimal over-fitting (Adj. R2: 0.82, 0.83, and 0.77 for L2-L4, L2-IC, and trunk fat respectively). Conclusions The strong correlation between spine fat fraction and DXA abdominal fat measures make it suitable for further development in post-menopausal chronic disease risk prediction models. PMID:27416964

  20. Operational Planning of Low-Energy District Heating Systems Connected to Existing Buildings

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2012-01-01

    . The response of the radiator heating systems at different levels of supply temperature was used to form the operational planning of the low-energy DH system, which determined the design parameters of the low-energy DH network in terms of overall mass flow requirement and the return temperature from...... the buildings. Since the existing buildings were considered to be renovated to low-energy class, the operational planning was simultaneously modelled for both present high-demand and future low-demand situations of the same case area.......This article focuses on low-energy District Heating (DH) systems operating in low-temperatures such as 55°C in terms of supply and 25°C in terms of return in connection with existing buildings. Since the heat loss from the network has a significant impact in case of supplying heat to low...

  1. Linking world scan and image

    International Nuclear Information System (INIS)

    Timmer, H.; Alcamo, J.; Bollen, J.; Gielen, A.; Gerlach, R.; Den Ouden, A.; Zuidema, G.

    1995-01-01

    In march 1994 the Central Planning Bureau (CPB) in the Hague, the National Institute of Public Health and Environmental Protection (RIVM) in Bilthoven and the Institute of Environmental Studies (IES) in Amsterdam started the first phase of a joint research program aimed at creating integrated scenarios of the global economy, GHG emissions, and climate impacts. The goal of the first phase of this project was to design and test a linked version of the economic model WORLD SCAN of the former, and the climate model IMAGE 2 of the latter institute. This first phase has resulted in the planned test runs with an operational version of the linked models by May 1995. The experiences in the first year were encouraging, both in the scientific and the organizational sense. In a sense, a link was made between scientific disciplines: a coupling of disciplines concerning with global economic development and the global physical climate system is difficult and novel. The goal of the project was to integrate long-term economic developments and effects of climate change. Both the WORLD SCAN model and IMAGE 2 provide a consistent analysis of the global system, but from different perspectives. IMAGE 2 simulates climate change and its effects in a global context but treats the economic system as exogenous. WORLD SCAN covers the world economic system in a consistent manner but does not take into account the global environment. The links are constructed in the area of agriculture and energy. The basic idea is that WORLD SCAN determines demand and supply on economic principles, while IMAGE 2 provides information on changes of land area and average quality of productive land, and other damage costs based on its three sub-systems. The demand for energy is fed into IMAGE 2's Energy Industry subsystem (EIS), which in turn determines emissions of greenhouse gases. Furthermore, some additional output from WORLD SCAN on activity levels, prices and capital structure can be used to determine

  2. Noncontrast chest computed tomography immediately after transarterial chemoembolization in patients with hepatocellular carcinoma: Clinical benefits and effect of radiation reduction on image quality in low-dose scanning

    International Nuclear Information System (INIS)

    Choi, Joon-Il; Kim, Hyun Beom; Kim, Min Ju; Lee, Jong Seok; Koh, Young Whan; An, Sang Bu; Ko, Heung-kyu; Park, Joong-Won

    2011-01-01

    Purpose: To evaluate the clinical benefits of noncontrast chest computed tomography (CT) immediately after transarterial chemoembolization in patients with hepatocellular carcinoma and to assess the effect of radiation reduction on image quality in low-dose scanning. Materials and methods: From June to October 2010, we performed standard-dose, noncontrast chest CTs immediately after transarterial chemoembolization in 160 patients and low-dose CTs in 88 patients. We reviewed the entire noncontrast chest CTs and follow-up CTs to reveal the clinical benefits of CT evaluation immediately after transarterial chemoembolization. Using two independent readers, we also retrospectively evaluated the radiation dose and image quality in terms of the image noise, contrast between the liver parenchyma and iodized oil and diagnostic acceptability for the evaluation of treatment response after transarterial chemoembolization. Results: In 5.2% of the patients, additional treatment was performed immediately after the interpretation of the noncontrast chest CT, and additional pulmonary lesions were found in 8.5% of the patients. The measured mean dose-length product for the low-dose scanning was 18.4% of that of the standard-dose scanning. The image noise was significantly higher with the low-dose scanning (p < 0.001). However, all of the low-dose CT scans were diagnostically acceptable, and the mean scores for the subjective assessments of the contrast and diagnostic acceptability showed no significant differences for either reader. Conclusion: A noncontrast chest CT immediately after transarterial chemoembolization has some clinical benefits for immediate decision making and detecting pulmonary lesions. Low-dose, noncontrast chest CTs immediately after transarterial chemoembolization consistently provide diagnostically acceptable images and information on treatment response in patients who have undergone transarterial chemoembolization.

  3. Scanned-energy mode photoelectron diffraction measurements at beamline 7.0.1

    International Nuclear Information System (INIS)

    Toomes, R.; Booth, N.A.; Woodruff, D.P.

    1997-01-01

    This report covers the results of the authors first experimental run, in May 1996, conducted to explore the advantages offered by the high spectral resolution available at the SpectroMicroscopy Facility on beam line 7.0 to conduct scanned-energy mode photoelectron diffraction (PhD). This technique is now a well-established method for the determination of local structure of atomic and molecular adsorbates on well-characterised surfaces. The directly-emitted component of an adsorbate core-level photoelectron wavefield interferes coherently with components of the same wavefield elastically scattered by surrounding atoms, leading to a modulation in the photoemission intensity as a function of kinetic energy in any specific emission direction. A series of such PhD modulation spectra, each typically covering energies from 50-500 eV, for a series of different emission directions, provides the basis for a quantitative structure determination of the emitter-scatterer geometry. Within the last years the authors have developed an integrated approach to extract the structural information from these photoelectron diffraction (PhD) spectra in a quantitative way. A direct data inversion technique (the so-called Projection method) provides a first-order estimate of the local adsorbate geometry in the form of an 'image' of the scatterer atoms which are nearest neighbours to the emitter. This information is then used as a starting model for optimisation of the structural parameters by comparing the experimental PhD spectra with the results of multiple scattering simulations using a code developed by Fritzsche. The optimisation uses an automated trial-and-error procedure by minimising a reliability factor which provides an objective measure of the quality of agreement between experiment and theory. The authors have successfully applied this approach to the structure determination of about 30 adsorption systems

  4. Scanned-energy mode photoelectron diffraction measurements at beamline 7.0.1

    Energy Technology Data Exchange (ETDEWEB)

    Toomes, R.; Booth, N.A.; Woodruff, D.P. [Univ. of Warwick, Coventry (United Kingdom)] [and others

    1997-04-01

    This report covers the results of the authors first experimental run, in May 1996, conducted to explore the advantages offered by the high spectral resolution available at the SpectroMicroscopy Facility on beam line 7.0 to conduct scanned-energy mode photoelectron diffraction (PhD). This technique is now a well-established method for the determination of local structure of atomic and molecular adsorbates on well-characterised surfaces. The directly-emitted component of an adsorbate core-level photoelectron wavefield interferes coherently with components of the same wavefield elastically scattered by surrounding atoms, leading to a modulation in the photoemission intensity as a function of kinetic energy in any specific emission direction. A series of such PhD modulation spectra, each typically covering energies from 50-500 eV, for a series of different emission directions, provides the basis for a quantitative structure determination of the emitter-scatterer geometry. Within the last years the authors have developed an integrated approach to extract the structural information from these photoelectron diffraction (PhD) spectra in a quantitative way. A direct data inversion technique (the so-called Projection method) provides a first-order estimate of the local adsorbate geometry in the form of an `image` of the scatterer atoms which are nearest neighbours to the emitter. This information is then used as a starting model for optimisation of the structural parameters by comparing the experimental PhD spectra with the results of multiple scattering simulations using a code developed by Fritzsche. The optimisation uses an automated trial-and-error procedure by minimising a reliability factor which provides an objective measure of the quality of agreement between experiment and theory. The authors have successfully applied this approach to the structure determination of about 30 adsorption systems.

  5. Experimental perspectives in low energy lepton physics

    International Nuclear Information System (INIS)

    Fiorini, E.

    1986-01-01

    Low energy nuclear physics has been and is going to be an essential tool for the study of weak interaction and neutrino physics. The use of the atomic nucleus as a ''microlaboratory'' with well defined quantum numbers is undoubtedly going to yield important and sometimes perhaps unexpected results on the symmetry laws governing the subnuclear world. These searches are however very hard experimentally and the bottleneck on obtaining more stringent results only rarely depends on the need of large and expensive apparatuses as those used in high energy physics: more limiting are technical difficulties. The author believes therefore that a real break-through to overcome the present experimental limitations can only be obtained with totally new and sometime ''non canonical'' technical approaches. This paper is an admittedly incomplete discussion of some of them. The author considers separately searches for rare decays, detection of low energy neutrinos and measurements of the neutrino mass, even if some of these new techniques are common to more than one of these subjects

  6. Electron polarimetry at low energies in Hall C at JLab

    International Nuclear Information System (INIS)

    Gaskell, D.

    2013-01-01

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered

  7. The low-energy theorem of pion photoproduction using the Skyrme model

    International Nuclear Information System (INIS)

    Ikehashi, T.; Ohta, K.

    1995-01-01

    We reassess the validity of the current-algebra based low-energy theorem of pion photoproduction on the nucleon using the Skyrme model. We find that one of the off-shell electromagnetic form factors of the nucleon exhibits infrared divergence in the chiral limit. This contribution introduces an additional term to the threshold amplitude predicted by the low-energy theorem. The emergence of the additional term indicates an unavoidable necessity of off-shell form factors in deriving the low-energy theorem. In the case of neutral pion production, the new contribution to the threshold amplitude is found to be comparable in magnitude to the low-energy theorem's prediction and has the opposite sign. In the charged pion production channels, the correction to the theorem is shown to be relatively small. (orig.)

  8. Developing effective rockfall protection barriers for low energy impacts

    Science.gov (United States)

    Mentani, Alessio; Giacomini, Anna; Buzzi, Olivier; Govoni, Laura; Gottardi, Guido; Fityus, Stephen

    2016-04-01

    Recently, important progresses have been made towards the development of high capacity rockfall barriers (100 kJ - 8000 kJ). The interest of researchers and practitioners is now turning to the development of fences of minor capacity, whose use becomes essential in areas where rockfall events generally have low intensity and the use of high capacity barriers would be accompanied by excessive costs and high environmental impact. Low energy barriers can also provide a cost-effective solution even in areas where high energies events are expected. Results of full-scale tests are vital to any investigation on the behaviour of these structures. An experimental set-up has been developed at The University of Newcastle (AUS), to investigate the response of low energy rockfall barrier prototypes to low energy impacts. The Australian territory, and in particular New South Wales, is in fact characterised by rockfall events of low-to-medium intensity (50 kJ - 500 kJ) and the need of protection structures working within such energy range, is particularly felt [1]. The experiments involved the impact of a test block onto three spans, low energy barrier prototypes, made of steel structural posts, fully fixed at the base, side cables and a steel meshwork constituted by a double twist hexagonal wire net [2]. Test data enabled the development, calibration and assessment of FE models [3], on which non-linear and dynamic analyses have been performed addressing the effect of the block size. Results have shown that the response of the structure is strongly governed by the net. Data from tests conducted on the sole net and on the entire barrier showed in fact a similar trend, different to what typically observed for high capacity barriers, whose behaviour is also led by the presence of uphill cables and brakes. In particular, the numerical analyses have demonstrated a dependence of the net performance on the block size. In particular, a loss of capacity in the order of 50% occurred as the

  9. Security scanning at 35 GHz

    Science.gov (United States)

    Anderton, Rupert N.; Appleby, Roger; Coward, Peter R.; Kent, P. J.; Price, Sean; Sinclair, Gordon N.; Wasley, Matthew R. M.

    2001-08-01

    It has been known for some time that millimeter waves can pas through clothing. In short range applications such as in the scanning of people for security purposes, operating at Ka band can be an advantage. The penetration through clothing is increased and the cost of the equipment when compared to operation at W band. In this paper a Ka band mechanically scanned imager designed for security scanning is discussed. This imager is based on the folded conical scan technology previously reported. It is constructed from low cost materials such as polystyrene and printed circuit board. The trade off between image spatial resolution and the number of receivers will be described and solutions, which minimize this number discussed.

  10. Low energy He+ irradiation effect on graphite surface

    International Nuclear Information System (INIS)

    Asari, E.; Nakamura, K.G.; Kitajima, M.; Kawabe, T.

    1992-01-01

    Study on the lattice disordering and the secondary electron emission under low energy (1-5keV) He + irradiation is reported. Real-time Raman measurements show that difference in the observed Raman spectra for different ion energies is due to the difference of the damage depth. The relation between the observed Raman spectrum and the depth profile of lattice damage is discussed. Energy dependence of the secondary electron emission coefficient are also described. (author)

  11. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT

    International Nuclear Information System (INIS)

    Yu Lifeng; Primak, Andrew N.; Liu Xin; McCollough, Cynthia H.

    2009-01-01

    In dual-source dual-energy CT, the images reconstructed from the low- and high-energy scans (typically at 80 and 140 kV, respectively) can be mixed together to provide a single set of non-material-specific images for the purpose of routine diagnostic interpretation. Different from the material-specific information that may be obtained from the dual-energy scan data, the mixed images are created with the purpose of providing the interpreting physician a single set of images that have an appearance similar to that in single-energy images acquired at the same total radiation dose. In this work, the authors used a phantom study to evaluate the image quality of linearly mixed images in comparison to single-energy CT images, assuming the same total radiation dose and taking into account the effect of patient size and the dose partitioning between the low-and high-energy scans. The authors first developed a method to optimize the quality of the linearly mixed images such that the single-energy image quality was compared to the best-case image quality of the dual-energy mixed images. Compared to 80 kV single-energy images for the same radiation dose, the iodine CNR in dual-energy mixed images was worse for smaller phantom sizes. However, similar noise and similar or improved iodine CNR relative to 120 kV images could be achieved for dual-energy mixed images using the same total radiation dose over a wide range of patient sizes (up to 45 cm lateral thorax dimension). Thus, for adult CT practices, which primarily use 120 kV scanning, the use of dual-energy CT for the purpose of material-specific imaging can also produce a set of non-material-specific images for routine diagnostic interpretation that are of similar or improved quality relative to single-energy 120 kV scans.

  12. Treatment planning and verification of proton therapy using spot scanning: Initial experiences

    International Nuclear Information System (INIS)

    Lomax, Antony J.; Boehringer, Terence; Bolsi, Alessandra; Coray, Doelf; Emert, Frank; Goitein, Gudrun; Jermann, Martin; Lin, Shixiong; Pedroni, Eros; Rutz, Hanspeter; Stadelmann, Otto; Timmermann, Beate; Verwey, Jorn; Weber, Damien C.

    2004-01-01

    Since the end of 1996, we have treated more than 160 patients at PSI using spot-scanned protons. The range of indications treated has been quite wide and includes, in the head region, base-of-skull sarcomas, low-grade gliomas, meningiomas, and para-nasal sinus tumors. In addition, we have treated bone sarcomas in the neck and trunk - mainly in the sacral area - as well as prostate cases and some soft tissue sarcomas. PTV volumes for our treated cases are in the range 20-4500 ml, indicating the flexibility of the spot scanning system for treating lesions of all types and sizes. The number of fields per applied plan ranges from between 1 and 4, with a mean of just under 3 beams per plan, and the number of fluence modulated Bragg peaks delivered per field has ranged from 200 to 45 000. With the current delivery rate of roughly 3000 Bragg peaks per minute, this translates into delivery times per field of between a few seconds to 20-25 min. Bragg peak weight analysis of these spots has shown that over all fields, only about 10% of delivered spots have a weight of more than 10% of the maximum in any given field, indicating that there is some scope for optimizing the number of spots delivered per field. Field specific dosimetry shows that these treatments can be delivered accurately and precisely to within ±1 mm (1 SD) orthogonal to the field direction and to within 1.5 mm in range. With our current delivery system the mean widths of delivered pencil beams at the Bragg peak is about 8 mm (σ) for all energies, indicating that this is an area where some improvements can be made. In addition, an analysis of the spot weights and energies of individual Bragg peaks shows a relatively broad spread of low and high weighted Bragg peaks over all energy steps, indicating that there is at best only a limited relationship between pencil beam weighting and depth of penetration. This latter observation may have some consequences when considering strategies for fast re-scanning on

  13. First evidence of low energy enhancement in Ge isotopes

    Directory of Open Access Journals (Sweden)

    Renstrøm T.

    2015-01-01

    Full Text Available The γ-strength functions and level densities of 73,74Ge have been extracted from particle-γ coincidence data using the Oslo method. In addition the γ-strength function of 74Ge above the neutron separation threshold, Sn = 10.196 MeV has been extracted from photoneutron measurements. When combined, these two experiments give a γ-strength function covering the energy range of ∼1-13 MeV for 74Ge. This thorough investigation of 74Ge is a part of an international campaign to study the previously reported low energy enhancement in this mass region in the γ-strength function from ∼3MeV towards lower γ energies. The obtained data show that both 73,74Ge display an increase in strength at low γ energies.

  14. Rapid-scan EPR imaging.

    Science.gov (United States)

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Low energy quasi free scattering on nuclear surface

    Energy Technology Data Exchange (ETDEWEB)

    Shiyuan, S.

    1983-05-01

    The result of RGM calculation of low energy /sup 3/He(n, n)/sup 3/ He total elastic cross section does not agree well with experimental data for E/sub n/<1 MeV. This discrepancy can be improved by assuming lwo energy quasi-free scattering of particles beyond the nuclear surface.

  16. Solar X-ray Spectrometer (SOXS) Mission – Low Energy Payload

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We present the first results from the 'Low Energy Detector' payload of 'Solar X-ray Spectrometer (SOXS)' mission, which was launched onboard GSAT-2 Indian spacecraft on 08 May 2003 by GSLV-D2 rocket to study the solar flares. The SOXS Low Energy Detector (SLD) payload was designed, developed ...

  17. A low-energy building under arctic conditions – a case study

    DEFF Research Database (Denmark)

    Norling, Casper Roland; Rode, Carsten; Svendsen, Svend

    2006-01-01

    Greenland is a relatively small community with limited natural resources, which results in the necessity to import all supplies, including a big share of the energy. Because of this, it is important to decrease the energy consumption. This can be done by developing new construction technology wit...... in the new Greenlandic building regulations....... with larger focus on energy efficiency. Therefore a low-energy house, located in Sisimiut, has been constructed. The low-energy house will be a forerunner for the development of new building element designs and technologies in Greenland. In the forthcoming years, the house will also be a base for scientific...... projects which will evaluate the design of the low-energy house including an assessment of the effect of the highly insulated building envelope, advanced windows and a ventilation system with heat recovery, all of which cuts the energy consumption of the building to half of what will be the requirement...

  18. Strengthening the European Union Climate and Energy Package. To build a low carbon, competitive and energy secure European Union

    International Nuclear Information System (INIS)

    Guerin, E.; Spencer, Th.

    2011-01-01

    As the EU's climate and energy goals defined in its Climate and Energy Package (CEP) are to protect the climate, to protect EU economic competitiveness, and to protect EU energy security, the authors first define these notions (time consistency, competitiveness, energy security) and stress the importance of strengthening the CEP, notably by fostering low carbon technology investment and low carbon products and services innovation. They discuss several policy recommendations for the development of a low carbon, competitive and energy secure EU. These recommendations are notably based on the strengthening of current instruments and on the implementation of new tools to reach the 20% energy efficiency target, on an increase stringency and predictability of the EU ETS, and on the use of direct public financial support to facilitate the transition towards a EU low carbon economy

  19. InN: Fermi level stabilization by low-energy ion bombardment

    International Nuclear Information System (INIS)

    Piper, L.F.J.; Veal, T.D.; McConville, C.F.; Lu, H.; Schaff, W.J.

    2006-01-01

    The near-surface electronic properties of InN have been investigated with high-resolution electron-energy loss spectroscopy. Low-energy (∝400 eV) nitrogen ion bombardment followed by low temperature annealing (<300 C) was found to dramatically increase the n-type conductivity of InN, close to the surface. This is explained in terms of the formation of amphoteric defects from the ion bombardment and annealing combined with the band structure of InN. Low-energy ion bombardment and annealing is shown to result in a damage-induced, donor-like defect-profile instead of the expected electron accumulation for InN. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Low energy, high power injection in JT-60 NBI

    International Nuclear Information System (INIS)

    Mizuno, Makoto; Dairaku, Masayuki; Horiike, Hiroshi

    1988-05-01

    JT-60 neutral beam injector (JT-60 NBI) is designed to inject 20 MW neutral hydrogen beam at energies of 70 ∼ 100 keV and the injection power decreases significantly at low energies (∼40 keV). For the extention of operation region aiming at the low density plasma heating and achieving H-mode by plasma periphery heating, increment of the injection power at low beam energies was required. The single-stage acceleration system was investigated in advance at the Prototype Injector Unit. From this result, the total injection power of 17 MW at 40 keV, 48 A per source was expected at the JT-60 NBI. This system was adopted in the JT-60 NBI from June, 1987 to July, 1987 and 17.6 MW neutral beam injection power was achieved. In the NB heating experiment, the H-mode transition phenomena was observed in JT-60 plasma. (author)