WorldWideScience

Sample records for low-dose proton pump

  1. Should patients prescribed long-term low-dose aspirin receive proton pump inhibitors? A systematic review and meta-analysis

    NARCIS (Netherlands)

    Tran-Duy, A.; Vanmolkot, F. H.; Joore, M. A.; Hoes, A. W.; Stehouwer, C. D. A.

    2015-01-01

    Background: Several clinical guidelines recommend the use of proton pump inhibitors (PPIs) in patients taking low-dose aspirin but report no or limited supporting data. We conducted a systematic review and meta-analysis to examine the effects of co-administration of PPIs in patients taking low-dose

  2. Proton Pump Inhibition Increases Rapid Eye Movement Sleep in the Rat

    Directory of Open Access Journals (Sweden)

    Munazah Fazal Qureshi

    2014-01-01

    Full Text Available Increased bodily CO2 concentration alters cellular pH as well as sleep. The proton pump, which plays an important role in the homeostatic regulation of cellular pH, therefore, may modulate sleep. We investigated the effects of the proton pump inhibitor “lansoprazole” on sleep-wakefulness. Male Wistar rats were surgically prepared for chronic polysomnographic recordings. Two different doses of lansoprazole (low: 1 mg/kg; high: 10 mg/kg were injected intraperitoneally in the same animal (n=7 and sleep-wakefulness was recorded for 6 hrs. The changes in sleep-wakefulness were compared statistically. Percent REM sleep amount in the vehicle and lansoprazole low dose groups was 9.26±1.03 and 9.09±0.54, respectively, which increased significantly in the lansoprazole high dose group by 31.75% (from vehicle and 34.21% (from low dose. Also, REM sleep episode numbers significantly increased in lansoprazole high dose group. Further, the sodium-hydrogen exchanger blocker “amiloride” (10 mg/kg; i.p. (n=5 did not alter sleep-wake architecture. Our results suggest that the proton pump plays an important role in REM sleep modulation and supports our view that REM sleep might act as a sentinel to help maintain normal CO2 level for unperturbed sleep.

  3. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Nissen, Poul

    2008-01-01

    molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...... proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK (a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires....

  4. Sodium and Proton Effects on Inward Proton Transport through Na/K Pumps

    Science.gov (United States)

    Mitchell, Travis J.; Zugarramurdi, Camila; Olivera, J. Fernando; Gatto, Craig; Artigas, Pablo

    2014-01-01

    The Na/K pump hydrolyzes ATP to export three intracellular Na (Nai) as it imports two extracellular K (Ko) across animal plasma membranes. Within the protein, two ion-binding sites (sites I and II) can reciprocally bind Na or K, but a third site (site III) exclusively binds Na in a voltage-dependent fashion. In the absence of Nao and Ko, the pump passively imports protons, generating an inward current (IH). To elucidate the mechanisms of IH, we used voltage-clamp techniques to investigate the [H]o, [Na]o, and voltage dependence of IH in Na/K pumps from ventricular myocytes and in ouabain-resistant pumps expressed in Xenopus oocytes. Lowering pHo revealed that Ho both activates IH (in a voltage-dependent manner) and inhibits it (in a voltage-independent manner) by binding to different sites. Nao effects depend on pHo; at pHo where no Ho inhibition is observed, Nao inhibits IH at all concentrations, but when applied at pHo that inhibits pump-mediated current, low [Na]o activates IH and high [Na]o inhibits it. Our results demonstrate that IH is a property inherent to Na/K pumps, not linked to the oocyte expression environment, explains differences in the characteristics of IH previously reported in the literature, and supports a model in which 1), protons leak through site III; 2), binding of two Na or two protons to sites I and II inhibits proton transport; and 3), pumps with mixed Na/proton occupancy of sites I and II remain permeable to protons. PMID:24940773

  5. High-doses of proton pump inhibitors in refractory gastro-intestinal cancer: A case series and the state of art.

    Science.gov (United States)

    Falcone, Rosa; Roberto, Michela; D'Antonio, Chiara; Romiti, Adriana; Milano, Annalisa; Onesti, Concetta Elisa; Marchetti, Paolo; Fais, Stefano

    2016-12-01

    In recent years, proton pump inhibitors (PPIs) have been investigated at high-dose to modulate tumour microenvironment acidification thus restoring chemotherapeutic sensitivity. Moreover, several clinical data supports the role of cytotoxic drugs at low-dose continuously delivered as anticancer therapy. Clinical records of three patients affected with gastrointestinal cancer refractory to standard treatments, who had received a combination of high-dose rabeprazole and metronomic chemotherapy were reviewed. The first case, a 78-year-old man was treated for lung metastasis from colon adenocarcinoma. The second case, a 73-year-old man was treated for metastatic rectal cancer to the liver. The third one, a 68-year-old man, underwent the combination regimen for colon cancer with lung, liver and peritoneal metastases. Despite the failure of previous standard chemotherapy for metastatic disease, good clinical outcome was shown in these patients treated with an unconventional association of high-dose PPIs and metronomic chemotherapy. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  6. Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams

    International Nuclear Information System (INIS)

    Sawakuchi, Gabriel O; Titt, Uwe; Mirkovic, Dragan; Ciangaru, George; Zhu, X Ronald; Sahoo, Narayan; Gillin, Michael T; Mohan, Radhe

    2010-01-01

    Scanned proton pencil beams carry a low-dose envelope that extends several centimeters from the individual beam's central axis. Thus, the total delivered dose depends on the size of the target volume and the corresponding number and intensity of beams necessary to cover the target volume uniformly. This dependence must be considered in dose calculation algorithms used by treatment planning systems. In this work, we investigated the sources of particles contributing to the low-dose envelope using the Monte Carlo technique. We used a validated model of our institution's scanning beam line to determine the contributions to the low-dose envelope from secondary particles created in a water phantom and particles scattered in beam line components. Our results suggested that, for high-energy beams, secondary particles produced by nuclear interactions in the water phantom are the major contributors to the low-dose envelope. For low-energy beams, the low-dose envelope is dominated by particles undergoing multiple Coulomb scattering in the beam line components and water phantom. Clearly, in the latter situation, the low-dose envelope depends directly on beam line design features. Finally, we investigated the dosimetric consequences of the low-dose envelope. Our results showed that if not modeled properly the low-dose envelope may cause clinically relevant dose disturbance in the target volume. This work suggested that this low-dose envelope is beam line specific for low-energy beams, should be thoroughly experimentally characterized and validated during commissioning of the treatment planning system, and therefore is of great concern for accurate delivery of proton scanning beam doses.

  7. The safety of proton pump inhibitors in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Lauge; Sørensen, Henrik Toft; Thulstrup, Ane Marie

    1999-01-01

    AIM: To assess the safety of proton pump inhibitors during pregnancy. METHODS: Fifty-one pregnant women exposed to proton pump inhibitors around the time of conception or during pregnancy were compared with 13 327 controls without exposure to any prescribed drug in a population-based study based...... birth weight or number of preterm deliveries in pregnancies exposed to proton pump inhibitors. However, further monitoring is warranted in order to establish or rule out a potential association between the use of proton pump inhibitors and increased risk of either cardiac malformations or preterm birth....

  8. RENAL SAFETY OF PROTON PUMP INHIBITORS

    Directory of Open Access Journals (Sweden)

    A. I. Dyadyk

    2017-01-01

    Full Text Available Proton pump inhibitors are a widely used in clinical practice, and are taken by millions of patients around the world for a long time. While proton pump inhibitors are well-tolerated class of drugs, the number of publications has been raised about adverse renal effects, specially their association with acute tubulointerstitial nephritis. It is one of the leading causes of acute renal injury and have catastrophic long-term consequences called chronic kidney disease. In this review, we consider epidemiology, pathogenesis, diagnostic criteria (including biopsy and morphological pattern, clinical manifestations and treatment of proton pump inhibitors-induced acute tubulointerstitial nephritis. A subclinical course without classical manifestations of a cell-mediated hypersensitivity reaction (fever, skin rash, eosinophilia, arthralgia is characteristic of acute tubulointerstitial nephritis. Increased serum creatinine, decreased glomerular filtration rate, electrolyte disorders, pathological changes in urine tests are not highly specific indicators, but allow to suspect the development of acute tubulointerstitial nephritis. The “gold” standard of diagnosis is the intravital morphological examination of the kidney tissue. Timely diagnosis and immediate discontinuation of the potentially causative drug is the mainstay of therapy and the first necessary step in the early management of suspected or biopsy-proven drug-induced acute tubulointerstitial nephritis. The usage of proton pump inhibitors should be performed only on strict indications with optimal duration of treatment and careful monitoring of kidney function. Multiple comorbidities (older age, heart failure, diabetes, cirrhosis, chronic kidney disease, hypovolemia increase potential nephrotoxicity. Awareness of this iatrogenic complication will improve diagnosis of proton pump inhibitors-induced acute tubulointerstitial nephritis by multidisciplinary specialists and increase the possibility

  9. Crystal structure of the plasma membrane proton pump

    DEFF Research Database (Denmark)

    Pedersen, Bjørn P.; Buch-Pedersen, Morten Jeppe; Morth, J. Preben

    2007-01-01

    A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H1-ATPase (the proton pump) in plants and fungi1......-3, and Na1,K1-ATPase (the sodium-potassium pump) in animals4. The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis5.The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na1,K1-ATPase and Ca21......- ATPase are type II6. Electron microscopy has revealed the overall shape of proton pumps7, however, an atomic structure has been lacking. Here we present the first structure of a P-type proton pump determined by X-ray crystallography. Ten transmembrane helices and three cytoplasmic domains define...

  10. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Veierskov, Bjarke

    2008-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic...... molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...

  11. An alternative arrangement of metered dosing fluid using centrifugal pump

    Science.gov (United States)

    Islam, Md. Arafat; Ehsan, Md.

    2017-06-01

    Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for

  12. Outcomes of peptic ulcer bleeding following treatment with proton pump inhibitors in routine clinical practice: 935 patients with high- or low-risk stigmata.

    Science.gov (United States)

    Lanas, Angel; Carrera-Lasfuentes, Patricia; García-Rodríguez, Luis A; García, Santiago; Arroyo-Villarino, María Teresa; Ponce, Julio; Bujanda, Luis; Calleja, José L; Polo-Tomas, Mónica; Calvet, Xavier; Feu, Faust; Perez-Aisa, Angeles

    2014-10-01

    To assess rates of further bleeding, surgery and mortality in patients hospitalized owing to peptic ulcer bleeding. Consecutive patients hospitalized for peptic ulcer bleeding and treated with a proton pump inhibitor (PPI) (esomeprazole or pantoprazole) were identified retrospectively in 12 centers in Spain. Patients were included if they had high-risk stigmata (Forrest class Ia-IIb, underwent therapeutic endoscopy and received intravenous PPI ≥120 mg/day for ≥24 h) or low-risk stigmata (Forrest class IIc-III, underwent no therapeutic endoscopy and received intravenous or oral PPI [any dose]). Of 935 identified patients, 58.3% had high-risk stigmata and 41.7% had low-risk stigmata. After endoscopy, 88.3% of high-risk patients and 22.1% of low-risk patients received intravenous PPI therapy at doses of at least 160 mg/day. Further bleeding within 72 h occurred in 9.4% and 2.1% of high- and low-risk patients, respectively (p peptic ulcer bleeding and treated with PPIs, patients with high-risk stigmata have a higher risk of further bleeding and surgery, but not of death, than those with low-risk stigmata.

  13. Optical silencing of C. elegans cells with light-driven proton pumps.

    Science.gov (United States)

    Okazaki, Ayako; Takahashi, Megumi; Toyoda, Naoya; Takagi, Shin

    2014-08-01

    Recent development of optogenetic techniques, which utilize light-driven ion channels or ion pumps for controlling the activity of excitable cells, has greatly facilitated the investigation of nervous systems in vivo. A new generation of optical silencers includes outward-directed proton pumps, such as Arch, which have several advantages over currently widely used halorhodopsin (NpHR). These advantages include the resistance to inactivation during prolonged illumination and the ability to generate a larger optical current from low intensity light. C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. In this article, we will outline the practical aspects of using of Arch and other proton pumps as optogenetic tools in C. elegans. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Proton pump inhibitors inhibit pancreatic secretion

    DEFF Research Database (Denmark)

    Wang, Jing; Barbuskaite, Dagne; Tozzi, Marco

    2015-01-01

    +/K+-ATPases are expressed and functional in human pancreatic ducts and whether proton pump inhibitors (PPIs) have effect on those. Here we show that the gastric HKα1 and HKβ subunits (ATP4A; ATP4B) and non-gastric HKα2 subunits (ATP12A) of H+/K+-ATPases are expressed in human pancreatic cells. Pumps have similar...... of major ions in secretion follow similar excretory curves in control and PPI treated animals. In addition to HCO3-, pancreas also secretes K+. In conclusion, this study calls for a revision of the basic model for HCO3- secretion. We propose that proton transport is driving secretion, and that in addition...

  15. Proton pump inhibitors for the treatment of patients with erosive esophagitis and gastroesophageal reflux disease: current evidence and safety of dexlansoprazole

    Directory of Open Access Journals (Sweden)

    Mermelstein J

    2016-07-01

    Full Text Available Joseph Mermelstein,1 Alanna Chait Mermelstein,2 Maxwell M Chait,3 1Department of Medicine, Mount Sinai Beth Israel/Icahn School of Medicine, 2Department of Psychiatry, New York Presbyterian Hospital/Weill Cornell Medicine, 3Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA Abstract: Gastroesophageal reflux disease is the most common upper gastroenterology disorder in the US. It is associated with a variety of complications and significantly impacts quality of life. Proton pump inhibitors are the most effective treatment. Dexlansoprazole modified release (MR is a proton pump inhibitor that employs a novel release formulation that prolongs its absorption and allows for more flexibility in dosing. Dexlansoprazole MR can be dosed without regard to food intake or time of day, and once-daily dosing may replace twice-daily dosing of other agents. Dexlansoprazole MR is effective for healing and maintenance of erosive esophagitis, and for the treatment of nonerosive disease, including nocturnal gastroesophageal reflux disease. Dexlansoprazole MR is safe and well tolerated, and can improve quality of life. Keywords: dexlansoprazole, proton pump inhibitors, gastroesophageal reflux disease, erosive esophagitis

  16. Proton pump inhibitor-induced tumour cell death by inhibition of a detoxification mechanism.

    Science.gov (United States)

    Fais, S

    2010-05-01

    This review presents a possible new approach against cancer, as represented by inhibition of proton pumps, a mechanism used by tumour cells to avoid intracellular accumulation of toxic substances. Proton pump inhibitors (PPIs) belong to a family of pro-drugs that are currently used in the treatment of peptic diseases needing acidity to be activated. PPIs target the acidic tumour mass, where they are metabolized, thus blocking proton traffic. Proton pump inhibition triggers a rapid cell death as a result of intracellular acidification, caspase activation and early accumulation of reactive oxygen species into tumour cells. As a whole, the devastating effect of PPIs on tumour cells suggest the triggering of a fatal cell toxification. Many human tumours, including melanoma, osteosarcoma, lymphomas and various adenocarcinomas are responsive to PPIs. This appears highly conceivable, in as much as almost all human tumours are acidic and express high levels of proton pumps. Paradoxically, metastatic tumours appear to be more responsive to PPIs being more acidic than the majority of primary tumours. However, two clinical trials test the effectiveness of PPIs in chemosensitizing melanoma and osteosarcoma patients. Indeed, tumour acidity represents a very potent mechanism of chemoresistance. A majority of cytotoxic agents, being weak bases, are quickly protonated outside and do not enter the cells, thus preventing drugs to reach specific cellular targets. Clinical data will provide the proof of concept on the use of PPIs as a new class of antitumour agent with a very low level of systemic toxicity as compared with standard chemotherapeutic agents.

  17. Review of proton pump inhibitors for the initial treatment of heartburn: is there a dose ceiling effect?

    Science.gov (United States)

    Kushner, Pamela R; Peura, David A

    2011-05-01

    Proton pump inhibitors (PPIs) are widely used in clinical practice. However, concerns have been expressed about their long-term use, particularly with regard to bone health, Clostridium difficile infections, and drug interactions with platelet aggregation inhibitors. There has been limited guidance for clinicians concerning appropriate dose selection of PPIs for the initial treatment of heartburn. This review explored whether published clinical trials provide evidence of a ceiling above which higher PPI doses do not provide additional clinical benefit over the lowest approved dose. All articles of randomized, controlled clinical trials in nonerosive gastroesophageal reflux disease (GERD) in which the effects of two or more doses of the same PPI on symptomatic relief of heartburn were quantified as a study endpoint were identified and analyzed through PubMed searches up to the end of September 2010. The majority of trials evaluated provided no evidence that higher PPI doses were superior to the lowest approved dose for the initial treatment of heartburn. There were no clinically relevant findings with respect to dose dependence and safety outcomes in these studies. Efficacy outcomes from the trials suggest there may be a dose ceiling effect and highlight the need for further research on the use of the lowest effective PPI doses as an appropriate strategy in the initial treatment of uncomplicated heartburn. Observational studies and some meta-analyses have suggested that long-term PPI pharmacotherapy might be associated with safety concerns, which necessitate the periodic evaluation of therapeutic benefit in terms of symptom resolution and regimen tolerability. However, evidence to date suggests that use of the lowest effective dose for the indication is not associated with significant adverse events, particularly in the short term. Clinical practice suggests that patients requiring long-term treatment should be maintained on the lowest dose necessary to control

  18. Proton Pumps: Mechanism of Action and Applications

    Science.gov (United States)

    Lanyi, Janos K.; Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Recent progress in understanding molecular structures and mechanisms of action of proton pumps has paved the way to their novel applications in biotechnology. Proton pumps, in particular bacteriorhodopsin and ATP synthases, are capable of continuous, renewable conversion of light to chemical, mechanical or electrical energy, which can be used in macro- or nano-scale devices. The capability of protein systems incorporated into liposomes to generate ATP, which can be further used to drive chemical reactions, and to act as molecular motors has been already demonstrated. Other possible applications of such biochemical devices include targeted drug delivery and biocatalytic re actors. All these devices might prove superior to their inorganic alternatives.

  19. Causes of, and Therapeutic Approaches for, Proton Pump Inhibitor-Resistant Gastroesophageal Reflux Disease in Asia

    OpenAIRE

    Kinoshita, Yoshikazu; Ishihara, Shunji

    2008-01-01

    Proton pump inhibitors (PPIs) are the most widely used drugs for treatment of gastroesophageal reflux disease. However, approximately 20% of patients with reflux esophagitis and 40% of those with nonerosive reflux diseases complain of troublesome symptoms, even during treatment with PPIs. In patients with reflux esophagitis, dose escalation and co-administration with a histamine ...

  20. Collateral sensitivity between aminoglycosides and beta-lactam antibiotics depends on active proton pumps.

    Science.gov (United States)

    Azimi, Leila; Rastegar Lari, Abdolaziz

    2017-11-01

    Selection inversion is the hypothesis for antibiotic resistant inhabitation in bacteria and collateral sensitivity is one of the proposed phenomena for achievement of this hypothesis. The presence of collateral sensitivity associated with the proton motivation pump between the aminoglycosides and beta-lactam group of antibiotics is one of the examples of collateral sensitivity in some studies. The aim of this study was to demonstrate that collateral sensitivity between aminoglycosides and beta-lactam antibiotics associated with proton motivation pump may not be true in all cases. In this study, 100 Pseudomonas aeruginosa were surveyed. Gentamicin and imipenem-resistant strains were confirmed by disc diffusion method and MIC. Active proton motivation pumps were screened by pumps inhibitor. Semi-quantitative Real-Time PCR assay was used to confirm gene overexpression. Seventy-six and 79 out of 100 strains were resistant to gentamicin and imipenem, respectively. Seventy-five strains were resistant to both gentamicin and imipenem. The results of proton pump inhibitor test showed the involvement of active proton motivation pump in 22 of 75 imipenem- and gentamicin-resistant strains. According to Real - Time PCR assay, mexX efflux gene was overexpressed in the majority of isolates tested. The collateral sensitivity effect cannot explain the involvement of active proton motivation pumps in both imipenem and gentamicin-resistant strains simultaneously. Active and/or inactive proton pump in gentamicin-sensitive and/or resistant strains cannot be a suitable example for explanation of collateral sensitivity between aminoglycosides and beta-lactam antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation

    Directory of Open Access Journals (Sweden)

    Bertrand P. Tseng

    2013-01-01

    Full Text Available Past work has shown that exposure to gamma rays and protons elicit a persistent oxidative stress in rodent and human neural stem cells (hNSCs. We have now adapted these studies to more realistic exposure scenarios in space, using lower doses and dose rates of these radiation modalities, to further elucidate the role of radiation-induced oxidative stress in these cells. Rodent neural stem and precursor cells grown as neurospheres and human neural stem cells grown as monolayers were subjected to acute and multi-dosing paradigms at differing dose rates and analyzed for changes in reactive oxygen species (ROS, reactive nitrogen species (RNS, nitric oxide and superoxide for 2 days after irradiation. While acute exposures led to significant changes in both cell types, hNSCs in particular, exhibited marked and significant elevations in radiation-induced oxidative stress. Elevated oxidative stress was more significant in hNSCs as opposed to their rodent counterparts, and hNSCs were significantly more sensitive to low dose exposures in terms of survival. Combinations of protons and γ-rays delivered as lower priming or higher challenge doses elicited radioadaptive changes that were associated with improved survival, but in general, only under conditions where the levels of reactive species were suppressed compared to cells irradiated acutely. Protective radioadaptive effects on survival were eliminated in the presence of the antioxidant N-acetylcysteine, suggesting further that radiation-induced oxidative stress could activate pro-survival signaling pathways that were sensitive to redox state. Data corroborates much of our past work and shows that low dose and dose rate exposures elicit significant changes in oxidative stress that have functional consequences on survival.

  2. The purified ATPase from chromaffin granule membranes is an anion-dependent proton pump.

    Science.gov (United States)

    Moriyama, Y; Nelson, N

    1987-07-05

    The proton-ATPase of chromaffin granules was purified so as to maintain its proton-pumping activity when reconstituted into phospholipid vesicles. The purification procedure involved solubilization with polyoxyethylene 9 lauryl ether, hydroxylapatite column, precipitation by ammonium sulfate, and glycerol gradient centrifugation. The protease inhibitor mixture used in previous studies inhibited the proton-pumping activity of the enzyme; therefore, the protein was stabilized by pepstatin A and leupeptin. The enzyme was purified at least 50-fold with respect to both ATPase and proton-pumping activity. The ATP-dependent proton uptake activity of the reconstituted enzyme was absolutely dependent on the presence of Cl- or Br- outside the vesicles, whereas sulfate, acetate, formate, nitrate, and thiocyanate were inhibitory. Sulfate inhibition seems to be due to competition with Cl- on the anion-binding site outside the vesicles, whereas nitrate and thiocyanate inhibited only from the internal side. As with the inhibition by N-ethylmaleimide, the proton-pumping activity was much more sensitive to nitrate than the ATPase activity. About 20 mM nitrate were sufficient for 90% inhibition of the proton-pumping activity while 100 mM inhibited only 50% of the ATPase activity both in situ and in the reconstituted enzyme. The possible regulatory effect of anions on the ATP-dependent proton uptake in secretory granules is discussed.

  3. Proton-pump inhibitors for prevention of upper gastrointestinal bleeding in patients undergoing dialysis.

    Science.gov (United States)

    Song, Young Rim; Kim, Hyung Jik; Kim, Jwa-Kyung; Kim, Sung Gyun; Kim, Sung Eun

    2015-04-28

    To investigate the preventive effects of low-dose proton-pump inhibitors (PPIs) for upper gastrointestinal bleeding (UGIB) in end-stage renal disease. This was a retrospective cohort study that reviewed 544 patients with end-stage renal disease who started dialysis at our center between 2005 and 2013. We examined the incidence of UGIB in 175 patients treated with low-dose PPIs and 369 patients not treated with PPIs (control group). During the study period, 41 patients developed UGIB, a rate of 14.4/1000 person-years. The mean time between the start of dialysis and UGIB events was 26.3 ± 29.6 mo. Bleeding occurred in only two patients in the PPI group (2.5/1000 person-years) and in 39 patients in the control group (19.2/1000 person-years). Kaplan-Meier analysis of cumulative non-bleeding survival showed that the probability of UGIB was significantly lower in the PPI group than in the control group (log-rank test, P < 0.001). Univariate analysis showed that coronary artery disease, PPI use, anti-coagulation, and anti-platelet therapy were associated with UGIB. After adjustments for the potential factors influencing risk of UGIB, PPI use was shown to be significantly beneficial in reducing UGIB compared to the control group (HR = 13.7, 95%CI: 1.8-101.6; P = 0.011). The use of low-dose PPIs in patients with end-stage renal disease is associated with a low frequency of UGIB.

  4. [Pharmacogenic osteoporosis beyond cortisone. Proton pump inhibitors, glitazones and diuretics].

    Science.gov (United States)

    Kann, P H; Hadji, P; Bergmann, R S

    2014-05-01

    [corrected] There are many drugs which can cause osteoporosis or at least favor its initiation. The effect of hormones and drugs with antihormonal activity, such as glucocorticoids and aromatase inhibitors, on initiation of osteoporosis is well known. In addition, proton pump inhibitors, glitazones and diuretics also influence the formation of osteoporosis. The results of currently available studies on the correlation between proton pump inhibitors, glitazones and diuretics on formation of osteoporosis were evaluated and summarized. Proton pump inhibitors and glitazones increase the risk for osteoporotic fractures. Loop diuretics may slightly increase fracture risk, whereas thiazides were shown to be osteoprotective by reducing fracture probability on a relevant scale. Proton pump inhibitors should not be prescribed without serious consideration and then only as long as necessary. Alternatively, the administration of the less effective H2 antagonists should be considered when possible due to the reduction of acid secretion. Because the long-term intake of thiazides is associated with a clinically relevant reduction in the risk of fractures and they are economic and well-tolerated, prescription can be thoroughly recommended within the framework of differential diagnostic considerations in an appropriate clinical context. The briefly increased risk of falling immediately after starting diuretic therapy is the only point which needs to be considered.

  5. Functional dissection of the proton pumping modules of mitochondrial complex I.

    Directory of Open Access Journals (Sweden)

    Stefan Dröse

    2011-08-01

    Full Text Available Mitochondrial complex I, the largest and most complicated proton pump of the respiratory chain, links the electron transfer from NADH to ubiquinone to the pumping of four protons from the matrix into the intermembrane space. In humans, defects in complex I are involved in a wide range of degenerative disorders. Recent progress in the X-ray structural analysis of prokaryotic and eukaryotic complex I confirmed that the redox reactions are confined entirely to the hydrophilic peripheral arm of the L-shaped molecule and take place at a remarkable distance from the membrane domain. While this clearly implies that the proton pumping within the membrane arm of complex I is driven indirectly via long-range conformational coupling, the molecular mechanism and the number, identity, and localization of the pump-sites remains unclear. Here, we report that upon deletion of the gene for a small accessory subunit of the Yarrowia complex I, a stable subcomplex (nb8mΔ is formed that lacks the distal part of the membrane domain as revealed by single particle analysis. The analysis of the subunit composition of holo and subcomplex by three complementary proteomic approaches revealed that two (ND4 and ND5 of the three subunits with homology to bacterial Mrp-type Na(+/H(+ antiporters that have been discussed as prime candidates for harbouring the proton pumps were missing in nb8mΔ. Nevertheless, nb8mΔ still pumps protons at half the stoichiometry of the complete enzyme. Our results provide evidence that the membrane arm of complex I harbours two functionally distinct pump modules that are connected in series by the long helical transmission element recently identified by X-ray structural analysis.

  6. Proton pump inhibitors and osteoporosis

    DEFF Research Database (Denmark)

    Andersen, Bjarne Nesgaard; Johansen, Per Birger; Abrahamsen, Bo

    2016-01-01

    PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months and a di......PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months...... and a discussion of these findings and how this has influenced our understanding of this association, the clinical impact and the underlying pathophysiology. RECENT FINDINGS: New studies have further strengthened existing evidence linking use of PPIs to osteoporosis. Short-term use does not appear to pose a lower...... risk than long-term use. There is a continued lack of conclusive studies identifying the pathogenesis. Direct effects on calcium absorption or on osteoblast or osteoclast action cannot at present plausibly explain the mechanism. SUMMARY: The use of PPIs is a risk factor for development of osteoporosis...

  7. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  8. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  9. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M. [National Institute for Fusion Science, Toki, Gifu (Japan); Sugiyama, T. [Nagoya University, Fro-cho, Chikusa-ku, Nagoya (Japan)

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of the proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.

  10. The prophylactic use of a proton pump inhibitor before food and alcohol.

    LENUS (Irish Health Repository)

    O'Leary, C

    2012-02-03

    BACKGROUND: Patients report that the prophylactic consumption of a proton pump inhibitor minimizes gastrointestinal symptoms expected to be provoked by late-night food and alcohol consumption. The efficacy of this practice has not been studied formally. AIM: To perform a randomized, double-blind, placebo-controlled trial of a single dose of lansoprazole (30 mg) taken prior to a large meal and alcohol consumption. METHODS: Study subjects were recruited randomly from local primary care and hospital physicians. Each participant (n = 56; 37 male, 19 female; mean age, 38 years) completed questionnaires before and after the meal. Approximately 90 min prior to the provocative meal, participants were witnessed taking either placebo or 30 mg lansoprazole. Bar tokens were dispensed to permit the accurate quantification of alcohol consumption (mean, 15 units). RESULTS: Forty per cent of subjects reported significant reflux symptoms. For the entire group, there was no significant difference between lansoprazole and placebo. Post-prandial reflux was more frequent in those consuming > 15 units of alcohol (13\\/26, 50%) compared with those consuming < 15 units (7\\/30, 24%; P < 0.05). In the group who consumed > 15 units of alcohol, lansoprazole was associated with a lower rate of heartburn (5\\/15, 33%) compared with placebo (8\\/11, 73%; P < 0.05). CONCLUSION: A single dose of a proton pump inhibitor prior to indulgence was only associated with reduced heartburn in those consuming > 15 units of alcohol.

  11. Strategies for discontinuation of proton pump inhibitors

    DEFF Research Database (Denmark)

    Haastrup, Peter; Paulsen, Maja S; Begtrup, Luise M

    2014-01-01

    PURPOSE: Proton pump inhibitors (PPIs) are considered to be overprescribed. Consensus on how to attempt discontinuation is, however, lacking. We therefore conducted a systematic review of clinical studies on discontinuation of PPIs. METHODS: Systematic review based on clinical studies investigating...

  12. Intrinsic uncoupling of mitochondrial proton pumps. 2. Modeling studies.

    Science.gov (United States)

    Pietrobon, D; Zoratti, M; Azzone, G F; Caplan, S R

    1986-02-25

    The thermodynamic and kinetic properties associated with intrinsic uncoupling in a six-state model of a redox proton pump have been studied by computing the flow-force relations for different degrees of coupling. Analysis of these relations shows the regulatory influence of the thermodynamic forces on the extent and relative contributions of redox slip and proton slip. Inhibition has been introduced into the model in two different ways, corresponding to possible modes of action of experimental inhibitors. Experiments relating the rate of electron transfer to delta microH at static head upon progressive inhibition of the pumps have been simulated considering (1) the limiting case that the nonzero rate of electron transfer at static head is only due to intrinsic uncoupling (no leaks) and (2) the experimentally observed case that about 30% of the nonzero rate of electron transfer at static head is due to a constant proton leakage conductance in parallel with the pumps, the rest being due to intrinsic uncoupling. The same simulations have been performed for experiments in which the rate of electron transfer is varied by varying the substrate concentration rather than by using an inhibitor. The corresponding experimental results obtained by measuring delta microH and the rate of electron transfer at different succinate concentrations in rat liver mitochondria are presented. Comparison between simulated behavior and experimental results leads to the general conclusion that the typical relationship between rate of electron transfer and delta microH found in mitochondria at static head could certainly be a manifestation of some degree of intrinsic uncoupling in the redox proton pumps.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Piston-assisted proton pumping in Complex I of mitochondria membranes

    Science.gov (United States)

    Mourokh, Lev; Filonenko, Ilan

    2014-03-01

    Proton-pumping mechanism of Complex I remains mysterious because its electron and proton paths are well separated and the direct Coulomb interaction seems to be negligible. The structure of this enzyme was resolved very recently and its functionality was connected the shift of the helix HL. We model the helix as a piston oscillating between the protons and electrons. We assume that positive charges are accumulated near the edges of the helix. In the oxidized state, the piston is attracted to electrons, so its distance to the proton sites increases, the energy of these sites decreases and the sites can be populated. When electrons proceed to the drain, elastic forces return the piston to the original position and the energies of populated proton sites increase, so the protons can be transferred to the positive site of the membrane. In this work, we explore a simplified model when the interaction of the piston with electrons is replaced by a periodic force. We derive quantum Heisenberg equations for the proton operators and solve them jointly with the Langevin equation for the piston position. We show that the proton pumping is possible in such structure with parameters closely resembling the real system. We also address the feasibility of using such mechanism in nanoelectronics.

  14. Neutrons in active proton therapy. Parameterization of dose and dose equivalent

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Uwe; Haelg, Roger A. [Univ. of Zurich (Switzerland). Dept. of Physics; Radiotherapy Hirslanden AG, Aarau (Switzerland); Lomax, Tony [Paul Scherrer Institute, Villigen (Switzerland). Center for Proton Therapy

    2017-08-01

    One of the essential elements of an epidemiological study to decide if proton therapy may be associated with increased or decreased subsequent malignancies compared to photon therapy is an ability to estimate all doses to non-target tissues, including neutron dose. This work therefore aims to predict for patients using proton pencil beam scanning the spatially localized neutron doses and dose equivalents. The proton pencil beam of Gantry 1 at the Paul Scherrer Institute (PSI) was Monte Carlo simulated using GEANT. Based on the simulated neutron dose and neutron spectra an analytical mechanistic dose model was developed. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed model in order to calculate the neutron component of the delivered dose distribution for each treated patient. The neutron dose was estimated for two patient example cases. The analytical neutron dose model represents the three-dimensional Monte Carlo simulated dose distribution up to 85 cm from the proton pencil beam with a satisfying precision. The root mean square error between Monte Carlo simulation and model is largest for 138 MeV protons and is 19% and 20% for dose and dose equivalent, respectively. The model was successfully integrated into the PSI treatment planning system. In average the neutron dose is increased by 10% or 65% when using 160 MeV or 177 MeV instead of 138 MeV. For the neutron dose equivalent the increase is 8% and 57%. The presented neutron dose calculations allow for estimates of dose that can be used in subsequent epidemiological studies or, should the need arise, to estimate the neutron dose at any point where a subsequent secondary tumour may occur. It was found that the neutron dose to the patient is heavily increased with proton energy.

  15. Celecoxib versus a non-selective NSAID plus proton-pump inhibitor: what are the considerations?.

    Science.gov (United States)

    Chen, Judy T; Pucino, Frank; Resman-Targoff, Beth H

    2006-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are extensively used worldwide. However, associated adverse gastrointestinal effects (NSAID gastropathy) such as bleeding, perforation and obstruction result in considerable morbidity, mortality, and expense. Although it is essential to employ gastroprotective strategies to minimize these complications in patients at risk, controversy remains on whether celecoxib alone or a non-selective NSAID in conjunction with a proton-pump inhibitor (PPI) is a superior choice. Recent concerns regarding potential cardiovascular toxicities associated with cox-2 selective inhibitors may favor non-selective NSAID/PPI co-therapy as the preferred choice. Concomitant use of low-dose aspirin with any NSAID increases the risk of gastrointestinal complications and diminishes the improved gastrointestinal safety profile of celecoxib; whereas use of ibuprofen plus PPI regimens may negate aspirin's antiplatelet benefits. Evidence shows that concurrent use of a non-selective NSAID (such as naproxen) plus a PPI is as effective in preventing NSAID gastropathy as celecoxib, and may be more cost-effective. Patients failing or intolerant to this therapy would be candidates for celecoxib at the lowest effective dose for the shortest duration of time. Potential benefits from using low-dose celecoxib with a PPI in patients previously experiencing bleeding ulcers while taking NSAIDs remains to be proven. An evidence-based debate is presented to assist clinicians with the difficult decision-making process of preventing NSAID gastropathy while minimizing other complications.

  16. The potential drug-drug interaction between proton pump inhibitors and warfarin

    DEFF Research Database (Denmark)

    Henriksen, Daniel Pilsgaard; Stage, Tore Bjerregaard; Hansen, Morten Rix

    2015-01-01

    BACKGROUND: Proton pump inhibitors (PPIs) have been suggested to increase the effect of warfarin, and clinical guidelines recommend careful monitoring of international normalized ratio (INR) when initiating PPI among warfarin users. However, this drug-drug interaction is sparsely investigated...... in a clinical setting. The aim was to assess whether initiation of PPI treatment among users of warfarin leads to increased INR values. METHODS: The study was an observational self-controlled study from 1998 to 2012 leveraging data on INR measurements on patients treated with warfarin from primary care...... and outpatient clinics and their use of prescription drugs. Data were analyzed in 2015. We assessed INR, warfarin dose, and dose/INR ratio before and after initiating PPI treatment using the paired student's t-test. RESULTS: We identified 305 warfarin users initiating treatment with PPIs. The median age was 71...

  17. Proton pump inhibitors affect the gut microbiome

    NARCIS (Netherlands)

    Imhann, Floris; Bonder, Marc Jan; Vich Vila, Arnau; Fu, Jingyuan; Mujagic, Zlatan; Vork, Lisa; Feenstra, Ettje T.; Jankipersadsing, Soesma A; Cenit, Maria Carmen; Harmsen, Hermie J M; Dijkstra, Gerard; Franke, Lude; Xavier, Ramnik J; Jonkers, Daisy; Wijmenga, Cisca; Weersma, Rinse K; Zhernakova, Alexandra

    BACKGROUND AND AIMS: Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or

  18. Recent effectiveness of proton pump inhibitors for severe reflux esophagitis: the first multicenter prospective study in Japan.

    Science.gov (United States)

    Mizuno, Hideki; Matsuhashi, Nobuyuki; Sakaguchi, Masahiro; Inoue, Syuji; Nakada, Koji; Higuchi, Kazuhide; Haruma, Ken; Joh, Takashi

    2015-11-01

    Proton pump inhibitors are the first-line treatment for reflux esophagitis. Because severe reflux esophagitis has very low prevalence in Japan, little is known about the effectiveness of proton pump inhibitors in these patients. This prospective multicenter study assessed the effectiveness of proton pump inhibitors for severe reflux esophagitis in Japan. Patients with modified Los Angeles grade C or D reflux esophagitis were treated with daily omeprazole (10 or 20 mg), lansoprazole (15 or 30 mg), or rabeprazole (10, 20, or 40 mg) for 8 weeks. Healing was assessed endoscopically, with questionnaires administered before and after treatment to measure the extent of reflux and dyspepsia symptoms. Factors affecting healing rates, including patient characteristics and endoscopic findings, were analyzed. Of the 115 patients enrolled, 64 with grade C and 19 with grade D reflux esophagitis completed the study. The healing rate was 67.5% (56/83), with 15 of the other 27 patients (55.6%) improving to grade A or B. No patient characteristic or endoscopic comorbidity was significantly associated with healing rate. Reflux and dyspepsia symptoms improved significantly with treatment. The low healing rate suggests the need of endoscopic examination to assess healing of reflux esophagitis at the end of therapy. (UMIN000005271).

  19. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca exchangers.

    Science.gov (United States)

    Barkla, Bronwyn J; Hirschi, Kendal D; Pittman, Jon K

    2008-05-01

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+)exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H(+)-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca(2+)/H(+) exchangers and H(+) pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca(2+) flux. These results suggest cautious interpretation of mutant Ca(2+)/H(+) exchanger phenotypes that may be due to either perturbed Ca(2+) or H(+) transport.

  20. Low-dose gamma-rays and simulated solar particle event protons modify splenocyte gene and cytokine expression patterns

    International Nuclear Information System (INIS)

    Rizvi, A.; Pecaut, M.J.; Gridley, D.S.

    2011-01-01

    The goal was to investigate the T helper (Th) response in splenocytes of mice exposed to low-dose/low-dose-rate (LDR) γ-rays, simulated solar particle event protons (sSPE), or combination of both. C57BL/6 mice were exposed to LDR γ-radiation ( 57 Co) to a total dose of 0.05 Gray (Gy) at 0.024 cGy/h, either with or without subsequent exposure to 2 Gy sSPE protons. Expression of genes related to Th cells was evaluated immediately after exposure (day 0). On day 21, intra- and extracellular cytokine production was assessed after activation with anti-CD3 monoclonal antibodies (mAb) or phorbol 12-myristate 13-acetate/ionophore (PMA/I). Five genes were significantly modulated on day 0 in one or more of the irradiated groups compared to controls (p<0.05): Ccl11, Ccr5, Cd80, Inha, and Il9. On day 21, numbers of cells positive for interferon-γ were high in the LDR + sSPE group versus 0 Gy and LDR γ-rays (p<0.05), but there was no difference in interleukin (IL)-2 and tumor necrosis factor (TNF)-α. Levels of secreted cytokines after anti-CD3 mAb activation were high for 5 (maximum intensity projection (MIP)-1α, GM-CSF, interferon (IFN)-γ, TNF-α, IL-13) and low for 2 (IL-7, IL-9) in all irradiated groups. Priming with LDR photons had a significant effect on IFN-γ and IL-17 compared to sSPE protons alone; IL-2 was low only in the LDR + sSPE group. The cytokine patterns after anti-phorbol myristate acetate (PMA)/ionomycin (I) activation were different compared to anti-CD3 mAb and with fewer differences among groups. The data show that total-body exposure to space-relevant radiation has profound effects on Th cell status and that priming with LDR γ-rays can in some cases modulate the response to sSPE. (author)

  1. The Role of Proton Pump Inhibitors in the Management of Pediatric Eosinophilic Esophagitis

    Directory of Open Access Journals (Sweden)

    Carolina Gutiérrez-Junquera

    2018-05-01

    Full Text Available Eosinophilic esophagitis (EoE is a chronic, local, immune-mediated disorder characterized by symptoms of esophageal dysfunction and the presence of a dense eosinophilic infiltrate in the esophageal mucosa. Consensus diagnostic recommendations for EoE diagnosis included absence of histological response to a proton-pump inhibitor (PPI trial, to exclude gastro-oesophageal reflux disease (GERD-associated esophagitis. This recommendation exposed an entity known as “proton pump inhibitor-responsive esophageal eosinophilia” (PPI-REE, which refers to patients with EoE phenotype who are PPI-responsive and do not present GERD. In recent years, there is evidence which indicates that PPI-REE is a sub-phenotype of EoE with similar clinical, endoscopic, histological and genetic characteristics, as well as Th2-related inflammatory response. As a result, PPIs should be considered another treatment for EoE and not a diagnostic tool. PPI-REE was originally described in a case series which included two children and in two retrospective pediatric series. Later, a prospective pediatric study showed a high rate of response to PPIs at high doses with long-term maintenance at lower doses. PPI monotherapy in children with esophageal eosinophilia (EE has been observed to reduce eotaxin-3 expression in epithelial cells and to practically reverse the allergy and inflammatory transcriptome. These data reveal that PPIs are also an effective treatment for EoE in pediatric patients, although more studies are necessary in order to define the best induction and maintenance treatment regimen, the long-term safety profile and their influence on the occurrence of fibrosis and esophageal remodeling.

  2. Shortcomings of the first-generation proton pump inhibitors

    NARCIS (Netherlands)

    Tytgat, G. N.

    2001-01-01

    Proton pump inhibitors (PPIs) are widely prescribed for the treatment of gastro-oesophageal reflux disease (GORD) as well as gastric and duodenal ulcers, and these agents are now considered the drugs of choice for managing such acid-related disorders. Despite their well-documented efficacy and

  3. Mechanisms of Low Dose Radiation-induced T helper Cell Function

    International Nuclear Information System (INIS)

    Gridley, Daila S.

    2008-01-01

    Exposure to radiation above levels normally encountered on Earth can occur during wartime, accidents such as those at Three Mile Island and Chernobyl, and detonation of 'dirty bombs' by terrorists. Relatively high levels of radiation exposure can also occur in certain occupations (low-level waste sites, nuclear power plants, nuclear medicine facilities, airline industry, and space agencies). Depression or dysfunction of the highly radiosensitive cells of the immune system can lead to serious consequences, including increased risk for infections, cancer, hypersensitivity reactions, poor wound healing, and other pathologies. The focus of this research was on the T helper (Th) subset of lymphocytes that secrete cytokines (proteins), and thus control many actions and interactions of other cell types that make up what is collectively known as the immune system. The Department of Energy (DOE) Low Dose Radiation Program is concerned with mechanisms altered by exposure to high energy photons (x- and gamma-rays), protons and electrons. This study compared, for the first time, the low-dose effects of two of these radiation forms, photons and protons, on the response of Th cells, as well as other cell types with which they communicate. The research provided insights regarding gene expression patterns and capacity to secrete potent immunostimulatory and immunosuppressive cytokines, some of which are implicated in pathophysiological processes. Furthermore, the photon versus proton comparison was important not only to healthy individuals who may be exposed, but also to patients undergoing radiotherapy, since many medical centers in the United States, as well as worldwide, are now building proton accelerators. The overall hypothesis of this study was that whole-body exposure to low-dose photons (gamma-rays) will alter CD4+ Th cell function. We further proposed that exposure to low-dose proton radiation will induce a different pattern of gene and functional changes compared to

  4. Crystallographic Structure of Xanthorhodopsin, the Light-Driven Proton Pump With a Dual Chromophore

    International Nuclear Information System (INIS)

    Luecke, H.; Schobert, B.; Stagno, J.; Imasheva, E.S.; Wang, J.M.; Balashov, S.P.; Lanyi, J.K

    2008-01-01

    Homologous to bacteriorhodopsin and even more to proteorhodopsin, xanthorhodopsin is a light-driven proton pump that, in addition to retinal, contains a noncovalently bound carotenoid with a function of a light-harvesting antenna. We determined the structure of this eubacterial membrane protein-carotenoid complex by X-ray diffraction, to 1.9-(angstrom) resolution. Although it contains 7 transmembrane helices like bacteriorhodopsin and archaerhodopsin, the structure of xanthorhodopsin is considerably different from the 2 archaeal proteins. The crystallographic model for this rhodopsin introduces structural motifs for proton transfer during the reaction cycle, particularly for proton release, that are dramatically different from those in other retinal-based transmembrane pumps. Further, it contains a histidine-aspartate complex for regulating the pK a of the primary proton acceptor not present in archaeal pumps but apparently conserved in eubacterial pumps. In addition to aiding elucidation of a more general proton transfer mechanism for light-driven energy transducers, the structure defines also the geometry of the carotenoid and the retinal. The close approach of the 2 polyenes at their ring ends explains why the efficiency of the excited-state energy transfer is as high as ∼45%, and the 46 o angle between them suggests that the chromophore location is a compromise between optimal capture of light of all polarization angles and excited-state energy transfer

  5. Similar Efficacy of Proton-Pump Inhibitors vs H2-Receptor Antagonists in Reducing Risk of Upper Gastrointestinal Bleeding or Ulcers in High-Risk Users of Low-Dose Aspirin.

    Science.gov (United States)

    Chan, Francis K L; Kyaw, Moe; Tanigawa, Tetsuya; Higuchi, Kazuhide; Fujimoto, Kazuma; Cheong, Pui Kuan; Lee, Vivian; Kinoshita, Yoshikazu; Naito, Yuji; Watanabe, Toshio; Ching, Jessica Y L; Lam, Kelvin; Lo, Angeline; Chan, Heyson; Lui, Rashid; Tang, Raymond S Y; Sakata, Yasuhisa; Tse, Yee Kit; Takeuchi, Toshihisa; Handa, Osamu; Nebiki, Hiroko; Wu, Justin C Y; Abe, Takashi; Mishiro, Tsuyoshi; Ng, Siew C; Arakawa, Tetsuo

    2017-01-01

    It is not clear whether H 2 -receptor antagonists (H2RAs) reduce the risk of gastrointestinal (GI) bleeding in aspirin users at high risk. We performed a double-blind randomized trial to compare the effects of a proton pump inhibitor (PPI) vs a H2RA antagonist in preventing recurrent upper GI bleeding and ulcers in high-risk aspirin users. We studied 270 users of low-dose aspirin (≤325 mg/day) with a history of endoscopically confirmed ulcer bleeding at 8 sites in Hong Kong and Japan. After healing of ulcers, subjects with negative results from tests for Helicobacter pylori resumed aspirin (80 mg) daily and were assigned randomly to groups given a once-daily PPI (rabeprazole, 20 mg; n = 138) or H2RA (famotidine, 40 mg; n = 132) for up to 12 months. Subjects were evaluated every 2 months; endoscopy was repeated if they developed symptoms of upper GI bleeding or had a reduction in hemoglobin level greater than 2 g/dL and after 12 months of follow-up evaluation. The adequacy of upper GI protection was assessed by end points of recurrent upper GI bleeding and a composite of recurrent upper GI bleeding or recurrent endoscopic ulcers at month 12. During the 12-month study period, upper GI bleeding recurred in 1 patient receiving rabeprazole (0.7%; 95% confidence interval [CI], 0.1%-5.1%) and in 4 patients receiving famotidine (3.1%; 95% CI, 1.2%-8.1%) (P = .16). The composite end point of recurrent bleeding or endoscopic ulcers at month 12 was reached by 9 patients receiving rabeprazole (7.9%; 95% CI, 4.2%-14.7%) and 13 patients receiving famotidine (12.4%; 95% CI, 7.4%-20.4%) (P = .26). In a randomized controlled trial of users of low-dose aspirin at risk for recurrent GI bleeding, a slightly lower proportion of patients receiving a PPI along with aspirin developed recurrent bleeding or ulcer than of patients receiving an H2RA with the aspirin, although this difference was not statistically significant. ClincialTrials.gov no: NCT01408186. Copyright © 2017 AGA

  6. A randomized controlled trial of laparoscopic nissen fundoplication versus proton pump inhibitors for treatment of patients with chronic gastroesophageal reflux disease: One-year follow-up.

    Science.gov (United States)

    Anvari, Mehran; Allen, Christopher; Marshall, John; Armstrong, David; Goeree, Ron; Ungar, Wendy; Goldsmith, Charles

    2006-12-01

    A randomized controlled trial conducted in patients with gastroesophageal reflux disease compared optimized medical therapy using proton pump inhibitor (n = 52) with laparoscopic Nissen fundoplication (n = 52). Patients were monitored for 1 year. The primary end point was frequency of gastroesophageal reflux dis-ease symptoms. Surgical patients had improved symptoms, pH control, and overall quality of life health index after surgery at 1 year compared with the medical group. The overall gastroesophageal reflux disease symptom score at 1 year was unchanged in the medical patients, but improved in the surgical patients. Fourteen patients in the medical arm experienced symptom relapse requiring titration of the proton pump inhibitor dose, but 6 had satisfactory symptom remission. No surgical patients required additional treatment for symptom control. Patients controlled on long-term proton pump inhibitor therapy for chronic gastroesophageal reflux disease are excellent surgical candidates and should experience improved symptom control after surgery at 1 year.

  7. Conformational change during photocycle of bacteriorhodopsin and its proton-pumping mechanism.

    Science.gov (United States)

    Chou, K C

    1993-06-01

    Based on the recent finding on the structural difference of seven helix bundles in the all-trans and 13-cis bacteriorhodopsins, the distances among the key groups performing the function of proton translocation as well as their microenvironments have been investigated. Consequently, a pore-gated model was proposed for the light-driven proton-pumping mechanism of bacteriorhodopsin. According to this model, the five double-bounded polyene chain in retinal chromophore can be phenomenologically likened to a molecular "lever," whose one end links to a "piston" (the beta-ionone ring) and the other end to a pump "relay station" (the Schiff base). During the photocycle of bacteriorhodopsin, the molecular "lever" is moving up and down as marked by the position change of the "piston," so as to trigger the gate of pore to open and close alternately. When the "piston" is up, the pore-controlled gate is open so that the water channel from Asp-96 to the Schiff base and that from the Schiff base to Asp-85 is established; when the "piston" is down, the pore-controlled gate is closed and the water channels for proton transportation in both the cytoplasmic half and extracellular half are blocked. The current model allows a consistent interpretation of a great deal of experimental data and also provides a useful basis for further investigating the mechanism of proton pumping by bacteriorhodopsin.

  8. Comparative Dose Accuracy of Durable and Patch Insulin Infusion Pumps

    Science.gov (United States)

    Jahn, Luis G.; Capurro, Jorge J.; Levy, Brian L.

    2013-01-01

    Background: As all major insulin pump manufacturers comply with the international infusion pump standard EN 60601-2-24:1998, there may be a general assumption that all pumps are equal in insulin-delivery accuracy. This research investigates single-dose and averaged-dose accuracy of incremental basal deliveries for one patch model and three durable models of insulin pumps. Method: For each pump model, discrete single doses delivered during 0.5 U/h basal rate infusion over a 20 h period were measured using a time-stamped microgravimetric system. Dose accuracy was analyzed by comparing single doses and time-averaged doses to specific accuracy thresholds (±5% to ±30%). Results: The percentage of single doses delivered outside accuracy thresholds of ±5%, ±10%, and ±20% were as follows: Animas OneTouch® Ping® (43.2%, 14.3%, and 1.8%, respectively), Roche Accu-Chek® Combo (50.6%, 24.4%, and 5.5%), Medtronic Paradigm® RevelTM/VeoTM (54.2%, 26.7%, and 6.6%), and Insulet OmniPod® (79.1%, 60.5%, and 34.9%). For 30 min, 1 h, and 2 h averaging windows, the percentage of doses delivered outside a ±15% accuracy were as follows: OneTouch Ping (1.0%, 0.4%, and 0%, respectively), Accu-Chek Combo (4.2%, 3.5%, and 3.1%), Paradigm Revel/Veo (3.9%, 3.1%, and 2.2%), and OmniPod (33.9%, 19.9%, and 10.3%). Conclusions: This technical evaluation demonstrates significant differences in single-dose and averaged-dose accuracy among the insulin pumps tested. Differences in dose accuracy were most evident between the patch pump model and the group of durable pump models. Of the pumps studied, the Animas OneTouch Ping demonstrated the best single-dose and averaged-dose accuracy. Further research on the clinical relevance of these findings is warranted. PMID:23911184

  9. Comparison of proton and photon dose distributions

    International Nuclear Information System (INIS)

    Goitein, Michael

    1995-01-01

    Recently, there has been considerable work, as yet largely theoretical, in developing ways to improve the dose distributions which can be achieved with x-rays. Foremost among these developments are the use of non-coplanar beam directions, the use of intensity-modulated beams, and the implementation of computer-controlled delivery of complex plans using new beam modifiers such as multi-leaf collimators and beam scanners. One way of improving the dose distributions which have been achieved with conventional radiations is to use protons, with their quite different physical characteristics but very similar radiobiological properties as compared with supervoltage x-rays. Some substantial experience has been gained in the use of protons which has confirmed clinically that better results have been obtained as a result of their better dose distributions. Indeed, it is fair to say that the advantages which protons have demonstrated are, in large part, responsible for the renewed interest in improving the dose distributions from all radiation modalities. So much better are the dose distributions which the new techniques, mentioned above, offer that there is the impression that, with their use, photons can deliver dose distributions as good as can be obtained with protons. In this paper, the extent of the possible improvement will be discussed. It will be suggested that the integral dose is relatively little affected by the treatment technique - so that the lower normal tissue doses which the new approaches offer is almost always at the price of delivering dose to a larger volume. Protons can be matched pencil beam for pencil beam with photons - and then almost always deliver substantially less dose outside the target volume. Ultimately, the clinical importance of the differences will have to decided by clinical trial

  10. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps.

    Science.gov (United States)

    Vedovato, Natascia; Gadsby, David C

    2014-04-01

    A single Na(+)/K(+)-ATPase pumps three Na(+) outwards and two K(+) inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na(+) than K(+) generates outward current across the cell membrane. Less well understood is the ability of Na(+)/K(+) pumps to generate an inward current of protons. Originally noted in pumps deprived of external K(+) and Na(+) ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K(+) and Na(+) concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na(+) release from phosphorylated Na(+)/K(+) pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na(+)/K(+) pumps that enables proton import is not required for completion of the 3 Na(+)/2 K(+) transport cycle. However, the back-step occurs readily during Na(+)/K(+) transport when external K(+) ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na(+)-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na(+) and K(+) ions that passes through binding site II. The inferred occurrence of Na(+)/K(+) exchange and H(+) import during the same conformational cycle of a single molecule identifies the Na(+)/K(+) pump as a hybrid transporter. Whether Na(+)/K(+) pump-mediated proton inflow may have any physiological or

  11. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy.

    Science.gov (United States)

    Spugnini, Enrico P; Citro, Gennaro; Fais, Stefano

    2010-05-08

    The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.

  12. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy

    Directory of Open Access Journals (Sweden)

    Fais Stefano

    2010-05-01

    Full Text Available Abstract The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.

  13. Proton pump inhibitors while belonging to the same family of generic drugs show different anti-tumor effect.

    Science.gov (United States)

    Lugini, Luana; Federici, Cristina; Borghi, Martina; Azzarito, Tommaso; Marino, Maria Lucia; Cesolini, Albino; Spugnini, Enrico Pierluigi; Fais, Stefano

    2016-08-01

    Tumor acidity represents a major cause of chemoresistance. Proton pump inhibitors (PPIs) can neutralize tumor acidity, sensitizing cancer cells to chemotherapy. To compare the anti-tumor efficacy of different PPIs in vitro and in vivo. In vitro experiments PPIs anti-tumor efficacy in terms of cell proliferation and cell death/apoptosis/necrosis evaluation were performed. In vivo PPIs efficacy experiments were carried out using melanoma xenograft model in SCID mice. Lansoprazole showed higher anti-tumor effect when compared to the other PPIs. The lansoprazole effect lasted even upon drug removal from the cell culture medium and it was independent from the lipophilicity of the PPIs formulation. These PPIs have shown different anti-tumoral efficacy, and the most effective at low dose was lansoprazole. The possibility to contrast tumor acidity by off-label using PPIs opens a new field of oncology investigation.

  14. Proton pump inhibitor resistance, the real challenge in gastro-esophageal reflux disease.

    Science.gov (United States)

    Cicala, Michele; Emerenziani, Sara; Guarino, Michele Pier Luca; Ribolsi, Mentore

    2013-10-21

    Gastro-esophageal reflux disease (GERD) is one of the most prevalent chronic diseases. Although proton pump inhibitors (PPIs) represent the mainstay of treatment both for healing erosive esophagitis and for symptom relief, several studies have shown that up to 40% of GERD patients reported either partial or complete lack of response of their symptoms to a standard PPI dose once daily. Several mechanisms have been proposed as involved in PPIs resistance, including ineffective control of gastric acid secretion, esophageal hypersensitivity, ultrastructural and functional changes in the esophageal epithelium. The diagnostic evaluation of a refractory GERD patients should include an accurate clinical evaluation, upper endoscopy, esophageal manometry and ambulatory pH-impedance monitoring, which allows to discriminate non-erosive reflux disease patients from those presenting esophageal hypersensitivity or functional heartburn. Treatment has been primarily based on doubling the PPI dose or switching to another PPI. Patients with proven disease, not responding to PPI twice daily, are eligible for anti-reflux surgery.

  15. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps

    Science.gov (United States)

    Vedovato, Natascia

    2014-01-01

    A single Na+/K+-ATPase pumps three Na+ outwards and two K+ inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na+ than K+ generates outward current across the cell membrane. Less well understood is the ability of Na+/K+ pumps to generate an inward current of protons. Originally noted in pumps deprived of external K+ and Na+ ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K+ and Na+ concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na+ release from phosphorylated Na+/K+ pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na+/K+ pumps that enables proton import is not required for completion of the 3 Na+/2 K+ transport cycle. However, the back-step occurs readily during Na+/K+ transport when external K+ ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na+-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na+ and K+ ions that passes through binding site II. The inferred occurrence of Na+/K+ exchange and H+ import during the same conformational cycle of a single molecule identifies the Na+/K+ pump as a hybrid transporter. Whether Na+/K+ pump–mediated proton inflow may have any physiological or pathophysiological significance remains to be clarified. PMID

  16. Use of proton pump inhibitors after anti-reflux surgery

    DEFF Research Database (Denmark)

    Lodrup, A.; Pottegård, Anton; Hallas, J.

    2014-01-01

    Objective Antireflux surgery (ARS) has been suggested as an alternative to lifelong use of proton pump inhibitors (PPI) in reflux disease. Data from clinical trials on PPI use after ARS have been conflicting. We investigated PPI use after ARS in the general Danish population using nationwide...

  17. Analytical probabilistic proton dose calculation and range uncertainties

    Science.gov (United States)

    Bangert, M.; Hennig, P.; Oelfke, U.

    2014-03-01

    We introduce the concept of analytical probabilistic modeling (APM) to calculate the mean and the standard deviation of intensity-modulated proton dose distributions under the influence of range uncertainties in closed form. For APM, range uncertainties are modeled with a multivariate Normal distribution p(z) over the radiological depths z. A pencil beam algorithm that parameterizes the proton depth dose d(z) with a weighted superposition of ten Gaussians is used. Hence, the integrals ∫ dz p(z) d(z) and ∫ dz p(z) d(z)2 required for the calculation of the expected value and standard deviation of the dose remain analytically tractable and can be efficiently evaluated. The means μk, widths δk, and weights ωk of the Gaussian components parameterizing the depth dose curves are found with least squares fits for all available proton ranges. We observe less than 0.3% average deviation of the Gaussian parameterizations from the original proton depth dose curves. Consequently, APM yields high accuracy estimates for the expected value and standard deviation of intensity-modulated proton dose distributions for two dimensional test cases. APM can accommodate arbitrary correlation models and account for the different nature of random and systematic errors in fractionated radiation therapy. Beneficial applications of APM in robust planning are feasible.

  18. [Proton pump inhibitors in gastro-oesophageal reflux disease: what is the further step?].

    Science.gov (United States)

    Simon, Mireille; Zerbib, Frank

    2013-01-01

    Optimisation of proton pump inhibitors use may improve reflux symptoms in 20-25% of the patients. Pathological gastro-oesophageal reflux should be documented in a patient with refractory reflux symptoms using upper endoscopy and/or pH testing. While on proton pump inhibitors twice daily, persistent symptoms are not related to gastro-oesophageal refluxdisease(GERD) in 50% of the patients. The new anti-reflux compounds have yet a limited efficacy and side effects that currently limit their development. Copyright © 2012. Published by Elsevier Masson SAS.

  19. Outcomes in patients with nonerosive reflux disease treated with a proton pump inhibitor and alginic acid ± glycyrrhetinic acid and anthocyanosides

    Directory of Open Access Journals (Sweden)

    Di Pierro F

    2013-03-01

    Full Text Available Francesco Di Pierro,1 Mario Gatti,2 Giuliana Rapacioli,3 Leandro Ivaldi4 1Velleja Research, Milan, 2Gastroenterology Department, Giussano Hospital, Monza-Brianza, 3AIOR, Piacenza, 4Digestive Endoscopic Department, Ceva Hospital, Ceva, Cuneo, Italy Background: The purpose of this study was to compare the efficacy of alginic acid alone versus alginic acid combined with low doses of pure glycyrrhetinic acid and bilberry anthocyanosides as an addon to conventional proton pump inhibitor therapy in relieving symptoms associated with nonerosive reflux disease. Methods: This prospective, randomized, 8-week, open-label trial was conducted at two centers. Sixty-three patients with persistent symptoms of gastroesophageal reflux disease and normal upper gastrointestinal endoscopy were eligible for the study. Patients in group A (n = 31 were treated with pantoprazole and a formula (Mirgeal® containing alginic acid and low doses of pure glycyrrhetinic acid + standardized Vaccinium myrtillus extract for 4 weeks, then crossed over to the multi-ingredient formula for a further 4 weeks. Patients in group B (n = 32 were treated pantoprazole and alginic acid alone twice daily, then crossed over to alginic acid twice daily for a further 4 weeks. Efficacy was assessed by medical evaluation of a symptom relief score, estimated using a visual analog scale (0–10. Side effects, tolerability, and compliance were also assessed. Results: Of the 63 patients enrolled in the study, 58 (29 in group A and 29 in group B completed the 8-week trial. The baseline characteristics were comparable between the two groups. During the study, significant differences were recorded in symptom scores for both groups. In group A, symptoms of chest pain, heartburn, and abdominal swelling were less serious than in group B. Treatment A was better tolerated, did not induce hypertension, and had fewer side effects than treatment B. No significant differences in compliance were found between the

  20. Effectiveness of ranitidine bismuth citrate and proton pump inhibitor ...

    African Journals Online (AJOL)

    Effectiveness of ranitidine bismuth citrate and proton pump inhibitor based triple therapies of Helicobacter pylori in Turkey. ... Results: When we look at the eradication rates of the treatment groups, only two groups (ranitidine bismuth citrate and rabeprazole groups) had eradication rates greater than 80%, both at intention to ...

  1. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Kushin, V.V.; Akatov, Yu A.; Myltseva, V.A.

    1999-01-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 deg. inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 μGy/day, and dose equivalent rates from 264.3 to 413 μSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 μGy/day and dose equivalent rate of 30.8 μSv/day, respectively

  2. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit.

    Science.gov (United States)

    Badhwar, G D; Kushin, V V; Akatov YuA; Myltseva, V A

    1999-06-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 degree inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 microGy/day, and dose equivalent rates from 264.3 to 413 microSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 microGy/day and dose equivalent rate of 30.8 microSv/day, respectively.

  3. Porphyromonas gingivalis is highly sensitive to inhibitors of a proton-pumping ATPase.

    Science.gov (United States)

    Sekiya, Mizuki; Shimoyama, Yu; Ishikawa, Taichi; Sasaki, Minoru; Futai, Masamitsu; Nakanishi-Matsui, Mayumi

    2018-04-15

    Porphyromonas gingivalis is a well-known Gram-negative bacterium that causes periodontal disease. The bacterium metabolizes amino acids and peptides to obtain energy. An ion gradient across its plasma membrane is thought to be essential for nutrient import. However, it is unclear whether an ion-pumping ATPase responsible for the gradient is required for bacterial growth. Here, we report the inhibitory effect of protonophores and inhibitors of a proton-pumping ATPase on the growth of P. gingivalis. Among the compounds examined, curcumin and citreoviridin appreciably reduced the bacterial growth. Furthermore, these compounds inhibited the ATPase activity in the bacterial membrane, where the A-type proton-pumping ATPase (A-ATPase) is located. This study suggests that curcumin and citreoviridin inhibit the bacterial growth by inhibiting the A-ATPase in the P. gingivalis membrane. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Public Dose Assessment Modeling from Skyshine by Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mwambinga, S. A. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Yoo, S. J. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, the skyshine dose by proton accelerator (230 MeV) has been evaluated. The amount of dose by skyshine is related to some influence factors which are emission angle (Height wall), the thickness of ceiling and distance from source to receptor (Human body). Empirical formula is made by using MCNPX code results. It can easily calculate and assess dose from skyshine by proton accelerator. The skyshine doses are calculated with MCNPX code and DCFs in ICRP 116. Thereafter, we made empirical formula which can calculate dose easily and be compared with the results of MCNPX. The maximum exposure point by skyshine is about 5 ∼ 10 m from source. Therefore, the licensee who wants to operate the proton accelerator must keep the appropriate distance from accelerator and set the fence to restrict the approach by the public. And, exposure doses by accelerator depend on operating time and proton beam intensities. Eq. (6) suggested in this study is just considered for mono energy proton accelerator. Therefore, it is necessary to expand the dose calculation to diverse proton energies. Radiations like neutron and photon generated by high energy proton accelerators over 10 MeV, are important exposure sources to be monitored to radiation workers and the public members near the facility. At that case, one of the exposure pathways to the public who are located in near the facility is skyshine. Neutrons and photons can be scattered by the atmosphere near the facility and exposed to public as scattered dose. All of the facilities using high energy radiation and NDI (Non-Destructive Inspection) which is tested at open field, skyshine dose must be taken into consideration. Skyshine dose is not related to the wall thickness of radiation shielding directly.

  5. 1-Arylsulfonyl-2-(Pyridylmethylsulfinyl) Benzimidazoles as New Proton Pump Inhibitor Prodrugs

    Science.gov (United States)

    Shin, Jai Moo; Sachs, George; Cho, Young-moon; Garst, Michael

    2010-01-01

    New arylsulfonyl proton pump inhibitor (PPI) prodrug forms were synthesized. These prodrugs provided longer residence time of an effective PPI plasma concentration, resulting in better gastric acid inhibition. PMID:20032890

  6. Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species.

    Science.gov (United States)

    De Milito, Angelo; Iessi, Elisabetta; Logozzi, Mariantonia; Lozupone, Francesco; Spada, Massimo; Marino, Maria Lucia; Federici, Cristina; Perdicchio, Maurizio; Matarrese, Paola; Lugini, Luana; Nilsson, Anna; Fais, Stefano

    2007-06-01

    Proton pumps like the vacuolar-type H+ ATPase (V-ATPase) are involved in the control of cellular pH in normal and tumor cells. Treatment with proton pump inhibitors (PPI) induces sensitization of cancer cells to chemotherapeutics via modifications of cellular pH gradients. It is also known that low pH is the most suitable condition for a full PPI activation. Here, we tested whether PPI treatment in unbuffered culture conditions could affect survival and proliferation of human B-cell tumors. First, we showed that PPI treatment increased the sensitivity to vinblastine of a pre-B acute lymphoblastic leukemia (ALL) cell line. PPI, per se, induced a dose-dependent inhibition of proliferation of tumor B cells, which was associated with a dose- and time-dependent apoptotic-like cytotoxicity in B-cell lines and leukemic cells from patients with pre-B ALL. The effect of PPI was mediated by a very early production of reactive oxygen species (ROS), that preceded alkalinization of lysosomal pH, lysosomal membrane permeabilization, and cytosol acidification, suggesting an early destabilization of the acidic vesicular compartment. Lysosomal alterations were followed by mitochondrial membrane depolarization, release of cytochrome c, chromatin condensation, and caspase activation. However, inhibition of caspase activity did not affect PPI-induced cell death, whereas specific inhibition of ROS by an antioxidant (N-acetylcysteine) significantly delayed cell death and protected both lysosomal and mitochondrial membranes. The proapoptotic activity of PPI was consistent with a clear inhibition of tumor growth following PPI treatment of B-cell lymphoma in severe combined immunodeficient mice. This study further supports the importance of acidity and pH gradients in tumor cell homeostasis and suggests new therapeutic approaches for human B-cell tumors based on PPI.

  7. A quantum chemical study of the mechanism for proton-coupled electron transfer leading to proton pumping in cytochrome c oxidase

    Science.gov (United States)

    Blomberg, Margareta R. A.; Siegbahn, Per E. M.

    2010-10-01

    The proton pumping mechanism in cytochrome c oxidase, the terminal enzyme in the respiratory chain, has been investigated using hybrid DFT with large chemical models. In previous studies, a gating mechanism was suggested based on electrostatic interpretations of kinetic experiments. The predictions from that analysis are tested here. The main result is that the suggestion of a positively charged transition state for proton transfer is confirmed, while some other suggestions for the gating are not supported. It is shown that a few critical relative energy values from the earlier studies are reproduced with quite high accuracy using the present model calculations. Examples are the forward barrier for proton transfer from the N-side of the membrane to the pump-loading site when the heme a cofactor is reduced, and the corresponding back leakage barrier when heme a is oxidised. An interesting new finding is an unexpected double-well potential for proton transfer from the N-side to the pump-loading site. In the intermediate between the two transition states found, the proton is bound to PropD on heme a. A possible purpose of this type of potential surface is suggested here. The accuracy of the present values are discussed in terms of their sensitivity to the choice of dielectric constant. Only one energy value, which is not critical for the present mechanism, varies significantly with this choice and is therefore less certain.

  8. Use of proton pump inhibitors and the risk of listeriosis

    DEFF Research Database (Denmark)

    Jensen, Anne Kvistholm; Simonsen, Jacob; Ethelberg, Steen

    2017-01-01

    BACKGROUND: Recent studies suggest that proton pump inhibitors (PPIs) may increase the risk for listeriosis. We aimed to investigate a potential association in cases of non-pregnancy associated listeriosis, using registry data. METHODS: We conducted a population-based case-control study using...

  9. Dose delivery study for a novel compact proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Kim Melanie

    2014-01-15

    Proton therapy has played an important role in the treatment of cancer with radiation therapy for more than 60 years. Active spot scanning to deliver highly conformal dose to the tumor has been developed. However, the availability of proton therapy to the patients is still limited, partly, due to the high costs and sizes of large proton therapy centers. Therefore, a novel compact proton single room facility based on a linear accelerator mounted on a gantry has been proposed, named TULIP (TUrning LInac for Proton therapy). This accelerator allows for active energy variation on a milliseconds time scale. This work aims to assess the possibilities of dose delivery with TULIP to exploit its beneficial features with respect to dose delivery. We developed a software tool, simulating the dose delivery to the tumor. By means of this software tool, we assessed different delivery methods and found 3D spot scanning to be superior to rotational dose delivery with regard to dose and irradiation time. In a second part, we expanded the investigations to dose delivery to moving targets. Due to fast energy variation, we found TULIP to be preferably suitable for rescanning, confirmed by irradiation times of only a few minutes.

  10. Dose delivery study for a novel compact proton accelerator

    International Nuclear Information System (INIS)

    Kraus, Kim Melanie

    2014-01-01

    Proton therapy has played an important role in the treatment of cancer with radiation therapy for more than 60 years. Active spot scanning to deliver highly conformal dose to the tumor has been developed. However, the availability of proton therapy to the patients is still limited, partly, due to the high costs and sizes of large proton therapy centers. Therefore, a novel compact proton single room facility based on a linear accelerator mounted on a gantry has been proposed, named TULIP (TUrning LInac for Proton therapy). This accelerator allows for active energy variation on a milliseconds time scale. This work aims to assess the possibilities of dose delivery with TULIP to exploit its beneficial features with respect to dose delivery. We developed a software tool, simulating the dose delivery to the tumor. By means of this software tool, we assessed different delivery methods and found 3D spot scanning to be superior to rotational dose delivery with regard to dose and irradiation time. In a second part, we expanded the investigations to dose delivery to moving targets. Due to fast energy variation, we found TULIP to be preferably suitable for rescanning, confirmed by irradiation times of only a few minutes.

  11. SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy

    International Nuclear Information System (INIS)

    Das, I; Andersen, A; Coutinho, L

    2015-01-01

    Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factor (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose

  12. Use of proton pump inhibitors is associated with fractures in young adults: a population-based study.

    Science.gov (United States)

    Freedberg, D E; Haynes, K; Denburg, M R; Zemel, B S; Leonard, M B; Abrams, J A; Yang, Y-X

    2015-10-01

    Proton pump inhibitors (PPIs) are associated with risk for fracture in osteoporotic adults. In this population-based study, we found a significant association between PPIs and fracture in young adults, with evidence of a dose-response effect. Young adults who use PPIs should be cautioned regarding risk for fracture. Proton pump inhibitors (PPIs) are associated with fracture in adults with osteoporosis. Because PPI therapy may interfere with bone accrual and attainment of peak bone mineral density, we studied the association between use of PPIs and fracture in children and young adults. We conducted a population-based, case-control study nested within records from general medical practices from 1994 to 2013. Participants were 4-29 years old with ≥ 1 year of follow-up who lacked chronic conditions associated with use of long-term acid suppression. Cases of fracture were defined as the first incident fracture at any site. Using incidence density sampling, cases were matched with up to five controls by age, sex, medical practice, and start of follow-up. PPI exposure was defined as 180 or more cumulative doses of PPIs. Conditional logistic regression was used to estimate the odds ratio and confidence interval for use of PPIs and fracture. We identified 124,799 cases and 605,643 controls. The adjusted odds ratio for the risk of fracture associated with PPI exposure was 1.13 (95% CI 0.92 to 1.39) among children aged young adults aged 18-29 years old. In young adults but not children, we observed a dose-response effect with increased total exposure to PPIs (p for trend young adults, but overall evidence did not support a PPI-fracture relationship in children. Young adults who use PPIs should be cautioned regarding potentially increased risk for fracture, even if they lack traditional fracture risk factors.

  13. Proton pump inhibitors: potential cost reductions by applying prescribing guidelines.

    LENUS (Irish Health Repository)

    Cahir, Caitriona

    2012-01-01

    There are concerns that proton pump inhibitors (PPI) are being over prescribed in both primary and secondary care. This study aims to establish potential cost savings in a community drug scheme for a one year period according to published clinical and cost-effective guidelines for PPI prescribing.

  14. Hyperparathyroidism Associated with Long-Term Proton Pump Inhibitors Independent of Concurrent Bisphosphonate Therapy in Elderly Adults.

    Science.gov (United States)

    Hinson, Andrew M; Wilkerson, Bekka M; Rothman-Fitts, Ivy; Riggs, Ann T; Stack, Brendan C; Bodenner, Donald L

    2015-10-01

    To measure the effect of proton pump inhibitors (PPIs), with and without concurrent bisphosphonates, on parathyroid hormone (PTH), vitamin D, and calcium. Retrospective chart review of individuals 60 years and older. Subjects with reduced renal function (creatinine >1.3 mg/dL) and low vitamin D (hyperparathyroidism regardless of concurrent oral BP administration. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  15. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    Science.gov (United States)

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-04-04

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.

  16. Estimation dose of secondary neutrons in proton therapy

    International Nuclear Information System (INIS)

    Urban, T.

    2014-01-01

    Most of proton therapy centers for cancer treatment are still based on the passive scattering, in some of them there is system of the active scanning installed as well. The aim of this study is to compare secondary neutron doses in and around target volumes in proton therapy for both treatment techniques and for different energies and profile of incident proton beam. The proton induced neutrons have been simulated in the very simple geometry of tissue equivalent phantom (imitate the patient) and scattering and scanning nozzle, respectively. In simulations of the scattering nozzle, different types of scattering filters and brass collimators have been used as well. 3D map of neutron doses in and around the chosen/potential target volume in the phantom/patient have been evaluated and compared in the context of the dose deposited in the target volume. Finally, the simulation results have been compared with published data. (author)

  17. Probability Estimates of Solar Proton Doses During Periods of Low Sunspot Number for Short Duration Missions

    Science.gov (United States)

    Atwell, William; Tylka, Allan J.; Dietrich, William F.; Rojdev, Kristina; Matzkind, Courtney

    2016-01-01

    In an earlier paper presented at ICES in 2015, we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the monthly smoothed sunspot number (SSN) was less than 30. Although such months are generally considered "solar-quiet", SPEs observed during these months even include Ground Level Events, the most energetic type of SPE. In this paper, we add to previous study those SPEs that occurred in 1973-2015 when the SSN was greater than 30 but less than 50. Based on the observable energy range of the solar protons, we classify the event as GLEs, sub-GLEs, and sub-sub-GLEs, all of which are potential contributors to the radiation hazard. We use the spectra of these events to construct a probabilistic model of the absorbed dose due to solar protons when SSN < 50 at various confidence levels for various depths of shielding and for various mission durations. We provide plots and tables of solar proton-induced absorbed dose as functions of confidence level, shielding thickness, and mission-duration that will be useful to system designers.

  18. Three cases of radiation esophagitis controlled with proton pump inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Ryuji; Saito, Ryuichi; Miyazaki, Toshiyuki [Kumamoto Red Cross Hospital (Japan)

    2002-04-01

    Radiation esophagitis sometimes interrupts the radiation therapy due to swallowing pain and dysplasia. We experienced three cases of radiation-induced esophagitis controlled with proton pump inhibitor (PPI). These cases suggested etiologic relationship radiation esophagitis and gastroesophageal reflux disease (GERD). We should consider PPI as treatment option for radiation esophagitis. (author)

  19. Ionic Polymer Microactuator Activated by Photoresponsive Organic Proton Pumps

    Directory of Open Access Journals (Sweden)

    Khaled M. Al-Aribe

    2015-10-01

    Full Text Available An ionic polymer microactuator driven by an organic photoelectric proton pump transducer is described in this paper. The light responsive transducer is fabricated by using molecular self-assembly to immobilize oriented bacteriorhodopsin purple membrane (PM patches on a bio-functionalized porous anodic alumina (PAA substrate. When exposed to visible light, the PM proton pumps produce a unidirectional flow of ions through the structure’s nano-pores and alter the pH of the working solution in a microfluidic device. The change in pH is sufficient to generate an osmotic pressure difference across a hydroxyethyl methacrylate-acrylic acid (HEMA-AA actuator shell and induce volume expansion or contraction. Experiments show that the transducer can generate an ionic gradient of 2.5 μM and ionic potential of 25 mV, producing a pH increase of 0.42 in the working solution. The ΔpH is sufficient to increase the volume of the HEMA-AA microactuator by 80%. The volumetric transformation of the hydrogel can be used as a valve to close a fluid transport micro-channel or apply minute force to a mechanically flexible microcantilever beam.

  20. Spatial distributions of dose enhancement around a gold nanoparticle at several depths of proton Bragg peak

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jihun [Department of Radiation Oncology, Hokkaido University Graduate School of Medicine, Hokkaido University (Japan); Sutherland, Kenneth [Department of Medical Physics, Hokkaido University Graduate School of Medicine, Hokkaido University (Japan); Hashimoto, Takayuki [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine (Japan); Shirato, Hiroki [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine and Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University (Japan); Date, Hiroyuki, E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University (Japan)

    2016-10-01

    Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (D{sub sub}) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial D{sub sub} distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.

  1. A simple irradiation facility for radiobiological experiments with low energy protons from a cyclotron

    International Nuclear Information System (INIS)

    Mukherjee, B.

    1982-01-01

    An experimental facility for irradiation of small biological targets with low-energy protons has been developed. The depth-dose distribution in soft-tissue is calculated from the proton energy spectrum. (orig.)

  2. A rationale for the use of proton pump inhibitors as antineoplastic agents.

    Science.gov (United States)

    De Milito, Angelo; Marino, Maria Lucia; Fais, Stefano

    2012-01-01

    It is becoming increasingly acknowledged that tumorigenesis is not simply characterized by the accumulation of rapidly proliferating, genetically mutated cells. Microenvironmental biophysical factors like hypoxia and acidity dramatically condition cancer cells and act as selective forces for malignant cells, adapting through metabolic reprogramming towards aerobic glycolysis. Avoiding intracellular accumulation of lactic acid and protons, otherwise detrimental to cell survival is crucial for malignant cells to maintain cellular pH homeostasis. As a consequence of the upregulated expression and/or function of several pH-regulating systems, cancer cells display an alkaline intracellular pH (pHi) and an acidic extracellular pH (pHe). Among the pH-regulating proteins, proton pumps play an important role in both drug-resistance and metastatic spread, thus representing a suitable therapeutic target. Proton pump inhibitors (PPI) have been reported as cytotoxic drugs active against several human tumor cells and preclinical data have prompted the investigation of PPI as anticancer agents in humans. This review will update the current knowledge on the antitumor activities of PPI and their potential applications.

  3. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane

    DEFF Research Database (Denmark)

    Fuglsang, Anja Thoe; Kristensen, Astrid; Cuin, Tracey A.

    2014-01-01

    Acidification of the cell wall space outside the plasma membrane is required for plant growth and is the result of proton extrusion by the plasma membrane-localized H+-ATPases. Here we show that the major plasma membrane proton pumps in Arabidopsis, AHA1 and AHA2, interact directly in vitro...... and in planta with PSY1R, a receptor kinase of the plasma membrane that serves as a receptor for the peptide growth hormone PSY1. The intracellular protein kinase domain of PSY1R phosphorylates AHA2/AHA1 at Thr-881, situated in the autoinhibitory region I of the C-terminal domain. When expressed in a yeast...... heterologous expression system, the introduction of a negative charge at this position caused pump activation. Application of PSY1 to plant seedlings induced rapid in planta phosphorylation at Thr-881, concomitant with an instantaneous increase in proton efflux from roots. The direct interaction between AHA2...

  4. Experimental evaluation of a MOSFET dosimeter for proton dose measurements

    International Nuclear Information System (INIS)

    Kohno, Ryosuke; Nishio, Teiji; Miyagishi, Tomoko; Hirano, Eriko; Hotta, Kenji; Kawashima, Mitsuhiko; Ogino, Takashi

    2006-01-01

    The metal oxide semiconductor field-effect transistor (MOSFET) dosimeter has been widely studied for use as a dosimeter for patient dose verification. The major advantage of this detector is its size, which acts as a point dosimeter, and also its ease of use. The commercially available TN502RD MOSFET dosimeter manufactured by Thomson and Nielsen has never been used for proton dosimetry. Therefore we used the MOSFET dosimeter for the first time in proton dose measurements. In this study, the MOSFET dosimeter was irradiated with 190 MeV therapeutic proton beams. We experimentally evaluated dose reproducibility, linearity, fading effect, beam intensity dependence and angular dependence for the proton beam. Furthermore, the Bragg curve and spread-out Bragg peak were also measured and the linear-energy transfer (LET) dependence of the MOSFET response was investigated. Many characteristics of the MOSFET response for proton beams were the same as those for photon beams reported in previous papers. However, the angular MOSFET responses at 45, 90, 135, 225, 270 and 315 degrees for proton beams were over-responses of about 15%, and moreover the MOSFET response depended strongly on the LET of the proton beam. This study showed that the angular dependence and LET dependence of the MOSFET response must be considered very carefully for quantitative proton dose evaluations

  5. Obscure bleeding colonic duplication responds to proton pump inhibitor therapy.

    Science.gov (United States)

    Jacques, Jérémie; Projetti, Fabrice; Legros, Romain; Valgueblasse, Virginie; Sarabi, Matthieu; Carrier, Paul; Fredon, Fabien; Bouvier, Stéphane; Loustaud-Ratti, Véronique; Sautereau, Denis

    2013-09-21

    We report the case of a 17-year-old male admitted to our academic hospital with massive rectal bleeding. Since childhood he had reported recurrent gastrointestinal bleeding and had two exploratory laparotomies 5 and 2 years previously. An emergency abdominal computed tomography scan, gastroscopy and colonoscopy, performed after hemodynamic stabilization, were considered normal. High-dose intravenous proton pump inhibitor (PPI) therapy was initiated and bleeding stopped spontaneously. Two other massive rectal bleeds occurred 8 h after each cessation of PPI which led to a hemostatic laparotomy after negative gastroscopy and small bowel capsule endoscopy. This showed long tubular duplication of the right colon, with fresh blood in the duplicated colon. Obscure lower gastrointestinal bleeding is a difficult medical situation and potentially life-threatening. The presence of ulcerated ectopic gastric mucosa in the colonic duplication explains the partial efficacy of PPI therapy. Obscure gastrointestinal bleeding responding to empiric anti-acid therapy should probably evoke the diagnosis of bleeding ectopic gastric mucosa such as Meckel's diverticulum or gastrointestinal duplication, and gastroenterologists should be aware of this potential medical situation.

  6. Practical considerations in the management of proton-pump inhibitors

    Directory of Open Access Journals (Sweden)

    Lara Aguilera-Castro

    Full Text Available Proton-pump inhibitors (PPIs are one of the most active ingredients prescribed in Spain. In recent decades there has been an overuse of these drugs in both outpatient clinics and hospitals that has lead to a significant increase in healthcare spending and to an increase in the risk of possible side effects. It is important for health professionals to know the accepted indications and the correct doses for the use of these drugs. On the market there are different types of PPI: omeprazole, pantoprazole, lansoprazole, rabeprazole and esomeprazole. Omeprazole is the oldest and most used PPI, being also the cheapest. Although there are no important differences between PPIs in curing diseases, esomeprazole, a new-generation PPI, has proved to be more effective in eradicating H. pylori and in healing severe esophagitis compared to other PPIs. In recent years the use of generic drugs has spread; these drugs have the same bioavailability than the original drugs. In the case of PPIs, the few comparative studies available in the literature between original and generic drugs have shown no significant differences in clinical efficacy.

  7. Bacterial infections in cirrhosis: Role of proton pump inhibitors and intestinal permeability

    NARCIS (Netherlands)

    L.G. van Vlerken (Lotte); E.J. Huisman (Ellen); B. van Hoek (Bart); W. Renooij (W.); F.W.M. de Rooij (Felix); P.D. Siersema (Peter); K.J. van Erpecum (Karel)

    2012-01-01

    textabstractBackground Cirrhotic patients are at considerable risk for bacterial infections, possibly through increased intestinal permeability and bacterial overgrowth. Proton pump inhibitors (PPIs) may increase infection risk. We aimed to explore the potential association between PPI use and

  8. Low Dose Suppression of Neoplastic Transformation in Vitro

    Energy Technology Data Exchange (ETDEWEB)

    John Leslie Redpath

    2012-05-01

    This grant was to study the low dose suppression of neoplastic transformation in vitro and the shape of the dose-response curve at low doses and dose-rates of ionizing radiation. Previous findings had indicated a suppression of transformation at dose <10cGy of low-LET radiation when delivered at high dose-rate. The present study indicates that such suppression extends out to doses in excess of 100cGy when the dose (from I-125 photons) is delivered at dose-rates as low as 0.2 mGy/min and out to in excess of {approx}25cGy the highest dose studied at the very low dose-rate of 0.5 mGy/day. We also examined dose-rate effects for high energy protons (which are a low-LET radiation) and suppression was evident below {approx}10cGy for high dose-rate delivery and at least out to 50cGy for low dose-rate (20cGy/h) delivery. Finally, we also examined the effect of low doses of 1 GeV/n iron ions (a high-LET radiation) delivered at high dose-rate on transformation at low doses and found a suppression below {approx}10cGy that could be attributable to an adaptive response in bystander cells induced by the associated low-LET delta rays. These results have implications for cancer risk assessment at low doses.

  9. Bleeding Risk with Long-Term Low-Dose Aspirin: A Systematic Review of Observational Studies

    Science.gov (United States)

    García Rodríguez, Luis A.; Martín-Pérez, Mar; Hennekens, Charles H.; Rothwell, Peter M.; Lanas, Angel

    2016-01-01

    Background Low-dose aspirin has proven effectiveness in secondary and primary prevention of cardiovascular events, but is also associated with an increased risk of major bleeding events. For primary prevention, this absolute risk must be carefully weighed against the benefits of aspirin; such assessments are currently limited by a lack of data from general populations. Methods Systematic searches of Medline and Embase were conducted to identify observational studies published between 1946 and 4 March 2015 that reported the risks of gastrointestinal (GI) bleeding or intracranial hemorrhage (ICH) with long-term, low-dose aspirin (75–325 mg/day). Pooled estimates of the relative risk (RR) for bleeding events with aspirin versus non-use were calculated using random-effects models, based on reported estimates of RR (including odds ratios, hazard ratios, incidence rate ratios and standardized incidence ratios) in 39 articles. Findings The incidence of GI bleeding with low-dose aspirin was 0.48–3.64 cases per 1000 person-years, and the overall pooled estimate of the RR with low-dose aspirin was 1.4 (95% confidence interval [CI]: 1.2–1.7). For upper and lower GI bleeding, the RRs with low-dose aspirin were 2.3 (2.0–2.6) and 1.8 (1.1–3.0), respectively. Neither aspirin dose nor duration of use had consistent effects on RRs for upper GI bleeding. The estimated RR for ICH with low-dose aspirin was 1.4 (1.2–1.7) overall. Aspirin was associated with increased bleeding risks when combined with non-steroidal anti-inflammatory drugs, clopidogrel and selective serotonin reuptake inhibitors compared with monotherapy. By contrast, concomitant use of proton pump inhibitors decreased upper GI bleeding risks relative to aspirin monotherapy. Conclusions The risks of major bleeding with low-dose aspirin in real-world settings are of a similar magnitude to those reported in randomized trials. These data will help inform clinical judgements regarding the use of low-dose aspirin

  10. Synergistic effects of total ionizing dose on single event upset sensitivity in static random access memory under proton irradiation

    International Nuclear Information System (INIS)

    Xiao Yao; Guo Hong-Xia; Zhang Feng-Qi; Zhao Wen; Wang Yan-Ping; Zhang Ke-Ying; Ding Li-Li; Luo Yin-Hong; Wang Yuan-Ming; Fan Xue

    2014-01-01

    Synergistic effects of the total ionizing dose (TID) on the single event upset (SEU) sensitivity in static random access memories (SRAMs) were studied by using protons. The total dose was cumulated with high flux protons during the TID exposure, and the SEU cross section was tested with low flux protons at several cumulated dose steps. Because of the radiation-induced off-state leakage current increase of the CMOS transistors, the noise margin became asymmetric and the memory imprint effect was observed. (interdisciplinary physics and related areas of science and technology)

  11. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and 60Co γ-rays

    International Nuclear Information System (INIS)

    Vadrucci, M.; Ronsivalle, C.; Marracino, F.; Montereali, R. M.; Picardi, L.; Piccinini, M.; Vincenti, M. A.; Esposito, G.; De Angelis, C.; Cherubini, R.; Pimpinella, M.

    2015-01-01

    Purpose: To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference 60 Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. Methods: EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a 60 Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. Results: EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to 60 Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose-rate dependence in

  12. 5l/h pump for dosing corrosion radioactive liquids

    International Nuclear Information System (INIS)

    Przybylovich, S.; Shraer, V.; Chermak, R.

    1977-01-01

    The technical requirements, design and main technical characteristics of the pump for dosing corrosion and radioactive liquids with capacity up to 5 l/h are described. The design is based on the popular sixvertical split casing pump. The pump has four separate pump membrane type blocks with nonstraight hydraulic membrane control. The membranes are made of the cold worked CrNi(18/10)type stainless steel with thickness up to 0.1 mm and have the lifetime up to 3000 hours. The remote pump heads are used for pumping radioactive fluids when the pumping goes behind the safe wall, separating the pump from a hot lab. The tests showed that the pump secures the satisfactory accuracy of dozing and uniformity of pumping and that it is really possible to achieve the required life time of 10000 hours by this pump

  13. Validation of nuclear models in Geant4 using the dose distribution of a 177 MeV proton pencil beam

    International Nuclear Information System (INIS)

    Hall, David C; Paganetti, Harald; Makarova, Anastasia; Gottschalk, Bernard

    2016-01-01

    A proton pencil beam is associated with a surrounding low-dose envelope, originating from nuclear interactions. It is important for treatment planning systems to accurately model this envelope when performing dose calculations for pencil beam scanning treatments, and Monte Carlo (MC) codes are commonly used for this purpose. This work aims to validate the nuclear models employed by the Geant4 MC code, by comparing the simulated absolute dose distribution to a recent experiment of a 177 MeV proton pencil beam stopping in water. Striking agreement is observed over five orders of magnitude, with both the shape and normalisation well modelled. The normalisations of two depth dose curves are lower than experiment, though this could be explained by an experimental positioning error. The Geant4 neutron production model is also verified in the distal region. The entrance dose is poorly modelled, suggesting an unaccounted upstream source of low-energy protons. Recommendations are given for a follow-up experiment which could resolve these issues. (note)

  14. Should Helicobacter pylori be eradicated before starting long-term proton pump inhibitors?

    NARCIS (Netherlands)

    Rauws, E. A.

    1997-01-01

    Symptomatic gastro-oesophageal reflux disease is a common disorder characterized by pathological exposure of the distal oesophagus to acid. The management requires the control of symptoms, prevention of relapse and complications. Proton pump inhibitors are without doubt the most effective agents in

  15. SU-F-J-194: Development of Dose-Based Image Guided Proton Therapy Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Pham, R; Sun, B; Zhao, T; Li, H; Yang, D; Grantham, K; Goddu, S; Santanam, L; Bradley, J; Mutic, S; Kandlakunta, P; Zhang, T [Washington University School of Medicine, Saint Louis, MO (United States)

    2016-06-15

    Purpose: To implement image-guided proton therapy (IGPT) based on daily proton dose distribution. Methods: Unlike x-ray therapy, simple alignment based on anatomy cannot ensure proper dose coverage in proton therapy. Anatomy changes along the beam path may lead to underdosing the target, or overdosing the organ-at-risk (OAR). With an in-room mobile computed tomography (CT) system, we are developing a dose-based IGPT software tool that allows patient positioning and treatment adaption based on daily dose distributions. During an IGPT treatment, daily CT images are acquired in treatment position. After initial positioning based on rigid image registration, proton dose distribution is calculated on daily CT images. The target and OARs are automatically delineated via deformable image registration. Dose distributions are evaluated to decide if repositioning or plan adaptation is necessary in order to achieve proper coverage of the target and sparing of OARs. Besides online dose-based image guidance, the software tool can also map daily treatment doses to the treatment planning CT images for offline adaptive treatment. Results: An in-room helical CT system is commissioned for IGPT purposes. It produces accurate CT numbers that allow proton dose calculation. GPU-based deformable image registration algorithms are developed and evaluated for automatic ROI-delineation and dose mapping. The online and offline IGPT functionalities are evaluated with daily CT images of the proton patients. Conclusion: The online and offline IGPT software tool may improve the safety and quality of proton treatment by allowing dose-based IGPT and adaptive proton treatments. Research is partially supported by Mevion Medical Systems.

  16. Low early ototoxicity rates for pediatric medulloblastoma patients treated with proton radiotherapy

    International Nuclear Information System (INIS)

    Moeller, Benjamin J; Chintagumpala, Murali; Philip, Jimmy J; Grosshans, David R; McAleer, Mary F; Woo, Shiao Y; Gidley, Paul W; Vats, Tribhawan S; Mahajan, Anita

    2011-01-01

    Hearing loss is common following chemoradiotherapy for children with medulloblastoma. Compared to photons, proton radiotherapy reduces radiation dose to the cochlea for these patients. Here we examine whether this dosimetric advantage leads to a clinical benefit in audiometric outcomes. From 2006-2009, 23 children treated with proton radiotherapy for medulloblastoma were enrolled on a prospective observational study, through which they underwent pre- and 1 year post-radiotherapy pure-tone audiometric testing. Ears with moderate to severe hearing loss prior to therapy were censored, leaving 35 ears in 19 patients available for analysis. The predicted mean cochlear radiation dose was 30 60 Co-Gy Equivalents (range 19-43), and the mean cumulative cisplatin dose was 303 mg/m 2 (range 298-330). Hearing sensitivity significantly declined following radiotherapy across all frequencies analyzed (P < 0.05). There was partial sparing of mean post-radiation hearing thresholds at low-to-midrange frequencies and, consequently, the rate of high-grade (grade 3 or 4) ototoxicity at 1 year was favorable (5%). Ototoxicity did not correlate with predicted dose to the auditory apparatus for proton-treated patients, potentially reflecting a lower-limit threshold for radiation effect on the cochlea. Rates of high-grade early post-radiation ototoxicity following proton radiotherapy for pediatric medulloblastoma are low. Preservation of hearing in the audible speech range, as observed here, may improve both quality of life and cognitive functioning for these patients

  17. Towards structural and functional analysis of the plant plasma membrane proton pump

    DEFF Research Database (Denmark)

    Justesen, Bo Højen

    The plasma membrane H+-ATPase is a proton pump essential for several physiological important processes in plants. Through the extrusion of protons from the cell, the PM H+-ATPase establishes and maintains a proton gradient used by proton coupled transporters and secondary active transport...... of nutrients and metabolites across the plasma membrane. Additional processes involving the PM H+-ATPase includes plant growth, development, and response to biotic and abiotic stresses. Extensive efforts have been made in attempts to elucidate the detailed physiological role and biochemical characteristics...... of plasma membrane H+-ATPases. Studies on the plasma membrane H+-ATPases have involved both in vivo and in vitro approaches, with the latter employing either solubilisation by detergent micelles, or reconstitution into lipid vesicles. Despite resulting in a large body of information on structure, function...

  18. Clopidogrel and proton pump inhibitors--where do we stand in 2012?

    LENUS (Irish Health Repository)

    Drepper, Michael D

    2012-05-14

    Clopidogrel in association with aspirine is considered state of the art of medical treatment for acute coronary syndrome by reducing the risk of new ischemic events. Concomitant treatment with proton pump inhibitors in order to prevent gastrointestinal side effects is recommended by clinical guidelines. Clopidogrel needs metabolic activation predominantly by the hepatic cytochrome P450 isoenzyme Cytochrome 2C19 (CYP2C19) and proton pump inhibitors (PPIs) are extensively metabolized by the CYP2C19 isoenzyme as well. Several pharmacodynamic studies investigating a potential clopidogrel-PPI interaction found a significant decrease of the clopidogrel platelet antiaggregation effect for omeprazole, but not for pantoprazole. Initial clinical cohort studies in 2009 reported an increased risk for adverse cardiovascular events, when under clopidogrel and PPI treatment at the same time. These observations led the United States Food and Drug Administration and the European Medecines Agency to discourage the combination of clopidogrel and PPI (especially omeprazole) in the same year. In contrast, more recent retrospective cohort studies including propensity score matching and the only existing randomized trial have not shown any difference concerning adverse cardiovascular events when concomitantly on clopidogrel and PPI or only on clopidogrel. Three meta-analyses report an inverse correlation between clopidogrel-PPI interaction and study quality, with high and moderate quality studies not reporting any association, rising concern about unmeasured confounders biasing the low quality studies. Thus, no definite evidence exists for an effect on mortality. Because PPI induced risk reduction clearly overweighs the possible adverse cardiovascular risk in patients with high risk of gastrointestinal bleeding, combination of clopidogrel with the less CYP2C19 inhibiting pantoprazole should be recommended.

  19. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    Science.gov (United States)

    Islam, M. R.; Collums, T. L.; Zheng, Y.; Monson, J.; Benton, E. R.

    2013-11-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy-1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy-1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  20. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    International Nuclear Information System (INIS)

    Islam, M R; Collums, T L; Monson, J; Benton, E R; Zheng, Y

    2013-01-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy −1  for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy −1  for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body. (paper)

  1. Dual-resolution dose assessments for proton beamlet using MCNPX 2.6.0

    Science.gov (United States)

    Chao, T. C.; Wei, S. C.; Wu, S. W.; Tung, C. J.; Tu, S. J.; Cheng, H. W.; Lee, C. C.

    2015-11-01

    The purpose of this study is to access proton dose distribution in dual resolution phantoms using MCNPX 2.6.0. The dual resolution phantom uses higher resolution in Bragg peak, area near large dose gradient, or heterogeneous interface and lower resolution in the rest. MCNPX 2.6.0 was installed in Ubuntu 10.04 with MPI for parallel computing. FMesh1 tallies were utilized to record the energy deposition which is a special designed tally for voxel phantoms that converts dose deposition from fluence. 60 and 120 MeV narrow proton beam were incident into Coarse, Dual and Fine resolution phantoms with pure water, water-bone-water and water-air-water setups. The doses in coarse resolution phantoms are underestimated owing to partial volume effect. The dose distributions in dual or high resolution phantoms agreed well with each other and dual resolution phantoms were at least 10 times more efficient than fine resolution one. Because the secondary particle range is much longer in air than in water, the dose of low density region may be under-estimated if the resolution or calculation grid is not small enough.

  2. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, Jakob, E-mail: jakob.liebl@medaustron.at [EBG MedAustron GmbH, 2700 Wiener Neustadt (Austria); Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Department of Therapeutic Radiology and Oncology, Medical University of Graz, 8036 Graz (Austria); Paganetti, Harald; Zhu, Mingyao; Winey, Brian A. [Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2014-09-15

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions

  3. Incorporating partial shining effects in proton pencil-beam dose calculation

    International Nuclear Information System (INIS)

    Li Yupeng; Zhang Xiaodong; Lii Mingfwu; Sahoo, Narayan; Zhu, Ron X; Gillin, Michael; Mohan, Radhe

    2008-01-01

    A range modulator wheel (RMW) is an essential component in passively scattered proton therapy. We have observed that a proton beam spot may shine on multiple steps of the RMW. Proton dose calculation algorithms normally do not consider the partial shining effect, and thus overestimate the dose at the proximal shoulder of spread-out Bragg peak (SOBP) compared with the measurement. If the SOBP is adjusted to better fit the plateau region, the entrance dose is likely to be underestimated. In this work, we developed an algorithm that can be used to model this effect and to allow for dose calculations that better fit the measured SOBP. First, a set of apparent modulator weights was calculated without considering partial shining. Next, protons spilled from the accelerator reaching the modulator wheel were simplified as a circular spot of uniform intensity. A weight-splitting process was then performed to generate a set of effective modulator weights with the partial shining effect incorporated. The SOBPs of eight options, which are used to label different combinations of proton-beam energy and scattering devices, were calculated with the generated effective weights. Our algorithm fitted the measured SOBP at the proximal and entrance regions much better than the ones without considering partial shining effect for all SOBPs of the eight options. In a prostate patient, we found that dose calculation without considering partial shining effect underestimated the femoral head and skin dose

  4. Aspirin and omeprazole for secondary prevention of cardiovascular disease in patients at risk for aspirin-associated gastric ulcers.

    Science.gov (United States)

    García-Rayado, Guillermo; Sostres, Carlos; Lanas, Angel

    2017-08-01

    Cardiovascular disease is the most important cause of morbidity and mortality in the world and low-dose aspirin is considered the cornerstone of the cardiovascular disease prevention. However, low-dose aspirin use is associated with gastrointestinal adverse effects in the whole gastrointestinal tract. In this setting, co-therapy with a proton pump inhibitor is the most accepted strategy to reduce aspirin related upper gastrointestinal damage. In addition, some adverse effects have been described with proton pump inhibitors long term use. Areas covered: Low-dose aspirin related beneficial and adverse effects in cardiovascular system and gastrointestinal tract are reviewed. In addition, this manuscript summarizes current data on upper gastrointestinal damage prevention and adverse events with proton pump inhibition. Finally, we discuss the benefit/risk ratio of proton pump inhibitor use in patients at risk of gastrointestinal damage taking low-dose aspirin. Expert commentary: Nowadays, with the current available evidence, the combination of low-dose aspirin with proton pump inhibitor is the most effective therapy for cardiovascular prevention in patients at high gastrointestinal risk. However, further studies are needed to discover new effective strategies with less related adverse events.

  5. Functional and morphological changes of the mucous membrane of the stomach after long application of proton pump inhibitors

    Directory of Open Access Journals (Sweden)

    M. V. Markina

    2010-04-01

    Full Text Available Changes of mucous membrane of rats’ stomach after long term application of proton pump inhibition – Omeprazole. Increase of pepsin concentration, volume and рН in both fasting and basal gastric juice in comparison with the control was observed. It is established that the content of nitrates and nitrites in gastric juice and in the rats’ mixed saliva after the 12th day of introduction of proton pump inhibitors is 3:1.

  6. The Prevalence and Clinical Features of Non-responsive Gastroesophageal Reflux Disease to Practical Proton Pump Inhibitor Dose in Korea: A Multicenter Study.

    Science.gov (United States)

    Park, Hong Jun; Park, Soo Heon; Shim, Ki Nam; Kim, Yong Sung; Kim, Hyun Jin; Han, Jae Pil; Kim, Yong Sik; Bang, Byoung Wook; Kim, Gwang Ha; Baik, Gwang Ho; Kim, Hyung Hun; Park, Seon Young; Kim, Sung Soo

    2016-07-25

    In Korea, there are no available multicenter data concerning the prevalence of or diagnostic approaches for non-responsive gastroesophageal reflux disease (GERD) which does not respond to practical dose of proton pump inhibitor (PPI) in Korea. The purpose of this study is to evaluate the prevalence and the symptom pattern of non-responsive GERD. A total of 12 hospitals who were members of a Korean GERD research group joined this study. We used the composite score (CS) as a reflux symptom scale which is a standardized questionnaire based on the frequency and severity of typical symptoms of GERD. We defined "non-responsive GERD" as follows: a subject with the erosive reflux disease (ERD) whose CS was not decreased by at least 50% after standard-dose PPIs for 8 weeks or a subject with non-erosive reflux disease (NERD) whose CS was not decreased by at least 50% after half-dose PPIs for 4 weeks. A total of 234 subjects were analyzed. Among them, 87 and 147 were confirmed to have ERD and NERD, respectively. The prevalence of non-responsive GERD was 26.9% (63/234). The rates of non-responsive GERD were not different between the ERD and NERD groups (25.3% vs. 27.9%, respectively, p=0.664). There were no differences between the non-responsive GERD and responsive GERD groups for sex (p=0.659), age (p=0.134), or BMI (p=0.209). However, the initial CS for epigastric pain and fullness were higher in the non-responsive GERD group (p=0.044, p=0.014, respectively). In conclusion, this multicenter Korean study showed that the rate of non-responsive GERD was substantially high up to 26%. In addition, the patients with the non-responsive GERD frequently showed dyspeptic symptoms such as epigastric pain and fullness.

  7. Cost-effectiveness of histamine receptor-2 antagonist versus proton pump inhibitor for stress ulcer prophylaxis in critically ill patients*.

    Science.gov (United States)

    MacLaren, Robert; Campbell, Jon

    2014-04-01

    To examine the cost-effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Decision analysis model examining costs and effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Costs were expressed in 2012 U.S. dollars from the perspective of the institution and included drug regimens and the following outcomes: clinically significant stress-related mucosal bleed, ventilator-associated pneumonia, and Clostridium difficile infection. Effectiveness was the mortality risk associated with these outcomes and represented by survival. Costs, occurrence rates, and mortality probabilities were extracted from published data. A simulation model. A mixed adult ICU population. Histamine receptor-2 antagonist or proton pump inhibitor for 9 days of stress ulcer prophylaxis therapy. Output variables were expected costs, expected survival rates, incremental cost, and incremental survival rate. Univariate sensitivity analyses were conducted to determine the drivers of incremental cost and incremental survival. Probabilistic sensitivity analysis was conducted using second-order Monte Carlo simulation. For the base case analysis, the expected cost of providing stress ulcer prophylaxis was $6,707 with histamine receptor-2 antagonist and $7,802 with proton pump inhibitor, resulting in a cost saving of $1,095 with histamine receptor-2 antagonist. The associated mortality probabilities were 3.819% and 3.825%, respectively, resulting in an absolute survival benefit of 0.006% with histamine receptor-2 antagonist. The primary drivers of incremental cost and survival were the assumptions surrounding ventilator-associated pneumonia and bleed. The probabilities that histamine receptor-2 antagonist was less costly and provided favorable survival were 89.4% and 55.7%, respectively. A secondary analysis assuming equal rates of C. difficile infection showed a cost saving of $908 with histamine

  8. Dosimetric Considerations to Determine the Optimal Technique for Localized Prostate Cancer Among External Photon, Proton, or Carbon-Ion Therapy and High-Dose-Rate or Low-Dose-Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Georg, Dietmar, E-mail: Dietmar.Georg@akhwien.at [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Hopfgartner, Johannes [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Gòra, Joanna [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Kuess, Peter [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Kragl, Gabriele [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Berger, Daniel [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Hegazy, Neamat [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Goldner, Gregor; Georg, Petra [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria)

    2014-03-01

    Purpose: To assess the dosimetric differences among volumetric modulated arc therapy (VMAT), scanned proton therapy (intensity-modulated proton therapy, IMPT), scanned carbon-ion therapy (intensity-modulated carbon-ion therapy, IMIT), and low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy (BT) treatment of localized prostate cancer. Methods and Materials: Ten patients were considered for this planning study. For external beam radiation therapy (EBRT), planning target volume was created by adding a margin of 5 mm (lateral/anterior–posterior) and 8 mm (superior–inferior) to the clinical target volume. Bladder wall (BW), rectal wall (RW), femoral heads, urethra, and pelvic tissue were considered as organs at risk. For VMAT and IMPT, 78 Gy(relative biological effectiveness, RBE)/2 Gy were prescribed. The IMIT was based on 66 Gy(RBE)/20 fractions. The clinical target volume planning aims for HDR-BT ({sup 192}Ir) and LDR-BT ({sup 125}I) were D{sub 90%} ≥34 Gy in 8.5 Gy per fraction and D{sub 90%} ≥145 Gy. Both physical and RBE-weighted dose distributions for protons and carbon-ions were converted to dose distributions based on 2-Gy(IsoE) fractions. From these dose distributions various dose and dose–volume parameters were extracted. Results: Rectal wall exposure 30-70 Gy(IsoE) was reduced for IMIT, LDR-BT, and HDR-BT when compared with VMAT and IMPT. The high-dose region of the BW dose–volume histogram above 50 Gy(IsoE) of IMPT resembled the VMAT shape, whereas all other techniques showed a significantly lower high-dose region. For all 3 EBRT techniques similar urethra D{sub mean} around 74 Gy(IsoE) were obtained. The LDR-BT results were approximately 30 Gy(IsoE) higher, HDR-BT 10 Gy(IsoE) lower. Normal tissue and femoral head sparing was best with BT. Conclusion: Despite the different EBRT prescription and fractionation schemes, the high-dose regions of BW and RW expressed in Gy(IsoE) were on the same order of magnitude. Brachytherapy techniques

  9. Dosimetric Considerations to Determine the Optimal Technique for Localized Prostate Cancer Among External Photon, Proton, or Carbon-Ion Therapy and High-Dose-Rate or Low-Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Georg, Dietmar; Hopfgartner, Johannes; Gòra, Joanna; Kuess, Peter; Kragl, Gabriele; Berger, Daniel; Hegazy, Neamat; Goldner, Gregor; Georg, Petra

    2014-01-01

    Purpose: To assess the dosimetric differences among volumetric modulated arc therapy (VMAT), scanned proton therapy (intensity-modulated proton therapy, IMPT), scanned carbon-ion therapy (intensity-modulated carbon-ion therapy, IMIT), and low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy (BT) treatment of localized prostate cancer. Methods and Materials: Ten patients were considered for this planning study. For external beam radiation therapy (EBRT), planning target volume was created by adding a margin of 5 mm (lateral/anterior–posterior) and 8 mm (superior–inferior) to the clinical target volume. Bladder wall (BW), rectal wall (RW), femoral heads, urethra, and pelvic tissue were considered as organs at risk. For VMAT and IMPT, 78 Gy(relative biological effectiveness, RBE)/2 Gy were prescribed. The IMIT was based on 66 Gy(RBE)/20 fractions. The clinical target volume planning aims for HDR-BT ( 192 Ir) and LDR-BT ( 125 I) were D 90% ≥34 Gy in 8.5 Gy per fraction and D 90% ≥145 Gy. Both physical and RBE-weighted dose distributions for protons and carbon-ions were converted to dose distributions based on 2-Gy(IsoE) fractions. From these dose distributions various dose and dose–volume parameters were extracted. Results: Rectal wall exposure 30-70 Gy(IsoE) was reduced for IMIT, LDR-BT, and HDR-BT when compared with VMAT and IMPT. The high-dose region of the BW dose–volume histogram above 50 Gy(IsoE) of IMPT resembled the VMAT shape, whereas all other techniques showed a significantly lower high-dose region. For all 3 EBRT techniques similar urethra D mean around 74 Gy(IsoE) were obtained. The LDR-BT results were approximately 30 Gy(IsoE) higher, HDR-BT 10 Gy(IsoE) lower. Normal tissue and femoral head sparing was best with BT. Conclusion: Despite the different EBRT prescription and fractionation schemes, the high-dose regions of BW and RW expressed in Gy(IsoE) were on the same order of magnitude. Brachytherapy techniques were clearly superior in

  10. Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator

    International Nuclear Information System (INIS)

    Brenner, David J; Elliston, Carl D; Hall, Eric J; Paganetti, Harald

    2009-01-01

    Proton radiotherapy represents a potential major advance in cancer therapy. Most current proton beams are spread out to cover the tumor using passive scattering and collimation, resulting in an extra whole-body high-energy neutron dose, primarily from proton interactions with the final collimator. There is considerable uncertainty as to the carcinogenic potential of low doses of high-energy neutrons, and thus we investigate whether this neutron dose can be significantly reduced without major modifications to passively scattered proton beam lines. Our goal is to optimize the design features of a patient-specific collimator or pre-collimator/collimator assembly. There are a number of often contradictory design features, in terms of geometry and material, involved in an optimal design. For example, plastic or hybrid plastic/metal collimators have a number of advantages. We quantify these design issues, and investigate the practical balances that can be achieved to significantly reduce the neutron dose without major alterations to the beamline design or function. Given that the majority of proton therapy treatments, at least for the next few years, will use passive scattering techniques, reducing the associated neutron-related risks by simple modifications of the collimator assembly design is a desirable goal.

  11. Occupational Airborne Contact Dermatitis From Proton Pump Inhibitors.

    Science.gov (United States)

    DeKoven, Joel G; Yu, Ashley M

    2015-01-01

    Few published reports have described occupational contact dermatitis from proton pump inhibitor (PPI) exposure in the literature. We present an additional case of a 58-year-old male pharmaceutical worker with an occupational airborne allergic contact dermatitis to PPIs confirmed by patch testing. This is a novel report of workplace exposure to dexlansoprazole and esomeprazole PPIs with resultant clinical contact allergy and relevant positive patch test results to these 2 agents. A literature review of all previously reported cases of occupational contact dermatitis to PPI is summarized. The case also emphasizes the importance of even minute exposures when considering workplace accommodation.

  12. Comparison of dose distribution for proton beams and electrons: advantages and disadvantages; Comparacao de distribuicao de dose para feixes de protons e eletrons: vantagens e desvantagens

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Joao T.M.; Ferreira, Maira B.; Braga, Victor B. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2016-07-01

    This study consists of a simulation of cancer therapy using a beam of protons and electrons. By comparing dose distribution curves for both beams we have showed the advantages and disadvantages of both therapies. The study was performed with Monte Carlo simulations using Geant4 code for a brain tumor, and it was found that the presence of the Bragg peak in proton beam allows a higher dose deposition in tumor and protection of adjacent tissues, while the electron beam has an entry dose in the tissue higher than the proton, yielding to the tissue neighbors of the tumor, unnecessary radiation. Moreover, it was also found significant production of neutrons from the proton beam, showing its main disadvantage. The continuation of this work will add the comparison with clinical beams of photons. (author)

  13. Proton-pumping rhodopsins are abundantly expressed by microbial eukaryotes in a high-Arctic fjord.

    Science.gov (United States)

    Vader, Anna; Laughinghouse, Haywood D; Griffiths, Colin; Jakobsen, Kjetill S; Gabrielsen, Tove M

    2018-02-01

    Proton-pumping rhodopsins provide an alternative pathway to photosynthesis by which solar energy can enter the marine food web. Rhodopsin genes are widely found in marine bacteria, also in the Arctic, and were recently reported from several eukaryotic lineages. So far, little is known about rhodopsin expression in Arctic eukaryotes. In this study, we used metatranscriptomics and 18S rDNA tag sequencing to examine the mid-summer function and composition of marine protists (size 0.45-10 µm) in the high-Arctic Billefjorden (Spitsbergen), especially focussing on the expression of microbial proton-pumping rhodopsins. Rhodopsin transcripts were highly abundant, at a level similar to that of genes involved in photosynthesis. Phylogenetic analyses placed the environmental rhodopsins within disparate eukaryotic lineages, including dinoflagellates, stramenopiles, haptophytes and cryptophytes. Sequence comparison indicated the presence of several functional types, including xanthorhodopsins and a eukaryotic clade of proteorhodopsin. Transcripts belonging to the proteorhodopsin clade were also abundant in published metatranscriptomes from other oceanic regions, suggesting a global distribution. The diversity and abundance of rhodopsins show that these light-driven proton pumps play an important role in Arctic microbial eukaryotes. Understanding this role is imperative to predicting the future of the Arctic marine ecosystem faced by a changing light climate due to diminishing sea-ice. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Low earth orbit radiation dose distribution in a phantom head

    International Nuclear Information System (INIS)

    Konradi, A.; Badhwar, G.D.; Cash, B.L.; Hardy, K.A.

    1992-01-01

    In order to compare analytical methods with data obtained during exposure to space radiation, a phantom head instrumented with a large number of radiation detectors was flown on the Space Shuttle on three occasions: 8 August 1989 (STS-28), 28 February 1990 (STS-36), and 24 April 1990 (STS-31). The objective of this experiment was to obtain a measurement of the inhomogeneity in the dose distribution within a phantom head volume. The orbits of these missions were complementary-STS-28 and STS-36 had high inclination and low altitude, while STS-31 had a low inclination and high altitude. In the cases of STS-28 and STS-36, the main contribution to the radiation dose comes from galactic cosmic rays (GCR) with a minor to negligible part supplied by the inner belt through the South Atlantic Anomaly (SAA), and for STS-28 an even smaller one from a proton enhancement during a solar flare-associated proton event. For STS-31, the inner belt protons dominate and the GCR contribution is almost negligible. The internal dose distribution is consistent with the mass distribution of the orbiter and the self-shielding and physical location of the phantom head. (author)

  15. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    International Nuclear Information System (INIS)

    Sakamoto, Yukio

    2005-01-01

    Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of these data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality factors to consider the consistency between radiation weighting factors and Q-L relationship. The effective dose conversion coefficients obtained in this work were in good agreement with those recently evaluated by using FLUKA code for photons and electrons with all energies, and neutrons and protons below 500 MeV. There were some discrepancy between two data owing to the difference of cross sections in the nuclear reaction models. The dose conversion coefficients of effective dose equivalents for high energy radiations based on Q-L relation in ICRP Publication 60 were evaluated only in this work. The previous comparison between effective dose and effective dose equivalent made it clear that the radiation weighting factors for high energy neutrons and protons were overestimated and the modification was required. (author)

  16. Comparison of surface doses from spot scanning and passively scattered proton therapy beams

    International Nuclear Information System (INIS)

    Arjomandy, Bijan; Sahoo, Narayan; Gillin, Michael; Cox, James; Lee, Andrew

    2009-01-01

    Proton therapy for the treatment of cancer is delivered using either passively scattered or scanning beams. Each technique delivers a different amount of dose to the skin, because of the specific feature of their delivery system. The amount of dose delivered to the skin can play an important role in choosing the delivery technique for a specific site. To assess the differences in skin doses, we measured the surface doses associated with these two techniques. For the purpose of this investigation, the surface doses in a phantom were measured for ten prostate treatment fields planned with passively scattered proton beams and ten patients planned with spot scanning proton beams. The measured doses were compared to evaluate the differences in the amount of skin dose delivered by using these techniques. The results indicate that, on average, the patients treated with spot scanning proton beams received lower skin doses by an amount of 11.8% ± 0.3% than did the patients treated with passively scattered proton beams. That difference could amount to 4 CGE per field for a prescribed dose of 76 CGE in 38 fractions treated with two equally weighted parallel opposed fields. (note)

  17. A Fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation

    International Nuclear Information System (INIS)

    Li, Haisen S.; Romeijn, H. Edwin; Dempsey, James F.

    2006-01-01

    We developed an analytical method for determining the maximum acceptable grid size for discrete dose calculation in proton therapy treatment plan optimization, so that the accuracy of the optimized dose distribution is guaranteed in the phase of dose sampling and the superfluous computational work is avoided. The accuracy of dose sampling was judged by the criterion that the continuous dose distribution could be reconstructed from the discrete dose within a 2% error limit. To keep the error caused by the discrete dose sampling under a 2% limit, the dose grid size cannot exceed a maximum acceptable value. The method was based on Fourier analysis and the Shannon-Nyquist sampling theorem as an extension of our previous analysis for photon beam intensity modulated radiation therapy [J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, Med. Phys. 32, 380-388 (2005)]. The proton beam model used for the analysis was a near mono-energetic (of width about 1% the incident energy) and monodirectional infinitesimal (nonintegrated) pencil beam in water medium. By monodirection, we mean that the proton particles are in the same direction before entering the water medium and the various scattering prior to entrance to water is not taken into account. In intensity modulated proton therapy, the elementary intensity modulation entity for proton therapy is either an infinitesimal or finite sized beamlet. Since a finite sized beamlet is the superposition of infinitesimal pencil beams, the result of the maximum acceptable grid size obtained with infinitesimal pencil beam also applies to finite sized beamlet. The analytic Bragg curve function proposed by Bortfeld [T. Bortfeld, Med. Phys. 24, 2024-2033 (1997)] was employed. The lateral profile was approximated by a depth dependent Gaussian distribution. The model included the spreads of the Bragg peak and the lateral profiles due to multiple Coulomb scattering. The dependence of the maximum acceptable dose grid size on the

  18. Monte Carlo simulation of secondary neutron dose for scanning proton therapy using FLUKA.

    Directory of Open Access Journals (Sweden)

    Chaeyeong Lee

    Full Text Available Proton therapy is a rapidly progressing field for cancer treatment. Globally, many proton therapy facilities are being commissioned or under construction. Secondary neutrons are an important issue during the commissioning process of a proton therapy facility. The purpose of this study is to model and validate scanning nozzles of proton therapy at Samsung Medical Center (SMC by Monte Carlo simulation for beam commissioning. After the commissioning, a secondary neutron ambient dose from proton scanning nozzle (Gantry 1 was simulated and measured. This simulation was performed to evaluate beam properties such as percent depth dose curve, Bragg peak, and distal fall-off, so that they could be verified with measured data. Using the validated beam nozzle, the secondary neutron ambient dose was simulated and then compared with the measured ambient dose from Gantry 1. We calculated secondary neutron dose at several different points. We demonstrated the validity modeling a proton scanning nozzle system to evaluate various parameters using FLUKA. The measured secondary neutron ambient dose showed a similar tendency with the simulation result. This work will increase the knowledge necessary for the development of radiation safety technology in medical particle accelerators.

  19. Construction of boundary-surface-based Chinese female astronaut computational phantom and proton dose estimation

    International Nuclear Information System (INIS)

    Sun Wenjuan; Xie Tianwu; Liu Qian; Jia Xianghong; Xu Feng

    2013-01-01

    With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 x 2 x 4 mm 3 for radioactive particle transport simulations from isotropic protons with energies of 5000 - 10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO). (author)

  20. Construction of boundary-surface-based Chinese female astronaut computational phantom and proton dose estimation

    Science.gov (United States)

    Sun, Wenjuan; JIA, Xianghong; XIE, Tianwu; XU, Feng; LIU, Qian

    2013-01-01

    With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 × 2 × 4 mm3for radioactive particle transport simulations from isotropic protons with energies of 5000–10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO). PMID:23135158

  1. Calculation of multi-dimensional dose distribution in medium due to proton beam incidence

    International Nuclear Information System (INIS)

    Kawachi, Kiyomitsu; Inada, Tetsuo

    1978-01-01

    The method of analyzing the multi-dimensional dose distribution in a medium due to proton beam incidence is presented to obtain the reliable and simplified method from clinical viewpoint, especially for the medical treatment of cancer. The heavy ion beam being taken out of an accelerator has to be adjusted to fit cancer location and size, utilizing a modified range modulator, a ridge filter, a bolus and a special scanning apparatus. The precise calculation of multi-dimensional dose distribution of proton beam is needed to fit treatment to a limit part. The analytical formulas consist of those for the fluence distribution in a medium, the divergence of flying range, the energy distribution itself, the dose distribution in side direction and the two-dimensional dose distribution. The fluence distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV, the energy distribution of protons at the position of a Bragg peak for various values of incident energy, the depth dose distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV and average energy of 100 MeV, the proton fluence and dose distribution as functions of depth for the incident average energy of 250 MeV, the statistically estimated percentage errors in the proton fluence and dose distribution, the estimated minimum detectable tumor thickness as a function of the number of incident protons for the different incident spectra with average energy of 250 MeV, the isodose distribution in a plane containing the central axis in case of the incident proton beam of 3 mm diameter and 40 MeV and so on are presented as the analytical results, and they are evaluated. (Nakai, Y.)

  2. Pharmacokinetics and pharmacodynamics of the proton pump inhibitors.

    Science.gov (United States)

    Shin, Jai Moo; Kim, Nayoung

    2013-01-01

    Proton pump inhibitor (PPI) is a prodrug which is activated by acid. Activated PPI binds covalently to the gastric H(+), K(+)-ATPase via disulfide bond. Cys813 is the primary site responsible for the inhibition of acid pump enzyme, where PPIs bind. Omeprazole was the first PPI introduced in market, followed by pantoprazole, lansoprazole and rabeprazole. Though these PPIs share the core structures benzimidazole and pyridine, their pharmacokinetics and pharmacodynamics are a little different. Several factors must be considered in understanding the pharmacodynamics of PPIs, including: accumulation of PPI in the parietal cell, the proportion of the pump enzyme located at the canaliculus, de novo synthesis of new pump enzyme, metabolism of PPI, amounts of covalent binding of PPI in the parietal cell, and the stability of PPI binding. PPIs have about 1hour of elimination half-life. Area under the plasmic concentration curve and the intragastric pH profile are very good indicators for evaluating PPI efficacy. Though CYP2C19 and CYP3A4 polymorphism are major components of PPI metabolism, the pharmacokinetics and pharmacodynamics of racemic mixture of PPIs depend on the CYP2C19 genotype status. S-omeprazole is relatively insensitive to CYP2C19, so better control of the intragastric pH is achieved. Similarly, R-lansoprazole was developed in order to increase the drug activity. Delayed-release formulation resulted in a longer duration of effective concentration of R-lansoprazole in blood, in addition to metabolic advantage. Thus, dexlansoprazole showed best control of the intragastric pH among the present PPIs. Overall, PPIs made significant progress in the management of acid-related diseases and improved health-related quality of life.

  3. Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams

    International Nuclear Information System (INIS)

    Pedroni, E; Scheib, S; Boehringer, T; Coray, A; Grossmann, M; Lin, S; Lomax, A

    2005-01-01

    In this paper we present the pencil beam dose model used for treatment planning at the PSI proton gantry, the only system presently applying proton therapy with a beam scanning technique. The scope of the paper is to give a general overview on the various components of the dose model, on the related measurements and on the practical parametrization of the results. The physical model estimates from first physical principles absolute dose normalized to the number of incident protons. The proton beam flux is measured in practice by plane-parallel ionization chambers (ICs) normalized to protons via Faraday-cup measurements. It is therefore possible to predict and deliver absolute dose directly from this model without other means. The dose predicted in this way agrees very well with the results obtained with ICs calibrated in a cobalt beam. Emphasis is given in this paper to the characterization of nuclear interaction effects, which play a significant role in the model and are the major source of uncertainty in the direct estimation of the absolute dose. Nuclear interactions attenuate the primary proton flux, they modify the shape of the depth-dose curve and produce a faint beam halo of secondary dose around the primary proton pencil beam in water. A very simple beam halo model has been developed and used at PSI to eliminate the systematic dependences of the dose observed as a function of the size of the target volume. We show typical results for the relative (using a CCD system) and absolute (using calibrated ICs) dosimetry, routinely applied for the verification of patient plans. With the dose model including the nuclear beam halo we can predict quite precisely the dose directly from treatment planning without renormalization measurements, independently of the dose, shape and size of the dose fields. This applies also to the complex non-homogeneous dose distributions required for the delivery of range-intensity-modulated proton therapy, a novel therapy technique

  4. Residual heat removal pump and low pressure safety injection pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1992-01-01

    Residual Heat Removal (RHR) and low pressure safety injection (LPSI) pumps installed in pressurized water-to-reactor power plants are used to provide low-head safety injection in the event of loss of coolant in the reactor coolant system. Because these pumps are subjected to rather severe temperature and pressure transients, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. Typically the pump impeller is mounted on an extended motor shaft (close-coupled configuration) and a mechanical seal is employed at the pump end of the shaft. Traditionally RHR and LPSI pumps have been a significant maintenance item for many utilities. Periodic mechanical seal of motor bearing replacement often is considered routine maintenance. The closed-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. This paper introduces a design modification developed to convert the close-coupled RHR and LPSI pumps to a coupled configuration

  5. Modulation of proton pumping across proteoliposome membranes reconstituted with tonoplast H(+)-ATPase from cultured rice (Oryza sativa L. var. Boro) cells by acyl steryl glucoside and steryl glucoside.

    Science.gov (United States)

    Yamaguchi, Mineo; Kasamo, Kunihiro

    2002-07-01

    Tonoplast H(+)-ATPase purified from cultured rice cells (Oryza sativa L. var. Boro) was reconstituted into asolectin liposomes containing steryl glucoside (SG) or acyl steryl glucoside (ASG), and the effects of SG and ASG on proton pumping, ATP-hydrolysis activity and proton permeability of the proteoliposome membranes were investigated. In the proteoliposomes containing 10 mol% SG, proton pumping and ATP-hydrolysis activity were increased to around 140% of those in SG-free proteoliposomes. In the proteoliposomes containing ASG, proton pumping and ATP-hydrolysis activity were decreased to one-tenth of those in ASG-free proteoliposomes at 15 mol% ASG; however, activity increased again slightly in the range between 20 and 40 mol% ASG. The change in proton pumping across the proteoliposome membrane is not due to a change of proteoliposome size nor to the location of the catalytic site of the tonoplast H(+)-ATPase in the proteoliposomes. SG and ASG also reduced the passive proton permeability of the proteoliposomes. These results show that SG and ASG modulate proton pumping across the tonoplast toward stimulation and depression, respectively, and they reduce the passive proton permeability of the tonoplast.

  6. Measured Neutron Spectra and Dose Equivalents From a Mevion Single-Room, Passively Scattered Proton System Used for Craniospinal Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Rebecca M., E-mail: rhowell@mdanderson.org [Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Burgett, Eric A.; Isaacs, Daniel [Department of Nuclear Engineering, Idaho State University, Pocatello, Idaho (United States); Price Hedrick, Samantha G.; Reilly, Michael P.; Rankine, Leith J.; Grantham, Kevin K.; Perkins, Stephanie; Klein, Eric E. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States)

    2016-05-01

    Purpose: To measure, in the setting of typical passively scattered proton craniospinal irradiation (CSI) treatment, the secondary neutron spectra, and use these spectra to calculate dose equivalents for both internal and external neutrons delivered via a Mevion single-room compact proton system. Methods and Materials: Secondary neutron spectra were measured using extended-range Bonner spheres for whole brain, upper spine, and lower spine proton fields. The detector used can discriminate neutrons over the entire range of the energy spectrum encountered in proton therapy. To separately assess internally and externally generated neutrons, each of the fields was delivered with and without a phantom. Average neutron energy, total neutron fluence, and ambient dose equivalent [H* (10)] were calculated for each spectrum. Neutron dose equivalents as a function of depth were estimated by applying published neutron depth–dose data to in-air H* (10) values. Results: For CSI fields, neutron spectra were similar, with a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate continuum between the evaporation and thermal peaks. Neutrons in the evaporation peak made the largest contribution to dose equivalent. Internal neutrons had a very low to negligible contribution to dose equivalent compared with external neutrons, largely attributed to the measurement location being far outside the primary proton beam. Average energies ranged from 8.6 to 14.5 MeV, whereas fluences ranged from 6.91 × 10{sup 6} to 1.04 × 10{sup 7} n/cm{sup 2}/Gy, and H* (10) ranged from 2.27 to 3.92 mSv/Gy. Conclusions: For CSI treatments delivered with a Mevion single-gantry proton therapy system, we found measured neutron dose was consistent with dose equivalents reported for CSI with other proton beamlines.

  7. Association Between Proton Pump Inhibitor Use and Spontaneous Bacterial Peritonitis in Cirrhotic Patients with Ascites

    Directory of Open Access Journals (Sweden)

    Mélissa Ratelle

    2014-01-01

    Full Text Available BACKGROUND: There are data suggesting a link between proton pump inhibitor (PPI use and the development of spontaneous bacterial peritonitis (SBP in cirrhotic patients with ascites; however, these data are controversial.

  8. Computing proton dose to irregularly moving targets

    International Nuclear Information System (INIS)

    Phillips, Justin; Gueorguiev, Gueorgui; Grassberger, Clemens; Dowdell, Stephen; Paganetti, Harald; Sharp, Gregory C; Shackleford, James A

    2014-01-01

    Purpose: While four-dimensional computed tomography (4DCT) and deformable registration can be used to assess the dose delivered to regularly moving targets, there are few methods available for irregularly moving targets. 4DCT captures an idealized waveform, but human respiration during treatment is characterized by gradual baseline shifts and other deviations from a periodic signal. This paper describes a method for computing the dose delivered to irregularly moving targets based on 1D or 3D waveforms captured at the time of delivery. Methods: The procedure uses CT or 4DCT images for dose calculation, and 1D or 3D respiratory waveforms of the target position at time of delivery. Dose volumes are converted from their Cartesian geometry into a beam-specific radiological depth space, parameterized in 2D by the beam aperture, and longitudinally by the radiological depth. In this new frame of reference, the proton doses are translated according to the motion found in the 1D or 3D trajectory. These translated dose volumes are weighted and summed, then transformed back into Cartesian space, yielding an estimate of the dose that includes the effect of the measured breathing motion. The method was validated using a synthetic lung phantom and a single representative patient CT. Simulated 4DCT was generated for the phantom with 2 cm peak-to-peak motion. Results: A passively-scattered proton treatment plan was generated using 6 mm and 5 mm smearing for the phantom and patient plans, respectively. The method was tested without motion, and with two simulated breathing signals: a 2 cm amplitude sinusoid, and a 2 cm amplitude sinusoid with 3 cm linear drift in the phantom. The tumor positions were equally weighted for the patient calculation. Motion-corrected dose was computed based on the mid-ventilation CT image in the phantom and the peak exhale position in the patient. Gamma evaluation was 97.8% without motion, 95.7% for 2 cm sinusoidal motion, 95.7% with 3 cm drift in

  9. Partial symptom-response to proton pump inhibitors in patients with non-erosive reflux disease or reflux oesophagitis - a post hoc analysis of 5796 patients

    DEFF Research Database (Denmark)

    Bytzer, P; van Zanten, S Veldhuyzen; Mattsson, H

    2012-01-01

    Although most patients with gastro-oesophageal reflux disease (GERD) benefit from proton pump inhibitor (PPI) therapy, some experience only partial symptom relief.......Although most patients with gastro-oesophageal reflux disease (GERD) benefit from proton pump inhibitor (PPI) therapy, some experience only partial symptom relief....

  10. Mechanical pumping at low temperature

    International Nuclear Information System (INIS)

    Perin, J.P.; Claudet, G.; Disdier, F.

    1995-01-01

    This novel concept consist of a mechanical pump able to run at low temperature (25K). Since gas density varies inversely with temperature, this pump would deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are order of magnitude reduction in size, weight, when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. This pump would be a solution to allow continuously tritium extraction and minimize the mass inventory. (orig.)

  11. Ionizing acceleration of color center transformation in the low radiation dose range

    International Nuclear Information System (INIS)

    Mamontov, A.P.; Starodubtsev, V.A.; Chernov, I.P.

    1985-01-01

    The purpose of the study is investigation of annealing and colour centers transformation of known nature in lithium fluoride crystals at the γ-irradiation low doses. The controlled colour centers have been introduced by LiF monocrystal samples irradiation by protons with 6 MeV energy. The γ-radiation dose rate constitutes 25 Grxssup(-1). The variation of absorption spectra caused by proton and γ-irradiation in initial crystals and in the sample being twice exposed has been studied. It is shown that for LiF monocrystals in the γ-radiation low dose range (below 5 kGr) anomalous dependences of concentration of F-aggregate colour centers on the irradiation dose are observed. High efficiency in defects transformation can be caused by the chain of self-sustaining reactions. The observed N-type dependences caused defects decay and competition of the processes of capture of anionic vacancies by F- and F-aggregate centers

  12. Prolonged utilization of proton pump inhibitors in patients with ischemic and valvular heart disease is associated with surgical treatments, weight loss and aggravates anemia.

    Science.gov (United States)

    Boban, Marko; Zulj, Marinko; Persic, Viktor; Medved, Igor; Zekanovic, Drazen; Vcev, Aleksandar

    2016-09-15

    Proton pump inhibitors (PPIs) are among the commonest drugs used nowadays. The aim of our study was to analyze prolonged utilization of proton pump inhibitors in medical therapy of patients with ischemic and valvular heart disease. Secondly, profile of utilization was scrutinized to patient characteristics and type of cardiovascular treatments. The study included consecutive patients scheduled for cardiovascular rehabilitation 2-6months after index cardiovascular treatment. Two hundred ninety-four patients (n=294/604; 48.7%) have been using proton pump inhibitor in their therapy after index cardiovascular treatment. Cardiovascular treatments were powerfully connected with utilization of PPIs; surgery 5.77 (95%-confidence intervals [CI]: 4.05-8.22; pvalvular heart disease utilized proton pump inhibitor in prolonged courses. Prolonged courses of PPIs were connected with existence and worsening of red blood count indexes, older age, lesser weight of patients and underutilization of cardioprotective drugs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Clinical Efficacy of Proton Pump Inhibitor versus Prompt Endoscopy for Management of People with Dyspepsia

    DEFF Research Database (Denmark)

    Kjeldsen, Hans Christian; Lauritzen, Torsten; Christensen, Bo

      Title:   Clinical Efficacy of Proton Pump Inhibitor versus Prompt Endoscopy for Management of People with Dyspepsia: A Randomized Clinical Trial in General Practice.     Purpose: To compare the clinical efficacy of two strategies for management of dyspepsia in general practice in a RCT design.......   Setting: June 2000 to August 2002, 41 GPs, Aarhus County, Denmark   Methods: 368 people with dyspepsia (epigastric pain/discomfort, no alarm symptoms) were randomly assigned to treatment with omeprazol 40 mg/day for two weeks (PPI group, n:185) or endoscopy (endoscopy group, n:183). Due to migration......, dyspeptic contacts to GP or patients' satisfaction. Conclusions: Prompt endoscopy was superior to proton pump inhibitor concerning symptom improvement in management of dyspepsia in general practice when pain/discomfort was the primary symptom. There were no differences between the two strategies in respect...

  14. Mechanical pumping at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Perin, J.P.; Claudet, G.; Disdier, F.

    1994-12-31

    This new concept consists of a mechanical pump able to run at low temperature (25 K). Since gas density varies inversely with temperature, the pump could deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are reduction of an order of magnitude in size and weight when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. Results obtained at 80 K and 25 K with a Holweck type molecular drag pump of 100 mm diameter and with few stages of a turbomolecular pump running at the same temperatures, are given. This pump would be a solution to allow continuous tritium extraction and minimize the mass inventory for the ITER (International Tokamak Experiment Reactor). 5 figs., 2 tabs., 4 refs.

  15. The analysis of Drug - Related Problems in patients with gastroesophageal reflux disease treated with proton-pump inhibitors

    Directory of Open Access Journals (Sweden)

    Milutinović Jelena D.

    2015-01-01

    Full Text Available Introduction: Drug-related problems are frequent in almost all therapeutic areas. Aims: The aim of this paper was to detect drug - related problems in patients with gastroesophageal reflux and to analyze their possible association with the patient characteristics. Material and methods: The study was designed as descriptive, retrospective, crosssectional study aiming to determine the most common drug - related problems in patients with gastro-esophageal reflux disease treated with proton-pump inhibitors. The survey was conducted at the Department of Gastroenterology, Clinical Centre in Kragujevac. The study enrolled all patients treated from gastroesophageal reflux disease with proton pump inhibitors during the time period from 1.1.2014 until 1.1.2015. The study used descriptive statistics (percentage distribution, mean and standard deviation. The correlation between the number of adverse events and patient characteristics was also calculated. Results: The average age of the patients was 55.97±15.811 years, and 43 of the patients (60.6 % were male. The average hospitalization duration was 12.30±8.89 days. Based on the Pharmaceutical Care Network Europe classification, there were 182 Drug-Related Problems which was, on average, 2.56 problems per patient. Only 5 patients (7% did not report any problem while 11 patients (15.49% had over 10 possible drug-drug interactions. The most common problems which occurred were erroneous drug choice, inappropriate administration and possible interactions between medications. Conclusions: Based on the results of this study, one must pay attention to possible drug interactions and other problems which may occur with proton-pump inhibitors. Recognition of different sub-types of drug-related problems and of factors associated with drug related problems may reduce risk from adverse outcomes of gastro-esophageal reflux disease treatment with proton pump inhibitors.

  16. SU-E-T-37: A GPU-Based Pencil Beam Algorithm for Dose Calculations in Proton Radiation Therapy

    International Nuclear Information System (INIS)

    Kalantzis, G; Leventouri, T; Tachibana, H; Shang, C

    2015-01-01

    Purpose: Recent developments in radiation therapy have been focused on applications of charged particles, especially protons. Over the years several dose calculation methods have been proposed in proton therapy. A common characteristic of all these methods is their extensive computational burden. In the current study we present for the first time, to our best knowledge, a GPU-based PBA for proton dose calculations in Matlab. Methods: In the current study we employed an analytical expression for the protons depth dose distribution. The central-axis term is taken from the broad-beam central-axis depth dose in water modified by an inverse square correction while the distribution of the off-axis term was considered Gaussian. The serial code was implemented in MATLAB and was launched on a desktop with a quad core Intel Xeon X5550 at 2.67GHz with 8 GB of RAM. For the parallelization on the GPU, the parallel computing toolbox was employed and the code was launched on a GTX 770 with Kepler architecture. The performance comparison was established on the speedup factors. Results: The performance of the GPU code was evaluated for three different energies: low (50 MeV), medium (100 MeV) and high (150 MeV). Four square fields were selected for each energy, and the dose calculations were performed with both the serial and parallel codes for a homogeneous water phantom with size 300×300×300 mm3. The resolution of the PBs was set to 1.0 mm. The maximum speedup of ∼127 was achieved for the highest energy and the largest field size. Conclusion: A GPU-based PB algorithm for proton dose calculations in Matlab was presented. A maximum speedup of ∼127 was achieved. Future directions of the current work include extension of our method for dose calculation in heterogeneous phantoms

  17. Investigation of vacuum pumping on the dose response of the MAGAS normoxic polymer gel dosimeter

    International Nuclear Information System (INIS)

    Venning, AJ.; Canberra Hospital, Canberra; University of Sydney, Sydney; Mather, ML.; Baldock, C.

    2005-01-01

    The effect of vacuum pumping on the dose response of the MAGAS polymer gel dosimeter has been investigated. A delay of several days post-manufacture before irradiation was previously necessary due to the slow oxygen scavenging of ascorbic acid. The MAGAS polymer gel dosimeter was vacuum pumped before gelation to remove dissolved oxygen. The MAGAS polymer gel dosimeter was poured into glass screw-top vials, which were irradiated at various times, post-manufacture to a range of doses. Magnetic resonance imaging techniques were used to determine the R2-dose response and /?2-dose sensitivity of the MAGAS polymer gel. The results were compared with a control batch of MAGAS polymer gel that was not vacuum pumped. It was shown that vacuum pumping on the MAGAS polymer gel solution immediately prior to sealing in glass screw-top vials initially increases the R2-dose response and R2-dose sensitivity of the dosimeter. An increase in the .R2-dose response and i?2-dose sensitivity was observed with increasing time between manufacture and irradiation. Over the range of post-manufacture irradiation times investigated, the greatest i?2-dose response and if 2 -dose sensitivity occurred at 96 hours

  18. Dose energy dependence in proton imaging with thin detector

    Energy Technology Data Exchange (ETDEWEB)

    Denyak, V.V., E-mail: denyak@gmail.com [National Science Centre Kharkov Institute of Physics and Technology, St. Akademicheskaya 1, Kharkov 61108 (Ukraine); Federal University of Technology - Parana, Av. Sete de Setembro 3165, Curitiba 80230-901 (Brazil); Schelin, H.R. [Pele Pequeno Principe Research Institute, Av. Silva Jardim 1632, Curitiba 80250-200 (Brazil); Federal University of Technology - Parana, Av. Sete de Setembro 3165, Curitiba 80230-901 (Brazil); Silva, R.C.L.; Kozuki, C.; Paschuk, S.A.; Milhoretto, E. [Federal University of Technology - Parana, Av. Sete de Setembro 3165, Curitiba 80230-901 (Brazil)

    2012-07-15

    Since the earliest works proposing the use of protons for imaging, the main advantage of protons over X-rays was expected to be a result of the specific property of the proton flux dropping off very steeply at the end of the particle range. This idea was declared but was not checked. In the present work, this assumption was investigated using the Monte Carlo simulation for the case of registration of protons with a thin detector. - Highlights: Black-Right-Pointing-Pointer Principal idea of proton imaging 'to work at the end of the range' was tested. Black-Right-Pointing-Pointer The case of thin detector was investigated. Black-Right-Pointing-Pointer The dose energy dependence was calculated using computer simulation.

  19. MODULATION OF GROWTH AND PROTON PUMPING ATPase ACTIVITY OF PROBIOTIC Lactobacilli BY DIETARY CUCURBITS

    Directory of Open Access Journals (Sweden)

    Irfan Ahmad

    2013-12-01

    Full Text Available Gastrointestinal tract predominantly harbor probiotic Lactobacilli which exert beneficial effects on human health. Aqueous extracts from fruits of Lagenaria siceraria (Ls, Luffa cylindrica (Lc and Cucurbita maxima (Cm were prepared and lyophilized. Fruit extracts were investigated for their effects on Lactobacillus rhamnosus (L. rhamnosus, Lactobacillus plantarum (L. plantarum and Lactobacillus acidophilus (L. acidophilus. Extracts were found to enhance growth of Lactobacilli without any toxic effect (up to 1000µg/mL concentration. Minimum concentration of extracts at which growth of probiotic strains were found to be enhanced significantly were determined (103.67 µg/mL-118µg/mL and considered as effective concentration (EC or growth stimulatory concentration (GSC. Proton pumping ATPase activity of Lactobacilli were examined and found to be enhanced significantly (29.89- 61.96% in extracts treated probiotics (Lactobacilli as compared to the normal control. Inulin used as positive control and found to enhance the proton efflux activity (28.06-37.72% with respect to the control. These dietary cucurbits enhance metabolic activity of probiotic Lactobacilli by modulating their proton pumping ATPase mechanism. This study suggested that the consumption of cucurbit fruits might be a natural source of enhancing the activities of probiotic Lactobacilli in the gut.

  20. Cardiovascular risks associated with low dose ionizing particle radiation.

    Directory of Open Access Journals (Sweden)

    Xinhua Yan

    Full Text Available Previous epidemiologic data demonstrate that cardiovascular (CV morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ((1H; 0.5 Gy, 1 GeV and iron ion ((56Fe; 0.15 Gy, 1GeV/nucleon irradiation with and without an acute myocardial ischemia (AMI event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in (56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, (56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.

  1. Dietary Inulin Fibers Prevent Proton-Pump Inhibitor (PPI)-Induced Hypocalcemia in Mice.

    Science.gov (United States)

    Hess, Mark W; de Baaij, Jeroen H F; Gommers, Lisanne M M; Hoenderop, Joost G J; Bindels, René J M

    2015-01-01

    Proton-pump inhibitor-induced hypomagnesemia (PPIH) is the most recognized side effect of proton-pump inhibitors (PPIs). Additionally, PPIH is associated with hypocalcemia and hypokalemia. It is hypothesized that PPIs reduce epithelial proton secretion and thereby increase the pH in the colon, which may explain the reduced absorption of and Mg2+ and Ca2+. Fermentation of dietary oligofructose-enriched inulin fibers by the microflora leads to acidification of the intestinal lumen and by this enhances mineral uptake. This study aimed, therefore, to improve mineral absorption by application of dietary inulin to counteract PPIH. Here, C57BL/J6 mice were supplemented with omeprazole and/or inulin. Subsequently, Mg2+ and Ca2+ homeostasis was assessed by means of serum, urine and fecal electrolyte measurements. Moreover, the mRNA levels of magnesiotropic and calciotropic genes were examined in the large intestine and kidney by real-time PCR. Treatment with omeprazole significantly reduced serum Mg2+ and Ca2+ levels. However, concomitant addition of dietary inulin fibers normalized serum Ca2+ but not serum Mg2+ concentrations. Inulin abolished enhanced expression of Trpv6 and S100g in the colon by omeprazole. Additionally, intestinal and renal mRNA levels of the Trpm6 gene were reduced after inulin intake. This study suggests that dietary inulin counteracts reduced intestinal Ca2+ absorption upon PPI treatment. In contrast, inulin did not increase intestinal absorption of Mg2+ sufficiently to recover serum Mg2+. The clinical potential of dietary inulin treatment should be the subject of future studies.

  2. Active glucose transport and proton pumping in tonoplast membrane of Zea mays L. coleoptiles are inhibited by anti-H+-ATPase antibodies

    International Nuclear Information System (INIS)

    Rausch, T.; Butcher, D.N.; Taiz, L.

    1987-01-01

    A tonoplast enriched fraction was obtained from Zea mays L. coleoptiles by isopycnic centrifugation of microsomal membranes in a sucrose step gradient. At the 18/26% interface chloride-stimulated and nitrate-inhibited proton pumping activity coincided with a Mg 2+ -ATP dependent accumulation of 3-O-methyl-D-glucose (OMG) as determined by a membrane filtration technique using 14 C-labeled substrate. OMG transport showed an apparently saturable component with a K/sub m/ of 110 micromolar, and was completely inhibited by 10 micromolar carbonyl cyanide m-chlorophenylhydrazone. Polyclonal antibodies against solubilized native tonoplast H + -ATPase and its 62 and 72 kilodalton subunits were assayed for their ability to inhibit proton pumping and OMG accumulation. Antibodies against both the native enzyme and the putative catalytic subunit strongly inhibited proton pumping and OMG transport whereas antibodies against the 62 kilodalton subunit had only a slight effect on both processes

  3. SU-E-T-120: Analytic Dose Verification for Patient-Specific Proton Pencil Beam Scanning Plans

    International Nuclear Information System (INIS)

    Chang, C; Mah, D

    2015-01-01

    Purpose: To independently verify the QA dose of proton pencil beam scanning (PBS) plans using an analytic dose calculation model. Methods: An independent proton dose calculation engine is created using the same commissioning measurements as those employed to build our commercially available treatment planning system (TPS). Each proton PBS plan is exported from the TPS in DICOM format and calculated by this independent dose engine in a standard 40 x 40 x 40 cm water tank. This three-dimensional dose grid is then compared with the QA dose calculated by the commercial TPS, using standard Gamma criterion. A total of 18 measured pristine Bragg peaks, ranging from 100 to 226 MeV, are used in the model. Intermediate proton energies are interpolated. Similarly, optical properties of the spots are measured in air over 15 cm upstream and downstream, and fitted to a second-order polynomial. Multiple Coulomb scattering in water is approximated analytically using Preston and Kohler formula for faster calculation. The effect of range shifters on spot size is modeled with generalized Highland formula. Note that the above formulation approximates multiple Coulomb scattering in water and we therefore chose not use the full Moliere/Hanson form. Results: Initial examination of 3 patient-specific prostate PBS plans shows that agreement exists between 3D dose distributions calculated by the TPS and the independent proton PBS dose calculation engine. Both calculated dose distributions are compared with actual measurements at three different depths per beam and good agreements are again observed. Conclusion: Results here showed that 3D dose distributions calculated by this independent proton PBS dose engine are in good agreement with both TPS calculations and actual measurements. This tool can potentially be used to reduce the amount of different measurement depths required for patient-specific proton PBS QA

  4. Analytical dose modeling for preclinical proton irradiation of millimetric targets.

    Science.gov (United States)

    Vanstalle, Marie; Constanzo, Julie; Karakaya, Yusuf; Finck, Christian; Rousseau, Marc; Brasse, David

    2018-01-01

    Due to the considerable development of proton radiotherapy, several proton platforms have emerged to irradiate small animals in order to study the biological effectiveness of proton radiation. A dedicated analytical treatment planning tool was developed in this study to accurately calculate the delivered dose given the specific constraints imposed by the small dimensions of the irradiated areas. The treatment planning system (TPS) developed in this study is based on an analytical formulation of the Bragg peak and uses experimental range values of protons. The method was validated after comparison with experimental data from the literature and then compared to Monte Carlo simulations conducted using Geant4. Three examples of treatment planning, performed with phantoms made of water targets and bone-slab insert, were generated with the analytical formulation and Geant4. Each treatment planning was evaluated using dose-volume histograms and gamma index maps. We demonstrate the value of the analytical function for mouse irradiation, which requires a targeting accuracy of 0.1 mm. Using the appropriate database, the analytical modeling limits the errors caused by misestimating the stopping power. For example, 99% of a 1-mm tumor irradiated with a 24-MeV beam receives the prescribed dose. The analytical dose deviations from the prescribed dose remain within the dose tolerances stated by report 62 of the International Commission on Radiation Units and Measurements for all tested configurations. In addition, the gamma index maps show that the highly constrained targeting accuracy of 0.1 mm for mouse irradiation leads to a significant disagreement between Geant4 and the reference. This simulated treatment planning is nevertheless compatible with a targeting accuracy exceeding 0.2 mm, corresponding to rat and rabbit irradiations. Good dose accuracy for millimetric tumors is achieved with the analytical calculation used in this work. These volume sizes are typical in mouse

  5. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    CERN Document Server

    Sakamoto, Y; Sato, O; Tanaka, S I; Tsuda, S; Yamaguchi, Y; Yoshizawa, N

    2003-01-01

    In the International Commission on Radiological Protection (ICRP) 1990 Recommendations, radiation weighting factors were introduced in the place of quality factors, the tissue weighting factors were revised, and effective doses and equivalent doses of each tissues and organs were defined as the protection quantities. Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of theses data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality fact...

  6. Benchmark measurements and simulations of dose perturbations due to metallic spheres in proton beams

    International Nuclear Information System (INIS)

    Newhauser, Wayne D.; Rechner, Laura; Mirkovic, Dragan; Yepes, Pablo; Koch, Nicholas C.; Titt, Uwe; Fontenot, Jonas D.; Zhang, Rui

    2013-01-01

    Monte Carlo simulations are increasingly used for dose calculations in proton therapy due to its inherent accuracy. However, dosimetric deviations have been found using Monte Carlo code when high density materials are present in the proton beamline. The purpose of this work was to quantify the magnitude of dose perturbation caused by metal objects. We did this by comparing measurements and Monte Carlo predictions of dose perturbations caused by the presence of small metal spheres in several clinical proton therapy beams as functions of proton beam range and drift space. Monte Carlo codes MCNPX, GEANT4 and Fast Dose Calculator (FDC) were used. Generally good agreement was found between measurements and Monte Carlo predictions, with the average difference within 5% and maximum difference within 17%. The modification of multiple Coulomb scattering model in MCNPX code yielded improvement in accuracy and provided the best overall agreement with measurements. Our results confirmed that Monte Carlo codes are well suited for predicting multiple Coulomb scattering in proton therapy beams when short drift spaces are involved. - Highlights: • We compared measurements and Monte Carlo predictions of dose perturbations caused by the metal objects in proton beams. • Different Monte Carlo codes were used, including MCNPX, GEANT4 and Fast Dose Calculator. • Good agreement was found between measurements and Monte Carlo simulations. • The modification of multiple Coulomb scattering model in MCNPX code yielded improved accuracy. • Our results confirmed that Monte Carlo codes are well suited for predicting multiple Coulomb scattering in proton therapy

  7. Effect of proton pump inhibitors on the serum concentrations of the selective serotonin reuptake inhibitors citalopram, escitalopram, and sertraline.

    Science.gov (United States)

    Gjestad, Caroline; Westin, Andreas A; Skogvoll, Eirik; Spigset, Olav

    2015-02-01

    The selective serotonin reuptake inhibitors (SSRIs) citalopram, escitalopram, and sertraline are all metabolized by the cytochrome P-450 isoenzyme CYP2C19, which is inhibited by the proton pump inhibitors (PPIs) omeprazole, esomeprazole, lansoprazole, and pantoprazole. The aim of the present study was to evaluate the effect of these PPIs on the serum concentrations of citalopram, escitalopram, and sertraline. Serum concentrations from patients treated with citalopram, escitalopram, or sertraline were obtained from a routine therapeutic drug monitoring database, and samples from subjects concomitantly using PPIs were identified. Dose-adjusted SSRI serum concentrations were calculated to compare data from those treated and those not treated with PPIs. Citalopram concentrations were significantly higher in patients treated with omeprazole (+35.3%; P Escitalopram concentrations were significantly higher in patients treated with omeprazole (+93.9%; P escitalopram is affected to a greater extent than are citalopram and sertraline. When omeprazole or esomeprazole are used in combination with escitalopram, a 50% dose reduction of the latter should be considered.

  8. SU-E-T-324: The Influence of Patient Positioning Uncertainties in Proton Radiotherapy On Proton Range and Dose Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, J [EBG MedAustron GmbH, Wiener Neustadt (Austria); Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Medical University of Graz, Graz (Austria); Paganetti, H; Winey, B [Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2014-06-01

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: 38 clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50% and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs) and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: We identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 mm and 5.8 mm for the 90%-dose falloff position respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. TCP decreases larger than 10% (absolute) were seen for less than 2.2% of the target volumes or non-existent. EUD changes were up to 178% for OARs and 35% for target volumes. Conclusion: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain and target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple compensator

  9. High risk of drug-induced microscopic colitis with concomitant use of NSAIDs and proton pump inhibitors

    NARCIS (Netherlands)

    Verhaegh, B P M; de Vries, F; Masclee, A A M; Keshavarzian, A; de Boer, A; Souverein, P C; Pierik, M J; Jonkers, D M A E

    2016-01-01

    BACKGROUND: Microscopic colitis (MC) is a chronic bowel disorder characterised by watery diarrhoea. Nonsteroidal anti-inflammatory drugs (NSAIDs), proton pump inhibitors (PPIs), selective serotonin reuptake inhibitors (SSRIs) and statins have been associated with MC. However, underlying mechanisms

  10. Limited ability of the proton-pump inhibitor test to identify patients with gastroesophageal reflux disease

    DEFF Research Database (Denmark)

    Bytzer, Peter; Jones, Roger; Vakil, Nimish

    2012-01-01

    The efficacy of proton-pump inhibitor (PPI) therapy often is assessed to determine whether patients' symptoms are acid-related and if patients have gastroesophageal reflux disease (GERD), although the accuracy of this approach is questionable. We evaluated the diagnostic performance of the PPI test...

  11. Dose response of rat retinal microvessels to proton dose schedules used clinically: a pilot study

    International Nuclear Information System (INIS)

    Archambeau, John O.; Mao, Xiao W.; McMillan, Paul J.; Gouloumet, Vanessa L.; Oeinck, Steven C.; Grove, Roger; Yonemoto, Leslie T.; Slater, Jerry D.; Slater, James M.

    2000-01-01

    Purpose: This preclinical rat pilot study quantifies retinal microvessel, endothelial, and pericyte population changes produced by proton irradiation Methods and Materials: The left eyes of rats were irradiated with single doses of 8, 14, 20, and 28 Gy protons; right eyes, with two fractions. Animals were euthanized, and eyes were removed; elastase digests were prepared, and cell populations were counted in sample fields. Results were compared with unirradiated controls. Results: Progressive time- and dose-dependent endothelial cell loss occurred following all schedules. Cell loss was significantly different from control values (p 0 phase of the mitotic cycle. 28 Gy produced photoreceptor cell loss. Conclusion: The retinal digest is an elegant bioassay to quantify the microvessel population response. Single- and split-dose schedules appear to yield similar outcomes, in terms of endothelial cell density

  12. Nanoindentation and in situ microcompression in different dose regimes of proton beam irradiated 304 SS

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, A. [Department of Nuclear Engineering, University of California, Berkeley, CA (United States); Lupinacci, A. [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Frazer, D.; Bailey, N.; Vo, H.; Howard, C. [Department of Nuclear Engineering, University of California, Berkeley, CA (United States); Jiao, Z. [Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI (United States); Minor, A.M. [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Chou, P. [Electric Power Research Institute, Palo Alto, CA (United States); Hosemann, P., E-mail: peterh@berkeley.edu [Department of Nuclear Engineering, University of California, Berkeley, CA (United States)

    2017-04-01

    Recent developments in micromechanical testing have allowed for the efficient evaluation of radiation effects in micron-scale volumes of ion-irradiated materials. In this study, both nanoindentation and in situ SEM microcompression testing are carried out on 10 dpa proton beam irradiated 304 stainless steel to assess radiation hardening and radiation-induced deformation mechanisms in the material. Using a focused ion beam (FIB), arrays of 2 μm × 2 μm cross-section microcompression pillars are fabricated in multiple dose regimes within the same grain, providing dose-dependent behavior in a single crystal orientation. Analysis of the microcompression load-displacement data and real-time SEM imaging during testing indicates significant hardening, as well as increased localization of deformation in the irradiated material. Although nanoindentation results suggest that irradiation hardening saturates at low doses, microcompression results indicate that the pillar yield stress continues to rise with dose above 10 dpa in the tested orientation. - Highlights: •Mechanical properties are probed in small volumes of proton irradiated 304SS. •Nanoindentation indicates saturation of irradiation hardening at doses of 5–10 dpa. •Microcompression of irradiated specimens suggest localized deformation.

  13. Proton pump inhibitors reduce the size and acidity of the acid pocket in the stomach

    NARCIS (Netherlands)

    Rohof, Wout O.; Bennink, Roelof J.; Boeckxstaens, Guy E.

    2014-01-01

    The gastric acid pocket is believed to be the reservoir from which acid reflux events originate. Little is known about how changes in position, size, and acidity of the acid pocket contribute to the therapeutic effect of proton pump inhibitors (PPIs) in patients with gastroesophageal reflux disease

  14. Conformal proton radiation therapy for pediatric low-grade astrocytomas

    International Nuclear Information System (INIS)

    Hug, E.B.; Loma Linda Univ. Medical Center, Loma Linda, CA; Darthmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Muenter, M.W.; Archambeau, J.O.; DeVries, A.; Loredo, L.N.; Grove, R.I.; Slater, J.D.; Liwnicz, B.

    2002-01-01

    Background: To evaluate the safety and efficacy of proton radiation therapy (PRT) for intracranial low-grade astrocytomas, the authors analyzed the first 27 pediatric patients treated at Loma Linda University Medical Center (LLUMC). Patients and Method: Between September 1991 and August 1997, 27 patients (13 female, 14 male) underwent fractionated proton radiation therapy for progressive or recurrent low-grade astrocytoma. Age at time of treatment ranged from 2 to 18 years (mean: 8.7 years). Tumors were located centrally (diencephatic) in 15 patients, in the cerebral and cerebellar hemispheres in seven patients, and in the brainstem in five patients. 25/27 patients (92%) were treated for progressive, unresectable, or residual disease following subtotal resection. Tissue diagnosis was available in 23/27 patients (85%). Four patients with optic pathway tumors were treated without histologic confirmation. Target doses between 50.4 and 63.0 CGE (cobalt gray equivalent, mean: 55.2 CGE) were prescribed at 1.8 CGE per fraction, five treatments per week. Results: At a mean follow-up period of 3.3 years (0.6-6.8 years), 6/27 patients experienced local failure (all located within the irradiated field), and 4/27 patients had died. By anatomic site these data translated into rates of local control and survival of 87% (13/15 patients) and 93% (14/15 patients) for central tumors, 71% (5/7 patients) and 86% (6/7 patients) for hemispheric tumors, and 60% (3/5 patients) and 60% (3/5 patients) for tumors located in the brainstem. Proton radiation therapy was generally well tolerated. All children with local control maintained their performance status. One child with associated neurofibromatosis, Type 1, developed Moyamoya disease. All six patients with optic pathway tumors and useful vision maintained or improved their visual status. Conclusions: This report on pediatric low-grade astrocytomas confirms proton radiation therapy as a safe and efficacious 3-D conformal treatment

  15. Secondary neutron doses received by patients of different ages during intracranial proton therapy treatments

    International Nuclear Information System (INIS)

    Sayah, R.

    2012-01-01

    Proton therapy is an advanced radiation therapy technique that allows delivering high doses to the tumor while saving the healthy surrounding tissues due to the protons' ballistic properties. However, secondary particles, especially neutrons, are created during protons' nuclear reactions in the beam-line and the treatment room components, as well as inside the patient. Those secondary neutrons lead to unwanted dose deposition to the healthy tissues located at distance from the target, which may increase the secondary cancer risks to the patients, especially the pediatric ones. The aim of this work was to calculate the neutron secondary doses received by patients of different ages treated at the Institut Curie-centre de Protontherapie d'Orsay (ICPO) for intracranial tumors, using a 178 MeV proton beam. The treatments are undertaken at the new ICPO room equipped with an IBA gantry. The treatment room and the beam-line components, as well as the proton source were modeled using the Monte Carlo code MCNPX. The obtained model was then validated by a series of comparisons between model calculations and experimental measurements. The comparisons concerned: a) depth and lateral proton dose distributions in a water phantom, b) neutron spectrometry at one position in the treatment room, c) ambient dose equivalents at different positions in the treatment room and d) secondary absorbed doses inside a physical anthropomorphic phantom. A general good agreement was found between calculations and measurements, thus our model was considered as validated. The University of Florida hybrid voxelized phantoms of different ages were introduced into the MCNPX validated model, and secondary neutron doses were calculated to many of these phantoms' organs. The calculated doses were found to decrease as the organ's distance to the treatment field increases and as the patient's age increases. The secondary doses received by a one year-old patient may be two times higher than the doses

  16. A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations

    International Nuclear Information System (INIS)

    Yepes, Pablo P; Mirkovic, Dragan; Taddei, Phillip J

    2010-01-01

    An essential component in proton radiotherapy is the algorithm to calculate the radiation dose to be delivered to the patient. The most common dose algorithms are fast but they are approximate analytical approaches. However their level of accuracy is not always satisfactory, especially for heterogeneous anatomical areas, like the thorax. Monte Carlo techniques provide superior accuracy; however, they often require large computation resources, which render them impractical for routine clinical use. Track-repeating algorithms, for example the fast dose calculator, have shown promise for achieving the accuracy of Monte Carlo simulations for proton radiotherapy dose calculations in a fraction of the computation time. We report on the implementation of the fast dose calculator for proton radiotherapy on a card equipped with graphics processor units (GPUs) rather than on a central processing unit architecture. This implementation reproduces the full Monte Carlo and CPU-based track-repeating dose calculations within 2%, while achieving a statistical uncertainty of 2% in less than 1 min utilizing one single GPU card, which should allow real-time accurate dose calculations.

  17. Evaluation of potential interactions between mycophenolic acid derivatives and proton pump inhibitors.

    Science.gov (United States)

    Gabardi, Steven; Olyaei, Ali

    2012-01-01

    To evaluate the incidence of gastrointestinal (GI) complications in solid organ transplant (SOT) recipients, impact of the complications on transplant outcomes, and the potential interactions between mycophenolic acid (MPA) derivatives and proton pump inhibitors (PPIs). An unrestricted literature search (1980-January 2012) was performed with MEDLINE and EMBASE using the following key words: drug-drug interaction, enteric-coated mycophenolic acid, GI complications, mycophenolate mofetil, solid organ transplant, and proton pump inhibitor, including individual agents within the class. Abstracts from scientific meetings were also evaluated. Additionally, reference citations from identified publications were reviewed. Relevant English-language, original research articles and review articles were evaluated if they focused on any of the topics identified in the search or included substantial content addressing GI complications in SOT recipients or drug interactions. GI complications are frequent among SOT recipients, with some studies showing prevalence rates as high as 70%. Transplant outcomes among renal transplant recipients are significantly impacted by GI complications, especially in patients requiring immunosuppressant dosage reductions or premature discontinuation. To this end, PPI use among patients receiving transplants is common. Recent data demonstrate that PPIs significantly reduce the overall exposure to MPA after oral administration of mycophenolate mofetil. Similar studies show this interaction does not exist between PPIs and enteric-coated mycophenolic acid (EC-MPA). Unfortunately, most of the available data evaluating this interaction are pharmacokinetic analyses that do not investigate the clinical impact of this interaction. A significant interaction exists between PPIs and mycophenolate mofetil secondary to reduced dissolution of mycophenolate mofetil in higher pH environments. EC-MPA is not absorbed in the stomach; therefore, low intragastric acidity

  18. Two-dimensional pencil beam scaling: an improved proton dose algorithm for heterogeneous media

    International Nuclear Information System (INIS)

    Szymanowski, Hanitra; Oelfke, Uwe

    2002-01-01

    New dose delivery techniques with proton beams, such as beam spot scanning or raster scanning, require fast and accurate dose algorithms which can be applied for treatment plan optimization in clinically acceptable timescales. The clinically required accuracy is particularly difficult to achieve for the irradiation of complex, heterogeneous regions of the patient's anatomy. Currently applied fast pencil beam dose calculations based on the standard inhomogeneity correction of pathlength scaling often cannot provide the accuracy required for clinically acceptable dose distributions. This could be achieved with sophisticated Monte Carlo simulations which are still unacceptably time consuming for use as dose engines in optimization calculations. We therefore present a new algorithm for proton dose calculations which aims to resolve the inherent problem between calculation speed and required clinical accuracy. First, a detailed derivation of the new concept, which is based on an additional scaling of the lateral proton fluence is provided. Then, the newly devised two-dimensional (2D) scaling method is tested for various geometries of different phantom materials. These include standard biological tissues such as bone, muscle and fat as well as air. A detailed comparison of the new 2D pencil beam scaling with the current standard pencil beam approach and Monte Carlo simulations, performed with GEANT, is presented. It was found that the new concept proposed allows calculation of absorbed dose with an accuracy almost equal to that achievable with Monte Carlo simulations while requiring only modestly increased calculation times in comparison to the standard pencil beam approach. It is believed that this new proton dose algorithm has the potential to significantly improve the treatment planning outcome for many clinical cases encountered in highly conformal proton therapy. (author)

  19. Foetal dose conversion coefficients for ICRP-compliant pregnant models from idealised proton exposures

    International Nuclear Information System (INIS)

    Taranenko, V.; Xu, X. G.

    2009-01-01

    Protection of pregnant women and their foetus against external proton irradiations poses a unique challenge. Assessment of foetal dose due to external protons in galactic cosmic rays and as secondaries generated in aircraft walls is especially important during high-altitude flights. This paper reports a set of fluence to absorbed dose conversion coefficients for the foetus and its brain for external monoenergetic proton beams of six standard configurations (the antero-posterior, the postero-anterior, the right lateral, the left lateral, the rotational and the isotropic). The pregnant female anatomical definitions at each of the three gestational periods (3, 6 and 9 months) are based on newly developed RPI-P series of models whose organ masses were matched within 1% with the International Commission on Radiological Protection reference values. Proton interactions and the transport of secondary particles were carefully simulated using the Monte Carlo N-Particle extended code (MCNPX) and the phantoms consisting of several million voxels at 3 mm resolution. When choosing the physics models in the MCNPX, it was found that the advanced Cascade-Exciton intranuclear cascade model showed a maximum of 9% foetal dose increase compared with the default model combination at intermediate energies below 5 GeV. Foetal dose results from this study are tabulated and compared with previously published data that were based on simplified anatomy. The comparison showed a strong dependence upon the source geometry, energy and gestation period: The dose differences are typically less than 20% for all sources except ISO where systematically 40-80% of higher doses were observed. Below 200 MeV, a larger discrepancy in dose was found due to the Bragg peak shift caused by different anatomy. The tabulated foetal doses represent the latest and most detailed study to date offering a useful set of data to improve radiation protection dosimetry against external protons. (authors)

  20. Proton Pump for O-2 Reduction Catalyzed by 5,10,15,20-Tetraphenylporphyrinatocobalt(II)

    Czech Academy of Sciences Publication Activity Database

    Partovi-Nia, R.; Su, B.; Li, F.; Gros, C. P.; Barbe, J.-M.; Samec, Zdeněk; Girault, H. H.

    2009-01-01

    Roč. 15, č. 10 (2009), s. 2335-2340 ISSN 0947-6539 R&D Projects: GA MŠk OC 177; GA ČR(CZ) GA203/07/1257 Institutional research plan: CEZ:AV0Z40400503 Keywords : cobalt * ferrocenes * hydrogen peroxide * oxygen reduction * proton pump Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.382, year: 2009

  1. Hypoalbuminemia is a predictor of mortality and rebleeding in peptic ulcer bleeding under proton pump inhibitor use.

    Science.gov (United States)

    Cheng, Hsiu-Chi; Yang, Er-Hsiang; Wu, Chung-Tai; Wang, Wen-Lun; Chen, Po-Jun; Lin, Meng-Ying; Sheu, Bor-Shyang

    2018-04-01

    Peptic ulcer bleeding remains a deadly disease, and a simple indicator of long-term outcomes is crucial. This study validated whether hypoalbuminemia and its related factors in patients with peptic ulcer bleeding can indicate long-term mortality and rebleeding under proton pump inhibitor use. The prospective cohort study enrolled 426 patients with peptic ulcer bleeding who had high risk stigmata at endoscopy and had received endoscopic hemostasis. They were divided into 79 patients in the hypoalbuminemia group (Hypo-AG, serum albumin ulcer size ≥1.0 cm independently (p peptic ulcer bleeding can be an alarm indicator of all-cause mortality and recurrent bleeding in a long-term follow-up situation under proton pump inhibitor use (NCT01591083). Copyright © 2017. Published by Elsevier B.V.

  2. Proton dose distribution measurements using a MOSFET detector with a simple dose‐weighted correction method for LET effects

    Science.gov (United States)

    Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-01-01

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth‐dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high‐bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L‐shaped bolus. The dose reproducibility, angular dependence and depth‐dose response were evaluated using a 190 MeV proton beam. Depth‐output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose‐weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L‐shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors. PACS number: 87.56.‐v

  3. Tritium Sequestration in Gen IV NGNP Gas Stream via Proton Conducting Ceramic Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fanglin Frank [Univ. of South Carolina, Columbia, SC (United States); Adams, Thad M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States)

    2011-09-30

    Several types of high-temperature proton conductors based on SrCeO3 and BaCeO3 have been systematically investigated in this project for tritium separation in NGNP applications. One obstacle for the field application is the chemical stability issues in the presence of steam and CO2 for these proton conductors. Several strategies to overcome such issues have been evaluated, including A site doping and B site co-doping method for perovskite-structured proton conductors. Novel zirconium-free proton conductors have also been developed with improved electrical conductivity and enhanced chemical stability. Novel catalytic materials for the proton-conducting separation membranes have been investigated. A tubular geometry proton-conducting membrane has been developed for the proton separation membranes. Total dose rate estimated from tritium decay (beta emission) under realistic membrane operating conditions, combined with electron irradiation experiments, indicates that proton ceramic materials possess the appropriate radiation stability for this application.

  4. Evaluation of low-dose proton beam radiation efficiency in MIA PaCa-2 pancreatic cancer cell line vitality and H2AX formation

    Directory of Open Access Journals (Sweden)

    Aušra Liubavičiūtė

    2015-11-01

    Conclusions: Our data demonstrate that low-doses proton beam irradiation had an effect on MIA PaCa-2 pancreatic carcinoma cell line. Full extent of irradiation had an impact only 24 h postirradiation, triggering DNA arrested cell cycle in G1/0 phase. Formed DNA DSBs were found to be repaired via the NHEJ pathway mechanism within 72 h. Unsuccessful repaired DSBs induced apoptotic cell death. After 72 h reparation processes were completed, and cell cycle was released from arrest in G1/0 phase.

  5. Assessment of doses due to secondary neutrons received by patient treated by proton therapy

    International Nuclear Information System (INIS)

    Sayah, R.; Martinetti, F.; Donadille, L.; Clairand, I.; Delacroix, S.; De Oliveira, A.; Herault, J.

    2010-01-01

    Proton therapy is a specific technique of radiotherapy which aims at destroying cancerous cells by irradiating them with a proton beam. Nuclear reactions in the device and in the patient himself induce secondary radiations involving mainly neutrons which contribute to an additional dose for the patient. The author reports a study aimed at the assessment of these doses due to secondary neutrons in the case of ophthalmological and intra-cranial treatments. He presents a Monte Carlo simulation of the room and of the apparatus, reports the experimental validation of the model (dose deposited by protons in a water phantom, ambient dose equivalent due to neutrons in the treatment room, absorbed dose due to secondary particles in an anthropomorphic phantom), and the assessment with a mathematical phantom of doses dues to secondary neutrons received by organs during an ophthalmological treatment. He finally evokes current works of calculation of doses due to secondary neutrons in the case of intra-cranial treatments

  6. Calculation of primary and secondary dose in proton therapy of brain tumors using Monte Carlo method

    International Nuclear Information System (INIS)

    Moghbel Esfahani, F.; Alamatsaz, M.; Karimian, A.

    2012-01-01

    High-energy beams of protons offer significant advantages for the treatment of deep-seated local tumors. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum - Bragg peak - near the end of range with a sharp falloff at the distal edge. Therefore, research must be done to investigate the possible negative and positive effects of using proton therapy as a treatment modality. In proton therapy, protons do account for the vast majority of dose. However, when protons travel through matter, secondary particles are created by the interactions of protons and matter en route to and within the patient. It is believed that secondary dose can lead to secondary cancer, especially in pediatric cases. Therefore, the focus of this work is determining both primary and secondary dose. Dose calculations were performed by MCNPX in tumoral and healthy parts of brain. The brain tumor has a 10 mm diameter and is located 16 cm under the skin surface. The brain was simulated by a cylindrical water phantom with the dimensions of 19 x 19cm 2 (length x diameter), with 0.5 cm thickness of plexiglass (C 4 H 6 O 2 ). Then beam characteristics were investigated to ensure the accuracy of the model. Simulations were initially validated with against packages such as SRIM/TRIM. Dose calculations were performed using different configurations to evaluate depth-dose profiles and dose 2D distributions.The results of the simulation show that the best proton energy interval, to cover completely the brain tumor, is from 152 to 154 MeV. (authors)

  7. Effects of membrane curvature and pH on proton pumping activity of single cytochrome bo3 enzymes

    DEFF Research Database (Denmark)

    Li, Mengqiu; Khan, Sanobar; Rong, Honglin

    2017-01-01

    The molecular mechanism of proton pumping by heme-copper oxidases (HCO) has intrigued the scientific community since it was first proposed. We have recently reported a novel technology that enables the continuous characterisation of proton transport activity of a HCO and ubiquinol oxidase from...... Escherichia coli, cytochrome bo3, for hundreds of seconds on the single enzyme level (Li et al. J Am Chem Soc 137 (2015) 16055–16063). Here, we have extended these studies by additional experiments and analyses of the proton transfer rate as a function of proteoliposome size and pH at the N- and P......-side of single HCOs. Proton transport activity of cytochrome bo3 was found to decrease with increased curvature of the membrane. Furthermore, proton uptake at the N-side (proton entrance) was insensitive to pH between pH 6.4–8.4, while proton release at the P-side had an optimum pH of ~ 7.4, suggesting...

  8. SU-E-T-566: Neutron Dose Cloud Map for Compact ProteusONE Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Syh, J; Patel, B; Syh, J; Rosen, L; Wu, H [Willis-Knighton Medical Center, Shreveport, LA (United States)

    2015-06-15

    Purpose: To establish the base line of neutron cloud during patient treatment in our new compact Proteus One proton pencil beam scanning (PBS) system with various beam delivery gantry angles, with or without range shifter (RS) at different body sites. Pencil beam scanning is an emerging treatment technique, for the concerns of neutron exposure, this study is to evaluate the neutron dose equivalent per given delivered dose under various treatment conditions at our proton therapy center. Methods: A wide energy neutron dose equivalent detector (SWENDI-II, Thermo Scientific, MA) was used for neutron dose measurements. It was conducted in the proton therapy vault during beam was on. The measurement location was specifically marked in order to obtain the equivalent dose of neutron activities (H). The distances of 100, 150 and 200 cm at various locations are from the patient isocenter. The neutron dose was measured of proton energy layers, # of spots, maximal energy range, modulation width, field radius, gantry angle, snout position and delivered dose in CGE. The neutron dose cloud is reproducible and is useful for the future reference. Results: When distance increased the neutron equivalent dose (H) reading did not decrease rapidly with changes of proton energy range, modulation width or spot layers. For cranial cases, the average mSv/CGE was about 0.02 versus 0.032 for pelvis cases. RS will induce higher H to be 0.10 mSv/CGE in average. Conclusion: From this study, neutron per dose ratio (mSv/CGE) slightly depends upon various treatment parameters for pencil beams. For similar treatment conditions, our measurement demonstrates this value for pencil beam scanning beam has lowest than uniform scanning or passive scattering beam with a factor of 5. This factor will be monitored continuously for other upcoming treatment parameters in our facility.

  9. TU-AB-BRC-09: Fast Dose-Averaged LET and Biological Dose Calculations for Proton Therapy Using Graphics Cards

    International Nuclear Information System (INIS)

    Wan, H; Tseung, Chan; Beltran, C

    2016-01-01

    Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verified by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10"8 proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.

  10. TU-AB-BRC-09: Fast Dose-Averaged LET and Biological Dose Calculations for Proton Therapy Using Graphics Cards

    Energy Technology Data Exchange (ETDEWEB)

    Wan, H; Tseung, Chan; Beltran, C [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verified by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10{sup 8} proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.

  11. Structure of a Prokaryotic Virtual Proton Pump at 3.2 Astroms Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Y.; Jayaram, H; Shane, T; Partensky, L; Wu, F; williams, C; Xiong, Y; Miller, C

    2009-01-01

    To reach the mammalian gut, enteric bacteria must pass through the stomach. Many such organisms survive exposure to the harsh gastric environment (pH 1.5-4) by mounting extreme acid-resistance responses, one of which, the arginine-dependent system of Escherichia coli, has been studied at levels of cellular physiology, molecular genetics and protein biochemistry. This multiprotein system keeps the cytoplasm above pH 5 during acid challenge by continually pumping protons out of the cell using the free energy of arginine decarboxylation. At the heart of the process is a 'virtual proton pump' in the inner membrane, called AdiC, that imports L-arginine from the gastric juice and exports its decarboxylation product agmatine. AdiC belongs to the APC superfamily of membrane proteins, which transports amino acids, polyamines and organic cations in a multitude of biological roles, including delivery of arginine for nitric oxide synthesis, facilitation of insulin release from pancreatic beta-cells, and, when inappropriately overexpressed, provisioning of certain fast-growing neoplastic cells with amino acids. High-resolution structures and detailed transport mechanisms of APC transporters are currently unknown. Here we describe a crystal structure of AdiC at 3.2 A resolution. The protein is captured in an outward-open, substrate-free conformation with transmembrane architecture remarkably similar to that seen in four other families of apparently unrelated transport proteins.

  12. Structure of a prokaryotic virtual proton pump at 3.2 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yiling; Jayaram, Hariharan; Shane, Tania; Kolmakova-Partensky, Ludmila; Wu, Fang; Williams, Carole; Xiong, Yong; Miller, Christopher; (Yale); (Brandeis)

    2009-09-15

    To reach the mammalian gut, enteric bacteria must pass through the stomach. Many such organisms survive exposure to the harsh gastric environment (pH 1.5-4) by mounting extreme acid-resistance responses, one of which, the arginine-dependent system of Escherichia coli, has been studied at levels of cellular physiology, molecular genetics and protein biochemistry. This multiprotein system keeps the cytoplasm above pH 5 during acid challenge by continually pumping protons out of the cell using the free energy of arginine decarboxylation. At the heart of the process is a 'virtual proton pump' in the inner membrane, called AdiC, that imports L-arginine from the gastric juice and exports its decarboxylation product agmatine. AdiC belongs to the APC superfamily of membrane proteins, which transports amino acids, polyamines and organic cations in a multitude of biological roles, including delivery of arginine for nitric oxide synthesis, facilitation of insulin release from pancreatic {beta}-cells, and, when inappropriately overexpressed, provisioning of certain fast-growing neoplastic cells with amino acids. High-resolution structures and detailed transport mechanisms of APC transporters are currently unknown. Here we describe a crystal structure of AdiC at 3.2 {angstrom} resolution. The protein is captured in an outward-open, substrate-free conformation with transmembrane architecture remarkably similar to that seen in four other families of apparently unrelated transport proteins.

  13. A review of the bystander effect and its implications for low-dose exposure

    International Nuclear Information System (INIS)

    Prise, K.M.; Folkard, M.; Michael, B.D.

    2003-01-01

    Current models for the interaction between ionising radiation and living cells or tissues are based on direct genetic damage produced by energy deposition in cellular DNA. An important observation which has questioned this basic assumption is radiation-induced bystander response, in which cells which have not been directly targeted respond if their neighbours have been exposed. This response predominates at low doses of relevance to radiation risk analysis (<0.2 Gy) and therefore needs to be fully characterised. The development of microbeams, which allow individual cells within populations to be targeted with precise doses of radiation, has provided a useful tool for quantifying this response. The authors' studies have targeted individual human and mouse cells with counted protons and helium ions and monitored neighbouring cells for the production of bystander responses. Bystander responses have been measured after exposures as low as a single proton or helium ion delivered to an individual cell. An important aspect is that these responses saturate with increasing dose to the single target cell, thus the relative roles of direct and indirect (non-targeted) responses change with dose. Studies with multicellular, tissue-based models are providing evidence that bystander responses may have a complex phenotype involving multiple pathways and the overall response may be a balance between multiple signalling processes and responses to radiation exposure. Current models for radiation risk assume a linear non-threshold response and have generally been extrapolated from high-dose exposures. The involvement of competing processes at low doses may have important consequences for understanding the effects of low-dose exposure. (author)

  14. Proton pump inhibitors and gastroenteritis

    International Nuclear Information System (INIS)

    Hassing, Robert-Jan; Verbon, Annelies; Visser, Herman de; Hofman, Albert; Stricker, Bruno H.

    2016-01-01

    An association between proton pump inhibitor (PPI) therapy and bacterial gastroenteritis has been suggested as well as contradicted. The aim of this study was to examine the association between the use of PPIs and occurrence of bacterial gastroenteritis in the prospective Rotterdam Study. The Rotterdam Study is a population-based cohort study among 14,926 subjects aged 45 years and older with up to 24 years of follow-up. Analyses were performed with a generalized estimating equations method in participants who handed-in a diagnostic stool sample. Furthermore, a nested case–control analysis was performed using the total cohort as a reference group. A bacterial microorganism was isolated in 125 samples, whereas 1174 samples were culture negative. In the generalized estimating equations analysis, we found that participants with a bacterial gastroenteritis were more likely than controls to be current users of PPIs (adjusted OR 1.94; 95 % CI 1.15–3.25). Different sensitivity analyses did not change this result. A considerably higher effect was observed (adjusted OR 6.14; 95 % CI 3.81–9.91), using the total cohort as a reference in a nested case–control analysis. Current PPI therapy is associated with an increased risk of bacterial gastroenteritis. However, by reducing the risk of selection and information bias in our study design, we demonstrated that the effect is lower than previously assumed.

  15. Proton and electron deep dose profiles for retinoblastoma based on GEANT 4 code

    International Nuclear Information System (INIS)

    Braga, Flavia V.; Campos, Tarcisio P.R. de; Ribeiro, Kilder L.

    2009-01-01

    Herein, the dosimetry responses to a retinoblastoma proton and electron radiation therapy were investigated. The computational tool applied to this simulation was the Geant4 code, version 4.9.1. The code allows simulating the charge particle interaction with eyeball tissue. In the present simulation, a box of 4 cm side water filled had represented the human eye. The simulation was performed considering mono energetic beams of protons and electrons with spectra of 57 to 70 MeV for protons and 2 to 8 MeV for electrons. The simulation was guide by the advanced hadron therapy example distributed with the Geant4 code. The phantom was divided in voxels with 0.2 mm side. The energy deposited in each voxel was evaluated taken the direct beam at one face. The simulation results show the delivery energy and therefore the dose deposited in each voxel. The deep dose profiles to proton and electron were plotted. The well known Bragg peak was reproduced for protons. The maximum delivered dose defined the position at the proton stopped. However, to electrons, the absorbed energies were delivered along its path producing a more continuous distribution following the water depth, but also being stopped in the end of its path. (author)

  16. Proton and electron deep dose profiles for retinoblastoma based on GEANT 4 code

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Flavia V., E-mail: flaviafisica@gmail.co [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares; Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Campos, Tarcisio P.R. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares; Ribeiro, Kilder L., E-mail: kilderlr@gmail.co [Universidade Estadual de Feira de Santana (UEFS), BA (Brazil). Dept. de Fisica

    2009-07-01

    Herein, the dosimetry responses to a retinoblastoma proton and electron radiation therapy were investigated. The computational tool applied to this simulation was the Geant4 code, version 4.9.1. The code allows simulating the charge particle interaction with eyeball tissue. In the present simulation, a box of 4 cm side water filled had represented the human eye. The simulation was performed considering mono energetic beams of protons and electrons with spectra of 57 to 70 MeV for protons and 2 to 8 MeV for electrons. The simulation was guide by the advanced hadron therapy example distributed with the Geant4 code. The phantom was divided in voxels with 0.2 mm side. The energy deposited in each voxel was evaluated taken the direct beam at one face. The simulation results show the delivery energy and therefore the dose deposited in each voxel. The deep dose profiles to proton and electron were plotted. The well known Bragg peak was reproduced for protons. The maximum delivered dose defined the position at the proton stopped. However, to electrons, the absorbed energies were delivered along its path producing a more continuous distribution following the water depth, but also being stopped in the end of its path. (author)

  17. Dose perturbation effect of metallic spinal implants in proton beam therapy.

    Science.gov (United States)

    Jia, Yingcui; Zhao, Li; Cheng, Chee-Wai; McDonald, Mark W; Das, Indra J

    2015-09-08

    The purpose of this study was to investigate the effect of dose perturbations for two metallic spinal screw implants in proton beam therapy in the perpendicular and parallel beam geometry. A 5.5 mm (diameter) by 45 mm (length) stainless steel (SS) screw and a 5.5 mm by 35 mm titanium (Ti) screw commonly used for spinal fixation were CT-scanned in a hybrid phantom of water and solid water. The CT data were processed with an orthopedic metal artifact reduction (O-MAR) algorithm. Treatment plans were generated for each metal screw with a proton beam oriented, first parallel and then perpendicular, to the longitudinal axis of the screw. The calculated dose profiles were compared with measured results from a plane-parallel ion chamber and Gafchromic EBT2 films. For the perpendicular setup, the measured dose immediately downstream from the screw exhibited dose enhancement up to 12% for SS and 8% for Ti, respectively, but such dose perturbation was not observed outside the lateral edges of the screws. The TPS showed 5% and 2% dose reductions immediately at the interface for the SS nd Ti screws, respectively, and up to 9% dose enhancements within 1 cm outside of the lateral edges of the screws. The measured dose enhancement was only observed within 5 mm from the interface along the beam path. At deeper depths, the lateral dose profiles appeared to be similar between the measurement and TPS, with dose reduction in the screw shadow region and dose enhancement within 1-2 cm outside of the lateral edges of the metals. For the parallel setup, no significant dose perturbation was detected at lateral distance beyond 3 mm away from both screws. Significant dose discrepancies exist between TPS calculations and ion chamber and film measurements in close proximity of high-Z inhomogeneities. The observed dose enhancement effect with proton therapy is not correctly modeled by TPS. An extra measure of caution should be taken when evaluating dosimetry with spinal metallic implants.

  18. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.J.; DILMANIAN, F.A.; PEGGS, S.G.; SCHLYEER, D.J.; VASKA, P.

    2002-01-01

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as 12 C, 14 N, and 16 O. These radioisotopes, mainly 11 C, 13 N and 15 O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner

  19. Proton pump inhibitors: from CYP2C19 pharmacogenetics to precision medicine.

    Science.gov (United States)

    El Rouby, Nihal; Lima, John J; Johnson, Julie A

    2018-04-01

    Proton Pump inhibitors (PPIs) are commonly used for a variety of acid related disorders. Despite the overall effectiveness and safety profile of PPIs, some patients do not respond adequately or develop treatment related adverse events. This variable response among patients is in part due to genotype variability of CYP2C19, the gene encoding the CYP450 (CYP2C19) isoenzyme responsible for PPIs metabolism. Areas covered: This article provides an overview of the pharmacokinetics and mechanism of action of the currently available PPIs, including the magnitude of CYPC19 contribution to their metabolism. Additionally, the role of CYP2C19 genetic variability in the therapeutic effectiveness or outcomes of PPI therapy is highlighted in details, to provide supporting evidence for the potential value of CYP2C19 genotype-guided approaches to PPI drug therapy. Expert opinion: There is a large body of evidence describing the impact of CYP2C19 variability on PPIs and its potential role in individualizing PPI therapy, yet, CYP2C19 pharmacogenetics has not been widely implemented into clinical practice. More data are needed but CYP2C19 genotype-guided dosing of PPIs is likely to become increasingly common and is expected to improve clinical outcomes, and minimize side effects related to PPIs.

  20. Detection and effects of pump low-flow operation

    International Nuclear Information System (INIS)

    Casada, D.A.; Greene, R.H.

    1993-01-01

    Operating experience and previous studies have shown that a significant cause of pump problems and failures can result from low- flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure caused by low-flow induced phenomena. ORNL is investigating the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation. A new, enhanced application of motor current and power data analysis has been developed that uses a signal comparison methodology to produce an instability ratio indicative of normal or unstable flow conditions. Examples of this type of low-flow detection technique are presented in this paper along with a brief discussion of the various types of technologies currently being used by licensees to evaluate pump operation and determine possible degradation

  1. Reference dosimetry of proton pencil beams based on dose-area product: a proof of concept.

    Science.gov (United States)

    Gomà, Carles; Safai, Sairos; Vörös, Sándor

    2017-06-21

    This paper describes a novel approach to the reference dosimetry of proton pencil beams based on dose-area product ([Formula: see text]). It depicts the calibration of a large-diameter plane-parallel ionization chamber in terms of dose-area product in a 60 Co beam, the Monte Carlo calculation of beam quality correction factors-in terms of dose-area product-in proton beams, the Monte Carlo calculation of nuclear halo correction factors, and the experimental determination of [Formula: see text] of a single proton pencil beam. This new approach to reference dosimetry proves to be feasible, as it yields [Formula: see text] values in agreement with the standard and well-established approach of determining the absorbed dose to water at the centre of a broad homogeneous field generated by the superposition of regularly-spaced proton pencil beams.

  2. SU-E-J-158: Experimental Investigation of Proton Radiography Based On Time-Resolved Dose Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Testa, M; Paganetti, H; Lu, H-M [Massachusetts General Hospital ' Harvard Medical School, Boston, MA (United States); Doolan, P [University College London (United Kingdom); H, Bentefour E [IBA, Warrenville, IL (United States)

    2014-06-01

    Purpose: To use proton radiography for i) in-vivo range verification of the brain fields of medulloblastoma patients in order to reduce the exit dose to the cranial skin and thus the risk of permanent alopecia; ii) for performing patient specific optimization of the calibration from CT-Hounsfield units to proton relative stopping power in order to minimize uncertainties of proton rang Methods: We developed and tested a prototype proton radiography system based on a single-plane scintillation screen coupled with a fast CCD camera (1ms sampling rate, 0.29x0.29 mm{sup 2} pixel size, 30×30 cm{sup 2} field of view). The method is based on the principle that, for passively scattered beams, the radiological depth of any point in the plateau of a spread-out Bragg-Peak (SOBP) can be inferred from the time-pattern of the dose rate measurements. We performed detector characterization measurements using complex-shape homogeneous phantoms and an Alderson phanto Results: Detector characterization tests confirmed the robustness of the technique. The results of the phantom measurements are encouraging in terms of achievable accuracy of the water equivalent thickness. A technique to minimize the degradation of spatial resolution due to multiple Coulomb scattering is discussed. Our novel radiographic technique is rapid (100 ms) and simultaneous over the whole field. The dose required to produce one radiograph, with the current settings, is ∼3 cG Conclusion: The results obtained with this simple and innovative radiography method are promising and motivate further development of technique. The system requires only a single-plane 2D dosimeter and it uses the clinical beam for a fraction of second with low dose to the patient.

  3. Diagnostic value of the proton pump inhibitor test for gastro-oesophageal reflux disease in primary care

    NARCIS (Netherlands)

    Aanen, M. C.; Weusten, B. L. A. M.; Numans, M. E.; de Wit, N. J.; Baron, A.; Smout, A. J. P. M.

    2006-01-01

    AIM: To assess the diagnostic accuracy of the proton pump inhibitor test in a primary care population as well as its additional value over reflux history, using the symptom association probability outcome during 24-h oesophageal pH recording as reference test for gastro-oesophageal reflux disease.

  4. SU-F-BRD-09: A Random Walk Model Algorithm for Proton Dose Calculation

    International Nuclear Information System (INIS)

    Yao, W; Farr, J

    2015-01-01

    Purpose: To develop a random walk model algorithm for calculating proton dose with balanced computation burden and accuracy. Methods: Random walk (RW) model is sometimes referred to as a density Monte Carlo (MC) simulation. In MC proton dose calculation, the use of Gaussian angular distribution of protons due to multiple Coulomb scatter (MCS) is convenient, but in RW the use of Gaussian angular distribution requires an extremely large computation and memory. Thus, our RW model adopts spatial distribution from the angular one to accelerate the computation and to decrease the memory usage. From the physics and comparison with the MC simulations, we have determined and analytically expressed those critical variables affecting the dose accuracy in our RW model. Results: Besides those variables such as MCS, stopping power, energy spectrum after energy absorption etc., which have been extensively discussed in literature, the following variables were found to be critical in our RW model: (1) inverse squared law that can significantly reduce the computation burden and memory, (2) non-Gaussian spatial distribution after MCS, and (3) the mean direction of scatters at each voxel. In comparison to MC results, taken as reference, for a water phantom irradiated by mono-energetic proton beams from 75 MeV to 221.28 MeV, the gamma test pass rate was 100% for the 2%/2mm/10% criterion. For a highly heterogeneous phantom consisting of water embedded by a 10 cm cortical bone and a 10 cm lung in the Bragg peak region of the proton beam, the gamma test pass rate was greater than 98% for the 3%/3mm/10% criterion. Conclusion: We have determined key variables in our RW model for proton dose calculation. Compared with commercial pencil beam algorithms, our RW model much improves the dose accuracy in heterogeneous regions, and is about 10 times faster than MC simulations

  5. Determination of dose enhancement caused by gold-nanoparticles irradiated with proton, X-rays (kV and MV) and electron beams, using alanine/EPR dosimeters

    International Nuclear Information System (INIS)

    Smith, Clare L.; Ackerly, Trevor; Best, Stephen P.; Gagliardi, Frank; Kie, Katahira; Little, Peter J.; McCorkell, Giulia; Sale, Charlotte A.; Tsunei, Yusuke; Tominaga, Takahiro; Volaric, Sioe See; Geso, Moshi

    2015-01-01

    The main aims of this research was to employ alanine doped with gold-nanoparticles “AuNPs” to determine the levels of dose enhancement caused by these particles when irradiated with proton beams, low and high energy X-rays and electrons. DL-alanine was impregnated with 5 nm gold-nanoparticles (3% by weight) and added as a uniform layer within a wax pellet of dimensions 10 × 5 × 5 mm. Control pellets, containing DL-Alanine were also produced, and placed within a phantom, and exposed to various types of radiations: low energy (kV ranges) X-rays were obtained from a superficial machine, high energy (MV) X-rays and electrons derived from a linear accelerator, and protons were produced by the Hyogo Ion Beam Centre in Japan. Nominal doses received ranged from 2 to 20 Gy (within clinical range). The Electron Paramagnetic Resonance (EPR) spectra of the irradiated samples were recorded on a BRUKER Elexsys 9.5 MHz. The dose enhancement caused by gold nanoparticles for 80 kV x-rays was found to be more than 60% at about 5 Gy. Smaller dose enhancements (under the same measurement conditions) were observed for megavoltage x-ray beams (up to 10%). Dose enhancement caused by charged particles indicated minimal values for 6 MeV electrons (approximately 5%) whilst less than that is obtained with protons of 150 MeV. The proton results validate the latest simulation results based on Monte Carlo calculations but the dose enhancement is significantly less than that reported in cell and animal model systems, (about 20%). We attribute this difference to the fact that alanine only measures the levels of free radicals generated by the inclusion of nanoparticles and not the redox type radicals (such as reactive oxygen species) generated from aqueous media in cells. Dose enhancement caused by 5 nm gold-nanoparticles with radiotherapy type proton beams has been found to be less than 5% as determined when using alanine/wax as both a phantom and dosimeter. This agrees well

  6. Effects of subcutaneous, low-dose glucagon on insulin-induced mild hypoglycaemia in patients with insulin pump treated type 1 diabetes

    DEFF Research Database (Denmark)

    Ranjan, Ajenthen; Schmidt, S; Madsbad, Sten

    2016-01-01

    AIM: To investigate the dose-response relationship of subcutaneous glucagon administration on plasma glucose and on counterregulatory hormone responses during subcutaneous insulin induced mild hypoglycaemia in patients with type 1 diabetes treated with insulin pumps. MATERIALS AND METHODS: Eight...... hypoglycaemia in patients with type 1 diabetes....... insulin pump treated patients completed a blinded, randomized, placebo-controlled study. Hypoglycaemia was induced in the fasting state by a subcutaneous insulin bolus and when plasma glucose reached 3.4 mmol/l (95%CI 3.2-3.5), a subcutaneous bolus of either 100, 200, 300 µg glucagon or saline...

  7. Increased prandial air swallowing and postprandial gas-liquid reflux among patients refractory to proton pump inhibitor therapy

    NARCIS (Netherlands)

    Bravi, Ivana; Woodland, Philip; Gill, Ravinder S.; Al-Zinaty, Mohannad; Bredenoord, Albert J.; Sifrim, Daniel

    2013-01-01

    Many patients with gastroesophageal reflux disease (GERD) have persistent reflux despite treatment with proton pump inhibitors (PPIs). Mixed gas-liquid reflux events are more likely to be perceived as symptomatic. We used esophageal impedance monitoring to investigate whether esophageal gas is

  8. SHIELDOSE, Doses from Electron and Proton Irradiation in Space Vehicle Al Shields

    International Nuclear Information System (INIS)

    Seltzer, Stephen

    1986-01-01

    1 - Description of problem or function: The ability to predict absorbed dose within a spacecraft due to a specified radiation environment is important for design and planning considerations pertaining to the reliability of electronic components and to the radiological safety of on-board personnel. This computer code SHIELDOSE evaluates the absorbed dose as a function of depth in aluminum shielding material of spacecraft, given the electron and proton fluences encountered in orbit. 2 - Method of solution: It makes use of pre-calculated, monoenergetic depth-dose data for an isotropic, broad-beam fluence of radiation incident on uniform aluminum plane media. Such data are particularly suitable for routine dose predictions in situations where the geometrical and compositional complexities of the spacecraft are not known. Furthermore, restricting our consideration to these rather simple geometries has allowed for the development of accurate electron and electron-Bremsstrahlung data sets based on detailed transport calculations rather than on more approximate methods. The present version of SHIELDOSE calculates, for arbitrary proton and electron incident spectra, the dose absorbed in small volumes of the detector materials Al, H 2 O (tissue-equivalent detector), Si and SiO 2 , in the following aluminum shield geometries: (1) in a semi- infinite plane medium, as a function of depth; (2) at the transmission surface of a plane slab, as a function of slab thickness; and (3) at the center of a solid sphere, as a function of sphere radius. 3 - Restrictions on the complexity of the problem: - No. of depth Z for which dose calculation is desired (IMAX) ≤50; - No. of prints used in the numerical evaluation of the integral over the incident proton spectrum (NPTSP) ≤301; - No. of points used in the numerical evaluation of the internal over the incident electron spectrum (NPTSE) ≤101; - No. of energy for which the solar-flare-proton spectrum is read in (JSMAX), incident

  9. Low-flow operation and testing of pumps in nuclear plants

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1989-01-01

    Low-flow operation of centrifugal pumps introduces hydraulic instability and other factors that can cause damage to these machines. The resulting degradation has been studied and recorded for pumps in electric power plants. The objectives of this paper are to (1) describe the damage-producing phenomena, including their sources and consequences; (2) relate these observations to expectations for damage caused by low-flow operation of pumps in nuclear power plants; and (3) assess the utility of low-flow testing. Hydraulic behavior during low-flow operation is reviewed for a typical centrifugal pump stage, and the damage-producing mechanisms are described. Pump monitoring practices, in conjunction with pump performance characteristics, are considered; experience data are reviewed; and the effectiveness of low-flow surveillance monitoring is examined. Degradation caused by low-flow operation is shown to be an important factor, and low-flow surveillance testing is shown to be inadequate. 18 refs., 5 figs., 4 tabs

  10. The appropriateness of a proton pump inhibitor prescription.

    LENUS (Irish Health Repository)

    Moran, N

    2014-11-01

    Proton pump inhibitors (PPIs) are one of the most commonly prescribed groups of drug in Ireland, at great expense to the Irish healthcare executive. This study aims to evaluate the appropriateness of PPI prescriptions on admission and discharge in a tertiary referral hospital. All non-elective admissions in the Emergency Department in one week were included in the study. 102 patients in total were included, with 36 (35.4%) treated with a PPI on admission. Of these, only 3 (8.3%) had a clear indication noted as per current NICE guidelines. 18 new in-hospital PPI prescriptions were documented. 11 (61%) of which were present on discharge prescriptions. Continuing PPI prescription on discharge into the community may be inappropriate, costly and potentially harmful. Brief interventions aimed at reducing inappropriate PPI prescriptions have been shown to be effective at reducing the cost and potential harm of unnecessary treatment.

  11. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Eley, John [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas, 6767 Bertner Ave., Houston, TX 77030 (United States); Newhauser, Wayne, E-mail: newhauser@lsu.edu [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Homann, Kenneth; Howell, Rebecca [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas, 6767 Bertner Ave., Houston, TX 77030 (United States); Schneider, Christopher [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Durante, Marco; Bert, Christoph [GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany)

    2015-03-11

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects.

  12. Molecular mechanisms controlling proton pumping by bacteriorhodopsin. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crouch, Rosalie K.; Ebrey, Thomas G.

    2000-02-10

    Bacteriorhodopsin (bR) is the simplest biological system for the transduction of light energy. Light energy is directly converted to transmembrane proton gradient by a single, small membrane protein. The extraordinary stability of bR makes it an outstanding subject for bioenergetic studies. This project has focused on the role of interactions between key residues of the pigment involved in light-induced proton transfer. Methods to estimate the strength of these interactions and their correlation with the rate and efficiency of proton transfer have been developed. The concept of the coupling of the protonation states of key groups has been applied to individual steps of the proton transfer with the ultimate goal of understanding on the molecular level the driving forces for proton transport and the pathway of the transported proton in bT. The mechanism of light-induced proton release, uptake and the mechanism of recovery of initial state of bT has been examined. The experiments were performed with genetically engineered, site-specific mutants of bR. This has enabled us to characterize the role of individual amino acid residues in bR. Time resolved and low temperature absorption spectroscopy and light-induced photocurrent measurements were used in order to study the photochemical cycle and proton transfer in mutant pigments. Chemical modification and crosslinking of both the specific amino acids to the chromophore or to other amino acids were used to elucidate the role of light-induced conformational changes in the photocycle and the structure of the protein in the ground state. The results of this project provided new knowledge on the architecture of the proton transfer pathways inside the protein, on the mechanism of proton release in bR, and on the role of specific amino acid residues in the structure and function of bR.

  13. Dose-volume effects in the rat cervical spinal cord after proton irradiation

    International Nuclear Information System (INIS)

    Bijl, Hendrik P.; Vuijk, Peter van; Coppes, Rob P.; Schippers, Jacobus M.; Konings, Antonius W.T.; Kogel, Albert J. van der

    2002-01-01

    Purpose: To estimate dose-volume effects in the rat cervical spinal cord with protons. Methods and Materials: Wistar rats were irradiated on the cervical spinal cord with a single fraction of unmodulated protons (150-190 MeV) using the shoot through method, which employs the plateau of the depth-dose profile rather than the Bragg peak. Four different lengths of the spinal cord (2, 4, 8, and 20 mm) were irradiated with variable doses. The endpoint for estimating dose-volume effects was paralysis of fore or hind limbs. Results: The results obtained with a high-precision proton beam showed a marginal increase of ED 50 when decreasing the irradiated cord length from 20 mm (ED 50 = 20.4 Gy) to 8 mm (ED 50 = 24.9 Gy), but a steep increase in ED 50 when further decreasing the length to 4 mm (ED 50 = 53.7 Gy) and 2 mm (ED 50 = 87.8 Gy). These results generally confirm data obtained previously in a limited series with 4-6-MV photons, and for the first time it was possible to construct complete dose-response curves down to lengths of 2 mm. At higher ED 50 values and shorter lengths irradiated, the latent period to paralysis decreased from 125 to 60 days. Conclusions: Irradiation of variable lengths of rat cervical spinal cord with protons showed steeply increasing ED 50 values for lengths of less than 8 mm. These results suggest the presence of a critical migration distance of 2-3 mm for cells involved in regeneration processes

  14. Randomized controlled trial of transoral incisionless fundoplication vs. proton pump inhibitors for treatment of gastroesophageal reflux disease

    NARCIS (Netherlands)

    Witteman, B.P.; Conchillo, J.M.; Rinsma, N.F.; Betzel, B; Peeters, A.; Koek, G.H.; Stassen, L.P.; Bouvy, N.D.

    2015-01-01

    OBJECTIVES: Transoral incisionless fundoplication (TIF) was developed in an attempt to create a minimally invasive endoscopic procedure that mimics antireflux surgery. The objective of this trial was to evaluate effectiveness of TIF compared with proton pump inhibition in a population consisting of

  15. Persistent gastro-oesophageal reflux symptoms despite proton pump inhibitor therapy.

    Science.gov (United States)

    Ang, Daphne; How, Choon How; Ang, Tiing Leong

    2016-10-01

    About one-third of patients with suspected gastro-oesophageal reflux disease (GERD) do not respond symptomatically to proton pump inhibitors (PPIs). Many of these patients do not suffer from GERD, but may have underlying functional heartburn or atypical chest pain. Other causes of failure to respond to PPIs include inadequate acid suppression, non-acid reflux, oesophageal hypersensitivity, oesophageal dysmotility and psychological comorbidities. Functional oesophageal tests can exclude cardiac and structural causes, as well as help to confi rm or exclude GERD. The use of PPIs should only be continued in the presence of acid reflux or oesophageal hypersensitivity for acid reflux-related events that is proven on functional oesophageal tests. Copyright: © Singapore Medical Association.

  16. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2013-05-15

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  17. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    International Nuclear Information System (INIS)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei

    2013-01-01

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  18. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions.

    Science.gov (United States)

    Zeng, Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A; Trofimov, Alexei

    2013-05-01

    Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor control probability

  19. Quantitative investigation of physical factors contributing to gold nanoparticle-mediated proton dose enhancement

    International Nuclear Information System (INIS)

    Cho, Jongmin; Manohar, Nivedh; Kerr, Matthew; Cho, Sang Hyun; Gonzalez-Lepera, Carlos; Krishnan, Sunil

    2016-01-01

    Some investigators have shown tumor cell killing enhancement in vitro and tumor regression in mice associated with the loading of gold nanoparticles (GNPs) before proton treatments. Several Monte Carlo (MC) investigations have also demonstrated GNP-mediated proton dose enhancement. However, further studies need to be done to quantify the individual physical factors that contribute to the dose enhancement or cell-kill enhancement (or radiosensitization). Thus, the current study investigated the contributions of particle-induced x-ray emission (PIXE), particle-induced gamma-ray emission (PIGE), Auger and secondary electrons, and activation products towards the total dose enhancement. Specifically, GNP-mediated dose enhancement was measured using strips of radiochromic film that were inserted into vials of cylindrical GNPs, i.e. gold nanorods (GNRs), dispersed in a saline solution (0.3 mg of GNRs/g or 0.03% of GNRs by weight), as well as vials containing water only, before proton irradiation. MC simulations were also performed with the tool for particle simulation code using the film measurement setup. Additionally, a high-purity germanium detector system was used to measure the photon spectrum originating from activation products created from the interaction of protons and spherical GNPs present in a saline solution (20 mg of GNPs/g or 2% of GNPs by weight). The dose enhancement due to PIXE/PIGE recorded on the films in the GNR-loaded saline solution was less than the experimental uncertainty of the film dosimetry (<2%). MC simulations showed highly localized dose enhancement (up to a factor 17) in the immediate vicinity (<100 nm) of GNRs, compared with hypothetical water nanorods (WNRs), mostly due to GNR-originated Auger/secondary electrons; however, the average dose enhancement over the entire GNR-loaded vial was found to be minimal (0.1%). The dose enhancement due to the activation products from GNPs was minimal (<0.1%) as well. In conclusion, under the

  20. A detection system for very low-energy protons from {beta}-delayed proton decay

    Energy Technology Data Exchange (ETDEWEB)

    Spiridon, A.; Pollacco, E.; Trache, L.; Simmons, E.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Pascovici, G.; Riallot, M.; Mols, J. P.; Kebbiri, M. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); CEA/IRFU Saclay, Gif-sur-Yvette (France); Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Institut fuer Kernphysik der Universitaet zu Koeln, D-50937 Koeln (Germany); CEA/IRFU Saclay, Gif-sur-Yvette (France)

    2012-11-20

    We have recently developed a gas based detection system called AstroBox, motivated by nuclear astrophysics studies. The goal was to detect very low-energy protons from {beta}-delayed p-decay with reduced beta background and improved energy resolution. The detector was tested using the {beta}-delayed proton-emitter 23Al previously studied with a set-up based on thin double-sided Si strip detectors. The proton spectrum obtained with AstroBox showed no beta background down to {approx}80 keV. The low energy (206 keV, 267 keV) proton peaks were positively identified, well separated, and the resolution was improved.

  1. A detection system for very low-energy protons from β-delayed proton decay

    International Nuclear Information System (INIS)

    Spiridon, A.; Pollacco, E.; Trache, L.; Simmons, E.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Pascovici, G.; Riallot, M.; Mols, J. P.; Kebbiri, M.

    2012-01-01

    We have recently developed a gas based detection system called AstroBox, motivated by nuclear astrophysics studies. The goal was to detect very low-energy protons from β-delayed p-decay with reduced beta background and improved energy resolution. The detector was tested using the β-delayed proton-emitter 23Al previously studied with a set-up based on thin double-sided Si strip detectors. The proton spectrum obtained with AstroBox showed no beta background down to ∼80 keV. The low energy (206 keV, 267 keV) proton peaks were positively identified, well separated, and the resolution was improved.

  2. Delirium in the geriatric unit: proton-pump inhibitors and other risk factors.

    Science.gov (United States)

    Otremba, Iwona; Wilczyński, Krzysztof; Szewieczek, Jan

    2016-01-01

    Delirium remains a major nosocomial complication of hospitalized elderly. Predictive models for delirium may be useful for identification of high-risk patients for implementation of preventive strategies. Evaluate specific factors for development of delirium in a geriatric ward setting. Prospective cross-sectional study comprised 675 consecutive patients aged 79.2±7.7 years (66% women and 34% men), admitted to the subacute geriatric ward of a multiprofile university hospital after exclusion of 113 patients treated with antipsychotic medication because of behavioral disorders before admission. Comprehensive geriatric assessments including a structured interview, physical examination, geriatric functional assessment, blood sampling, ECG, abdominal ultrasound, chest X-ray, Confusion Assessment Method for diagnosis of delirium, Delirium-O-Meter to assess delirium severity, Richmond Agitation-Sedation Scale to assess sedation or agitation, visual analog scale and Doloplus-2 scale to assess pain level were performed. Multivariate logistic regression analysis revealed five independent factors associated with development of delirium in geriatric inpatients: transfer between hospital wards (odds ratio [OR] =2.78; confidence interval [CI] =1.54-5.01; P=0.001), preexisting dementia (OR =2.29; CI =1.44-3.65; Pfall incidents (OR =1.76; CI =1.17-2.64; P=0.006), and use of proton-pump inhibitors (OR =1.67; CI =1.11-2.53; P=0.014). Transfer between hospital wards, preexisting dementia, previous delirium incidents, previous fall incidents, and use of proton-pump inhibitors are predictive of development of delirium in the geriatric inpatient setting.

  3. Advantages and Disadvantages of Long-term Proton Pump Inhibitor Use.

    Science.gov (United States)

    Kinoshita, Yoshikazu; Ishimura, Norihisa; Ishihara, Shunji

    2018-04-30

    Proton pump inhibitors (PPIs) potently inhibit gastric acid secretion and are widely used for treatment of acid-related diseases including gastroesophageal reflux disease and secondary prevention of aspirin/NSAID-induced ulcers. Although clinically important adverse effects of PPIs can occur, just as with other drugs, those are not frequently observed during or after administration. Thus, PPIs are regarded as relatively safe and considered to be clinically beneficial. Recently, PPIs have become frequently administered to patients with functional gastrointestinal diseases or primary prevention of drug-related gastroduodenal damage, even though their beneficial effects for those conditions have not been fully confirmed. PPIs tend to be given for conditions in which the necessity of the drug has not been clarified, thus otherwise rare adverse effects are presented as clinically relevant. Although several PPI-related adverse effects have been reported, their clinical relevance is not yet clear, since the evidence reported in those studies is not at a high enough level, as the majority are based on retrospective observational studies and the reported hazard ratios are low. It is important to administer PPIs only for patients who will gain a substantial clinical benefit and to continue to investigate their adverse effects with high quality prospective studies.

  4. Single-dose volume regulation algorithm for a gas-compensated intrathecal infusion pump.

    Science.gov (United States)

    Nam, Kyoung Won; Kim, Kwang Gi; Sung, Mun Hyun; Choi, Seong Wook; Kim, Dae Hyun; Jo, Yung Ho

    2011-01-01

    The internal pressures of medication reservoirs of gas-compensated intrathecal medication infusion pumps decrease when medication is discharged, and these discharge-induced pressure drops can decrease the volume of medication discharged. To prevent these reductions, the volumes discharged must be adjusted to maintain the required dosage levels. In this study, the authors developed an automatic control algorithm for an intrathecal infusion pump developed by the Korean National Cancer Center that regulates single-dose volumes. The proposed algorithm estimates the amount of medication remaining and adjusts control parameters automatically to maintain single-dose volumes at predetermined levels. Experimental results demonstrated that the proposed algorithm can regulate mean single-dose volumes with a variation of 98%. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material

    Energy Technology Data Exchange (ETDEWEB)

    Titt, Uwe, E-mail: utitt@mdanderson.org; Mirkovic, Dragan; Mohan, Radhe [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Sell, Martin [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Department of Medical Physics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Unkelbach, Jan [Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114 (United States); Bangert, Mark [Department of Medical Physics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Oelfke, Uwe [Department of Medical Physics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany and Department of Physics, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP (United Kingdom)

    2015-11-15

    Purpose: The purpose of the work reported here was to investigate the influence of sub-millimeter size heterogeneities on the degradation of the distal edges of proton beams and to validate Monte Carlo (MC) methods’ ability to correctly predict such degradation. Methods: A custom-designed high-resolution plastic phantom approximating highly heterogeneous, lung-like structures was employed in measurements and in Monte Carlo simulations to evaluate the degradation of proton Bragg curves penetrating heterogeneous media. Results: Significant differences in distal falloff widths and in peak dose values were observed in the measured and the Monte Carlo simulated curves compared to pristine proton Bragg curves. Furthermore, differences between simulations of beams penetrating CT images of the phantom did not agree well with the corresponding experimental differences. The distal falloff widths in CT image-based geometries were underestimated by up to 0.2 cm in water (corresponding to 0.8–1.4 cm in lung tissue), and the peak dose values of pristine proton beams were overestimated by as much as ~35% compared to measured curves or depth-dose curves simulated on the basis of true geometry. The authors demonstrate that these discrepancies were caused by the limited spatial resolution of CT images that served as a basis for dose calculations and lead to underestimation of the impact of the fine structure of tissue heterogeneities. A convolution model was successfully applied to mitigate the underestimation. Conclusions: The results of this study justify further development of models to better represent heterogeneity effects in soft-tissue geometries, such as lung, and to correct systematic underestimation of the degradation of the distal edge of proton doses.

  6. Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material

    International Nuclear Information System (INIS)

    Titt, Uwe; Mirkovic, Dragan; Mohan, Radhe; Sell, Martin; Unkelbach, Jan; Bangert, Mark; Oelfke, Uwe

    2015-01-01

    Purpose: The purpose of the work reported here was to investigate the influence of sub-millimeter size heterogeneities on the degradation of the distal edges of proton beams and to validate Monte Carlo (MC) methods’ ability to correctly predict such degradation. Methods: A custom-designed high-resolution plastic phantom approximating highly heterogeneous, lung-like structures was employed in measurements and in Monte Carlo simulations to evaluate the degradation of proton Bragg curves penetrating heterogeneous media. Results: Significant differences in distal falloff widths and in peak dose values were observed in the measured and the Monte Carlo simulated curves compared to pristine proton Bragg curves. Furthermore, differences between simulations of beams penetrating CT images of the phantom did not agree well with the corresponding experimental differences. The distal falloff widths in CT image-based geometries were underestimated by up to 0.2 cm in water (corresponding to 0.8–1.4 cm in lung tissue), and the peak dose values of pristine proton beams were overestimated by as much as ~35% compared to measured curves or depth-dose curves simulated on the basis of true geometry. The authors demonstrate that these discrepancies were caused by the limited spatial resolution of CT images that served as a basis for dose calculations and lead to underestimation of the impact of the fine structure of tissue heterogeneities. A convolution model was successfully applied to mitigate the underestimation. Conclusions: The results of this study justify further development of models to better represent heterogeneity effects in soft-tissue geometries, such as lung, and to correct systematic underestimation of the degradation of the distal edge of proton doses

  7. Fast pencil beam dose calculation for proton therapy using a double-Gaussian beam model

    Directory of Open Access Journals (Sweden)

    Joakim eda Silva

    2015-12-01

    Full Text Available The highly conformal dose distributions produced by scanned proton pencil beams are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a pencil beam algorithm running on graphics processing units (GPUs intended specifically for online dose calculation. Here we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such pencil beam algorithm for proton therapy running on a GPU. We employ two different parametrizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of pencil beams in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included whilst prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Further, the calculation time is relatively unaffected by the parametrization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  8. Endocrine function following high dose proton therapy for tumors of the upper clivus

    Energy Technology Data Exchange (ETDEWEB)

    Slater, J.D.; Austin-Seymour, M.; Munzenrider, J.; Birnbaum, S.; Carroll, R.; Klibanski, A.; Riskind, P.; Urie, M.; Verhey, L.; Goitein, M.

    1988-09-01

    The endocrine status of patients receiving proton radiation for tumors of the upper clivus was reviewed to evaluate the effect of high dose treatment on the pituitary gland. The fourteen patients had chordomas or low grade chondrosarcomas and were all treated by the same techniques. The median tumor dose was 69.7 Cobalt Gray Equivalent (CGE) with a range from 66.6 to 74.4 CGE. (CGE is used because modulated protons have an RBE of 1.1 compared to 60Co). The daily fraction size was 1.8-2.1 CGE. The median follow-up time is 48 months, ranging from 30 to 68 months. All treatments were planned using a computerized multi-dimensional system with the position of the pituitary outlined on the planning CT scan. Review of the dose distribution indicated that the dose to the pituitary ranged from 60.5 to 72.3 CGE, with a median of 67.6 CGE. One female patient had decreased thyroid and gonadotropin function at the time of diagnosis and has been on hormone replacement since that time. The other three females were all pre-menopausal at the time of radiotherapy. At this time four patients (3 males and 1 female) have developed endocrine abnormalities 14 to 45 months after irradiation. All four had evidence of hypothyroidism and two have also developed corticotropin deficiency. The three males had decreased testosterone levels; the female patient developed amenorrhea and hyperprolactinemia. All four are asymptomatic with ongoing hormone replacement.

  9. Endocrine function following high dose proton therapy for tumors of the upper clivus

    International Nuclear Information System (INIS)

    Slater, J.D.; Austin-Seymour, M.; Munzenrider, J.

    1988-01-01

    The endocrine status of patients receiving proton radiation for tumors of the upper clivus was reviewed to evaluate the effect of high dose treatment on the pituitary gland. The fourteen patients had chordomas or low grade chondrosarcomas and were all treated by the same techniques. The median tumor dose was 69.7 Cobalt Gray Equivalent (CGE) with a range from 66.6 to 74.4 CGE. (CGE is used because modulated protons have an RBE of 1.1 compared to 60Co). The daily fraction size was 1.8-2.1 CGE. The median follow-up time is 48 months, ranging from 30 to 68 months. All treatments were planned using a computerized multi-dimensional system with the position of the pituitary outlined on the planning CT scan. Review of the dose distribution indicated that the dose to the pituitary ranged from 60.5 to 72.3 CGE, with a median of 67.6 CGE. One female patient had decreased thyroid and gonadotropin function at the time of diagnosis and has been on hormone replacement since that time. The other three females were all pre-menopausal at the time of radiotherapy. At this time four patients (3 males and 1 female) have developed endocrine abnormalities 14 to 45 months after irradiation. All four had evidence of hypothyroidism and two have also developed corticotropin deficiency. The three males had decreased testosterone levels; the female patient developed amenorrhea and hyperprolactinemia. All four are asymptomatic with ongoing hormone replacement

  10. Association of Proton Pump Inhibitors Usage with Risk of Pneumonia in Dementia Patients.

    Science.gov (United States)

    Ho, Sai-Wai; Teng, Ying-Hock; Yang, Shun-Fa; Yeh, Han-Wei; Wang, Yu-Hsun; Chou, Ming-Chih; Yeh, Chao-Bin

    2017-07-01

    To determine the association between usages of proton pump inhibitors (PPIs) and subsequent risk of pneumonia in dementia patients. Retrospective cohort study. Taiwanese National Health Insurance Research Database. The study cohort consisted of 786 dementia patients with new PPI usage and 786 matched dementia patients without PPI usage. The study endpoint was defined as the occurrence of pneumonia. The Cox proportional hazard model was used to estimate the pneumonia risk. Defined daily dose methodology was applied to evaluate the cumulative and dose-response relationships of PPI. Incidence of pneumonia was higher among patients with PPI usage (adjusted hazard ratio (HR) = 1.89; 95% CI = 1.51-2.37). Cox model analysis also demonstrated that age (adjusted HR = 1.05; 95% CI = 1.03-1.06), male gender (adjusted HR = 1.57; 95% CI = 1.25-1.98), underlying cerebrovascular disease (adjusted HR = 1.30; 95% CI = 1.04-1.62), chronic pulmonary disease (adjusted HR = 1.39; 95% CI = 1.09-1.76), congestive heart failure (adjusted HR = 1.54; 95% CI = 1.11-2.13), diabetes mellitus (adjusted HR = 1.54; 95% CI = 1.22-1.95), and usage of antipsychotics (adjusted HR = 1.29; 95% CI = 1.03-1.61) were independent risk factors for pneumonia. However, usage of cholinesterase inhibitors and histamine receptor-2 antagonists were shown to decrease pneumonia risk. PPI usage in dementia patients is associated with an 89% increased risk of pneumonia. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  11. Coprescribing proton-pump inhibitors with nonsteroidal anti-inflammatory drugs: risks versus benefits.

    Science.gov (United States)

    Gwee, Kok Ann; Goh, Vernadine; Lima, Graca; Setia, Sajita

    2018-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are often coadministered with proton-pump inhibitors (PPIs) to reduce NSAID-induced gastrointestinal (GI) adverse events. This coadministration is generally regarded as safe, and is included in many of the guidelines on NSAID prescription. However, recent evidence indicates that the GI risks associated with NSAIDs can be potentiated when they are combined with PPIs. This review discusses the GI effects and complications of NSAIDs and how PPIs may potentiate these effects, options for prevention of GI side effects, and appropriate use of PPIs in combination with NSAIDs.

  12. A new hypothesis on the simultaneous direct and indirect proton pump mechanisms in NADH-quinone oxidoreductase (complex I).

    Science.gov (United States)

    Ohnishi, Tomoko; Nakamaru-Ogiso, Eiko; Ohnishi, S Tsuyoshi

    2010-10-08

    Recently, Sazanov's group reported the X-ray structure of whole complex I [Nature, 465, 441 (2010)], which presented a strong clue for a "piston-like" structure as a key element in an "indirect" proton pump. We have studied the NuoL subunit which has a high sequence similarity to Na(+)/H(+) antiporters, as do the NuoM and N subunits. We constructed 27 site-directed NuoL mutants. Our data suggest that the H(+)/e(-) stoichiometry seems to have decreased from (4H(+)/2e(-)) in the wild-type to approximately (3H(+)/2e(-)) in NuoL mutants. We propose a revised hypothesis that each of the "direct" and the "indirect" proton pumps transports 2H(+) per 2e(-). Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Biological influence from low dose and low-dose rate radiation

    International Nuclear Information System (INIS)

    Magae, Junji

    2007-01-01

    Although living organisms have defense mechanisms for radioadaptive response, the influence is considered to vary qualitatively and quantitatively for low dose and high dose, as well as for low-dose rate and high-dose rate. This article describes the bioresponse to low dose and low-dose rate. Among various biomolecules, DNA is the most sensitive to radiation, and accurate replication of DNA is an essential requirement for the survival of living organisms. Also, the influence of active enzymes resulted from the effect of radiation on enzymes in the body is larger than the direct influence of radiation on the body. After this, the article describes the carcinogenic risk by low-dose radiation, and then so-called Hormesis effect to create cancer inhibition effect by stimulating active physiology. (S.K.)

  14. Pathogenesis of Double-Dose Proton Pump Inhibitor-Resistant Non-Erosive Reflux Disease, and Mechanism of Reflux Symptoms and Gastric Acid Secretion-Suppressive Effect in the Presence or Absence of Helicobacter pylori Infection.

    Science.gov (United States)

    Kawami, Noriyuki; Takenouchi, Nana; Umezawa, Mariko; Hoshino, Shintaro; Hanada, Yuriko; Hoshikawa, Yoshimasa; Sano, Hirohito; Hoshihara, Yoshio; Nomura, Tsutomu; Uchida, Eiji; Iwakiri, Katsuhiko

    2017-01-01

    Various mechanisms have been suggested to be responsible for contributing to the occurrence of proton pump inhibitor (PPI)-resistant non-erosive reflux disease (NERD). The aims of this study were to clarify the pathogenesis of PPI-resistant NERD. Fifty-three patients with NERD, who had persistent reflux symptoms despite taking double-dose PPI, were included in this study. After excluding eosinophilic esophagitis (EoE) and primary esophageal motility disorder, esophageal impedance-pH monitoring was carried out. In symptom index (SI)-positive patients, the mechanism of SI positivity and the percent time with intragastric pH >4 were investigated according to the presence or absence of Helicobacter pylori infection. One of the 53 patients had EoE, and 4 had primary esophageal motility disorder. Twenty-three and 2 patients were SI-positive for liquid and gas-only reflux respectively. Of 17 SI-positive, H. pylori-negative patients, 5 were SI-positive for acid reflux, whereas all of the H. pylori-positive patients were SI-positive for non-acid reflux. The percent time with intragastric pH >4 was significantly lower in the H. pylori-negative patients than in the H. pylori-positive patients. The pathogenesis of double-dose PPI-resistant NERD was identified in 57%. In some of H. pylori-negative patients, acid-related symptoms were observed. However, in H. pylori-positive patients, these symptoms were excluded by taking double-dose PPI. © 2017 S. Karger AG, Basel.

  15. Survival of tumor cells after proton irradiation with ultra-high dose rates

    International Nuclear Information System (INIS)

    Auer, Susanne; Hable, Volker; Greubel, Christoph; Drexler, Guido A; Schmid, Thomas E; Belka, Claus; Dollinger, Günther; Friedl, Anna A

    2011-01-01

    Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >10 9 Gy s -1 may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly

  16. Studies of absorbed dose determinations and spatial dose distributions for high energy proton beams

    International Nuclear Information System (INIS)

    Hiraoka, Takeshi

    1982-01-01

    Absolute dose determinations were made with three types of ionization chamber and a Faraday cup. Methane based tissue equivalent (TE) gas, nitrogen, carbon dioxide, air were used as an ionizing gas with flow rate of 10 ml per minute. Measurements were made at the entrance position of unmodulated beams and for a beam of a spread out Bragg peak at a depth of 17.3 mm in water. For both positions, the mean value of dose determined by the ionization chambers was 0.993 +- 0.014 cGy for which the value of TE gas was taken as unity. The agreement between the doses estimated by the ionization chambers and the Faraday cup was within 5%. Total uncertainty estimated in the ionization chamber and the Faraday cup determinations is 6 and 4%, respectively. Common sources of error in calculating the dose from ionization chamber measurements are depend on the factors of ion recombination, W value, and mass stopping power ratio. These factors were studied by both experimentally and theoretically. The observed values for the factors show a good agreement to the predicted one. Proton beam dosimetry intercomparison between Japan and the United States was held. Good agreement was obtained with standard deviation of 1.6%. The value of the TE calorimeter is close to the mean value of all. In the proton spot scanning system, lateral dose distributions at any depth for one spot beam can be simulated by the Gaussian distribution. From the Gaussian distributions and the central axis depth doses for one spot beam, it is easy to calculate isodose distributions in the desired field by superposition of dose distribution for one spot beam. Calculated and observed isodose curves were agreed within 1 mm at any dose levels. (J.P.N.)

  17. Dose error analysis for a scanned proton beam delivery system

    International Nuclear Information System (INIS)

    Coutrakon, G; Wang, N; Miller, D W; Yang, Y

    2010-01-01

    All particle beam scanning systems are subject to dose delivery errors due to errors in position, energy and intensity of the delivered beam. In addition, finite scan speeds, beam spill non-uniformities, and delays in detector, detector electronics and magnet responses will all contribute errors in delivery. In this paper, we present dose errors for an 8 x 10 x 8 cm 3 target of uniform water equivalent density with 8 cm spread out Bragg peak and a prescribed dose of 2 Gy. Lower doses are also analyzed and presented later in the paper. Beam energy errors and errors due to limitations of scanning system hardware have been included in the analysis. By using Gaussian shaped pencil beams derived from measurements in the research room of the James M Slater Proton Treatment and Research Center at Loma Linda, CA and executing treatment simulations multiple times, statistical dose errors have been calculated in each 2.5 mm cubic voxel in the target. These errors were calculated by delivering multiple treatments to the same volume and calculating the rms variation in delivered dose at each voxel in the target. The variations in dose were the result of random beam delivery errors such as proton energy, spot position and intensity fluctuations. The results show that with reasonable assumptions of random beam delivery errors, the spot scanning technique yielded an rms dose error in each voxel less than 2% or 3% of the 2 Gy prescribed dose. These calculated errors are within acceptable clinical limits for radiation therapy.

  18. Plant proton pumps

    DEFF Research Database (Denmark)

    Gaxiola, Roberto A.; Palmgren, Michael Gjedde; Schumacher, Karin

    2007-01-01

    Chemiosmotic circuits of plant cells are driven by proton (H+) gradients that mediate secondary active transport of compounds across plasma and endosomal membranes. Furthermore, regulation of endosomal acidification is critical for endocytic and secretory pathways. For plants to react...

  19. Detection and effects of pump low-flow operation

    International Nuclear Information System (INIS)

    Casada, D.A.; Greene, R.H.

    1994-01-01

    Operating experience and previous studies performed for the Nuclear Plant Aging Research Program have shown that a significant cause of pump problems and failures can result from low-flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Both of these conditions can be characterized by crackling sounds that accompany a substantial increase in vibration and noise level, and a reduction in total head and output capacity. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation, reversal of a portion of the flow back through the impeller, can be potentially more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure cause by low-flow induced phenomena. ORNL has continued to investigate the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation

  20. Darrieus wind-turbine and pump performance for low-lift irrigation pumping

    Science.gov (United States)

    Hagen, L. J.; Sharif, M.

    1981-10-01

    In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.

  1. Overutilization of proton pump inhibitors: a review of cost-effectiveness and risk [corrected].

    Science.gov (United States)

    Heidelbaugh, Joel J; Goldberg, Kathleen L; Inadomi, John M

    2009-03-01

    Proton pump inhibitors (PPIs) are superior to histamine-2 receptor antagonists for the treatment of gastroesophageal reflux disease (GERD) and erosive esophagitis. Antisecretory therapy (AST), however, accounts for significant cost expenditure in the United States including over-the-counter and prescription formulations. Moreover, emerging data illustrate the potential risks associated with long-term PPI therapy including variations in bioavailability of common medications, vitamin B12 deficiency, Clostridium difficile-associated diarrhea, community-acquired pneumonia, and hip fracture. For these reasons, it is imperative to use the lowest dose of drug necessary to achieve desired therapeutic goals. This may entail the use of step-down, step-off, or on-demand PPI therapy for the treatment of GERD. In addition, PPIs are the most commonly used medications for stress ulcer prophylaxis (SUP), despite little evidence to support their use. Compounding this problem is evidence that patients erroneously administered SUP are often discharged on long-term PPI therapy. Pharmacy-driven step-down orders, limitation of the use of PPIs for SUP in non-ICU settings, and meticulous chart review to ensure that hospitalized patients are not discharged home on a PPI without an appropriate indication are interventions that can ensure proper PPI utilization with minimal of risk and optimization of cost-effectiveness.

  2. Proton absorbed dose distribution in human eye simulated by SRNA-2KG code

    International Nuclear Information System (INIS)

    Ilic, R. D.; Pavlovic, R.

    2004-01-01

    The model of Monte Carlo SRNA code is described together with some numerical experiments to show feasibility of this code to be used in proton therapy, especially for tree dimensional proton absorption dose calculation in human eye. (author) [sr

  3. Proton dose calculation on scatter-corrected CBCT image: Feasibility study for adaptive proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang-Kyun, E-mail: ykpark@mgh.harvard.edu; Sharp, Gregory C.; Phillips, Justin; Winey, Brian A. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2015-08-15

    Purpose: To demonstrate the feasibility of proton dose calculation on scatter-corrected cone-beam computed tomographic (CBCT) images for the purpose of adaptive proton therapy. Methods: CBCT projection images were acquired from anthropomorphic phantoms and a prostate patient using an on-board imaging system of an Elekta infinity linear accelerator. Two previously introduced techniques were used to correct the scattered x-rays in the raw projection images: uniform scatter correction (CBCT{sub us}) and a priori CT-based scatter correction (CBCT{sub ap}). CBCT images were reconstructed using a standard FDK algorithm and GPU-based reconstruction toolkit. Soft tissue ROI-based HU shifting was used to improve HU accuracy of the uncorrected CBCT images and CBCT{sub us}, while no HU change was applied to the CBCT{sub ap}. The degree of equivalence of the corrected CBCT images with respect to the reference CT image (CT{sub ref}) was evaluated by using angular profiles of water equivalent path length (WEPL) and passively scattered proton treatment plans. The CBCT{sub ap} was further evaluated in more realistic scenarios such as rectal filling and weight loss to assess the effect of mismatched prior information on the corrected images. Results: The uncorrected CBCT and CBCT{sub us} images demonstrated substantial WEPL discrepancies (7.3 ± 5.3 mm and 11.1 ± 6.6 mm, respectively) with respect to the CT{sub ref}, while the CBCT{sub ap} images showed substantially reduced WEPL errors (2.4 ± 2.0 mm). Similarly, the CBCT{sub ap}-based treatment plans demonstrated a high pass rate (96.0% ± 2.5% in 2 mm/2% criteria) in a 3D gamma analysis. Conclusions: A priori CT-based scatter correction technique was shown to be promising for adaptive proton therapy, as it achieved equivalent proton dose distributions and water equivalent path lengths compared to those of a reference CT in a selection of anthropomorphic phantoms.

  4. Efficiency improvement in proton dose calculations with an equivalent restricted stopping power formalism

    Science.gov (United States)

    Maneval, Daniel; Bouchard, Hugo; Ozell, Benoît; Després, Philippe

    2018-01-01

    The equivalent restricted stopping power formalism is introduced for proton mean energy loss calculations under the continuous slowing down approximation. The objective is the acceleration of Monte Carlo dose calculations by allowing larger steps while preserving accuracy. The fractional energy loss per step length ɛ was obtained with a secant method and a Gauss-Kronrod quadrature estimation of the integral equation relating the mean energy loss to the step length. The midpoint rule of the Newton-Cotes formulae was then used to solve this equation, allowing the creation of a lookup table linking ɛ to the equivalent restricted stopping power L eq, used here as a key physical quantity. The mean energy loss for any step length was simply defined as the product of the step length with L eq. Proton inelastic collisions with electrons were added to GPUMCD, a GPU-based Monte Carlo dose calculation code. The proton continuous slowing-down was modelled with the L eq formalism. GPUMCD was compared to Geant4 in a validation study where ionization processes alone were activated and a voxelized geometry was used. The energy straggling was first switched off to validate the L eq formalism alone. Dose differences between Geant4 and GPUMCD were smaller than 0.31% for the L eq formalism. The mean error and the standard deviation were below 0.035% and 0.038% respectively. 99.4 to 100% of GPUMCD dose points were consistent with a 0.3% dose tolerance. GPUMCD 80% falloff positions (R80 ) matched Geant’s R80 within 1 μm. With the energy straggling, dose differences were below 2.7% in the Bragg peak falloff and smaller than 0.83% elsewhere. The R80 positions matched within 100 μm. The overall computation times to transport one million protons with GPUMCD were 31-173 ms. Under similar conditions, Geant4 computation times were 1.4-20 h. The L eq formalism led to an intrinsic efficiency gain factor ranging between 30-630, increasing with the prescribed accuracy of simulations. The

  5. The proton-pump inhibitor lansoprazole enhances amyloid beta production.

    Science.gov (United States)

    Badiola, Nahuai; Alcalde, Victor; Pujol, Albert; Münter, Lisa-Marie; Multhaup, Gerd; Lleó, Alberto; Coma, Mireia; Soler-López, Montserrat; Aloy, Patrick

    2013-01-01

    A key event in the pathogenesis of Alzheimer's disease (AD) is the accumulation of amyloid-β (Aβ) species in the brain, derived from the sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. Based on a systems biology study to repurpose drugs for AD, we explore the effect of lansoprazole, and other proton-pump inhibitors (PPIs), on Aβ production in AD cellular and animal models. We found that lansoprazole enhances Aβ37, Aβ40 and Aβ42 production and lowers Aβ38 levels on amyloid cell models. Interestingly, acute lansoprazole treatment in wild type and AD transgenic mice promoted higher Aβ40 levels in brain, indicating that lansoprazole may also exacerbate Aβ production in vivo. Overall, our data presents for the first time that PPIs can affect amyloid metabolism, both in vitro and in vivo.

  6. Proton pump inhibitors alter the composition of the gut microbiota.

    Science.gov (United States)

    Jackson, Matthew A; Goodrich, Julia K; Maxan, Maria-Emanuela; Freedberg, Daniel E; Abrams, Julian A; Poole, Angela C; Sutter, Jessica L; Welter, Daphne; Ley, Ruth E; Bell, Jordana T; Spector, Tim D; Steves, Claire J

    2016-05-01

    Proton pump inhibitors (PPIs) are drugs used to suppress gastric acid production and treat GI disorders such as peptic ulcers and gastro-oesophageal reflux. They have been considered low risk, have been widely adopted, and are often over-prescribed. Recent studies have identified an increased risk of enteric and other infections with their use. Small studies have identified possible associations between PPI use and GI microbiota, but this has yet to be carried out on a large population-based cohort. We investigated the association between PPI usage and the gut microbiome using 16S ribosomal RNA amplification from faecal samples of 1827 healthy twins, replicating results within unpublished data from an interventional study. We identified a significantly lower abundance in gut commensals and lower microbial diversity in PPI users, with an associated significant increase in the abundance of oral and upper GI tract commensals. In particular, significant increases were observed in Streptococcaceae. These associations were replicated in an independent interventional study and in a paired analysis between 70 monozygotic twin pairs who were discordant for PPI use. We propose that the observed changes result from the removal of the low pH barrier between upper GI tract bacteria and the lower gut. Our findings describe a significant impact of PPIs on the gut microbiome and should caution over-use of PPIs, and warrant further investigation into the mechanisms and their clinical consequences. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Internal friction measurements of Mo after low-temperature proton irradiation

    International Nuclear Information System (INIS)

    Tanimoto, H.; Mizubayashi, H.; Masuda, R.; Okuda, S.; Tagishi, Y.

    1992-01-01

    Internal friction measurements are performed in Mo after 20 MeV proton irradiation in order to clarify the behavior of self-interstitial atoms (SIA's) in Mo. In the low dose range, strong dislocation pinning suggesting the free migration of defects is observed at about 40 K and weak pinning at about 25 K. The features are very similar to those reported after neutron irradiation except that the 25 K pinning is much smaller after proton irradiation. The result suggests that the migration of free SIA's is responsible for the 40 K pinning and that of SIA-defect clusters, probably di-SIA's, formed during irradiation for the 25 K pinning. In the high dose range, the relaxation peaks are observed at about 13 and 41 K, where the close similarities are found between the present peaks and the corresponding peaks reported after neutron irradiation except that the peak height of the 41 K peak per unit concentration of Frenkel pairs (FP) tends to increase strongly with decreasing dose here. The latter fact suggests the strong interaction between SIA's. Then the smallness of the 41 K peak reported after electron irradiation with very high dose could be explained by an increased interaction between SIA's, but not by the two-dimensional migration of SIA's as proposed by Jacques and Robrock. Deformation given prior to irradiation causes a drastic decrease in the modulus defects associated with FP's (so-called bulk effect) and in the 13 K peak height. After neutron irradiation, no such effect of deformation was reported. A possible origin for this difference is discussed. (orig.)

  8. Low dose/low fluence ionizing radiation-induced biological effects: The role of intercellular communication and oxidative metabolism

    Science.gov (United States)

    Azzam, Edouard

    Mechanistic investigations have been considered critical to understanding the health risks of exposure to ionizing radiation. To gain greater insight in the biological effects of exposure to low dose/low fluence space radiations with different linear energy transfer (LET) properties, we examined short and long-term biological responses to energetic protons and high charge (Z) and high energy (E) ions (HZE particles) in human cells maintained in culture and in targeted and non-targeted tissues of irradiated rodents. Particular focus of the studies has been on mod-ulation of gene expression, proliferative capacity, induction of DNA damage and perturbations in oxidative metabolism. Exposure to mean doses of 1000 MeV/nucleon iron ions, by which a small to moderate proportion of cells in an exposed population is targeted through the nucleus by an HZE particle, induced stressful effects in the irradiated and non-irradiated cells in the population. Direct intercellular communication via gap-junctions was a primary mediator of the propagation of stressful effects from irradiated to non-irradiated cells. Compromised prolif-erative capacity, elevated level of DNA damage and oxidative stress evaluated by measurements of protein carbonylation, lipid peroxidation and activity of metabolic enzymes persisted in the progeny of irradiated and non-irradiated cells. In contrast, progeny of cells exposed to high or low doses from 150-1000 MeV protons retained the ability to form colonies and harbored similar levels of micronuclei, a surrogate form of DNA damage, as control, which correlated with normal reactive oxygen species (ROS) levels. Importantly, a significant increase in the spontaneous neoplastic transformation frequency was observed in progeny of bystander mouse embryo fibroblasts (MEFs) co-cultured with MEFs irradiated with energetic iron ions but not protons. Of particular significance, stressful effects were detected in non-targeted tissues of rats that received partial

  9. Application of the personnel photographic monitoring method to determine equivalent radiation dose beyond proton accelerator shielding

    International Nuclear Information System (INIS)

    Gel'fand, E.K.; Komochkov, M.M.; Man'ko, B.V.; Salatskaya, M.I.; Sychev, B.S.

    1980-01-01

    Calculations of regularities to form radiation dose beyond proton accelerator shielding are carried out. Numerical data on photographic monitoring dosemeter in radiation fields investigated are obtained. It was shown how to determine the total equivalent dose of radiation fields beyond proton accelerator shielding by means of the photographic monitoring method by introduction into the procedure of considering nuclear emulsions of division of particle tracks into the black and grey ones. A comparison of experimental and calculational data has shown the applicability of the used calculation method for modelling dose radiation characteristics beyond proton accelerator shielding [ru

  10. Proton Pump Inhibitors and Risk of Rhabdomyolysis.

    Science.gov (United States)

    Duncan, Scott J; Howden, Colin W

    2017-01-01

    Proton pump inhibitors (PPIs) have been associated with a variety of adverse events, although the level of evidence for many of these is weak at best. Recently, one national regulatory authority has mandated a change to the labeling of one PPI based on reports of possible associated rhabdomyolysis. Thus, in this review we summarize the available evidence linking PPI use with rhabdomyolysis. The level of evidence is insufficient to establish a causal relationship and is largely based on sporadic case reports. In general, patients with suspected PPI-associated rhabdomyolysis have not been re-challenged with a PPI after recovery. The mechanism whereby PPIs might have been associated with rhabdomyolysis is unclear but possibly related to interaction with concomitantly administered drugs such as HMG-CoA reductase inhibitors (statins). For patients with rhabdomyolysis, a careful search must be made for possible etiological factors. In patients who recover from an episode of possible PPI-related rhabdomyolysis but do not have a genuine requirement for PPI treatment, the PPI should not be re-introduced. For those with a definite indication for ongoing PPI treatment, the PPI can be re-introduced but should preferably not be administered with a statin.

  11. Comparison of health care resource utilization and costs among patients with GERD on once-daily or twice-daily proton pump inhibitor therapy

    Directory of Open Access Journals (Sweden)

    Mody R

    2013-04-01

    Full Text Available Reema Mody,1 Debra Eisenberg,2 Likun Hou,2 Siddhesh Kamat,2 Joseph Singer,2 Lauren B Gerson3 1Takeda Pharmaceuticals International Inc, Deerfield, IL, 2HealthCore Inc, Wilmington, DE, 3Stanford University School of Medicine, Stanford, CA, USA Background: The purpose of this study was to assess differences in health care resource utilization and costs associated with once-daily and twice-daily proton pump inhibitor (PPI therapy. Most patients with gastroesophageal reflux disease (GERD achieve symptom control on once-daily PPI therapy, but approximately 20%–30% require twice-daily dosing. Methods: Patients were ≥18 years of age with at least one medical claim for GERD and at least two PPI claims from HealthCore's Integrated Research Database (HIRDSM during 2004–2009. Patients were continuously eligible for 12 months before and after the index date (date of first PPI claim. Based on PPI dosing throughout the post-index period (quantity of medication dispensed/number of days supply, patients were classified as once-daily (dose ≤ 1.5 pills per day or twice-daily (≥1.5 PPI users. Results: The study cohort included 248,386 patients with GERD (mean age 52.8 ± 13.93 years, 56% females of whom 90% were once-daily and 10% were twice-daily PPI users. The Deyo-Charlson Comorbidity Index for once-daily and twice-daily PPI users was 0.70 ± 1.37 and 0.89 ± 1.54, respectively (P < 0.05. More once-daily patients had claims for Barrett's esophagus (5% versus 2%, P < 0.0001 than twice-daily patients. Post-index, higher proportions of twice-daily patients had at least one GERD-related inpatient visit (7% versus 5%, outpatient visit (60% versus 49%, and office visit (48% versus 38% versus once-daily patients (P < 0.0001. Mean total GERD-related health care costs were $2065 ± $6636 versus $3749 ± $11,081 for once-daily and twice-daily PPI users, respectively (P < 0.0001. Conclusion: Patients receiving twice-daily PPI therapy were likely to have more

  12. Proton pump inhibitor use and risk of adverse cardiovascular events in aspirin treated patients with first time myocardial infarction: nationwide propensity score matched study

    DEFF Research Database (Denmark)

    Charlot, Mette; Grove, Erik; Hansen, Peter Riis

    2011-01-01

    OBJECTIVE: To examine the effect of proton pump inhibitors on adverse cardiovascular events in aspirin treated patients with first time myocardial infarction. DESIGN: Retrospective nationwide propensity score matched study based on administrative data. Setting All hospitals in Denmark. PARTICIPANTS...... analysis showed no increase in risk related to use of H(2) receptor blockers (1.04, 0.79 to 1.38; P=0.78). Conclusion In aspirin treated patients with first time myocardial infarction, treatment with proton pump inhibitors was associated with an increased risk of adverse cardiovascular events....

  13. Prolonged Treatment Duration is Required for Successful Helicobacter pylori Eradication with Proton Pump Inhibitor Triple Therapy in Canada

    Directory of Open Access Journals (Sweden)

    Carlo A Fallone

    2013-01-01

    Full Text Available BACKGROUND: Traditional seven-day proton pump inhibitor triple therapy for Helicobacter pylori eradication has recently shown disappointing results outside of Canada. Prolonging therapy may be associated with poorer compliance and, hence, may not have a better outcome in a real-world setting.

  14. Inhibition of the coated vesicle proton pump and labeling of a 17,000-dalton polypeptide by N,N'-dicyclohexylcarbodiimide

    International Nuclear Information System (INIS)

    Arai, H.; Berne, M.; Forgac, M.

    1987-01-01

    N,N'-Dicyclohexylcarbodiimide (DCCD) inhibits 100% of proton transport and 80-85% of (Mg2+)-ATPase activity in clathrin-coated vesicles. Half-maximum inhibition of proton transport is observed at 10 microM DCCD after 30 min. Although treatment of the coated vesicle (H+)-ATPase with DCCD has no effect on ATP hydrolysis in the detergent-solubilized state, sensitivity of proton transport and ATPase activity to DCCD is restored following reconstitution into phospholipid vesicles. In addition, treatment of the detergent-solubilized enzyme with DCCD followed by reconstitution gives a preparation that is blocked in both proton transport and ATP hydrolysis. These results suggest that although the coated vesicle (H+)-ATPase can react with DCCD in either a membrane-bound or detergent-solubilized state, inhibition of ATPase activity is only manifested when the pump is present in sealed membrane vesicles. To identify the subunit responsible for inhibition of the coated vesicle (H+)-ATPase by DCCD, we have labeled the partially purified enzyme with [ 14 C]DCCD. A single polypeptide of molecular weight 17,000 is labeled. The extremely hydrophobic nature of this polypeptide is indicated by its extraction with chloroform:methanol. The 17,000-dalton protein can be labeled to a maximum stoichiometry of 0.99 mol of DCCD/mol of protein with 100% inhibition of proton transport occurring at a stoichiometry of 0.15-0.20 mol of DCCD/mol of protein. Amino acid analysis of the chloroform:methanol extracted 17,000-dalton polypeptide reveals a high percentage of nonpolar amino acids. The similarity in properties of this protein and the DCCD-binding subunit of the coupling factor (H+)-ATPases suggests that the 17,000-dalton polypeptide may function as part of a proton channel in the coated vesicle proton pump

  15. Clinical value of wireless pH-monitoring of gastro-esophageal reflux in children before and after proton pump inhibitors.

    Science.gov (United States)

    Boström, Michaela; Thorsson, Ola; Toth, Ervin; Agardh, Daniel

    2014-12-24

    Wireless pH-monitoring is an accurate method for diagnosing adults with gastroesophageal reflux disease (GERD). The aim of this study was to evaluate the use of the Bravo capsule on children investigated for GERD in terms of safety, tolerability and feasibility before and after administration of proton pump inhibitors. A Bravo capsule was inserted during upper endoscopy under general anaesthesia or deep sedation with propofol. 48-hour pH-metry was performed in 106 children (50 males, 56 females) at the median age of 11 years (range 17 months-18 years). On the second day of investigation, proton pump inhibitor (PPI) was given at a mean dose of 1.6 mg/kg (SD ±0.6 mg). The definition of GERD was set to a reflux index (RI) of ≥5% and DeMeester score (DMS) ≥14.7. Application of the capsule was successful in 103 of the 106 children (97.2%) and interpretable in 99 of these 103 (96.1%). 49 of the children with interpretable results (49.5%) had GERD according to RI, while 51 (56.7%) had GERD according to DMS. After PPI was given on day 2, RI decreased from a median of 4.9% (range 0.3-63.4%) to 2.2% (0-58.0%), while DMS decreased from a median of 17.6 (range 2.2-207.6) to 8.2 (0.3-178.6), respectively (p < 0.0001). No severe adverse events were reported. Wireless pH-metry is a safe and tolerable method when investigating children for GERD. PPI given on the second day of assessment provides additional information on response to treatment suggesting that pH-metry preferably should be extended to 48 hours.

  16. Cost-effectiveness analysis of cochlear dose reduction by proton beam therapy for medulloblastoma in childhood

    International Nuclear Information System (INIS)

    Hirano, Emi; Kawabuchi, Koichi; Fuji, Hiroshi; Onoe, Tsuyoshi; Kumar, Vinay; Shirato, Hiroki

    2014-01-01

    The aim of this study is to evaluate the cost-effectiveness of proton beam therapy with cochlear dose reduction compared with conventional X-ray radiotherapy for medulloblastoma in childhood. We developed a Markov model to describe health states of 6-year-old children with medulloblastoma after treatment with proton or X-ray radiotherapy. The risks of hearing loss were calculated on cochlear dose for each treatment. Three types of health-related quality of life (HRQOL) of EQ-5D, HUI3 and SF-6D were used for estimation of quality-adjusted life years (QALYs). The incremental cost-effectiveness ratio (ICER) for proton beam therapy compared with X-ray radiotherapy was calculated for each HRQOL. Sensitivity analyses were performed to model uncertainty in these parameters. The ICER for EQ-5D, HUI3 and SF-6D were $21 716/QALY, $11 773/QALY, and $20 150/QALY, respectively. One-way sensitivity analyses found that the results were sensitive to discount rate, the risk of hearing loss after proton therapy, and costs of proton irradiation. Cost-effectiveness acceptability curve analysis revealed a 99% probability of proton therapy being cost effective at a societal willingness-to-pay value. Proton beam therapy with cochlear dose reduction improves health outcomes at a cost that is within the acceptable cost-effectiveness range from the payer's standpoint. (author)

  17. SU-F-J-56: The Connection Between Cherenkov Light Emission and Radiation Absorbed Dose in Proton Irradiated Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Darafsheh, A; Kassaee, A; Finlay, J [University of Pennsylvania, Philadelphia, PA (United States); Taleei, R [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Range verification in proton therapy is of great importance. Cherenkov light follows the photon and electron energy deposition in water phantom. The purpose of this study is to investigate the connection between Cherenkov light generation and radiation absorbed dose in a water phantom irradiated with proton beams. Methods: Monte Carlo simulation was performed by employing FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and Cherenkov radiation in water phantoms. The simulations were performed for proton beams with energies in the range 50–600 MeV to cover a wide range of proton energies. Results: The mechanism of Cherenkov light production depends on the initial energy of protons. For proton energy with 50–400 MeV energy that is below the threshold (∼483 MeV in water) for Cherenkov light production directly from incident protons, Cherenkov light is produced mainly from the secondary electrons liberated as a result of columbic interactions with the incident protons. For proton beams with energy above 500 MeV, in the initial depth that incident protons have higher energy than the Cherenkov light production threshold, the light has higher intensity. As the slowing down process results in lower energy protons in larger depths in the water phantom, there is a knee point in the Cherenkov light curve vs. depth due to switching the Cherenkov light production mechanism from primary protons to secondary electrons. At the end of the depth dose curve the Cherenkov light intensity does not follow the dose peak because of the lack of high energy protons to produce Cherenkov light either directly or through secondary electrons. Conclusion: In contrast to photon and electron beams, Cherenkov light generation induced by proton beams does not follow the proton energy deposition specially close to the end of the proton range near the Bragg peak.

  18. [Adherence with proton pump inhibitor therapy, by continuously taking nonsteroidal anti-inflammatory drugs].

    Science.gov (United States)

    Pimanov, S I; Makarenko, E V; Dikareva, E A

    2015-01-01

    To estimate the impact of adherence with proton pump inhibitor (PPI) therapy on the incidence of nonsteroidal anti-inflammatory drug (NSAID)-induced gastropathy (NSAID gastropathy) in patients with rheumatoid arthritis (RA). PPI pharmacotherapy adherence was estimated using the Medication Adherence Questionnaire (MAQ) in 92 patients with RA, including 32 patients did not take a PPI and 60 used a PPI. The groups were matched for age, disease duration, and used NSAIDs. All those asked underwent video esophagogastroduodenoscopy. According to the data of MAQ survey, low, moderate, and high adherence subgroups could be identified among the patients treated with a PPI. NSAID gastropathy was detected in 43.8% of the patients taking no PPI, in 50% of those with low PPI treatment adherence, in 12.5% with moderate adherence, and in 4.5% with high adherence. In the patients with low adherence to PPI therapy, NSAID gastropathy was recorded 11 times more frequently than in those with high adherence (c2 = 7.77; p = 0.005). This condition occurred in 28.6% of the patients taking NSAID without preventively using a PPI in the absence of risk factors for NSAID gastropathy. Only 36.7% patients who had been recommended to use a PPI for the prevention of NSAID gastropathy strictly observed their doctor's directions. Low PPI pharmacotherapy adherence may serve as an additional risk factor for NSAID gastropathy in patients in whom preventive antisecretory therapy used in combination with NSAID is indicated.

  19. MCNPX simulation of proton dose distribution in homogeneous and CT phantoms

    International Nuclear Information System (INIS)

    Lee, C.C.; Lee, Y.J.; Tung, C.J.; Cheng, H.W.; Chao, T.C.

    2014-01-01

    A dose simulation system was constructed based on the MCNPX Monte Carlo package to simulate proton dose distribution in homogeneous and CT phantoms. Conversion from Hounsfield unit of a patient CT image set to material information necessary for Monte Carlo simulation is based on Schneider's approach. In order to validate this simulation system, inter-comparison of depth dose distributions among those obtained from the MCNPX, GEANT4 and FLUKA codes for a 160 MeV monoenergetic proton beam incident normally on the surface of a homogeneous water phantom was performed. For dose validation within the CT phantom, direct comparison with measurement is infeasible. Instead, this study took the approach to indirectly compare the 50% ranges (R 50% ) along the central axis by our system to the NIST CSDA ranges for beams with 160 and 115 MeV energies. Comparison result within the homogeneous phantom shows good agreement. Differences of simulated R 50% among the three codes are less than 1 mm. For results within the CT phantom, the MCNPX simulated water equivalent R eq,50% are compatible with the CSDA water equivalent ranges from the NIST database with differences of 0.7 and 4.1 mm for 160 and 115 MeV beams, respectively. - Highlights: ► Proton dose simulation based on the MCNPX 2.6.0 in homogeneous and CT phantoms. ► CT number (HU) conversion to electron density based on Schneider's approach. ► Good agreement among MCNPX, GEANT4 and FLUKA codes in a homogeneous water phantom. ► Water equivalent R 50 in CT phantoms are compatible to those of NIST database

  20. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons

    Science.gov (United States)

    Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.

  1. Association Between Proton Pump Inhibitors and Metronomic Capecitabine as Salvage Treatment for Patients With Advanced Gastrointestinal Tumors: A Randomized Phase II Trial.

    Science.gov (United States)

    Marchetti, Paolo; Milano, Annalisa; D'Antonio, Chiara; Romiti, Adriana; Falcone, Rosa; Roberto, Michela; Fais, Stefano

    2016-12-01

    The acidification of extracellular compartment represents a conceivable mechanism of drug resistance in malignant cells. In addition, it has been reported to drive proliferation and promote invasion and metastasis. Experimental evidence has shown that proton pump inhibitors can counteract tumor acidification and restore sensitivity to anticancer drugs. Moreover, early clinical data have supported the role of proton pump inhibitors in anticancer treatments. Metronomic capecitabine has demonstrated beneficial effects as salvage chemotherapy for heavily pretreated or frail patients with gastrointestinal cancer. The present study (EudraCT Number: 2013-001096-20) was aimed at investigating the activity and safety of high-dose rabeprazole in combination with metronomic capecitabine in patients with advanced gastrointestinal cancer refractory to standard treatment. A total of 66 patients will be randomized 1:1 to receive capecitabine 1500 mg/daily, continuously with or without rabeprazole 1.5 mg/kg twice a day, 3 days a week until disease progression, undue toxicity, or withdrawal of informed consent. The primary endpoint is progression-free survival. The secondary endpoints are clinical benefit, which reflects the proportion of patients with complete response, partial response, and stable disease, and overall survival. Progression-free and overall survival will be evaluated using a log-rank test to determine the effect of rabeprazole independently at the 2-sided α-level of 0.05. Other assessments will include the frequency and severity of adverse events and changes in laboratory parameters to measure the safety, and the pharmacokinetics of capecitabine. The results are expected in 2016. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Contribution of Tissue Level Organization to Genomic Stability Following Low Dose/Low Dose Rate Gamma and Proton Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cheryl G. Burrell, Ph.D.

    2012-05-14

    The formation of functional tissue units is necessary in maintaining homeostasis within living systems, with individual cells contributing to these functional units through their three-dimensional organization with integrin and adhesion proteins to form a complex extra-cellular matrix (ECM). This is of particular importance in those tissues susceptible to radiation-induced tumor formation, such as epithelial glands. The assembly of epithelial cells of the thyroid is critical to their normal receipt of, and response to, incoming signals. Traditional tissue culture and live animals present significant challenges to radiation exposure and continuous sampling, however, the production of bioreactor-engineered tissues aims to bridge this gap by improve capabilities in continuous sampling from the same functional tissue, thereby increasing the ability to extrapolate changes induced by radiation to animals and humans in vivo. Our study proposes that the level of tissue organization will affect the induction and persistence of low dose radiation-induced genomic instability. Rat thyroid cells, grown in vitro as 3D tissue analogs in bioreactors and as 2D flask grown cultures were exposed to acute low dose (1, 5, 10 and 200 cGy) gamma rays. To assess immediate (6 hours) and delayed (up to 30 days) responses post-irradiation, various biological endpoints were studied including cytogenetic analyses, apoptosis analysis and cell viability/cytotoxicity analyses. Data assessing caspase 3/7 activity levels show that, this activity varies with time post radiation and that, overall, 3D cultures display more genomic instability (as shown by the lower levels of apoptosis over time) when compared to the 2D cultures. Variation in cell viability levels were only observed at the intermediate and late time points post radiation. Extensive analysis of chromosomal aberrations will give further insight on the whether the level of tissue organization influences genomic instability patterns after

  3. TU-H-CAMPUS-TeP3-03: Dose Enhancement by Gold Nanoparticles Around the Bragg Peak of Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, J; Sutherland, K [Department of Medical Physics, Hokkaido University Graduate School of Medicine (Japan); Hashimoto, T [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine (Japan); Peng, H; Xing, L [Department of Radiation Oncology, Stanford University and Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University (Japan); Shirato, H [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine and Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University (Japan); Date, H [Faculty of Health Sciences, Hokkaido University (Japan)

    2016-06-15

    Purpose: To make clear the spatial distribution of dose enhancement around gold nanoparticles (GNPs) located near the proton Bragg peak, and to evaluate the potential of GNPs as a radio sensitizer. Methods: The dose enhancement by electrons emitted from GNPs under proton irradiation was estimated by Geant4 Monte Carlo simulation toolkit in two steps. In an initial macroscopic step, 100 and 195 MeV proton beams were incident on a water cube, 30 cm on a side. Energy distributions of protons were calculated at four depths, 50% and 75% proximal to the Bragg peak, 100% peak, and 75% distal to the peak (P50, P75, Peak, and D75, respectively). In a subsequent microscopic step, protons with the energy distribution calculated above were incident on a 20 nm diameter GNP in a nanometer-size water box and the spatial distribution of dose around the GNP was determined for each energy distribution. The dose enhancement factor (DEF) was also deduced. Results: The dose enhancement effect was spread to several tens of nanometers in the both depth and radial directions. The enhancement area increased in the order of P50, P75, Peak, and D75 for both cases with 100 and 195 MeV protons. In every position around the Bragg peak, the 100 MeV beam resulted in a higher dose enhancement than the 195 MeV beam. At P75, the average and maximum DEF were 3.9 and 17.0 for 100 MeV, and 3.5 and 16.2 for 195 MeV, respectively. These results indicate that lower energy protons caused higher dose enhancement in this incident proton energy range. Conclusion: The dose enhancement around GNPs spread as the position in the Bragg peak region becomes deeper and depends on proton energy. It is expected that GNPs can be used as a radio sensitizer with consideration of the location and proton beam energy.

  4. Protonation of key acidic residues is critical for the K⁺-selectivity of the Na/K pump.

    Science.gov (United States)

    Yu, Haibo; Ratheal, Ian M; Artigas, Pablo; Roux, Benoît

    2011-09-11

    The sodium-potassium (Na/K) pump is a P-type ATPase that generates Na(+) and K(+) concentration gradients across the cell membrane. For each hydrolyzed ATP molecule, the pump extrudes three Na(+) and imports two K(+) by alternating between outward- and inward-facing conformations that preferentially bind K(+) or Na(+), respectively. Remarkably, the selective K(+) and Na(+) binding sites share several residues, and how the pump is able to achieve the selectivity required for the functional cycle is unclear. Here, free energy-perturbation molecular dynamics (FEP/MD) simulations based on the crystal structures of the Na/K pump in a K(+)-loaded state (E2·P(i)) reveal that protonation of the high-field acidic side chains involved in the binding sites is crucial to achieving the proper K(+) selectivity. This prediction is tested with electrophysiological experiments showing that the selectivity of the E2P state for K(+) over Na(+) is affected by extracellular pH.

  5. Proton pump inhibitor-refractory gastroesophageal reflux disease: challenges and solutions

    Science.gov (United States)

    Mermelstein, Joseph; Chait Mermelstein, Alanna; Chait, Maxwell M

    2018-01-01

    A significant percentage of patients with gastroesophageal reflux disease (GERD) will not respond to proton pump inhibitor (PPI) therapy. The causes of PPI-refractory GERD are numerous and diverse, and include adherence, persistent acid, functional disorders, nonacid reflux, and PPI bioavailability. The evaluation should start with a symptom assessment and may progress to imaging, endoscopy, and monitoring of esophageal pH, impedance, and bilirubin. There are a variety of pharmacologic and procedural interventions that should be selected based on the underlying mechanism of PPI failure. Pharmacologic treatments can include antacids, prokinetics, alginates, bile acid binders, reflux inhibitors, and antidepressants. Procedural options include laparoscopic fundoplication and LINX as well as endoscopic procedures, such as transoral incisionless fundoplication and Stretta. Several alternative and complementary treatments of possible benefit also exist. PMID:29606884

  6. CHARGE-2/C, Flux and Dose Behind Shield from Electron, Proton, Heavy Particle Irradiation

    International Nuclear Information System (INIS)

    Ucker, W.R.; Lilley, J.R.

    1994-01-01

    1 - Description of problem or function: The CHARGE code computes flux spectra, dose and other response rates behind a multilayered spherical or infinite planar shield exposed to isotopic fluxes of electrons, protons and heavy charged particles. The doses, or other responses, to electron, primary proton, heavy particle, electron Bremsstrahlung, secondary proton, and secondary neutron radiations are calculated as a function of penetration into the shield; the materials of each layer may be mixtures of elements contained in the accompanying data library, or supplied by the user. The calculation may optionally be halted before the entire shield is traversed by specifying a minimum total dose rate; the computation stops when the dose drops below this value. The ambient electron, proton and heavy particle spectra may be specified in tabular or functional form. These incident charged particle spectra are divided into energy bands or groups, the number or spacing of which are controlled by input data. The variation of the group boundary energies and group spectra as a function of shield penetration uniquely determines charged particle dose rates and secondary particle production rates. The charged particle shielding calculation is essentially the integration of the range- energy equation which expresses the variation of particle energy wit distance travelled. 2 - Method of solution: The 'straight-ahead' approximation is used throughout, that is the changes in particle direction of motion due to elastic scattering are ignored. This approximation is corrected, in the case of electrons, by applying transmission factors obtained from Monte Carlo calculations. Inelastic scattering between protons and the shielding material is assumed to produce two classes of secondaries 1) Cascade protons and neutrons, emitted in the same direction as the primaries 2) Evaporation neutrons, emitted isotropically. The transmission of secondary protons is analyzed in exactly the same way as the

  7. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  8. SU-E-T-470: Importance of HU-Mass Density Calibration Technique in Proton Pencil Beam Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Penfold, S; Miller, A [University of Adelaide, Adelaide, SA (Australia)

    2015-06-15

    Purpose: Stoichiometric calibration of Hounsfield Units (HUs) for conversion to proton relative stopping powers (RStPs) is vital for accurate dose calculation in proton therapy. However proton dose distributions are not only dependent on RStP, but also on relative scattering power (RScP) of patient tissues. RScP is approximated from material density but a stoichiometric calibration of HU-density tables is commonly neglected. The purpose of this work was to quantify the difference in calculated dose of a commercial TPS when using HU-density tables based on tissue substitute materials and stoichiometric calibrated ICRU tissues. Methods: Two HU-density calibration tables were generated based on scans of the CIRS electron density phantom. The first table was based directly on measured HU and manufacturer quoted density of tissue substitute materials. The second was based on the same CT scan of the CIRS phantom followed by a stoichiometric calibration of ICRU44 tissue materials. The research version of Pinnacle{sup 3} proton therapy was used to compute dose in a patient CT data set utilizing both HU-density tables. Results: The two HU-density tables showed significant differences for bone tissues; the difference increasing with increasing HU. Differences in density calibration table translated to a difference in calculated RScP of −2.5% for ICRU skeletal muscle and 9.2% for ICRU femur. Dose-volume histogram analysis of a parallel opposed proton therapy prostate plan showed that the difference in calculated dose was negligible when using the two different HU-density calibration tables. Conclusion: The impact of HU-density calibration technique on proton therapy dose calculation was assessed. While differences were found in the calculated RScP of bony tissues, the difference in dose distribution for realistic treatment scenarios was found to be insignificant.

  9. Stress ulcer prophylaxis with a proton pump inhibitor versus placebo in critically ill patients (SUP-ICU trial)

    DEFF Research Database (Denmark)

    Krag, Mette; Perner, Anders; Wetterslev, Jørn

    2016-01-01

    BACKGROUND: Critically ill patients in the intensive care unit (ICU) are at risk of clinically important gastrointestinal bleeding, and acid suppressants are frequently used prophylactically. However, stress ulcer prophylaxis may increase the risk of serious adverse events and, additionally......, the quantity and quality of evidence supporting the use of stress ulcer prophylaxis is low. The aim of the SUP-ICU trial is to assess the benefits and harms of stress ulcer prophylaxis with a proton pump inhibitor in adult patients in the ICU. We hypothesise that stress ulcer prophylaxis reduces the rate...... of gastrointestinal bleeding, but increases rates of nosocomial infections and myocardial ischaemia. The overall effect on mortality is unpredictable. METHODS/DESIGN: The SUP-ICU trial is an investigator-initiated, pragmatic, international, multicentre, randomised, blinded, parallel-group trial of stress ulcer...

  10. Non-steroidal anti-inflammatory drugs and gastroprotection with proton pump inhibitors: a focus on ketoprofen/omeprazole.

    Science.gov (United States)

    Gigante, Antonio; Tagarro, Ignacio

    2012-04-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most commonly prescribed agents for rheumatic disorders such as osteoarthritis (OA), rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Despite the known association between NSAID use and gastropathy, however, only around one-third of patients at risk of NSAID-induced gastrointestinal toxicity receive adequate gastroprotection, and as many as 44% of these patients are non-adherent. We review the co-prescription of proton pump inhibitors (PPIs) for the prevention of NSAID-induced gastropathy, with a particular focus on the first fixed-dose NSAID/PPI formulation: ketoprofen/omeprazole modified-release capsules. The ketoprofen/omeprazole fixed-dose combination is available in doses of 100 mg/20 mg, 150 mg/20 mg or 200 mg/20 mg as a single capsule for once-daily administration. Ketoprofen monotherapy has been shown to be generally equivalent to other NSAIDs when used in the treatment of OA. In RA, ketoprofen has demonstrated equivalent efficacy to diclofenac, indometacin, piroxicam, aceclofenac, phenylbutazone, naproxen and flurbiprofen. Studies comparing ketoprofen with ibuprofen and sulindac in patients with RA have, in general, favoured ketoprofen. Studies in AS have generally reported similar efficacy between ketoprofen and phenylbutazone and pirprofen. Prophylaxis with omeprazole is effective for the prevention of gastroduodenal ulcers, maintenance of remission and alleviation of dyspeptic symptoms in NSAID recipients. Omeprazole is well tolerated, and adverse events are generally gastrointestinal in nature. The fixed-dose combination of ketoprofen and omeprazole has demonstrated bioequivalence to the respective monotherapies. The incidence of digestive symptoms and the need for dose reduction was reported to be lower with the combination than with its components. Ketoprofen/omeprazole modified-release capsules are the first fixed-dose NSAID/PPI formulation to be approved. This formulation

  11. Low energy current accumulator for high-energy proton rings

    International Nuclear Information System (INIS)

    Month, M.

    1977-01-01

    Building current in high-energy p-p colliding beam machines is most appropriately done in a low-energy (small circumference) current accumulator. Three significant factors favor such a procedure: First, large rings tend to be susceptible to unstable longitudinal density oscillations. These can be avoided by pumping up the beam in the accumulator. When the current stack is injected into the storage ring, potentially harmful instability is essentially neutralized. Second, high-field magnets characteristic of future high energy proton rings are designed with superconducting coils within the iron magnetic shield. This means coil construction and placement errors propagate rapidly within the beam aperture. An intermediate ''stacking ring'' allows the minimum use of the superconducting ring aperture. Finally, the coils are vulnerable to radiation heating and possible magnet quenching. By minimizing beam manipulaion in the superconducting environment and using only the central portion of the beam aperture, coil vulnerability can be put at a minimum

  12. Antitumor effect of combination of the inhibitors of two new oncotargets: proton pumps and reverse transcriptase.

    Science.gov (United States)

    Lugini, Luana; Sciamanna, Ilaria; Federici, Cristina; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Fais, Stefano

    2017-01-17

    Tumor therapy needs new approaches in order to improve efficacy and reduce toxicity of the current treatments. The acidic microenvironment and the expression of high levels of endogenous non-telomerase reverse transcriptase (RT) are common features of malignant tumor cells. The anti-acidic proton pump inhibitor Lansoprazole (LAN) and the non-nucleoside RT inhibitor Efavirenz (EFV) have shown independent antitumor efficacy. LAN has shown to counteract drug tumor resistance. We tested the hypothesis that combination of LAN and EFV may improve the overall antitumor effects. We thus pretreated human metastatic melanoma cells with LAN and then with EFV, both in 2D and 3D spheroid models. We evaluated the treatment effect by proliferation and cell death/apoptosis assays in classical and in pulse administration experiments. The action of EFV was negatively affected by the tumor microenvironmental acidity, and LAN pretreatment overcame the problem. LAN potentiated the cytotoxicity of EFV to melanoma cells and, when administered during the drug interruption period, prevented the replacement of tumor cell growth.This study supports the implementation of the current therapies with combination of Proton Pumps and Reverse Transcriptase inhibitors.

  13. SU-F-T-155: Validation of a Commercial Monte Carlo Dose Calculation Algorithm for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Saini, J; Wong, T [SCCA Proton Therapy Center, Seattle, WA (United States); St James, S; Stewart, R; Bloch, C [University of Washington, Seattle, WA (United States); Traneus, E [Raysearch Laboratories AB, Stockholm. (Sweden)

    2016-06-15

    Purpose: Compare proton pencil beam scanning dose measurements to GATE/GEANT4 (GMC) and RayStation™ Monte Carlo (RMC) simulations. Methods: Proton pencil beam models of the IBA gantry at the Seattle Proton Therapy Center were developed in the GMC code system and a research build of the RMC. For RMC, a preliminary beam model that does not account for upstream halo was used. Depth dose and lateral profiles are compared for the RMC, GMC and a RayStation™ pencil beam dose (RPB) model for three spread out Bragg peaks (SOBPs) in homogenous water phantom. SOBP comparisons were also made among the three models for a phantom with a (i) 2 cm bone and a (ii) 0.5 cm titanium insert. Results: Measurements and GMC estimates of R80 range agree to within 1 mm, and the mean point-to-point dose difference is within 1.2% for all integrated depth dose (IDD) profiles. The dose differences at the peak are 1 to 2%. All of the simulated spot sigmas are within 0.15 mm of the measured values. For the three SOBPs considered, the maximum R80 deviation from measurement for GMC was −0.35 mm, RMC 0.5 mm, and RPB −0.1 mm. The minimum gamma pass using the 3%/3mm criterion for all the profiles was 94%. The dose comparison for heterogeneous inserts in low dose gradient regions showed dose differences greater than 10% at the distal edge of interface between RPB and GMC. The RMC showed improvement and agreed with GMC to within 7%. Conclusion: The RPB dosimetry show clinically significant differences (> 10%) from GMC and RMC estimates. The RMC algorithm is superior to the RPB dosimetry in heterogeneous media. We suspect modelling of the beam’s halo may be responsible for a portion of the remaining discrepancy and that RayStation will reduce this discrepancy as they finalize the release. Erik Traneus is employed as a Research Scientist at RaySearch Laboratories. The research build of the RayStation TPS used in the study was made available to the SCCA free of charge. RaySearch did not provide

  14. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.

    Science.gov (United States)

    Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J

    2017-07-07

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  15. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams

    Science.gov (United States)

    Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.

    2017-07-01

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  16. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    Science.gov (United States)

    Piccinini, M.; Ambrosini, F.; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Nichelatti, E.; Vincenti, M. A.; Montereali, R. M.

    2015-06-01

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 1011 to 1015 protons/cm2. The visible photoluminescence spectra of radiation-induced F2 and F3+ laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 103 to about 106 Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  17. Association between Proton Pump Inhibitors and Respiratory Infections: A Systematic Review and Meta-Analysis of Clinical Trials

    Directory of Open Access Journals (Sweden)

    Nabil Sultan

    2008-01-01

    Full Text Available BACKGROUND: Proton pump inhibitors (PPIs have become the mainstay of treatment for and prevention of many serious gastrointestinal diseases. Laboratory and clinical evidence suggests that the increase in gastric pH caused by PPIs may be linked to increased bacterial colonization of the stomach and may predispose patients to an increased risk for respiratory infections.

  18. Inter-comparison of Dose Distributions Calculated by FLUKA, GEANT4, MCNP, and PHITS for Proton Therapy

    Science.gov (United States)

    Yang, Zi-Yi; Tsai, Pi-En; Lee, Shao-Chun; Liu, Yen-Chiang; Chen, Chin-Cheng; Sato, Tatsuhiko; Sheu, Rong-Jiun

    2017-09-01

    The dose distributions from proton pencil beam scanning were calculated by FLUKA, GEANT4, MCNP, and PHITS, in order to investigate their applicability in proton radiotherapy. The first studied case was the integrated depth dose curves (IDDCs), respectively from a 100 and a 226-MeV proton pencil beam impinging a water phantom. The calculated IDDCs agree with each other as long as each code employs 75 eV for the ionization potential of water. The second case considered a similar condition of the first case but with proton energies in a Gaussian distribution. The comparison to the measurement indicates the inter-code differences might not only due to different stopping power but also the nuclear physics models. How the physics parameter setting affect the computation time was also discussed. In the third case, the applicability of each code for pencil beam scanning was confirmed by delivering a uniform volumetric dose distribution based on the treatment plan, and the results showed general agreement between each codes, the treatment plan, and the measurement, except that some deviations were found in the penumbra region. This study has demonstrated that the selected codes are all capable of performing dose calculations for therapeutic scanning proton beams with proper physics settings.

  19. Feasibility and robustness of dose painting by numbers in proton therapy with contour-driven plan optimization

    International Nuclear Information System (INIS)

    Barragán, A. M.; Differding, S.; Lee, J. A.; Sterpin, E.; Janssens, G.

    2015-01-01

    prescription for robust-optimized plans, while they were more than 50% for PTV plans. Low dose to organs at risk (OARs) could be achieved for both PTV and robust-optimized plans. Conclusions: DPBN in proton therapy is feasible with the use of a sufficient number subcontours, automatically generated scanning patterns, and no more than three beams are needed. Robust optimization ensured the required target coverage and minimal overdosing, while PTV-approach led to nonrobust plans with excessive overdose. Low dose to OARs can be achieved even in the presence of a high-dose escalation as in DPBN

  20. SU-E-T-243: MonteCarlo Simulation Study of Polymer and Radiochromic Gel for Three-Dimensional Proton Dose Distribution

    International Nuclear Information System (INIS)

    Park, M; Jung, H; Kim, G; Ji, Y; Kim, K; Park, S

    2014-01-01

    Purpose: To estimate the three dimensional dose distributions in a polymer gel and a radiochromic gel by comparing with the virtual water phantom exposed to proton beams by applying Monte Carlo simulation. Methods: The polymer gel dosimeter is the compositeness material of gelatin, methacrylic acid, hydroquinone, tetrakis, and distilled water. The radiochromic gel is PRESAGE product. The densities of polymer and radiochromic gel were 1.040 and 1.0005 g/cm3, respectively. The shape of water phantom was a hexahedron with the size of 13 × 13 × 15 cm3. The proton beam energies of 72 and 116 MeV were used in the simulation. Proton beam was directed to the top of the phantom with Z-axis and the shape of beam was quadrangle with 10 × 10 cm2 dimension. The Percent depth dose and the dose distribution were evaluated for estimating the dose distribution of proton particle in two gel dosimeters, and compared with the virtual water phantom. Results: The Bragg-peak for proton particles in two gel dosimeters was similar to the virtual water phantom. Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in the identical region (4.3 cm) for 72 MeV proton beam. For 116 MeV proton beam, the Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in 9.9, 9.9 and 9.7 cm, respectively. The dose distribution of proton particles in polymer gel, radiochromic gel, and virtual water phantom was approximately identical in the case of 72 and 116 MeV energies. The errors for the simulation were under 10%. Conclusion: This work indicates the evaluation of three dimensional dose distributions by exposing proton particles to polymer and radiochromic gel dosimeter by comparing with the water phantom. The polymer gel and the radiochromic gel dosimeter show similar dose distributions for the proton beams

  1. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  2. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, James, E-mail: jwelsh@mdanderson.org [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Amini, Arya [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); UC Irvine School of Medicine, Irvine, CA (United States); Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Soh, Hendrick [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Department of Radiation Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques; Mohan, Radhe [Department of Radiation Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y. [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States)

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V{sub 20}, V{sub 30}, or V{sub 40}) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within < 2.5 cm of the CW. We found 260 cases; of these, chronic grade ≥ 2 CW pain was identified in 23 patients. We then selected 10 representative patients from this group and generated proton SBRT treatment plans, using the identical dose of 50 Gy in 4 fractions, and assessed potential differences in CW dose between the 2 plans. The proton SBRT plans reduced the CW doses at all dose levels measured. The median CW V{sub 20} was 364.0 cm{sup 3} and 160.0 cm{sup 3} (p < 0.0001), V{sub 30} was 144.6 cm{sup 3}vs 77.0 cm{sup 3} (p = 0.0012), V{sub 35} was 93.9 cm{sup 3}vs 57.9 cm{sup 3} (p = 0.005), V{sub 40} was 66.5 cm{sup 3}vs 45.4 cm{sup 3} (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures.

  3. Irradiation of optically activated SI-GaAs high-voltage switches with low and high energy protons

    CERN Document Server

    Bertolucci, Ennio; Mettivier, G; Russo, P; Bisogni, M G; Bottigli, U; Fantacci, M E; Stefanini, A; Cola, A; Quaranta, F; Vasanelli, L; Stefanini, G

    1999-01-01

    Semi-Insulating Gallium Arsenide (SI-GaAs) devices have been tested for radiation hardness with 3-4 MeV or 24 GeV proton beams. These devices can be operated in dc mode as optically activated electrical switches up to 1 kV. Both single switches (vertical Schottky diodes) and multiple (8) switches (planar devices) have been studied, by analyzing their current-voltage (I-V) reverse characteristics in the dark and under red light illumination, both before and after irradiation. We propose to use them in the system of high-voltage (-600 V) switches for the microstrip gas chambers for the CMS experiment at CERN. Low energy protons (3-4 MeV) were used in order to produce a surface damage below the Schottky contact: their fluence (up to 2.6*10/sup 15/ p/cm/sup 2/) gives a high-dose irradiation. The high energy proton irradiation (energy: 24 GeV, fluence: 1.1*10/sup 14/ p/cm/sup 2/) reproduced a ten years long proton exposure of the devices in CMS experiment conditions. For low energy irradiation, limited changes of ...

  4. Comparison of Out-Of-Field Neutron Equivalent Doses in Scanning Carbon and Proton Therapies for Cranial Fields

    DEFF Research Database (Denmark)

    Athar, B.; Henker, K.; Jäkel, O.

    2010-01-01

    Purpose: The purpose of this analysis is to compare the secondary neutron lateral doses from scanning carbon and proton beam therapies. Method and Materials: We simulated secondary neutron doses for out-of-field organs in an 11-year old male patient. Scanned carbon and proton beams were simulated...

  5. Lansoprazole induces sensitivity to suboptimal doses of paclitaxel in human melanoma.

    Science.gov (United States)

    Azzarito, Tommaso; Venturi, Giulietta; Cesolini, Albino; Fais, Stefano

    2015-01-28

    Tumor acidity is now considered an important determinant of drug-resistance and tumor progression, and anti-acidic approaches, such as Proton Pump inhibitors (PPIs), have demonstrated promising antitumor and chemo-sensitizing efficacy. The main purpose of the present study was to evaluate the possible PPI-induced sensitization of human melanoma cells to Paclitaxel (PTX). Our results show that PTX and the PPI Lansoprazole (LAN) combination was extremely efficient against metastatic melanoma cells, as compared to the single treatments, both in vitro and in vivo. We also showed that acidity plays an important role on the anti-tumor activity of these drugs, being detrimental for PTX activity, while crucial for the synergistic effect of PTX following pretreatment with LAN, due to its nature of pro-drug needing protonation for a full activation. We obtained straightforward results in a human melanoma xenograft model combining well tolerated LAN doses with suboptimal and poorly toxic doses of PTX. With this study we provide a clear evidence that the PPI LAN may be included in new combined therapy of human melanoma together with low doses of PTX. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Study on dose distribution of therapeutic proton beams with prompt gamma measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. W. [National Cancer Center, Seoul (Korea, Republic of); Min, C. H.; Kim, C. H.; Kim, D. K.; Yoon, M. Y. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-03-15

    The proton beam has an advantage of the sharp dose falloff in dose distribution called Bragg peak while conventional radiation therapy modalities such as photons exhibit considerable amount of exit dose. To take advantage of this property it is important to know the exact location of the distal dose falloff. An error can cause overdose to the normal tissue or underdose to the tumor volume. The only way of finding out the dose distribution in-situ in particle therapy is to measure the gammas produced by nuclear reactions with tissue materials. Two kinds of gammas can be used: one is prompt gamma and the other is coincident gamma from the positron-emission isotopes. We chose to detect prompt gammas, and developed a prompt gamma scanning system (PGS). The proton beams of the proton therapy facility at National Cancer Center were used. The gamma distribution was compared to the dose distribution measured by an ionization chamber at three different energies of 100, 150, 200 MeV's. The two distributions were well correlated within 1-2 mm. The effect of high-energy neutron appeared as blurred distribution near the distal dose falloff at the energy of 200 MeV. We then tested the PGS shielding design by adding additional layer of paraffin plates outside of the PGS, and found that fast neutrons significantly affect the background level. But the location of the dose fall-off was nearly coincident. The analysis of gamma energy spectrum showed that cut-off energy in gamma counting can be adjusted to enhance the signal to noise ratio. Further the ATOM phantom, which has similar tissue structure to human, was used to investigate the gamma distribution for the case of inhomogeneous matter. The location of dose falloff region was found to be well defined as for water phantom. Next an actual therapy beam, which was produced by the double scattering method, was used, for which the dose falloff by the gamma distribution was completely wiped out by background neutrons. It is not

  7. Dosimetric Feasibility of Hypofractionated Proton Radiotherapy for Neoadjuvant Pancreatic Cancer Treatment

    International Nuclear Information System (INIS)

    Kozak, Kevin R.; Kachnic, Lisa A.; Adams, Judith C; Crowley, Elizabeth M.; Alexander, Brian M.; Mamon, Harvey J.; Fernandez-Del Castillo, Carlos; Ryan, David P.; DeLaney, Thomas F.; Hong, Theodore S.

    2007-01-01

    Purpose: To evaluate tumor and normal tissue dosimetry of a 5 cobalt gray equivalent (CGE) x 5 fraction proton radiotherapy schedule, before initiating a clinical trial of neoadjuvant, short-course proton radiotherapy for pancreatic adenocarcinoma. Methods and Materials: The first 9 pancreatic cancer patients treated with neoadjuvant intensity-modulated radiotherapy (1.8 Gy x 28) at the Massachusetts General Hospital had treatment plans generated using a 5 CGE x 5 fraction proton regimen. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Hypofractionated proton and conventionally fractionated intensity-modulated radiotherapy plans both provided acceptable target volume coverage and dose homogeneity. Improved dose conformality provided by the hypofractionated proton regimen resulted in significant sparing of kidneys, liver, and small bowel, evidenced by significant reductions in the mean doses, expressed as percentage prescribed dose, to these structures. Kidney and liver sparing was most evident in low-dose regions (≤20% prescribed dose for both kidneys and ≤60% prescribed dose for liver). Improvements in small-bowel dosimetry were observed in high- and low-dose regions. Mean stomach and duodenum doses, expressed as percentage prescribed dose, were similar for the two techniques. Conclusions: A proton radiotherapy schedule consisting of 5 fractions of 5 CGE as part of neoadjuvant therapy for adenocarcinoma of the pancreas seems dosimetrically feasible, providing excellent target volume coverage, dose homogeneity, and normal tissue sparing. Hypofractionated proton radiotherapy in this setting merits Phase I clinical trial investigation

  8. Dose comparison according to Smooth Thickness application of Range compensator during proton therapy for brain tumor patient

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tase Woan; Kim, Dae Woong; Kim, Jae Weon; Jeong, Kyeong Sik [Proton Therapy Center, National Cancer Center, Goyang (Korea, Republic of)

    2016-12-15

    Range Compensator used for proton therapy compensates the proton beam dose which delivers to the normal tissues according to the Target's Distal Margin dose. We are going to check the improvement of dose on the target part by comparing the dose of PTV and OAR according to applying in different method of Smooth Thickness of Range Compensator which is used in brain tumor therapy. For 10 brain tumor patients taking proton therapy in National Cancer Center, Apply Smooth Thickness applied in Range Compensator in order from one to five by using Compensator Editor of Eclipse Proton Planning System(Version 10.0, Varian, USA). The therapy plan algorithm used Proton Convolution Superposition(version 8.1.20 or 10.0.28), and we compared Dmax, Dmin, Homogeneity Index, Conformity Index and OAR dose around tumor by applying Smooth Thickness in phase. When Smooth Thickness was applied from one to five, the Dmax of PTV was decreased max 4.3%, minimum at 0.8 and average of 1.81%. Dmin increased max 1.8%, min 1.8% and average. Difference between max dose and minimum dose decreased at max 5.9% min 1.4% and average 2.6%. Homogeneity Index decreased average of 0.018 and Conformity Index didn't had a meaningful change. OAR dose decreased in Brain Stem at max 1.6%, min 0.1% and average 0.6% and in Optic Chiasm max 1.3%, min 0.3%, and average 0.5%. However, patient C and patient E had an increase each 0.3% and 0.6%. Additionally, in Rt. Optic Nerve, there was a decrease at max 1.5%, min 0.3%, and average 0.8%, however, patient B had 0.1% increase. In Lt. Optic Nerve, there was a decrease at max 1.8%, min 0.3%, and average 0.7%, however, patient H had 0.4 increase. As Smooth Thickness of Range Compensator which is used as the proton treatment for brain tumor patients is applied in stages, the resolution of Compensator increased and as a result the most optimized amount of proton beam dose can be delivered. This is considered to be able to irradiate the equal amount at PTV and

  9. Tunable femtosecond lasers with low pump thresholds

    Science.gov (United States)

    Oppo, Karen

    The work in this thesis is concerned with the development of tunable, femtosecond laser systems, exhibiting low pump threshold powers. The main motive for this work was the development of a low threshold, self-modelocked Ti:Al2O3 laser in order to replace the conventional large-frame argon-ion pump laser with a more compact and efficient all-solid-state alternative. Results are also presented for an all-solid-state, self-modelocked Cr:LiSAF laser, however most of this work is concerned with self-modelocked Ti:Al2O3 laser systems. In chapter 2, the operation of a regeneratively-initiated, and a hard-aperture self- modelocked Ti:Al2O3 laser, pumped by an argon-ion laser, is discussed. Continuous- wave oscillation thresholds as low as 160mW have been demonstrated, along with self-modelocked threshold powers as low as 500mW. The measurement and suppression of phase noise on modelocked lasers is discussed in chapter 3. This is followed by a comparison of the phase noise characteristics of the regeneratively-initiated, and hard-aperture self-modelocked Ti:Al2O3 lasers. The use of a synchronously-operating, high resolution electron-optical streak camera in the evaluation of timing jitter is also presented. In chapter 4, the construction and self-modelocked operation of an all-solid-state Ti:Al2O3 laser is described. The all-solid-state alternative to the conventional argon-ion pump laser was a continuous-wave, intracavity-frequency doubled, diode-laser pumped Nd:YLF ring laser. At a total diode-laser pump power of 10W, this minilaser was capable of producing a single frequency output of 1W, at 523.5nm in a TEM00 beam. The remainder of this thesis looks at the operation of a self-modelocked Ti:Al2O3 laser generating ultrashort pulses at wavelengths as long as 1053nm. The motive for this work was the development of an all-solid-state, self- modelocked Ti:Al2O3 laser operating at 1053nm, for use as a master oscillator in a Nd:glass power chain.

  10. An assessment of the secondary neutron dose in the passive scattering proton beam facility of the national cancer center

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Eun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Se Byeong [Proton Therapy Center, National Cancer Center, Goyang (Korea, Republic of)

    2017-06-15

    The purpose of this study is to assess the additional neutron effective dose during passive scattering proton therapy. Monte Carlo code (Monte Carlo N-Particle 6) simulation was conducted based on a precise modeling of the National Cancer Center's proton therapy facility. A three-dimensional neutron effective dose profile of the interior of the treatment room was acquired via a computer simulation of the 217.8-MeV proton beam. Measurements were taken with a 3He neutron detector to support the simulation results, which were lower than the simulation results by 16% on average. The secondary photon dose was about 0.8% of the neutron dose. The dominant neutron source was deduced based on flux calculation. The secondary neutron effective dose per proton absorbed dose ranged from 4.942 ± 0.031 mSv/Gy at the end of the field to 0.324 ± 0.006 mSv/Gy at 150 cm in axial distance.

  11. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 is pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump

  12. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump. 13 refs., 5 figs., 1 tab

  13. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy

    International Nuclear Information System (INIS)

    Paganetti, Harald; Jiang, Hongyu; Parodi, Katia; Slopsema, Roelf; Engelsman, Martijn

    2008-01-01

    The goal of this work was to facilitate the clinical use of Monte Carlo proton dose calculation to support routine treatment planning and delivery. The Monte Carlo code Geant4 was used to simulate the treatment head setup, including a time-dependent simulation of modulator wheels (for broad beam modulation) and magnetic field settings (for beam scanning). Any patient-field-specific setup can be modeled according to the treatment control system of the facility. The code was benchmarked against phantom measurements. Using a simulation of the ionization chamber reading in the treatment head allows the Monte Carlo dose to be specified in absolute units (Gy per ionization chamber reading). Next, the capability of reading CT data information was implemented into the Monte Carlo code to model patient anatomy. To allow time-efficient dose calculation, the standard Geant4 tracking algorithm was modified. Finally, a software link of the Monte Carlo dose engine to the patient database and the commercial planning system was established to allow data exchange, thus completing the implementation of the proton Monte Carlo dose calculation engine ('DoC++'). Monte Carlo re-calculated plans are a valuable tool to revisit decisions in the planning process. Identification of clinically significant differences between Monte Carlo and pencil-beam-based dose calculations may also drive improvements of current pencil-beam methods. As an example, four patients (29 fields in total) with tumors in the head and neck regions were analyzed. Differences between the pencil-beam algorithm and Monte Carlo were identified in particular near the end of range, both due to dose degradation and overall differences in range prediction due to bony anatomy in the beam path. Further, the Monte Carlo reports dose-to-tissue as compared to dose-to-water by the planning system. Our implementation is tailored to a specific Monte Carlo code and the treatment planning system XiO (Computerized Medical Systems Inc

  14. Research on low radiation doses - A better understanding of low doses

    International Nuclear Information System (INIS)

    2016-01-01

    Radiation doses below 100 mSv are called low doses. Epidemiological research on the health hazards of low doses are difficult to do because numerous pathologies, particularly cancer, appear lifelong for genetical or environmental causes without any link with irradiation and it is very difficult to identify the real cause of a cancer. Another concern is that the impact on human health is weak and are observed only after a long period after irradiation. These features make epidemiological studies cumbersome to implement since they require vast cohorts and a very long-term follow-up. The extrapolation of the effects of higher doses to the domain of low doses does not meet reality and it is why the European Union takes part into the financing of such research. In order to gain efficiency, scientists work together through various European networks among them: HLEG (High Level Expert Group On European Low Dose Risk Research) or MELODI (Multidisciplinary European Low Dose Initiative). Several programs are underway or have been recently launched: -) the impact of Cesium contamination on children's health (Epice program), -) the study of the impact of medical imaging on children, -) the study of the health of children living near nuclear facilities, -) the relationship between radon and lung cancer, -) the effect of occupational low radiation doses, -) the effect of uranium dissolved in water on living organisms (Envirhom program). (A.C.)

  15. BENEFITS VERSUS RISKS OF PROTON PUMP INHIBITORS: ARE WE OPENING THE CAN OF WORMS

    Directory of Open Access Journals (Sweden)

    Naser Ashraf Tadvi

    2016-01-01

    Full Text Available Proton pump inhibitors (PPIs are one of the most commonly used drugs worldwide They are indicated for treatment of Gastro-esophageal Reflux Disease (GERD, acid peptic disorders, stress ulcers and prophylaxis of NSAID induced ulcers.[1] PPIs are more efficacious than other drugs like histamine -2 receptor blockers for the treatment of these disorders.[1] Though PPIs are highly potent and effective acid suppressors they are often misused and prescribed irrationally. The incidence of irrational use of PPIs varies from 40-70 % in different studies. [2] In one of our previous studies 58 % of PPIs prescriptions were irrational. [2] These findings become much more significant in the light of recent findings which suggest correlation of long term use of PPIs to myocardial infarction and kidney injury. [3,4] The PPIs may be deemed safe for short term use but chronic use carries risk of hip fractures, infection with clostridium difficle, community acquired pneumonia.[2] PPIs exposure in elderly population was also found to be associated with hyperparathyroidism in one recently conducted study.[5] The ongoing long term studies for assessing the safety and association of PPIs with various serious outcomes may open up a new can of worms. Keeping in mind the benefits as well as risks of proton pump inhibitors, clinicians should judiciously use these drugs in practice. The patients should also be educated regarding the adverse outcomes of PPIs on long term therapy as these drugs are easily available without prescription.

  16. Update of neutron dose yields as a function of energy for protons and deuterons incident on beryllium targets

    International Nuclear Information System (INIS)

    Ten Haken, R.K.; Awschalom, M.; Rosenberg, I.

    1982-11-01

    Neutron absorbed dose yields (absorbed dose rates per unit incident current on targets at a given SAD or SSD) increase with incident charged particle energy for both protons and deuterons. Analyses of neutron dose yield versus incident particle energy have been performed for both deuterons and protons. It is the purpose of this report to update those analyses by pooling all of the more recent published results and to reanalyze the trend of yield, Y, versus incident energy, E, which in the past has been described by an expression of the form Y = aE/sup b/, where a and b are empirical constants. From the reanalyzed trend it is concluded that for a given size cyclotron (E/sub p/ = 2E/sub d/), the dose yields using protons are higher than those using deuterons up to a proton energy E/sub p/ of 64 MeV

  17. Rat skin carcinogenesis as a basis for estimating risks at low doses and dose rates of various types of radiation

    International Nuclear Information System (INIS)

    Burns, F.J.; Vanderlaan, M.; Strickland, P.; Albert, R.E.

    1976-01-01

    The recovery rate, age dependence and latent period for tumor induction in rat skin were measured for single and split doses of radiation, and the data were analyzed in terms of a general model in an attempt to estimate the expected tumor response for various types of radiation given at low dose rates for long periods of time. The dorsal skin of male rats was exposed to electrons, x rays, or protons in either single or split doses for several doses and the tumor responses were compared during 80 weeks of observation. A two stage model incorporating a reversible or recoverable mode was developed and various parameters in the model, including recovery rate, dose-response coefficients, and indices of age sensitivity, were evaluated experimentally. The measured parameters were then utilized to calculate expected tumor responses for exposure periods extending for duration of life. The calculations indicated that low dose rates could be markedly ( 1 / 100 to 1 / 1000 ) less effective in producing tumors than the same dose given in a short or acute exposure, although the magnitude of the reduction in effectiveness declines as the dose declines

  18. SU-F-T-174: Patient-Specific Point Dose Measurement Using Fiber Optic Radiation Sensor Using Cerenkov Radiation for Proton Therapeutic Beam

    Energy Technology Data Exchange (ETDEWEB)

    Son, J [Korea University, Seoul, Seoul (Korea, Republic of); National Cancer Center, Goyang-si (Korea, Republic of); Kim, M [Dongnam Institute of Radiological & Medical Sciences, Busan, Busan (Korea, Republic of); Yoon, M [Korea University, Seoul (Korea, Republic of); Shin, D [National Cancer Center, Goyang-si (Korea, Republic of)

    2016-06-15

    Purpose: A fiber-optic radiation sensor using Cerenkov radiation (FOCR) has been widely studied for use as a dosimeter for proton therapeutic beam. We developed the FOCR, and it applied to patient-specific point dose measurement in order to evaluate the effectiveness of the FOCR system for proton therapy QA. Methods: Calibration of FOCR was performed with an ionization chamber whose absolute doses were determined according to the IAEA TRS-398 protocol. To determine the calibration curve, the FOCR was irradiated perpendicularly to the proton beam at the 13 dose levels steps. We selected five actual patient treatment plans performed at proton therapy center and compared the resulting FOCR measurements with the ionization chamber measurements. Results: The Cerenkov light yield of the FOCR increases linearly with as the dose measured using the ionization chamber increases from 0 cGy to 500 cGy. The results indicate that the fitting curve is linear, suggesting that dose measurement based on the light yield of the FOCR is possible. The results of proton radiation dose QA performed using the FOCR for 10 proton fields and five patients are good agreement with an ionization chamber. Conclusion: We carried out the patient QA using the FOCR for proton therapeutic beam and evaluated the effectiveness of the FOCR as a proton therapy QA tool. Our results indicate that the FOCR is suitable for use in patient QA of clinical proton beams.

  19. Effect of long-term proton pump inhibitor administration on gastric mucosal atrophy: A meta-analysis

    Science.gov (United States)

    Li, Zhong; Wu, Cong; Li, Ling; Wang, Zhaoming; Xie, Haibin; He, Xiaozhou; Feng, Jin

    2017-01-01

    Background/Aims: Proton pump inhibitors (PPIs) are widely used for the treatment of acid-related gastrointestinal diseases. Recently, some studies have reported that PPIs can alter the gastric mucosal architecture; however, the relationship remains controversial. This meta-analysis study was designed to quantify the association between long-term PPI administration and gastric atrophy. Materials and Methods: A PubMed search was conducted to identify studies using the keywords proton pump inhibitors or PPI and gastric atrophy or atrophic gastritis; the timeframe of publication searched was up to May 2016. Heterogeneity among studies was tested with the Q test; odds ratios (OR) and 95% confidence intervals (CI) were calculated. P values were calculated by I2 tests and regarded as statistically significant when <0.05. Results: We identified 13 studies that included 1465 patients under long-term PPI therapy and 1603 controls, with a total gastric atrophy rate of 14.50%. There was a higher presence of gastric atrophy (15.84%; statistically significant) in PPI group compared to the control group (13.29%) (OR: 1.55, 95% CI: 1.00–2.41). Conclusions: The pooled data suggest that long-term PPI use is associated with increased rates of gastric atrophy. Large-scale multicenter studies should be conducted to further investigate the relationship between acid suppressants and precancerous diseases. PMID:28721975

  20. Proton and photon absorbed-dose conversion coefficients for embryo and foetus from top-down irradiation geometry

    International Nuclear Information System (INIS)

    Chen, J.

    2007-01-01

    Absorbed-dose conversion coefficients are calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months when the mother's body is exposed to protons and photons from top-down (TOP) direction. It provides data sets in addition to other standard irradiation geometries published previously. The TOP-irradiation geometry is considered here, because high-energy particles are often peaked from the TOP direction onboard aircraft. The results show that absorbed-doses from high-energy particles could be underestimated significantly if isotropic (ISO) irradiation geometry is assumed. For protons of 100 GeV, absorbed-doses from TOP irradiation are ∼2.3-2.9 times higher than the doses from ISO irradiation for different foetal ages. For 10 GeV photons, foetal doses from TOP irradiation are ∼6.8-12 times higher than the doses from ISO irradiation. The coefficients from TOP-irradiation geometry are given in wide energy ranges, from 100 MeV to 100 GeV for protons and from 50 V to 10 GeV for photons. They can, therefore, be used in various applications whenever exposure from the TOP-irradiation direction is concerned. (authors)

  1. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  2. Proton Pump Inhibitors in Gastroesophageal Reflux Disease: Friend or Foe.

    Science.gov (United States)

    Gyawali, C Prakash

    2017-09-01

    Proton pump inhibitor (PPI) use in gastroesophageal reflux disease (GERD) has been redefined, in light of recent advances highlighting GERD phenotypes that respond to PPIs, and fresh revelations of potential risks of long-term PPI therapy. Erosive esophagitis predicts excellent response to PPI therapy, but non-erosive reflux disease (NERD) with abnormal reflux parameters on ambulatory reflux monitoring also demonstrates a similar response. In contrast, response is suboptimal in the absence of abnormal reflux parameters. In this setting, if an alternate appropriate indication for PPI therapy does not coexist, risks may outweigh benefits of PPI therapy. Adverse events from long-term PPI therapy continue to be reported, most based on association rather than cause-and-effect. Appropriate indications need to be established before embarking on long-term PPI therapy. Future research will define true risks of long-term PPI therapy, and develop alternate management options for acid peptic diseases.

  3. Evolution of dose calculation models for proton-therapy treatment planning

    International Nuclear Information System (INIS)

    Vidal, Marie

    2011-01-01

    This work was achieved in collaboration between the Institut Curie proton-therapy Center of Orsay (ICPO), the DOSIsoft company and the CREATIS laboratory, in order to develop a new dose calculation model for the new ICPO treatment room. A new accelerator and gantry room from the IBA company were installed during the up-grade project of the proton-therapy center, with the intention of enlarging the cancer localizations treated at ICPO. Developing a package of methods and new dose calculation algorithms to adapt them to the new specific characteristics of the delivered beams by the IBA system is the first goal of this PhD work. They all aim to be implemented in the DOSIsoft treatment planning software, Isogray. First, the double scattering technique is treated in taking into account major differences between the IBA system and the ICPO fixed beam lines passive system. Secondly, a model is explored for the scanned beams modality. The second objective of this work is improving the Ray-Tracing and Pencil-Beam dose calculation models already in use. For the double scattering and uniform scanning techniques, the patient personalized collimator at the end of the beam line causes indeed a patient dose distribution contamination. A reduction method of that phenomenon was set up for the passive beam system. An analytical model was developed which describes the contamination function with parameters validated through Monte-Carlo simulations on the GATE platform. It allows us to apply those methods to active scanned beams [fr

  4. Clinical Outcomes and Late Endocrine, Neurocognitive, and Visual Profiles of Proton Radiation for Pediatric Low-Grade Gliomas

    International Nuclear Information System (INIS)

    Greenberger, Benjamin A.; Pulsifer, Margaret B.; Ebb, David H.; MacDonald, Shannon M.; Jones, Robin M.; Butler, William E.; Huang, Mary S.; Marcus, Karen J.; Oberg, Jennifer A.; Tarbell, Nancy J.; Yock, Torunn I.

    2014-01-01

    Purpose/Objective(s): Primary low-grade gliomas are common brain tumors of childhood, many of which require radiation therapy (RT) as definitive treatment. Increased conformality of RT could decrease the incidence and severity of late effects. We report our experience with 32 pediatric patients treated with proton RT. Methods and Materials: Thirty-two pediatric patients with low-grade gliomas of the brain or spinal cord were treated with proton RT from 1995 to 2007. Sixteen patients received at least 1 regimen of chemotherapy before definitive RT. The median radiation dose was 52.2 Gy RBE (48.6-54 Gy RBE ). Results: The median age at treatment was 11.0 years (range, 2.7-21.5 years), with a median follow-up time of 7.6 years (range, 3.2-18.2 years). The 6-year and 8-year rates of progression-free survival were 89.7% and 82.8%, respectively, with an 8-year overall survival of 100%. For the subset of patients who received serial neurocognitive testing, there were no significant declines in Full-Scale Intelligence Quotient (P=.80), with a median neurocognitive testing interval of 4.5 years (range, 1.2-8.1 years) from baseline to follow-up, but subgroup analysis indicated some significant decline in neurocognitive outcomes for young children (<7 years) and those with significant dose to the left temporal lobe/hippocampus. The incidence of endocrinopathy correlated with a mean dose of ≥40 Gy RBE to the hypothalamus, pituitary, or optic chiasm. Stabilization or improvement of visual acuity was achieved in 83.3% of patients at risk for radiation-induced injury to the optic pathways. Conclusions: This report of late effects in children with low-grade gliomas after proton RT is encouraging. Proton RT appears to be associated with good clinical outcome, especially when the tumor location allows for increased sparing of the left temporal lobe, hippocampus, and hypothalamic-pituitary axis

  5. Clinical Outcomes and Late Endocrine, Neurocognitive, and Visual Profiles of Proton Radiation for Pediatric Low-Grade Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Greenberger, Benjamin A. [Harvard Medical School, Boston, Massachusetts (United States); Pulsifer, Margaret B. [Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts (United States); Ebb, David H. [Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts (United States); MacDonald, Shannon M. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Jones, Robin M. [Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts (United States); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (United States); Butler, William E. [Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (United States); Huang, Mary S. [Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts (United States); Marcus, Karen J. [Department of Radiation Oncology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Oberg, Jennifer A. [Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York (United States); Tarbell, Nancy J. [Harvard Medical School, Boston, Massachusetts (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Yock, Torunn I., E-mail: tyock@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-08-01

    Purpose/Objective(s): Primary low-grade gliomas are common brain tumors of childhood, many of which require radiation therapy (RT) as definitive treatment. Increased conformality of RT could decrease the incidence and severity of late effects. We report our experience with 32 pediatric patients treated with proton RT. Methods and Materials: Thirty-two pediatric patients with low-grade gliomas of the brain or spinal cord were treated with proton RT from 1995 to 2007. Sixteen patients received at least 1 regimen of chemotherapy before definitive RT. The median radiation dose was 52.2 Gy{sub RBE} (48.6-54 Gy{sub RBE}). Results: The median age at treatment was 11.0 years (range, 2.7-21.5 years), with a median follow-up time of 7.6 years (range, 3.2-18.2 years). The 6-year and 8-year rates of progression-free survival were 89.7% and 82.8%, respectively, with an 8-year overall survival of 100%. For the subset of patients who received serial neurocognitive testing, there were no significant declines in Full-Scale Intelligence Quotient (P=.80), with a median neurocognitive testing interval of 4.5 years (range, 1.2-8.1 years) from baseline to follow-up, but subgroup analysis indicated some significant decline in neurocognitive outcomes for young children (<7 years) and those with significant dose to the left temporal lobe/hippocampus. The incidence of endocrinopathy correlated with a mean dose of ≥40 Gy{sub RBE} to the hypothalamus, pituitary, or optic chiasm. Stabilization or improvement of visual acuity was achieved in 83.3% of patients at risk for radiation-induced injury to the optic pathways. Conclusions: This report of late effects in children with low-grade gliomas after proton RT is encouraging. Proton RT appears to be associated with good clinical outcome, especially when the tumor location allows for increased sparing of the left temporal lobe, hippocampus, and hypothalamic-pituitary axis.

  6. Application of fluence field modulation to proton computed tomography for proton therapy imaging.

    Science.gov (United States)

    Dedes, G; De Angelis, L; Rit, S; Hansen, D; Belka, C; Bashkirov, V; Johnson, R P; Coutrakon, G; Schubert, K E; Schulte, R W; Parodi, K; Landry, G

    2017-07-12

    This simulation study presents the application of fluence field modulated computed tomography, initially developed for x-ray CT, to proton computed tomography (pCT). By using pencil beam (PB) scanning, fluence modulated pCT (FMpCT) may achieve variable image quality in a pCT image and imaging dose reduction. Three virtual phantoms, a uniform cylinder and two patients, were studied using Monte Carlo simulations of an ideal list-mode pCT scanner. Regions of interest (ROI) were selected for high image quality and only PBs intercepting them preserved full fluence (FF). Image quality was investigated in terms of accuracy (mean) and noise (standard deviation) of the reconstructed proton relative stopping power compared to reference values. Dose calculation accuracy on FMpCT images was evaluated in terms of dose volume histograms (DVH), range difference (RD) for beam-eye-view (BEV) dose profiles and gamma evaluation. Pseudo FMpCT scans were created from broad beam experimental data acquired with a list-mode pCT prototype. FMpCT noise in ROIs was equivalent to FF images and accuracy better than  -1.3%(-0.7%) by using 1% of FF for the cylinder (patients). Integral imaging dose reduction of 37% and 56% was achieved for the two patients for that level of modulation. Corresponding DVHs from proton dose calculation on FMpCT images agreed to those from reference images and 96% of BEV profiles had RD below 2 mm, compared to only 1% for uniform 1% of FF. Gamma pass rates (2%, 2 mm) were 98% for FMpCT while for uniform 1% of FF they were as low as 59%. Applying FMpCT to preliminary experimental data showed that low noise levels and accuracy could be preserved in a ROI, down to 30% modulation. We have shown, using both virtual and experimental pCT scans, that FMpCT is potentially feasible and may allow a means of imaging dose reduction for a pCT scanner operating in PB scanning mode. This may be of particular importance to proton therapy given the low integral dose found

  7. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Piccinini, M., E-mail: massimo.piccinini@enea.it; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Vincenti, M. A.; Montereali, R. M. [ENEA, C.R. Frascati, UTAPRAD, Technical Unit for Development and Applications of Radiations, Via E. Fermi 45, 00044 Frascati (Rome) (Italy); Ambrosini, F. [University Sapienza-Roma I, Piazzale Aldo Moro 5, 00185 Rome (Italy); Nichelatti, E. [ENEA, C.R. Casaccia, UTTMAT, Technical Unit for Materials Technologies, Via Anguillarese 301, 00123 S. Maria di Galeria (Rome) (Italy)

    2015-06-29

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 10{sup 11} to 10{sup 15} protons/cm{sup 2}. The visible photoluminescence spectra of radiation-induced F{sub 2} and F{sub 3}{sup +} laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 10{sup 3} to about 10{sup 6 }Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  8. Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Daila S. Gridley, PhD

    2012-03-30

    FINAL TECHNICAL REPORT Supported by the Low Dose Radiation Research Program, Office of Science U.S. Department of Energy Grant No. DE-FG02-07ER64345 Project ID: 0012965 Award Register#: ER64345 Project Manager: Noelle F. Metting, Sc.D. Phone: 301-903-8309 Division SC-23.2 noelle.metting@science.doe.gov Submitted March 2012 To: https://www.osti.gov/elink/241.3.jsp Title: Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation PI: Daila S. Gridley, Ph.D. Human low dose radiation data have been derived primarily from studies of space and airline flight personnel, nuclear plant workers and others exposed occupationally, as well as victims in the vicinity of atomic bomb explosions. The findings remain inconclusive due to population inconsistencies and complex interactions among total dose, dose rate, radiation quality and age at exposure. Thus, safe limits for low dose occupational irradiation are currently based on data obtained with doses far exceeding the levels expected for the general population and health risks have been largely extrapolated using the linear-nonthreshold dose-response model. The overall working hypothesis of the present study is that priming with low dose, low-linear energy transfer (LET) radiation can ameliorate the response to acute high-dose radiation exposure. We also propose that the efficacy of low-dose induced protection will be dependent upon the form and regimen of the high-dose exposure: photons versus protons versus simulated solar particle event protons (sSPE). The emphasis has been on gene expression and function of CD4+ T helper (Th) lymphocytes harvested from spleens of whole-body irradiated C57BL/6 mice, a strain that provides the genetic background for many genetically engineered strains. Evaluations of the responses of other selected cells, tissues such as skin, and organs such as lung, liver and brain were also initiated (partially funded by other sources). The long-term goal is to provide information

  9. Effect of proton-pump inhibitor treatment on symptoms and quality of life in GERD patients depends on the symptom-reflux association

    NARCIS (Netherlands)

    Aanen, Marissa C.; Weusten, Bas L. A. M.; Numans, Mattijs E.; de Wit, Niek J.; Samsom, Melvin; Smout, Andre J. P. M.

    2008-01-01

    Backgound: Gastroesophageal reflux disease patients demonstrate various pathophysiologic backgrounds. Therefore, a heterogeneous response to proton-pump inhibitor (PPI) treatment can be expected. We investigated the effect of short-term PPI treatment on symptoms and quality of life (QOL) in primary

  10. PPI versus Histamine H2 Receptor Antagonists for Prevention of Upper Gastrointestinal Injury Associated with Low-Dose Aspirin: Systematic Review and Meta-analysis.

    Directory of Open Access Journals (Sweden)

    Chen Mo

    Full Text Available This study compared proton pump inhibitors (PPIs and histamine H2 receptor antagonists (H2RAs for prevention of low-dose aspirin (LDA-related gastrointestinal (GI erosion, ulcer and bleeding. Electronic databases including PubMed, Embase, Cochrane Central Register of Controlled Trials, Chinese National Knowledge Infrastructure, Chinese Biomedical Literature Database, and WanFang Data were searched from the date of their establishment to December 31, 2013. Randomized controlled trials comparing PPIs and H2RAs for prevention of GI injury associated with low-dose aspirin (LDA were collected. Two reviewers independently abstracted studies and patient characteristics and appraised study quality using the Cochrane risk-of-bias tool. Meta-analysis was performed using RevMan 5.1 software. We included nine RCTs involving 1047 patients. The meta-analysis showed that PPIs were superior to H2RAs for prevention of LDA-associated GI erosion/ulcer [odds ratio (OR=0.28, 95% confidence interval (CI: 0.16-0.50] and bleeding (OR=0.28, 95% CI: 0.14-0.59. In conclusion, PPIs were superior to H2RAs for prevention of LDA-related GI erosion/ulcer and bleeding. Higher quality, large, multicenter RCTs are needed to demonstrate the preventive effect of the two acid-suppressive drugs.

  11. Proton transfer events in GFP.

    Science.gov (United States)

    Di Donato, Mariangela; van Wilderen, Luuk J G W; Van Stokkum, Ivo H M; Stuart, Thomas Cohen; Kennis, John T M; Hellingwerf, Klaas J; van Grondelle, Rienk; Groot, Marie Louise

    2011-09-28

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D(2)O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D(2)O), ultimately forming the fully deprotonated chromophore and protonated Glu222.

  12. The selectivity of the Na(+)/K(+)-pump is controlled by binding site protonation and self-correcting occlusion.

    Science.gov (United States)

    Rui, Huan; Artigas, Pablo; Roux, Benoît

    2016-08-04

    The Na(+)/K(+)-pump maintains the physiological K(+) and Na(+) electrochemical gradients across the cell membrane. It operates via an 'alternating-access' mechanism, making iterative transitions between inward-facing (E1) and outward-facing (E2) conformations. Although the general features of the transport cycle are known, the detailed physicochemical factors governing the binding site selectivity remain mysterious. Free energy molecular dynamics simulations show that the ion binding sites switch their binding specificity in E1 and E2. This is accompanied by small structural arrangements and changes in protonation states of the coordinating residues. Additional computations on structural models of the intermediate states along the conformational transition pathway reveal that the free energy barrier toward the occlusion step is considerably increased when the wrong type of ion is loaded into the binding pocket, prohibiting the pump cycle from proceeding forward. This self-correcting mechanism strengthens the overall transport selectivity and protects the stoichiometry of the pump cycle.

  13. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach.

    Science.gov (United States)

    Taylor, Sophie; Spugnini, Enrico Pierluigi; Assaraf, Yehuda G; Azzarito, Tommaso; Rauch, Cyril; Fais, Stefano

    2015-11-01

    Despite the major progresses in biomedical research and the development of novel therapeutics and treatment strategies, cancer is still among the dominant causes of death worldwide. One of the crucial challenges in the clinical management of cancer is primary (intrinsic) and secondary (acquired) resistance to both conventional and targeted chemotherapeutics. Multiple mechanisms have been identifiedthat underlie intrinsic and acquired chemoresistance: these include impaired drug uptake, increased drug efflux, deletion of receptors, altered drug metabolism, quantitative and qualitative alterations in drug targets, increased DNA damage repair and various mechanisms of anti-apoptosis. The fast efflux of anticancer drugs mediated by multidrug efflux pumps and the partial or complete reversibility of chemoresistance combined with the absence of genetic mutations suggests a multifactorial process. However, a growing body of recent evidence suggests that chemoresistance is often triggered by the highly acidic microenvironment of tumors. The vast majority of drugs, including conventional chemotherapeutics and more recent biological agents, are weak bases that are quickly protonated and neutralized in acidic environments, such as the extracellular microenvironment and the acidic organelles of tumor cells. It is therefore essential to develop new strategies to overcome the entrapment and neutralization of weak base drugs. One such strategy is the use of proton pump inhibitors which can enhance tumor chemosensitivity by increasing the pH of the tumor microenvironment. Recent clinical trials in animals with spontaneous tumors have indicated that patient alkalization is capable of reversing acquired chemoresistance in a large percentage of tumors that are refractory to chemotherapy. Of particular interest was the benefit of alkalization for patients undergoing metronomic regimens which are becoming more widely used in veterinary medicine. Overall, these results provide

  14. Implementation of Global Strategies to Prevent Hospital-Onset Clostridium difficile Infection: Targeting Proton Pump Inhibitors and Probiotics.

    Science.gov (United States)

    Lewis, Paul O; Lundberg, Timothy S; Tharp, Jennifer L; Runnels, Clay W

    2017-10-01

    Proton pump inhibitors (PPIs) have been identified as a significant risk factor for the development of Clostridium difficile infection (CDI). Probiotics given concurrently with antibiotics have been shown to have a moderate impact on preventing CDI. To evaluate the effectiveness of hospital-wide interventions designed to reduce PPI use and increase probiotics and whether these interventions were associated with a change in the incidence of hospital onset (HO)-CDI. This retrospective cohort study compared 2 fiscal years: July 2013 to June 2014 (FY14) and July 2014 to June 2015 (FY15). In July of FY15, global educational initiatives were launched targeting PPIs. Additionally, a HO-CDI prevention bundle was added to antibiotic-containing order sets targeting probiotics. Overall PPI use, probiotic use, and incidence of HO-CDI were recorded and compared for each cohort. Charts were also reviewed for patients who developed HO-CDI for the presence and appropriateness of a PPI and presence of probiotics. The interventions resulted in a decrease in PPI use by 14% or 96 doses/1000 patient days (TPD; P = 0.0002) and a reduction in IV PPI use by 31% or 71 doses/TPD ( P = 0.0008). Probiotic use increased by 130% or 126 doses/TPD ( P = 0.0006). The incidence of HO-CDI decreased by 20% or 0.1 cases/TPD ( P = 0.04). A collaborative, multifaceted educational initiative directed at highlighting the risks associated with PPI use was effective in reducing PPI prescribing. The implementation of a probiotic bundle added to antibiotic order sets was effective in increasing probiotic use. These interventions were associated with a decrease in incidence of HO-CDI.

  15. Pancreatic bicarbonate secretion involves two proton pumps.

    Science.gov (United States)

    Novak, Ivana; Wang, Jing; Henriksen, Katrine L; Haanes, Kristian A; Krabbe, Simon; Nitschke, Roland; Hede, Susanne E

    2011-01-07

    Pancreas secretes fluid rich in digestive enzymes and bicarbonate. The alkaline secretion is important in buffering of acid chyme entering duodenum and for activation of enzymes. This secretion is formed in pancreatic ducts, and studies to date show that plasma membranes of duct epithelium express H(+)/HCO(3)(-) transporters, which depend on gradients created by the Na(+)/K(+)-ATPase. However, the model cannot fully account for high-bicarbonate concentrations, and other active transporters, i.e. pumps, have not been explored. Here we show that pancreatic ducts express functional gastric and non-gastric H(+)-K(+)-ATPases. We measured intracellular pH and secretion in small ducts isolated from rat pancreas and showed their sensitivity to H(+)-K(+) pump inhibitors and ion substitutions. Gastric and non-gastric H(+)-K(+) pumps were demonstrated on RNA and protein levels, and pumps were localized to the plasma membranes of pancreatic ducts. Quantitative analysis of H(+)/HCO(3)(-) and fluid transport shows that the H(+)-K(+) pumps can contribute to pancreatic secretion in several species. Our results call for revision of the bicarbonate transport physiology in pancreas, and most likely other epithelia. Furthermore, because pancreatic ducts play a central role in several pancreatic diseases, it is of high relevance to understand the role of H(+)-K(+) pumps in pathophysiology.

  16. The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data

    International Nuclear Information System (INIS)

    Ilic, Radovan D; Spasic-Jokic, Vesna; Belicev, Petar; Dragovic, Milos

    2005-01-01

    This paper describes the application of the SRNA Monte Carlo package for proton transport simulations in complex geometry and different material compositions. The SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The decay of proton induced compound nuclei was simulated by the Russian MSDM model and our own using ICRU 63 data. The developed package consists of two codes: the SRNA-2KG, which simulates proton transport in combinatorial geometry and the SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of the proton beam characterization by multi-layer Faraday cup, spatial distribution of positron emitters obtained by the SRNA-2KG code and intercomparison of computational codes in radiation dosimetry, indicate immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in the SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumour

  17. Cancer risk of low dose/low dose rate radiation: a meta-analysis of cancer data of mammals exposed to low doses of radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu; Magae, Junji

    2008-01-01

    Full text: Linear No Threshold (LNT) model is a basic theory for radioprotection, but the adaptability of this hypothesis to biological responses at low doses or at low dose rates is not sufficiently investigated. Simultaneous consideration of the cumulative dose and the dose rate is necessary for evaluating the risk of long-term exposure to ionizing radiation at low dose. This study intends to examine several numerical relationships between doses and dose rates in biological responses to gamma radiation. Collected datasets on the relationship between dose and the incidence of cancer in mammals exposed to low doses of radiation were analysed using meta-regression models and modified exponential (MOE) model, which we previously published, that predicts irradiation time-dependent biological response at low dose rate ionizing radiation. Minimum doses of observable risk and effective doses with a variety of dose rates were calculated using parameters estimated by fitting meta-regression models to the data and compared them with other statistical models that find values corresponding to 'threshold limits'. By fitting a weighted regression model (fixed-effects meta-regression model) to the data on risk of all cancers, it was found that the log relative risk [log(RR)] increased as the total exposure dose increased. The intersection of this regression line with the x-axis denotes the minimum dose of observable risk. These estimated minimum doses and effective doses increased with decrease of dose rate. The goodness of fits of MOE-model depended on cancer types, but the total cancer risk is reduced when dose rates are very low. The results suggest that dose response curve for cancer risk is remarkably affected by dose rate and that dose rate effect changes as a function of dose rate. For scientific discussion on the low dose exposure risk and its uncertainty, the term 'threshold' should be statistically defined, and dose rate effects should be included in the risk

  18. Impact of respiratory motion on variable relative biological effectiveness in 4D-dose distributions of proton therapy.

    Science.gov (United States)

    Ulrich, Silke; Wieser, Hans-Peter; Cao, Wenhua; Mohan, Radhe; Bangert, Mark

    2017-11-01

    Organ motion during radiation therapy with scanned protons leads to deviations between the planned and the delivered physical dose. Using a constant relative biological effectiveness (RBE) of 1.1 linearly maps these deviations into RBE-weighted dose. However, a constant value cannot account for potential nonlinear variations in RBE suggested by variable RBE models. Here, we study the impact of motion on recalculations of RBE-weighted dose distributions using a phenomenological variable RBE model. 4D-dose calculation including variable RBE was implemented in the open source treatment planning toolkit matRad. Four scenarios were compared for one field and two field proton treatments for a liver cancer patient assuming (α∕β) x  = 2 Gy and (α∕β) x  = 10 Gy: (A) the optimized static dose distribution with constant RBE, (B) a static recalculation with variable RBE, (C) a 4D-dose recalculation with constant RBE and (D) a 4D-dose recalculation with variable RBE. For (B) and (D), the variable RBE was calculated by the model proposed by McNamara. For (C), the physical dose was accumulated with direct dose mapping; for (D), dose-weighted radio-sensitivity parameters of the linear quadratic model were accumulated to model synergistic irradiation effects on RBE. Dose recalculation with variable RBE led to an elevated biological dose at the end of the proton field, while 4D-dose recalculation exhibited random deviations everywhere in the radiation field depending on the interplay of beam delivery and organ motion. For a single beam treatment assuming (α∕β) x  = 2 Gy, D 95 % was 1.98 Gy (RBE) (A), 2.15 Gy (RBE) (B), 1.81 Gy (RBE) (C) and 1.98 Gy (RBE) (D). The homogeneity index was 1.04 (A), 1.08 (B), 1.23 (C) and 1.25 (D). For the studied liver case, intrafractional motion did not reduce the modulation of the RBE-weighted dose postulated by variable RBE models for proton treatments.

  19. Role of Acid and Weakly Acidic Reflux in Gastroesophageal Reflux Disease Off Proton Pump Inhibitor Therapy

    OpenAIRE

    Sung, Hea Jung; Cho, Yu Kyung; Moon, Sung Jin; Kim, Jin Su; Lim, Chul Hyun; Park, Jae Myung; Lee, In Seok; Kim, Sang Woo; Choi, Myung-Gye

    2012-01-01

    Background/Aims Available data about reflux patterns and symptom determinants in the gastroesophageal reflux disease (GERD) subtypes off proton pump inhibitor (PPI) therapy are lacking. We aimed to evaluate reflux patterns and determinants of symptom perception in patients with GERD off PPI therapy by impedance-pH monitoring. Methods We retrospectively reviewed the impedance-pH data in patients diagnosed as GERD based on results of impedance-pH monitoring, endoscopy and/or typical symptoms. T...

  20. Polarized proton and deuteron targets for the usage in intensive proton beams

    International Nuclear Information System (INIS)

    Get'man, V.A.; Derkach, A.Ya.; Karnaukhov, I.M.; Lukhanin, A.A.; Razumnyj, A.A.; Sorokin, P.V.; Sporo, E.A.; Telegin, Yu.N.

    1982-01-01

    Polarized proton and deuteron targets are developed and tested for conducting investigations in intense photon beams. A flowsheet of polarization targets which includes: working agent of the target, superconducting magnet, cryostat of 3 He evaporation with 3 He pumping and recirculation systems, SHF system of 4 mm range for polarization pumping, measuring system of target polarization protons is presented. Working agent of the targets includes frozen balls with 1.5 mm diameter. Ethylene-glucol and 1.2-propylene-glycol were used as a working substance for proton targets. Completely deuterated ethylene-glycol was used for the deuteron target. Vertical magnetic field with 2.7 T intensity is produced by a superconducting magnetic system. Polarization pumping is exercised at 75 GHz frequency. Q-meter of direct current is used for determination of polarization. Working temperature of the cryostat is approximately 0.5 K. The lock device permits to exercise replacement of the target working agent during 30 minutes

  1. Low LET protons focused to submicrometer shows enhanced radiobiological effectiveness

    Science.gov (United States)

    Schmid, T. E.; Greubel, C.; Hable, V.; Zlobinskaya, O.; Michalski, D.; Girst, S.; Siebenwirth, C.; Schmid, E.; Molls, M.; Multhoff, G.; Dollinger, G.

    2012-10-01

    This study shows that enhanced radiobiological effectiveness (RBE) values can be generated focusing low linear energy transfer (LET) radiation and thus changing the microdose distribution. 20 MeV protons (LET = 2.65 keV µm-1) are focused to submicrometer diameter at the ion microprobe superconducting nanoprobe for applied nuclear (Kern) physics experiments of the Munich tandem accelerator. The RBE values, as determined by measuring micronuclei (RBEMN = 1.48 ± 0.07) and dicentrics (RBED = 1.92 ± 0.15), in human-hamster hybrid (AL) cells are significantly higher when 117 protons were focused to a submicrometer irradiation field within a 5.4 × 5.4 µm2 matrix compared to quasi homogeneous in a 1 × 1 µm2 matrix applied protons (RBEMN = 1.28 ± 0.07; RBED = 1.41 ± 0.14) at the same average dose of 1.7 Gy. The RBE values are normalized to standard 70 kV (dicentrics) or 200 kV (micronuclei) x-ray irradiation. The 117 protons applied per point deposit the same amount of energy like a 12C ion with 55 MeV total energy (4.48 MeV u-1). The enhancements are about half of that obtained for 12C ions (RBEMN = 2.20 ± 0.06 and RBED = 3.21 ± 0.10) and they are attributed to intertrack interactions of the induced damages. The measured RBE values show differences from predictions of the local effect model (LEM III) that is used to calculate RBE values for irradiation plans to treat tumors with high LET particles.

  2. Proton pump inhibitor-responsive chronic cough without acid reflux: a case report

    Directory of Open Access Journals (Sweden)

    Nobata Kouichi

    2007-08-01

    Full Text Available Abstract Background Because 24-h esophageal pH monitoring is quite invasive, the diagnosis of gastroesophageal reflux disease (GERD-associated cough has usually been made based merely on the clinical efficacy of treatment with proton pump inhibitor (PPI. Case presentation We recently encountered two patients with PPI-responsive chronic non-productive cough for whom switching from bronchodilators and glucocorticosteroids to PPI resulted in improvement of cough. The cough returned nearly to pre-administration level a few weeks after discontinuation of PPI. Though GERD-associated cough was suspected, 24-h esophageal pH monitoring revealed that the cough rarely involved gastric acid reflux. Following re-initiation of PPI, the cough disappeared again. Conclusion PPI may improve cough unrelated to gastric acid reflux.

  3. SU-F-T-138: Commissioning and Evaluating Dose Computation Models for a Dedicated Proton Line Scanning Beam Nozzle in Eclipse Treatment Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, P [Chang Gung Memorial Hospital, Proton and Radiation Therapy Center, Tao-yuan, Taiwan (China); Chang Gung University, Taoyuan, Taiwan (China); Huang, H; Cai, S; Chen, H; Wu, S; Wu, T; Lee, S; Yeh, C; Wu, T [Chang Gung Memorial Hospital, Proton and Radiation Therapy Center, Tao-yuan, Taiwan (China); Lee, C [Chang Gung University, Taoyuan, Taiwan (China)

    2016-06-15

    Purpose: In this study, we present an effective method to derive low dose envelope of the proton in-air spot fluence at beam positions other than the isocenter to reduce amount of measurements required for planning commission. Also, we demonstrate commissioning and validation results of this method to the Eclipse treatment planning system (version 13.0.29) for a Sumitomo dedicated proton line scanning beam nozzle. Methods: The in-air spot profiles at five beam-axis positions (±200, ±100 and 0 mm) were obtained in trigger mode using a MP3 Water tank (PTW-Freiburg) and a pinpoint ionization chamber (model 31014, PTW-Freiburg). Low dose envelope (below 1% of the center dose) of the spot profile at isocenter was obtained by repeated point measurements to minimize dosimetry uncertainty. The double Gaussian (DG) model was used to fit and obtain optimal σ1, σ2 and their corresponding weightings through our in-house MATLAB (Mathworks) program. σ1, σ2 were assumed to expand linearly along the beam axis from a virtual source position calculated by back projecting fitted sigmas from the single Gaussian (SG) model. Absolute doses in water were validated using an Advanced Markus chamber at the depth of 2cm with Pristine Peak (BP) R90d ranging from 5–32 cm for 10×10 cm2 scanned fields. The field size factors were verified with square fields from 2 to 20 cm at 2cm and before BP depth. Results: The absolute dose outputs were found to be within ±3%. For field size factor, the agreement between calculated and measurement were within ±2% at 2cm and ±3% before BP, except for the field size below 2×2 cm2. Conclusion: The double Gaussian model was found to be sufficient for characterizing the Sumitomo dedicated proton line scanning nozzle. With our effective double Gaussian fitting method, we are able to save significant proton beam time with acceptable output accuracy.

  4. Proton therapy in Australia

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities but with the development of more compact and reliable accelerators it is now possible to realistically plan for proton therapy in an Australian hospital. The Australian National Proton Project has been formed to look at the feasibility of a facility which would be primarily for patient treatment but would also be suitable for research and commercial applications. A detailed report will be produced by the end of the year. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. With the development of hospital-based facilities, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or Intensity Modulated Radiation Therapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. . Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in

  5. Radiographic film dosimetry of proton beams for depth‐dose constancy check and beam profile measurement

    Science.gov (United States)

    Teran, Anthony; Ghebremedhin, Abiel; Johnson, Matt; Patyal, Baldev

    2015-01-01

    Radiographic film dosimetry suffers from its energy dependence in proton dosimetry. This study sought to develop a method of measuring proton beams by the film and to evaluate film response to proton beams for the constancy check of depth dose (DD). It also evaluated the film for profile measurements. To achieve this goal, from DDs measured by film and ion chamber (IC), calibration factors (ratios of dose measured by IC to film responses) as a function of depth in a phantom were obtained. These factors imply variable slopes (with proton energy and depth) of linear characteristic curves that relate film response to dose. We derived a calibration method that enables utilization of the factors for acquisition of dose from film density measured at later dates by adapting to a potentially altered processor condition. To test this model, the characteristic curve was obtained by using EDR2 film and in‐phantom film dosimetry in parallel with a 149.65 MeV proton beam, using the method. An additional validation of the model was performed by concurrent film and IC measurement perpendicular to the beam at various depths. Beam profile measurements by the film were also evaluated at the center of beam modulation. In order to interpret and ascertain the film dosimetry, Monte Carlos simulation of the beam was performed, calculating the proton fluence spectrum along depths and off‐axis distances. By multiplying respective stopping powers to the spectrum, doses to film and water were calculated. The ratio of film dose to water dose was evaluated. Results are as follows. The characteristic curve proved the assumed linearity. The measured DD approached that of IC, but near the end of the spread‐out Bragg peak (SOBP), a spurious peak was observed due to the mismatch of distal edge between the calibration and measurement films. The width of SOBP and the proximal edge were both reproducible within a maximum of 5 mm; the distal edge was reproducible within 1 mm. At 5 cm depth, the

  6. Proton Radiotherapy for High-Risk Pediatric Neuroblastoma: Early Outcomes and Dose Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Hattangadi, Jona A. [Harvard Radiation Oncology Program, Boston, MA (United States); Rombi, Barbara [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Provincial Agency for Proton Therapy, Trento (Italy); Yock, Torunn I.; Broussard, George [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Friedmann, Alison M.; Huang, Mary [Department of Pediatric Hematology-Oncology, Massachusetts General Hospital, Boston, MA (United States); Chen, Yen-Lin E.; Lu, Hsiao-Ming; Kooy, Hanne [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); MacDonald, Shannon M., E-mail: smacdonald@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States)

    2012-07-01

    Purpose: To report the early outcomes for children with high-risk neuroblastoma treated with proton radiotherapy (RT) and to compare the dose distributions for intensity-modulated photon RT (IMRT), three-dimensional conformal proton RT (3D-CPT), and intensity-modulated proton RT to the postoperative tumor bed. Methods and Materials: All patients with high-risk (International Neuroblastoma Staging System Stage III or IV) neuroblastoma treated between 2005 and 2010 at our institution were included. All patients received induction chemotherapy, surgical resection of residual disease, high-dose chemotherapy with stem cell rescue, and adjuvant 3D-CPT to the primary tumor sites. The patients were followed with clinical examinations, imaging, and laboratory testing every 6 months to monitor disease control and side effects. IMRT, 3D-CPT, and intensity-modulated proton RT plans were generated and compared for a representative case of adjuvant RT to the primary tumor bed followed by a boost. Results: Nine patients were treated with 3D-CPT. The median age at diagnosis was 2 years (range 10 months to 4 years), and all patients had Stage IV disease. All patients had unfavorable histologic characteristics (poorly differentiated histologic features in 8, N-Myc amplification in 6, and 1p/11q chromosomal abnormalities in 4). The median tumor size at diagnosis was 11.4 cm (range 7-16) in maximal dimension. At a median follow-up of 38 months (range 11-70), there were no local failures. Four patients developed distant failure, and, of these, two died of disease. Acute side effects included Grade 1 skin erythema in 5 patients and Grade 2 anorexia in 2 patients. Although comparable target coverage was achieved with all three modalities, proton therapy achieved substantial normal tissue sparing compared with IMRT. Intensity-modulated proton RT allowed additional sparing of the kidneys, lungs, and heart. Conclusions: Preliminary outcomes reveal excellent local control with proton therapy

  7. Proton pump inhibitor responders who are not confirmed as GERD patients with impedance and pH monitoring: who are they?

    NARCIS (Netherlands)

    de Bortoli, N.; Martinucci, I.; Savarino, E.; Bellini, M.; Bredenoord, A. J.; Franchi, R.; Bertani, L.; Furnari, M.; Savarino, V.; Blandizzi, C.; Marchi, S.

    2014-01-01

    A short-course of proton pump inhibitors (PPIs) is often used to confirm gastroesophageal reflux disease (GERD). However, some patients with PPI responsive heartburn do not seem to have evidence of GERD on impedance-pH monitoring (MII-pH). The aim of the study was to evaluate patients with reflux

  8. Development of a semi-analytical method for calculation of the radial dose profile for proton beams in the 0.5-1.0 MeV energy range

    International Nuclear Information System (INIS)

    Wiklund, Kristin

    2004-07-01

    There has been an increased interest in the application of protons for radiation therapy during the last decades. The main reason for this is the advantageous shape of the proton dose profile, which offers the possibility of improved treatment outcome. Proton beams and other light ions have because of this observed phenomenon a high efficiency to inflict lethal damage to tumor tissue while sparing normal tissue. Treatment with ions heavier than protons, have also been considered on the basis of radiological arguments. Recently scientists have discovered that not only high-energy electrons inflict severe damage to the DNA, but also low-energy electrons. Those electrons can be produced when protons with energy between 0.5-1 MeV interact with matter. High-accuracy calculations of dose distributions inside tumors and the surrounding tissue are essential for assessing the effectiveness of a given treatment in terms of probability of tumor control and of radiation-induced complications. The use of Monte Carlo methods to simulate radiation transport has become the most accurate means of predicting absorbed dose distributions and other quantities like numbers of track ends, track lengths and angular distributions. Today, there no accurate Monte-Carlo codes for proton transport, not even for low-energy electron transport. Much work is devoted to develop a Monte Carlo code for this purpose. However, for most practical cases in treatment planning, an advantageous solution has been found by combining the intrinsic accuracy of Monte Carlo methods with the swiftness of analytical techniques. In this work, a simple semi-analytical method is developed for fast dose distribution calculations for protons with energy range 0.5-1 MeV. The major part of the energy loss when protons traverse tissue, ends up in the ionizations of the target atoms. The double differential cross sections for this secondary electron production is calculated with Continuous distorted waves-eikonal initial

  9. Determination of Proton dose distal fall-off location by detecting right-angled prompt gamma rays

    International Nuclear Information System (INIS)

    Seo, Kyu Seok

    2006-02-01

    The proton beam has a unique advantage over the electron and photon beams in that it can give very high radiation dose to the tumor volume while effectively sparing the neighboring healthy tissue and organs. The number of proton therapy facility is very rapidly increasing in the world. And now the 230 MeV cyclotron facility for proton therapy is constructing at National Cancer Center, this facility until 2006. The distal fall-off location of proton beam is simply calculated by analytical method, but this method has many uncertain when anatomical structure is very complicated. It is very important to know the exact position of the proton beam distal fall-off, or beam range, in the patient's body for both the safety of the patient and the effectiveness of the treatment itself. In 2003, Stichelbaut and Jongen reported the possibility of using the right-angled prompt gamma rays, which are emitted at 90 .deg. from the incident proton beam direction, to determine the position of the proton beam distal fall-off. They studied the interactions of the protons and other secondary particles in a water phantom and concluded that there is a correlation between the position of the distal fall-off and the distribution of the right-angled prompt gamma rays. We have recently designed a prompt gamma scanning system to measure the proton range in situ by using Monte Carlo technique employing MCNPX, FLUKA, and Sabrina TM . The prompt gamma scanning system was designed to measure only the right-angled prompt gamma rays passing through a narrow collimation hole in order to correlate the position with the dose distribution. The collimation part of the scanning system, which has been constructed to measure the gamma rays at 70 MeV of proton energy, is made of a set of paraffin, boron carbide, and lead layers to shield the high-energy neutrons and secondary photons. After the different proton energies and SOBP beam widths are irradiated at the water phantom. we detected prompt gamma at 5 cm

  10. TH-A-19A-09: Towards Sub-Second Proton Dose Calculation On GPU

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J da [University of Cambridge, Cambridge, Cambridgeshire (United Kingdom)

    2014-06-15

    Purpose: To achieve sub-second dose calculation for clinically relevant proton therapy treatment plans. Rapid dose calculation is a key component of adaptive radiotherapy, necessary to take advantage of the better dose conformity offered by hadron therapy. Methods: To speed up proton dose calculation, the pencil beam algorithm (PBA; clinical standard) was parallelised and implemented to run on a graphics processing unit (GPU). The implementation constitutes the first PBA to run all steps on GPU, and each part of the algorithm was carefully adapted for efficiency. Monte Carlo (MC) simulations obtained using Fluka of individual beams of energies representative of the clinical range impinging on simple geometries were used to tune the PBA. For benchmarking, a typical skull base case with a spot scanning plan consisting of a total of 8872 spots divided between two beam directions of 49 energy layers each was provided by CNAO (Pavia, Italy). The calculations were carried out on an Nvidia Geforce GTX680 desktop GPU with 1536 cores running at 1006 MHz. Results: The PBA reproduced within ±3% of maximum dose results obtained from MC simulations for a range of pencil beams impinging on a water tank. Additional analysis of more complex slab geometries is currently under way to fine-tune the algorithm. Full calculation of the clinical test case took 0.9 seconds in total, with the majority of the time spent in the kernel superposition step. Conclusion: The PBA lends itself well to implementation on many-core systems such as GPUs. Using the presented implementation and current hardware, sub-second dose calculation for a clinical proton therapy plan was achieved, opening the door for adaptive treatment. The successful parallelisation of all steps of the calculation indicates that further speedups can be expected with new hardware, brightening the prospects for real-time dose calculation. This work was funded by ENTERVISION, European Commission FP7 grant 264552.

  11. TH-A-19A-09: Towards Sub-Second Proton Dose Calculation On GPU

    International Nuclear Information System (INIS)

    Silva, J da

    2014-01-01

    Purpose: To achieve sub-second dose calculation for clinically relevant proton therapy treatment plans. Rapid dose calculation is a key component of adaptive radiotherapy, necessary to take advantage of the better dose conformity offered by hadron therapy. Methods: To speed up proton dose calculation, the pencil beam algorithm (PBA; clinical standard) was parallelised and implemented to run on a graphics processing unit (GPU). The implementation constitutes the first PBA to run all steps on GPU, and each part of the algorithm was carefully adapted for efficiency. Monte Carlo (MC) simulations obtained using Fluka of individual beams of energies representative of the clinical range impinging on simple geometries were used to tune the PBA. For benchmarking, a typical skull base case with a spot scanning plan consisting of a total of 8872 spots divided between two beam directions of 49 energy layers each was provided by CNAO (Pavia, Italy). The calculations were carried out on an Nvidia Geforce GTX680 desktop GPU with 1536 cores running at 1006 MHz. Results: The PBA reproduced within ±3% of maximum dose results obtained from MC simulations for a range of pencil beams impinging on a water tank. Additional analysis of more complex slab geometries is currently under way to fine-tune the algorithm. Full calculation of the clinical test case took 0.9 seconds in total, with the majority of the time spent in the kernel superposition step. Conclusion: The PBA lends itself well to implementation on many-core systems such as GPUs. Using the presented implementation and current hardware, sub-second dose calculation for a clinical proton therapy plan was achieved, opening the door for adaptive treatment. The successful parallelisation of all steps of the calculation indicates that further speedups can be expected with new hardware, brightening the prospects for real-time dose calculation. This work was funded by ENTERVISION, European Commission FP7 grant 264552

  12. SU-F-T-137: Out-Of-Beam Dose for a Compact Double-Scattering Proton Beam Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M; Ahmad, S; Jin, H [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2016-06-15

    Purpose: The out-of-beam dose is important for understanding the peripheral dose in radiation therapy. In proton radiotherapy, the study of out-of-beam dose is scarce and the treatment planning system (TPS) based on pencil beam algorithm cannot accurately predict the out-of-beam dose. This study investigates the out-of-beam dose for the single-room Mevion S250 double scattering proton therapy system using experimentally measured and treatment planning software generated data. The results are compared with those reported for conventional photon beam therapy. However, this study does not incorporate the neutron contribution in the scattered dose. Methods: A total of seven proton treatment plans were generated using Varian Eclipse TPS for three different sites (brain, lung, and pelvis) in an anthropomorphic phantom. Three field sizes of 5×5, 10×10, and 20×20 cm{sup 2} (lung only) with typical clinical range (13.3–22.8 g/cm{sup 2}) and modulation widths (5.3–14.0 g/cm{sup 2}) were used. A single beam was employed in each treatment plan to deliver a dose of 181.8 cGy (200.0 cGy (RBE)) to the selected target. The out-of-beam dose was measured at 2.0, 5.0, 10.0, and 15.0 cm from the beam edge in the phantom using a thimble chamber (PTW TN31010). Results: The out-of-beam dose generally increased with field size, range, and volume irradiated. For all the plans, the scattered dose sharply fell off with distance. At 2.0 cm, the out-of-beam dose ranged from 0.35% to 2.16% of the delivered dose; however, the dose was clinically negligible (<0.3%) at a distance of 5.0 cm and greater. In photon therapy, the slightly greater out-of-beam dose was reported (TG36; 4%, 2%, and 1% for 2.0, 5.0, and 10.0 cm, respectively, using 6 MV beam). Conclusion: The measured out-of-beam dose in proton therapy excluding neutron contribution was observed higher than the TPS calculated dose and comparable to that of photon beam therapy.

  13. Low doses effects

    International Nuclear Information System (INIS)

    Tubiana, M.

    1997-01-01

    In this article is asked the question about a possible carcinogens effect of low dose irradiation. With epidemiological data, knowledge about the carcinogenesis, the professor Tubiana explains that in spite of experiments made on thousand or hundred of thousands animals it has not been possible to bring to the fore a carcinogens effect for low doses and then it is not reasonable to believe and let the population believe that low dose irradiation could lead to an increase of neoplasms and from this point of view any hardening of radiation protection standards could in fact, increase anguish about ionizing radiations. (N.C.)

  14. SU-F-T-178: Optimized Design of a Diamond Detector Specifically Dedicated to the Dose Distribution Measurements in Clinical Proton Pencil Beams

    International Nuclear Information System (INIS)

    Moignier, C; Pomorski, M; Agelou, M; Hernandez, J Garcia; Lazaro, D; Marsolat, F; De Marzi, L; Mazal, A; Tromson, D

    2016-01-01

    Purpose: In proton-therapy, pencil beam scanning (PBS) dosimetry presents a real challenge due to the small size of the beam (about 3 to 8 mm in FWHM), the pulsed high dose rate (up to 100 Gy/s) and the proton energy variation (about 30 MeV to 250 MeV). In the framework of French INSERM DEDIPRO project, a specifically dedicated single crystal diamond dosimeter (SCDDo) was developed with the objective of obtaining accurate measurements of the dose distribution in PBS modality. Methods: Monte Carlo simulations with MCNPX were performed. A small proton beam of 5 mm in FWHM was simulated as well as diamond devices with various size, thickness and holder composition. The calculated doses-to-diamond were compared with the doses-to-water in order to reduce the perturbation effects. Monte-Carlo simulations lead to an optimized SCDDo design for small proton beams dosimetry. Following the optimized design, SCDDos were mounted in water-equivalent holders with electrical connection adapted to standard electrometer. First, SCDDos performances (stability, repeatability, signal-to-background ratio…) were evaluated with conventional photon beams. Then, characterizations (dose linearity, dose rate dependence…) with wide proton beams were performed at proton-therapy center (IC-CPO) from Curie Institute (France) with the passive proton delivery technique, in order to confirm dosimetric requirements. Finally, depth-dose distributions were measured in a water tank, for native and modulated Bragg Peaks with the collimator of 12 cm, and compared to a commercial PPC05 parallel-plate ionization chamber reference detector. Lateral-dose profiles were also measured with the collimator of 5 mm, and compared to a commercial SFD diode. Results: The results show that SCDDo design does not disturb the dose distributions. Conclusion: The experimental dose distributions with the SCDDo are in good agreement with the commercial detectors and no energy dependence was observed with this device

  15. SU-F-T-178: Optimized Design of a Diamond Detector Specifically Dedicated to the Dose Distribution Measurements in Clinical Proton Pencil Beams

    Energy Technology Data Exchange (ETDEWEB)

    Moignier, C; Pomorski, M; Agelou, M; Hernandez, J Garcia; Lazaro, D [Institut CEA LIST, Gif-sur-Yvette (France); Marsolat, F; De Marzi, L; Mazal, A [Institut Curie - Centre de Protontherapie d’Orsay, Orsay (France); Tromson, D

    2016-06-15

    Purpose: In proton-therapy, pencil beam scanning (PBS) dosimetry presents a real challenge due to the small size of the beam (about 3 to 8 mm in FWHM), the pulsed high dose rate (up to 100 Gy/s) and the proton energy variation (about 30 MeV to 250 MeV). In the framework of French INSERM DEDIPRO project, a specifically dedicated single crystal diamond dosimeter (SCDDo) was developed with the objective of obtaining accurate measurements of the dose distribution in PBS modality. Methods: Monte Carlo simulations with MCNPX were performed. A small proton beam of 5 mm in FWHM was simulated as well as diamond devices with various size, thickness and holder composition. The calculated doses-to-diamond were compared with the doses-to-water in order to reduce the perturbation effects. Monte-Carlo simulations lead to an optimized SCDDo design for small proton beams dosimetry. Following the optimized design, SCDDos were mounted in water-equivalent holders with electrical connection adapted to standard electrometer. First, SCDDos performances (stability, repeatability, signal-to-background ratio…) were evaluated with conventional photon beams. Then, characterizations (dose linearity, dose rate dependence…) with wide proton beams were performed at proton-therapy center (IC-CPO) from Curie Institute (France) with the passive proton delivery technique, in order to confirm dosimetric requirements. Finally, depth-dose distributions were measured in a water tank, for native and modulated Bragg Peaks with the collimator of 12 cm, and compared to a commercial PPC05 parallel-plate ionization chamber reference detector. Lateral-dose profiles were also measured with the collimator of 5 mm, and compared to a commercial SFD diode. Results: The results show that SCDDo design does not disturb the dose distributions. Conclusion: The experimental dose distributions with the SCDDo are in good agreement with the commercial detectors and no energy dependence was observed with this device

  16. The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism

    International Nuclear Information System (INIS)

    Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.

    2017-01-01

    Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field 'F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.

  17. The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism

    Science.gov (United States)

    Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.

    2017-05-01

    Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field `F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.

  18. Low grade waste heat recovery using heat pumps and power cycles

    International Nuclear Information System (INIS)

    Bor, D.M. van de; Infante Ferreira, C.A.; Kiss, Anton A.

    2015-01-01

    Thermal energy represents a large part of the global energy usage and about 43% of this energy is used for industrial applications. Large amounts are lost via exhaust gases, liquid streams and cooling water while the share of low temperature waste heat is the largest. Heat pumps upgrading waste heat to process heat and cooling and power cycles converting waste heat to electricity can make a strong impact in the related industries. The potential of several alternative technologies, either for the upgrading of low temperature waste heat such as compression-resorption, vapor compression and trans-critical heat pumps, or for the conversion of this waste heat by using organic Rankine, Kalina and trilateral cycle engines, are investigated with regards to energetic and economic performance by making use of thermodynamic models. This study focuses on temperature levels of 45–60 °C as at this temperature range large amounts of heat are rejected to the environment but also investigates the temperature levels for which power cycles become competitive. The heat pumps deliver 2.5–11 times more energy value than the power cycles in this low temperature range at equal waste heat input. Heat engines become competitive with heat pumps at waste heat temperatures at 100 °C and above. - Highlights: • Application of heat pump technology for heating and cooling. • Compression resorption heat pumps operating with large glides approaching 100 K. • Compression-resorption heat pumps with wet compression. • Potential to convert Industrial waste heat to power or high grade heat. • Comparison between low temperature power cycles and heat pumps

  19. Proton pump inhibitors induce a caspase-independent antitumor effect against human multiple myeloma.

    Science.gov (United States)

    Canitano, Andrea; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Federici, Cristina; Fais, Stefano

    2016-07-01

    Multiple Myeloma (MM) is the second most common hematological malignancy and is responsive to a limited number of drugs. Unfortunately, to date, despite the introduction of novel drugs, no relevant increase in survival rates has been obtained. Proton pump inhibitors (PPIs) have been shown to have significant antitumor action as single agents as well as in combination with chemotherapy. This study investigates the potential anti-tumor effectiveness of two PPIs, Lansoprazole and Omeprazole, against human MM cells. We found that Lansoprazole exerts straightforward efficacy against myeloma cells, even at suboptimal concentrations (50 µM), while Omeprazole has limited cytotoxic action. The Lansoprazole anti-MM effect was mostly mediated by a caspase-independent apoptotic-like cytotoxicity, with only a secondary anti-proliferative action. This study provides clear evidence supporting the use of Lansoprazole in the strive against MM with an efficacy proven much higher than current therapeutical approaches and without reported side effects. It is however conceivable that, consistent with the results obtained in other human tumors, Lansoprazole may well be combined with existing anti-myeloma therapies with the aim to improve the low level of efficacy of the current strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Estimate of neutron secondary doses received by patients in proton therapy: cases of ophthalmologic treatments

    International Nuclear Information System (INIS)

    Martinetti, F.

    2009-12-01

    This research thesis aims at assessing doses due to secondary neutrons and received by the organs of a patient which are located outside of the treatment field. The study focused on ophthalmological treatments performed at the Orsay proton therapy centre. A 75 eV beam line model has first been developed with the MCNPX Monte Carlo code. Several experimental validations of this model have been performed: proton dose distribution in a water phantom, ambient equivalent dose due to secondary neutrons and neutron spectra in the treatment room, and doses deposited by secondary neutrons in an anthropomorphous phantom. Simulations and measurements are in correct agreement. Then, a numeric assessment of secondary doses received by the patient's organs has been performed by using a MIRD-type mathematical phantom. These doses have been computed for several organs: the non-treated eye, the brain, the thyroid, and other parts of the body situated either in the front part of the body (the one directly exposed to neutrons generated in the treatment line) or deeper and further from the treatment field

  1. Delirium in the geriatric unit: proton-pump inhibitors and other risk factors

    Directory of Open Access Journals (Sweden)

    Otremba I

    2016-04-01

    Full Text Available Iwona Otremba, Krzysztof Wilczyński, Jan SzewieczekDepartment of Geriatrics, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, PolandBackground: Delirium remains a major nosocomial complication of hospitalized elderly. Predictive models for delirium may be useful for identification of high-risk patients for implementation of preventive strategies.Objective: Evaluate specific factors for development of delirium in a geriatric ward setting.Methods: Prospective cross-sectional study comprised 675 consecutive patients aged 79.2±7.7 years (66% women and 34% men, admitted to the subacute geriatric ward of a multiprofile university hospital after exclusion of 113 patients treated with antipsychotic medication because of behavioral disorders before admission. Comprehensive geriatric assessments including a structured interview, physical examination, geriatric functional assessment, blood sampling, ECG, abdominal ultrasound, chest X-ray, Confusion Assessment Method for diagnosis of delirium, Delirium-O-Meter to assess delirium severity, Richmond Agitation-Sedation Scale to assess sedation or agitation, visual analog scale and Doloplus-2 scale to assess pain level were performed.Results: Multivariate logistic regression analysis revealed five independent factors associated with development of delirium in geriatric inpatients: transfer between hospital wards (odds ratio [OR] =2.78; confidence interval [CI] =1.54–5.01; P=0.001, preexisting dementia (OR =2.29; CI =1.44–3.65; P<0.001, previous delirium incidents (OR =2.23; CI =1.47–3.38; P<0.001, previous fall incidents (OR =1.76; CI =1.17–2.64; P=0.006, and use of proton-pump inhibitors (OR =1.67; CI =1.11–2.53; P=0.014.Conclusion: Transfer between hospital wards, preexisting dementia, previous delirium incidents, previous fall incidents, and use of proton-pump inhibitors are predictive of development of delirium in the geriatric inpatient setting.Keywords: delirium

  2. Analysis of Relative Biological Effectiveness of Proton Beams and Isoeffective Dose Profiles Using Geant4

    Directory of Open Access Journals (Sweden)

    Hosseini M. A.

    2017-06-01

    Full Text Available Background: The assessment of RBE quantity in the treatment of cancer tumors with proton beams in treatment planning systems (TPS is of high significance. Given the significance of the issue and the studies conducted in the literature, this quantity is fixed and is taken as equal to 1.1. Objective: The main objective of this study was to assess RBE quantity of proton beams and their variations in different depths of the tumor. This dependency makes RBE values used in TPS no longer be fixed as they depend on the depth of the tumor and therefore this dependency causes some changes in the physical dose profile. Materials and Methods: The energy spectrum of protons was measured at various depths of the tumor using proton beam simulations and well as the complete simulation of a cell to a pair of DNA bases through Monte Carlo GEANT4. The resulting energy spectrum was used to estimate the number of double-strand breaks generated in cells. Finally, RBE values were calculated in terms of the penetration depth in the tumor. Results and Conclusion: The simulation results show that the RBE value not fixed terms of the depth of the tumor and it differs from the clinical value of 1.1 at the end of the dose profile and this will lead to a non-uniform absorbed dose profile. Therefore, to create a uniform impact dose area, deep-finishing systems need to be designed by taking into account deep RBE values.

  3. Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic pump

    DEFF Research Database (Denmark)

    Gregersen, Misha Marie; Olesen, Laurits Højgaard; Brask, Anders

    2007-01-01

    measured in a regime, where both the applied voltage and the frequency are low, Vrms1.5 V and f20 kHz, compared to previously investigated parameter ranges. The impedance spectrum has been thoroughly measured and analyzed in terms of an equivalent circuit diagram to rule out trivial circuit explanations......Microfluidic chips have been fabricated in Pyrex glass to study electrokinetic pumping generated by a low-voltage ac bias applied to an in-channel asymmetric metallic electrode array. A measurement procedure has been established and followed carefully resulting in a high degree of reproducibility...... of the measurements over several days. A large coverage fraction of the electrode array in the microfluidic channels has led to an increased sensitivity allowing for pumping measurements at low bias voltages. Depending on the ionic concentration a hitherto unobserved reversal of the pumping direction has been...

  4. Treatment of gastro-oesophageal reflux disease with rabeprazole in primary and secondary care : does Helicobacter pylori infection affect proton pump inhibitor effectiveness?

    NARCIS (Netherlands)

    de Wit, NJ; de Boer, WA; Geldof, H; Hazelhoff, B; Bergmans, P; Tytgat, GNJ; Smout, AJPM

    2004-01-01

    Background: The presence of the gastric pathogen, Helicobacter pylori influences acid suppression by proton pump inhibitors and treatment outcome in patients with gastro-oesophageal reflux disease. Aim: To determine the influence of H. pylori infection on effectiveness of rabeprazole in primary and

  5. Treatment of gastro-oesophageal reflux disease with rabeprazole in primary and secondary care: does Helicobacter pylori infection affect proton pump inhibitor effectiveness?

    NARCIS (Netherlands)

    Wit, N. J.; Boer, W. A.; Geldof, H.; Hazelhoff, B.; Bergmans, P.; Tytgat, G. N. J.; Smout, A. J. P. M.

    2004-01-01

    BACKGROUND: The presence of the gastric pathogen, Helicobacter pylori influences acid suppression by proton pump inhibitors and treatment outcome in patients with gastro-oesophageal reflux disease. AIM: To determine the influence of H. pylori infection on effectiveness of rabeprazole in primary and

  6. Incremental cost-effectiveness of proton pump inhibitors for the prevention of NSAID ulcers: a pharmacoeconomic analysis linked to a case-control study.

    NARCIS (Netherlands)

    Vonkeman, Harald Erwin; Braakman-Jansen, Louise Marie Antoinette; Klok, Rogier M.; Postma, Maarten J.; Brouwers, Jacobus R.B.J.; van de Laar, Mart A F J

    2008-01-01

    Introduction We estimated the cost effectiveness of concomitant proton pump inhibitors (PPIs) in relation to the occurrence of non-steroidal anti-inflammatory drug (NSAID) ulcer complications. Methods This study was linked to a nested case-control study. Patients with NSAID ulcer complications were

  7. An analytical model of leakage neutron equivalent dose for passively-scattered proton radiotherapy and validation with measurements.

    Science.gov (United States)

    Schneider, Christopher; Newhauser, Wayne; Farah, Jad

    2015-05-18

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose  at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation.

  8. Measurements of low energy observables in proton-proton collisions with the ATLAS Detector.

    CERN Document Server

    Myska, Miroslav; The ATLAS collaboration

    2017-01-01

    Low energy phenomena have been studied in detail at the LHC, providing important input for improving models of non-perturbative QCD effects. The ATLAS collaboration has performed several new measurements in this sector: We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton--proton collisions at a centre-of-mass energy of 13 TeV. The results are corrected for detector effects and compared to predictions from various Monte Carlo generators. ATLAS has also studied the correlated hadron production. In particular, an analysis of the momentum difference between charged hadrons in high–energy proton–proton collisions is performed and the results are compared to the predictions of a helical QCD string fragmentation model. New results in forward physics are expected to be available soon. We close this presentation with the measurement of the exclusive "\\gamma\\gamma \\rightarrow \\mu^{+}\\mu^{-}" production in proton-proton collisions at a center-of-mass ...

  9. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  10. SU-F-T-204: A Preliminary Approach of Reducing Contralateral Breast and Heart Dose in Left Sided Whole Breast Cancer Patients Utilizing Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M; Algan, O; Jin, H; Ahmad, S; Hossain, S [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2016-06-15

    Purpose: To investigate the plan quality and feasibility of a hybrid plan utilizing proton and photon fields for superior coverage in the internal mammary (IM) and supraclavicular (S/C) regions while minimizing heart and contralateral breast dose for the left-sided whole breast cancer patient treatment. Methods: This preliminary study carried out on single left-sided intact breast patient involved IM and S/C nodes. The IM and S/C node fields of the 5-Field 3DCRT photon-electron base plan were replaced by two proton fields. These two along with two Field-in-Field tangential photon fields were optimized for comparable dose coverage. The treatment plans were done using Eclipse TPS for the total dose of 46Gy in 23 fractions with 95% of the prescription dose covering 95% of the RTOG PTV. The 3DCRT photon-electron and 4-Field photon-proton hybrid plans were compared for the PTV dose coverage as well as dose to OARs. Results: The overall RTOG PTV coverage for proton-hybrid and 3DCRT plan was comparable (95% of prescription dose covers 95% PTV volume). In proton-hybrid plan, 99% of IM volume received 100% dose whereas in 3DCRT only 77% received 100% dose. For S/C regions, 97% and 77% volume received 100% prescription dose in proton-hybrid and 3DCRT plans, respectively. The heart mean dose, V3Gy(%), and V5Gy(%) was 2.2Gy, 14.4%, 9.8% for proton-hybrid vs. 4.20 Gy, 21.5%, and 39% for 3DCRT plan, respectively. The maximum dose to the contralateral breast was 39.75Gy for proton-hybrid while 56.87Gy for 3DCRT plan. The mean total lung dose, V20Gy(%), and V30Gy(%) was 5.68Gy, 11.3%, 10.5% for proton-hybrid vs. 5.90Gy, 9.8%, 7.2% for 3DCRT, respectively. Conclusion: The protonhybrid plan can offer better dose coverage to the involved lymphatic tissues while lower doses to the heart and contralateral breast. More treatment plans are currently in progress before being implemented clinically.

  11. Lack of Association Between Proton Pump Inhibitor Use and Cognitive Decline

    DEFF Research Database (Denmark)

    Wod, Mette; Hallas, Jesper; Andersen, Kjeld

    2018-01-01

    from surveys of middle-aged individuals (46-67 years old; the Middle Aged Danish Twin study) and older individuals (the Longitudinal Study of Aging Danish Twins) who underwent cognitive assessments (a 5-component test battery) over a 10-year period (middle-age study, n=2346) or a 2-year period...... PPI use and a composite score of cognitive function at baseline and decreases in scores during the follow-up periods. RESULTS: Use of PPIs before study enrollment was associated with a slightly lower mean cognitive score at baseline in the middle age study. The adjusted difference in mean score......BACKGROUND & AIMS: Studies of association between use of proton pump inhibitors (PPI) and dementia have yielded conflicting results. We investigated the effects of PPIs on cognitive decline in a study of middle-aged and elderly twins in Denmark. METHODS: In a prospective study, we collected data...

  12. Cost-Effectiveness of Intravenous Proton Pump Inhibitors in High-Risk Bleeders

    Directory of Open Access Journals (Sweden)

    Sander Veldhuyzen van Zanten

    2004-01-01

    Full Text Available There is unequivocal evidence that proton pump inhibitors (PPIs are currently the most effective acid suppressive agents available. Intravenous (IV formulations have been developed, although only IV pantoprazole is available in Canada. In patients presenting with serious upper gastrointestinal (GI bleeding due to duodenal or gastric ulcers, it has always been believed that IV administration of acid-lowering agents would improve clinical outcomes. The reason behind this thinking is twofold. First, there is in vitro evidence that formed clots are more stable at or near neutral pH (1. Second, by administering the agent intravenously, suppression of acid production is achieved much more quickly, thereby promoting more rapid healing of the ulcer and reducing the risk of persistent or recurrent bleeding. Interestingly and surprisingly, however, the data for intravenous H2-blockers have been disappointing (2. This failure to demonstrate clinical benefit has never been fully explained.

  13. Low LET protons focused to submicrometer shows enhanced radiobiological effectiveness

    International Nuclear Information System (INIS)

    Schmid, T E; Zlobinskaya, O; Michalski, D; Molls, M; Multhoff, G; Greubel, C; Hable, V; Girst, S; Siebenwirth, C; Dollinger, G; Schmid, E

    2012-01-01

    This study shows that enhanced radiobiological effectiveness (RBE) values can be generated focusing low linear energy transfer (LET) radiation and thus changing the microdose distribution. 20 MeV protons (LET = 2.65 keV µm −1 ) are focused to submicrometer diameter at the ion microprobe superconducting nanoprobe for applied nuclear (Kern) physics experiments of the Munich tandem accelerator. The RBE values, as determined by measuring micronuclei (RBE MN = 1.48 ± 0.07) and dicentrics (RBE D = 1.92 ± 0.15), in human–hamster hybrid (A L ) cells are significantly higher when 117 protons were focused to a submicrometer irradiation field within a 5.4 × 5.4 µm 2 matrix compared to quasi homogeneous in a 1 × 1 µm 2 matrix applied protons (RBE MN = 1.28 ± 0.07; RBE D = 1.41 ± 0.14) at the same average dose of 1.7 Gy. The RBE values are normalized to standard 70 kV (dicentrics) or 200 kV (micronuclei) x-ray irradiation. The 117 protons applied per point deposit the same amount of energy like a 12 C ion with 55 MeV total energy (4.48 MeV u −1 ). The enhancements are about half of that obtained for 12 C ions (RBE MN = 2.20 ± 0.06 and RBE D = 3.21 ± 0.10) and they are attributed to intertrack interactions of the induced damages. The measured RBE values show differences from predictions of the local effect model (LEM III) that is used to calculate RBE values for irradiation plans to treat tumors with high LET particles. (paper)

  14. The selectivity of the Na+/K+-pump is controlled by binding site protonation and self-correcting occlusion

    Science.gov (United States)

    Rui, Huan; Artigas, Pablo; Roux, Benoît

    2016-01-01

    The Na+/K+-pump maintains the physiological K+ and Na+ electrochemical gradients across the cell membrane. It operates via an 'alternating-access' mechanism, making iterative transitions between inward-facing (E1) and outward-facing (E2) conformations. Although the general features of the transport cycle are known, the detailed physicochemical factors governing the binding site selectivity remain mysterious. Free energy molecular dynamics simulations show that the ion binding sites switch their binding specificity in E1 and E2. This is accompanied by small structural arrangements and changes in protonation states of the coordinating residues. Additional computations on structural models of the intermediate states along the conformational transition pathway reveal that the free energy barrier toward the occlusion step is considerably increased when the wrong type of ion is loaded into the binding pocket, prohibiting the pump cycle from proceeding forward. This self-correcting mechanism strengthens the overall transport selectivity and protects the stoichiometry of the pump cycle. DOI: http://dx.doi.org/10.7554/eLife.16616.001 PMID:27490484

  15. SU-E-T-115: Dose Perturbation Study of Self-Expandable Metal and Polyester Esophageal Stents in Proton Therapy Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Li, Z [University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Jalaj, S; McGaw, C; B K, John; J S, Scolapio; J C, Munoz [Division of Gastoenterology, Department of Medicine, University of Florida, Jacksonville, FL (United States)

    2014-06-01

    Purpose: This work investigates dose perturbations due to Self-expandable metal and polyester esophageal stents undergoing proton radiotherapy for esophageal cancer. Methods: Five commercially available esophageal stents made of nitinol (Evolution, Wallflex and Ultraflex), stainless steel (Z-Stent) and polyester (Polyflex) were tested. Radiochromic film (GafChromic EBT3 film, Ashland, Covington, KY) wrapped around a stent and a 12cc syringe was irradiated with 2CGE (Cobalt Gray Equivalent) of proton beam in a custom fabricated acrylic phantom. An air-hollow syringe simulates the esophagus. Results: The Z-stent created the largest dose perturbations ranges from -14.5% to 6.1% due to the steel composition. The WallFlex, Evolution and Ultraflex stents produced the dose perturbation ranges of (−9.2%∼8.6%), (−6.8%∼5.7%) and (−6.2%∼6.2%), respectively. The PolyFlex stent contains the radiopaque tungsten markers located top, middle and bottom portions. When the focal cold spots induced by the markers were excluded in the analysis, the dose perturbation range was changed from (−11.6%∼6.4%) to (−0.6%∼5.0%). Conclusion: The magnitude of dose perturbation is related to material of a metallic stent. The non-metallic stent such as PolyFlex shows relatively lower dose perturbation than metallic stents except a radiopaque marker region. Overall Evolution and Ultraflex stent appear to be less dose perturbations. The largest dose perturbations (cold spots) were located at both edges of stents in distal area for the single proton beam irradiation study. The analysis of more than two proton beam which is more typical clinical beam arrangement would be necessary to minimize the doe perturbation effect in proton ratiotherapy.

  16. AstroBox: A novel detection system for very low-energy protons from β-delayed proton decay

    Energy Technology Data Exchange (ETDEWEB)

    Pollacco, E., E-mail: epollacco@cea.fr [IRFU, CEA Saclay, Gif-sur-Yvette (France); Trache, L. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, RO-077125 (Romania); Simmons, E.; Spiridon, A.; McCleskey, M. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Roeder, B.T., E-mail: broeder@comp.tamu.edu [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Saastamoinen, A.; Tribble, R.E. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Pascovici, G. [National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, RO-077125 (Romania); Kebbiri, M.; Mols, J.P.; Raillot, M. [IRFU, CEA Saclay, Gif-sur-Yvette (France)

    2013-09-21

    An instrument, AstroBox, has been developed to perform low energy proton spectroscopy from β-delayed proton emitters of interest to astrophysics studies. Energetic precursor nuclei are identified and stopped in the gas volume of the detector. The subsequent β or β-proton decay traces ionized paths in the gas. The ionization electrons are drifted in an electric field and are amplified with a Micro Pattern Gas Amplifier Detector (MPGAD). The system was tested in-beam using the β-delayed proton-emitter {sup 23}Al, which was produced with the p({sup 24}Mg,{sup 23}Al)2n reaction and separated with the Momentum Achromat Recoil Spectrometer (MARS) at the Cyclotron Institute at Texas A and M University. Off-beam proton spectra have essentially no β background down to ∼100keV and have a resolution of ∼15keV (fwhm) for proton-decay lines at E{sub p}=197 and 255 keV. Lines with βp-branching as low as 0.02% are observed. In addition, the device also gives good mass and charge resolution for energetic heavy ions measured in-beam.

  17. What is the place of empirical proton pump inhibitor testing in the diagnosis of gastroesophageal reflux disease? (Description, duration, and dosage).

    Science.gov (United States)

    Vardar, Rukiye; Keskin, Muharrem

    2017-12-01

    Empirical acid suppression tests that are performed with proton pump inhibitors (PPI) are used to detect both the presence of acid-related gastrointestinal symptoms and gastroesophageal reflux disease (GERD). In comparison to other diagnostic methods, it is non-invasive, easily applicable, and cost-effective in the diagnosis of GERD. In addition to typical reflux symptoms, it can also be used for diagnostic purposes in patients with non-cardiac chest pain (NCCP). If the symptom response is 50% and above when obtained using the PPI test in patients with NCCP, it can be considered as positive and the treatment should be continued sensitivity of the PPI test in patients with typical symptoms of GERD is 27%-89%, while its specificity is 35%-83%. Although there are differences related to the duration and dosage of the PPI test, a significant difference has not been found according to the type of PPI. When PPI test sensitivity and specificity were calculated by cumulatively evaluating the data regarding the PPI test in the literature, a sensitivity of 82.3% and specificity of 51.5% was obtained. It has been found that high doses of PPI were mostly used in studies, and the duration of the median test was 14 days. As a result, the sensitivity of PPI trial test is good, but the specificity is low in the diagnosis of GERD in patients with typical reflux symptoms.

  18. Monte Carlo characterisation of the Dose Magnifying Glass for proton therapy quality assurance

    International Nuclear Information System (INIS)

    Merchant, A H; Guatelli, S; Petesecca, M; Jackson, M; Rozenfeld, A B

    2017-01-01

    A Geant4 Monte Carlo simulation study was carried out to characterise a novel silicon strip detector, the Dose Magnifying Glass (DMG), for use in proton therapy Quality Assurance. We investigated the possibility to use DMG to determine the energy of the incident proton beam. The advantages of DMG are quick response, easy operation and high spatial resolution. In this work we theoretically proved that DMG can be used for QA in the determination of the energy of the incident proton beam, for ocular and prostate cancer therapy. The study was performed by means of Monte Carlo simulations Experimental measurements are currently on their way to confirm the results of this simulation study. (paper)

  19. Monte Carlo characterisation of the Dose Magnifying Glass for proton therapy quality assurance

    Science.gov (United States)

    Merchant, A. H.; Guatelli, S.; Petesecca, M.; Jackson, M.; Rozenfeld, A. B.

    2017-01-01

    A Geant4 Monte Carlo simulation study was carried out to characterise a novel silicon strip detector, the Dose Magnifying Glass (DMG), for use in proton therapy Quality Assurance. We investigated the possibility to use DMG to determine the energy of the incident proton beam. The advantages of DMG are quick response, easy operation and high spatial resolution. In this work we theoretically proved that DMG can be used for QA in the determination of the energy of the incident proton beam, for ocular and prostate cancer therapy. The study was performed by means of Monte Carlo simulations Experimental measurements are currently on their way to confirm the results of this simulation study.

  20. Fast method for in-flight estimation of total dose from protons and electrons using RADE Minstrument on JUICE

    Science.gov (United States)

    Hajdas, Wojtek; Mrigakshi, Alankrita; Xiao, Hualin

    2017-04-01

    The primary concern of the ESA JUICE mission to Jupiter is the harsh particle radiation environment. Ionizing particles introduce radiation damage by total dose effects, displacement damages or single events effects. Therefore, both the total ionizing dose and the displacement damage equivalent fluence must be assessed to alert spacecraft and its payload as well as to quantify radiation levels for the entire mission lifetime. We present a concept and implementations steps for simplified method used to compute in flight a dose rate and total dose caused by protons. We also provide refinement of the method previously developed for electrons. The dose rates values are given for predefined active volumes located behind layers of materials with known thickness. Both methods are based on the electron and proton flux measurements provided by the Electron and Proton Detectors inside the Radiation Hard Electron Monitor (RADEM) located on-board of JUICE. The trade-off between method accuracy and programming limitations for in-flight computations are discussed. More comprehensive and precise dose rate computations based on detailed analysis of all stack detectors will be made during off-line data processing. It will utilize full spectral unfolding from all RADEM detector subsystems.

  1. A Treatment Planning Comparison of Combined Photon-Proton Beams Versus Proton Beams-Only for the Treatment of Skull Base Tumors

    International Nuclear Information System (INIS)

    Feuvret, Loic; Noel, Georges; Weber, Damien C.; Pommier, Pascal; Ferrand, Regis; De Marzi, Ludovic; Dhermain, Frederic; Alapetite, Claire; Mammar, Hamid; Boisserie, Gilbert; Habrand, Jean-Louis; Mazeron, Jean-Jacques

    2007-01-01

    Purpose: To compare treatment planning between combined photon-proton planning (CP) and proton planning (PP) for skull base tumors, so as to assess the potential limitations of CP for these tumors. Methods and Materials: Plans for 10 patients were computed for both CP and PP. Prescribed dose was 67 cobalt Gray equivalent (CGE) for PP; 45 Gy (photons) and 22 CGE (protons) for CP. Dose-volume histograms (DVHs) were calculated for gross target volume (GTV), clinical target volume (CTV), normal tissues (NT), and organs at risk (OARs) for each plan. Results were analyzed using DVH parameters, inhomogeneity coefficient (IC), and conformity index (CI). Results: Mean doses delivered to the GTVs and CTVs with CP (65.0 and 61.7 CGE) and PP (65.3 and 62.2 Gy CGE) were not significantly different (p > 0.1 and p = 0.72). However, the dose inhomogeneity was drastically increased with CP, with a mean significant incremental IC value of 10.5% and CP of 6.8%, for both the GTV (p = 0.01) and CTV (p = 0.04), respectively. The CI 80% values for the GTV and CTV were significantly higher with PP compared with CP. Compared with CP, the use of protons only led to a significant reduction of NT and OAR irradiation, in the intermediate-to-low dose (≤80% isodose line) range. Conclusions: These results suggest that the use of CP results in levels of target dose conformation similar to those with PP. Use of PP significantly reduced the tumor dose inhomogeneity and the delivered intermediate-to-low dose to NT and OARs, leading us to conclude that this treatment is mainly appropriate for tumors in children

  2. Reducing Dose Uncertainty for Spot-Scanning Proton Beam Therapy of Moving Tumors by Optimizing the Spot Delivery Sequence

    International Nuclear Information System (INIS)

    Li, Heng; Zhu, X. Ronald; Zhang, Xiaodong

    2015-01-01

    Purpose: To develop and validate a novel delivery strategy for reducing the respiratory motion–induced dose uncertainty of spot-scanning proton therapy. Methods and Materials: The spot delivery sequence was optimized to reduce dose uncertainty. The effectiveness of the delivery sequence optimization was evaluated using measurements and patient simulation. One hundred ninety-one 2-dimensional measurements using different delivery sequences of a single-layer uniform pattern were obtained with a detector array on a 1-dimensional moving platform. Intensity modulated proton therapy plans were generated for 10 lung cancer patients, and dose uncertainties for different delivery sequences were evaluated by simulation. Results: Without delivery sequence optimization, the maximum absolute dose error can be up to 97.2% in a single measurement, whereas the optimized delivery sequence results in a maximum absolute dose error of ≤11.8%. In patient simulation, the optimized delivery sequence reduces the mean of fractional maximum absolute dose error compared with the regular delivery sequence by 3.3% to 10.6% (32.5-68.0% relative reduction) for different patients. Conclusions: Optimizing the delivery sequence can reduce dose uncertainty due to respiratory motion in spot-scanning proton therapy, assuming the 4-dimensional CT is a true representation of the patients' breathing patterns.

  3. An Analytical Model of Leakage Neutron Equivalent Dose for Passively-Scattered Proton Radiotherapy and Validation with Measurements

    International Nuclear Information System (INIS)

    Schneider, Christopher; Newhauser, Wayne; Farah, Jad

    2015-01-01

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose (H/D) at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation

  4. An Analytical Model of Leakage Neutron Equivalent Dose for Passively-Scattered Proton Radiotherapy and Validation with Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Christopher; Newhauser, Wayne, E-mail: newhauser@lsu.edu [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Farah, Jad [Institut de Radioprotection et de Sûreté Nucléaire, Service de Dosimétrie Externe, BP-17, 92262 Fontenay-aux-Roses (France)

    2015-05-18

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose (H/D) at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation.

  5. HEAT PUMP USING SUBSOIL WATERS AS LOW TEMPERATURE HEAT SOURCE

    Directory of Open Access Journals (Sweden)

    Denysova Alla

    2015-08-01

    Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

  6. 50V All-PMOS Charge Pumps Using Low-Voltage Capacitors

    KAUST Repository

    Emira, Ahmed

    2012-10-06

    In this work, two high-voltage charge pumps are introduced. In order to minimize the area of the pumping capacitors, which dominates the overall area of the charge pump, high density capacitors have been utilized. Nonetheless, these high density capacitors suffer from low breakdown voltage which is not compatible with the targeted high voltage application. To circumvent the breakdown limitation, a special clocking scheme is used to limit the maximum voltage across any pumping capacitor. The two charge pump circuits were fabricated in a 0:6m CMOS technology with poly0-poly1 capacitors. The output voltage of the two charge pumps reached 42:8V and 51V while the voltage across any capacitor did not exceed the value of the input voltage. Compared to other designs reported in the literature, the proposed charge pump provides the highest output voltage which makes it more suitable for tuning MEMS devices.

  7. 50V All-PMOS Charge Pumps Using Low-Voltage Capacitors

    KAUST Repository

    Emira, Ahmed; AbdelGhany, M.; Elsayed, M.; Elshurafa, Amro M.; Sedky, S.; Salama, Khaled N.

    2012-01-01

    In this work, two high-voltage charge pumps are introduced. In order to minimize the area of the pumping capacitors, which dominates the overall area of the charge pump, high density capacitors have been utilized. Nonetheless, these high density capacitors suffer from low breakdown voltage which is not compatible with the targeted high voltage application. To circumvent the breakdown limitation, a special clocking scheme is used to limit the maximum voltage across any pumping capacitor. The two charge pump circuits were fabricated in a 0:6m CMOS technology with poly0-poly1 capacitors. The output voltage of the two charge pumps reached 42:8V and 51V while the voltage across any capacitor did not exceed the value of the input voltage. Compared to other designs reported in the literature, the proposed charge pump provides the highest output voltage which makes it more suitable for tuning MEMS devices.

  8. Evolution of calculation models for the proton-therapy dose planning software

    International Nuclear Information System (INIS)

    Vidal, Marie

    2011-01-01

    This work was achieved in collaboration between the Institut Curie Proton-therapy Center of Orsay (ICPO), the DOSIsoft company and the CREATIS laboratory, in order to develop a new dose calculation model for the new ICPO treatment room. A new accelerator and gantry room from the IBA company were installed during the up-grade project of the proton-therapy center, with the intention of enlarging the cancer localizations treated at ICPO. Developing a package of methods and new dose calculation algorithms to adapt them to the new specific characteristics of the delivered beams by the IBA system is the first goal of this PhD work. They all aim to be implemented in the DOSIsoft treatment planning software, Isogray. First, the double scattering technique is treated in taking into account major differences between the IBA system and the ICPO fixed beam lines passive system. Secondly, a model is explored for the scanned beams modality. The second objective of this work is improving the Ray-Tracing and Pencil-Beam dose calculation models already in use. For the double scattering and uniform scanning techniques, the patient personalized collimator at the end of the beam line causes indeed a patient dose distribution contamination. A reduction method of that phenomenon was set up for the passive beam system. An analytical model was developed which describes the contamination function with parameters validated through Monte-Carlo simulations on the GATE platform. It allows us to apply those methods to active scanned beams. (author) [fr

  9. SU-E-T-04: 3D Dose Based Patient Compensator QA Procedure for Proton Radiotherapy

    International Nuclear Information System (INIS)

    Zou, W; Reyhan, M; Zhang, M; Davis, R; Jabbour, S; Khan, A; Yue, N

    2015-01-01

    Purpose: In proton double-scattering radiotherapy, compensators are the essential patient specific devices to contour the distal dose distribution to the tumor target. Traditional compensator QA is limited to checking the drilled surface profiles against the plan. In our work, a compensator QA process was established that assess the entire compensator including its internal structure for patient 3D dose verification. Methods: The fabricated patient compensators were CT scanned. Through mathematical image processing and geometric transformations, the CT images of the proton compensator were combined with the patient simulation CT images into a new series of CT images, in which the imaged compensator is placed at the planned location along the corresponding beam line. The new CT images were input into the Eclipse treatment planning system. The original plan was calculated to the combined CT image series without the plan compensator. The newly computed patient 3D dose from the combined patientcompensator images was verified against the original plan dose. Test plans include the compensators with defects intentionally created inside the fabricated compensators. Results: The calculated 3D dose with the combined compensator and patient CT images reflects the impact of the fabricated compensator to the patient. For the test cases in which no defects were created, the dose distributions were in agreement between our method and the corresponding original plans. For the compensator with the defects, the purposely changed material and a purposely created internal defect were successfully detected while not possible with just the traditional compensator profiles detection methods. Conclusion: We present here a 3D dose verification process to qualify the fabricated proton double-scattering compensator. Such compensator detection process assesses the patient 3D impact of the fabricated compensator surface profile as well as the compensator internal material and structure changes

  10. Calculations of the photon dose behind concrete shielding of high energy proton accelerators

    International Nuclear Information System (INIS)

    Dworak, D.; Tesch, K.; Zazula, J.M.

    1992-02-01

    The photon dose per primary beam proton behind lateral concrete shieldings was calculated by using an extension of the Monte Carlo particle shower code FLUKA. The following photon-producing processes were taken into account: capture of thermal neutrons, deexcitation of nuclei after nuclear evaporation, inelastic neutron scattering and nuclear reactions below 140 MeV, as well as photons from electromagnetic cascades. The obtained ratio of the photon dose to the neutron dose equivalent varies from 8% to 20% and it well compares with measurements performed recently at DESY giving a mean ratio of 14%. (orig.)

  11. Development and Optimized Design of Propeller Pump System & Structure with VFD in Low-head Pumping Station

    Science.gov (United States)

    Rentian, Zhang; Honggeng, Zhu; Arnold, Jaap; Linbi, Yao

    2010-06-01

    Compared with vertical-installed pumps, the propeller (bulb tubular) pump systems can achieve higher hydraulic efficiencies, which are particularly suitable for low-head pumping stations. More than four propeller pumping stations are being, or will be built in the first stage of the S-to-N Water Diversion Project in China, diverting water from Yangtze River to the northern part of China to alleviate water-shortage problems and develop the economy. New structures of propeller pump have been developed for specified pumping stations in Jiangsu and Shandong Provinces respectively and Variable Frequency Drives (VFDs) are used in those pumping stations to regulate operating conditions. Based on the Navier-Stokes equations and the standard k-e turbulent model, numerical simulations of the flow field and performance prediction in the propeller pump system were conducted on the platform of commercial software CFX by using the SIMPLEC algorithm. Through optimal design of bulb dimensions and diffuser channel shape, the hydraulic system efficiency has improved evidently. Furthermore, the structures of propeller pumps have been optimized to for the introduction of conventional as well as permanent magnet motors. In order to improve the hydraulic efficiency of pumping systems, both the pump discharge and the motor diameter were optimized respectively. If a conventional motor is used, the diameter of the pump casing has to be increased to accommodate the motor installed inside. If using a permanent magnet motor, the diameter of motor casing can be decreased effectively without decreasing its output power, thus the cross-sectional area is enlarged and the velocity of flowing water decreased favorably to reduce hydraulic loss of discharge channel and thereby raising the pumping system efficiency. Witness model tests were conducted after numerical optimization on specific propeller pump systems, indicating that the model system hydraulic efficiencies can be improved by 0.5%˜3.7% in

  12. Proton therapy with concomitant capecitabine for pancreatic and ampullary cancers is associated with a low incidence of gastrointestinal toxicity

    International Nuclear Information System (INIS)

    Nichols, R. Charles Jr.; Huh, Soon; Ho, Meng Wei; Mendenhall, Nancy P.; Morris, Christopher G.; Hoppe, Bradford S.; George, Thomas J.; Zaiden, Robert A. Jr.; Awad, Ziad T.; Asbun, Horacio J.

    2013-01-01

    Background: To review treatment toxicity for patients with pancreatic and ampullary cancer treated with proton therapy at our institution. Material and methods: From March 2009 through April 2012, 22 patients were treated with proton therapy and concomitant capecitabine (1000 mg PO twice daily) for resected (n = 5); marginally resectable (n = 5); and unresectable/inoperable (n = 12) biopsy-proven pancreatic and ampullary adenocarcinoma. Two patients with unresectable disease were excluded from the analysis for reasons unrelated to treatment. Proton doses ranged from 50.40 cobalt gray equivalent (CGE) to 59.40 CGE. Results: Median follow-up for all patients was 11 (range 5-36) months. No patient demonstrated any grade 3 toxicity during treatment or during the follow-up period. Grade 2 gastrointestinal toxicities occurred in three patients, consisting of vomiting (n = 3); and diarrhea (n = 2). Median weight loss during treatment was 1.3 kg (1.75% of body weight). Chemotherapy was well-tolerated with a median 99% of the prescribed doses delivered. Percentage weight loss was reduced (p = 0.0390) and grade 2 gastrointestinal toxicity was eliminated (p = 0.0009) in patients treated with plans that avoided anterior and left lateral fields which were associated with reduced small bowel and gastric exposure. Discussion: Proton therapy may allow for significant sparing of the small bowel and stomach and is associated with a low rate of gastrointestinal toxicity. Although long-term follow-up will be needed to assess efficacy, we believe that the favorable toxicity profile associated with proton therapy may allow for radiotherapy dose escalation, chemotherapy intensification, and possibly increased acceptance of preoperative radiotherapy for patients with resectable or marginally resectable disease

  13. Proton therapy with concomitant capecitabine for pancreatic and ampullary cancers is associated with a low incidence of gastrointestinal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R. Charles Jr.; Huh, Soon; Ho, Meng Wei; Mendenhall, Nancy P.; Morris, Christopher G.; Hoppe, Bradford S. [Univ. of Florida Proton Therapy Inst., Jacksonville (United States)], e-mail: rnichols@floridaproton.org; George, Thomas J.; Zaiden, Robert A. Jr. [Dept. of Hematology and Medical Oncology, Univ. of Florida, Gainesville and Jacksonville (United States); Awad, Ziad T. [Dept. of Surgery, Univ. of Florida, Jacksonville (United States); Asbun, Horacio J. [Dept. of Surgery, Mayo Clinic, Jacksonville (United States)

    2013-04-15

    Background: To review treatment toxicity for patients with pancreatic and ampullary cancer treated with proton therapy at our institution. Material and methods: From March 2009 through April 2012, 22 patients were treated with proton therapy and concomitant capecitabine (1000 mg PO twice daily) for resected (n = 5); marginally resectable (n = 5); and unresectable/inoperable (n = 12) biopsy-proven pancreatic and ampullary adenocarcinoma. Two patients with unresectable disease were excluded from the analysis for reasons unrelated to treatment. Proton doses ranged from 50.40 cobalt gray equivalent (CGE) to 59.40 CGE. Results: Median follow-up for all patients was 11 (range 5-36) months. No patient demonstrated any grade 3 toxicity during treatment or during the follow-up period. Grade 2 gastrointestinal toxicities occurred in three patients, consisting of vomiting (n = 3); and diarrhea (n = 2). Median weight loss during treatment was 1.3 kg (1.75% of body weight). Chemotherapy was well-tolerated with a median 99% of the prescribed doses delivered. Percentage weight loss was reduced (p = 0.0390) and grade 2 gastrointestinal toxicity was eliminated (p = 0.0009) in patients treated with plans that avoided anterior and left lateral fields which were associated with reduced small bowel and gastric exposure. Discussion: Proton therapy may allow for significant sparing of the small bowel and stomach and is associated with a low rate of gastrointestinal toxicity. Although long-term follow-up will be needed to assess efficacy, we believe that the favorable toxicity profile associated with proton therapy may allow for radiotherapy dose escalation, chemotherapy intensification, and possibly increased acceptance of preoperative radiotherapy for patients with resectable or marginally resectable disease.

  14. Small and low head pumped storage projects

    International Nuclear Information System (INIS)

    Makarechian, A.H.

    1991-01-01

    The purpose of this paper is to focus attention on small and low head pumped storage projects. These projects may be defined as having a capacity of less than 200-300 MW and down to about 20 MW, with heads of 1200 ft to about 300 ft or less. Many advantages of these smaller pumped storage projects include more flexibility in siting of a project, considerably shorter licensing and construction period, adaptability to closed system design concept to reduce adverse environmental impacts, considerably reduced risks of delays and substantial cost over-runs, better suited to meeting peaking capacity requirements for individual utilities, and much less transmission inter-connection requirements. An overall licensing and construction schedule of about 3 to 3 1/2 years is realistic for many smaller pumped storage projects, and competitive costs in terms of dollars per kW installed can be achieved

  15. SU-F-T-134: Can We Use the Same Dose Constrains Learnt From Photon World to Plan Proton for Lung Cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Z [Rutgers Cancer Institute of New Jersey, New Brunswick, NJ (United States); Zou, J; Yue, N [Rutgers University, New Brunswick, NJ (United States); Zhang, M [Rutgers Cancer Institute of New Jersey, Rutgers The State University of New, New Brunswick, NJ (United States)

    2016-06-15

    Purpose: To evaluate if the same DVH constrains used in photon plans can be safely used to plan proton therapy for lung cancer. Since protons and photons have different dose deposition patterns, the hypothesis is following DVH constrains derived from photon world is not safe for proton. Methods: We retrospectively evaluated plans for 11 lung cancer patients. Each patient was planned with photon and proton following the same dose constrains. Dose statistics on PTV, normal lung, heart and esophagus were extracted for comparison. gEUD for normal lung was calculated and compared between proton and photon plans. We calculated series of gEUDs for each plan by varying the parameter “a” in gEUD formula from 0.1 to 3, covering the whole confidence interval. Results: For all patients, proton plans yield similar PTV coverage and lower dose to heart and esophagus than photon plans. Normal lung V5 was 32.3 % on average in proton plans than 55.4 % in photon. Normal lung gEUD monotonically increased with increasing “a” for all proton and photon plans. For a given patient, the gEUD-proton(a) had a steeper slope than gEUD-photon(a). The two curves crossed for 8 out of 11 patients when “a” = [0.1, 3]. a-crossing ranged from 0.8 to 2.44 with an average of 1.15. For aproton was less than gEUD-photon and vice versa. Conclusion: The current clinical guideline is the lower normal lung V5 would associated with less complications. However, proton plans with a lower normal lung V5 could yield a higher gEUD than photon if the real “a” is larger than a-crossing. Since a-crossing was within the possible range of real “a”, simply following the normal lung V5 guideline for proton plan would not be a good practice. More comprehensive methods should be developed to evaluate the proton plan.

  16. SU-F-T-134: Can We Use the Same Dose Constrains Learnt From Photon World to Plan Proton for Lung Cancer?

    International Nuclear Information System (INIS)

    Xiao, Z; Zou, J; Yue, N; Zhang, M

    2016-01-01

    Purpose: To evaluate if the same DVH constrains used in photon plans can be safely used to plan proton therapy for lung cancer. Since protons and photons have different dose deposition patterns, the hypothesis is following DVH constrains derived from photon world is not safe for proton. Methods: We retrospectively evaluated plans for 11 lung cancer patients. Each patient was planned with photon and proton following the same dose constrains. Dose statistics on PTV, normal lung, heart and esophagus were extracted for comparison. gEUD for normal lung was calculated and compared between proton and photon plans. We calculated series of gEUDs for each plan by varying the parameter “a” in gEUD formula from 0.1 to 3, covering the whole confidence interval. Results: For all patients, proton plans yield similar PTV coverage and lower dose to heart and esophagus than photon plans. Normal lung V5 was 32.3 % on average in proton plans than 55.4 % in photon. Normal lung gEUD monotonically increased with increasing “a” for all proton and photon plans. For a given patient, the gEUD-proton(a) had a steeper slope than gEUD-photon(a). The two curves crossed for 8 out of 11 patients when “a” = [0.1, 3]. a-crossing ranged from 0.8 to 2.44 with an average of 1.15. For a< a-crossing, gEUD-proton was less than gEUD-photon and vice versa. Conclusion: The current clinical guideline is the lower normal lung V5 would associated with less complications. However, proton plans with a lower normal lung V5 could yield a higher gEUD than photon if the real “a” is larger than a-crossing. Since a-crossing was within the possible range of real “a”, simply following the normal lung V5 guideline for proton plan would not be a good practice. More comprehensive methods should be developed to evaluate the proton plan.

  17. Australian national proton facility

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities and apart from the Harvard Cyclotron Laboratory and some low energy machines for eye treatment, only small numbers of patients were treated in each centre and conditions were less than optimal. Limited beam time and lack of support facilities restricted the type of patient treated and conventional fractionation could not be used. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. Since the development of hospital-based facilities, such as the one in Loma Linda in California, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or intensity modulated radiotherapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in the low dose volume is likely to be particularly

  18. Experimental study of the response of radiochromic films to proton radiation of low energy

    International Nuclear Information System (INIS)

    Mercado-Uribe, H.; Gamboa-deBuen, I.; Buenfil, A.E.; Avila, O.; Brandan, M.E.

    2009-01-01

    We have investigated the response of radiochromic films (MD-55 and HD-810) exposed to protons of 0.6 MeV. Each film is bombarded with a proton beam in an angular geometry, in such a way that the absorbed dose is related to angle. Depending on the energy and the angular fluence, the irradiated volume is total or partial. We compare the dose of these irradiated films with fully irradiated films exposed to γ radiation from a 60 Co calibrated source.

  19. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby, R., Ph.D.

    2003-06-27

    OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer. Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on

  20. Pharmacological and Safety Profile of Dexlansoprazole: A New Proton Pump Inhibitor – Implications for Treatment of Gastroesophageal Reflux Disease in the Asia Pacific Region

    Science.gov (United States)

    Goh, Khean Lee; Choi, Myung Gyu; Hsu, Ping I; Chun, Hoon Jai; Mahachai, Varocha; Kachintorn, Udom; Leelakusolvong, Somchai; Kim, Nayoung; Rani, Abdul Aziz; Wong, Benjamin C Y; Wu, Justin; Chiu, Cheng Tang; Shetty, Vikram; Bocobo, Joseph C; Chan, Melchor M; Lin, Jaw-Town

    2016-01-01

    Although gastroesophageal reflux disease is not as common in Asia as in western countries, the prevalence has increased substantially during the past decade. Gastroesophageal reflux disease is associated with considerable reductions in subjective well-being and work productivity, as well as increased healthcare use. Proton pump inhibitors (PPIs) are currently the most effective treatment for gastroesophageal reflux disease. However, there are limitations associated with these drugs in terms of partial and non-response. Dexlansoprazole is the first PPI with a dual delayed release formulation designed to provide 2 separate releases of medication to extend the duration of effective plasma drug concentration. Dexlansoprazole has been shown to be effective for healing of erosive esophagitis, and to improve subjective well-being by controlling 24-hour symptoms. Dexlansoprazole has also been shown to achieve good plasma concentration regardless of administration with food, providing flexible dosing. Studies in healthy volunteers showed no clinically important effects on exposure to the active metabolite of clopidogrel or clopidogrel-induced platelet inhibition, with no dose adjustment of clopidogrel necessary when coprescribed. This review discusses the role of the new generation PPI, dexlansoprazole, in the treatment of gastroesophageal reflux disease in Asia. PMID:26932927

  1. Proton channeling in Au at low energies

    International Nuclear Information System (INIS)

    Valdes, J.E.; Vargas, P.

    1996-01-01

    The electronic energy loss for low velocity protons channeled in the direction single crystal Au is calculated. The spatial distribution of valence electronic density in Au is calculated using Tight Binding Linear Muffin Tin Method. The proton trajectories are determined by numerical integration of the classical motion equation, and the energy loss is evaluated using the calculated valence electronic density in the friction term. The results allow to describe qualitatively the non linear behavior of energy loss with ion velocity observed experimentally. (author)

  2. SU-F-BRD-05: Robustness of Dose Painting by Numbers in Proton Therapy

    International Nuclear Information System (INIS)

    Montero, A Barragan; Sterpin, E; Lee, J

    2015-01-01

    Purpose: Proton range uncertainties may cause important dose perturbations within the target volume, especially when steep dose gradients are present as in dose painting. The aim of this study is to assess the robustness against setup and range errors for high heterogeneous dose prescriptions (i.e., dose painting by numbers), delivered by proton pencil beam scanning. Methods: An automatic workflow, based on MATLAB functions, was implemented through scripting in RayStation (RaySearch Laboratories). It performs a gradient-based segmentation of the dose painting volume from 18FDG-PET images (GTVPET), and calculates the dose prescription as a linear function of the FDG-uptake value on each voxel. The workflow was applied to two patients with head and neck cancer. Robustness against setup and range errors of the conventional PTV margin strategy (prescription dilated by 2.5 mm) versus CTV-based (minimax) robust optimization (2.5 mm setup, 3% range error) was assessed by comparing the prescription with the planned dose for a set of error scenarios. Results: In order to ensure dose coverage above 95% of the prescribed dose in more than 95% of the GTVPET voxels while compensating for the uncertainties, the plans with a PTV generated a high overdose. For the nominal case, up to 35% of the GTVPET received doses 5% beyond prescription. For the worst of the evaluated error scenarios, the volume with 5% overdose increased to 50%. In contrast, for CTV-based plans this 5% overdose was present only in a small fraction of the GTVPET, which ranged from 7% in the nominal case to 15% in the worst of the evaluated scenarios. Conclusion: The use of a PTV leads to non-robust dose distributions with excessive overdose in the painted volume. In contrast, robust optimization yields robust dose distributions with limited overdose. RaySearch Laboratories is sincerely acknowledged for providing us with RayStation treatment planning system and for the support provided

  3. Evidence-based support for the use of proton pump inhibitors in cancer therapy.

    Science.gov (United States)

    Fais, Stefano

    2015-11-24

    'We can only cure what we can understand first', said Otto H. Warburg, the 1931 Nobel laureate for his discovery on tumor metabolism. Unfortunately, we still don't know too much the mechanisms underlying of cancer development and progression. One of the unsolved mystery includes the strategies that cancer cells adopt to cope with an adverse microenvironment. However, we knew, from the Warburg's discovery, that through their metabolism based on sugar fermentation, cancer cells acidify their microenvironment and this progressive acidification induces a selective pressure, leading to development of very malignant cells entirely armed to survive in the hostile microenvironment generated by their own metabolism. One of the most mechanism to survive to the acidic tumor microenvironment are proton exchangers not allowing intracellular acidification through a continuous elimination of H(+) either outside the cells or within the internal vacuoles. This article wants to comment a translational process through which from the preclinical demonstration that a class of proton pump inhibitors (PPI) exploited worldwide for peptic ulcer treatment and gastroprotection are indeed chemosensitizers as well, we have got to the clinical proof of concept that PPI may well be included in new anti-cancer strategies, and with a solid background and rationale.

  4. Unexplained abdominal pain as a driver for inappropriate therapeutics: an audit on the use of intravenous proton pump inhibitors

    OpenAIRE

    Pauline Siew Mei Lai; Yin Yen Wong; Yong Chia Low; Hui Ling Lau; Kin-Fah Chin; Sanjiv Mahadeva

    2014-01-01

    Background. Proton pump inhibitors (PPIs) are currently the most effective agents for acid-related disorders. However, studies show that 25–75% of patients receiving intravenous PPIs had no appropriate justification, indicating high rates of inappropriate prescribing. Objective. To examine the appropriate use of intravenous PPIs in accordance with guidelines and the efficacy of a prescribing awareness intervention at an Asian teaching institution. Setting. Prospective audit in a tertiary hosp...

  5. Proton therapy physics

    CERN Document Server

    2012-01-01

    Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also exami...

  6. Clinical proton dosimetry. Part 1: Beam production, beam delivery and measurement of absorbed dose

    International Nuclear Information System (INIS)

    1998-01-01

    The development of accurate and uniform standards for radiation treatment dosimetry has been a continuing effort since the earliest days of radiotherapy. This ICRU Report is intended to promote uniformity of standards that will provide a basis for world-wide comparison of clinical results and allow the development of meaningful clinical trials. This Report describes current practice in proton therapy and recommends standards for the dosimetry of proton treatments. Established proton treatment facilities might use this Report as a source of information for the maintenance of accurate standards. New facilities may build their procedures from recommendations found in this Report and planners of new facilities may examine alternatives within current practice for the production and monitoring of treatment beams. This Report includes a description of the interaction of protons with matter, various methods of beam production, the characteristics of proton beams in clinical use, current methods for beam monitoring and specific recommendations for dose calibration

  7. SU-E-T-568: Neutron Dose Survey of a Compact Single Room Proton Machine

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y; Prusator, M; Islam, M; Johnson, D; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: To ensure acceptable radiation limits are maintained for those working at and near the machine during its operation, a comprehensive radiation survey was performed prior to the clinical release of Mevion S250 compact proton machine at Stephenson Oklahoma Cancer Center. Methods: The Mevion S250 proton therapy system consists of the following: a superconducting cyclotron to accelerate the proton particles, a passive double scattering system for beam shaping, and paired orthogonal x-ray imaging systems for patient setup and verification via a 6D robotic couch. All equipment is housed within a single vault of compact design. Two beam delivery applicators are available for patient treatment, offering field sizes of as great as 14 cm and 25 cm in diameter, respectively. Typical clinical dose rates are between 1 and 2 Gy/min with a fixed beam energy of 250 MeV. The large applicator (25 cm in diameter) was used in conjunction with a custom cut brass aperture to create a 20 cm x 20 cm field size at beam isocenter. A 30 cm − 30 cm − 35 cm high density plastic phantom was placed in the beam path to mimic the conditions creating patient scatter. Measurements integrated-ambient-neutron-dose-equivalence were made with a SWENDII detector. Gantry angles of 0, 90 and 180 degrees, with a maximum dose rate of 150 MU/min (for large applicator) and beam configuration of option 1 (range 25 cm and 20 cm modulation), were selected as testing conditions. At each point of interest, the highest reading was recorded at 30 cm from the barrier surface. Results: The highest neutron dose was estimated to be 0.085 mSv/year at the console area. Conclusion: All controlled areas are under 5 mSv/year and the uncontrolled areas are under 1 mSv/year. The radiation protection provided by the proton vault is of sufficient quality.

  8. Development and verification of an analytical algorithm to predict absorbed dose distributions in ocular proton therapy using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Koch, Nicholas C; Newhauser, Wayne D

    2010-01-01

    Proton beam radiotherapy is an effective and non-invasive treatment for uveal melanoma. Recent research efforts have focused on improving the dosimetric accuracy of treatment planning and overcoming the present limitation of relative analytical dose calculations. Monte Carlo algorithms have been shown to accurately predict dose per monitor unit (D/MU) values, but this has yet to be shown for analytical algorithms dedicated to ocular proton therapy, which are typically less computationally expensive than Monte Carlo algorithms. The objective of this study was to determine if an analytical method could predict absolute dose distributions and D/MU values for a variety of treatment fields like those used in ocular proton therapy. To accomplish this objective, we used a previously validated Monte Carlo model of an ocular nozzle to develop an analytical algorithm to predict three-dimensional distributions of D/MU values from pristine Bragg peaks and therapeutically useful spread-out Bragg peaks (SOBPs). Results demonstrated generally good agreement between the analytical and Monte Carlo absolute dose calculations. While agreement in the proximal region decreased for beams with less penetrating Bragg peaks compared with the open-beam condition, the difference was shown to be largely attributable to edge-scattered protons. A method for including this effect in any future analytical algorithm was proposed. Comparisons of D/MU values showed typical agreement to within 0.5%. We conclude that analytical algorithms can be employed to accurately predict absolute proton dose distributions delivered by an ocular nozzle.

  9. Hydraulic performance of a low specific speed centrifugal pump with Spanwise-Slotted Blades

    International Nuclear Information System (INIS)

    Ye, D X; Li, H; Wang, Y

    2013-01-01

    The hydraulic efficiency of a low specific speed centrifugal pump is low because of the long and narrow meridian flow passage, and the severe disk friction. Spanwise slotted blade flow control technology has been applied to the low specific speed centrifugal pump. This paper concluded that spanwise slotted blades can improve the pump performance in both experiments and simulations. In order to study the influence to the impeller and volute by spanwise slotted blade, impeller efficiency and volute efficiency were defined. The minimum volute efficiency and the maximum pump efficiency appear at the same time in the design flow condition in the unsteady simulation. The mechanism of spanwise slotted blade flow control technology should be researched furthermore

  10. Proton pump inhibitor use and association with spontaneous bacterial peritonitis in patients with cirrhosis and ascites.

    Science.gov (United States)

    Siple, Jolene F; Morey, Jessica M; Gutman, Tracy E; Weinberg, Kathy L; Collins, Peggie D

    2012-10-01

    To evaluate the literature regarding the efficacy and safety of proton pump inhibitors (PPIs) when they are used in patients with cirrhosis and ascites. A literature search was conducted using MEDLINE (1966-May 2012) and Web of Science (1990-May 2012) with the terms proton pump inhibitor, antisecretory therapy, cirrhosis, ascites, spontaneous bacterial peritonitis, and Clostridium difficile. The search was restricted to articles published in English on the use of PPIs in humans. Reference citations from identified published articles were reviewed for relevant information. All articles in English identified from the data sources were evaluated for inclusion. One case series, 8 retrospective case-control trials, and 1 meta-analysis were identified. Cirrhosis may cause complications such as portal hypertension, esophageal varices, and ascites. Patients may be prescribed PPIs without clear indications or because of their propensity to develop upper gastrointestinal symptoms and bleeding. However, gastric acidity is a major nonspecific defense mechanism and there is insufficient evidence on the need for chronic acid suppression in patients with cirrhosis. It is postulated that the portal hypertensive environment in cirrhosis and the acid suppression from PPIs can increase the risk of spontaneous bacterial peritonitis and C. difficile infection in patients with cirrhosis with ascites. Several retrospective studies and 1 meta-analysis have confirmed this association. Patients with cirrhosis and ascites should be monitored carefully while on PPIs for a possible increased risk of infection from spontaneous bacterial peritonitis and C. difficile. Prospective randomized trials are needed to confirm this association. Clinicians should be aware of this lesser known adverse effect of PPIs.

  11. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    International Nuclear Information System (INIS)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K; Hansen, D; Rit, S; Belka, C

    2016-01-01

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  12. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K [Ludwig-Maximilians-Universitaet Muenchen (LMU Munich), Garching b. Muenchen (Germany); Hansen, D [Aarhus University Hospital, Aarhus, Jutland (Denmark); Rit, S [University Lyon, Lyon, Auvergne-Rhone-Alpes (France); Belka, C [LMU Munich, Munich (Germany)

    2016-06-15

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  13. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca(2+) exchangers

    Science.gov (United States)

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+) exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recen...

  14. Regulatory assembly of the vacuolar proton pump VoV1-ATPase in yeast cells by FLIM-FRET

    Science.gov (United States)

    Ernst, Stefan; Batisse, Claire; Zarrabi, Nawid; Böttcher, Bettina; Börsch, Michael

    2010-02-01

    We investigate the reversible disassembly of VOV1-ATPase in life yeast cells by time resolved confocal FRET imaging. VOV1-ATPase in the vacuolar membrane pumps protons from the cytosol into the vacuole. VOV1-ATPase is a rotary biological nanomotor driven by ATP hydrolysis. The emerging proton gradient is used for secondary transport processes as well as for pH and Ca2+ homoeostasis in the cell. The activity of the VOV1-ATPase is regulated through assembly / disassembly processes. During starvation the two parts of VOV1-ATPase start to disassemble. This process is reversed after addition of glucose. The exact mechanisms are unknown. To follow the disassembly / reassembly in vivo we tagged two subunits C and E with different fluorescent proteins. Cellular distributions of C and E were monitored using a duty cycle-optimized alternating laser excitation scheme (DCO-ALEX) for time resolved confocal FRET-FLIM measurements.

  15. Aging and low-flow degradation of auxilary feedwater pumps

    International Nuclear Information System (INIS)

    Adams, M.L.

    1992-01-01

    This paper documents the results of research done under the auspices of the Nuclear Regulatory Commission Nuclear Plant Aging Research Program. It examines the degradation imparted to safety related Auxiliary Feedwater System pumps at nuclear plants due to the low flow operation. The Auxiliary Feedwater (AFW) System is normally a stand-by system. As such it is operated most often in the test mode. Since few plants are equipped with full flow test loops, most testing is accomplished at minimum flow conditions in pump by-pass lines. It is the vibration and hydraulic forces generated at low flow conditions that have been shown to be the major causes of AFW pump aging and degradation. The wear can be manifested in a number of ways, such as impeller or diffuser breakage, thrust bearing and/or balance device failure due to excessive loading, cavitation damage on such stage impellers, increase seal leakage or failure, sear injection piping failure, shaft or coupling breakage, and rotating element seizure

  16. Aging and low-flow degradation of auxiliary feedwater pumps

    International Nuclear Information System (INIS)

    Adams, M.L.

    1991-01-01

    This paper documents the results of research done under the auspices of the Nuclear Regulatory Commission Nuclear Plant Aging Research Program. It examines the degradation imparted to safety Auxiliary Feedwater System pumps at nuclear plants due to the low flow operation. The Auxiliary Feedwater (AFW) System is normally a stand-by system. As such it is operated most often in the test mode. Since few plants are equipped with full flow test loops, most testing is accomplished at minimum flow conditions in pump by-pass lines. It is the vibration and hydraulic forces generated at low flow conditions that have been shown to be the major causes of AFW pump aging and degradation. The wear can be manifested in a number of ways, such as impeller or diffuser breakage, thrust bearing and/or balance device failure due to excessive loading, cavitation damage on such stage impellers, increase seal leakage or failure, sear injection piping failure, shaft or coupling breakage, and rotating element seizure

  17. Coprescribing proton-pump inhibitors with nonsteroidal anti-inflammatory drugs: risks versus benefits

    Directory of Open Access Journals (Sweden)

    Gwee KA

    2018-02-01

    Full Text Available Kok Ann Gwee,1 Vernadine Goh,2 Graca Lima,3 Sajita Setia4 1Stomach, Liver, and Bowel Centre, Gleneagles Hospital, 2Department of Pharmacy, National University of Singapore, Singapore; 3Global Medical Affairs, Asia-Pacific Region, Pfizer, Hong Kong; 4Medical Affairs, Pfizer, Singapore Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs are often coadministered with proton-pump inhibitors (PPIs to reduce NSAID-induced gastrointestinal (GI adverse events. This coadministration is generally regarded as safe, and is included in many of the guidelines on NSAID prescription. However, recent evidence indicates that the GI risks associated with NSAIDs can be potentiated when they are combined with PPIs. This review discusses the GI effects and complications of NSAIDs and how PPIs may potentiate these effects, options for prevention of GI side effects, and appropriate use of PPIs in combination with NSAIDs. Keywords: PPIs, COX2 inhibitors, NSAIDs, enteropathy, gastrointestinal

  18. The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors

    Science.gov (United States)

    Bellone, Matteo; Calcinotto, Arianna; Filipazzi, Paola; De Milito, Angelo; Fais, Stefano; Rivoltini, Licia

    2013-01-01

    We have recently reported that lowering the pH to values that are frequently detected in tumors causes reversible anergy in both human and mouse CD8+ T lymphocytes in vitro. The same occurs in vivo, in the tumor microenvironment and the administration of proton pump inhibitors, which buffer tumor acidity, can revert T-cell anergy and increase the efficacy of immunotherapy. PMID:23483769

  19. Can active proton interrogation find shielded nuclear threats at human-safe radiation levels?

    Energy Technology Data Exchange (ETDEWEB)

    Liew, Seth Van, E-mail: vanliew@gmail.com

    2017-05-21

    A new method of low-dose proton radiography is presented. The system is composed of an 800 MeV proton source, bending magnets, and compact detectors, and is designed for drive-through cargo scanning. The system has been simulated using GEANT4. Material identification algorithms and pixel sorting methods are presented that allow the system to perform imaging at doses low enough to scan passenger vehicles and people. Results are presented on imaging efficacy of various materials and cluttered cargoes. The identification of shielded nuclear materials at human-safe doses has been demonstrated.

  20. Electron, electron-bremsstrahlung and proton depth-dose data for space-shielding applications

    Science.gov (United States)

    Seltzer, S. M.

    1979-01-01

    A data set has been developed, consisting of depth-dose distributions for omni-directional electron and proton fluxes incident on aluminum shields. The principal new feature of this work is the accurate treatment, based on detailed Monte Carlo calculations, of the electron-produced bremsstrahlung component. Results covering the energy region of interest in space-shielding calculations have been obtained for the absorbed dose (a) as a function of depth in a semi-infinite medium, (b) at the edge of slab shields, and (c) at the center of a solid sphere. The dose to a thin tissue-equivalent detector was obtained as well as that in aluminum. Various results and comparisons with other work are given.

  1. Non-prescription proton-pump inhibitors for self-treating frequent heartburn:the role of the Canadian pharmacist

    Science.gov (United States)

    Armstrong, David; Nakhla, Nardine

    2016-01-01

    Heartburn and acid regurgitation are the cardinal symptoms of gastroesophageal reflux and occur commonly in the Canadian population. Multiple non-prescription treatment options are available for managing these symptoms, including antacids, alginates, histamine-H2 receptor antagonists (H2RAs), and proton-pump inhibitors (PPIs). As a result, pharmacists are ideally positioned to recommend appropriate treatment options based upon an individual’s needs and presenting symptoms, prior treatment response, comorbid medical conditions, and other relevant factors. Individuals who experience mild heartburn and/or have symptoms that occur predictably in response to known precipitating factors can manage their symptoms by avoiding known triggers and using on-demand antacids and/or alginates or lower-dose non-prescription H2RAs (e.g. ranitidine 150 mg). For those with moderate symptoms, lifestyle changes, in conjunction with higher-dose non-prescription H2RAs, may be effective. However, for individuals with moderate-to-severe symptoms that occur frequently (i.e. ≥2 days/week), the non-prescription (Schedule II) PPI omeprazole 20 mg should be considered. The pharmacist can provide important support by inquiring about the frequency and severity of symptoms, identifying an appropriate treatment option, and recognizing other potential causes of symptoms, as well as alarm features and atypical symptoms that would necessitate referral to a physician. After recommending an appropriate treatment, the pharmacist can provide instructions for its correct use. Additionally, the pharmacist should inquire about recurrences, respond to questions about adverse events, provide monitoring parameters, and counsel on when referral to a physician is warranted. Pharmacists are an essential resource for individuals experiencing heartburn; they play a crucial role in helping individuals make informed self-care decisions and educating them to ensure that therapy is used in an optimal, safe, and

  2. Proton Pumping and Slippage Dynamics of a Eukaryotic P-Type ATPase Studied at the Single-Molecule Level

    DEFF Research Database (Denmark)

    Veshaguri, Salome

    In all eukaryotes the plasma membrane potential and secondary transport systems are energized by P-type ATPases whose regulation however remains poorly understood. Here we monitored at the single-molecule level the activity of the prototypic proton pumping P-type ATPase Arabidopsis thaliana isoform....... We propose that variable ATP/H+ stoichiometry emerges as a novel mechanism for adaptation when challenged with depletion of ATP that is likely relevant for other ATPases. Such measurements will provide indispensable insights into the mechanisms of function and regulation of many other ion...

  3. Measurements of spatial distribution of absorbed dose in proton therapy with Gafchromic EBT3

    International Nuclear Information System (INIS)

    Gambarini, G.; Regazzoni, V.; Grisotto, S.; Artuso, E.; Giove, D.; Borroni, M.; Carrara, M.; Pignoli, E.; Mirandola, A.; Ciocca, M.

    2014-08-01

    A study of the response of EBT3 films has been carried out. Light transmittance images (around 630 nm) were acquired by means of a Ccd camera. The difference of optical density was assumed as dosimeter response. Calibration was performed by means of 60 Co photons, at a radiotherapy facility. A study of the response variation during the time after exposure has been carried out. EBT3 films were exposed, in a solid-water phantom, to proton beams of various energies and the obtained depth-dose profiles were compared with those measured with a ionization chamber. As expected, in the Bragg peak region the values obtained with EBT3 films were lower than those obtained with the ionization chamber. The ratio of such values was evaluated, along dose profiles, for each utilized energy. A method for correcting the data measured with EBT3 has been proposed and tested. The results confirm that the method can be advantageously applied for obtaining spatial distribution of the absorbed dose in proton therapy. (author)

  4. Measurements of spatial distribution of absorbed dose in proton therapy with Gafchromic EBT3

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Regazzoni, V.; Grisotto, S.; Artuso, E.; Giove, D. [Universita degli Studi di Milano, Department of Physics, via Celoria 16, 20133 Milano (Italy); Borroni, M.; Carrara, M.; Pignoli, E. [Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Medical Physics Unit, via Giacomo Venezian 16, 20133 Milano (Italy); Mirandola, A.; Ciocca, M., E-mail: grazia.gambarini@mi.infn.it [Centro Nazionale Adroterapia Oncologica, Medical Physics Unit, Strada Campeggi 53, 27100 Pavia (Italy)

    2014-08-15

    A study of the response of EBT3 films has been carried out. Light transmittance images (around 630 nm) were acquired by means of a Ccd camera. The difference of optical density was assumed as dosimeter response. Calibration was performed by means of {sup 60}Co photons, at a radiotherapy facility. A study of the response variation during the time after exposure has been carried out. EBT3 films were exposed, in a solid-water phantom, to proton beams of various energies and the obtained depth-dose profiles were compared with those measured with a ionization chamber. As expected, in the Bragg peak region the values obtained with EBT3 films were lower than those obtained with the ionization chamber. The ratio of such values was evaluated, along dose profiles, for each utilized energy. A method for correcting the data measured with EBT3 has been proposed and tested. The results confirm that the method can be advantageously applied for obtaining spatial distribution of the absorbed dose in proton therapy. (author)

  5. Multigroup and coupled forward-adjoint Monte Carlo calculation efficiencies for secondary neutron doses from proton beams

    International Nuclear Information System (INIS)

    Kelsey IV, Charles T.; Prinja, Anil K.

    2011-01-01

    We evaluate the Monte Carlo calculation efficiency for multigroup transport relative to continuous energy transport using the MCNPX code system to evaluate secondary neutron doses from a proton beam. We consider both fully forward simulation and application of a midway forward adjoint coupling method to the problem. Previously we developed tools for building coupled multigroup proton/neutron cross section libraries and showed consistent results for continuous energy and multigroup proton/neutron transport calculations. We observed that forward multigroup transport could be more efficient than continuous energy. Here we quantify solution efficiency differences for a secondary radiation dose problem characteristic of proton beam therapy problems. We begin by comparing figures of merit for forward multigroup and continuous energy MCNPX transport and find that multigroup is 30 times more efficient. Next we evaluate efficiency gains for coupling out-of-beam adjoint solutions with forward in-beam solutions. We use a variation of a midway forward-adjoint coupling method developed by others for neutral particle transport. Our implementation makes use of the surface source feature in MCNPX and we use spherical harmonic expansions for coupling in angle rather than solid angle binning. The adjoint out-of-beam transport for organs of concern in a phantom or patient can be coupled with numerous forward, continuous energy or multigroup, in-beam perturbations of a therapy beam line configuration. Out-of-beam dose solutions are provided without repeating out-of-beam transport. (author)

  6. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    International Nuclear Information System (INIS)

    Welsh, James; Amini, Arya; Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt; Soh, Hendrick; Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing; Bluett, Jaques; Mohan, Radhe; Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y.

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V 20 , V 30 , or V 40 ) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within 20 was 364.0 cm 3 and 160.0 cm 3 (p 30 was 144.6 cm 3 vs 77.0 cm 3 (p = 0.0012), V 35 was 93.9 cm 3 vs 57.9 cm 3 (p = 0.005), V 40 was 66.5 cm 3 vs 45.4 cm 3 (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures

  7. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  8. The automatic regulation of the basal dose on the insulin pump for the treatment of patients that have Diabetes type 1.

    Science.gov (United States)

    Mehanović, Sifet; Mujić, Midhat

    2010-05-01

    Diabetes mellitus type 1 is a chronic metabolic disorder, and its main characteristic is Hyperglycemia. It usually occurs in the early years because of the absolute or relative absence of the active insulin that is caused by the autoimmune disease of the beta cells of the pancreas. Despite the numerous researches and efforts of the scientists, the therapy for Diabetes type 1 is based on the substitution of insulin. Even though the principles of the therapy have not changed so much, still some important changes have occurred in the production and usage of insulin. Lately, the insulin pumps are more frequent in the therapy for Diabetes type 1. The functioning of the pump is based on the continuing delivery of insulin in a small dose ("the basal dose"), that keeps the level of glycemia in the blood constant. The increase of glycemia during the meal is reduced with the additional dose of insulin ("the bolus dose"). The use of the insulin pumps and the continuing glucose sensors has provided an easier and more efficient monitoring of the diabetes, a better metabolic control and a better life quality for the patient and his/her family. This work presents the way of automatic regulation of the basal dose of insulin through the synthesis of the functions of the insulin pump and the continuing glucose sensor. The aim is to give a contribution to the development of the controlling algorithm on the insulin pump for the automatic regulation of the glucose concentration in the blood. This could be a step further which is closer to the delivery of the dose of insulin that is really needed for the basic needs of the organism, and a significant contribution is given to the development of the artificial pancreas.

  9. On the parametrization of lateral dose profiles in proton radiation therapy

    CERN Document Server

    Embriaco, A

    2015-01-01

    Hadrontherapy requires a good knowledge of the physical interactions of the particles when they cross the biological tissue: one of the aspects that determine the characterization of the beam is the study of the lateral profile. We study different parametrizations for the lateral dose profile of protons beam in water considering different energies at different depth. We compare six functions: we start from the well known Gaussian and Double Gaussian parametrizations and also analyse more recent parametrization obtained with Triple Gaussian and Double Gaussian Lorentz-Cauchy functions. Finally we propose alternative parametrizations based on the Gauss-Rutherford and Gauss-Levy functions. The goal is to improve the performances of the actual treatment planning used in proton beam therapy by suggesting alternative approaches to the Gaussian description typically employed.

  10. SU-E-T-135: Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J; Giantsoudi, D; Grassberger, C; Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: To estimate the clinical relevance of approximations made in analytical dose calculation methods (ADCs) used for treatment planning on tumor coverage and tumor control probability (TCP) in proton therapy. Methods: We compared dose distributions planned with ADC to delivered dose distributions (as determined by TOPAS Monte Carlo (MC) simulations). We investigated 10 patients per site for 5 treatment sites (head-and-neck, lung, breast, prostate, liver). We evaluated differences between the two dose distributions analyzing dosimetric indices based on the dose-volume-histograms, the γ-index and the TCP. The normal tissue complication probability (NTCP) was estimated for the bladder and anterior rectum for the prostate patients. Results: We find that the target doses are overestimated by the ADC by 1–2% on average for all patients considered. All dosimetric indices (the mean dose, D95, D50 and D02, the dose values covering 95%, 50% and 2% of the target volume, respectively) are predicted within 5% of the delivered dose. A γ-index with a 3%/3mm criteria had a passing rate for target volumes above 96% for all patients. The TCP predicted by the two algorithms was up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head-and-neck and lung patients, respectively. Differences in NTCP for anterior-rectum and bladder for prostate patients were less than 3%. Conclusion: We show that ADC provide adequate dose distributions for most patients, however, they can Result in underdosage of the target by as much as 5%. The TCP was found to be up to 11% lower than predicted. Advanced dose-calculation methods like MC simulations may be necessary in proton therapy to ensure target coverage for heterogeneous patient geometries, in clinical trials comparing proton therapy to conventional radiotherapy to avoid biases due to systematic discrepancies in calculated dose distributions, and, if tighter range margins are considered. Fully funded by NIH grants.

  11. Development of low-cost, high-performance non-evaporable getter (NEG) pumps

    Energy Technology Data Exchange (ETDEWEB)

    Mase, Kazuhiko, E-mail: mase@post.kek.jp [Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan); SOKENDAI (The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba 305-0801 (Japan); Tanaka, Masato [Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku 263-8522 (Japan); Ida, Naoya [Faculty of Science and Technology, Hirosaki University, 1 Bunkyocho, Hirosaki 036-8560 (Japan); Kodama, Hiraku [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Kikuchi, Takashi [Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2016-07-27

    Low-cost, high-performance non-evaporable getter (NEG) pumps were constructed using commercial NEG pills comprising 70 wt% Zr, 24.6 wt% V, and 5.4 wt% Fe, a conflat flange with an outer diameter of 70, 152, or 203 mm (DN 40 CF, DN 100 CF, and DN 160 CF, respectively), and a tantalum heater. After activation at 400 °C for 30 min, the pumping speeds of a DN 40 CF NEG pump measured with the orifice method were 47–40, 8–6, 24–17, and 19–15 L/s for H{sub 2}, N{sub 2}, CO, and CO{sub 2} gasses, respectively. NEG pumps using DN 100 CF and DN 160 CF were also developed, and their pumping speeds are estimated. These NEG pumps are favorable alternatives to sputtering ion pumps in VSX beamlines because they do not produce hydrocarbons except during the activation period. The NEG pumps can also be used for accelerators, front ends, end stations, and differential pumping systems.

  12. SU-E-T-286: Dose Verification of Spot-Scanning Proton Beam Using GafChromic EBT3 Film

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C; Tang, S; Mah, D [ProCure Proton Therapy Center, Somerset, NJ (United States); Chan, M [Memorial Sloan-Kettering Cancer Center, Basking Ridge, NJ (United States)

    2015-06-15

    Purpose: Dose verification of spot-scanning proton pencil beam is performed via planar dose measurements at several depths using an ionization-chamber array, requiring repeat irradiations of each field for each depth. Here we investigate film dosimetry which has two advantages: higher resolution and efficiency from one-shot irradiation for multiple depths. Methods: Film calibration was performed using an EBT3 film at 20-cm depth of Plastic Water (CIRS, Norfolk, VA) exposed by a 10-level step wedge on a Proteus Plus proton system (IBA, Belgium). The calibration doses ranged from 25–250 cGy(RBE) for proton energies of 170–200 MeV. A uniform 1000 cm{sup 3} dose cube and a clinical prostate combined with seminal-vesicle and pelvic-nodes plan were used for this study. All treatment plans were generated in the RayStation (RaySearch Lab, Sweden). The planar doses at different depths for both cases were measured with film using triple-channel dosimetry and the MatriXX PT (IBA Dosimetry, Germany). The Gamma passing rates, dose-difference maps, and profiles of 2D planar doses measured with EBT3 film and MatriXX, versus treatment planning system (TPS) calculations were analyzed and compared using the FilmQA Pro (Ashland Inc., Bridgewater, NJ). Results: The EBT3 film measurement results matched well with the TPS calculation data with an average passing rate >95% for 2%/2mm and are comparable with the MatriXX measurements (0.7%, 1.8%, 3.8% mean differences corresponding to 3%/3mm, 3%/2mm, 2%/2mm, respectively). Overall passing rates for EBT3 films appear higher than those with MatriXX detectors. Conclusion: The energy dependence of the film response could be minimized by calibration using proton beam with mixed energies. The greater efficiency of the dose verification using GafChromic EBT3 results in a potential cost trade-off between room capacity and film cost. EBT3 film may offer distinct advantages in highly intensity-modulated fields due to its higher resolution

  13. Machine learning-based patient specific prompt-gamma dose monitoring in proton therapy

    Science.gov (United States)

    Gueth, P.; Dauvergne, D.; Freud, N.; Létang, J. M.; Ray, C.; Testa, E.; Sarrut, D.

    2013-07-01

    Online dose monitoring in proton therapy is currently being investigated with prompt-gamma (PG) devices. PG emission was shown to be correlated with dose deposition. This relationship is mostly unknown under real conditions. We propose a machine learning approach based on simulations to create optimized treatment-specific classifiers that detect discrepancies between planned and delivered dose. Simulations were performed with the Monte-Carlo platform Gate/Geant4 for a spot-scanning proton therapy treatment and a PG camera prototype currently under investigation. The method first builds a learning set of perturbed situations corresponding to a range of patient translation. This set is then used to train a combined classifier using distal falloff and registered correlation measures. Classifier performances were evaluated using receiver operating characteristic curves and maximum associated specificity and sensitivity. A leave-one-out study showed that it is possible to detect discrepancies of 5 mm with specificity and sensitivity of 85% whereas using only distal falloff decreases the sensitivity down to 77% on the same data set. The proposed method could help to evaluate performance and to optimize the design of PG monitoring devices. It is generic: other learning sets of deviations, other measures and other types of classifiers could be studied to potentially reach better performance. At the moment, the main limitation lies in the computation time needed to perform the simulations.

  14. Machine learning-based patient specific prompt-gamma dose monitoring in proton therapy

    International Nuclear Information System (INIS)

    Gueth, P; Freud, N; Létang, J M; Sarrut, D; Dauvergne, D; Ray, C; Testa, E

    2013-01-01

    Online dose monitoring in proton therapy is currently being investigated with prompt-gamma (PG) devices. PG emission was shown to be correlated with dose deposition. This relationship is mostly unknown under real conditions. We propose a machine learning approach based on simulations to create optimized treatment-specific classifiers that detect discrepancies between planned and delivered dose. Simulations were performed with the Monte-Carlo platform Gate/Geant4 for a spot-scanning proton therapy treatment and a PG camera prototype currently under investigation. The method first builds a learning set of perturbed situations corresponding to a range of patient translation. This set is then used to train a combined classifier using distal falloff and registered correlation measures. Classifier performances were evaluated using receiver operating characteristic curves and maximum associated specificity and sensitivity. A leave-one-out study showed that it is possible to detect discrepancies of 5 mm with specificity and sensitivity of 85% whereas using only distal falloff decreases the sensitivity down to 77% on the same data set. The proposed method could help to evaluate performance and to optimize the design of PG monitoring devices. It is generic: other learning sets of deviations, other measures and other types of classifiers could be studied to potentially reach better performance. At the moment, the main limitation lies in the computation time needed to perform the simulations. (paper)

  15. Dose determination of 600 MeV proton irradiated specimens

    International Nuclear Information System (INIS)

    Gavillet, D.

    1991-01-01

    The calculation method for the experimental determination of the atomic production cross section from the γ activity measurements are presented. This method is used for the determination of some isotope production cross sections for 600 MeV proton irradition in MANET steel, copper, tungsten, gold and titanium. The results are compared with some calculation. These values are used to determine the dose of specimens irradiated in the PIREX II facility. The results are discussed in terms of the irradiation parameters. A guide for the use of the production cross section determined in the dosimetry experiment are given. (author) tabs., refs

  16. Chimeric Proton-Pumping Rhodopsins Containing the Cytoplasmic Loop of Bovine Rhodopsin

    Science.gov (United States)

    Sasaki, Kengo; Yamashita, Takahiro; Yoshida, Kazuho; Inoue, Keiichi; Shichida, Yoshinori; Kandori, Hideki

    2014-01-01

    G-protein-coupled receptors (GPCRs) transmit stimuli to intracellular signaling systems. Rhodopsin (Rh), which is a prototypical GPCR, possesses an 11-cis retinal. Photoisomerization of 11-cis to all-trans leads to structural changes in the protein of cytoplasmic loops, activating G-protein. Microbial rhodopsins are similar heptahelical membrane proteins that function as bacterial sensors, light-driven ion-pumps, or light-gated channels. They possess an all-trans retinal, and photoisomerization to 13-cis triggers structural changes in protein. Despite these similarities, there is no sequence homology between visual and microbial rhodopsins, and microbial rhodopsins do not activate G-proteins. In this study, new chimeric proton-pumping rhodopsins, proteorhodopsin (PR) and Gloeobacter rhodopsin (GR) were designed by replacing cytoplasmic loops with bovine Rh loops. Although G-protein was not activated by the PR chimeras, all 12 GR chimeras activated G-protein. The GR chimera containing the second cytoplasmic loop of bovine Rh did not activate G-protein. However, the chimera with a second and third double-loop further enhanced G-protein activation. Introduction of an E132Q mutation slowed the photocycle 30-fold and enhanced activation. The highest catalytic activity of the GR chimera was still 3,200 times lower than bovine Rh but only 64 times lower than amphioxus Go-rhodopsin. This GR chimera showed a strong absorption change of the amide-I band on a light-minus-dark difference FTIR spectrum which could represent a larger helical opening, important for G-protein activation. The light-dependent catalytic activity of this GR chimera makes it a potential optogenetic tool for enzymatic activation by light. PMID:24621599

  17. Unexplained abdominal pain as a driver for inappropriate therapeutics: an audit on the use of intravenous proton pump inhibitors.

    Science.gov (United States)

    Lai, Pauline Siew Mei; Wong, Yin Yen; Low, Yong Chia; Lau, Hui Ling; Chin, Kin-Fah; Mahadeva, Sanjiv

    2014-01-01

    Background. Proton pump inhibitors (PPIs) are currently the most effective agents for acid-related disorders. However, studies show that 25-75% of patients receiving intravenous PPIs had no appropriate justification, indicating high rates of inappropriate prescribing. Objective. To examine the appropriate use of intravenous PPIs in accordance with guidelines and the efficacy of a prescribing awareness intervention at an Asian teaching institution. Setting. Prospective audit in a tertiary hospital in Malaysia. Method. Every 4th intravenous PPI prescription received in the pharmacy was screened against hospital guidelines. Interventions for incorrect indication/dose/duration were performed. Patients' demographic data, medical history and the use of intravenous PPI were collected. Included were all adult inpatients prescribed intravenous PPI. Main Outcome Measure. Proportion of appropriate IV PPI prescriptions. Results. Data for 106 patients were collected. Most patients were male [65(61.3%)], Chinese [50(47.2%)], with mean age ± SD = 60.3 ± 18.0 years. Most intravenous PPI prescriptions were initiated by junior doctors from the surgical [47(44.3%)] and medical [42(39.6%)] departments. Only 50/106(47.2%) patients had upper gastrointestinal endoscopy/surgery performed to verify the source of bleeding. Unexplained abdominal pain [81(76.4%)] was the main driver for prescribing intravenous PPIs empirically, out of which 73(68.9%) were for suspected upper gastrointestinal bleed. Overall, intravenous PPI was found to be inappropriately prescribed in 56(52.8%) patients for indication, dose or duration. Interventions on the use of intravenous PPI were most effective when performed by senior doctors (100%), followed by clinical pharmacists (50%), and inpatient pharmacists (37.5%, p = 0.027). Conclusion. Inappropriate intravenous PPI usage is still prevalent despite the enforcement of hospital guidelines. The promotion of prescribing awareness and evidence-based prescribing

  18. TH-C-BRD-07: Minimizing Dose Uncertainty for Spot Scanning Beam Proton Therapy of Moving Tumor with Optimization of Delivery Sequence

    International Nuclear Information System (INIS)

    Li, H; Zhang, X; Zhu, X; Li, Y

    2014-01-01

    Purpose: Intensity modulated proton therapy (IMPT) has been shown to be able to reduce dose to normal tissue compared to intensity modulated photon radio-therapy (IMRT), and has been implemented for selected lung cancer patients. However, respiratory motion-induced dose uncertainty remain one of the major concerns for the radiotherapy of lung cancer, and the utility of IMPT for lung patients was limited because of the proton dose uncertainty induced by motion. Strategies such as repainting and tumor tracking have been proposed and studied but repainting could result in unacceptable long delivery time and tracking is not yet clinically available. We propose a novel delivery strategy for spot scanning proton beam therapy. Method: The effective number of delivery (END) for each spot position in a treatment plan was calculated based on the parameters of the delivery system, including time required for each spot, spot size and energy. The dose uncertainty was then calculated with an analytical formula. The spot delivery sequence was optimized to maximize END and minimize the dose uncertainty. 2D Measurements with a detector array on a 1D moving platform were performed to validate the calculated results. Results: 143 2D measurements on a moving platform were performed for different delivery sequences of a single layer uniform pattern. The measured dose uncertainty is a strong function of the delivery sequence, the worst delivery sequence results in dose error up to 70% while the optimized delivery sequence results in dose error of <5%. END vs. measured dose uncertainty follows the analytical formula. Conclusion: With optimized delivery sequence, it is feasible to minimize the dose uncertainty due to motion in spot scanning proton therapy

  19. The generation of absorbed dose profiles of proton beam in water using Geant4 code

    International Nuclear Information System (INIS)

    Christovao, Marilia T.; Campos, Tarcisio Passos R. de

    2007-01-01

    The present article approaches simulations on the proton beam radiation therapy, using an application based on the code GEANT4, with Open GL as a visualization drive and JAS3 (Java Analysis Studio) analysis data tools systems, implementing the AIDA interfaces. The proton radiotherapy is adapted to treat cancer or other benign tumors that are close to sensitive structures, since it allows precise irradiation of the target with high doses, while the health tissues adjacent to vital organs and tissues are preserved, due to physical property of dose profile. GEANT4 is a toolkit for simulating the transport of particles through matter, in complex geometries. Taking advantage of the object-oriented project features, the user can adapt or extend the tool in all domain, due to the flexibility of the code, providing a subroutine's group for materials definition, geometries and particles properties in agreement with the user's needs to generate the Monte Carlo simulation. In this paper, the parameters of beam line used in the simulation possess adjustment elements, such as: the range shifter, composition and dimension; the beam line, energy, intensity, length, according with physic processes applied. The simulation result is the depth dose profiles on water, dependent on the various incident beam energy. Starting from those profiles, one can define appropriate conditions for proton radiotherapy in ocular region. (author)

  20. Energizing porters by proton-motive force.

    Science.gov (United States)

    Nelson, N

    1994-11-01

    It is generally accepted that the chemistry of water was the most crucial determinant in shaping life on earth. Among the more important chemical features of water is its dissociation into protons and hydroxyl ions. The presence of relatively high proton concentrations in the ambient solution resulted in the evolution of proton pumps during the dawn of life on earth. These proton pumps maintained neutral pH inside the cells and generated electrochemical gradients of protons (proton-motive force) across their membranes. The existence of proton-motive force enabled the evolution of porters driven by it that are most probably among the more primitive porters in the world. The directionality of the substrate transport by the porters could be to both sides of the membranes because they can serve as proton symporters or antiporters. One of the most important subjects of this meeting is the mechanism by which proton-motive and other ion-motive forces drive the transport processes through porters. Is there a common mechanism of action for all proton-driven porters? Is there some common partial reaction by which we can identify the way that porters are energized by proton-motive force? Is there a common coupling between proton movement and uptake or secretion of certain molecules? Even a partial answer to one of these questions would advance our knowledge... or confusion. As my mentor Efraim Racker used to say: 'If you are not totally confused you do not understand the issue'.

  1. Low-voltage electroosmotic pumping using polyethylene terephthalate track-etched membrane

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ceming; Wang Lin [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Xue Jianming, E-mail: jmxue@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

    2012-09-01

    We present experimental investigations of electroosmotic (EO) pumping using polyethylene terephthalate (PET) track-etched membrane at a low applied voltage. An EO pump based on PET track-etched membrane has been designed and fabricated. Pumping performance of the device is experimentally studied in terms of flow rate as a function of applied voltage and KCl aqueous concentration. The PET track-etched membrane EO pump can generate flow rates on the order of 10 {mu}l min{sup -1} cm{sup -2} at several applied volts. The measured flow rate tends to decrease with increasing KCl aqueous concentration. In addition, we study the EO flow in cylindrical nanopore with use of a continuum model, composed of Nernst Planck equations, Poisson equation and Navier Stokes equations.

  2. Measurement of stray neutron doses inside the treatment room from a proton pencil beam scanning system

    Czech Academy of Sciences Publication Activity Database

    Mojzeszek, N.; Farah, J.; Klodowska, M.; Ploc, Ondřej; Stolarczyk, L.; Waligorski, M. P. R.; Olko, P.

    2017-01-01

    Roč. 34, č. 2 (2017), s. 80-84 ISSN 1120-1797 Institutional support: RVO:61389005 Keywords : secondary neutrons * proton therapy * pencil beam scanning systtems * out-of-field doses * stray neutron doses * TEPC Subject RIV: FP - Other Medical Disciplines OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 1.990, year: 2016

  3. Repair and dose-response at low doses

    International Nuclear Information System (INIS)

    Totter, J.R.; Weinberg, A.M.

    1977-04-01

    The DNA of each individual is subject to formation of some 2-4 x 10 14 ion pairs during the first 30 years of life from background radiation. If a single hit is sufficient to cause cancer, as is implicit in the linear, no-threshold theories, it is unclear why all individuals do not succumb to cancer, unless repair mechanisms operate to remove the damage. We describe a simple model in which the exposed population displays a distribution of repair thresholds. The dose-response at low dose is shown to depend on the shape of the threshold distribution at low thresholds. If the probability of zero threshold is zero, the response at low dose is quadratic. The model is used to resolve a longstanding discrepancy between observed incidence of leukemia at Nagasaki and the predictions of the usual linear hypothesis

  4. MEIC Proton Beam Formation with a Low Energy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  5. Survey of findings in patients having persistent heartburn on proton pump inhibitor therapy.

    Science.gov (United States)

    Mandaliya, R; DiMarino, A J; Cohen, S

    2016-01-01

    In patients with refractory heartburn while on proton pump inhibitor (PPI) therapy, changing drugs or increasing treatment to a twice a day (b.i.d.) dose has become a common practice. This study aims to study patients with persistent heartburn while on PPI therapy and to determine if persistent symptom indicates the need for more aggressive or different therapy. A retrospective review of impedance-pH tracings on PPI therapy (q.d. or b.i.d.) for patients with persistent heartburn was performed. DeMeester score, impedance, and symptom sensitive index (SSI) were used as indices. Statistical analyses were performed using chi-squared test with Yates correction and paired t-test. One hundred consecutive patients, (female 50%, male 50%, mean age 54 [range 16-83] years) were studied on q.d. (n = 45) or b.i.d. PPI (n = 55). Only 20% of the patients had abnormal DeMeester score; 41% had an abnormal impedance score and 56% had abnormal SSI; 29% had all indices normal. There was no difference between patients taking q.d. versus b.i.d. PPI for abnormal DeMeester score (22 vs. 18%), impedance (38 vs. 44%) and SSI (53 vs. 58%); P = 0.80, 0.69, and 0.77, respectively. In 56 patients with positive SSI, symptoms were due to acid reflux in 8 (14%) patients, nonacid reflux in 31 (55%) patients, and combined acid and nonacid reflux in 17 (30%) patients. Patients with persistent heartburn on PPI therapy show a variety of disorders: (i) acid reflux (20%); (ii) nonacid reflux (26%); (iii) positive SSI (56%); (iv) all normal indices (29%). These studies indicate that persistent heartburn on PPI therapy is a complex problem that may not respond to simply increasing acid inhibition. © 2014 International Society for Diseases of the Esophagus.

  6. GEANT4 simulations for low energy proton computerized tomography

    International Nuclear Information System (INIS)

    Milhoretto, Edney; Schelin, Hugo R.; Setti, Joao A.P.; Denyak, Valery; Paschuk, Sergei A.; Evseev, Ivan G.; Assis, Joaquim T. de; Yevseyeva, O.; Lopes, Ricardo T.; Vinagre Filho, Ubirajara M.

    2010-01-01

    This work presents the recent results of computer simulations for the low energy proton beam tomographic scanner installed at the cyclotron CV-28 of IEN/CNEN. New computer simulations were performed in order to adjust the parameters of previous simulation within the first experimental results and to understand some specific effects that affected the form of the final proton energy spectra. To do this, the energy and angular spread of the initial proton beam were added, and the virtual phantom geometry was specified more accurately in relation to the real one. As a result, a more realistic view on the measurements was achieved.

  7. GEANT4 simulations for low energy proton computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Milhoretto, Edney [Federal University of Technology-Parana, UTFPR, Av. Sete de Setembro 3165, Curitiba-PR (Brazil); Schelin, Hugo R. [Federal University of Technology-Parana, UTFPR, Av. Sete de Setembro 3165, Curitiba-PR (Brazil)], E-mail: schelin@utfpr.edu.br; Setti, Joao A.P.; Denyak, Valery; Paschuk, Sergei A. [Federal University of Technology-Parana, UTFPR, Av. Sete de Setembro 3165, Curitiba-PR (Brazil); Evseev, Ivan G.; Assis, Joaquim T. de; Yevseyeva, O. [Polytechnic Institute/UERJ, Rua Alberto Rangel s/n, N. Friburgo, RJ, Brazil 28630-050 (Brazil); Lopes, Ricardo T. [Nuclear Instr. Lab./COPPE/UFRJ, Av. Horacio Macedo 2030, Rio de Janeiro-RJ (Brazil); Vinagre Filho, Ubirajara M. [Institute of Nuclear Engineering-IEN/CNEN, Rua Helio de Almeida 75, Rio de Janeiro-RJ (Brazil)

    2010-04-15

    This work presents the recent results of computer simulations for the low energy proton beam tomographic scanner installed at the cyclotron CV-28 of IEN/CNEN. New computer simulations were performed in order to adjust the parameters of previous simulation within the first experimental results and to understand some specific effects that affected the form of the final proton energy spectra. To do this, the energy and angular spread of the initial proton beam were added, and the virtual phantom geometry was specified more accurately in relation to the real one. As a result, a more realistic view on the measurements was achieved.

  8. Feasibility of MR-only proton dose calculations for prostate cancer radiotherapy using a commercial pseudo-CT generation method

    Science.gov (United States)

    Maspero, Matteo; van den Berg, Cornelis A. T.; Landry, Guillaume; Belka, Claus; Parodi, Katia; Seevinck, Peter R.; Raaymakers, Bas W.; Kurz, Christopher

    2017-12-01

    A magnetic resonance (MR)-only radiotherapy workflow can reduce cost, radiation exposure and uncertainties introduced by CT-MRI registration. A crucial prerequisite is generating the so called pseudo-CT (pCT) images for accurate dose calculation and planning. Many pCT generation methods have been proposed in the scope of photon radiotherapy. This work aims at verifying for the first time whether a commercially available photon-oriented pCT generation method can be employed for accurate intensity-modulated proton therapy (IMPT) dose calculation. A retrospective study was conducted on ten prostate cancer patients. For pCT generation from MR images, a commercial solution for creating bulk-assigned pCTs, called MR for Attenuation Correction (MRCAT), was employed. The assigned pseudo-Hounsfield Unit (HU) values were adapted to yield an increased agreement to the reference CT in terms of proton range. Internal air cavities were copied from the CT to minimise inter-scan differences. CT- and MRCAT-based dose calculations for opposing beam IMPT plans were compared by gamma analysis and evaluation of clinically relevant target and organ at risk dose volume histogram (DVH) parameters. The proton range in beam’s eye view (BEV) was compared using single field uniform dose (SFUD) plans. On average, a (2%, 2 mm) gamma pass rate of 98.4% was obtained using a 10% dose threshold after adaptation of the pseudo-HU values. Mean differences between CT- and MRCAT-based dose in the DVH parameters were below 1 Gy (radiotherapy, is feasible following adaptation of the assigned pseudo-HU values.

  9. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Garrabrant, Michael [Stone Mountain Technologies, Inc., Johnson City, TN (United States); Keinath, Christopher [Stone Mountain Technologies, Inc., Johnson City, TN (United States)

    2016-10-11

    Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiency encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation

  10. Responses of epithelial cells to low and very low doses of low let radiation

    International Nuclear Information System (INIS)

    Mothersill, Carmel; Seymour, Colin

    2003-01-01

    Recent advances in our knowledge of the biological effects of low doses of ionizing radiation have shown unexpected phenomena. These vary in the endpoint used to detect them and in the dose range examined but all occur as high-frequency events in cell populations. They include: 1. a 'bystander effect' which can be demonstrated at low doses as a transferable.factor(s) causing radiobiological effects in unexposed cells, 2. an assortment of delayed effects' occurring in progeny of cells exposed to low doses, 3. Low-dose Hypersensitivity (HRS) and Increased radioresistance (IRR) which can collectively be demonstrated as a change in the dose-effect relationship, occurring around 0.5-1 Gy of low LET radiation and 4. adaptive responses where cells exposed to very low doses followed by higher doses, exhibit an induced relatively resistant response to the second dose. In all cases, the effect of very low doses is greater than would be predicted by extrapolation of high dose data and is inconsistent with conventional DNA break/repair-based radiobiology. In practical risk assessment terms, the relative importance of the effects are high at low doses where they dominate the response, and small at high doses. This paper reviews these assorted phenomena and in particular seeks to explore whether related or distinct mechanisms underlie these various effects Understanding the mechanistic basis of these phenomena may suggest new approaches to controlling death or survival sectoring at low radiation doses. The key question is whether these low dose phenomena necessitate a new approach to risk assessment. (author)

  11. SU-F-T-122: 4Dand 5D Proton Dose Evaluation with Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Titt, U; Mirkovic, D; Yepes, P; Liu, A; Peeler, C; Randenyia, S; Mohan, R [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: We evaluated uncertainties in therapeutic proton doses of a lung treatment, taking into account intra-fractional geometry changes, such as breathing, and inter-fractional changes, such as tumor shrinkage and weight loss. Methods: A Monte Carlo study was performed using four dimensional CT image sets (4DCTs) and weekly repeat imaging (5DCTs) to compute fixed RBE (1.1) and variable RBE weighted dose in an actual lung treatment geometry. The MC2 Monte Carlo system was employed to simulate proton energy deposition and LET distributions according to a thoracic cancer treatment plan developed with a 3D-CT in a commercial treatment planning system, as well as in each of the phases of 4DCT sets which were recorded weekly throughout the course of the treatment. A cumulative dose distribution in relevant structures was computed and compared to the predictions of the treatment planning system. Results: Using the Monte Carlo method, dose deposition estimates with the lowest possible uncertainties were produced. Comparison with treatment planning predictions indicates that significant uncertainties may be associated with therapeutic lung dose prediction from treatment planning systems, depending on the magnitude of inter- and intra-fractional geometry changes. Conclusion: As this is just a case study, a more systematic investigation accounting for a cohort of patients is warranted; however, this is less practical because Monte Carlo simulations of such cases require enormous computational resources. Hence our study and any future case studies may serve as validation/benchmarking data for faster dose prediction engines, such as the track repeating algorithm, FDC.

  12. SU-F-T-157: Physics Considerations Regarding Dosimetric Accuracy of Analytical Dose Calculations for Small Field Proton Therapy: A Monte Carlo Study

    Energy Technology Data Exchange (ETDEWEB)

    Geng, C [Massachusetts General Hospital, Boston, MA (United States); Nanjing University of Aeronautics and Astronautics, Nanjing (China); Daartz, J; Cheung, K; Bussiere, M; Shih, H; Paganetti, H; Schuemann, J [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: To evaluate the accuracy of dose calculations by analytical dose calculation methods (ADC) for small field proton therapy in a gantry based passive scattering facility. Methods: 50 patients with intra-cranial disease were evaluated in the study. Treatment plans followed standard prescription and optimization procedures of proton stereotactic radiosurgery. Dose distributions calculated with the Monte Carlo (MC) toolkit TOPAS were used to represent delivered treatments. The MC dose was first adjusted using the output factor (OF) applied clinically. This factor is determined from the field size and the prescribed range. We then introduced a normalization factor to measure the difference in mean dose between the delivered dose (MC dose with OF) and the dose calculated by ADC for each beam. The normalization was determined by the mean dose of the center voxels of the target area. We compared delivered dose distributions and those calculated by ADC in terms of dose volume histogram parameters and beam range distributions. Results: The mean target dose for a whole treatment is generally within 5% comparing delivered dose (MC dose with OF) and ADC dose. However, the differences can be as great as 11% for shallow and small target treated with a thick range compensator. Applying the normalization factor to the MC dose with OF can reduce the mean dose difference to less than 3%. Considering range uncertainties, the generally applied margins (3.5% of the prescribed range + 1mm) to cover uncertainties in range might not be sufficient to guarantee tumor coverage. The range difference for R90 (90% distal dose falloff) is affected by multiple factors, such as the heterogeneity index. Conclusion: This study indicates insufficient accuracy calculating proton doses using ADC. Our results suggest that uncertainties of target doses are reduced using MC techniques, improving the dosimetric accuracy for proton stereotactic radiosurgery. The work was supported by NIH/NCI under CA

  13. Drug Repositioning of Proton Pump Inhibitors for Enhanced Efficacy and Safety of Cancer Chemotherapy

    Directory of Open Access Journals (Sweden)

    Kenji Ikemura

    2017-12-01

    Full Text Available Proton pump inhibitors (PPIs, H+/K+-ATPase inhibitors, are the most commonly prescribed drugs for the treatment of gastroesophageal reflux and peptic ulcer diseases; they are highly safe and tolerable. Since PPIs are frequently used in cancer patients, studies investigating interactions between PPIs and anticancer agents are of particular importance to achieving effective and safe cancer chemotherapy. Several studies have revealed that PPIs inhibit not only the H+/K+-ATPase in gastric parietal cells, but also the vacuolar H+-ATPase (V-ATPase overexpressed in tumor cells, as well as the renal basolateral organic cation transporter 2 (OCT2 associated with pharmacokinetics and/or renal accumulation of various drugs, including anticancer agents. In this mini-review, we summarize the current knowledge regarding the impact of PPIs on the efficacy and safety of cancer chemotherapeutics via inhibition of targets other than the H+/K+-ATPase. Co-administration of clinical doses of PPIs protected kidney function in patients receiving cisplatin and fluorouracil, presumably by decreasing accumulation of cisplatin in the kidney via OCT2 inhibition. In addition, co-administration or pretreatment with PPIs could inhibit H+ transport via the V-ATPase in tumor cells, resulting in lower extracellular acidification and intracellular acidic vesicles to enhance the sensitivity of the tumor cells to the anticancer agents. In the present mini-review, we suggest that PPIs enhance the efficacy and safety of anticancer agents via off-target inhibition (e.g., of OCT2 and V-ATPase, rather than on-target inhibition of the H+/K+-ATPase. The present findings should provide important information to establish novel supportive therapy with PPIs during cancer chemotherapy.

  14. Are proton-pump inhibitors harmful for the semen quality of men in couples who are planning pregnancy?

    Science.gov (United States)

    Huijgen, Nicole A; de Ridder, Maria A J; Verhamme, Katia M; Dohle, Gert R; Vanrolleghem, Ann M; Sturkenboom, Miriam C J M; Laven, Joop S E; Steegers-Theunissen, Régine P M

    2016-12-01

    To determine associations between proton-pump inhibitor (PPI) use and semen parameters in young men of couples who are planning pregnancy. Case-control study of a population-based registry. Not applicable. General practitioner patients comprising 2,473 men from couples planning pregnancy with a recorded semen analysis: 241 with a low total motile sperm count (TMSC ≤1) and 714 with TMSC >1 as matched controls. None. Exposure to PPI; PPI dosage. The study of data from between 1996 and 2013 from the Integrated Primary Care Information database in the Netherlands, which incorporates the medical records of 1.5 million patients from 720 general practitioners, found that the use of PPIs in the period between 12 and 6 months before semen analysis was associated with a threefold higher risk of low TMSC (odds ratio 2.96; 95% confidence interval 1.26-6.97) adjusted for age and other medication. Use of PPIs during the 6 months immediately before the semen analysis was not statistically significantly associated with low TMSC. The use of PPIs in the period 12 to 6 months preceding semen analysis is associated with a threefold higher risk of low TMSC, which suggests that a long-term increase in gastric pH results in a decline of sperm quality. This finding emphasizes the need for more preconceptional research and counseling on the potential effects of medication use on semen quality. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  16. Biological effectiveness of high-energy protons - Target fragmentation

    International Nuclear Information System (INIS)

    Cucinotta, F.A.; Katz, R.; Wilson, J.W.; Townsend, L.W.; Shinn, J.; Hajnal, F.

    1991-01-01

    High-energy protons traversing tissue produce local sources of high-linear-energy-transfer ions through nuclear fragmentation. The contribution of these target fragments to the biological effectiveness of high-energy protons using the cellular track model is examined. The effects of secondary ions are treated in terms of the production collision density using energy-dependent parameters from a high-energy fragmentation model. Calculations for mammalian cell cultures show that at high dose, at which intertrack effects become important, protons deliver damage similar to that produced by gamma rays, and with fragmentation the relative biological effectiveness (RBE) of protons increases moderately from unity. At low dose, where sublethal damage is unimportant, the contribution from target fragments dominates, causing the proton effectiveness to be very different from that of gamma rays with a strongly fluence-dependent RBE. At high energies, the nuclear fragmentation cross sections become independent of energy. This leads to a plateau in the proton single-particle-action cross section, below 1 keV/micron, since the target fragments dominate. 29 refs

  17. -pumping pyrophosphatase in pepper plants

    KAUST Repository

    Vigani, Gianpiero; Rolli, Eleonora; Marasco, Ramona; Dell'Orto, Marta; Michoud, Gregoire; Soussi, Asma; Raddadi, Noura; Borin, Sara; Sorlini, Claudia; Zocchi, Graziano; Daffonchio, Daniele

    2018-01-01

    It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H+ -ATPase (V-ATPase) and H+ -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H+ -ATPase (V-ATPase) and H+ -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes. This article is protected by copyright. All rights reserved.

  18. -pumping pyrophosphatase in pepper plants

    KAUST Repository

    Vigani, Gianpiero

    2018-05-22

    It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H+ -ATPase (V-ATPase) and H+ -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves\\' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H+ -ATPase (V-ATPase) and H+ -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes. This article is protected by copyright. All rights reserved.

  19. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Rinderknecht, H. G., E-mail: rinderknecht1@llnl.gov; Rojas-Herrera, J.; Zylstra, A. B.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Séguin, F. H.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Filkins, T.; Steidle, Jessica A.; Traynor, N.; Freeman, C. [State University of New York at Geneseo, Geneseo, New York 14454 (United States); Steidle, Jeffrey A. [Rochester Institute of Technology, Rochester, New York 14623 (United States)

    2015-12-15

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protons with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. The impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.

  20. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    International Nuclear Information System (INIS)

    Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Filkins, T.; Steidle, Jessica A.; Traynor, N.; Freeman, C.; Steidle, Jeffrey A.

    2015-01-01

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protons with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. The impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant

  1. High total dose proton irradiation effects on silicon NPN rf power transistors

    International Nuclear Information System (INIS)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana; Pushpa, N.

    2014-01-01

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods

  2. High total dose proton irradiation effects on silicon NPN rf power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570006, Karnataka (India); Pushpa, N. [Department of PG Studies in Physics, JSS College, Ooty Road, Mysore-570025, Karnataka (India)

    2014-04-24

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods.

  3. Low and very low doses, new recommendations?

    International Nuclear Information System (INIS)

    Foucher, N.

    1999-01-01

    The topic of the seminar organized by the world council of nuclear workers (WONUC) was the effects of low or very low doses on human health. Discussions centred round the linearity of the relation between dose and effect in the evaluation and management of the health hazard. The recommendations proposed by ICPR (international commission for radiological protection) are based on this linearity as a precaution. On the one hand it is remembered that low dose irradiation might be beneficial. It has been proved that the irradiation of the whole body is efficient in case of Hodgkin lymphoma. On the other hand it is remembered that doses as low as 10 mSv in utero have led to an excess of cancer in children. Studies based on experimentally radio-induced cancers have been carried out in Japan, China, Canada and France.Their results seem to be not consistent with the hypothesis of linearity. During the last decade a lot of work has been made but a conclusion is far to be reached, it is said that the American department of energy (DOE) has invited bids in 1999 to launch research programs in order to clarify the situation. (A.C.)

  4. Association between proton pump inhibitor therapy and clostridium difficile infection: a contemporary systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Imad M Tleyjeh

    Full Text Available INTRODUCTION: Emerging epidemiological evidence suggests that proton pump inhibitor (PPI acid-suppression therapy is associated with an increased risk of Clostridium difficile infection (CDI. METHODS: Ovid MEDLINE, EMBASE, ISI Web of Science, and Scopus were searched from 1990 to January 2012 for analytical studies that reported an adjusted effect estimate of the association between PPI use and CDI. We performed random-effect meta-analyses. We used the GRADE framework to interpret the findings. RESULTS: We identified 47 eligible citations (37 case-control and 14 cohort studies with corresponding 51 effect estimates. The pooled OR was 1.65, 95% CI (1.47, 1.85, I(2 = 89.9%, with evidence of publication bias suggested by a contour funnel plot. A novel regression based method was used to adjust for publication bias and resulted in an adjusted pooled OR of 1.51 (95% CI, 1.26-1.83. In a speculative analysis that assumes that this association is based on causality, and based on published baseline CDI incidence, the risk of CDI would be very low in the general population taking PPIs with an estimated NNH of 3925 at 1 year. CONCLUSIONS: In this rigorously conducted systemic review and meta-analysis, we found very low quality evidence (GRADE class for an association between PPI use and CDI that does not support a cause-effect relationship.

  5. Incremental cost effectiveness of proton pump inhibitors for the prevention of non-steroidal anti-inflammatory drug ulcers : a pharmacoeconomic analysis linked to a case-control study

    NARCIS (Netherlands)

    Vonkeman, H.E.; Braakman-Jansen, L.M.A.; Klok, R.M.; Postma, M.J.; Brouwers, J.R.B.J.; van de Laar, M.A.F.J.

    2008-01-01

    Introduction We estimated the cost effectiveness of concomitant proton pump inhibitors (PPIs) in relation to the occurrence of non-steroidal anti-inflammatory drug (NSAID) ulcer complications. Methods This study was linked to a nested case-control study. Patients with NSAID ulcer complications were

  6. Proton tunneling in low dimensional cesium silicate LDS-1

    Science.gov (United States)

    Matsui, Hiroshi; Iwamoto, Kei; Mochizuki, Dai; Osada, Shimon; Asakura, Yusuke; Kuroda, Kazuyuki

    2015-07-01

    In low dimensional cesium silicate LDS-1 (monoclinic phase of CsHSi2O5), anomalous infrared absorption bands observed at 93, 155, 1210, and 1220 cm-1 are assigned to the vibrational mode of protons, which contribute to the strong hydrogen bonding between terminal oxygen atoms of silicate chain (O-O distance = 2.45 Å). The integrated absorbance (oscillator strength) for those modes is drastically enhanced at low temperatures. The analysis of integrated absorbance employing two different anharmonic double-minimum potentials makes clear that proton tunneling through the potential barrier yields an energy splitting of the ground state. The absorption bands at 93 and 155 cm-1, which correspond to the different vibrational modes of protons, are attributed to the optical transition between the splitting levels (excitation from the ground state (n = 0) to the first excited state (n = 1)). Moreover, the absorption bands at 1210 and 1220 cm-1 are identified as the optical transition from the ground state (n = 0) to the third excited state (n = 3). Weak Coulomb interactions in between the adjacent protons generate two types of vibrational modes: symmetric mode (93 and 1210 cm-1) and asymmetric mode (155 and 1220 cm-1). The broad absorption at 100-600 cm-1 reveals an emergence of collective mode due to the vibration of silicate chain coupled not only with the local oscillation of Cs+ but also with the proton oscillation relevant to the second excited state (n = 2).

  7. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  8. Induction of cancer cell death by proton beam in tumor hypoxic region

    International Nuclear Information System (INIS)

    Lee, Y. M.; Heo, T. R.; Lee, K. B.; Jang, K. H.; Kim, H. N.; Lee, S. H.; Jeong, M. H.

    2008-04-01

    Proton beam has been applied to treat various tumor patients in clinical studies. However, it is still undefined whether proton radiation can inhibit the blood vessel formation and induce the cell death in vascular endothelial cells in growing organs. The aim of this study are first, to develop an optimal animal model for the observation of blood vessel development with low dose of proton beam and second, to investigate the effect of low dose proton beam on the inhibition of blood vessel formation induced by hypoxic conditions. In this study, flk1-GFP transgenic zebrafish embryos were used to directly visualize and determine the inhibition of blood vessels by low dose (1, 2, 5 Gy) of proton beam with spread out Bragg peak (SOBP). And we observed cell death by acridine orange staining at 96 hours post fertilization (hpf) stage of embryos after proton irradiation. We also compared the effects of proton beam with those of gamma-ray. An antioxidant, N-acetyl cystein (NAC) was used to investigate whether reactive oxygen species (ROS) were involved in the cell deaths induced by proton irradiation. Irradiated flk-1-GFP transgenic embryos with proton beam irradiation (35 MeV, spread out Bragg peak, SOBP) demonstrated a marked inhibition of embryonic growth and an altered fluorescent blood vessel development in the trunk region. When the cells with DNA damage in the irradiated zebrafish were stained with acridine orange, green fluorescent cell death spots were increased in trunk regions compared to non-irradiated control embryos. Proton beam also significantly increased the cell death rate in human umbilical vein endothelial cells (HUVEC), but pretreatment of N-acetyl cystein (NAC), an antioxidant, recovered the proton-induced cell death rate (p<0.01). Moreover, pretreatment of NAC abrogated the effect of proton beam on the inhibition of trunk vessel development and malformation of trunk truncation. From this study, we found that proton radiation therapy can inhibit the

  9. Rational use of nonsteroidal anti-inflammatory drugs and proton pump inhibitors in combination for rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Wolfgang W Bolten

    2010-09-01

    Full Text Available Wolfgang W BoltenDivision of Rheumatology, Klaus-Miehlke Klinik, Wiesbaden, GermanyAbstract: Nonsteroidal anti-inflammatory drugs (NSAIDs are successfully used to alleviate pain and inflammation in rheumatic diseases. In an appreciable percentage of cases, the use of systemic NSAIDs is associated with adverse lesions of the gastrointestinal (GI mucosa up to life-threatening perforations, ulcers, and bleeding. Reliable warning signals mostly do not arise. Therefore, it is important to take preventive measures to reduce the GI risk. One established method is to assign cyclooxygenase 2 (COX-2-specific inhibitors (coxibs instead of traditional NSAIDs (tNSAIDs. Coxibs spare in part the endogenous gastroprotective mechanisms. Another reliable choice to improve the GI safety is the comedication of proton pump inhibitors (PPIs to suppress gastric acid. A fixed NSAID/PPI combination ensures expected protective effects by improving patients’ PPI adherence and physicians’ PPI prescription persistence. A fixed combination of enteric-coated naproxen and immediate-release esomeprazole has just been approved by the US Food and Drug Administration. PPI combinations with aspirin, other tNSAIDs, and coxibs are desirable. Patients in all risk groups, even patients at low risk of GI adverse events, benefit from concomitant protective measures. Moreover, the literature suggests that NSAID/PPI combinations are cost effective, including for patients in low-GI-risk groups. Pricing of fixed NSAID/PPI combinations will play a pivotal role for their broad acceptance in the future.Keywords: PPI, NSAID, fixed combination, gastrointestinal, adverse events, prevention

  10. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  11. A potential diagnostic for low energy, nonthermal protons in solar flares

    International Nuclear Information System (INIS)

    MacKinnon, A.L.

    1989-01-01

    The current uncertainty in flare research regarding the role of low energy (<1 MeV) protons demands that we consider any possibilities for directly constraining their number and energy content. Here we point out that γ-ray lines, from radiative capture reactions of such protons, may in principle provide such constraints. Making allowance for the possibility that the protons slow down in a warm target, we show how observational upper limits to their strengths may be used to constrain the proton energy content and the temperature of the interaction region

  12. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. K. [Johnson Research LLC, Pueblo West, CO (United States)

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  13. A Monte Carlo track structure code for low energy protons

    CERN Document Server

    Endo, S; Nikjoo, H; Uehara, S; Hoshi, M; Ishikawa, M; Shizuma, K

    2002-01-01

    A code is described for simulation of protons (100 eV to 10 MeV) track structure in water vapor. The code simulates molecular interaction by interaction for the transport of primary ions and secondary electrons in the form of ionizations and excitations. When a low velocity ion collides with the atoms or molecules of a target, the ion may also capture or lose electrons. The probabilities for these processes are described by the quantity cross-section. Although proton track simulation at energies above Bragg peak (>0.3 MeV) has been achieved to a high degree of precision, simulations at energies near or below the Bragg peak have only been attempted recently because of the lack of relevant cross-section data. As the hydrogen atom has a different ionization cross-section from that of a proton, charge exchange processes need to be considered in order to calculate stopping power for low energy protons. In this paper, we have used state-of-the-art Monte Carlo track simulation techniques, in conjunction with the pub...

  14. Real-time dose calculation and visualization for the proton therapy of ocular tumours

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Karsten [Medizinische Physik, Deutsches Krebsforschungszentrum, INF 280, D-69120 Heidelberg (Germany). E-mail: k.pfeiffer at dkfz.de; Bendl, Rolf [Medizinische Physik, Deutsches Krebsforschungszentrum, INF 280, D-69120 Heidelberg (Germany). E-mail: r.bendl at dkfz.de

    2001-03-01

    A new real-time dose calculation and visualization was developed as part of the new 3D treatment planning tool OCTOPUS for proton therapy of ocular tumours within a national research project together with the Hahn-Meitner Institut Berlin. The implementation resolves the common separation between parameter definition, dose calculation and evaluation and allows a direct examination of the expected dose distribution while adjusting the treatment parameters. The new tool allows the therapist to move the desired dose distribution under visual control in 3D to the appropriate place. The visualization of the resulting dose distribution as a 3D surface model, on any 2D slice or on the surface of specified ocular structures is done automatically when adapting parameters during the planning process. In addition, approximate dose volume histograms may be calculated with little extra time. The dose distribution is calculated and visualized in 200 ms with an accuracy of 6% for the 3D isodose surfaces and 8% for other objects. This paper discusses the advantages and limitations of this new approach. (author)

  15. Low-concentrated solar-pumped laser via transverse excitation fiber-laser geometry.

    Science.gov (United States)

    Masuda, Taizo; Iyoda, Mitsuhiro; Yasumatsu, Yuta; Endo, Masamori

    2017-09-01

    We demonstrate an extremely low-concentrated solar-pumped laser (SPL) using a fiber laser with transverse excitation geometry. A low concentration factor is highly desired in SPLs to eliminate the need for precise solar tracking and to considerably increase the practical applications of SPL technology. In this Letter, we have exploited the intrinsic low-loss property of silica fibers to compensate for the extremely low gain coefficient of the weakly pumped active medium. A 40 m long Nd 3+ -doped fiber coil is packed in a ring-shaped chamber filled with a sensitizer solution. We demonstrated a lasing threshold that is 15 times the concentration of natural sunlight and two orders of magnitude smaller than those of conventional SPLs.

  16. Análise da distribuição espacial de dose absorvida em próton terapia ocular Spatial distribution analysis of absorbed dose in ocular proton radiation therapy

    Directory of Open Access Journals (Sweden)

    Marília Tavares Christóvão

    2010-08-01

    Full Text Available OBJETIVO: Propõe-se avaliar os perfis de dose em profundidade e as distribuições espaciais de dose para protocolos de radioterapia ocular por prótons, a partir de simulações computacionais em código nuclear e modelo de olho discretizado em voxels. MATERIAIS E MÉTODOS: As ferramentas computacionais empregadas foram o código Geant4 (GEometry ANd Tracking Toolkit e o SISCODES (Sistema Computacional para Dosimetria em Radioterapia. O Geant4 é um pacote de software livre, utilizado para simular a passagem de partículas nucleares com carga elétrica através da matéria, pelo método de Monte Carlo. Foram executadas simulações computacionais reprodutivas de radioterapia por próton baseada em instalações pré-existentes. RESULTADOS: Os dados das simulações foram integrados ao modelo de olho através do código SISCODES, para geração das distribuições espaciais de doses. Perfis de dose em profundidade reproduzindo o pico de Bragg puro e modulado são apresentados. Importantes aspectos do planejamento radioterápico com prótons são abordados, como material absorvedor, modulação, dimensões do colimador, energia incidente do próton e produção de isodoses. CONCLUSÃO: Conclui-se que a terapia por prótons, quando adequadamente modulada e direcionada, pode reproduzir condições ideais de deposição de dose em neoplasias oculares.OBJECTIVE: The present study proposes the evaluation of the depth-dose profiles and the spatial distribution of radiation dose for ocular proton beam radiotherapy protocols, based on computer simulations in nuclear codes and an eye model discretized into voxels. MATERIALS AND METHODS: The employed computational tools were Geant4 (GEometry ANd Tracking Toolkit and SISCODES (Sistema Computacional para Dosimetria em Radioterapia - Computer System for Dosimetry in Radiotherapy. Geant4 is a toolkit for simulating the passage of particles through the matter, based on Monte Carlo method. Computer simulations

  17. Proton-pump inhibitors are associated with a reduced risk for bleeding and perforated gastroduodenal ulcers attributable to non-steriodal anti-inflammatory drugs: a nested case-control study

    NARCIS (Netherlands)

    Vonkeman, Harald Erwin; Fernandes, Robert W.; van der Palen, Jacobus Adrianus Maria; van Roon, Eric N.; van de Laar, Mart A F J

    2007-01-01

    Treatment with non-steroidal anti-inflammatory drugs (NSAIDs) is hampered by gastrointestinal ulcer complications, such as ulcer bleeding and perforation. The efficacy of proton-pump inhibitors in the primary prevention of ulcer complications arising from the use of NSAIDs remains unproven.

  18. Influence of proton pump inhibitors on gastritis diagnosis and pathologic gastric changes.

    Science.gov (United States)

    Nasser, Soumana C; Slim, Mahmoud; Nassif, Jeanette G; Nasser, Selim M

    2015-04-21

    To investigate the influence of proton pump inhibitors (PPIs) exposure on the diagnosis of Helicobacter pylori (H. pylori) gastritis and intestinal metaplasia. Chronic PPI use is associated with masking of H. pylori infection. Patients with H. pylori infection are predisposed to gastric and duodenal ulcers, and long-term infection with this organism has been associated with gastric mucosal atrophy and serious long-term complications, such as gastric lymphoma and adenocarcinoma. Three hundred patients diagnosed with gastritis between January 2008 and April 2010 were included in our study. The computerized medical database of these patients was reviewed retrospectively in order to assess whether the type of gastritis diagnosed (H. pylori vs non-H. pylori gastritis) is influenced by PPI exposure. H. pylori density was graded as low, if corresponding to mild density following the Updated Sydney System, or high, if corresponding to moderate or severe densities in the Updated Sydney System. Patients were equally distributed between males and females with a median age at the time of diagnosis of 50 years old (range: 20-87). The histological types of gastritis were classified as H. pylori gastritis (n = 156, 52%) and non-H. pylori gastritis (n = 144, 48%). All patients with non-H. pylori gastritis had inactive chronic gastritis. Patients with no previous PPI exposure were more likely to be diagnosed with H. pylori gastritis than those with previous PPI exposure (71% vs 34.2%, P gastritis and leads to a significant drop in H. pylori densities and to an increased risk of intestinal metaplasia. The use of PPIs masks H. pylori infection, promotes the diagnosis of non-H. pylori inactive chronic gastritis diagnosis, and increases the incidence of intestinal metaplasia.

  19. Proton pump inhibitor Lansoprazole is a nuclear Liver X Receptor agonist

    Science.gov (United States)

    Cronican, Andrea A.; Fitz, Nicholas F.; Pham, Tam; Fogg, Allison; Kifer, Brionna; Koldamova, Radosveta; Lefterov, Iliya

    2010-01-01

    The liver X receptors (LXRα and LXRβ) are transcription factors that control the expression of genes primarily involved in cholesterol metabolism. In brain, in addition to normal neuronal function, cholesterol metabolism is important for APP proteolytic cleavage, secretase activities, Aβ aggregation and clearance. Particularly significant in this respect is the LXR mediated transcriptional control of APOE, which is the only proven risk factor for late onset Alzheimer’s disease. Using a transactivation reporter assay for screening pharmacologically active compounds and off patent drugs we identified the Proton Pump Inhibitor Lansoprazole as an LXR agonist. In secondary screens and counter-screening assays, it was confirmed that Lansoprazole directly activates LXR, increases the expression of LXR target genes in brain-derived human cell lines, and increases Abca1 and Apo-E protein levels in primary astrocytes derived from wild type but not LXRα/β double knockout mice. Other PPIs activate LXR as well, but the efficiency of activation depends on their structural similarities to Lansoprazole. The identification of widely used, drug with LXR agonist-like activity opens the possibility for systematic preclinical testing in at least two diseases – Alzheimer’s disease and atherosclerosis. PMID:20060385

  20. The effects of proton exposure on neurochemistry and behavior

    Science.gov (United States)

    Shukitt-Hale, B.; Szprengiel, A.; Pluhar, J.; Rabin, B. M.; Joseph, J. A.

    2004-01-01

    Future space missions will involve long-term travel beyond the magnetic field of the Earth, where astronauts will be exposed to radiation hazards such as those that arise from galactic cosmic rays. Galactic cosmic rays are composed of protons, α particles, and particles of high energy and charge (HZE particles). Research by our group has shown that exposure to HZE particles, primarily 600 MeV/n and 1 GeV/n 56Fe, can produce significant alterations in brain neurochemistry and behavior. However, given that protons can make up a significant portion of the radiation spectrum, it is important to study their effects on neural functioning and on related performance. Therefore, these studies examined the effects of exposure to proton irradiation on neurochemical and behavioral endpoints, including dopaminergic functioning, amphetamine-induced conditioned taste aversion learning, and spatial learning and memory as measured by the Morris water maze. Male Sprague-Dawley rats received a dose of 0, 1.5, 3.0 or 4.0 Gy of 250 MeV protons at Loma Linda University and were tested in the different behavioral tests at various times following exposure. Results showed that there was no effect of proton irradiation at any dose on any of the endpoints measured. Therefore, there is a contrast between the insignificant effects of high dose proton exposure and the dramatic effectiveness of low dose (<0.1 Gy) exposures to 56Fe particles on both neurochemical and behavioral endpoints.

  1. Should positive phase III clinical trial data be required before proton beam therapy is more widely adopted? No

    International Nuclear Information System (INIS)

    Suit, Herman; Kooy, Hanne; Trofimov, Alexei; Farr, Jonathan; Munzenrider, John; DeLaney, Thomas; Loeffler, Jay; Clasie, Benjamin; Safai, Sairos; Paganetti, Harald

    2008-01-01

    Purpose: Evaluate the rationale for the proposals that prior to a wider use of proton radiation therapy there must be supporting data from phase III clinical trials. That is, would less dose to normal tissues be an advantage to the patient? Methods: Assess the basis for the assertion that proton dose distributions are superior to those of photons for most situations. Consider the requirements for determining the risks of normal tissue injury, acute and remote, in the examination of the data from a trial. Analyze the probable cost differential between high technology photon and proton therapy. Evaluate the rationale for phase III clinical trials of proton vs photon radiation therapy when the only difference in dose delivered is a difference in distribution of low LET radiation. Results: The distributions of biological effective dose by protons are superior to those by X-rays for most clinical situations, viz. for a defined dose and dose distribution to the target by protons there is a lower dose to non-target tissues. This superiority is due to these physical properties of protons: (1) protons have a finite range and that range is exclusively dependent on the initial energy and the density distribution along the beam path; (2) the Bragg peak; (3) the proton energy distribution may be designed to provide a spread out Bragg peak that yields a uniform dose across the target volume and virtually zero dose deep to the target. Importantly, proton and photon treatment plans can employ beams in the same number and directions (coplanar, non-co-planar), utilize intensity modulation and employ 4D image guided techniques. Thus, the only difference between protons and photons is the distribution of biologically effective dose and this difference can be readily evaluated and quantified. Additionally, this dose distribution advantage should increase the tolerance of certain chemotherapeutic agents and thus permit higher drug doses. The cost of service (not developmental) proton

  2. Acidic digestion in a teleost: postprandial and circadian pattern of gastric pH, pepsin activity, and pepsinogen and proton pump mRNAs expression.

    Science.gov (United States)

    Yúfera, Manuel; Moyano, Francisco J; Astola, Antonio; Pousão-Ferreira, Pedro; Martínez-Rodríguez, Gonzalo

    2012-01-01

    Two different modes for regulation of stomach acid secretion have been described in vertebrates. Some species exhibit a continuous acid secretion maintaining a low gastric pH during fasting. Others, as some teleosts, maintain a neutral gastric pH during fasting while the hydrochloric acid is released only after the ingestion of a meal. Those different patterns seem to be closely related to specific feeding habits. However, our recent observations suggest that this acidification pattern could be modified by changes in daily feeding frequency and time schedule. The aim of this study was to advance in understanding the regulation mechanisms of stomach digestion and pattern of acid secretion in teleost fish. We have examined the postprandial pattern of gastric pH, pepsin activity, and mRNA expression for pepsinogen and proton pump in white seabream juveniles maintained under a light/dark 12/12 hours cycle and receiving only one morning meal. The pepsin activity was analyzed according to the standard protocol buffering at pH 2 and using the actual pH measured in the stomach. The results show how the enzyme precursor is permanently available while the hydrochloric acid, which activates the zymogen fraction, is secreted just after the ingestion of food. Results also reveal that analytical protocol at pH 2 notably overestimates true pepsin activity in fish stomach. The expression of the mRNA encoding pepsinogen and proton pump exhibited almost parallel patterns, with notable increases during the darkness period and sharp decreases just before the morning meal. These results indicate that white seabream uses the resting hours for recovering the mRNA stock that will be quickly used during the feeding process. Our data clearly shows that both daily illumination pattern and feeding time are involved at different level in the regulation of the secretion of digestive juices.

  3. Acidic digestion in a teleost: postprandial and circadian pattern of gastric pH, pepsin activity, and pepsinogen and proton pump mRNAs expression.

    Directory of Open Access Journals (Sweden)

    Manuel Yúfera

    Full Text Available Two different modes for regulation of stomach acid secretion have been described in vertebrates. Some species exhibit a continuous acid secretion maintaining a low gastric pH during fasting. Others, as some teleosts, maintain a neutral gastric pH during fasting while the hydrochloric acid is released only after the ingestion of a meal. Those different patterns seem to be closely related to specific feeding habits. However, our recent observations suggest that this acidification pattern could be modified by changes in daily feeding frequency and time schedule. The aim of this study was to advance in understanding the regulation mechanisms of stomach digestion and pattern of acid secretion in teleost fish. We have examined the postprandial pattern of gastric pH, pepsin activity, and mRNA expression for pepsinogen and proton pump in white seabream juveniles maintained under a light/dark 12/12 hours cycle and receiving only one morning meal. The pepsin activity was analyzed according to the standard protocol buffering at pH 2 and using the actual pH measured in the stomach. The results show how the enzyme precursor is permanently available while the hydrochloric acid, which activates the zymogen fraction, is secreted just after the ingestion of food. Results also reveal that analytical protocol at pH 2 notably overestimates true pepsin activity in fish stomach. The expression of the mRNA encoding pepsinogen and proton pump exhibited almost parallel patterns, with notable increases during the darkness period and sharp decreases just before the morning meal. These results indicate that white seabream uses the resting hours for recovering the mRNA stock that will be quickly used during the feeding process. Our data clearly shows that both daily illumination pattern and feeding time are involved at different level in the regulation of the secretion of digestive juices.

  4. Characterizing proton-activated materials to develop PET-mediated proton range verification markers

    Science.gov (United States)

    Cho, Jongmin; Ibbott, Geoffrey S.; Kerr, Matthew D.; Amos, Richard A.; Stingo, Francesco C.; Marom, Edith M.; Truong, Mylene T.; Palacio, Diana M.; Betancourt, Sonia L.; Erasmus, Jeremy J.; DeGroot, Patricia M.; Carter, Brett W.; Gladish, Gregory W.; Sabloff, Bradley S.; Benveniste, Marcelo F.; Godoy, Myrna C.; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R.

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm-3) and beef (~1.0 g cm-3) were embedded with Cu or 68Zn foils of several volumes (10-50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils’ PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.

  5. Multidisciplinary European Low Dose Initiative (MELODI). Strategic research agenda for low dose radiation risk research

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, M. [Federal Office for Radiation Protection, BfS, Department of Radiation Protection and Health, Neuherberg (Germany); Auvinen, A. [University of Tampere, Tampere (Finland); STUK, Helsinki (Finland); Cardis, E. [ISGlobal, Barcelona Institute for Global Health, Barcelona (Spain); Durante, M. [Institute for Fundamental Physics and Applications, TIFPA, Trento (Italy); Harms-Ringdahl, M. [Stockholm University, Centre for Radiation Protection Research, Stockholm (Sweden); Jourdain, J.R. [Institute for Radiological Protection and Nuclear Safety, IRSN, Fontenay-aux-roses (France); Madas, B.G. [MTA Centre for Energy Research, Environmental Physics Department, Budapest (Hungary); Ottolenghi, A. [University of Pavia, Physics Department, Pavia (Italy); Pazzaglia, S. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome (Italy); Prise, K.M. [Queens University Belfast, Belfast (United Kingdom); Quintens, R. [Belgian Nuclear Research Centre, SCK-CEN, Mol (Belgium); Sabatier, L. [French Atomic Energy Commission, CEA, Paris (France); Bouffler, S. [Public Health England, PHE, Chilton (United Kingdom)

    2018-03-15

    MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website (http://www.melodi-online.eu/sra.html). (orig.)

  6. Proton Therapy Coverage for Prostate Cancer Treatment

    International Nuclear Information System (INIS)

    Vargas, Carlos; Wagner, Marcus; Mahajan, Chaitali; Indelicato, Daniel; Fryer, Amber; Falchook, Aaron; Horne, David C.; Chellini, Angela; McKenzie, Craig C.; Lawlor, Paula C.; Li Zuofeng; Lin Liyong; Keole, Sameer

    2008-01-01

    Purpose: To determine the impact of prostate motion on dose coverage in proton therapy. Methods and Materials: A total of 120 prostate positions were analyzed on 10 treatment plans for 10 prostate patients treated using our low-risk proton therapy prostate protocol (University of Florida Proton Therapy Institute 001). Computed tomography and magnetic resonance imaging T 2 -weighted turbo spin-echo scans were registered for all cases. The planning target volume included the prostate with a 5-mm axial and 8-mm superoinferior expansion. The prostate was repositioned using 5- and 10-mm one-dimensional vectors and 10-mm multidimensional vectors (Points A-D). The beam was realigned for the 5- and 10-mm displacements. The prescription dose was 78 Gy equivalent (GE). Results: The mean percentage of rectum receiving 70 Gy (V 70 ) was 7.9%, the bladder V 70 was 14.0%, and the femoral head/neck V 50 was 0.1%, and the mean pelvic dose was 4.6 GE. The percentage of prostate receiving 78 Gy (V 78 ) with the 5-mm movements changed by -0.2% (range, 0.006-0.5%, p > 0.7). However, the prostate V 78 after a 10-mm displacement changed significantly (p 78 coverage had a large and significant reduction of 17.4% (range, 13.5-17.4%, p 78 coverage of the clinical target volume. The minimal prostate dose was reduced 33% (25.8 GE), on average, for Points A-D. The prostate minimal dose improved from 69.3 GE to 78.2 GE (p < 0.001) with realignment for 10-mm movements. Conclusion: The good dose coverage and low normal doses achieved for the initial plan was maintained with movements of ≤5 mm. Beam realignment improved coverage for 10-mm displacements

  7. WE-EF-303-09: Proton-Acoustic Range Verification in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Xiang, L [University of Oklahoma (OK), Norman, OK (United States)

    2015-06-15

    Purpose: We investigated proton-acoustic signals detection for range verification with current ultrasound instruments in typical clinical scenarios. Using simulations that included a realistic noise model, we determined the theoretical minimum dose required to generate detectable proton-acoustic signals. Methods: An analytical model was used to calculate the dose distributions and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. The acoustic waves propagating from the Bragg peak were modeled by the general 3D pressure wave equation and convolved with Gaussian kernels to simulate various proton pulse widths (0.1 – 10 ms). A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth band-pass filter, and ii) randomly generated noise based on a model of thermal noise in the transducer. The signal-to-noise ratio was calculated, determining the minimum number of protons and dose required per pulse. The maximum spatial resolution was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer center frequency (70–380 kHz). The minimum number of protons were on the order of 0.6–6 million per pulse, leading to 3–110 mGy dose per pulse at the Bragg peak, depending on the spot size. The acoustic signal consisted of lower frequencies for wider pulses, leading to lower noise levels, but also worse spatial resolution. The resolution was 1-mm for a 0.1-µs pulse width, but increased to 5-mm for a 10-µs pulse width. Conclusion: We have established minimum dose detection limits for proton-acoustic range validation. These limits correspond to a best case scenario with a large detector with no losses and only detector thermal noise. Feasible proton-acoustic range detection will require at least 10{sup 7} protons per pulse and pulse widths ≤ 1-µs.

  8. Radiation dose of aircrews during a solar proton event without ground-level enhancement

    Directory of Open Access Journals (Sweden)

    R. Kataoka

    2015-01-01

    Full Text Available A significant enhancement of radiation doses is expected for aircrews during ground-level enhancement (GLE events, while the possible radiation hazard remains an open question during non-GLE solar energetic particle (SEP events. Using a new air-shower simulation driven by the proton flux data obtained from GOES satellites, we show the possibility of significant enhancement of the effective dose rate of up to 4.5 μSv h−1 at a conventional flight altitude of 12 km during the largest SEP event that did not cause a GLE. As a result, a new GOES-driven model is proposed to give an estimate of the contribution from the isotropic component of the radiation dose in the stratosphere during non-GLE SEP events.

  9. Use of proton pump inhibitors for the provision of stress ulcer prophylaxis: clinical and economic consequences.

    Science.gov (United States)

    Barletta, Jeffrey F; Sclar, David A

    2014-01-01

    The provision of stress ulcer prophylaxis (SUP) for the prevention of clinically significant bleeding is widely recognized as a crucial component of care in critically ill patients. Nevertheless, SUP is often provided to non-critically ill patients despite a risk for clinically significant bleeding of roughly 0.1 %. The overuse of SUP therefore introduces added risks for adverse drug events and cost, with minimal expected benefit in clinical outcome. Historically, histamine-2-receptor antagonists (H2RAs) have been the preferred agent for SUP; however, recent data have revealed proton pump inhibitors (PPIs) as the most common modality (76 %). There are no high quality randomized controlled trials demonstrating superiority with PPIs compared with H2RAs for the prevention of clinically significant bleeding associated with stress ulcers. In contrast, PPIs have recently been linked to several adverse effects including Clostridium difficile diarrhea and pneumonia. These complications have substantial economic consequences and have a marked impact on the overall cost effectiveness of PPI therapy. Nevertheless, PPI use remains widespread in patients who are at both high and low risk for clinically significant bleeding. This article will describe the utilization of PPIs for SUP and present the clinical and economic consequences linked to their use/overuse.

  10. Uncertainties in planned dose due to the limited voxel size of the planning CT when treating lung tumors with proton therapy

    International Nuclear Information System (INIS)

    Espana, Samuel; Paganetti, Harald

    2011-01-01

    Dose calculation for lung tumors can be challenging due to the low density and the fine structure of the geometry. The latter is not fully considered in the CT image resolution used in treatment planning causing the prediction of a more homogeneous tissue distribution. In proton therapy, this could result in predicting an unrealistically sharp distal dose falloff, i.e. an underestimation of the distal dose falloff degradation. The goal of this work was the quantification of such effects. Two computational phantoms resembling a two-dimensional heterogeneous random lung geometry and a swine lung were considered applying a variety of voxel sizes for dose calculation. Monte Carlo simulations were used to compare the dose distributions predicted with the voxel size typically used for the treatment planning procedure with those expected to be delivered using the finest resolution. The results show, for example, distal falloff position differences of up to 4 mm between planned and expected dose at the 90% level for the heterogeneous random lung (assuming treatment plan on a 2 x 2 x 2.5 mm 3 grid). For the swine lung, differences of up to 38 mm were seen when airways are present in the beam path when the treatment plan was done on a 0.8 x 0.8 x 2.4 mm 3 grid. The two-dimensional heterogeneous random lung phantom apparently does not describe the impact of the geometry adequately because of the lack of heterogeneities in the axial direction. The differences observed in the swine lung between planned and expected dose are presumably due to the poor axial resolution of the CT images used in clinical routine. In conclusion, when assigning margins for treatment planning for lung cancer, proton range uncertainties due to the heterogeneous lung geometry and CT image resolution need to be considered.

  11. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca2+ exchangers

    OpenAIRE

    Barkla, Bronwyn J; Hirschi, Kendal D; Pittman, Jon K

    2008-01-01

    Tonoplast-localised proton-coupled Ca2+ transporters encoded by cation/H+ exchanger (CAX) genes play a critical role in sequestering Ca2+ into the vacuole. These transporters may function in coordination with Ca2+ release channels, to shape stimulus-induced cytosolic Ca2+ elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a ...

  12. Comparison of vonoprazan and proton pump inhibitors for eradication of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Satoshi Shinozaki

    2016-05-01

    Full Text Available Alternative eradication therapies for Helicobacter pylori infection are needed because of an increasing failure rate over the past decade. The aim of this study was to determine if vonoprazan, a new potassium-competitive acid blocker, showed superiority to existing proton pump inhibitors for primary eradication of H. pylori in routine clinical practice. Data for 573 patients who underwent primary H. pylori eradication therapy were retrospectively reviewed. Regimens included clarithromycin 200 mg, amoxicillin 750 mg, and an acid-suppressing drug [lansoprazole 30 mg (LAC, rabeprazole 10 mg (RAC, esomeprazole 20 mg (EAC, or vonoprazan 20 mg (VAC] twice daily for 1 week. Eradication was successful in 73% (419/573 of patients using intention-to-treat (ITT analysis and 76% (419/549 of patients in per-protocol (PP analysis. The VAC group had a significantly superior eradication rate compared with the LAC and RAC groups in ITT (VAC 83%, LAC 66% and RAC 67%, p  80% eradication rate regardless of the degree of atrophy.

  13. Low voltage electroosmotic pump for high density integration into microfabricated fluidic systems

    NARCIS (Netherlands)

    Heuck, F.C.A.; Staufer, U.

    2011-01-01

    A low voltage electroosmotic (eo) pump suitable for high density integration into microfabricated fluidic systems has been developed. The high density integration of the eo pump required a small footprint as well as a specific on-chip design to ventilate the electrolyzed gases emerging at the

  14. A correction scheme for a simplified analytical random walk model algorithm of proton dose calculation in distal Bragg peak regions

    Science.gov (United States)

    Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.

    2016-10-01

    The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.

  15. Effects of 12 weeks' treatment with a proton pump inhibitor on insulin secretion, glucose metabolism and markers of cardiovascular risk in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Hove, K D; Brøns, Charlotte; Færch, Kai Erik Vinther

    2013-01-01

    Recent studies suggest that proton pump inhibitor treatment may increase insulin secretion and improve glucose metabolism in type 2 diabetes. In a randomised double-blind prospective placebo-controlled 2 × 2 factorial study, we examined the effect of esomeprazole on insulin secretion, HbA(1c...

  16. Development of disease animal models using proton beam

    International Nuclear Information System (INIS)

    Nam, K. H.; Kim, E. K.; Kim, H. R.; Seo, Y. W.

    2010-03-01

    To identify proper proton beam dose for mutant mouse development, total 7 times of proton beam were performed. There are too low incidence of mutation in pup mouse which were derived embryos radiated by 1Gy proton beam. Some mutation could be identified in pup mice which were derived embryos radiated by 1.5-2.5Gy proton beam. Mouse embryos irradiated with 1-10Gy of proton beam were inhibited in their in vitro development to 2 cell stage. There was no pups born from embryos which were irradiated with proton beam over 3 Gy. Early mouse development were greatly inhibited by proton beam irradiation of over 10Gy when cultured in vitro. In conclusion, it is efficient to irradiate mouse embryo with 1.5-2.5Gy of proton beam for development of mutant mice

  17. Precocious scaling in antiproton-proton scattering at low energies

    International Nuclear Information System (INIS)

    Ion, D.B.; Petrascu, C.; Topor Pop, V.; Popa, V.

    1993-08-01

    The scaling of the diffraction peak in antiproton-proton scattering has been investigated from nera threshold up to 3 GeV/c laboratory momenta. It was shown that the scaling of the differential cross sections are evidentiated with a surprising accuracy not only at high energies, but also at very low ones (e.g. p LAB = 0.1 - 0.5 GeV/c), beyond the resonance and exotic resonance regions. This precocious scaling strongly suggests that the s-channel helicity conservation (SCHC) can be a peculiar property that should be tested in antiproton-proton interaction not only at high energies but also at low energy even below p LAB = 1 GeV/c. (author). 36 refs, 9 figs

  18. Carcinogenesis induced by low-dose radiation

    Directory of Open Access Journals (Sweden)

    Piotrowski Igor

    2017-11-01

    Full Text Available Although the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure.

  19. Intensity Modulated Proton Therapy for Craniospinal Irradiation: Organ-at-Risk Exposure and a Low-Gradient Junctioning Technique

    International Nuclear Information System (INIS)

    Stoker, Joshua B.; Grant, Jonathan; Zhu, X. Ronald; Pidikiti, Rajesh; Mahajan, Anita; Grosshans, David R.

    2014-01-01

    Purpose: To compare field junction robustness and sparing of organs at risk (OARs) during craniospinal irradiation (CSI) using intensity modulated proton therapy (IMPT) to conventional passively scattered proton therapy (PSPT). Methods and Materials: Ten patients, 5 adult and 5 pediatric patients, previously treated with PSPT-based CSI were selected for comparison. Anterior oblique cranial fields, using a superior couch rotation, and posterior spinal fields were used for IMPT planning. To facilitate low-gradient field junctioning along the spine, the inverse-planning IMPT technique was divided into 3 stages. Dose indices describing target coverage and normal tissue dose, in silico error modeling, and film dosimetry were used to assess plan quality. Results: Field junction robustness along the spine was improved using the staged IMPT planning technique, reducing the worst case impact of a 4-mm setup error from 25% in PSPT to <5% of prescription dose. This was verified by film dosimetry for clinical delivery. Exclusive of thyroid dose in adult patients, IMPT plans demonstrated sparing of organs at risk as good or better than PSPT. Coverage of the cribriform plate for pediatric (V95% [percentage of volume of the target receiving at least 95% of the prescribed dose]; 87 ± 11 vs 92 ± 7) and adult (V95%; 94 ± 7 vs 100 ± 1) patients and the clinical target in pediatric (V95%; 98 ± 2 vs 100 ± 1) and adult (V95%; 100 ± 1 vs 100 ± 1) patients for PSPT and IMPT plans, respectively, were comparable or improved. For adult patients, IMPT target dose inhomogeneity was increased, as determined by heterogeneity index (HI) and inhomogeneity coefficient (IC). IMPT lowered maximum spinal cord dose, improved spinal dose homogeneity, and reduced exposure to other OARs. Conclusions: IMPT has the potential to improve CSI plan quality and the homogeneity of intrafractional dose at match lines. The IMPT approach developed may also simplify treatments and reduce

  20. LET dependence of GafChromic films and an ion chamber in low-energy proton dosimetry

    International Nuclear Information System (INIS)

    Kirby, Daniel; Parker, David; Green, Stuart; Hugtenburg, Richard; Wojnecki, Cecile; Palmans, Hugo

    2010-01-01

    Dosimetry using a PMMA phantom was performed in 15 and 29 MeV proton beams from the Birmingham cyclotron, with a Markus parallel-plate ionization chamber and GafChromic EBT and MD-V2-55 film. Simulations of the depth-dose curves were performed with FLUKA 2008.3 and MCNPX 2.5.0, which agreed almost perfectly with each other in range and only differed by 2% in the Bragg peak (BP) region. FLUKA was also used to calculate k Q factors for Markus chamber measurements as an improvement to the IAEA TRS-398 values in low-energy beams. FLUKA depth-dose simulations overestimate the BP height measured by ion chamber by about 10%, where the initial proton energy spread was estimated by fitting to the slope of the measured BP distal edge. Both GafChromic films showed an under-response in the BP compared to ion chamber; however, EBT exhibits this effect at lower energies than MD-V2-55. A possible reason for this is attributed to the shape and arrangement of the monomer particles being different in the active components of EBT and MD-V2-55. Relative effectiveness (RE) of both films is presented as functions of residual range R res in water and peak proton energy determined by FLUKA, with considerations for the spatial separation of the two active layers in each film. The proton energies at which RE reduces to 90% of maximum film response are 6.7 and 3.2 MeV for MD-V2-55 and EBT, respectively. Additionally, a beam quality correction factor (g Q,Q 0 ) is suggested for both GafChromic films, involving water-to-film stopping power ratios evaluated using ICRU recommendations, and a polymer yield factor G Q 0 /G Q . RE in this work is equated to the reciprocal of the polymer yield factor. The calculated values of (s w,film ) Q /(s w,film ) Q 0 are constant within 2.1% and 1.2% across the proton energy range of 1-300 MeV for EBT and MD-V2-55, respectively, so it is concluded that the polymer yield factor is the dominant factor causing the LET quenching effect.

  1. A dosimetric comparison of proton and photon therapy in unresectable cancers of the head of pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Reid F.; Zhai, Huifang; Both, Stefan; Metz, James M.; Plastaras, John P.; Ben-Josef, Edgar, E-mail: Edgar.Ben-Josef@uphs.upenn.edu [University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Mayekar, Sonal U. [Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States); Apisarnthanarax, Smith [University of Washington, Seattle, Washington 98109 (United States)

    2014-08-15

    Purpose: Uncontrolled local growth is the cause of death in ∼30% of patients with unresectable pancreatic cancers. The addition of standard-dose radiotherapy to gemcitabine has been shown to confer a modest survival benefit in this population. Radiation dose escalation with three-dimensional planning is not feasible, but high-dose intensity-modulated radiation therapy (IMRT) has been shown to improve local control. Still, dose-escalation remains limited by gastrointestinal toxicity. In this study, the authors investigate the potential use of double scattering (DS) and pencil beam scanning (PBS) proton therapy in limiting dose to critical organs at risk. Methods: The authors compared DS, PBS, and IMRT plans in 13 patients with unresectable cancer of the pancreatic head, paying particular attention to duodenum, small intestine, stomach, liver, kidney, and cord constraints in addition to target volume coverage. All plans were calculated to 5500 cGy in 25 fractions with equivalent constraints and normalized to prescription dose. All statistics were by two-tailed paired t-test. Results: Both DS and PBS decreased stomach, duodenum, and small bowel dose in low-dose regions compared to IMRT (p < 0.01). However, protons yielded increased doses in the mid to high dose regions (e.g., 23.6–53.8 and 34.9–52.4 Gy for duodenum using DS and PBS, respectively; p < 0.05). Protons also increased generalized equivalent uniform dose to duodenum and stomach, however these differences were small (<5% and 10%, respectively; p < 0.01). Doses to other organs-at-risk were within institutional constraints and placed no obvious limitations on treatment planning. Conclusions: Proton therapy does not appear to reduce OAR volumes receiving high dose. Protons are able to reduce the treated volume receiving low-intermediate doses, however the clinical significance of this remains to be determined in future investigations.

  2. Biological responses to low dose rate gamma radiation

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2003-01-01

    Linear non-threshold (LNT) theory is a basic theory for radioprotection. While LNT dose not consider irradiation time or dose-rate, biological responses to radiation are complex processes dependent on irradiation time as well as total dose. Moreover, experimental and epidemiological studies that can evaluate LNT at low dose/low dose-rate are not sufficiently accumulated. Here we analyzed quantitative relationship among dose, dose-rate and irradiation time using chromosomal breakage and proliferation inhibition of human cells as indicators of biological responses. We also acquired quantitative data at low doses that can evaluate adaptability of LNT with statistically sufficient accuracy. Our results demonstrate that biological responses at low dose-rate are remarkably affected by exposure time, and they are dependent on dose-rate rather than total dose in long-term irradiation. We also found that change of biological responses at low dose was not linearly correlated to dose. These results suggest that it is necessary for us to create a new model which sufficiently includes dose-rate effect and correctly fits of actual experimental and epidemiological results to evaluate risk of radiation at low dose/low dose-rate. (author)

  3. Estimation of mutation rates induced by large doses of gamma, proton and neutron irradiation of the X-chromosome of the nematode Panagrellus redivivus

    International Nuclear Information System (INIS)

    Denich, K.T.R.; Samoiloff, M.R.

    1984-01-01

    The radiation-resistant free-living nematode Panagrellus redivivus was used to study mutation rates in oocytes, following gamma, proton and neutron irradiation in the dose range 45-225 grays. γ-Radiation produced approximately 0.001 lethal X-chromosomes per gray over the range tested. Proton or neutron irradiation produced approximately 0.003 lethal X-chromosomes per gray at lower doses, with the mutation rate dropping to 0.001 lethal X-chromosome per gray at the higher doses. These results suggest a dose-dependent mutation-repair system. Cell lethality was also examined. γ-Radiation produced the greatest amount of cell lethality at all doses, while neutron irradiation had no cell lethal effect at any of the doses examined. (orig.)

  4. First experiences in treatment of low-grade glioma grade I and II with proton therapy

    International Nuclear Information System (INIS)

    Hauswald, Henrik; Rieken, Stefan; Ecker, Swantje; Kessel, Kerstin A; Herfarth, Klaus; Debus, Jürgen; Combs, Stephanie E

    2012-01-01

    To retrospectively assess feasibility and toxicity of proton therapy in patients with low-grade glioma (WHO °I/II). Proton beam therapy only administered in 19 patients (median age 29 years; 9 female, 10 male) for low-grade glioma between 2010 and 2011 was reviewed. In 6 cases proton therapy was performed due to tumor progression after biopsy, in 8 cases each due to tumor progression after (partial-) resection, and in 5 cases due to tumor progression after chemotherapy. Median total dose applied was 54 GyE (range, 48,6-54 GyE) in single fractions of median 1.8 GyE. Median clinical target volume was 99 cc (range, 6–463 cc) and treated using median 2 beams (range, 1–2). Proton therapy was finished as planned in all cases. At end of proton therapy, 13 patients showed focal alopecia, 6 patients reported mild fatigue, one patient with temporal tumor localization concentration deficits and speech errors and one more patient deficits in short-term memory. Four patients did not report any side effects. During follow-up, one patient presented with pseudo-progression showing worsening of general condition and brain edema 1–2 months after last irradiation and restitution after 6 months. In the present MR imaging (median follow-up 5 months; range 0–22 months) 12 patients had stable disease, 2 (1) patients partial (complete) remission, one more patient pseudo-progression (differential diagnosis: tumor progression) 4 weeks after irradiation without having had further follow-up imaging so far, and one patient tumor progression approximately 9 months after irradiation. Regarding early side effects, mild alopecia was the predominant finding. The rate of alopecia seems to be due to large treatment volumes as well as the anatomical locations of the target volumes and might be avoided by using multiple beams and the gantry in the future. Further evaluations including neuropsychological testing are in preparation

  5. Effects of low doses

    International Nuclear Information System (INIS)

    Le Guen, B.

    2001-01-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  6. Low dose effects of ionizing radiations in in vitro and in vivo biological systems: a multi-scale approach study

    International Nuclear Information System (INIS)

    Antoccia, A.; Berardinelli, F.; Argazzi, E.; Balata, M.; Bedogni, R.

    2011-01-01

    Long-term biological effects of low-dose radiation are little known nowadays and its carcinogenic risk is estimated on the assumption that risk remains linearly proportional to the radiation dose down to low-dose levels. However in the last 20 years this hypothesis has gradually begun to seem in contrast with a huge collection of experimental evidences, which has shown the presence of plethora of non-linear phenomena (including hypersensitivity and induced radioresistance, adaptive response, and non-targeted phenomena like bystander effect and genomic instability) occurring after low-dose irradiation. These phenomena might imply a non-linear behaviour of cancer risk curves in the low-dose region and question the validity of the Linear No-Threshold (LNT) model currently used for cancer risk assessment through extrapolation from existing high-dose data. Moreover only few information is available regarding the effects induced on cryo preserved cells by multi-year background radiation exposure, which might induce a radiation-damage accumulation, due to the inhibition of cellular repair mechanisms. In this framework, the multi-year Excalibur (Exposure effects at low doses of ionizing radiation in biological culture) experiment, funded by INFN-CNS5, has undertaken a multi-scale approach investigation on the biological effects induced in in vitro and in vivo biological systems, in culture and cryo preserved conditions, as a function of radiation quality (X/γ-rays, protons, He-4 ions of various energies) and dose, with particular emphasis on the low-dose region and non-linear phenomena, in terms of different biological endpoints.

  7. Impellers of low specific speed centrifugal pump based on the draughting technology

    International Nuclear Information System (INIS)

    Hongxun, C; Peiru, W; Weiwei, L; Wen, J

    2010-01-01

    The authors analyzed the reasons of low efficiency under different operation condition based on the performance test and CFD numerical simulation approach. And the analysis focuses on the relationship between pump efficiency and inner flow characteristics. In order to improve the internal flow and increase efficiency of the pump, some draughting methods of improving the internal flow structure have been proposed, and some new impellers were developed by these methods. The main geometric parameters of the impellers, such as diameter, width and installation of the size, were consistent with the original impeller. The experimental results show that the efficiency of new impellers was improved significantly. The authors' work has opened up a new direction for further improving the efficiency of the low specific speed centrifugal pump.

  8. Proton-beam radiation therapy dosimetry standardization

    International Nuclear Information System (INIS)

    Gall, K.P.

    1995-01-01

    Beams of protons have been used for radiation therapy applications for over 40 years. In the last decade the number of facilities treating patients and the total number of patients being treated has begun go grow rapidly. Due to the limited and experimental nature of the early programs, dosimetry protocols tended to be locally defined. With the publication of the AAPM Task Group 20 report open-quotes Protocol for Dosimetry of Heavy Charged Particlesclose quotes and the open-quotes European Code of Practice for Proton-Beam Dosimetryclose quotes the practice of determining dose in proton-beam therapy was somewhat unified. The ICRU has also recently commissioned a report on recommendations for proton-beam dosimetry. There have been three main methods of determining proton dose; the Faraday cup technique, the ionization chamber technique, and the calorimeter technique. For practical reasons the ionization chamber technique has become the most widely used. However, due to large errors in basic parameters (e.g., W-value) is also has a large uncertainty for absolute dose. It has been proposed that the development of water calorimeter absorbed dose standards would reduce the uncertainty in absolute proton dose as well as the relative dose between megavoltage X-ray beams and proton beams. The advantages and disadvantages are discussed

  9. Applicability of eddy viscosity turbulence models in low specific speed centrifugal pump

    International Nuclear Information System (INIS)

    Wang, Y; Wang, W J

    2012-01-01

    The accuracy of numerical simulation determines the performance prediction whether to be successful or not in the research of centrifugal pump. In order to study the applicability of different turbulence models in the low specific speed centrifugal pump, the object was based on XST45-200 stamping and welding centrifugal pump. Five different kinds of standards which are k-ε model, RNG k-ε model, Realizable k-ε model, Standard k-ω model and SST k-ω model are adopted in steady numerical simulations of the centrifugal pump flow fields. Then, inner and outside characteristics of the centrifugal pump were gotten .And it also provides the calculation of pressure distribution using different turbulence models in the five conditions. Lastly, the performance curves of head, power and efficiency are compared with the test. The results show a good agreement between five kinds of turbulence models and tests obtained in small flow and design condition. In large flow, the standard k-ε model is worse than the other four, which is larger than the tested head with a relative deviation of 47.9% and efficiency with 50%.The calculation accuracy which used RNG k-ε model is highest. SST k-ω model takes the second place. Standard k-ω model can be used for the numerical simulation in the low specific speed centrifugal pump.

  10. Dose rate effect on low-dose hyper-radiosensitivity with cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Min; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Low-dose hyper-radiosensitivity (HRS) is the phenomenon that mammalian cells exhibit higher sensitivity to radiation at low doses (< 0.5 Gy) than expected by the linear-quadratic model. At doses above 0.5Gy, the cellular response is recovered to the level expected by the linear-quadratic model. This transition is called the increased radio-resistance (IRR). HRS was first verified using Chinese hamster V79 cells in vitro by Marples and has been confirmed in studies with other cell lines including human normal and tumor cells. HRS is known to be induced by inactivation of ataxia telangiectasia-mutated (ATM), which plays a key role in repairing DNA damages. Considering the connection between ATM and HRS, one can infer that dose rate may affect cellular response regarding HRS at low doses. In this study, we quantitated the effect of dose rate on HRS by clonogenic assay with normal and tumor cells. The HRS of cells at low dose exposures is a phenomenon already known. In this study, we observed HRS of rat normal diencephalon cells and rat gliosarcoma cells at doses below 1 Gy. In addition, we found that dose rate mattered. HRS occurred at low doses, but only when total dose was delivered at a rate below certain level.

  11. Proton channeling in Au at low energies; Canalizacion de protones en Au a bajas energias

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, J E; Vargas, P [Chile Univ., Santiago (Chile). Dept. de Fisica

    1997-12-31

    The electronic energy loss for low velocity protons channeled in the <100> direction single crystal Au is calculated. The spatial distribution of valence electronic density in Au is calculated using Tight Binding Linear Muffin Tin Method. The proton trajectories are determined by numerical integration of the classical motion equation, and the energy loss is evaluated using the calculated valence electronic density in the friction term. The results allow to describe qualitatively the non linear behavior of energy loss with ion velocity observed experimentally. (author). 14 refs., 4 figs.

  12. Mammography-oncogenecity at low doses

    International Nuclear Information System (INIS)

    Heyes, G J; Mill, A J; Charles, M W

    2009-01-01

    Controversy exists regarding the biological effectiveness of low energy x-rays used for mammography breast screening. Recent radiobiology studies have provided compelling evidence that these low energy x-rays may be 4.42 ± 2.02 times more effective in causing mutational damage than higher energy x-rays. These data include a study involving in vitro irradiation of a human cell line using a mammography x-ray source and a high energy source which matches the spectrum of radiation observed in survivors from the Hiroshima atomic bomb. Current radiation risk estimates rely heavily on data from the atomic bomb survivors, and a direct comparison between the diagnostic energies used in the UK breast screening programme and those used for risk estimates can now be made. Evidence highlighting the increase in relative biological effectiveness (RBE) of mammography x-rays to a range of x-ray energies implies that the risks of radiation-induced breast cancers for mammography x-rays are potentially underestimated by a factor of four. A pooled analysis of three measurements gives a maximal RBE (for malignant transformation of human cells in vitro) of 4.02 ± 0.72 for 29 kVp (peak accelerating voltage) x-rays compared to high energy electrons and higher energy x-rays. For the majority of women in the UK NHS breast screening programme, it is shown that the benefit safely exceeds the risk of possible cancer induction even when this higher biological effectiveness factor is applied. The risk/benefit analysis, however, implies the need for caution for women screened under the age of 50, and particularly for those with a family history (and therefore a likely genetic susceptibility) of breast cancer. In vitro radiobiological data are generally acquired at high doses, and there are different extrapolation mechanisms to the low doses seen clinically. Recent low dose in vitro data have indicated a potential suppressive effect at very low dose rates and doses. Whilst mammography is a low

  13. Microscopic Gold Particle-Based Fiducial Markers for Proton Therapy of Prostate Cancer

    International Nuclear Information System (INIS)

    Lim, Young Kyung; Kwak, Jungwon; Kim, Dong Wook; Shin, Dongho; Yoon, Myonggeun; Park, Soah; Kim, Jin Sung; Ahn, Sung Hwan; Shin, Jungwook; Lee, Se Byeong; Park, Sung Yong; Pyo, Hong Ryeol; Kim, Dae Yong M.D.; Cho, Kwan Ho

    2009-01-01

    Purpose: We examined the feasibility of using fiducial markers composed of microscopic gold particles and human-compatible polymers as a means to overcome current problems with conventional macroscopic gold fiducial markers, such as dose reduction and artifact generation, in proton therapy for prostate cancer. Methods and Materials: We examined two types of gold particle fiducial marker interactions: that with diagnostic X-rays and with a therapeutic proton beam. That is, we qualitatively and quantitatively compared the radiographic visibility of conventional gold and gold particle fiducial markers and the CT artifacts and dose reduction associated with their use. Results: The gold particle fiducials could be easily distinguished from high-density structures, such as the pelvic bone, in diagnostic X-rays but were nearly transparent to a proton beam. The proton dose distribution was distorted <5% by the gold particle fiducials with a 4.9% normalized gold density; this was the case even in the worst configuration (i.e., parallel alignment with a single-direction proton beam). In addition, CT artifacts were dramatically reduced for the gold particle mixture. Conclusion: Mixtures of microscopic gold particles and human-compatible polymers have excellent potential as fiducial markers for proton therapy for prostate cancer. These include good radiographic visibility, low distortion of the depth-dose distribution, and few CT artifacts.

  14. The Automatic Regulation of the Basal Dose on the Insulin Pump for the Treatment of Patients that have Diabetes Type 1

    Directory of Open Access Journals (Sweden)

    Sifet Mehanović

    2010-05-01

    Full Text Available Diabetes mellitus type 1 is a chronic metabolic disorder, and its main characteristic is Hyperglycemia. It usually occurs in the early years because of the absolute or relative absence of the active insulin that is caused by the autoimmune disease of the β cells of the pancreas. Despite the numerous researches and efforts of the scientists, the therapy for Diabetes type 1 is based on the substitution of insulin. Even though the principles of the therapy have not changed so much, still some important changes have occurred in the production and usage of insulin. Lately, the insulin pumps are more frequent in the therapy for Diabetes type 1. The functioning of the pump is based on the continuing delivery of insulin in a small dose (“the basal dose”, that keeps the level of glycemia in the blood constant. The increase of glycemia during the meal is reduced with the additional dose of insulin (“the bolus dose”. The use of the insulin pumps and the continuing glucose sensors has provided an easier and more efficient monitoring of the diabetes, a better metabolic control and a better life quality for the patient and his/her family.This work presents the way of automatic regulation of the basal dose of insulin through the synthesis of the functions of the insulin pump and the continuing glucose sensor. The aim is to give a contribution to the development of the controlling algorithm on the insulin pump for the automatic regulation of the glucose concentration in the blood. This could be a step further which is closer to the delivery of the dose of insulin that is really needed for the basic needs of the organism, and a significant contribution is given to the development of the artificial pancreas.

  15. Effects of low doses; Effet des faibles doses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, B. [Electricite de France (EDF-LAM-SCAST), 93 - Saint-Denis (France)

    2001-07-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  16. The impact of MCS models and EFAC values on the dose simulation for a proton pencil beam

    International Nuclear Information System (INIS)

    Chen, Shih-Kuan; Chiang, Bing-Hao; Lee, Chung-Chi; Tung, Chuan-Jong; Hong, Ji-Hong; Chao, Tsi-Chian

    2017-01-01

    The Multiple Coulomb Scattering (MCS) model plays an important role in accurate MC simulation, especially for small field applications. The Rossi model is used in MCNPX 2.7.0, and the Lewis model in Geant4.9.6.p02. These two models may generate very different angular and spatial distributions in small field proton dosimetry. Beside angular and spatial distributions, step size is also an important issue that causes path length effects. The Energy Fraction (EFAC) value can be used in MCNPX 2.7.0 to control step sizes of MCS. In this study, we use MCNPX 2.7.0, Geant4.9.6.p02, and one pencil beam algorithm to evaluate the effect of dose deposition because of different MCS models and different EFAC values in proton disequilibrium situation. Different MCS models agree well with each other under a proton equilibrium situation. Under proton disequilibrium situations, the MCNPX and Geant4 results, however, show a significant deviation (up to 43%). In addition, the path length effects are more significant when EFAC is equal to 0.917 and 0.94 in small field proton dosimetry, and using a 0.97 EFAC value is the best for both accuracy and efficiency - Highlights: • MCS and EFAC are important in accurate MC simulation for proton pencil beams. • Bragg curves of MCNPX and Geant4 have a dose deviation up to 43%. • Lateral profiles from MCNPX is wider than those from Geant4. • Large EFAC caused path length effect, but no effects on lateral profiles. • 0.97 EFAC value is the best for both accuracy and efficiency.

  17. Proton therapy project at PSI

    International Nuclear Information System (INIS)

    Nakagawa, K.; Akanuma, A.; Karasawa, K.

    1990-01-01

    Particle radiation which might present steeper dose distribution has received much attention as the third particle facility at the Paul Scherrer Institute (PSI), Switzerland. Proton conformation with sharp fall-off is considered to be the radiation beam suitable for confining high doses to a target volume without complications and for verifying which factor out of high RBE or physical dose distribution is more essential for local control in malignant tumors. This paper discusses the current status of the spot scanning method, which allows three dimensional conformation radiotherapy, and preliminary results. Preliminary dose distribution with proton conformation technique was acquired by modifying a computer program for treatment planning in pion treatment. In a patient with prostate carcinoma receiving both proton and pion radiation therapy, proton conformation was found to confine high doses to the target area and spare both the bladder and rectum well; and pion therapy was found to deliver non-homogeneous radiation to these organs. Although there are some obstacles in the proton project at PSI, experimental investigations are encouraging. The dynamic spot scanning method with combination of the kicker magnet, wobbler magnet, range shifter, patient transporter, and position sensitive monitor provides highly confined dose distribution, making it possible to increase total doses and thus to improve local control rate. Proton confirmation is considered to be useful for verifying possible biological effectiveness of negative pion treatment of PSI as well. (N.K.)

  18. High-dose proton beam therapy for sinonasal mucosal malignant melanoma

    International Nuclear Information System (INIS)

    Fuji, Hiroshi; Yoshikawa, Shusuke; Kasami, Masako; Murayama, Shigeyuki; Onitsuka, Tetsuro; Kashiwagi, Hiroya; Kiyohara, Yoshio

    2014-01-01

    The significance of definitive radiotherapy for sinonasal mucosal melanoma (SMM) is sill controvertial. This study was to evaluate the role of high-dose proton beam therapy (PBT) in patients with SMM. The cases of 20 patients with SMM localized to the primary site who were treated by PBT between 2006 and 2012 were retrospectively analyzed. The patterns of overall survival and morbidity were assessed. The median follow-up time was 35 months (range, 6–77 months). The 5-year overall and disease-free survival rates were 51% and 38%, respectively. Four patients showed local failure, 2 showed regrowth of the primary tumor, and 2 showed new sinonasal tumors beyond the primary site. The 5-year local control rate after PBT was 62%. Nodal and distant failure was seen in 7 patients. Three grade 4 late toxicities were observed in tumor-involved optic nerve. Our findings suggested that high-dose PBT is an effective local treatment that is less invasive than surgery but with comparable outcomes

  19. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    Energy Technology Data Exchange (ETDEWEB)

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.; Honikel, L.; Simon, S.R.

    2010-05-28

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-{kappa}B) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory [i.e., tumor necrosis factor-alpha (TNF-{alpha}), interleukin-1beta (IL-1{beta}), and IL-6] and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min{sup -1}, the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of {sup 137}Cs {gamma} rays (10 mGy min{sup -1}). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or {sup 137}Cs {gamma} rays, delivered at 10 mGy min{sup -1}, was similar. Although statistically significant levels of NF-{kappa}B activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p < 0.05 or < 0.01) were induced by either dose rate, these levels varied over time for each protein. Further, only a dose rate of 5 mGy min{sup -1} induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.

  20. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie, E-mail: shujieli@nankai.edu.cn

    2014-06-13

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.

  1. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    International Nuclear Information System (INIS)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie

    2014-01-01

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor

  2. Low-dose computed tomography image restoration using previous normal-dose scan

    International Nuclear Information System (INIS)

    Ma, Jianhua; Huang, Jing; Feng, Qianjin; Zhang, Hua; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan

    2011-01-01

    Purpose: In current computed tomography (CT) examinations, the associated x-ray radiation dose is of a significant concern to patients and operators. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) or kVp parameter (or delivering less x-ray energy to the body) as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and the noise would propagate into the CT image if no adequate noise control is applied during image reconstruction. Since a normal-dose high diagnostic CT image scanned previously may be available in some clinical applications, such as CT perfusion imaging and CT angiography (CTA), this paper presents an innovative way to utilize the normal-dose scan as a priori information to induce signal restoration of the current low-dose CT image series. Methods: Unlike conventional local operations on neighboring image voxels, nonlocal means (NLM) algorithm utilizes the redundancy of information across the whole image. This paper adapts the NLM to utilize the redundancy of information in the previous normal-dose scan and further exploits ways to optimize the nonlocal weights for low-dose image restoration in the NLM framework. The resulting algorithm is called the previous normal-dose scan induced nonlocal means (ndiNLM). Because of the optimized nature of nonlocal weights calculation, the ndiNLM algorithm does not depend heavily on image registration between the current low-dose and the previous normal-dose CT scans. Furthermore, the smoothing parameter involved in the ndiNLM algorithm can be adaptively estimated based on the image noise relationship between the current low-dose and the previous normal-dose scanning protocols. Results: Qualitative and quantitative evaluations were carried out on a physical phantom as well as clinical abdominal and brain perfusion CT scans in terms of accuracy and resolution properties. The gain by the use

  3. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations.

    Science.gov (United States)

    Palmans, H; Al-Sulaiti, L; Andreo, P; Shipley, D; Lühr, A; Bassler, N; Martinkovič, J; Dobrovodský, J; Rossomme, S; Thomas, R A S; Kacperek, A

    2013-05-21

    The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence

  4. Increase of weakly acidic gas esophagopharyngeal reflux (EPR) and swallowing-induced acidic/weakly acidic EPR in patients with chronic cough responding to proton pump inhibitors.

    Science.gov (United States)

    Kawamura, O; Shimoyama, Y; Hosaka, H; Kuribayashi, S; Maeda, M; Nagoshi, A; Zai, H; Kusano, M

    2011-05-01

    Gastro-esophageal reflux disease (GERD)-related chronic cough (CC) may have multifactorial causes. To clarify the characteristics of esophagopharyngeal reflux (EPR) events in CC patients whose cough was apparently influenced by gastro-esophageal reflux (GER), we studied patients with CC clearly responding to full-dose proton pump inhibitor (PPI) therapy (CC patients). Ten CC patients, 10 GERD patients, and 10 healthy controls underwent 24-h ambulatory pharyngo-esophageal impedance and pH monitoring. Weakly acidic reflux was defined as a decrease of pH by >1 unit with a nadir pH >4. In six CC patients, monitoring was repeated after 8 weeks of PPI therapy. The number of each EPR event and the symptom association probability (SAP) were calculated. Symptoms were evaluated by a validated GERD symptom questionnaire. Weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR only occurred in CC patients, and the numbers of such events was significantly higher in the CC group than in the other two groups (P pump inhibitor therapy abolished swallowing-induced acidic/weakly acidic EPR, reduced weakly acidic gas EPR, and improved symptoms (all P gas EPR and swallowing-induced acidic/weakly acidic EPR. A direct effect of acidic mist or liquid refluxing into the pharynx may contribute to chronic cough, while cough may also arise indirectly from reflux via a vago-vagal reflex in some patients. © 2011 Blackwell Publishing Ltd.

  5. Unexplained abdominal pain as a driver for inappropriate therapeutics: an audit on the use of intravenous proton pump inhibitors

    Directory of Open Access Journals (Sweden)

    Pauline Siew Mei Lai

    2014-06-01

    Full Text Available Background. Proton pump inhibitors (PPIs are currently the most effective agents for acid-related disorders. However, studies show that 25–75% of patients receiving intravenous PPIs had no appropriate justification, indicating high rates of inappropriate prescribing.Objective. To examine the appropriate use of intravenous PPIs in accordance with guidelines and the efficacy of a prescribing awareness intervention at an Asian teaching institution.Setting. Prospective audit in a tertiary hospital in Malaysia.Method. Every 4th intravenous PPI prescription received in the pharmacy was screened against hospital guidelines. Interventions for incorrect indication/dose/duration were performed. Patients’ demographic data, medical history and the use of intravenous PPI were collected. Included were all adult inpatients prescribed intravenous PPI.Main Outcome Measure. Proportion of appropriate IV PPI prescriptions.Results. Data for 106 patients were collected. Most patients were male [65(61.3%], Chinese [50(47.2%], with mean age ± SD = 60.3 ± 18.0 years. Most intravenous PPI prescriptions were initiated by junior doctors from the surgical [47(44.3%] and medical [42(39.6%] departments. Only 50/106(47.2% patients had upper gastrointestinal endoscopy/surgery performed to verify the source of bleeding. Unexplained abdominal pain [81(76.4%] was the main driver for prescribing intravenous PPIs empirically, out of which 73(68.9% were for suspected upper gastrointestinal bleed. Overall, intravenous PPI was found to be inappropriately prescribed in 56(52.8% patients for indication, dose or duration. Interventions on the use of intravenous PPI were most effective when performed by senior doctors (100%, followed by clinical pharmacists (50%, and inpatient pharmacists (37.5%, p = 0.027.Conclusion. Inappropriate intravenous PPI usage is still prevalent despite the enforcement of hospital guidelines. The promotion of prescribing awareness and evidence

  6. Development of a synthetic single crystal diamond dosimeter for dose measurement of clinical proton beams

    Science.gov (United States)

    Moignier, Cyril; Tromson, Dominique; de Marzi, Ludovic; Marsolat, Fanny; García Hernández, Juan Carlos; Agelou, Mathieu; Pomorski, Michal; Woo, Romuald; Bourbotte, Jean-Michel; Moignau, Fabien; Lazaro, Delphine; Mazal, Alejandro

    2017-07-01

    The scope of this work was to develop a synthetic single crystal diamond dosimeter (SCDD-Pro) for accurate relative dose measurements of clinical proton beams in water. Monte Carlo simulations were carried out based on the MCNPX code in order to investigate and reduce the dose curve perturbation caused by the SCDD-Pro. In particular, various diamond thicknesses were simulated to evaluate the influence of the active volume thickness (e AV) as well as the influence of the addition of a front silver resin (250 µm in thickness in front of the diamond crystal) on depth-dose curves. The simulations indicated that the diamond crystal alone, with a small e AV of just 5 µm, already affects the dose at Bragg peak position (Bragg peak dose) by more than 2% with respect to the Bragg peak dose deposited in water. The optimal design that resulted from the Monte Carlo simulations consists of a diamond crystal of 1 mm in width and 150 µm in thickness with the front silver resin, enclosed by a water-equivalent packaging. This design leads to a deviation between the Bragg peak dose from the full detector modeling and the Bragg peak dose deposited in water of less than 1.2%. Based on those optimizations, an SCDD-Pro prototype was built and evaluated in broad passive scattering proton beams. The experimental evaluation led to probed SCDD-Pro repeatability, dose rate dependence and linearity, that were better than 0.2%, 0.4% (in the 1.0-5.5 Gy min-1 range) and 0.4% (for dose higher than 0.05 Gy), respectively. The depth-dose curves in the 90-160 MeV energy range, measured with the SCDD-Pro without applying any correction, were in good agreement with those measured using a commercial IBA PPC05 plane-parallel ionization chamber, differing by less than 1.6%. The experimental results confirmed that this SCDD-Pro is suitable for measurements with standard electrometers and that the depth-dose curve perturbation is negligible, with no energy dependence and no significant dose rate

  7. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    Science.gov (United States)

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.

  8. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Chang, Joe Y.; Zhang Xiaodong; Wang Xiaochun; Kang Yixiu; Riley, Beverly C.; Bilton, Stephen C.; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.

    2006-01-01

    Purpose: To compare dose-volume histograms (DVH) in patients with non-small-cell lung cancer (NSCLC) treated by photon or proton radiotherapy. Methods and Materials: Dose-volume histograms were compared between photon, including three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and proton plans at doses of 66 Gy, 87.5 Gy in Stage I (n = 10) and 60-63 Gy, and 74 Gy in Stage III (n 15). Results: For Stage I, the mean total lung V5, V10, and V20 were 31.8%, 24.6%, and 15.8%, respectively, for photon 3D-CRT with 66 Gy, whereas they were 13.4%, 12.3%, and 10.9%, respectively, with proton with dose escalation to 87.5 cobalt Gray equivalents (CGE) (p = 0.002). For Stage III, the mean total lung V5, V10, and V20 were 54.1%, 46.9%, and 34.8%, respectively, for photon 3D-CRT with 63 Gy, whereas they were 39.7%, 36.6%, and 31.6%, respectively, for proton with dose escalation to 74 CGE (p = 0.002). In all cases, the doses to lung, spinal cord, heart, esophagus, and integral dose were lower with proton therapy even compared with IMRT. Conclusions: Proton treatment appears to reduce dose to normal tissues significantly, even with dose escalation, compared with standard-dose photon therapy, either 3D-CRT or IMRT

  9. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    International Nuclear Information System (INIS)

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.; Honikel, L.; Simon, S.R.

    2010-01-01

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-κB) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory (i.e., tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and IL-6) and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min -1 , the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of 137 Cs γ rays (10 mGy min -1 ). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or 137 Cs γ rays, delivered at 10 mGy min -1 , was similar. Although statistically significant levels of NF-κB activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p -1 induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.

  10. Comparison of LCA results of low temperature heat plant using electric heat pump, absorption heat pump and gas-fired boiler

    International Nuclear Information System (INIS)

    Nitkiewicz, Anna; Sekret, Robert

    2014-01-01

    Highlights: • Usage of geothermal heat pump can bring environmental benefits. • The lowest environmental impact for whole life cycle is obtained for absorption heat pump. • The value of heat pump COP has a significant influence on environmental impact. • In case of coal based power generation the damage to human health is significant. - Abstract: This study compares the life cycle impacts of three heating plant systems which differ in their source of energy and the type of system. The following heating systems are considered: electric water-water heat pump, absorption water-water heat pump and natural gas fired boiler. The heat source for heat pump systems is low temperature geothermal source with temperature below 20 °C and spontaneous outflow 24 m 3 /h. It is assumed that the heat pumps and boiler are working in monovalent system. The analysis was carried out for heat networks temperature characteristic at 50/40 °C which is changing with outdoor temperature during heating season. The environmental life cycle impact is evaluated within life cycle assessment methodological framework. The method used for life cycle assessment is eco-indicator ‘99. The functional unit is defined as heating plant system with given amount of heat to be delivered to meet local heat demand in assumed average season. The data describing heating plant system is derived from literature and energy analysis of these systems. The data describing the preceding life cycle phases: extraction of raw materials and fuels, production of heating devices and their transportation is taken from Ecoinvent 2.0 life cycle inventory database. The results were analyzed on three levels of indicators: single score indicator, damage category indicators and impact category indicator. The indicators were calculated for characterization, normalization and weighting phases as well. SimaPro 7.3.2 is the software used to model the systems’ life cycle. The study shows that heating plants using a low

  11. Proton pump inhibition and cancer therapeutics: A specific tumor targeting or it is a phenomenon secondary to a systemic buffering?

    Science.gov (United States)

    Spugnini, Enrico; Fais, Stefano

    2017-04-01

    One of the unsolved mysteries in oncology includes the strategies that cancer cells adopt to cope with an adverse microenvironment. However, we knew, from the Warburg's discovery that through their metabolism based on sugar fermentation, cancer cells acidify their microenvironment and this progressive acidification induces a selective pressure, leading to the development of very malignant cells entirely armed to survive in the hostile microenvironment generated by their own metabolism. In the last decades a primordial role for proton exchangers has been supported as a key tumor advantage in facing off the acidic milieu. Proton exchangers do not allow intracellular acidification through a continuous elimination of H+ either outside the cells or within the internal vacuoles. This article wants to comment a translational process through that led to the preclinical demonstration that a class of proton pump inhibitors (PPI) exploited worldwide for peptic ulcer treatment and gastroprotection are indeed powerful chemosensitizers as well. In this process we achieved the clinical proof of concept that PPI may well be included in new anti-cancer strategies with a solid background and rationale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Inactivation of HTB63 human melanoma cells by irradiation with protons and gamma rays.

    Science.gov (United States)

    Ristic-Fira, Aleksandra; Petrovic, Ivan; Todorovic, Danijela; Koricanac, Lela; Vujèic, Miroslava; Demajo, Miroslav; Sabini, Gabriella; Cirrone, Pablo; Cuttone, Giacomo

    2004-12-01

    The effects of single irradiation with gamma rays and protons on HTB63 human melanoma cell growth were compared. The exponentially growing cells were irradiated with gamma rays or protons using doses ranging from 2-20 Gy. At 48 h of post-irradiation incubation under standard conditions, cell survival and induction of apoptotic cell death were examined. The best effect of the single irradiation with gamma rays was the reduction of cell growth by up to 26% (p=0.048, irradiation vs. control), obtained using the dose of 16 Gy. The same doses of proton irradiation, having energy at the target of 22.6 MeV, significantly inhibited melanoma cell growth. Doses of 12 and 16 Gy of protons provoked growth inhibition of 48.9% (p=0.003, irradiation vs. control) and 51.2% (p=0.012, irradiation vs. control) respectively. Irradiation with 12 and 16 Gy protons, compared to the effects of the same doses of gamma rays, significantly reduced melanoma cell growth (p=0.015 and p=0.028, protons vs. gamma rays, respectively). Estimated RBEs for growth inhibition of HTB63 cells ranged from 1.02 to 1.45. The electrophoretical analyses of DNA samples and flow cytometric evaluation have shown a low percentage of apoptotic cells after both types of irradiation. The better inhibitory effect achieved by protons in contrast to gamma rays, can be explained considering specific physical properties of protons, especially taking into account the highly localized energy deposition (high LET).

  13. Polarized proton target-IV. Operations manual

    International Nuclear Information System (INIS)

    Hill, D.; Fletcher, O.; Moretti, A.; Onesto, F.

    1976-01-01

    Standard operating procedures are presented for the vacuum, cryogenic, and electronic systems of a polarized proton target. The systems are comprised of (1) a target cryostat; (2) a 4 He pumping system; (3) a 3 He pumping system; (4) a microwave system; (5) a magnet and power supply; (6) a computerized polarization monitor; and (7) miscellaneous auxiliary equipment

  14. Stopping powers of solids for low-energy protons

    International Nuclear Information System (INIS)

    Ashley, J.C.; Ritchie, R.H.

    1984-01-01

    Electron gas models are useful approximations for describing the valence electron response of a solid to the passage of a charged particle. A simple free-electron gas model was used by Fermi and Teller to estimate the time required for a mesotron to be stopped in various solids. More recent work has employed the Lindhard dielectric response function, or approximations thereto, for calculations of the valence electron contributions to energy loss per unit pathlength for protons. Such calculations have generally shown rather poor agreement with experimental data for low-energy protons (velocity small compared to the Fermi velocity, v<< v/sub F/). The purpose of this paper is to draw attention to a recent calculation of the stopping power for slow protons using a density-functional formalism. These new results have been shown to give good agreement with experimental data and thus should provide valuable theoretical guidance in estimating stopping powers of solids for which no experimental data are available

  15. Evaluation of the influence of double and triple Gaussian proton kernel models on accuracy of dose calculations for spot scanning technique.

    Science.gov (United States)

    Hirayama, Shusuke; Takayanagi, Taisuke; Fujii, Yusuke; Fujimoto, Rintaro; Fujitaka, Shinichiro; Umezawa, Masumi; Nagamine, Yoshihiko; Hosaka, Masahiro; Yasui, Keisuke; Omachi, Chihiro; Toshito, Toshiyuki

    2016-03-01

    The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. The accuracy of calculations was important for treatment planning software (TPS) because the energy, spot position, and absolute dose had to be determined by TPS for the spot scanning technique. The dose distribution was calculated by convolving in-air fluence with the dose kernel. The dose kernel was the in-water 3D dose distribution of an infinitesimal pencil beam and consisted of an integral depth dose (IDD) and a lateral distribution. Accurate modeling of the low-dose region was important for spot scanning technique because the dose distribution was formed by cumulating hundreds or thousands of delivered beams. The authors employed a double Gaussian function as the in-air fluence model of an individual beam. Double and triple Gaussian kernel models were also prepared for comparison. The parameters of the kernel lateral model were derived by fitting a simulated in-water lateral dose profile induced by an infinitesimal proton beam, whose emittance was zero, at various depths using Monte Carlo (MC) simulation. The fitted parameters were interpolated as a function of depth in water and stored as a separate look-up table. These stored parameters for each energy and depth in water were acquired from the look-up table when incorporating them into the TPS. The modeling process for the in-air fluence and IDD was based on the method proposed in the literature. These were derived using MC simulation and measured data. The authors compared the measured and calculated absolute doses at the center of the spread-out Bragg peak (SOBP) under various volumetric irradiation conditions to systematically investigate the influence of the two types of kernel models on the dose calculations. The authors investigated the difference

  16. Pitfalls of Insulin Pump Clocks

    Science.gov (United States)

    Reed, Amy J.

    2014-01-01

    The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713

  17. Are low radiation doses Dangerous?

    International Nuclear Information System (INIS)

    Garcia Lima, O.; Cornejo, N.

    1996-01-01

    In the last few years the answers to this questions has been affirmative as well as negative from a radiation protection point of view low doses of ionizing radiation potentially constitute an agent causing stochasting effects. A lineal relation without threshold is assumed between dose and probability of occurrence of these effects . Arguments against the danger of probability of occurrence of these effects. Arguments again the danger of low dose radiation are reflected in concepts such as Hormesis and adaptive response, which are phenomena that being studied at present

  18. Randomised trial of proton vs. carbon ion radiation therapy in patients with low and intermediate grade chondrosarcoma of the skull base, clinical phase III study

    International Nuclear Information System (INIS)

    Nikoghosyan, Anna V; Rauch, Geraldine; Münter, Marc W; Jensen, Alexandra D; Combs, Stephanie E; Kieser, Meinhard; Debus, Jürgen

    2010-01-01

    Low and intermediate grade chondrosarcomas are relative rare bone tumours. About 5-12% of all chondrosarcomas are localized in base of skull region. Low grade chondrosarcoma has a low incidence of distant metastasis but is potentially lethal disease. Therefore, local therapy is of crucial importance in the treatment of skull base chondrosarcomas. Surgical resection is the primary treatment standard. Unfortunately the late diagnosis and diagnosis at the extensive stage are common due to the slow and asymptomatic growth of the lesions. Consequently, complete resection is hindered due to close proximity to critical and hence dose limiting organs such as optic nerves, chiasm and brainstem. Adjuvant or additional radiation therapy is very important for the improvement of local control rates in the primary treatment. Proton therapy is the gold standard in the treatment of skull base chondrosarcomas. However, high-LET (linear energy transfer) beams such as carbon ions theoretically offer advantages by enhanced biologic effectiveness in slow-growing tumours. The study is a prospective randomised active-controlled clinical phase III trial. The trial will be carried out at Heidelberger Ionenstrahl-Therapie (HIT) centre as monocentric trial. Patients with skull base chondrosarcomas will be randomised to either proton or carbon ion radiation therapy. As a standard, patients will undergo non-invasive, rigid immobilization and target volume definition will be carried out based on CT and MRI data. The biologically isoeffective target dose to the PTV (planning target volume) in carbon ion treatment will be 60 Gy E ± 5% and 70 Gy E ± 5% (standard dose) in proton therapy respectively. The 5 year local-progression free survival (LPFS) rate will be analysed as primary end point. Overall survival, progression free and metastasis free survival, patterns of recurrence, local control rate and morbidity are the secondary end points. Up to now it was impossible to compare two different

  19. Single-energy intensity modulated proton therapy

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-09-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described. The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods. It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan. When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  20. Single-energy intensity modulated proton therapy.

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-10-07

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.