WorldWideScience

Sample records for low-dimensional maps extension

  1. A two-dimensional lattice equation as an extension of the Heideman-Hogan recurrence

    Science.gov (United States)

    Kamiya, Ryo; Kanki, Masataka; Mase, Takafumi; Tokihiro, Tetsuji

    2018-03-01

    We consider a two dimensional extension of the so-called linearizable mappings. In particular, we start from the Heideman-Hogan recurrence, which is known as one of the linearizable Somos-like recurrences, and introduce one of its two dimensional extensions. The two dimensional lattice equation we present is linearizable in both directions, and has the Laurent and the coprimeness properties. Moreover, its reduction produces a generalized family of the Heideman-Hogan recurrence. Higher order examples of two dimensional linearizable lattice equations related to the Dana Scott recurrence are also discussed.

  2. Anticommutative extension of the Adler map

    Science.gov (United States)

    Konstantinou-Rizos, S.; Mikhailov, A. V.

    2016-07-01

    We construct a noncommutative (Grassmann) extension of the well-known Adler Yang-Baxter map. It satisfies the Yang-Baxter equation, it is reversible and birational. Our extension preserves all the properties of the original map except the involutivity.

  3. Dynamic colloidal assembly pathways via low dimensional models

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuguang; Bevan, Michael A., E-mail: mabevan@jhu.edu [Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Thyagarajan, Raghuram; Ford, David M. [Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003 (United States)

    2016-05-28

    Here we construct a low-dimensional Smoluchowski model for electric field mediated colloidal crystallization using Brownian dynamic simulations, which were previously matched to experiments. Diffusion mapping is used to infer dimensionality and confirm the use of two order parameters, one for degree of condensation and one for global crystallinity. Free energy and diffusivity landscapes are obtained as the coefficients of a low-dimensional Smoluchowski equation to capture the thermodynamics and kinetics of microstructure evolution. The resulting low-dimensional model quantitatively captures the dynamics of different assembly pathways between fluid, polycrystal, and single crystals states, in agreement with the full N-dimensional data as characterized by first passage time distributions. Numerical solution of the low-dimensional Smoluchowski equation reveals statistical properties of the dynamic evolution of states vs. applied field amplitude and system size. The low-dimensional Smoluchowski equation and associated landscapes calculated here can serve as models for predictive control of electric field mediated assembly of colloidal ensembles into two-dimensional crystalline objects.

  4. Quantum confinement effects in low-dimensional systems

    Indian Academy of Sciences (India)

    2015-06-03

    Jun 3, 2015 ... Quantum confinement effects in low-dimensional systems. Figure 5. (a) Various cuts of the three-dimensional data showing energy vs. momen- tum dispersion relations for Ag film of 17 ML thickness on Ge(111). (b) Photo- emission intensity maps along ¯M– ¯ – ¯K direction. (c) Substrate bands replotted ...

  5. Renormalization of period doubling in symmetric four-dimensional volume-preserving maps

    International Nuclear Information System (INIS)

    Mao, J.; Greene, J.M.

    1987-01-01

    We have determined three maps (truncated at quadratic terms) that are fixed under the renormalization operator of pitchfork period doubling in symmetric four-dimensional volume-preserving maps. Each of these contains the previously known two-dimensional area-preserving map that is fixed under the period-doubling operator. One of these three fixed maps consists of two uncoupled two-dimensional (nonlinear) area-preserving fixed maps. The other two contain also the two-dimensional area-preserving fixed map coupled (in general) with a linear two-dimensional map. The renormalization calculation recovers all numerical results for the pitchfork period doubling in the symmetric four-dimensional volume-preserving maps, reported by Mao and Helleman [Phys. Rev. A 35, 1847 (1987)]. For a large class of nonsymmetric four-dimensional volume-preserving maps, we found that the fixed maps are the same as those for the symmetric maps

  6. Using an effective dimensionality to map the force-extension relation for a semi-flexible polymer in a nanoslit

    Science.gov (United States)

    de Haan, Hendrick

    2015-03-01

    The force-extension relation for a semi-flexible polymer is well described by the Marko-Siggia equation in both two and three dimensions. However, while of interest for experimental systems such as DNA in nanopits, the behaviour between these limiting dimensionalities is less understood. I will present results from simulations of a polymer subject to a stretching force F confined in nanoslits of varying heights h. Going from the 3D case to the 2D case, both the coefficients of the equation and the relevant persistence length are shown to change. This observation leads to the definition of an effective dimensionality, deff, to characterize the system. At low F, using deff in a generalized form of the Marko-Siggia relation provides good agreement with the simulation curves. However, at high F, deff drifts back towards d = 3 . 0 . The reason behind this F dependence is discussed. Semi-empirical forms for strong and weak confinement regimes will be presented and shown to give good agreement across all slit heights and stretching forces. deff is thus dependent on h and F and provides a cohesive physical picture for all regimes.

  7. Chaotic dynamics in two-dimensional noninvertible maps

    CERN Document Server

    Mira, Christian; Cathala, Jean-Claude; Gardini, Laura

    1996-01-01

    This book is essentially devoted to complex properties (Phase plane structure and bifurcations) of two-dimensional noninvertible maps, i.e. maps having either a non-unique inverse, or no real inverse, according to the plane point. They constitute models of sets of discrete dynamical systems encountered in Engineering (Control, Signal Processing, Electronics), Physics, Economics, Life Sciences. Compared to the studies made in the one-dimensional case, the two-dimensional situation remained a long time in an underdeveloped state. It is only since these last years that the interest for this resea

  8. Super integrable four-dimensional autonomous mappings

    International Nuclear Information System (INIS)

    Capel, H W; Sahadevan, R; Rajakumar, S

    2007-01-01

    A systematic investigation of the complete integrability of a fourth-order autonomous difference equation of the type w(n + 4) = w(n)F(w(n + 1), w(n + 2), w(n + 3)) is presented. We identify seven distinct families of four-dimensional mappings which are super integrable and have three (independent) integrals via a duality relation as introduced in a recent paper by Quispel, Capel and Roberts (2005 J. Phys. A: Math. Gen. 38 3965-80). It is observed that these seven families can be related to the four-dimensional symplectic mappings with two integrals including all the four-dimensional periodic reductions of the integrable double-discrete modified Korteweg-deVries and sine-Gordon equations treated in an earlier paper by two of us (Capel and Sahadevan 2001 Physica A 289 86-106)

  9. Expressive map design: OGC SLD/SE++ extension for expressive map styles

    Science.gov (United States)

    Christophe, Sidonie; Duménieu, Bertrand; Masse, Antoine; Hoarau, Charlotte; Ory, Jérémie; Brédif, Mathieu; Lecordix, François; Mellado, Nicolas; Turbet, Jérémie; Loi, Hugo; Hurtut, Thomas; Vanderhaeghe, David; Vergne, Romain; Thollot, Joëlle

    2018-05-01

    In the context of custom map design, handling more artistic and expressive tools has been identified as a carto-graphic need, in order to design stylized and expressive maps. Based on previous works on style formalization, an approach for specifying the map style has been proposed and experimented for particular use cases. A first step deals with the analysis of inspiration sources, in order to extract `what does make the style of the source', i.e. the salient visual characteristics to be automatically reproduced (textures, spatial arrangements, linear stylization, etc.). In a second step, in order to mimic and generate those visual characteristics, existing and innovative rendering techniques have been implemented in our GIS engine, thus extending the capabilities to generate expressive renderings. Therefore, an extension of the existing cartographic pipeline has been proposed based on the following aspects: 1- extension of the symbolization specifications OGC SLD/SE in order to provide a formalism to specify and reference expressive rendering methods; 2- separate the specification of each rendering method and its parameterization, as metadata. The main contribution has been described in (Christophe et al. 2016). In this paper, we focus firstly on the extension of the cartographic pipeline (SLD++ and metadata) and secondly on map design capabilities which have been experimented on various topographic styles: old cartographic styles (Cassini), artistic styles (watercolor, impressionism, Japanese print), hybrid topographic styles (ortho-imagery & vector data) and finally abstract and photo-realist styles for the geovisualization of costal area. The genericity and interoperability of our approach are promising and have already been tested for 3D visualization.

  10. Parametric perturbations and suppression of chaos in n-dimensional maps

    International Nuclear Information System (INIS)

    Loskutov, A.Y.; Rybalko, S.D.

    1994-11-01

    The problem of a qualitative change in dynamics of n-dimensional chaotic maps under the influence of parametric perturbations is considered. We prove that for certain maps, - the quadratic maps family, a piece wise linear maps family, and a two-dimensional map having a hyberbolic attractor, - there are perturbations which lead to suppression of chaos. Arguments that for such maps the set of parameter values corresponding to the ordered behaviour has the positive Lebesgue measure, are given. (author). 36 refs, 12 figs

  11. Supersymmetric extension of Hopf maps: N = 4 {sigma}-models and the S{sup 3} {yields} S{sup 2} fibration

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, L. Faria; Toppan, F., E-mail: leofc@cbpf.b, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Kuznetsova, Z., E-mail: zhanna.kuznetsova@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2009-07-01

    We discuss four off-shell N = 4 D = 1 supersymmetry transformations, their associated one-dimensional -models and their mutual relations. They are given by I - the (4, 4){sub lin} linear 'root' supermultiplet (supersymmetric extension of R{sup 4}), II - the (3, 4, 1){sub lin} linear supermultiplet (supersymmetric extension of R3), III - the (3, 4, 1){sub nl} non-linear supermultiplet living on S{sup 3} and IV - the (2, 4, 2){sub nl} non-linear supermultiplet living on S{sup 2}. The I {yields} II map is the supersymmetric extension of the R4 {yields} R3 bilinear map, while the II {yields} IV map is the supersymmetric extension of the S{sup 3} {yields} S{sup 2} first Hopf fibration. The restrictions on the S{sup 3}, S{sup 2} spheres are expressed in terms of the stereo graphic projections. The non-linear supermultiplets, whose super transformations are local differential polynomials, are not equivalent to the linear supermultiplets with the same field content. The -models are determined in terms of an unconstrained pre potential of the target coordinates. The Uniformization Problem requires solving an inverse problem for the pre potential. The basic features of the supersymmetric extension of the second and third Hopf maps are briefly sketched. Finally, the Schur's lemma (i.e. the real, complex or quaternionic property) is extended to all minimal linear supermultiplets up to N {<=} 8. (author)

  12. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    Energy Technology Data Exchange (ETDEWEB)

    Schultheis, M. [Université de Nice Sophia-Antipolis, CNRS, Observatoire de Côte d' Azur, Laboratoire Lagrange, 06304 Nice Cedex 4 (France); Zasowski, G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Allende Prieto, C. [Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Anders, F.; Chiappini, C. [Leibniz-Institut für Astrophysik Potsdam (AIP), D-14482 Potsdam (Germany); Beaton, R. L.; García Pérez, A. E.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Beers, T. C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Bizyaev, D. [Apache Point Observatory, Sunspot, NM 88349 (United States); Frinchaboy, P. M. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Ge, J. [Astronomy Department, University of Florida, Gainesville, FL 32611 (United States); Hearty, F.; Schneider, D. P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Holtzman, J. [New Mexico State University, Las Cruces, NM 88003 (United States); Muna, D. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Nidever, D. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Shetrone, M., E-mail: mathias.schultheis@oca.eu, E-mail: gail.zasowski@gmail.com [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States)

    2014-07-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  13. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    International Nuclear Information System (INIS)

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.; Anders, F.; Chiappini, C.; Beaton, R. L.; García Pérez, A. E.; Majewski, S. R.; Beers, T. C.; Bizyaev, D.; Frinchaboy, P. M.; Ge, J.; Hearty, F.; Schneider, D. P.; Holtzman, J.; Muna, D.; Nidever, D.; Shetrone, M.

    2014-01-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  14. Jordan-Wigner fermionization and the theory of low-dimensional quantum spin models

    International Nuclear Information System (INIS)

    Derzhko, O.

    2007-01-01

    The idea of mapping quantum spin lattice model onto fermionic lattice model goes back to Jordan and Wigner (1928) who transformed s = 1/2 operators which commute at different lattice sites into fermionic operators. Later on the Jordan-Wigner transformation was used for mapping one-dimensional s = 1/2 isotropic XY (XX) model onto an exactly solvable tight-binding model of spinless fermions (Lieb, Schultz and Mattis, 1961). Since that times the Jordan-Wigner transformation is known as a powerful tool in the condensed matter theory especially in the theory of low-dimensional quantum spin systems. The aim of these lectures is to review the applications of the Jordan-Wigner fermionization technique for calculating dynamic properties of low-dimensional quantum spin models. The dynamic quantities (such as dynamic structure factors or dynamic susceptibilities) are observable directly or indirectly in various experiments. The frequency and wave-vector dependence of the dynamic quantities yields valuable information about the magnetic structure of materials. Owing to a tremendous recent progress in synthesizing low-dimensional magnetic materials detailed comparisons of theoretical results with direct experimental observation are becoming possible. The lectures are organized as follows. After a brief introduction of the Jordan-Wigner transformation for one-dimensional spin one half systems and some of its extensions for higher dimensions and higher spin values we focus on the dynamic properties of several low-dimensional quantum spin models. We start from a famous s = 1/2 XX chain. As a first step we recall well-known results for dynamics of the z-spin-component fluctuation operator and then turn to dynamics of the dimer and trimer fluctuation operators. The dynamics of the trimer fluctuations involves both the two fermion (one particle and one hole) and the four-fermion (two particles and two holes) excitations. We discuss some properties of the two-fermion and four

  15. High-resolution three-dimensional mapping of semiconductor dopant potentials

    DEFF Research Database (Denmark)

    Twitchett, AC; Yates, TJV; Newcomb, SB

    2007-01-01

    Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how a combin......Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how...... a combination of electron holography and electron tomography can be used to determine quantitatively the three-dimensional electrostatic potential in an electrically biased semiconductor device with nanometer spatial resolution....

  16. Analytical description of critical dynamics for two-dimensional dissipative nonlinear maps

    International Nuclear Information System (INIS)

    Méndez-Bermúdez, J.A.; Oliveira, Juliano A. de; Leonel, Edson D.

    2016-01-01

    The critical dynamics near the transition from unlimited to limited action diffusion for two families of well known dissipative nonlinear maps, namely the dissipative standard and dissipative discontinuous maps, is characterized by the use of an analytical approach. The approach is applied to explicitly obtain the average squared action as a function of the (discrete) time and the parameters controlling nonlinearity and dissipation. This allows to obtain a set of critical exponents so far obtained numerically in the literature. The theoretical predictions are verified by extensive numerical simulations. We conclude that all possible dynamical cases, independently on the map parameter values and initial conditions, collapse into the universal exponential decay of the properly normalized average squared action as a function of a normalized time. The formalism developed here can be extended to many other different types of mappings therefore making the methodology generic and robust. - Highlights: • We analytically approach scaling properties of a family of two-dimensional dissipative nonlinear maps. • We derive universal scaling functions that were obtained before only approximately. • We predict the unexpected condition where diffusion and dissipation compensate each other exactly. • We find a new universal scaling function that embraces all possible dissipative behaviors.

  17. One-dimensional map-based neuron model: A logistic modification

    International Nuclear Information System (INIS)

    Mesbah, Samineh; Moghtadaei, Motahareh; Hashemi Golpayegani, Mohammad Reza; Towhidkhah, Farzad

    2014-01-01

    A one-dimensional map is proposed for modeling some of the neuronal activities, including different spiking and bursting behaviors. The model is obtained by applying some modifications on the well-known Logistic map and is named the Modified and Confined Logistic (MCL) model. Map-based neuron models are known as phenomenological models and recently, they are widely applied in modeling tasks due to their computational efficacy. Most of discrete map-based models involve two variables representing the slow-fast prototype. There are also some one-dimensional maps, which can replicate some of the neuronal activities. However, the existence of four bifurcation parameters in the MCL model gives rise to reproduction of spiking behavior with control over the frequency of the spikes, and imitation of chaotic and regular bursting responses concurrently. It is also shown that the proposed model has the potential to reproduce more realistic bursting activity by adding a second variable. Moreover the MCL model is able to replicate considerable number of experimentally observed neuronal responses introduced in Izhikevich (2004) [23]. Some analytical and numerical analyses of the MCL model dynamics are presented to explain the emersion of complex dynamics from this one-dimensional map

  18. C*-algebras associated with reversible extensions of logistic maps

    International Nuclear Information System (INIS)

    Kwaśniewski, Bartosz K

    2012-01-01

    The construction of reversible extensions of dynamical systems presented in a previous paper by the author and A.V. Lebedev is enhanced, so that it applies to arbitrary mappings (not necessarily with open range). It is based on calculating the maximal ideal space of C*-algebras that extends endomorphisms to partial automorphisms via partial isometric representations, and involves a new set of 'parameters' (the role of parameters is played by chosen sets or ideals). As model examples, we give a thorough description of reversible extensions of logistic maps and a classification of systems associated with compression of unitaries generating homeomorphisms of the circle. Bibliography: 34 titles.

  19. C*-algebras associated with reversible extensions of logistic maps

    Science.gov (United States)

    Kwaśniewski, Bartosz K.

    2012-10-01

    The construction of reversible extensions of dynamical systems presented in a previous paper by the author and A.V. Lebedev is enhanced, so that it applies to arbitrary mappings (not necessarily with open range). It is based on calculating the maximal ideal space of C*-algebras that extends endomorphisms to partial automorphisms via partial isometric representations, and involves a new set of 'parameters' (the role of parameters is played by chosen sets or ideals). As model examples, we give a thorough description of reversible extensions of logistic maps and a classification of systems associated with compression of unitaries generating homeomorphisms of the circle. Bibliography: 34 titles.

  20. Signal processing of eddy current three-dimensional maps

    International Nuclear Information System (INIS)

    Birac, C.; David, D.; Lamant, D.

    1987-01-01

    Digital processing of eddy current three-dimensional maps improves accuracy of detection: flattening, filtering, computing deconvolution, mapping new variables,.., give new possibilities for difficult test problems. With simulation of defects, probes, probe travels, it is now possible to compute new eddy current processes, without machining defects or building probes

  1. Poincare' maps of impulsed oscillators and two-dimensional dynamics

    International Nuclear Information System (INIS)

    Lupini, R.; Lenci, S.; Gardini, L.; Urbino Univ.

    1996-01-01

    The Poincare' map of one-dimensional linear oscillators subject to periodic, non-linear and time-delayed impulses is shown to reduce to a family of plane maps with possible non-uniqueness of the inverse. By restricting the analysis to a convenient form of the impulse function, a variety of interesting dynamical behaviours in this family are pointed out, including multistability and homoclinic bifurcations. Critical curves of two-dimensional endomorphisms are used to identify the structure of absorbing areas and their bifurcations

  2. Three-dimensional mapping of the local interstellar medium with composite data

    Science.gov (United States)

    Capitanio, L.; Lallement, R.; Vergely, J. L.; Elyajouri, M.; Monreal-Ibero, A.

    2017-10-01

    Context. Three-dimensional maps of the Galactic interstellar medium are general astrophysical tools. Reddening maps may be based on the inversion of color excess measurements for individual target stars or on statistical methods using stellar surveys. Three-dimensional maps based on diffuse interstellar bands (DIBs) have also been produced. All methods benefit from the advent of massive surveys and may benefit from Gaia data. Aims: All of the various methods and databases have their own advantages and limitations. Here we present a first attempt to combine different datasets and methods to improve the local maps. Methods: We first updated our previous local dust maps based on a regularized Bayesian inversion of individual color excess data by replacing Hipparcos or photometric distances with Gaia Data Release 1 values when available. Secondly, we complemented this database with a series of ≃5000 color excess values estimated from the strength of the λ15273 DIB toward stars possessing a Gaia parallax. The DIB strengths were extracted from SDSS/APOGEE spectra. Third, we computed a low-resolution map based on a grid of Pan-STARRS reddening measurements by means of a new hierarchical technique and used this map as the prior distribution during the inversion of the two other datasets. Results: The use of Gaia parallaxes introduces significant changes in some areas and globally increases the compactness of the structures. Additional DIB-based data make it possible to assign distances to clouds located behind closer opaque structures and do not introduce contradictory information for the close structures. A more realistic prior distribution instead of a plane-parallel homogeneous distribution helps better define the structures. We validated the results through comparisons with other maps and with soft X-ray data. Conclusions: Our study demonstrates that the combination of various tracers is a potential tool for more accurate maps. An online tool makes it possible to

  3. Spatiotemporal complexity in coupled map lattices

    International Nuclear Information System (INIS)

    Kaneko, Kunihiko

    1986-01-01

    Some spatiotemporal patterns of couple map lattices are presented. The chaotic kink-like motions are shown for the phase motion of the coupled circle lattices. An extension of the couple map lattice approach to Hamiltonian dynamics is briefly reported. An attempt to characterize the high-dimensional attractor by the extension of the correlation dimension is discussed. (author)

  4. Four-dimensional maps of the human somatosensory system.

    Science.gov (United States)

    Avanzini, Pietro; Abdollahi, Rouhollah O; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A

    2016-03-29

    A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans.

  5. Physical Webbing: Collaborative Kinesthetic Three-Dimensional Mind Maps[R

    Science.gov (United States)

    Williams, Marian H.

    2012-01-01

    Mind Mapping has predominantly been used by individuals or collaboratively in groups as a paper-based or computer-generated learning strategy. In an effort to make Mind Mapping kinesthetic, collaborative, and three-dimensional, an innovative pedagogical strategy, termed Physical Webbing, was devised. In the Physical Web activity, groups…

  6. Absence of rotational activity detected using 2-dimensional phase mapping in the corresponding 3-dimensional phase maps in human persistent atrial fibrillation.

    Science.gov (United States)

    Pathik, Bhupesh; Kalman, Jonathan M; Walters, Tomos; Kuklik, Pawel; Zhao, Jichao; Madry, Andrew; Sanders, Prashanthan; Kistler, Peter M; Lee, Geoffrey

    2018-02-01

    Current phase mapping systems for atrial fibrillation create 2-dimensional (2D) maps. This process may affect the accurate detection of rotors. We developed a 3-dimensional (3D) phase mapping technique that uses the 3D locations of basket electrodes to project phase onto patient-specific left atrial 3D surface anatomy. We sought to determine whether rotors detected in 2D phase maps were present at the corresponding time segments and anatomical locations in 3D phase maps. One-minute left atrial atrial fibrillation recordings were obtained in 14 patients using the basket catheter and analyzed off-line. Using the same phase values, 2D and 3D phase maps were created. Analysis involved determining the dominant propagation patterns in 2D phase maps and evaluating the presence of rotors detected in 2D phase maps in the corresponding 3D phase maps. Using 2D phase mapping, the dominant propagation pattern was single wavefront (36.6%) followed by focal activation (34.0%), disorganized activity (23.7%), rotors (3.3%), and multiple wavefronts (2.4%). Ten transient rotors were observed in 9 of 14 patients (64%). The mean rotor duration was 1.1 ± 0.7 seconds. None of the 10 rotors observed in 2D phase maps were seen at the corresponding time segments and anatomical locations in 3D phase maps; 4 of 10 corresponded with single wavefronts in 3D phase maps, 2 of 10 with 2 simultaneous wavefronts, 1 of 10 with disorganized activity, and in 3 of 10 there was no coverage by the basket catheter at the corresponding 3D anatomical location. Rotors detected in 2D phase maps were not observed in the corresponding 3D phase maps. These findings may have implications for current systems that use 2D phase mapping. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. Creating three-dimensional thermal maps

    CSIR Research Space (South Africa)

    Price

    2011-11-01

    Full Text Available stream_source_info Price_2011.pdf.txt stream_content_type text/plain stream_size 30895 Content-Encoding ISO-8859-1 stream_name Price_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Creating Three...-Dimensional Thermal Maps Mathew Price Cogency cc Cape Town Email: mathew@cogency.co.za Jeremy Green CSIR Centre for Mining Innovation Johannesburg Email: jgreen@csir.co.za John Dickens CSIR Centre for Mining Innovation Johannesburg Email: jdickens...

  8. Mapping method for generating three-dimensional meshes: past and present

    International Nuclear Information System (INIS)

    Cook, W.A.; Oakes, W.R.

    1982-01-01

    Two transformations are derived in this paper. One is a mapping of a unit square onto a surve and the other is a mapping of a unit cube onto a three-dimensional region. Two meshing computer programs are then discussed that use these mappings. The first is INGEN, which has been used to calculate three-dimensional meshes for approximately 15 years. This meshing program uses an index scheme to number boundaries, surfaces, and regions. With such an index scheme, it is possible to control nodal points, elements, and boundary conditions. The second is ESCHER, a meshing program now being developed. Two primary considerations governing development of ESCHER are that meshes graded using quadrilaterals are required and that edge-line geometry defined by Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) systems will be a major source of geometry definition. This program separates the processes of nodal-point connectivity generation, computation of nodal-point mapping space coordinates, and mapping of nodal points into model space

  9. MapReduce-based Dimensional ETL Made Easy

    DEFF Research Database (Denmark)

    Xiufeng, Liu; Thomsen, Christian; Pedersen, Torben Bach

    2012-01-01

    This paper demonstrates ETLMR, a novel dimensional Extract–Transform–Load (ETL) programming framework that uses MapReduce to achieve scalability. ETLMR has builtin native support of data warehouse (DW) specific constructs such as star schemas, snowflake schemas, and slowly changing dimensions (SCDs...

  10. Use of dimensionality reduction for structural mapping of hip joint osteoarthritis data

    International Nuclear Information System (INIS)

    Theoharatos, C; Fotopoulos, S; Boniatis, I; Panayiotakis, G; Panagiotopoulos, E

    2009-01-01

    A visualization-based, computer-oriented, classification scheme is proposed for assessing the severity of hip osteoarthritis (OA) using dimensionality reduction techniques. The introduced methodology tries to cope with the confined ability of physicians to structurally organize the entire available set of medical data into semantically similar categories and provide the capability to make visual observations among the ensemble of data using low-dimensional biplots. In this work, 18 pelvic radiographs of patients with verified unilateral hip OA are evaluated by experienced physicians and assessed into Normal, Mild and Severe following the Kellgren and Lawrence scale. Two regions of interest corresponding to radiographic hip joint spaces are determined and representative features are extracted using a typical texture analysis technique. The structural organization of all hip OA data is accomplished using distance and topology preservation-based dimensionality reduction techniques. The resulting map is a low-dimensional biplot that reflects the intrinsic organization of the ensemble of available data and which can be directly accessed by the physician. The conceivable visualization scheme can potentially reveal critical data similarities and help the operator to visually estimate their initial diagnosis. In addition, it can be used to detect putative clustering tendencies, examine the presence of data similarities and indicate the existence of possible false alarms in the initial perceptual evaluation

  11. Reciprocal space mapping by spot profile analyzing low energy electron diffraction

    International Nuclear Information System (INIS)

    Meyer zu Heringdorf, Frank-J.; Horn-von Hoegen, Michael

    2005-01-01

    We present an experimental approach for the recording of two-dimensional reciprocal space maps using spot profile analyzing low energy electron diffraction (SPA-LEED). A specialized alignment procedure eliminates the shifting of LEED patterns on the screen which is commonly observed upon variation of the electron energy. After the alignment, a set of one-dimensional sections through the diffraction pattern is recorded at different energies. A freely available software tool is used to assemble the sections into a reciprocal space map. The necessary modifications of the Burr-Brown computer interface of the two Leybold and Omicron type SPA-LEED instruments are discussed and step-by-step instructions are given to adapt the SPA 4.1d software to the changed hardware. Au induced faceting of 4 deg. vicinal Si(001) is used as an example to demonstrate the technique

  12. Coupled iterated map models of action potential dynamics in a one-dimensional cable of cardiac cells

    International Nuclear Information System (INIS)

    Wang Shihong; Xie Yuanfang; Qu Zhilin

    2008-01-01

    Low-dimensional iterated map models have been widely used to study action potential dynamics in isolated cardiac cells. Coupled iterated map models have also been widely used to investigate action potential propagation dynamics in one-dimensional (1D) coupled cardiac cells, however, these models are usually empirical and not carefully validated. In this study, we first developed two coupled iterated map models which are the standard forms of diffusively coupled maps and overcome the limitations of the previous models. We then determined the coupling strength and space constant by quantitatively comparing the 1D action potential duration profile from the coupled cardiac cell model described by differential equations with that of the coupled iterated map models. To further validate the coupled iterated map models, we compared the stability conditions of the spatially uniform state of the coupled iterated maps and those of the 1D ionic model and showed that the coupled iterated map model could well recapitulate the stability conditions, i.e. the spatially uniform state is stable unless the state is chaotic. Finally, we combined conduction into the developed coupled iterated map model to study the effects of coupling strength on wave stabilities and showed that the diffusive coupling between cardiac cells tends to suppress instabilities during reentry in a 1D ring and the onset of discordant alternans in a periodically paced 1D cable

  13. Three-Dimensional Extension of a Digital Library Service System

    Science.gov (United States)

    Xiao, Long

    2010-01-01

    Purpose: The paper aims to provide an overall methodology and case study for the innovation and extension of a digital library, especially the service system. Design/methodology/approach: Based on the three-dimensional structure theory of the information service industry, this paper combines a comprehensive analysis with the practical experiences…

  14. Groupoid extensions of mapping class representations for bordered surfaces

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Bene, Alex; Penner, Robert

    2009-01-01

    by explicit formulae depending upon six essential cases, and the kernel and image of the groupoid representation are computed. Furthermore, this provides groupoid extensions of any representation of the mapping class group that factors through its action on the fundamental group of the surface including...

  15. High-Dimensional Intrinsic Interpolation Using Gaussian Process Regression and Diffusion Maps

    International Nuclear Information System (INIS)

    Thimmisetty, Charanraj A.; Ghanem, Roger G.; White, Joshua A.; Chen, Xiao

    2017-01-01

    This article considers the challenging task of estimating geologic properties of interest using a suite of proxy measurements. The current work recast this task as a manifold learning problem. In this process, this article introduces a novel regression procedure for intrinsic variables constrained onto a manifold embedded in an ambient space. The procedure is meant to sharpen high-dimensional interpolation by inferring non-linear correlations from the data being interpolated. The proposed approach augments manifold learning procedures with a Gaussian process regression. It first identifies, using diffusion maps, a low-dimensional manifold embedded in an ambient high-dimensional space associated with the data. It relies on the diffusion distance associated with this construction to define a distance function with which the data model is equipped. This distance metric function is then used to compute the correlation structure of a Gaussian process that describes the statistical dependence of quantities of interest in the high-dimensional ambient space. The proposed method is applicable to arbitrarily high-dimensional data sets. Here, it is applied to subsurface characterization using a suite of well log measurements. The predictions obtained in original, principal component, and diffusion space are compared using both qualitative and quantitative metrics. Considerable improvement in the prediction of the geological structural properties is observed with the proposed method.

  16. SU-E-T-752: Three-Dimensional Carcinogenic Maps Induced by Photons and Protons

    Energy Technology Data Exchange (ETDEWEB)

    Manem, V; Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: Evaluate the excess relative risk (ERR) induced by photons and protons in each voxel of the lung, and display it as a three-dimensional map, known as the ERRM (i.e. excess relative risk map) along with the dose distribution map. In addition, we also study the effect of variations in the linear energy transfer (LET) distribution on ERRM for a given proton plan. Methods: The excess relative risk due to radiation is estimated using the initiation-inactivation-proliferation formalism. This framework accounts for three biological phenomenon: mutation induction, cell kill and proliferation. Cell kill and mutation induction are taken as a function of LET using experimental data. LET distributions are calculated using a Monte Carlo algorithm. ERR is then estimated for each voxel in the organ, and displayed as a three dimensional carcinogenic map. Results: The differences in the ERR’s between photons and protons is seen from the three-dimensional ERR map. In addition, we also varied the LET of a proton plan and observed the differences in the corresponding ERR maps demonstrating variations in the ERR maps depend on features of a proton plan. Additionally, our results suggest that any two proton plans that have the same integral dose does not necessarily imply identical ERR maps, and these changes are due to the variations in the LET distribution map. Conclusion: Clinically, it is important to have a three dimensional display of biological end points. This study is an effort to introduce 3D ERR maps into the treatment planning workflow for certain sites such as pediatric head and neck tumors.

  17. Chern-Simons action for inhomogeneous Virasoro group as extension of three dimensional flat gravity

    Energy Technology Data Exchange (ETDEWEB)

    Barnich, Glenn [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Giribet, Gastón [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina); Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Leston, Mauricio [Instituto de Astronomía y Física del Espacio IAFE-CONICET, Ciudad Universitaria, Pabellón IAFE, C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina)

    2015-07-15

    We initiate the study of a Chern-Simons action associated to the semi-direct sum of the Virasoro algebra with its coadjoint representation. This model extends the standard Chern-Simons formulation of three dimensional flat gravity and is similar to the higher-spin extension of three dimensional anti-de Sitter or flat gravity. The extension can also be constructed for the exotic but not for the cosmological constant deformation of flat gravity.

  18. Mapping Earth's electromagnetic dimensionality

    Science.gov (United States)

    Love, J. J.; Kelbert, A.; Bedrosian, P.

    2017-12-01

    The form of a magnetotelluric impedance tensor, obtained for a given geographic site through simultaneous measurement of geomagnetic and geoelectric field variation, is affected by electrical conductivity structure beneath the measurement site. Building on existing methods for characterizing the symmetry of magnetotelluric impedance tensors, a simple scalar measure is developed for measuring the (frequency dependent) proportion of the impedance tensor that is not just a one-dimensional (1D) function of depth ("non-1D-ness"). These measures are applied to nearly 1000 impedance tensors obtained during magnetotelluric surveys, those for the continental United States and obtained principally through the National Science Foundation's EarthScope project. Across geomagnetic/geoelectric variational periods ranging from 30 s to 3,000 s, corresponding to crustal and upper mantle depths, it is shown that local Earth structure is very often not simply 1D-depth-dependent - often less than 50% of magnetotelluric impedance is 1D. For selected variational frequencies, non-1D-ness is mapped and the relationship between electromagnetic dimensionality and known geological and tectonic structures is discussed. The importance of using realistic surface impedances to accurately evaluate magnetic-storm geoelectric hazards is emphasized.

  19. Physics of low-dimensional systems

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic system have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas

  20. Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map

    Science.gov (United States)

    Wang, Xing-Yuan; Qin, Xue; Xie, Yi-Xin

    2011-08-01

    We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number xi generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application.

  1. Low-dimensional molecular metals

    CERN Document Server

    Toyota, Naoki; Muller, Jens

    2007-01-01

    Assimilating research in the field of low-dimensional metals, this monograph provides an overview of the status of research on quasi-one- and two-dimensional molecular metals, describing normal-state properties, magnetic field effects, superconductivity, and the phenomena of interacting p and d electrons.

  2. Deterministic hopping in a Josephson circuit described by a one-dimensional mapping

    International Nuclear Information System (INIS)

    Miracky, R.F.; Devoret, M.H.; Clarke, J.

    1985-01-01

    Analog simulations of the hopping noise of a current-biased Josephson tunnel junction shunted with an inductor in series with a resistor reveal a 1/ω spectral density over two decades of frequency ω for a narrow range of bias currents. The amplitude of the low-frequency part of the spectrum decreases when white noise, representing Nyquist noise in the resistor at a few degrees Kelvin, is added to the simulation. We explain the shape of the power spectrum and its dependence on bias current and added white noise in terms of a deterministic process, involving a one-dimensional mapping, that is analogous to that found in Pomeau-Manneville intermittency. Moreover, we are able to establish a detailed relationship between the origin of the mapping and the differential equation describing the dynamics of the system

  3. Synthetic three-dimensional turbulent passive scalar fields via the minimal Lagrangian map

    Science.gov (United States)

    Rosales, Carlos

    2011-07-01

    A method for simple but realistic generation of three-dimensional synthetic turbulent passive scalar fields is presented. The method is an extension of the minimal turnover Lagrangian map approach (MTLM) [C. Rosales and C. Meneveau, Phys. Rev. E 78, 016313 (2008)] formulated for the generation of synthetic turbulent velocity fields. In this development, the minimal Lagrangian map is applied to deform simultaneously a vector field and an advected scalar field. This deformation takes place over a hierarchy of spatial scales encompassing a range from integral to dissipative scales. For each scale, fluid particles are mapped transporting the scalar property, without interaction or diffusional effects, from their initial configuration to new positions determined only by their velocity at the beginning of the motion and a parameter chosen to accumulate deformation for the equivalent of the phenomenological "turn-over" time scale. The procedure is studied for the case of inertial-convective regime. It is found that many features of passive scalar turbulence are well reproduced by this simple kinematical construction. Fundamental statistics of the resulting synthetic scalar fields, evaluated through the flatness and probability density functions of the scalar gradient and scalar increments, reproduce quite well the known statistical characteristics of passive scalars in turbulent fields. High-order statistics are also consistent with those observed in real hydrodynamic turbulence. The anomalous scaling of real turbulence is well reproduced for different kind of structure functions, with good quantitative agreement in general, for the scaling exponents. The spatial structure of the scalar field is also quite realistic, as well as several characteristics of the dissipation fields for the scalar variance and kinetic energy. Similarly, the statistical geometry at dissipative scales that ensues from the coupling of velocity and scalar gradients behaves in agreement with what is

  4. Generalized entropy decay rates of one-dimensional maps

    International Nuclear Information System (INIS)

    Csordas, A.; Szepfalusy, P.

    1988-01-01

    A series of entropies, approaching the order-q Renyi's entropies when the length of orbits tends to infinity, is considered. Their scaling form is determined for chaotic one-dimensional maps. For the characteristic relaxation time a general expression is derived, and it is shown to be closely related to the eigenvalues of a generalized Frobenius-Perron operator. The case of intermittent maps is also considered, and the spectrum of relaxation time is found to reflect the phase transition at q = 1. Results of numerical experiments are also presented

  5. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  6. Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Qin Xue; Xie Yi-Xin

    2011-01-01

    We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number x i generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application. (general)

  7. Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps

    International Nuclear Information System (INIS)

    Avrutin, V; Granados, A; Schanz, M

    2011-01-01

    Typically, big bang bifurcation occurs for one (or higher)-dimensional piecewise-defined discontinuous systems whenever two border collision bifurcation curves collide transversely in the parameter space. At that point, two (feasible) fixed points collide with one boundary in state space and become virtual, and, in the one-dimensional case, the map becomes continuous. Depending on the properties of the map near the codimension-two bifurcation point, there exist different scenarios regarding how the infinite number of periodic orbits are born, mainly the so-called period adding and period incrementing. In our work we prove that, in order to undergo a big bang bifurcation of the period incrementing type, it is sufficient for a piecewise-defined one-dimensional map that the colliding fixed points are attractive and with associated eigenvalues of different signs

  8. Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps

    Science.gov (United States)

    Avrutin, V.; Granados, A.; Schanz, M.

    2011-09-01

    Typically, big bang bifurcation occurs for one (or higher)-dimensional piecewise-defined discontinuous systems whenever two border collision bifurcation curves collide transversely in the parameter space. At that point, two (feasible) fixed points collide with one boundary in state space and become virtual, and, in the one-dimensional case, the map becomes continuous. Depending on the properties of the map near the codimension-two bifurcation point, there exist different scenarios regarding how the infinite number of periodic orbits are born, mainly the so-called period adding and period incrementing. In our work we prove that, in order to undergo a big bang bifurcation of the period incrementing type, it is sufficient for a piecewise-defined one-dimensional map that the colliding fixed points are attractive and with associated eigenvalues of different signs.

  9. An extension of fuzzy decision maps for multi-criteria decision-making

    OpenAIRE

    Elomda, Basem Mohamed; Hefny, Hesham Ahmed; Hassan, Hesham Ahmed

    2013-01-01

    This paper presents a new extension to Fuzzy Decision Maps (FDMs) by allowing use of fuzzy linguistic values to represent relative importance among criteria in the preference matrix as well as representing relative influence among criteria for computing the steady-state matrix in the stage of Fuzzy Cognitive Map (FCM). The proposed model is called the Linguistic Fuzzy Decision Networks (LFDNs). The proposed LFDN provides considerable flexibility to decision makers when solving real world Mult...

  10. Two-dimensional Model of Ciliwung River Flood in DKI Jakarta for Development of the Regional Flood Index Map

    Directory of Open Access Journals (Sweden)

    Adam Formánek

    2013-12-01

    Full Text Available The objective of this study was to present a sophisticated method of developing supporting material for flood control implementation in DKI Jakarta. High flow rates in the Ciliwung River flowing through Jakarta regularly causes extensive flooding in the rainy season. The affected area comprises highly densely populated villages. For developing an efficient early warning system in view of decreasing the vulnerability of the locations a flood index map has to be available. This study analyses the development of a flood risk map of the inundation area based on a two-dimensional modeling using FESWMS. The reference event used for the model was the most recent significant flood in 2007. The resulting solution represents flood characteristics such as inundation area, inundation depth and flow velocity. Model verification was performed by confrontation of the results with survey data. The model solution was overlaid with a street map of Jakarta. Finally, alternatives for flood mitigation measures are discussed.

  11. Mappings with closed range and finite dimensional linear spaces

    International Nuclear Information System (INIS)

    Iyahen, S.O.

    1984-09-01

    This paper looks at two settings, each of continuous linear mappings of linear topological spaces. In one setting, the domain space is fixed while the range space varies over a class of linear topological spaces. In the second setting, the range space is fixed while the domain space similarly varies. The interest is in when the requirement that the mappings have a closed range implies that the domain or range space is finite dimensional. Positive results are obtained for metrizable spaces. (author)

  12. Participatory three dimensional mapping for the preparation of landslide disaster risk reduction program

    Science.gov (United States)

    Kusratmoko, Eko; Wibowo, Adi; Cholid, Sofyan; Pin, Tjiong Giok

    2017-07-01

    This paper presents the results of applications of participatory three dimensional mapping (P3DM) method for fqcilitating the people of Cibanteng' village to compile a landslide disaster risk reduction program. Physical factors, as high rainfall, topography, geology and land use, and coupled with the condition of demographic and social-economic factors, make up the Cibanteng region highly susceptible to landslides. During the years 2013-2014 has happened 2 times landslides which caused economic losses, as a result of damage to homes and farmland. Participatory mapping is one part of the activities of community-based disaster risk reduction (CBDRR)), because of the involvement of local communities is a prerequisite for sustainable disaster risk reduction. In this activity, participatory mapping method are done in two ways, namely participatory two-dimensional mapping (P2DM) with a focus on mapping of disaster areas and participatory three-dimensional mapping (P3DM) with a focus on the entire territory of the village. Based on the results P3DM, the ability of the communities in understanding the village environment spatially well-tested and honed, so as to facilitate the preparation of the CBDRR programs. Furthermore, the P3DM method can be applied to another disaster areas, due to it becomes a medium of effective dialogue between all levels of involved communities.

  13. Mapping of low flip angles in magnetic resonance

    International Nuclear Information System (INIS)

    Balezeau, Fabien; Saint-Jalmes, Herve; Eliat, Pierre-Antoine; Cayamo, Alejandro Bordelois

    2011-01-01

    Errors in the flip angle have to be corrected in many magnetic resonance imaging applications, especially for T1 quantification. However, the existing methods of B1 mapping fail to measure lower values of the flip angle despite the fact that these are extensively used in dynamic acquisition and 3D imaging. In this study, the nonlinearity of the radiofrequency (RF) transmit chain, especially for very low flip angles, is investigated and a simple method is proposed to accurately determine both the gain of the RF transmitter and the B1 field map for low flip angles. The method makes use of the spoiled gradient echo sequence with long repetition time (TR), such as applied in the double-angle method. It uses an image acquired with a flip angle of 90 0 as a reference image that is robust to B1 inhomogeneity. The ratio of the image at flip angle alpha to the image at a flip angle of 90 0 enables us to calculate the actual value of alpha. This study was carried out at 1.5 and 4.7 T, showing that the linearity of the RF supply system is highly dependent on the hardware. The method proposed here allows us to measure the flip angle from 1 0 to 60 0 with a maximal uncertainty of 10% and to correct T1 maps based on the variable flip angle method.

  14. Online prediction of respiratory motion: multidimensional processing with low-dimensional feature learning

    International Nuclear Information System (INIS)

    Ruan, Dan; Keall, Paul

    2010-01-01

    Accurate real-time prediction of respiratory motion is desirable for effective motion management in radiotherapy for lung tumor targets. Recently, nonparametric methods have been developed and their efficacy in predicting one-dimensional respiratory-type motion has been demonstrated. To exploit the correlation among various coordinates of the moving target, it is natural to extend the 1D method to multidimensional processing. However, the amount of learning data required for such extension grows exponentially with the dimensionality of the problem, a phenomenon known as the 'curse of dimensionality'. In this study, we investigate a multidimensional prediction scheme based on kernel density estimation (KDE) in an augmented covariate-response space. To alleviate the 'curse of dimensionality', we explore the intrinsic lower dimensional manifold structure and utilize principal component analysis (PCA) to construct a proper low-dimensional feature space, where kernel density estimation is feasible with the limited training data. Interestingly, the construction of this lower dimensional representation reveals a useful decomposition of the variations in respiratory motion into the contribution from semiperiodic dynamics and that from the random noise, as it is only sensible to perform prediction with respect to the former. The dimension reduction idea proposed in this work is closely related to feature extraction used in machine learning, particularly support vector machines. This work points out a pathway in processing high-dimensional data with limited training instances, and this principle applies well beyond the problem of target-coordinate-based respiratory-based prediction. A natural extension is prediction based on image intensity directly, which we will investigate in the continuation of this work. We used 159 lung target motion traces obtained with a Synchrony respiratory tracking system. Prediction performance of the low-dimensional feature learning

  15. Two-dimensional Value Stream Mapping: Integrating the design of the MPC system in the value stream map

    DEFF Research Database (Denmark)

    Powell, Daryl; Olesen, Peter Bjerg

    2013-01-01

    Companies use value stream mapping to identify waste, often in the early stages of a lean implementation. Though the tool helps users to visualize material and information flows and to identify improvement opportunities, a limitation of this approach is the lack of an integrated method...... for analysing and re-designing the MPC system in order to support lean improvement. We reflect on the current literature regarding value stream mapping, and use practical insights in order to develop and propose a two-dimensional value stream mapping tool that integrates the design of the MPC system within...... the material and information flow map....

  16. On Central Extensions of Associative Dialgebras

    Science.gov (United States)

    Rakhimov, Isamiddin S.

    2016-03-01

    The concept of central extensions plays an important in constructing extensions of algebras. This technique has been successfully used in the classification problem of certain classes of algebras. In 1978 Skjelbred and Sund reduced the classification of nilpotent Lie algebras in a given dimension to the study of orbits under the action of automorphism group on the space of second degree cohomology of a smaller Lie algebra with coefficients in a trivial module. Then W. de Graaf applied the Skjelbred and Sund method to the classification problem of low-dimensional nilpotent Lie and associative algebras over some fields. The main purpose of this note is to establish elementary properties of central extensions of associative dialgebras and apply the above mentioned method to the classification of low dimensional nilpotent associative dialgebras.

  17. Are low-dimensional dynamics typical in magnetically confined plasmas?

    International Nuclear Information System (INIS)

    Ball, R.; Dewar, R.L.

    2000-01-01

    Full text: Since 1988 there have been many serious attempts to construct low-dimensional dynamical systems that model L-H transitions and associated oscillatory phenomena in magnetically confined plasmas. Such models usually consist of coupled ordinary differential equations in a few dynamical state variables and several parameters that represent physical properties or external controls. The advantages of a unified, low-dimensional approach to modelling plasma behaviour are multifold. Most importantly, the qualitative analysis of nonlinear ODE and algebraic systems is supported by a substantial body of theory. The toolkits of singularity and stability theory are well-developed and accessible, and contain the right tools for the job of charting the state and parameter space. One of the driving forces behind the development of low-dimensional dynamical models is the predictive potential of a parameter map. For example, a model that talks of the shape and extent of hysteresis in the L-H transition would help engineers who are interested in controlling access to H-mode. We can express this problem another way: given the enormous number of variables and parameters that could be varied around a hysteretic regime, it would be cheaper to know in advance which ones actually do influence the quality and quantity of the hysteresis. The quest for a low-dimensional state space that contains the qualitative dynamics of L-H transitions also introduces other problems. We need to identify the essential (few) dynamical variables and the essential (few) independent parameter groups, clarify the mechanisms for the feedback that is modelled by nonlinear terms, and identify symmetries in the physics. Before jumping the gun on these questions the fundamental issue should be addressed of whether a confined plasma, having many important length and time scales, steep gradients, strong anisotropy, and an uncountable multiplicity of states, can indeed exhibit low-dimensional dynamics. In this

  18. Systems and methods that generate height map models for efficient three dimensional reconstruction from depth information

    Science.gov (United States)

    Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert

    2015-12-08

    Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.

  19. GIS-aided low flow mapping

    Science.gov (United States)

    Saghafian, B.; Mohammadi, A.

    2003-04-01

    Most studies involving water resources allocation, water quality, hydropower generation, and allowable water withdrawal and transfer require estimation of low flows. Normally, frequency analysis on at-station D-day low flow data is performed to derive various T-yr return period values. However, this analysis is restricted to the location of hydrometric stations where the flow discharge is measured. Regional analysis is therefore conducted to relate the at-station low flow quantiles to watershed characteristics. This enables the transposition of low flow quantiles to ungauged sites. Nevertheless, a procedure to map the regional regression relations for the entire stream network, within the bounds of the relations, is particularly helpful when one studies and weighs alternative sites for certain water resources project. In this study, we used a GIS-aided procedure for low flow mapping in Gilan province, part of northern region in Iran. Gilan enjoys a humid climate with an average of 1100 mm annual precipitation. Although rich in water resources, the highly populated area is quite dependent on minimum amount of water to sustain the vast rice farming and to maintain required flow discharge for quality purposes. To carry out the low flow analysis, a total of 36 hydrometric stations with sufficient and reliable discharge data were identified in the region. The average area of the watersheds was 250 sq. km. Log Pearson type 3 was found the best distribution for flow durations over 60 days, while log normal fitted well the shorter duration series. Low flows with return periods of 2, 5, 10, 25, 50, and 100 year were then computed. Cluster analysis identified two homogeneous areas. Although various watershed parameters were examined in factor analysis, the results showed watershed area, length of the main stream, and annual precipitation were the most effective low flow parameters. The regression equations were then mapped with the aid of GIS based on flow accumulation maps

  20. Three-Dimensional Maps for Disaster Management

    Science.gov (United States)

    Bandrova, T.; Zlatanova, S.; Konecny, M.

    2012-07-01

    Geo-information techniques have proven their usefulness for the purposes of early warning and emergency response. These techniques enable us to generate extensive geo-information to make informed decisions in response to natural disasters that lead to better protection of citizens, reduce damage to property, improve the monitoring of these disasters, and facilitate estimates of the damages and losses resulting from them. The maintenance and accessibility of spatial information has improved enormously with the development of spatial data infrastructures (SDIs), especially with second-generation SDIs, in which the original product-based SDI was improved to a process-based SDI. Through the use of SDIs, geo-information is made available to local, national and international organisations in regions affected by natural disasters as well as to volunteers serving in these areas. Volunteer-based systems for information collection (e.g., Ushahidi) have been created worldwide. However, the use of 3D maps is still limited. This paper discusses the applicability of 3D geo-information to disaster management. We discuss some important aspects of maps for disaster management, such as user-centred maps, the necessary components for 3D maps, symbols, and colour schemas. In addition, digital representations are evaluated with respect to their visual controls, i.e., their usefulness for the navigation and exploration of the information. Our recommendations are based on responses from a variety of users of these technologies, including children, geospecialists and disaster managers from different countries.

  1. Extension algorithm for generic low-voltage networks

    Science.gov (United States)

    Marwitz, S.; Olk, C.

    2018-02-01

    Distributed energy resources (DERs) are increasingly penetrating the energy system which is driven by climate and sustainability goals. These technologies are mostly connected to low- voltage electrical networks and change the demand and supply situation in these networks. This can cause critical network states. Network topologies vary significantly and depend on several conditions including geography, historical development, network design or number of network connections. In the past, only some of these aspects were taken into account when estimating the network investment needs for Germany on the low-voltage level. Typically, fixed network topologies are examined or a Monte Carlo approach is used to quantify the investment needs at this voltage level. Recent research has revealed that DERs differ substantially between rural, suburban and urban regions. The low-voltage network topologies have different design concepts in these regions, so that different network topologies have to be considered when assessing the need for network extensions and investments due to DERs. An extension algorithm is needed to calculate network extensions and investment needs for the different typologies of generic low-voltage networks. We therefore present a new algorithm, which is capable of calculating the extension for generic low-voltage networks of any given topology based on voltage range deviations and thermal overloads. The algorithm requires information about line and cable lengths, their topology and the network state only. We test the algorithm on a radial, a loop, and a heavily meshed network. Here we show that the algorithm functions for electrical networks with these topologies. We found that the algorithm is able to extend different networks efficiently by placing cables between network nodes. The main value of the algorithm is that it does not require any information about routes for additional cables or positions for additional substations when it comes to estimating

  2. GDA (Geologic Data Assistant), an ArcPad extension for geologic mapping: code, prerequisites, and instructions

    Science.gov (United States)

    ,

    2006-01-01

    GDA (Geologic Data Assistant) is an extension to ArcPad, a mobile mapping software program by Environmental Systems Research Institute (ESRI) designed to run on personal digital assistant (PDA) computers. GDA and ArcPad allow a PDA to replace the paper notebook and field map traditionally used for geologic mapping. GDA allows easy collection of field data.

  3. Central extensions of cotangent universal hierarchy: (2+1)-dimensional bi-Hamiltonian systems

    International Nuclear Information System (INIS)

    Sergyeyev, Artur; Szablikowski, Blazej M.

    2008-01-01

    We introduce the cotangent universal hierarchy that extends the universal hierarchy from [L. Martinez Alonso, A.B. Shabat, Phys. Lett. A 300 (1) (2002) 58, (nlin.SI/0202008); A.B. Shabat, Theor. Math. Phys. 136 (2003) 1066; L. Martinez Alonso, A.B. Shabat, J. Nonlinear Math. Phys. 10 (2) (2003) 229, (nlin.SI/0310036); L. Martinez Alonso, A.B. Shabat, Theor. Math. Phys. 140 (2) (2004) 1073, (nlin.SI/0312043); A. Shabat, J. Nonlinear Math. Phys. 12 (Suppl. 1) (2005) 614]. Then we construct a (2+1)-dimensional double central extension of the cotangent universal hierarchy and show that this extension is bi-Hamiltonian. This yields, as a byproduct, the central extension of the original universal hierarchy

  4. A software tool for rapid flood inundation mapping

    Science.gov (United States)

    Verdin, James; Verdin, Kristine; Mathis, Melissa L.; Magadzire, Tamuka; Kabuchanga, Eric; Woodbury, Mark; Gadain, Hussein

    2016-06-02

    The GIS Flood Tool (GFT) was developed by the U.S. Geological Survey with support from the U.S. Agency for International Development’s Office of U.S. Foreign Disaster Assistance to provide a means for production of reconnaissance-level flood inundation mapping for data-sparse and resource-limited areas of the world. The GFT has also attracted interest as a tool for rapid assessment flood inundation mapping for the Flood Inundation Mapping Program of the U.S. Geological Survey. The GFT can fill an important gap for communities that lack flood inundation mapping by providing a first-estimate of inundation zones, pending availability of resources to complete an engineering study. The tool can also help identify priority areas for application of scarce flood inundation mapping resources. The technical basis of the GFT is an application of the Manning equation for steady flow in an open channel, operating on specially processed digital elevation data. The GFT is implemented as a software extension in ArcGIS. Output maps from the GFT were validated at 11 sites with inundation maps produced previously by the Flood Inundation Mapping Program using standard one-dimensional hydraulic modeling techniques. In 80 percent of the cases, the GFT inundation patterns matched 75 percent or more of the one-dimensional hydraulic model inundation patterns. Lower rates of pattern agreement were seen at sites with low relief and subtle surface water divides. Although the GFT is simple to use, it should be applied with the oversight or review of a qualified hydraulic engineer who understands the simplifying assumptions of the approach.

  5. [Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].

    Science.gov (United States)

    Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi

    2016-04-01

    The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.

  6. Quantum Fluctuations of Low Dimensional Bose-Einstein ...

    African Journals Online (AJOL)

    A system of low dimensional condensed ultracold atomic gases inside a field of a laser-driven optical cavity exhibits dispersive optical bistability. During such a process the system also shows quantum fluctuations. Condensate fluctuations are highly manifested particularly in low dimensional systems. In this paper we have ...

  7. Three Dimensional Fast Exact Euclidean Distance (3D-FEED) Maps

    NARCIS (Netherlands)

    Latecki, L.J.; Schouten, Theo E.; Mount, D.M.; Kuppens, Harco C.; Wu, A.Y.; van den Broek, Egon

    2006-01-01

    In image and video analysis, distance maps are frequently used. They provide the (Euclidean) distance (ED) of background pixels to the nearest object pixel. Recently, the Fast Exact Euclidean Distance (FEED) transformation was launched. In this paper, we present the three dimensional (3D) version of

  8. Three-dimensional mapping of fluorescent nanoparticles using incoherent digital holography.

    Science.gov (United States)

    Yanagawa, Takumi; Abe, Ryosuke; Hayasaki, Yoshio

    2015-07-15

    Three-dimensional mapping of fluorescent nanoparticles was performed by using incoherent digital holography. The positions of the nanoparticles were quantitatively determined by using Gaussian fitting of the axial- and lateral-diffraction distributions through position calibration from the observation space to the sample space. It was found that the axial magnification was constant whereas the lateral magnification linearly depended on the axial position of the fluorescent nanoparticles. The mapping of multiple fluorescent nanoparticles fixed in gelatin and a single fluorescent nanoparticle manipulated with optical tweezers in water were demonstrated.

  9. In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chunjiang Zhao

    2016-10-01

    Full Text Available Sensing and mapping element distributions in plant tissues and its growth environment has great significance for understanding the uptake, transport, and accumulation of nutrients and harmful elements in plants, as well as for understanding interactions between plants and the environment. In this study, we developed a 3-dimensional elemental mapping system based on laser-induced breakdown spectroscopy that can be deployed in- field to directly measure the distribution of multiple elements in living plants as well as in the soil. Mapping is performed by a fast scanning laser, which ablates a micro volume of a sample to form a plasma. The presence and concentration of specific elements are calculated using the atomic, ionic, and molecular spectral characteristics of the plasma emission spectra. Furthermore, we mapped the pesticide residues in maize leaves after spraying to demonstrate the capacity of this method for trace elemental mapping. We also used the system to quantitatively detect the element concentrations in soil, which can be used to further understand the element transport between plants and soil. We demonstrate that this method has great potential for elemental mapping in plant tissues and soil with the advantages of 3-dimensional and multi-elemental mapping, in situ and in vivo measurement, flexible use, and low cost.

  10. Tangent map intermittency as an approximate analysis of intermittency in a high dimensional fully stochastic dynamical system: The Tangled Nature model.

    Science.gov (United States)

    Diaz-Ruelas, Alvaro; Jeldtoft Jensen, Henrik; Piovani, Duccio; Robledo, Alberto

    2016-12-01

    It is well known that low-dimensional nonlinear deterministic maps close to a tangent bifurcation exhibit intermittency and this circumstance has been exploited, e.g., by Procaccia and Schuster [Phys. Rev. A 28, 1210 (1983)], to develop a general theory of 1/f spectra. This suggests it is interesting to study the extent to which the behavior of a high-dimensional stochastic system can be described by such tangent maps. The Tangled Nature (TaNa) Model of evolutionary ecology is an ideal candidate for such a study, a significant model as it is capable of reproducing a broad range of the phenomenology of macroevolution and ecosystems. The TaNa model exhibits strong intermittency reminiscent of punctuated equilibrium and, like the fossil record of mass extinction, the intermittency in the model is found to be non-stationary, a feature typical of many complex systems. We derive a mean-field version for the evolution of the likelihood function controlling the reproduction of species and find a local map close to tangency. This mean-field map, by our own local approximation, is able to describe qualitatively only one episode of the intermittent dynamics of the full TaNa model. To complement this result, we construct a complete nonlinear dynamical system model consisting of successive tangent bifurcations that generates time evolution patterns resembling those of the full TaNa model in macroscopic scales. The switch from one tangent bifurcation to the next in the sequences produced in this model is stochastic in nature, based on criteria obtained from the local mean-field approximation, and capable of imitating the changing set of types of species and total population in the TaNa model. The model combines full deterministic dynamics with instantaneous parameter random jumps at stochastically drawn times. In spite of the limitations of our approach, which entails a drastic collapse of degrees of freedom, the description of a high-dimensional model system in terms of a low-dimensional

  11. Solving topological field theories on mapping tori

    International Nuclear Information System (INIS)

    Blau, M.; Jermyn, I.; Thompson, G.

    1996-05-01

    Using gauge theory and functional integral methods, we derive concrete expressions for the partition functions of BF theory and the U(1 modul 1) model of Rozansky and Saleur on Σ x S 1 , both directly and using equivalent two-dimensional theories. We also derive the partition function on a certain non-abelian generalization of the U(1 modul 1) model on mapping tori and hence obtain explicit expressions for the Ray-Singer torsion on these manifolds. Extensions of these results to BF and Chern-Simons theories on mapping tori are also discussed. The topological field theory actions of the equivalent two- dimensional theories we find have the interesting property of depending explicitly on the diffeomorphism defining the mapping torus while the quantum field theory is sensitive only to its isomorphism class defining the mapping torus as a smooth manifold. (author). 20 refs

  12. Common phase diagram for low-dimensional superconductors

    International Nuclear Information System (INIS)

    Michalak, Rudi

    2003-01-01

    A phenomenological phase diagram which has been derived for high-temperature superconductors from NMR Knight-shift measurements of the pseudogap is compared to the phase diagram that is obtained for organic superconductors and spin-ladder superconductors, both low-dimensional systems. This is contrasted to the phase diagram of some Heavy Fermion superconductors, i.e. superconductors not constrained to a low dimensionality

  13. CT Image Reconstruction in a Low Dimensional Manifold

    OpenAIRE

    Cong, Wenxiang; Wang, Ge; Yang, Qingsong; Hsieh, Jiang; Li, Jia; Lai, Rongjie

    2017-01-01

    Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionality characterizes structural information of an image. In this paper, we propose a CT image reconstruc...

  14. Autonomous Wheeled Robot Platform Testbed for Navigation and Mapping Using Low-Cost Sensors

    Science.gov (United States)

    Calero, D.; Fernandez, E.; Parés, M. E.

    2017-11-01

    This paper presents the concept of an architecture for a wheeled robot system that helps researchers in the field of geomatics to speed up their daily research on kinematic geodesy, indoor navigation and indoor positioning fields. The presented ideas corresponds to an extensible and modular hardware and software system aimed at the development of new low-cost mapping algorithms as well as at the evaluation of the performance of sensors. The concept, already implemented in the CTTC's system ARAS (Autonomous Rover for Automatic Surveying) is generic and extensible. This means that it is possible to incorporate new navigation algorithms or sensors at no maintenance cost. Only the effort related to the development tasks required to either create such algorithms needs to be taken into account. As a consequence, change poses a much small problem for research activities in this specific area. This system includes several standalone sensors that may be combined in different ways to accomplish several goals; that is, this system may be used to perform a variety of tasks, as, for instance evaluates positioning algorithms performance or mapping algorithms performance.

  15. Four-dimensional optoacoustic temperature mapping in laser-induced thermotherapy

    Science.gov (United States)

    Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luís.; Sroka, Ronald; Razansky, Daniel

    2018-02-01

    Photoablative laser therapy is in common use for selective destruction of malignant masses, vascular and brain abnormalities. Tissue ablation and coagulation are irreversible processes occurring shortly after crossing a certain thermal exposure threshold. As a result, accurate mapping of the temperature field is essential for optimizing the outcome of these clinical interventions. Here we demonstrate four-dimensional optoacoustic temperature mapping of the entire photoablated region. Accuracy of the method is investigated in tissue-mimicking phantom experiments. Deviations of the volumetric optoacoustic temperature readings provided at 40ms intervals remained below 10% for temperature elevations above 3°C, as validated by simultaneous thermocouple measurements. The excellent spatio-temporal resolution of the new temperature monitoring approach aims at improving safety and efficacy of laser-based photothermal procedures.

  16. Learning Low-Dimensional Metrics

    OpenAIRE

    Jain, Lalit; Mason, Blake; Nowak, Robert

    2017-01-01

    This paper investigates the theoretical foundations of metric learning, focused on three key questions that are not fully addressed in prior work: 1) we consider learning general low-dimensional (low-rank) metrics as well as sparse metrics; 2) we develop upper and lower (minimax)bounds on the generalization error; 3) we quantify the sample complexity of metric learning in terms of the dimension of the feature space and the dimension/rank of the underlying metric;4) we also bound the accuracy ...

  17. THREE-DIMENSIONAL DUST MAPPING REVEALS THAT ORION FORMS PART OF A LARGE RING OF DUST

    International Nuclear Information System (INIS)

    Schlafly, E. F.; Rix, H.-W.; Martin, N. F.; Green, G.; Finkbeiner, D. P.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Morgan, J. S.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.; Draper, P. W.; Metcalfe, N.; Price, P. A.

    2015-01-01

    The Orion Molecular Complex is the nearest site of ongoing high-mass star formation, making it one of the most extensively studied molecular complexes in the Galaxy. We have developed a new technique for mapping the three-dimensional distribution of dust in the Galaxy using Pan-STARRS1 photometry. We isolate the dust at the distance to Orion using this technique, revealing a large (100 pc, 14° diameter), previously unrecognized ring of dust, which we term the ''Orion dust ring''. The ring includes Orion A and B, and is not coincident with current Hα features. The circular morphology suggests formation as an ancient bubble in the interstellar medium, though we have not been able to conclusively identify the source of the bubble. This hint at the history of Orion may have important consequences for models of high-mass star formation and triggered star formation

  18. Controlling spatiotemporal chaos in one- and two-dimensional coupled logistic map lattices

    International Nuclear Information System (INIS)

    Astakhov, V.V.; Anishchenko, V.S.; Strelkova, G.I.; Shabunin, A.V.

    1996-01-01

    A method of control of spatiotemporal chaos in lattices of coupled maps is proposed in this work. Forms of spatiotemporal perturbations of a system parameter are analytically determined for one- and two-dimensional logistic map lattices with different kinds of coupling to stabilize chosen spatiotemporal states previously unstable. The results are illustrated by numerical simulation. Controlled transition from the regime of spatiotemporal chaos to the previously chosen regular spatiotemporal patterns is demonstrated. copyright 1996 American Institute of Physics

  19. Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding FMRI.

    Directory of Open Access Journals (Sweden)

    Ella Striem-Amit

    Full Text Available The primary sensory cortices are characterized by a topographical mapping of basic sensory features which is considered to deteriorate in higher-order areas in favor of complex sensory features. Recently, however, retinotopic maps were also discovered in the higher-order visual, parietal and prefrontal cortices. The discovery of these maps enabled the distinction between visual regions, clarified their function and hierarchical processing. Could such extension of topographical mapping to high-order processing regions apply to the auditory modality as well? This question has been studied previously in animal models but only sporadically in humans, whose anatomical and functional organization may differ from that of animals (e.g. unique verbal functions and Heschl's gyrus curvature. Here we applied fMRI spectral analysis to investigate the cochleotopic organization of the human cerebral cortex. We found multiple mirror-symmetric novel cochleotopic maps covering most of the core and high-order human auditory cortex, including regions considered non-cochleotopic, stretching all the way to the superior temporal sulcus. These maps suggest that topographical mapping persists well beyond the auditory core and belt, and that the mirror-symmetry of topographical preferences may be a fundamental principle across sensory modalities.

  20. Low-frequency characteristics extension for vibration sensors

    Institute of Scientific and Technical Information of China (English)

    杨学山; 高峰; 候兴民

    2004-01-01

    Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate. A low frequency characteristic extension for velocity vibration sensors is presented in this paper. The passive circuit technology, active compensation technology and the closedcycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors. Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.

  1. Supersymmetric extension of the nine-dimensional continuation of the Euler density with N=2

    International Nuclear Information System (INIS)

    Hassaine, Mokhtar; Olea, Rodrigo; Troncoso, Ricardo

    2004-01-01

    A local supersymmetric extension with N=2 of the dimensional continuation of the Euler-Gauss-Bonnet density from eight to nine dimensions is constructed. The gravitational sector is invariant under local Poincare translations, and the full field content is given by the vielbein, the spin connection, a complex gravitino, and an Abelian one-form. The local symmetry group is shown to be super Poincare with N=2 and a U(1) central extension, and the full supersymmetric Lagrangian can be written as a Chern-Simons form

  2. Supersymmetric extension of the nine-dimensional continuation of the Euler density with N=2

    Energy Technology Data Exchange (ETDEWEB)

    Hassaine, Mokhtar [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)]. E-mail: hassaine@blackhole.cecs.cl; Olea, Rodrigo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Troncoso, Ricardo [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)

    2004-10-07

    A local supersymmetric extension with N=2 of the dimensional continuation of the Euler-Gauss-Bonnet density from eight to nine dimensions is constructed. The gravitational sector is invariant under local Poincare translations, and the full field content is given by the vielbein, the spin connection, a complex gravitino, and an Abelian one-form. The local symmetry group is shown to be super Poincare with N=2 and a U(1) central extension, and the full supersymmetric Lagrangian can be written as a Chern-Simons form.

  3. Three-dimensional brain mapping using fMRI

    International Nuclear Information System (INIS)

    Fukunaga, Masaki; Tanaka, Chuzo; Umeda, Masahiro; Ebisu, Toshihiko; Aoki, Ichio; Higuchi, Toshihiro; Naruse, Shoji.

    1997-01-01

    Functional mapping of the activated brain, the location and extent of the activated area were determined, during motor tasks and sensory stimulation using fMRI superimposed on 3D anatomical MRI. Twelve volunteers were studied. The fMR images were acquired using a 2D gradient echo echo planar imaging sequence. The 3D anatomical MR images of the whole brain were acquired using a conventional 3D gradient echo sequence. Motor tasks were sequential opposition of fingers, clenching a hand and elbow flexion. Somatosensory stimulation were administered by scrubbing the palm and sole with a washing sponge. Visual stimulation consisted of full visual field stimulation. Data were analyzed by the cross-correlation method. Transversal fMR images and anatomical images were reconstructed using both volume-, surface-rendering methods, and reconstructed for coronal and sagittal sections. Activated areas were expressed using the three primary colors. Motor tasks activated the contralateral primary motor area (M1), the primary somatosensory area (S1) and the supplementary motor area (SMA). Somatosensory tasks activated the contralateral S1, M1 and secondary sensory area (S2). Activated areas during full visual field stimulation was observed in the bilateral occipital lobe, including both the primary cortex. Three-dimensional brain mapping allowed visualization of the anatomical location and extent of the activated brain during both motor task and sensory stimulation. Using this method we could obtain a functional map similar to the Penfield's schema. (author)

  4. Mapping three-dimensional temperature in microfluidic chip.

    KAUST Repository

    Wu, Jinbo

    2013-11-25

    Three-dimensional (3D) temperature mapping method with high spatial resolution and acquisition rate is of vital importance in evaluating thermal processes in micro-environment. We have synthesized a new temperature-sensitive functional material (Rhodamine B functionalized Polydimethylsiloxane). By performing optical sectioning of this material, we established an advanced method for visualizing the micro-scale 3D thermal distribution inside microfluidic chip with down to 10 ms temporal resolution and 2 ~ 6 °C temperature resolution depending the capture parameters. This method is successfully applied to monitor the local temperature variation throughout micro-droplet heat transfer process and further reveal exothermic nanoliter droplet reactions to be unique and milder than bench-top experiment.

  5. Row—column visibility graph approach to two-dimensional landscapes

    International Nuclear Information System (INIS)

    Xiao Qin; Pan Xue; Li Xin-Li; Stephen Mutua; Yang Hui-Jie; Jiang Yan; Wang Jian-Yong; Zhang Qing-Jun

    2014-01-01

    A new concept, called the row—column visibility graph, is proposed to map two-dimensional landscapes to complex networks. A cluster coverage is introduced to describe the extensive property of node clusters on a Euclidean lattice. Graphs mapped from fractals generated with the probability redistribution model behave scale-free. They have pattern-induced hierarchical organizations and comparatively much more extensive structures. The scale-free exponent has a negative correlation with the Hurst exponent, however, there is no deterministic relation between them. Graphs for fractals generated with the midpoint displacement model are exponential networks. When the Hurst exponent is large enough (e.g., H > 0.5), the degree distribution decays much more slowly, the average coverage becomes significant large, and the initially hierarchical structure at H < 0.5 is destroyed completely. Hence, the row—column visibility graph can be used to detect the pattern-related new characteristics of two-dimensional landscapes. (interdisciplinary physics and related areas of science and technology)

  6. The method of separation of variables for the Frobenius-Perron operator associated to a class of two dimensional chaotic maps

    International Nuclear Information System (INIS)

    Luevano, Jose-Ruben

    2011-01-01

    Analytical expressions for the invariant densities for a class of discrete two dimensional chaotic systems are given. The method of separation of variables for the associated Frobenius-Perron equation is introduced. These systems are related to nonlinear difference equations which are of the type x k+2 = T(x k ). The function T is a chaotic map of an interval whose chaotic behaviour is inherited to the two dimensional one. We work out in detail some examples, with T an expansive or intermittent map, in order to expose the method. Finally, we discuss how to generalize the method to higher dimensional maps.

  7. Synchronizability of coupled PWL maps

    International Nuclear Information System (INIS)

    Polynikis, A.; Di Bernardo, M.; Hogan, S.J.

    2009-01-01

    In this paper we discuss the phenomenon of synchronization of chaotic systems in the case of coupled piecewise linear (PWL) continuous and discontinuous one-dimensional maps. We present numerical results for two examples of coupled systems consisting of two PWL maps. We illustrate how the coupled system can achieve synchronization and discuss the nature of the bifurcation that occurs at a critical value of the coupling strength. We then determine this critical coupling using linear stability analysis. We discuss the effects of variation of the parameters of the PWL maps on the critical coupling and present different bifurcation scenarios obtained for different sets of values of these parameters. Finally, we discuss an extension of our work to the synchronizability of networks consisting of two or more PWL maps. We show how the synchronizability of a network of PWL maps can be improved by tuning the map parameters.

  8. How Do Users Map Points Between Dissimilar Shapes?

    KAUST Repository

    Hecher, Michael

    2017-07-25

    Finding similar points in globally or locally similar shapes has been studied extensively through the use of various point descriptors or shape-matching methods. However, little work exists on finding similar points in dissimilar shapes. In this paper, we present the results of a study where users were given two dissimilar two-dimensional shapes and asked to map a given point in the first shape to the point in the second shape they consider most similar. We find that user mappings in this study correlate strongly with simple geometric relationships between points and shapes. To predict the probability distribution of user mappings between any pair of simple two-dimensional shapes, two distinct statistical models are defined using these relationships. We perform a thorough validation of the accuracy of these predictions and compare our models qualitatively and quantitatively to well-known shape-matching methods. Using our predictive models, we propose an approach to map objects or procedural content between different shapes in different design scenarios.

  9. Cryptanalysis of a cryptosystem based on discretized two-dimensional chaotic maps

    International Nuclear Information System (INIS)

    Solak, Ercan; Cokal, Cahit

    2008-01-01

    Recently, an encryption algorithm based on two-dimensional discretized chaotic maps was proposed [Xiang et al., Phys. Lett. A 364 (2007) 252]. In this Letter, we analyze the security weaknesses of the proposal. Using the algebraic dependencies among system parameters, we show that its effective key space can be shrunk. We demonstrate a chosen-ciphertext attack that reveals a portion of the key

  10. Time-efficient, high-resolution, whole brain three-dimensional macromolecular proton fraction mapping.

    Science.gov (United States)

    Yarnykh, Vasily L

    2016-05-01

    Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole brain MPF mapping technique using a minimal number of source images for scan time reduction. The described technique was based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole brain three-dimensional MPF mapping with isotropic 1.25 × 1.25 × 1.25 mm(3) voxel size and a scan time of 20 min. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from eight healthy subjects. Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details, including gray matter structures with high iron content. The proposed synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. © 2015 Wiley Periodicals, Inc.

  11. Asymmetric neighborhood functions accelerate ordering process of self-organizing maps

    International Nuclear Information System (INIS)

    Ota, Kaiichiro; Aoki, Takaaki; Kurata, Koji; Aoyagi, Toshio

    2011-01-01

    A self-organizing map (SOM) algorithm can generate a topographic map from a high-dimensional stimulus space to a low-dimensional array of units. Because a topographic map preserves neighborhood relationships between the stimuli, the SOM can be applied to certain types of information processing such as data visualization. During the learning process, however, topological defects frequently emerge in the map. The presence of defects tends to drastically slow down the formation of a globally ordered topographic map. To remove such topological defects, it has been reported that an asymmetric neighborhood function is effective, but only in the simple case of mapping one-dimensional stimuli to a chain of units. In this paper, we demonstrate that even when high-dimensional stimuli are used, the asymmetric neighborhood function is effective for both artificial and real-world data. Our results suggest that applying the asymmetric neighborhood function to the SOM algorithm improves the reliability of the algorithm. In addition, it enables processing of complicated, high-dimensional data by using this algorithm.

  12. When intensions do not map onto extensions: Individual differences in conceptualization.

    Science.gov (United States)

    Hampton, James A; Passanisi, Alessia

    2016-04-01

    Concepts are represented in the mind through knowledge of their extensions (the class of items to which the concept applies) and intensions (features that distinguish that class of items). A common assumption among theories of concepts is that the 2 aspects are intimately related. Hence if there is systematic individual variation in concept representation, the variation should correlate between extensional and intensional measures. A pair of individuals with similar extensional beliefs about a given concept should also share similar intensional beliefs. To test this notion, exemplars (extensions) and features (intensions) of common categories were rated for typicality and importance respectively across 2 occasions. Within-subject consistency was greater than between-subjects consensus on each task, providing evidence for systematic individual variation. Furthermore, the similarity structure between individuals for each task was stable across occasions. However, across 5 samples, similarity between individuals for extensional judgments did not map onto similarity between individuals for intensional judgments. The results challenge the assumption common to many theories of conceptual representation that intensions determine extensions and support a hybrid view of concepts where there is a disconnection between the conceptual resources that are used for the 2 tasks. (c) 2016 APA, all rights reserved).

  13. Quantum Phenomena in Low-Dimensional Systems

    OpenAIRE

    Geller, Michael R.

    2001-01-01

    A brief summary of the physics of low-dimensional quantum systems is given. The material should be accessible to advanced physics undergraduate students. References to recent review articles and books are provided when possible.

  14. RTk/SN Solutions of the Two-Dimensional Multigroup Transport Equations in Hexagonal Geometry

    International Nuclear Information System (INIS)

    Valle, Edmundo del; Mund, Ernest H.

    2004-01-01

    This paper describes an extension to the hexagonal geometry of some weakly discontinuous nodal finite element schemes developed by Hennart and del Valle for the two-dimensional discrete ordinates transport equation in quadrangular geometry. The extension is carried out in a way similar to the extension to the hexagonal geometry of nodal element schemes for the diffusion equation using a composite mapping technique suggested by Hennart, Mund, and del Valle. The combination of the weakly discontinuous nodal transport scheme and the composite mapping is new and is detailed in the main section of the paper. The algorithm efficiency is shown numerically through some benchmark calculations on classical problems widely referred to in the literature

  15. Color Image Encryption Using Three-Dimensional Sine ICMIC Modulation Map and DNA Sequence Operations

    Science.gov (United States)

    Liu, Wenhao; Sun, Kehui; He, Yi; Yu, Mengyao

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a three-dimensional hyperchaotic Sine ICMIC modulation map (3D-SIMM) is proposed based on a close-loop modulation coupling (CMC) method. Based on this map, a novel color image encryption algorithm is designed by employing a hybrid model of multidirectional circular permutation and deoxyribonucleic acid (DNA) masking. In this scheme, the pixel positions of image are scrambled by multidirectional circular permutation, and the pixel values are substituted by DNA sequence operations. The simulation results and security analysis show that the algorithm has good encryption effect and strong key sensitivity, and can resist brute-force, statistical, differential, known-plaintext and chosen-plaintext attacks.

  16. On the Transfer of a Number of Concepts of Statistical Radiophysics to the Theory of One-dimensional Point Mappings

    Directory of Open Access Journals (Sweden)

    Agalar M. Agalarov

    2018-01-01

    Full Text Available In the article, the possibility of using a bispectrum under the investigation of regular and chaotic behaviour of one-dimensional point mappings is discussed. The effectiveness of the transfer of this concept to nonlinear dynamics was demonstrated by an example of the Feigenbaum mapping. Also in the work, the application of the Kullback-Leibler entropy in the theory of point mappings is considered. It has been shown that this information-like value is able to describe the behaviour of statistical ensembles of one-dimensional mappings. In the framework of this theory some general properties of its behaviour were found out. Constructivity of the Kullback-Leibler entropy in the theory of point mappings was shown by means of its direct calculation for the ”saw tooth” mapping with linear initial probability density. Moreover, for this mapping the denumerable set of initial probability densities hitting into its stationary probability density after a finite number of steps was pointed out. 

  17. Low-Dimensional Organic-Inorganic Halide Perovskite: Structure, Properties, and Applications.

    Science.gov (United States)

    Misra, Ravi K; Cohen, Bat-El; Iagher, Lior; Etgar, Lioz

    2017-10-09

    Three-dimensional (3 D) perovskite has attracted a lot of attention owing to its success in photovoltaic (PV) solar cells. However, one of its major crucial issues lies in its stability, which has limited its commercialization. An important property of organic-inorganic perovskite is the possibility of forming a layered material by using long organic cations that do not fit into the octahedral cage. These long organic cations act as a "barrier" that "caps" 3 D perovskite to form the layered material. Controlling the number of perovskite layers could provide a confined structure with chemical and physical properties that are different from those of 3 D perovskite. This opens up a whole new batch of interesting materials with huge potential for optoelectronic applications. This Minireview presents the synthesis, properties, and structural orientation of low-dimensional perovskite. It also discusses the progress of low-dimensional perovskite in PV solar cells, which, to date, have performance comparable to that of 3 D perovskite but with enhanced stability. Finally, the use of low-dimensional perovskite in light-emitting diodes (LEDs) and photodetectors is discussed. The low-dimensional perovskites are promising candidates for LED devices, mainly because of their high radiative recombination as a result of the confined low-dimensional quantum well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. DART: a robust algorithm for fast reconstruction of three-dimensional grain maps

    DEFF Research Database (Denmark)

    Batenburg, K.J.; Sijbers, J.; Poulsen, Henning Friis

    2010-01-01

    and moderate noise levels, DART is shown to generate essentially perfect two-dimensional grain maps for as few as three projections per grain with running times on a PC in the range of less than a second. This is seen as opening up the possibility for fast reconstructions in connection with in situ studies....

  19. Low-Dimensional Material: Structure-Property Relationship and Applications in Energy and Environmental Engineering

    Science.gov (United States)

    Xiao, Hang

    In the past several decades, low-dimensional materials (0D materials, 1D materials and 2D materials) have attracted much interest from both the experimental and theoretical points of view. Because of the quantum confinement effect, low-dimensional materials have exhibited a kaleidoscope of fascinating phenomena and unusual physical and chemical properties, shedding light on many novel applications. Despite the enormous success has been achieved in the research of low-dimensional materials, there are three fundamental challenges of research in low-dimensional materials: 1) Develop new computational tools to accurately describe the properties of low-dimensional materials with low computational cost. 2) Predict and synthesize new low-dimensional materials with novel properties. 3) Reveal new phenomenon induced by the interaction between low-dimensional materials and the surrounding environment. In this thesis, atomistic modelling tools have been applied to address these challenges. We first developed ReaxFF parameters for phosphorus and hydrogen to give an accurate description of the chemical and mechanical properties of pristine and defected black phosphorene. ReaxFF for P/H is transferable to a wide range of phosphorus and hydrogen containing systems including bulk black phosphorus, blue phosphorene, edge-hydrogenated phosphorene, phosphorus clusters and phosphorus hydride molecules. The potential parameters were obtained by conducting global optimization with respect to a set of reference data generated by extensive ab initio calculations. We extended ReaxFF by adding a 60° correction term which significantly improved the description of phosphorus clusters. Emphasis was placed on the mechanical response of black phosphorene with different types of defects. Compared to the nonreactive SW potential of phosphorene, ReaxFF for P/H systems provides a significant improvement in describing the mechanical properties of the pristine and defected black phosphorene, as well

  20. Future device applications of low-dimensional carbon superlattice structures

    Science.gov (United States)

    Bhattacharyya, Somnath

    2005-03-01

    We observe superior transport properties in low-dimensional amorphous carbon (a-C) and superlattice structures fabricated by a number of different techniques. Low temperature conductivity of these materials is explained using argument based on the crossover of dimensionality of weak localization and electron-electron interactions along with a change of sign of the magneto-resistance. These trends are significantly different from many other well characterized ordered or oriented carbon structures, and, show direct evidence of high correlation length, mobility and an effect of the dimensionality in low-dimensional a-C films. We show routes to prepare bespoke features by tuning the phase relaxation time in order to make high-speed devices over large areas. The artificially grown multi-layer superlattice structures of diamond-like amorphous carbon films show high-frequency resonance and quantum conductance suggesting sufficiently high values of phase coherence length in the present disordered a-C system that could lead to fast switching multi-valued logic.

  1. Deterministic Diffusion in Delayed Coupled Maps

    International Nuclear Information System (INIS)

    Sozanski, M.

    2005-01-01

    Coupled Map Lattices (CML) are discrete time and discrete space dynamical systems used for modeling phenomena arising in nonlinear systems with many degrees of freedom. In this work, the dynamical and statistical properties of a modified version of the CML with global coupling are considered. The main modification of the model is the extension of the coupling over a set of local map states corresponding to different time iterations. The model with both stochastic and chaotic one-dimensional local maps is studied. Deterministic diffusion in the CML under variation of a control parameter is analyzed for unimodal maps. As a main result, simple relations between statistical and dynamical measures are found for the model and the cases where substituting nonlinear lattices with simpler processes is possible are presented. (author)

  2. Automated, non-linear registration between 3-dimensional brain map and medical head image

    International Nuclear Information System (INIS)

    Mizuta, Shinobu; Urayama, Shin-ichi; Zoroofi, R.A.; Uyama, Chikao

    1998-01-01

    In this paper, we propose an automated, non-linear registration method between 3-dimensional medical head image and brain map in order to efficiently extract the regions of interest. In our method, input 3-dimensional image is registered into a reference image extracted from a brain map. The problems to be solved are automated, non-linear image matching procedure, and cost function which represents the similarity between two images. Non-linear matching is carried out by dividing the input image into connected partial regions, transforming the partial regions preserving connectivity among the adjacent images, evaluating the image similarity between the transformed regions of the input image and the correspondent regions of the reference image, and iteratively searching the optimal transformation of the partial regions. In order to measure the voxelwise similarity of multi-modal images, a cost function is introduced, which is based on the mutual information. Some experiments using MR images presented the effectiveness of the proposed method. (author)

  3. Dielectric spectroscopy studies of low-disorder and low-dimensional materials

    OpenAIRE

    Tripathi, Pragya

    2016-01-01

    In this thesis we employ dielectric spectroscopy (in different implementations) to study the dielectric properties of different materials ranging from completely disordered supercooled liquids to low-disorder solids with only ratcheting reorientational motions, to low-dimensional systems such as thin films or needle-like crystals. The probed material properties include the electrical conductivity, the space-charge processes due to sample heterogeneities, molecular dynamics, hydrogen-bond dyna...

  4. A Shell Multi-dimensional Hierarchical Cubing Approach for High-Dimensional Cube

    Science.gov (United States)

    Zou, Shuzhi; Zhao, Li; Hu, Kongfa

    The pre-computation of data cubes is critical for improving the response time of OLAP systems and accelerating data mining tasks in large data warehouses. However, as the sizes of data warehouses grow, the time it takes to perform this pre-computation becomes a significant performance bottleneck. In a high dimensional data warehouse, it might not be practical to build all these cuboids and their indices. In this paper, we propose a shell multi-dimensional hierarchical cubing algorithm, based on an extension of the previous minimal cubing approach. This method partitions the high dimensional data cube into low multi-dimensional hierarchical cube. Experimental results show that the proposed method is significantly more efficient than other existing cubing methods.

  5. Seizure-Onset Mapping Based on Time-Variant Multivariate Functional Connectivity Analysis of High-Dimensional Intracranial EEG: A Kalman Filter Approach.

    Science.gov (United States)

    Lie, Octavian V; van Mierlo, Pieter

    2017-01-01

    The visual interpretation of intracranial EEG (iEEG) is the standard method used in complex epilepsy surgery cases to map the regions of seizure onset targeted for resection. Still, visual iEEG analysis is labor-intensive and biased due to interpreter dependency. Multivariate parametric functional connectivity measures using adaptive autoregressive (AR) modeling of the iEEG signals based on the Kalman filter algorithm have been used successfully to localize the electrographic seizure onsets. Due to their high computational cost, these methods have been applied to a limited number of iEEG time-series (Kalman filter implementations, a well-known multivariate adaptive AR model (Arnold et al. 1998) and a simplified, computationally efficient derivation of it, for their potential application to connectivity analysis of high-dimensional (up to 192 channels) iEEG data. When used on simulated seizures together with a multivariate connectivity estimator, the partial directed coherence, the two AR models were compared for their ability to reconstitute the designed seizure signal connections from noisy data. Next, focal seizures from iEEG recordings (73-113 channels) in three patients rendered seizure-free after surgery were mapped with the outdegree, a graph-theory index of outward directed connectivity. Simulation results indicated high levels of mapping accuracy for the two models in the presence of low-to-moderate noise cross-correlation. Accordingly, both AR models correctly mapped the real seizure onset to the resection volume. This study supports the possibility of conducting fully data-driven multivariate connectivity estimations on high-dimensional iEEG datasets using the Kalman filter approach.

  6. Manifold learning to interpret JET high-dimensional operational space

    International Nuclear Information System (INIS)

    Cannas, B; Fanni, A; Pau, A; Sias, G; Murari, A

    2013-01-01

    In this paper, the problem of visualization and exploration of JET high-dimensional operational space is considered. The data come from plasma discharges selected from JET campaigns from C15 (year 2005) up to C27 (year 2009). The aim is to learn the possible manifold structure embedded in the data and to create some representations of the plasma parameters on low-dimensional maps, which are understandable and which preserve the essential properties owned by the original data. A crucial issue for the design of such mappings is the quality of the dataset. This paper reports the details of the criteria used to properly select suitable signals downloaded from JET databases in order to obtain a dataset of reliable observations. Moreover, a statistical analysis is performed to recognize the presence of outliers. Finally data reduction, based on clustering methods, is performed to select a limited and representative number of samples for the operational space mapping. The high-dimensional operational space of JET is mapped using a widely used manifold learning method, the self-organizing maps. The results are compared with other data visualization methods. The obtained maps can be used to identify characteristic regions of the plasma scenario, allowing to discriminate between regions with high risk of disruption and those with low risk of disruption. (paper)

  7. Codimension-one tangency bifurcations of global Poincare maps of four-dimensional vector fields

    NARCIS (Netherlands)

    Krauskopf, B.; Lee, C.M.; Osinga, H.M.

    2009-01-01

    When one considers a Poincarreturn map on a general unbounded (n - 1)-dimensional section for a vector field in R-n there are typically points where the flow is tangent to the section. The only notable exception is when the system is (equivalent to) a periodically forced system. The tangencies can

  8. Flow and breakup in extension of low-density polyethylene

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Fasano, Andrea

    2018-01-01

    The breakup during the extension of a low-density polyethylene Lupolen 1840D, as observed experimentally by Burghelea et al. (J Non-Newt Fluid Mech 166:1198–1209 2011), was investigated. This was observed during the extension of an circular cylinder with radius R0 = 4 mm and length L0 = 5mm....... The sample was attached to two flat end plates, separated exponentially in time to extend the samples. A numerical method based on a Lagrangian kinematics description in a continuum mechanical framework was used to calculate the extension of an initially cylindrically shaped sample with and without small...... the error bars as reported experimentally by Burghelea et al. (J Non-Newt Fluid Mech 166:1198–1209 2011). At low extensional rates, the measurements were considerably above the calculated ones. A very small relative suppression in the surface (0.1%) was required to achieve an agreement with all measurements...

  9. Higher-Dimensional Solitons Stabilized by Opposite Charge

    CERN Document Server

    Binder, B

    2002-01-01

    In this paper it is shown how higher-dimensional solitons can be stabilized by a topological phase gradient, a field-induced shift in effective dimensionality. As a prototype, two instable 2-dimensional radial symmetric Sine-Gordon extensions (pulsons) are coupled by a sink/source term such, that one becomes a stable 1d and the other a 3d wave equation. The corresponding physical process is identified as a polarization that fits perfectly to preliminary considerations regarding the nature of electric charge and background of 1/137. The coupling is iterative with convergence limit and bifurcation at high charge. It is driven by the topological phase gradient or non-local Gauge potential that can be mapped to a local oscillator potential under PSL(2,R).

  10. STUDI KEMAMPUAN MEMBUAT MIND MAP BERBASIS PEMAHAMAN ARTIKEL THE JAKARTA POST PADA MATA KULIAH EXTENSIVE READING

    Directory of Open Access Journals (Sweden)

    Pudiyono Pudiyono

    2014-09-01

    Full Text Available The aims of the research were to find out (a the level of the students’ ability in making mind map based on the article of The Jakarta Post in Extensive Reading, (b the problems the students have in comprehending the article of The Jakarta Post in Extensive Reading in making mind map. The data collecting technique used was a test of reading based on comprehension. The population of the research was all students of semester 6 totaling to 161 students. While the sample was taken from all 4 classes by which each class was taken at about 25%. Therefore the total sample was 48 students. The result of data analysis showed that the average ability of the students reached only 59.02. In detail, research result showed that none of the samples (0 % could do the mind map correctly or get an A. The participants who got good achievement (B amounted to only 4 people (2.48%. The majority of the participants belonged to the level of good enough to be able to make main idea analysis in order to make the mind map. The not good enough level became the majority achievement among all amounting to 89.43%. The students’ ability which got the perfect inability level in making the mind map rose to 8.09%. The problems the students had in making the mind map was the fact that they had no idea in identifying main ideas of the content of the text. Besides that students also failed in comprehending the new vocabulary they found while they were reading the articles. Failure in comprehending the new difficult words led the to get the failure in identifying main ideas by which in turns they found themselves to have no clear map of their understanding of the articles they had read. Key word: comprehension, mind mapping, new vocabulary, authentic text, natural

  11. Superselection sectors in low dimensional quantum field theory

    International Nuclear Information System (INIS)

    Fredenhagen, K.

    1992-09-01

    The occurence of braid group statistics in low dimensions is reviewed, and an extension of the general theory to solitonic sectors is described where the DHR endomorphisms are replaced by homomorphisms between different extensions of the algebra of observables. (orig.)

  12. Movie-maps of low-latitude magnetic storm disturbance

    Science.gov (United States)

    Love, Jeffrey J.; Gannon, Jennifer L.

    2010-06-01

    We present 29 movie-maps of low-latitude horizontal-intensity magnetic disturbance for the years 1999-2006: 28 recording magnetic storms and 1 magnetically quiescent period. The movie-maps are derived from magnetic vector time series data collected at up to 25 ground-based observatories. Using a technique similar to that used in the calculation of Dst, a quiet time baseline is subtracted from the time series from each observatory. The remaining disturbance time series are shown in a polar coordinate system that accommodates both Earth rotation and the universal time dependence of magnetospheric disturbance. Each magnetic storm recorded in the movie-maps is different. While some standard interpretations about the storm time equatorial ring current appear to apply to certain moments and certain phases of some storms, the movie-maps also show substantial variety in the local time distribution of low-latitude magnetic disturbance, especially during storm commencements and storm main phases. All movie-maps are available at the U.S. Geological Survey Geomagnetism Program Web site (http://geomag.usgs.gov).

  13. Tongues of periodicity in a family of two-dimensional discontinuous maps of real Moebius type

    International Nuclear Information System (INIS)

    Sushko, Iryna; Gardini, Laura; Puu, Toenu

    2004-01-01

    In this paper we consider a two-dimensional piecewise-smooth discontinuous map representing the so-called 'relative dynamics' of an Hicksian business cycle model. The main features of the dynamics occur in the parameter region in which no fixed points at finite distance exist, but we may have attracting cycles of any periods. The bifurcations associated with the periodicity tongues of the map are studied making use of the first-return map on a suitable segment of the phase plane. The bifurcation curves bounding the periodicity tongues in the parameter plane are related with saddle-node and border-collision bifurcations of the first-return map. Moreover, the particular 'sausages structure' of the bifurcation tongues is also explained

  14. One-dimensional low spatial frequency LIPSS with rotating orientation on fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Simon, E-mail: simon.schwarz@h-ab.de; Rung, Stefan; Hellmann, Ralf

    2017-07-31

    Highlights: • Generation of one-dimensional low spatial frequency LIPSS on transparent material. • Varying the angle of incidence results in a rotation of the one-dimensional LSFL. • Rotation angle of LSFL decreases with increasing the applied fluence. • Orientation of the LSFL is mirror-inverted when reversing the scanning direction. - Abstract: We report on the generation of one-dimensional low spatial frequency LIPSS on transparent material. The influence of the applied laser fluence and angle of incidence on the periodicity, orientation and quality of the one-dimensional low spatial frequency LIPSS is investigated, facilitating the generation of highly uniform LIPSS alongside a line. Most strikingly, however, we observe a previously unreported effect of a pronounced rotation of the one-dimensional low spatial frequency LIPSS for varying angle of incidence upon inclined laser irradiation.

  15. C-map for Born-Infeld theories

    CERN Document Server

    Andrianopoli, Laura; Ferrara, Sergio; Trigiante, Mario

    2016-01-01

    The c-map of four dimensional non-linear theories of electromagnetism is considered both in the rigid case and in its coupling to gravity. In this way theories with antisymmetric tensors and scalars are obtained, and the three non-linear representations of N=2 supersymmetry partially broken to N=1 related. The manifest $\\mathrm{Sp}(2n)$ and $\\mathrm{U}(n)$ covariance of these theories in their multifield extensions is also exhibited.

  16. Optimal contact definition for reconstruction of Contact Maps

    Directory of Open Access Journals (Sweden)

    Stehr Henning

    2010-05-01

    Full Text Available Abstract Background Contact maps have been extensively used as a simplified representation of protein structures. They capture most important features of a protein's fold, being preferred by a number of researchers for the description and study of protein structures. Inspired by the model's simplicity many groups have dedicated a considerable amount of effort towards contact prediction as a proxy for protein structure prediction. However a contact map's biological interest is subject to the availability of reliable methods for the 3-dimensional reconstruction of the structure. Results We use an implementation of the well-known distance geometry protocol to build realistic protein 3-dimensional models from contact maps, performing an extensive exploration of many of the parameters involved in the reconstruction process. We try to address the questions: a to what accuracy does a contact map represent its corresponding 3D structure, b what is the best contact map representation with regard to reconstructability and c what is the effect of partial or inaccurate contact information on the 3D structure recovery. Our results suggest that contact maps derived from the application of a distance cutoff of 9 to 11Å around the Cβ atoms constitute the most accurate representation of the 3D structure. The reconstruction process does not provide a single solution to the problem but rather an ensemble of conformations that are within 2Å RMSD of the crystal structure and with lower values for the pairwise average ensemble RMSD. Interestingly it is still possible to recover a structure with partial contact information, although wrong contacts can lead to dramatic loss in reconstruction fidelity. Conclusions Thus contact maps represent a valid approximation to the structures with an accuracy comparable to that of experimental methods. The optimal contact definitions constitute key guidelines for methods based on contact maps such as structure prediction through

  17. Inelastic light scattering by low-lying excitations of electrons in low-dimensional semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, V. [NEST CNR-INFM and Scuola Normale Superiore, Pisa (Italy); Pinczuk, A. [Department of Physics, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey (United States)

    2006-11-15

    The low-dimensional electron systems that reside in artificial semiconductor heterostructures of great perfection are a contemporary materials base for explorations of collective phenomena. Studies of low-lying elementary excitations by inelastic light scattering offer insights on properties such energetics, interactions and spin magnetization. We review here recent light scattering results obtained from two-dimensional (2D) quantum fluids in semiconductor heterostructures under extreme conditions of low temperature and large magnetic field, where the quantum Hall phases are archetypes of novel behaviors. We also consider recent light scattering experiments that have probed the excitation spectra of few-electron states in semiconductor quantum dots. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Fabrication, Characterization, Properties, and Applications of Low-Dimensional BiFeO3 Nanostructures

    Directory of Open Access Journals (Sweden)

    Heng Wu

    2014-01-01

    Full Text Available Low-dimensional BiFeO3 nanostructures (e.g., nanocrystals, nanowires, nanotubes, and nanoislands have received considerable attention due to their novel size-dependent properties and outstanding multiferroic properties at room temperature. In recent years, much progress has been made both in fabrications and (microstructural, electrical, and magnetic in characterizations of BiFeO3 low-dimensional nanostructures. An overview of the state of art in BiFeO3 low-dimensional nanostructures is presented. First, we review the fabrications of high-quality BiFeO3 low-dimensional nanostructures via a variety of techniques, and then the structural characterizations and physical properties of the BiFeO3 low-dimensional nanostructures are summarized. Their potential applications in the next-generation magnetoelectric random access memories and photovoltaic devices are also discussed. Finally, we conclude this review by providing our perspectives to the future researches of BiFeO3 low-dimensional nanostructures and some key problems are also outlined.

  19. Milgrom Relation Models for Spiral Galaxies from Two-Dimensional Velocity Maps

    OpenAIRE

    Barnes, Eric I.; Kosowsky, Arthur; Sellwood, Jerry A.

    2007-01-01

    Using two-dimensional velocity maps and I-band photometry, we have created mass models of 40 spiral galaxies using the Milgrom relation (the basis of modified Newtonian dynamics, or MOND) to complement previous work. A Bayesian technique is employed to compare several different dark matter halo models to Milgrom and Newtonian models. Pseudo-isothermal dark matter halos provide the best statistical fits to the data in a majority of cases, while the Milgrom relation generally provides good fits...

  20. Extensions of conformal symmetry in two-dimensional quantum field theory

    International Nuclear Information System (INIS)

    Schoutens, C.J.M.

    1989-01-01

    Conformal symmetry extensions in a two-dimensional quantum field theory are the main theme of the work presented in this thesis. After a brief exposition of the formalism for conformal field theory, the motivation for studying extended symmetries in conformal field theory is presented in some detail. Supersymmetric extensions of conformal symmetry are introduced. An overview of the algebraic superconformal symmetry is given. The relevance of higher-spin bosonic extensions of the Virasoro algebra in relation to the classification program for so-called rational conformal theories is explained. The construction of a large class of bosonic extended algebras, the so-called Casimir algebras, are presented. The representation theory of these algebras is discussed and a large class of new unitary models is identified. The superspace formalism for O(N)-extended superconformal quantum field theory is presented. It is shown that such theories exist for N ≤ 4. Special attention is paid to the case N = 4 and it is shown that the allowed central charges are c(n + ,n - ) = 6n + n - /(n + ,n - ), where n + and n - are positive integers. A different class of so(N)-extended superconformal algebras is analyzed. The representation theory is studied and it is established that certain free field theories provide realizations of the algebras with level S = 1. Finally the so-called BRST construction for extended conformal algebras is considered. A nilpotent BRST charge is constructed for a large class of algebras, which contains quadratically nonlinear algebras that fall outside the traditional class if finitely generated Lie (super)algebras. The results are especially relevant for the construction of string models based on extended conformal symmetry. (author). 118 refs.; 7 tabs

  1. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Diogo Ricardo da, E-mail: diogo_cost@hotmail.com [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Hansen, Matheus [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Instituto de Física, Univ. São Paulo, Rua do Matão, Cidade Universitária, 05314-970, São Paulo – SP (Brazil); Guarise, Gustavo [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Medrano-T, Rene O. [Departamento de Ciências Exatas e da Terra, UNIFESP – Universidade Federal de São Paulo, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP (Brazil); Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom); Leonel, Edson D. [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste (Italy)

    2016-04-22

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.

  2. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    International Nuclear Information System (INIS)

    Costa, Diogo Ricardo da; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-01-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.

  3. A class of conservative Hamiltonians with exactly integrable discrete two-dimensional parametric maps

    International Nuclear Information System (INIS)

    Dikande, Alain M; Njumbe, E Epie

    2010-01-01

    A class of discrete conservative Hamiltonians with completely integrable two-dimensional (2D) mappings is constructed whose generic models are three families of non-integrable discrete Hamiltonians with on-site potentials whose double-well shapes vary. Unlike the discrete 2D mappings associated with the generic models, which all display pitchfork bifurcations towards randomly pinned states with chaotic features, for the derived models the pitchfork bifurcation leads to fixed points always surrounded by periodic trajectories. A nonlinear stability analysis reveals a finite crossover on the bifurcation line at which the pitchfork transition takes the maps from regular real periodic trajectories towards a regime dominated by a cluster of periodic point trajectories representing the allowed real solutions. The rich variety of structures displayed by the new class of discrete maps, combined with their complete integrability, offer rich perspectives for theoretical modelling of a wide class of systems undergoing structural instabilities without noticeable chaotic precursors.

  4. Low-dimensional chaos in a hydrodynamic system

    International Nuclear Information System (INIS)

    Brandstater, A.; Swift, J.; Swinney, H.L.; Wolf, A.; Farmer, J.D.; Jen, E.; Crutchfield, J.P.

    1983-01-01

    Evidence is presented for low-dimensional strange attractors in Couette-Taylor flow data. Computations of the largest Lyapunov exponent and metric entropy show that the system displays sensitive dependence on initial conditions. Although the phase space is very high dimensional, analysis of experimental data shows that motion is restricted to an attractor of dimension less than 5 for Reynolds numbers up to 30% above the onset of chaos. The Lyapunov exponent, entropy, and dimension all generally increase with Reynolds number

  5. Low-dimensional chaotic attractors in drift wave turbulence

    International Nuclear Information System (INIS)

    Persson, M.; Nordman, H.

    1991-01-01

    Simulation results of toroidal η i -mode turbulence are analyzed using mathematical tools of nonlinear dynamics. Low-dimensional chaotic attractors are found in the strongly nonlinear regime while in the weakly interacting regime the dynamics is high dimensional. In both regimes, the solutions are found to display sensitive dependence on initial conditions, characterized by a positive largest Liapunov exponent. (au)

  6. Quantum Fluctuations of Low Dimensional Bose-Einstein ...

    African Journals Online (AJOL)

    Tadesse

    that low dimensional quantum gases exhibit not only highly fascinating .... 2009; Marquardt and Girvin, 2009; Law, 1995; Vitali et al., 2007). ... ideal playground to test correlations between light and mesoscopic objects, to understand the.

  7. Design of efficient circularly symmetric two-dimensional variable digital FIR filters.

    Science.gov (United States)

    Bindima, Thayyil; Elias, Elizabeth

    2016-05-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability.

  8. Scientific data interpolation with low dimensional manifold model

    Science.gov (United States)

    Zhu, Wei; Wang, Bao; Barnard, Richard; Hauck, Cory D.; Jenko, Frank; Osher, Stanley

    2018-01-01

    We propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace-Beltrami operator in the Euler-Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

  9. Scientific data interpolation with low dimensional manifold model

    International Nuclear Information System (INIS)

    Zhu, Wei; Wang, Bao; Barnard, Richard C.; Hauck, Cory D.

    2017-01-01

    Here, we propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace–Beltrami operator in the Euler–Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

  10. A differential algebraic integration algorithm for symplectic mappings in systems with three-dimensional magnetic field

    International Nuclear Information System (INIS)

    Chang, P.; Lee, S.Y.; Yan, Y.T.

    2006-01-01

    A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders

  11. A Differential Algebraic Integration Algorithm for Symplectic Mappings in Systems with Three-Dimensional Magnetic Field

    International Nuclear Information System (INIS)

    Chang, P

    2004-01-01

    A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders

  12. The relationship between balance performance, lumbar extension strength, trunk extension endurance, and pain in participants with chronic low back pain, and those without.

    Science.gov (United States)

    Behennah, Jessica; Conway, Rebecca; Fisher, James; Osborne, Neil; Steele, James

    2018-03-01

    Chronic low back pain is associated with lumbar extensor deconditioning. This may contribute to decreased neuromuscular control and balance. However, balance is also influenced by the hip musculature. Thus, the purpose of this study was to examine balance in both asymptomatic participants and those with chronic low back pain, and to examine the relationships among balance, lumbar extension strength, trunk extension endurance, and pain. Forty three asymptomatic participants and 21 participants with non-specific chronic low back pain underwent balance testing using the Star Excursion Balance Test, lumbar extension strength, trunk extension endurance, and pain using a visual analogue scale. Significant correlations were found between lumbar extension strength and Star Excursion Balance Test scores in the chronic low back pain group (r = 0.439-0.615) and in the asymptomatic group (r = 0.309-0.411). Correlations in the chronic low back pain group were consistently found in posterior directions. Lumbar extension strength explained ~19.3% to ~37.8% of the variance in Star Excursion Balance Test scores for the chronic low back pain group and ~9.5% to ~16.9% for the asymptomatic group. These results suggest that the lumbar extensors may be an important factor in determining the motor control dysfunctions, such as limited balance, that arise in chronic low back pain. As such, specific strengthening of this musculature may be an approach to aid in reversing these dysfunctions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Tensor SOM and tensor GTM: Nonlinear tensor analysis by topographic mappings.

    Science.gov (United States)

    Iwasaki, Tohru; Furukawa, Tetsuo

    2016-05-01

    In this paper, we propose nonlinear tensor analysis methods: the tensor self-organizing map (TSOM) and the tensor generative topographic mapping (TGTM). TSOM is a straightforward extension of the self-organizing map from high-dimensional data to tensorial data, and TGTM is an extension of the generative topographic map, which provides a theoretical background for TSOM using a probabilistic generative model. These methods are useful tools for analyzing and visualizing tensorial data, especially multimodal relational data. For given n-mode relational data, TSOM and TGTM can simultaneously organize a set of n-topographic maps. Furthermore, they can be used to explore the tensorial data space by interactively visualizing the relationships between modes. We present the TSOM algorithm and a theoretical description from the viewpoint of TGTM. Various TSOM variations and visualization techniques are also described, along with some applications to real relational datasets. Additionally, we attempt to build a comprehensive description of the TSOM family by adapting various data structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A new integrated statistical approach to the diagnostic use of two-dimensional maps.

    Science.gov (United States)

    Marengo, Emilio; Robotti, Elisa; Gianotti, Valentina; Righetti, Pier Giorgio; Cecconi, Daniela; Domenici, Enrico

    2003-01-01

    Two-dimensional (2-D) electrophoresis is a very useful technique for the analysis of proteins in biological tissues. The complexity of the 2-D maps obtained causes many difficulties in the comparison of different samples. A new method is proposed for comparing different 2-D maps, based on five steps: (i) the digitalisation of the image; (ii) the transformation of the digitalised map in a fuzzy entity, in order to consider the variability of the 2-D electrophoretic separation; (iii) the calculation of a similarity index for each pair of maps; (iv) the analysis by multidimensional scaling of the previously obtained similarity matrix; (v) the analysis by classification or cluster analysis techniques of the resulting map co-ordinates. The method adopted was first tested on some simulated samples in order to evaluate its sensitivity to small changes in the spots position and size. The optimal setting of the method parameters was also investigated. Finally, the method was successfully applied to a series of real samples corresponding to the electrophoretic bidimensional analysis of sera from normal and nicotine-treated rats. Multidimensional scaling allowed the separation of the two classes of samples without any misclassification.

  15. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ali Mostofizadeh

    2011-01-01

    Full Text Available In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. Carbon nanomaterials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nanomaterials such as zero-dimensional carbon nanomaterials (including fullerene, carbon-encapsulated metal nanoparticles, nanodiamond, and onion-like carbons, one-dimensional carbon nanomaterials (including carbon nanofibers and carbon nanotubes, and two-dimensional carbon nanomaterials (including graphene and carbon nanowalls are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nanomaterials.

  16. New exact solutions of the (2 + 1)-dimensional breaking soliton system via an extended mapping method

    International Nuclear Information System (INIS)

    Ma Songhua; Fang Jianping; Zheng Chunlong

    2009-01-01

    By means of an extended mapping method and a variable separation method, a series of solitary wave solutions, periodic wave solutions and variable separation solutions to the (2 + 1)-dimensional breaking soliton system is derived.

  17. Neutron scattering studies of low dimensional magnetic systems

    DEFF Research Database (Denmark)

    Hansen, Ursula Bengård

    investigated at low temperaturesand in a longitudinal magnetic eld using neutron spectroscopy. Here we observe thehybridisation of the magnon bound states, inherent to the low dimensional nature ofCoCl2 · 2D2O.At higher temperature, signatures which can be attributed to Magnetic Bloch Oscillationsis observed...

  18. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.

    Science.gov (United States)

    Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung

    2016-04-29

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp(2)-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.

  19. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes

    International Nuclear Information System (INIS)

    Yoon, Yeoheung; Lee, Hyoyoung; Lee, Keunsik

    2016-01-01

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp 2 -bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications. (topical review)

  20. Workshop on low-dimensional quantum field theory and its applications

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi

    1990-02-01

    The workshop on 'Low-Dimensional Quantum Field Theory and its Applications' was held at INS on December 18 - 20, 1989 with about seventy participants. Some pedagogical reviews and the latest results were delivered on the recent topics related to both solid-state and particle physics. Among them are quantum Hall effect, high T c superconductivity and related topics in low-dimensional quantum field theory. Many active discussions were made on these issues. (J.P.N.)

  1. Small-angle X-ray scattering tensor tomography: model of the three-dimensional reciprocal-space map, reconstruction algorithm and angular sampling requirements.

    Science.gov (United States)

    Liebi, Marianne; Georgiadis, Marios; Kohlbrecher, Joachim; Holler, Mirko; Raabe, Jörg; Usov, Ivan; Menzel, Andreas; Schneider, Philipp; Bunk, Oliver; Guizar-Sicairos, Manuel

    2018-01-01

    Small-angle X-ray scattering tensor tomography, which allows reconstruction of the local three-dimensional reciprocal-space map within a three-dimensional sample as introduced by Liebi et al. [Nature (2015), 527, 349-352], is described in more detail with regard to the mathematical framework and the optimization algorithm. For the case of trabecular bone samples from vertebrae it is shown that the model of the three-dimensional reciprocal-space map using spherical harmonics can adequately describe the measured data. The method enables the determination of nanostructure orientation and degree of orientation as demonstrated previously in a single momentum transfer q range. This article presents a reconstruction of the complete reciprocal-space map for the case of bone over extended ranges of q. In addition, it is shown that uniform angular sampling and advanced regularization strategies help to reduce the amount of data required.

  2. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks

    Directory of Open Access Journals (Sweden)

    Martin Alberto JM

    2009-01-01

    Full Text Available Abstract Background Prediction of protein structures from their sequences is still one of the open grand challenges of computational biology. Some approaches to protein structure prediction, especially ab initio ones, rely to some extent on the prediction of residue contact maps. Residue contact map predictions have been assessed at the CASP competition for several years now. Although it has been shown that exact contact maps generally yield correct three-dimensional structures, this is true only at a relatively low resolution (3–4 Å from the native structure. Another known weakness of contact maps is that they are generally predicted ab initio, that is not exploiting information about potential homologues of known structure. Results We introduce a new class of distance restraints for protein structures: multi-class distance maps. We show that Cα trace reconstructions based on 4-class native maps are significantly better than those from residue contact maps. We then build two predictors of 4-class maps based on recursive neural networks: one ab initio, or relying on the sequence and on evolutionary information; one template-based, or in which homology information to known structures is provided as a further input. We show that virtually any level of sequence similarity to structural templates (down to less than 10% yields more accurate 4-class maps than the ab initio predictor. We show that template-based predictions by recursive neural networks are consistently better than the best template and than a number of combinations of the best available templates. We also extract binary residue contact maps at an 8 Å threshold (as per CASP assessment from the 4-class predictors and show that the template-based version is also more accurate than the best template and consistently better than the ab initio one, down to very low levels of sequence identity to structural templates. Furthermore, we test both ab-initio and template-based 8

  3. Dimensional comparison theory : an extension of the internal/external frame of reference effect on academic self-concept formation

    NARCIS (Netherlands)

    Marsh, Herbert W.; Kuyper, Hans; Seaton, Marjorie; Parker, Philip D.; Morin, Alexandre J. S.; Moeller, Jens; Abduljabbar, Adel S.

    2014-01-01

    In a comprehensive study (15,356 Dutch 9th grade students from 651 classes in 95 schools) we empirically tested the dimensional comparison theory (DCT) propositions formulated by Moller & Marsh (2013) as an extension of I/E theory, exploring methodological, theoretical, and substantive insights.

  4. Low-density, one-dimensional quantum gases in the presence of a localized attractive potential

    International Nuclear Information System (INIS)

    Goold, J; O'Donoghue, D; Busch, Th

    2008-01-01

    We investigate low-density, quantum-degenerate gases in the presence of a localized attractive potential in the centre of a one-dimensional harmonic trap. The attractive potential is modelled using a parameterized δ-function, allowing us to determine all single-particle eigenfunctions analytically. From these we calculate the ground-state many-body properties for a system of spin-polarized fermions and, using the Bose-Fermi mapping theorem, extend the results to strongly interacting bosonic systems. We discuss the single-particle densities, the pair-correlation functions, the reduced single-particle density matrices and the momentum distributions as a function of the particle number and strength of the attractive point potential. As an important experimental observable, we place special emphasis on spatial coherence properties of such samples.

  5. A New Generation of Luminescent Materials Based on Low-Dimensional Perovskites

    KAUST Repository

    Pan, Jun

    2017-06-02

    Low-dimensional perovskites with high luminescence properties are promising materials for optoelectronic applications. In this article, properties of two emerging types of low-dimensional perovskites are discussed, including perovskite quantum dots CsPbX3 (X = Cl, Br or I) and zero-dimensional perovskite Cs4PbBr6. Moreover, their application for light down conversion in LCD backlighting systems and in visible light communication are also presented. With their superior optical properties, we believe that further development of these materials will potentially open more prospective applications, especially for optoelectronics devices.

  6. An extension of the talbot-ogden hydrology model to an affine multi-dimensional moisture content domain

    KAUST Repository

    Yu, Han

    2013-09-01

    The Talbot-Ogden hydrology model provides a fast mass conservative method to compute infiltration in unsaturated soils. As a replacement for a model based on Richards equation, it separates the groundwater movement into infiltration and redistribution for every time step. The typical feature making this method fast is the discretization of the moisture content domain rather than the spatial one. The Talbot-Ogden model rapidly determines how well ground water and aquifers are recharged only. Hence, it differs from models based on advanced reservoir modeling that are uniformly far more expensive computationally since they determine where the water moves in space instead, a completely different and more complex problem.According to the pore-size distribution curve for many soils, this paper extends the one dimensional moisture content domain into a two dimensional one by keeping the vertical spatial axis. The proposed extension can describe any pore-size or porosity distribution as an important soil feature. Based on this extension, infiltration and redistribution are restudied. The unconditional conservation of mass in the Talbot-Ogden model is inherited in this extended model. A numerical example is given for the extended model.

  7. Identifying surfaces of low dimensions in high dimensional data

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    1996-01-01

    Methods are presented that find a nonlinear subspace in low dimensions that describe data given by many variables. The methods include nonlinear extensions of Principal Component Analysis and extensions of linear regression analysis. It is shown by examples that these methods give more reliable...

  8. Low dimensional neutron moderators for enhanced source brightness

    DEFF Research Database (Denmark)

    Mezei, Ferenc; Zanini, Luca; Takibayev, Alan

    2014-01-01

    In a recent numerical optimization study we have found that liquid para-hydrogen coupled cold neutron moderators deliver 3–5 times higher cold neutron brightness at a spallation neutron source if they take the form of a flat, quasi 2-dimensional disc, in contrast to the conventional more voluminous...... for cold neutrons. This model leads to the conclusions that the optimal shape for high brightness para-hydrogen neutron moderators is the quasi 1-dimensional tube and these low dimensional moderators can also deliver much enhanced cold neutron brightness in fission reactor neutron sources, compared...... to the much more voluminous liquid D2 or H2 moderators currently used. Neutronic simulation calculations confirm both of these theoretical conclusions....

  9. Low dimensional field theories and condensed matter physics

    International Nuclear Information System (INIS)

    Nagaoka, Yosuke

    1992-01-01

    This issue is devoted to the Proceedings of the Fourth Yukawa International Seminar (YKIS '91) on Low Dimensional Field Theories and Condensed Matter Physics, which was held on July 28 to August 3 in Kyoto. In recent years there have been great experimental discoveries in the field of condensed matter physics: the quantum Hall effect and the high temperature superconductivity. Theoretical effort to clarify mechanisms of these phenomena revealed that they are deeply related to the basic problem of many-body systems with strong correlation. On the other hand, there have been important developments in field theory in low dimensions: the conformal field theory, the Chern-Simons gauge theory, etc. It was found that these theories work as a powerful method of approach to the problems in condensed matter physics. YKIS '91 was devoted to the study of common problems in low dimensional field theories and condensed matter physics. The 17 of the presented papers are collected in this issue. (J.P.N.)

  10. Diffusion in membranes: Toward a two-dimensional diffusion map

    Directory of Open Access Journals (Sweden)

    Toppozini Laura

    2015-01-01

    Full Text Available For decades, quasi-elastic neutron scattering has been the prime tool for studying molecular diffusion in membranes over relevant nanometer distances. These experiments are essential to our current understanding of molecular dynamics of lipids, proteins and membrane-active molecules. Recently, we presented experimental evidence from X-ray diffraction and quasi-elastic neutron scattering demonstrating that ethanol enhances the permeability of membranes. At the QENS 2014/WINS 2014 conference we presented a novel technique to measure diffusion across membranes employing 2-dimensional quasi-elastic neutron scattering. We present results from our preliminary analysis of an experiment on the cold neutron multi-chopper spectrometer LET at ISIS, where we studied the self-diffusion of water molecules along lipid membranes and have the possibility of studying the diffusion in membranes. By preparing highly oriented membrane stacks and aligning them horizontally in the spectrometer, our aim is to distinguish between lateral and transmembrane diffusion. Diffusion may also be measured at different locations in the membranes, such as the water layer and the hydrocarbon membrane core. With a complete analysis of the data, 2-dimensional mapping will enable us to determine diffusion channels of water and ethanol molecules to quantitatively determine nanoscale membrane permeability.

  11. Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors.

    Science.gov (United States)

    Hung, Nguyen T; Hasdeo, Eddwi H; Nugraha, Ahmad R T; Dresselhaus, Mildred S; Saito, Riichiro

    2016-07-15

    We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ, bulk semiconductors may give a higher power factor compared to the lower dimensional ones.

  12. Manifold Learning with Self-Organizing Mapping for Feature Extraction of Nonlinear Faults in Rotating Machinery

    Directory of Open Access Journals (Sweden)

    Lin Liang

    2015-01-01

    Full Text Available A new method for extracting the low-dimensional feature automatically with self-organization mapping manifold is proposed for the detection of rotating mechanical nonlinear faults (such as rubbing, pedestal looseness. Under the phase space reconstructed by single vibration signal, the self-organization mapping (SOM with expectation maximization iteration algorithm is used to divide the local neighborhoods adaptively without manual intervention. After that, the local tangent space alignment algorithm is adopted to compress the high-dimensional phase space into low-dimensional feature space. The proposed method takes advantages of the manifold learning in low-dimensional feature extraction and adaptive neighborhood construction of SOM and can extract intrinsic fault features of interest in two dimensional projection space. To evaluate the performance of the proposed method, the Lorenz system was simulated and rotation machinery with nonlinear faults was obtained for test purposes. Compared with the holospectrum approaches, the results reveal that the proposed method is superior in identifying faults and effective for rotating machinery condition monitoring.

  13. A study of low-dimensional inhomogeneous systems

    International Nuclear Information System (INIS)

    Arredondo Leon, Yesenia

    2009-01-01

    While the properties of homogeneous one-dimensional systems, even with disorder, are relatively well-understood, very little is known about the properties of strongly interacting inhomogeneous systems. Their high-energy physics is determined by the underlying chemistry which, in the atomic scale, introduces Coulomb correlations and local potentials. On the other hand, at large length scales, the physics has to be described by the Tomonaga-Luttinger liquid (TLL) model. In order to establish a connection between the low-energy TLL and the quasi-one-dimensional systems synthesized in the laboratory, we investigate the density-density correlation function in inhomogeneous one-dimensional systems in the asymptotic region. To investigate homogeneous as well as inhomogeneous systems, we use the density-matrix renormalization group (DMRG) method. We present results for ground state properties, such as the density-density correlation function and the parameter K c , which characterizes its decay at large distances. (orig.)

  14. A study of low-dimensional inhomogeneous systems

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo Leon, Yesenia

    2009-01-15

    While the properties of homogeneous one-dimensional systems, even with disorder, are relatively well-understood, very little is known about the properties of strongly interacting inhomogeneous systems. Their high-energy physics is determined by the underlying chemistry which, in the atomic scale, introduces Coulomb correlations and local potentials. On the other hand, at large length scales, the physics has to be described by the Tomonaga-Luttinger liquid (TLL) model. In order to establish a connection between the low-energy TLL and the quasi-one-dimensional systems synthesized in the laboratory, we investigate the density-density correlation function in inhomogeneous one-dimensional systems in the asymptotic region. To investigate homogeneous as well as inhomogeneous systems, we use the density-matrix renormalization group (DMRG) method. We present results for ground state properties, such as the density-density correlation function and the parameter K{sub c}, which characterizes its decay at large distances. (orig.)

  15. Elevation data for floodplain mapping

    National Research Council Canada - National Science Library

    Committee on Floodplain Mapping Technologies; National Research Council; Division on Earth and Life Studies; National Research Council

    2007-01-01

    .... Elevation Data for Floodplain Mapping shows that there is sufficient two-dimensional base map imagery to meet FEMA's flood map modernization goals, but that the three-dimensional base elevation data...

  16. A new method for mapping the three-dimensional atomic distribution within nanoparticles by atom probe tomography (APT).

    Science.gov (United States)

    Kim, Se-Ho; Kang, Phil Woong; Park, O Ok; Seol, Jae-Bok; Ahn, Jae-Pyoung; Lee, Ji Yeong; Choi, Pyuck-Pa

    2018-07-01

    We present a new method of preparing needle-shaped specimens for atom probe tomography from freestanding Pd and C-supported Pt nanoparticles. The method consists of two steps, namely electrophoresis of nanoparticles on a flat Cu substrate followed by electrodeposition of a Ni film acting as an embedding matrix for the nanoparticles. Atom probe specimen preparation can be subsequently carried out by means of focused-ion-beam milling. Using this approach, we have been able to perform correlative atom probe tomography and transmission electron microscopy analyses on both nanoparticle systems. Reliable mass spectra and three-dimensional atom maps could be obtained for Pd nanoparticle specimens. In contrast, atom probe samples prepared from C-supported Pt nanoparticles showed uneven field evaporation and hence artifacts in the reconstructed atom maps. Our developed method is a viable means of mapping the three-dimensional atomic distribution within nanoparticles and is expected to contribute to an improved understanding of the structure-composition-property relationships of various nanoparticle systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Aircraft route planning based on digital map pre-treatment

    Directory of Open Access Journals (Sweden)

    Ran ZHEN

    2015-04-01

    Full Text Available Aiming at the flight path project in low complicated airspace, the influence of terrain conditions and surface threatening to aircraft flight are studied. Through the analysis of digital map and static threat, the paper explores the processing method of the digital map, and uses the Hermite function to process the map smoothly, reducing the searching range of optimal trajectory. By designing the terrain following, terrain avoidance and the way of avoiding a threat, the safety of aircraft can be guaranteed. In-depth analysis of particle swarm optimization (PSO algorithm realizes the three dimensional paths project before the aircraft performs a task. Through simulation, the difference of the maps before and after processing is shown, and offline programming of the three dimensional optimal path is achieved.

  18. Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces

    Science.gov (United States)

    Altschuler, M. D.; Altschuler, B. R.; Taboada, J.

    1981-01-01

    It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.

  19. Dimensionality reduction of collective motion by principal manifolds

    Science.gov (United States)

    Gajamannage, Kelum; Butail, Sachit; Porfiri, Maurizio; Bollt, Erik M.

    2015-01-01

    While the existence of low-dimensional embedding manifolds has been shown in patterns of collective motion, the current battery of nonlinear dimensionality reduction methods is not amenable to the analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which limits control over the mapping from the original high-dimensional space to the embedding space. Here, we propose an alternative approach that demands a two-dimensional embedding which topologically summarizes the high-dimensional data. In this sense, our approach is closely related to the construction of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms of local coordinates. Through representative examples, we show that compared to existing nonlinear dimensionality reduction methods, the principal manifold retains the original structure even in noisy and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing, and the resulting two-dimensional embedding is compared with that of a well-established nonlinear dimensionality reduction method.

  20. Source of errors and accuracy of a two-dimensional/three-dimensional fusion road map for endovascular aneurysm repair of abdominal aortic aneurysm.

    Science.gov (United States)

    Kauffmann, Claude; Douane, Frédéric; Therasse, Eric; Lessard, Simon; Elkouri, Stephane; Gilbert, Patrick; Beaudoin, Nathalie; Pfister, Marcus; Blair, Jean François; Soulez, Gilles

    2015-04-01

    To evaluate the accuracy and source of errors using a two-dimensional (2D)/three-dimensional (3D) fusion road map for endovascular aneurysm repair (EVAR) of abdominal aortic aneurysm. A rigid 2D/3D road map was tested in 16 patients undergoing EVAR. After 3D/3D manual registration of preoperative multidetector computed tomography (CT) and cone beam CT, abdominal aortic aneurysm outlines were overlaid on live fluoroscopy/digital subtraction angiography (DSA). Patient motion was evaluated using bone landmarks. The misregistration of renal and internal iliac arteries were estimated by 3 readers along head-feet and right-left coordinates (z-axis and x-axis, respectively) before and after bone and DSA corrections centered on the lowest renal artery. Iliac deformation was evaluated by comparing centerlines before and during intervention. A score of clinical added value was estimated as high (z-axis 5 mm). Interobserver reproducibility was calculated by the intraclass correlation coefficient. The lowest renal artery misregistration was estimated at x-axis = 10.6 mm ± 11.1 and z-axis = 7.4 mm ± 5.3 before correction and at x-axis = 3.5 mm ± 2.5 and z-axis = 4.6 mm ± 3.7 after bone correction (P = .08), and at 0 after DSA correction (P artery was estimated at x-axis = 2.4 mm ± 2.0 and z-axis = 2.2 mm ± 2.0. Score of clinical added value was low (n = 11), good (n= 0), and high (n= 5) before correction and low (n = 5), good (n = 4), and high (n = 7) after bone correction. Interobserver intraclass correlation coefficient for misregistration measurements was estimated at 0.99. Patient motion before stent graft delivery was estimated at x-axis = 8 mm ± 5.8 and z-axis = 3.0 mm ± 2.7. The internal iliac artery misregistration measurements were estimated at x-axis = 6.1 mm ± 3.5 and z-axis = 5.6 mm ± 4.0, and iliac centerline deformation was estimated at 38.3 mm ± 15.6. Rigid registration is feasible and fairly accurate. Only a partial reduction of vascular

  1. Construction of nonlinear symplectic six-dimensional thin-lens maps by exponentiation

    CERN Document Server

    Heinemann, K; Schmidt, F

    1995-01-01

    The aim of this paper is to construct six-dimensional symplectic thin-lens transport maps for the tracking program SIXTRACK, continuing an earlier report by using another method which consistes in applying Lie series and exponentiation as described by W. Groebner and for canonical systems by A.J. Dragt. We firstly use an approximate Hamiltonian obtained by a series expansion of the square root. Furthermore, nonlinear crossing terms due to the curvature in bending magnets are neglected. An improved Hamiltonian, excluding solenoids, is introduced in Appendix A by using the unexpanded square root mentioned above, but neglecting again nonlinear crossing terms...

  2. Fault diagnosis of rotating machine by isometric feature mapping

    International Nuclear Information System (INIS)

    Zhang, Yun; Li, Benwei; Wang, Lin; Wang, Wen; Wang, Zibin

    2013-01-01

    Principal component analysis (PCA) and linear discriminate analysis (LDA) are well-known linear dimensionality reductions for fault classification. However, since they are linear methods, they perform not well for high-dimensional data that has the nonlinear geometric structure. As kernel extension of PCA, Kernel PCA is used for nonlinear fault classification. However, the performance of Kernel PCA largely depends on its kernel function which can only be empirically selected from finite candidates. Thus, a novel rotating machine fault diagnosis approach based on geometrically motivated nonlinear dimensionality reduction named isometric feature mapping (Isomap) is proposed. The approach can effectively extract the intrinsic nonlinear manifold features embedded in high-dimensional fault data sets. Experimental results with rotor and rolling bearing data show that the proposed approach overcomes the flaw of conventional fault pattern recognition approaches and obviously improves the fault classification performance.

  3. Two dimensional Raman mapping with respect to carbon bonds of radiochromic films: An approach to micro-dosimetry

    International Nuclear Information System (INIS)

    Heo, Taemin; Park, Hyeonsuk; Ye, Sung-Joon

    2015-01-01

    Raman spectroscopy usually provides fingerprints of chemical component species and molecular motion. Raman peak intensity can be quantified as dose changes. Using that Raman peak intensity is proportional to the electric field intensity of incidence beam and the concentration of compounds, the dose trend would have the linearity with the concentration change of radio-active compounds. Raman spectroscopy has been applied to be utilized as a dosimetry in our group in the previous study. Then, laser effect and film homogeneity issues were required to be overcome. Two dimensional scan method was adapted to reduce measurement uncertainty since Raman cross-section is very sensitive to atomic bonds concentration and a large number of point measurements would guarantee reliable data group. The concentration in carbon double and triple bonds of radiochromic films would change by polymerization process. Thus, two dimensional analysis based on Raman mapping provides more reliable data in light of polymerization quantity due to radiation ionization than optical scanning. Its high spatial resolution (fifty micrometers) and low dose sensitivity (10 cGy) were demonstrated as a potential dosimeter. Raman analysis is expected as more precise analysis for micro-dosimetry in the future

  4. PREFACE: Dynamics of low-dimensional systems Dynamics of low-dimensional systems

    Science.gov (United States)

    Bernasconi, M.; Miret-Artés, S.; Toennies, J. P.

    2012-03-01

    With the development of techniques for high-resolution inelastic helium atom scattering (HAS), electron scattering (EELS) and neutron spin echo spectroscopy, it has become possible, within approximately the last thirty years, to measure the dispersion curves of surface phonons in insulators, semiconductors and metals. In recent years, the advent of new experimental techniques such as 3He spin-echo spectroscopy, scanning inelastic electron tunnel spectroscopy, inelastic x-ray scattering spectroscopy and inelastic photoemission have extended surface phonon spectroscopy to a variety of systems. These include ultra-thin metal films, adsorbates at surface and elementary processes where surface phonons play an important role. Other important directions have been actively pursued in the past decade: the dynamics of stepped surfaces and clusters grown on metal surfaces, due to their relevance in many dynamical and chemical processes at surfaces, including heterogeneous catalysis; clusters; diffusion etc. The role of surface effects in these processes has been conjectured since the early days of surface dynamics, although only now is the availability of ab initio approaches providing those conjectures with a microscopic basis. Last but not least, the investigation of non-adiabatic effects, originating for instance from the hybridization (avoided crossing) of the surface phonons branches with the quasi 1D electron-hole excitation branch, is also a challenging new direction. Furthermore, other elementary oscillations such as surface plasmons are being actively investigated. The aforementioned experimental breakthroughs have been accompanied by advances in the theoretical study of atom-surface interaction. In particular, in the past decade first principles calculations based on density functional perturbation theory have boosted the theoretical study of the dynamics of low-dimensional systems. Phonon dispersion relations of clean surfaces, the dynamics of adsorbates, and the

  5. Three-dimensional trend mapping using gamma-ray well logs: Simpson Group, south-central Kansas

    International Nuclear Information System (INIS)

    Doveton, J.H.; Davis, J.C.; Zhu Ke-an

    1984-01-01

    Gamma-ray logs are useful indicators of shale content as a function of depth. When several gamma-ray logs are drawn from an area, they may be interpreted in terms of shale variation in the 3 dimensions of geographic space and depth. (For several years, statistical moments of logs have been mapped as an expression of major trends of depth variation in lithologic development across an area. Moments have the additional valuable property that they also define unique polynomial trends as a function of depth. This property allows the interpolation of moments between well control to generate a 3-dimensional grid of shale referenced to any location and depth. The method was applied to the Simpson Group (Ordovician) of southcentral Kansas. Graphic results of the study outline the shapes of major sandstone and shale bodies in a series of cross sections.) The areal disposition of the initial transgressive sandstone is revealed on a basal slice map. The method is general and can be used in conjunction with other logs. As an example, use of either a neutron, density, or sonic log could be applied to 3-dimensional trend representations of porosity variation in reservoir units

  6. Low-dimensional filiform Lie algebras over finite fields

    OpenAIRE

    Falcón Ganfornina, Óscar Jesús; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vasek, Vladimir (Coordinador); Shmaliy, Yuriy S. (Coordinador); Trcek, Denis (Coordinador); Kobayashi, Nobuhiko P. (Coordinador); Choras, Ryszard S. (Coordinador); Klos, Zbigniew (Coordinador)

    2011-01-01

    In this paper we use some objects of Graph Theory to classify low-dimensional filiform Lie algebras over finite fields. The idea lies in the representation of each Lie algebra by a certain type of graphs. Then, some properties on Graph Theory make easier to classify the algebras. As results, which can be applied in several branches of Physics or Engineering, for instance, we find out that there exist, up to isomorphism, six 6-dimensional filiform Lie algebras over Z/pZ, for p = 2, 3, 5. Pl...

  7. NATO Advanced Research Workshop on Physicochemical Properties of Zeolitic Systems and Their Low Dimensionality

    CERN Document Server

    Derouane, Eric; Hölderich, Wolfgang

    1990-01-01

    Low dimensionality is a multifarious concept which applies to very diversified materials. Thus, examples of low-dimensional systems are structures with one or several layers, single lines or patterns of lines, and small clusters isolated or dispersed in solid systems. Such low­ dimensional features can be produced in a wide variety of materials systems with a broad spectrum of scientific and practical interests. These features, in turn, induce specific properties and, particularly, specific transport properties. In the case of zeolites, low dimensionality appears in the network of small-diameter pores of molecular size, extending in one, two or three di­ mensions, that these solids exhibit as a characteristic feature and which explains the term of "molecular sieves" currently used to name these ma­ terials. Indeed, a large number of industrial processes for separation of gases and liquids, and for catalysis are based upon the use of this low­ dimensional feature in zeolites. For instance, zeolites constit...

  8. Accumulation of unstable periodic orbits and the stickiness in the two-dimensional piecewise linear map.

    Science.gov (United States)

    Akaishi, A; Shudo, A

    2009-12-01

    We investigate the stickiness of the two-dimensional piecewise linear map with a family of marginal unstable periodic orbits (FMUPOs), and show that a series of unstable periodic orbits accumulating to FMUPOs plays a significant role to give rise to the power law correlation of trajectories. We can explicitly specify the sticky zone in which unstable periodic orbits whose stability increases algebraically exist, and find that there exists a hierarchy in accumulating periodic orbits. In particular, the periodic orbits with linearly increasing stability play the role of fundamental cycles as in the hyperbolic systems, which allows us to apply the method of cycle expansion. We also study the recurrence time distribution, especially discussing the position and size of the recurrence region. Following the definition adopted in one-dimensional maps, we show that the recurrence time distribution has an exponential part in the short time regime and an asymptotic power law part. The analysis on the crossover time T(c)(*) between these two regimes implies T(c)(*) approximately -log[micro(R)] where micro(R) denotes the area of the recurrence region.

  9. Local order and onset of chaos for a family of two-dimensional dissipative mappings

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, R [Dipt. di Fisica, Milano Univ. (Italy); Casartelli, M [Dipt. di Fision, Parma Univ. (Italy); Unita Risonanze Magnetiche, G.N.S.M.-C.N.R., Parma (Italy))

    1985-08-11

    We study the stochastic transition of a family of dissipative mappings of the two-dimensional tours, having a pure rotation and an Anosov hyperbolic automorphism as limit cases. Numerical experiments show that the onset of chaos is characterized by a sudden destruction of basins of previously conserved invariant sets and by the appearance of a strange attractor. The nature of these phenomena is clarified by analytical considerations.

  10. On the de Sitter and Nariai solutions in general relativity and their extension in higher dimensional space-time

    International Nuclear Information System (INIS)

    Nariai, Hidekazu; Ishihara, Hideki.

    1983-01-01

    Various geometrical properties of Nariai's less-familiar solution of the vacuum Einstein equations R sub( mu nu ) = lambda g sub( mu nu ) is f irst summarized in comparison with de Sitter's well-known solution. Next an extension of both solutions is performed in a six-dimensional space on the supposition that such an extension will in future become useful to elucidate more closely the creation of particles in an inflationary stage of the big-bang universe. For preparation, the behavior of a massive scalar field in the extended space-time is studied in a classical level. (author)

  11. Low-dimensional geometry from euclidean surfaces to hyperbolic knots

    CERN Document Server

    Bonahon, Francis

    2009-01-01

    The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory o...

  12. Mapping and identification of interferon gamma-regulated HeLa cell proteins separated by immobilized pH gradient two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Shaw, A.; Larsen, M.; Roepstorff, P.

    1999-01-01

    magnitude of IFN-gamma responsive genes has been reported previously. Our goal is to identify and map IFN-gamma-regulated HeLa cell proteins to the two-dimensional polyacrylamide gel electrophoresis with the immobilized pH gradient (IPG) two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) system...

  13. Measurement of low radioactivity in underground laboratories by means of many-dimensional spectrometry

    International Nuclear Information System (INIS)

    Niese, Siegfried

    2008-01-01

    In this contribution beside the possibilities for the measurements in underground laboratories also the application of the many-dimensional spectrometry is considered, under which coincidence, anticoincidence, and time-resolving spectrometric are to be understood. Very extensively the interaction of cosmic radiation with matter is considered

  14. Magnetic resonance of low dimensional magnetic solids

    Energy Technology Data Exchange (ETDEWEB)

    Gatteschi, D.; Ferraro, F.; Sessoli, R. (Florence Univ. (Italy))

    1994-06-01

    The utility of EPR and NMR in the study of low-dimensional magnetic solids is shown. A short summary of the basis of magnetic resonance in these systems is reported, and the importance of spin-diffusion and magnetic anisotropy evidenced. Some results from experiments on metal-radical chains and clusters are presented. (authors). 37 refs., 7 figs.

  15. Magnetic resonance of low dimensional magnetic solids

    International Nuclear Information System (INIS)

    Gatteschi, D.; Ferraro, F.; Sessoli, R.

    1994-01-01

    The utility of EPR and NMR in the study of low-dimensional magnetic solids is shown. A short summary of the basis of magnetic resonance in these systems is reported, and the importance of spin-diffusion and magnetic anisotropy evidenced. Some results from experiments on metal-radical chains and clusters are presented. (authors). 37 refs., 7 figs

  16. New approach based on fuzzy logic and principal component analysis for the classification of two-dimensional maps in health and disease. Application to lymphomas.

    Science.gov (United States)

    Marengo, Emilio; Robotti, Elisa; Righetti, Pier Giorgio; Antonucci, Francesca

    2003-07-04

    Two-dimensional (2D) electrophoresis is the most wide spread technique for the separation of proteins in biological systems. This technique produces 2D maps of high complexity, which creates difficulties in the comparison of different samples. The method proposed in this paper for the comparison of different 2D maps can be summarised in four steps: (a) digitalisation of the image; (b) fuzzyfication of the digitalised map in order to consider the variability of the two-dimensional electrophoretic separation; (c) decoding by principal component analysis of the previously obtained fuzzy maps, in order to reduce the system dimensionality; (d) classification analysis (linear discriminant analysis), in order to separate the samples contained in the dataset according to the classes present in said dataset. This method was applied to a dataset constituted by eight samples: four belonging to healthy human lymph-nodes and four deriving from non-Hodgkin lymphomas. The amount of fuzzyfication of the original map is governed by the sigma parameter. The larger the value, the more fuzzy theresulting transformed map. The effect of the fuzzyfication parameter was investigated, the optimal results being obtained for sigma = 1.75 and 2.25. Principal component analysis and linear discriminant analysis allowed the separation of the two classes of samples without any misclassification.

  17. Dimensional Error in Rapid Prototyping with Open Source Software and Low-cost 3D-printer.

    Science.gov (United States)

    Rendón-Medina, Marco A; Andrade-Delgado, Laura; Telich-Tarriba, Jose E; Fuente-Del-Campo, Antonio; Altamirano-Arcos, Carlos A

    2018-01-01

    Rapid prototyping models (RPMs) had been extensively used in craniofacial and maxillofacial surgery, especially in areas such as orthognathic surgery, posttraumatic or oncological reconstructions, and implantology. Economic limitations are higher in developing countries such as Mexico, where resources dedicated to health care are limited, therefore limiting the use of RPM to few selected centers. This article aims to determine the dimensional error of a low-cost fused deposition modeling 3D printer (Tronxy P802MA, Shenzhen, Tronxy Technology Co), with Open source software. An ordinary dry human mandible was scanned with a computed tomography device. The data were processed with open software to build a rapid prototype with a fused deposition machine. Linear measurements were performed to find the mean absolute and relative difference. The mean absolute and relative difference was 0.65 mm and 1.96%, respectively ( P = 0.96). Low-cost FDM machines and Open Source Software are excellent options to manufacture RPM, with the benefit of low cost and a similar relative error than other more expensive technologies.

  18. Dimensional Error in Rapid Prototyping with Open Source Software and Low-cost 3D-printer

    Directory of Open Access Journals (Sweden)

    Marco A. Rendón-Medina

    2018-01-01

    Full Text Available Summary:. Rapid prototyping models (RPMs had been extensively used in craniofacial and maxillofacial surgery, especially in areas such as orthognathic surgery, posttraumatic or oncological reconstructions, and implantology. Economic limitations are higher in developing countries such as Mexico, where resources dedicated to health care are limited, therefore limiting the use of RPM to few selected centers. This article aims to determine the dimensional error of a low-cost fused deposition modeling 3D printer (Tronxy P802MA, Shenzhen, Tronxy Technology Co, with Open source software. An ordinary dry human mandible was scanned with a computed tomography device. The data were processed with open software to build a rapid prototype with a fused deposition machine. Linear measurements were performed to find the mean absolute and relative difference. The mean absolute and relative difference was 0.65 mm and 1.96%, respectively (P = 0.96. Low-cost FDM machines and Open Source Software are excellent options to manufacture RPM, with the benefit of low cost and a similar relative error than other more expensive technologies.

  19. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nano materials

    International Nuclear Information System (INIS)

    Mostofizadeh, A.; Li, Y.; Song, B.; Huang, Y.; Mostofizadeh, A.

    2011-01-01

    In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nano technology which is called carbon-related nano materials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nano materials. Carbon nano materials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nano materials such as zero-dimensional carbon nano materials (including fullerene, carbon-encapsulated metal nanoparticles, nano diamond, and onion-like carbons), one-dimensional carbon nano materials (including carbon nano fibers and carbon nano tubes), and two-dimensional carbon nano materials (including graphene and carbon nano walls) are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nano materials.

  20. Structural characterization of self-assembled semiconductor islands by three-dimensional X-ray diffraction mapping in reciprocal space

    International Nuclear Information System (INIS)

    Holy, V.; Mundboth, K.; Mokuta, C.; Metzger, T.H.; Stangl, J.; Bauer, G.; Boeck, T.; Schmidbauer, M.

    2008-01-01

    For the first time self-organized epitaxially grown semiconductor islands were investigated by a full three-dimensional mapping of the scattered X-ray intensity in reciprocal space. Intensity distributions were measured in a coplanar diffraction geometry around symmetric and asymmetric Bragg reflections. The 3D intensity maps were compared with theoretical simulations based on continuum-elasticity simulations of internal strains in the islands and on kinematical scattering theory whereby local chemical composition and strain profiles of the islands were retrieved

  1. Turing instability for a two-dimensional Logistic coupled map lattice

    International Nuclear Information System (INIS)

    Xu, L.; Zhang, G.; Han, B.; Zhang, L.; Li, M.F.; Han, Y.T.

    2010-01-01

    In this Letter, stability analysis is applied to a two-dimensional Logistic coupled map lattice with the periodic boundary conditions. The conditions of Turing instability are obtained, and various patterns can be exhibited by numerical simulations in the Turing instability region. For example, space-time periodic structures, periodic or quasiperiodic traveling wave solutions, stationary wave solutions, spiral waves, and spatiotemporal chaos, etc. have been observed. In particular, the different pattern structures have also been observed for same parameters and different initial values. That is, pattern structures also depend on the initial values. The similar patterns have also been seen in relevant references. However, the present Letter owes to pattern formation via diffusion-driven instabilities because the system is stable in the absence of diffusion.

  2. Low-Dimensional Feature Representation for Instrument Identification

    Science.gov (United States)

    Ihara, Mizuki; Maeda, Shin-Ichi; Ikeda, Kazushi; Ishii, Shin

    For monophonic music instrument identification, various feature extraction and selection methods have been proposed. One of the issues toward instrument identification is that the same spectrum is not always observed even in the same instrument due to the difference of the recording condition. Therefore, it is important to find non-redundant instrument-specific features that maintain information essential for high-quality instrument identification to apply them to various instrumental music analyses. For such a dimensionality reduction method, the authors propose the utilization of linear projection methods: local Fisher discriminant analysis (LFDA) and LFDA combined with principal component analysis (PCA). After experimentally clarifying that raw power spectra are actually good for instrument classification, the authors reduced the feature dimensionality by LFDA or by PCA followed by LFDA (PCA-LFDA). The reduced features achieved reasonably high identification performance that was comparable or higher than those by the power spectra and those achieved by other existing studies. These results demonstrated that our LFDA and PCA-LFDA can successfully extract low-dimensional instrument features that maintain the characteristic information of the instruments.

  3. Classification of fMRI resting-state maps using machine learning techniques: A comparative study

    Science.gov (United States)

    Gallos, Ioannis; Siettos, Constantinos

    2017-11-01

    We compare the efficiency of Principal Component Analysis (PCA) and nonlinear learning manifold algorithms (ISOMAP and Diffusion maps) for classifying brain maps between groups of schizophrenia patients and healthy from fMRI scans during a resting-state experiment. After a standard pre-processing pipeline, we applied spatial Independent component analysis (ICA) to reduce (a) noise and (b) spatial-temporal dimensionality of fMRI maps. On the cross-correlation matrix of the ICA components, we applied PCA, ISOMAP and Diffusion Maps to find an embedded low-dimensional space. Finally, support-vector-machines (SVM) and k-NN algorithms were used to evaluate the performance of the algorithms in classifying between the two groups.

  4. Shape control synthesis of low-dimensional calcium sulfate

    Indian Academy of Sciences (India)

    Shape control synthesis of low-dimensional calcium sulfate .... C in mixed solvents of 50 mL ethanol and 30 mL water for different reaction times was characterized by .... Duan X, Huang Y, Cui Y, Wang J and Lieber C M 2001 Nature 409 66.

  5. Controlling chaos (OGY) implemented on a reconstructed ecological two-dimensional map

    International Nuclear Information System (INIS)

    Sakai, Kenshi; Noguchi, Yuko

    2009-01-01

    We numerically demonstrate a way to stabilize an unstable equilibrium in the ecological dynamics reconstructed from real-world time series data, namely, alternate bearing of citrus trees. The reconstruction of deterministic dynamics from short and noisy ecological time series has been a crucial issue since May's historical work [May RM. Biological populations with nonoverlapping generations: stable points, stable cycles and chaos. Science 1974;186:645-7; Hassell MP, Lawton JH, May RM. Patterns of dynamical behavior in single species populations. J Anim Ecol 1976;45:471-86]. Response surface methodology, followed by the differential equation approach is recognized as a promising method of reconstruction [Turchin P. Rarity of density dependence or population with lags? Nature 1990;344:660-3; Turchin P, Taylor AD. Complex dynamics in ecological time series. Ecology 1992;73:289-305; Ellner S, Turchin P. Chaos in a noisy world: new method and evidence from time series analysis. Am Nat 1995;145(3):343-75; Turchin P, Ellner S. Living on the edge of chaos: population dynamics of fennoscandian voles. Ecology 2000;8(11):3116]. Here, the reconstructed ecological dynamics was described by a two-dimensional map derived from the response surface created by the data. The response surface created was experimentally validated in four one-year forward predictions in 2001, 2002, 2003 and 2004. Controlling chaos is very important when applying chaos theory to solving real-world problems. The OGY method is the first and most popular methodology for controlling chaos and can be used as an algorithm to stabilize an unstable fixed point by putting the state on a stable manifold [Ott E, Grebogi C, York JA. Controlling chaos. Phys Rev Lett 1990;64:1996-9]. We applied the OGY method to our reconstructed two-dimensional map and as a result were able to control alternate bearing in numerical simulations.

  6. Low-cost computer classification of land cover in the Portland area, Oregon, by signature extension techniques

    Science.gov (United States)

    Gaydos, Leonard

    1978-01-01

    Computer-aided techniques for interpreting multispectral data acquired by Landsat offer economies in the mapping of land cover. Even so, the actual establishment of the statistical classes, or "signatures," is one of the relatively more costly operations involved. Analysts have therefore been seeking cost-saving signature extension techniques that would accept training data acquired for one time or place and apply them to another. Opportunities to extend signatures occur in preprocessing steps and in the classification steps that follow. In the present example, land cover classes were derived by the simplest and most direct form of signature extension: Classes statistically derived from a Landsat scene for the Puget Sound area, Wash., were applied to the Portland area, Oreg., using data for the next Landsat scene acquired less than 25 seconds down orbit. Many features can be recognized on the reduced-scale version of the Portland land cover map shown in this report, although no statistical assessment of its accuracy is available.

  7. Low-dimensional modeling of a driven cavity flow with two free parameters

    DEFF Research Database (Denmark)

    Jørgensen, Bo Hoffmann; Sørensen, Jens Nørkær; Brøns, Morten

    2003-01-01

    . By carrying out such a procedure one obtains a low-dimensional model consisting of a reduced set of Ordinary Differential Equations (ODEs) which models the original equations. A technique called Sequential Proper Orthogonal Decomposition (SPOD) is developed to perform decompositions suitable for low...... parameters to appear in the inhomogeneous boundary conditions without the addition of any constraints. This is necessary because both the driving lid and the rotating rod are controlled simultaneously. Apparently, the results reported for this model are the first to be obtained for a low-dimensional model...

  8. Low dimensional modeling of wall turbulence

    Science.gov (United States)

    Aubry, Nadine

    2015-11-01

    In this talk we will review the original low dimensional dynamical model of the wall region of a turbulent boundary layer [Aubry, Holmes, Lumley and Stone, Journal of Fluid Dynamics 192, 1988] and discuss its impact on the field of fluid dynamics. We will also invite a few researchers who would like to make brief comments on the influence Lumley had on their research paths. In collaboration with Philip Holmes, Program in Applied and Computational Mathematics and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ.

  9. Using sketch-map coordinates to analyze and bias molecular dynamics simulations

    Science.gov (United States)

    Tribello, Gareth A.; Ceriotti, Michele; Parrinello, Michele

    2012-01-01

    When examining complex problems, such as the folding of proteins, coarse grained descriptions of the system drive our investigation and help us to rationalize the results. Oftentimes collective variables (CVs), derived through some chemical intuition about the process of interest, serve this purpose. Because finding these CVs is the most difficult part of any investigation, we recently developed a dimensionality reduction algorithm, sketch-map, that can be used to build a low-dimensional map of a phase space of high-dimensionality. In this paper we discuss how these machine-generated CVs can be used to accelerate the exploration of phase space and to reconstruct free-energy landscapes. To do so, we develop a formalism in which high-dimensional configurations are no longer represented by low-dimensional position vectors. Instead, for each configuration we calculate a probability distribution, which has a domain that encompasses the entirety of the low-dimensional space. To construct a biasing potential, we exploit an analogy with metadynamics and use the trajectory to adaptively construct a repulsive, history-dependent bias from the distributions that correspond to the previously visited configurations. This potential forces the system to explore more of phase space by making it desirable to adopt configurations whose distributions do not overlap with the bias. We apply this algorithm to a small model protein and succeed in reproducing the free-energy surface that we obtain from a parallel tempering calculation. PMID:22427357

  10. A low-dimensional tool for predicting force decomposition coefficients for varying inflow conditions

    KAUST Repository

    Ghommem, Mehdi

    2013-01-01

    We develop a low-dimensional tool to predict the effects of unsteadiness in the inflow on force coefficients acting on a circular cylinder using proper orthogonal decomposition (POD) modes from steady flow simulations. The approach is based on combining POD and linear stochastic estimator (LSE) techniques. We use POD to derive a reduced-order model (ROM) to reconstruct the velocity field. To overcome the difficulty of developing a ROM using Poisson\\'s equation, we relate the pressure field to the velocity field through a mapping function based on LSE. The use of this approach to derive force decomposition coefficients (FDCs) under unsteady mean flow from basis functions of the steady flow is illustrated. For both steady and unsteady cases, the final outcome is a representation of the lift and drag coefficients in terms of velocity and pressure temporal coefficients. Such a representation could serve as the basis for implementing control strategies or conducting uncertainty quantification. Copyright © 2013 Inderscience Enterprises Ltd.

  11. A low-dimensional tool for predicting force decomposition coefficients for varying inflow conditions

    KAUST Repository

    Ghommem, Mehdi; Akhtar, Imran; Hajj, M. R.

    2013-01-01

    We develop a low-dimensional tool to predict the effects of unsteadiness in the inflow on force coefficients acting on a circular cylinder using proper orthogonal decomposition (POD) modes from steady flow simulations. The approach is based on combining POD and linear stochastic estimator (LSE) techniques. We use POD to derive a reduced-order model (ROM) to reconstruct the velocity field. To overcome the difficulty of developing a ROM using Poisson's equation, we relate the pressure field to the velocity field through a mapping function based on LSE. The use of this approach to derive force decomposition coefficients (FDCs) under unsteady mean flow from basis functions of the steady flow is illustrated. For both steady and unsteady cases, the final outcome is a representation of the lift and drag coefficients in terms of velocity and pressure temporal coefficients. Such a representation could serve as the basis for implementing control strategies or conducting uncertainty quantification. Copyright © 2013 Inderscience Enterprises Ltd.

  12. A low dimensional dynamical system for the wall layer

    Science.gov (United States)

    Aubry, N.; Keefe, L. R.

    1987-01-01

    Low dimensional dynamical systems which model a fully developed turbulent wall layer were derived.The model is based on the optimally fast convergent proper orthogonal decomposition, or Karhunen-Loeve expansion. This decomposition provides a set of eigenfunctions which are derived from the autocorrelation tensor at zero time lag. Via Galerkin projection, low dimensional sets of ordinary differential equations in time, for the coefficients of the expansion, were derived from the Navier-Stokes equations. The energy loss to the unresolved modes was modeled by an eddy viscosity representation, analogous to Heisenberg's spectral model. A set of eigenfunctions and eigenvalues were obtained from direct numerical simulation of a plane channel at a Reynolds number of 6600, based on the mean centerline velocity and the channel width flow and compared with previous work done by Herzog. Using the new eigenvalues and eigenfunctions, a new ten dimensional set of ordinary differential equations were derived using five non-zero cross-stream Fourier modes with a periodic length of 377 wall units. The dynamical system was integrated for a range of the eddy viscosity prameter alpha. This work is encouraging.

  13. A Novel Audio Cryptosystem Using Chaotic Maps and DNA Encoding

    Directory of Open Access Journals (Sweden)

    S. J. Sheela

    2017-01-01

    Full Text Available Chaotic maps have good potential in security applications due to their inherent characteristics relevant to cryptography. This paper introduces a new audio cryptosystem based on chaotic maps, hybrid chaotic shift transform (HCST, and deoxyribonucleic acid (DNA encoding rules. The scheme uses chaotic maps such as two-dimensional modified Henon map (2D-MHM and standard map. The 2D-MHM which has sophisticated chaotic behavior for an extensive range of control parameters is used to perform HCST. DNA encoding technology is used as an auxiliary tool which enhances the security of the cryptosystem. The performance of the algorithm is evaluated for various speech signals using different encryption/decryption quality metrics. The simulation and comparison results show that the algorithm can achieve good encryption results and is able to resist several cryptographic attacks. The various types of analysis revealed that the algorithm is suitable for narrow band radio communication and real-time speech encryption applications.

  14. Development of a three-dimensional computer code for reconstructing power distributions by means of side reflector instrumentation and determination of the capabilities and limitations of this method

    International Nuclear Information System (INIS)

    Knob, P.J.

    1982-07-01

    This work is concerned with the detection of flux disturbances in pebble bed high temperature reactors by means of flux measurements in the side reflector. Included among the disturbances studied are xenon oscillations, rod group insertions, and individual rod insertions. Using the three-dimensional diffusion code CITATION, core calculations for both a very small reactor (KAHTER) and a large reactor (PNP-3000) were carried out to determine the neutron fluxes at the detector positions. These flux values were then used in flux mapping codes for reconstructing the flux distribution in the core. As an extension of the already existing two-dimensional MOFA code, which maps azimuthal disturbances, a new three-dimensional flux mapping code ZELT was developed for handling axial disturbances as well. It was found that both flux mapping programs give satisfactory results for small and large pebble bed reactors alike. (orig.) [de

  15. Angle resolved photoemission study of Fermi surfaces and single-particle excitations of quasi-low dimensional materials

    Science.gov (United States)

    Gweon, Gey-Hong

    Using angle resolved photoemission spectroscopy (ARPES) as the main experimental tool and the single particle Green's function as the main theoretical tool, materials of various degrees of low dimensionality and different ground states are studied. The underlying theme of this thesis is that of one dimensional physics, which includes charge density waves (CDW's) and the Luttinger liquid (LL). The LL is the prime example of a lattice non-Fermi liquid (non-FL) and CDW fluctuations also give non-FL behaviors. Non-FL physics is an emerging paradigm of condensed matter physics. It is thought by some researchers that one dimensional LL behavior is a key element in solving the high temperature superconductivity problem. TiTe2 is a quasi-2 dimensional (quasi-2D) Fermi liquid (FL) material very well suited for ARPES lineshape studies. I report ARPES spectra at 300 K which show an unusual behavior of a peak moving through the Fermi energy (EF). I also report a good fit of the ARPES spectra at 25 K obtained by using a causal Green's function proposed by K. Matho. SmTe3 is a quasi-2D CDW material. The near EF ARPES spectra and intensity map reveal rich details of an anisotropic gap and imperfectly nested Fermi surface (FS) for a high temperature CDW. A simple model of imperfect nesting can be constructed from these data and predicts a CDW wavevector in very good agreement with the value known from electron diffraction. NaMo6O17 and KMo 6O17 are also quasi-2D CDW materials. The "hidden nesting" or "hidden 1 dimensionality" picture for the CDW is confirmed very well by our direct image of the FS. K0.3MoO3, the so-called "blue bronze," is a quasi-1 dimensional (quasi-1D) CDW material. Even in its metallic phase above the CDW transition temperature, its photoemission spectra show an anomalously weak intensity at EF and no clear metallic Fermi edge. I compare predictions of an LL model and a CDW fluctuation model regarding these aspects, and find that the LL scenario explains them

  16. Low Cost Vision Based Personal Mobile Mapping System

    Science.gov (United States)

    Amami, M. M.; Smith, M. J.; Kokkas, N.

    2014-03-01

    Mobile mapping systems (MMS) can be used for several purposes, such as transportation, highway infrastructure mapping and GIS data collecting. However, the acceptance of these systems is not wide spread and their use is still limited due the high cost and dependency on the Global Navigation Satellite System (GNSS). A low cost vision based personal MMS has been produced with an aim to overcome these limitations. The system has been designed to depend mainly on cameras and use of low cost GNSS and inertial sensors to provide a bundle adjustment solution with initial values. The system has the potential to be used indoor and outdoor. The system has been tested indoors and outdoors with different GPS coverage, surrounded features, and narrow and curvy paths. Tests show that the system is able to work in such environments providing 3D coordinates of better than 10 cm accuracy.

  17. Low Cost Vision Based Personal Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    M. M. Amami

    2014-03-01

    Full Text Available Mobile mapping systems (MMS can be used for several purposes, such as transportation, highway infrastructure mapping and GIS data collecting. However, the acceptance of these systems is not wide spread and their use is still limited due the high cost and dependency on the Global Navigation Satellite System (GNSS. A low cost vision based personal MMS has been produced with an aim to overcome these limitations. The system has been designed to depend mainly on cameras and use of low cost GNSS and inertial sensors to provide a bundle adjustment solution with initial values. The system has the potential to be used indoor and outdoor. The system has been tested indoors and outdoors with different GPS coverage, surrounded features, and narrow and curvy paths. Tests show that the system is able to work in such environments providing 3D coordinates of better than 10 cm accuracy.

  18. Spatio-temporal dimension of lightning flashes based on three-dimensional Lightning Mapping Array

    Science.gov (United States)

    López, Jesús A.; Pineda, Nicolau; Montanyà, Joan; Velde, Oscar van der; Fabró, Ferran; Romero, David

    2017-11-01

    3D mapping system like the LMA - Lightning Mapping Array - are a leap forward in lightning observation. LMA measurements has lead to an improvement on the analysis of the fine structure of lightning, allowing to characterize the duration and maximum extension of the cloud fraction of a lightning flash. During several years of operation, the first LMA deployed in Europe has been providing a large amount of data which now allows a statistical approach to compute the full duration and horizontal extension of the in-cloud phase of a lightning flash. The "Ebro Lightning Mapping Array" (ELMA) is used in the present study. Summer and winter lighting were analyzed for seasonal periods (Dec-Feb and Jun-Aug). A simple method based on an ellipse fitting technique (EFT) has been used to characterize the spatio-temporal dimensions from a set of about 29,000 lightning flashes including both summer and winter events. Results show an average lightning flash duration of 440 ms (450 ms in winter) and a horizontal maximum length of 15.0 km (18.4 km in winter). The uncertainties for summer lightning lengths were about ± 1.2 km and ± 0.7 km for the mean and median values respectively. In case of winter lightning, the level of uncertainty reaches up to 1 km and 0.7 km of mean and median value. The results of the successful correlation of CG discharges with the EFT method, represent 6.9% and 35.5% of the total LMA flashes detected in summer and winter respectively. Additionally, the median value of lightning lengths calculated through this correlative method was approximately 17 km for both seasons. On the other hand, the highest median ratios of lightning length to CG discharges in both summer and winter were reported for positive CG discharges.

  19. Engineering Low Dimensional Materials with van der Waals Interaction

    Science.gov (United States)

    Jin, Chenhao

    Two-dimensional van der Waals materials grow into a hot and big field in condensed matter physics in the past decade. One particularly intriguing thing is the possibility to stack different layers together as one wish, like playing a Lego game, which can create artificial structures that do not exist in nature. These new structures can enable rich new physics from interlayer interaction: The interaction is strong, because in low-dimension materials electrons are exposed to the interface and are susceptible to other layers; and the screening of interaction is less prominent. The consequence is rich, not only from the extensive list of two-dimensional materials available nowadays, but also from the freedom of interlayer configuration, such as displacement and twist angle, which creates a gigantic parameter space to play with. On the other hand, however, the huge parameter space sometimes can make it challenging to describe consistently with a single picture. For example, the large periodicity or even incommensurability in van der Waals systems creates difficulty in using periodic boundary condition. Worse still, the huge superlattice unit cell and overwhelming computational efforts involved to some extent prevent the establishment of a simple physical picture to understand the evolution of system properties in the parameter space of interlayer configuration. In the first part of the dissertation, I will focus on classification of the huge parameter space into subspaces, and introduce suitable theoretical approaches for each subspace. For each approach, I will discuss its validity, limitation, general solution, as well as a specific example of application demonstrating how one can obtain the most important effects of interlayer interaction with little computation efforts. Combining all the approaches introduced will provide an analytic solution to cover majority of the parameter space, which will be very helpful in understanding the intuitive physical picture behind

  20. A sparse grid based method for generative dimensionality reduction of high-dimensional data

    Science.gov (United States)

    Bohn, Bastian; Garcke, Jochen; Griebel, Michael

    2016-03-01

    Generative dimensionality reduction methods play an important role in machine learning applications because they construct an explicit mapping from a low-dimensional space to the high-dimensional data space. We discuss a general framework to describe generative dimensionality reduction methods, where the main focus lies on a regularized principal manifold learning variant. Since most generative dimensionality reduction algorithms exploit the representer theorem for reproducing kernel Hilbert spaces, their computational costs grow at least quadratically in the number n of data. Instead, we introduce a grid-based discretization approach which automatically scales just linearly in n. To circumvent the curse of dimensionality of full tensor product grids, we use the concept of sparse grids. Furthermore, in real-world applications, some embedding directions are usually more important than others and it is reasonable to refine the underlying discretization space only in these directions. To this end, we employ a dimension-adaptive algorithm which is based on the ANOVA (analysis of variance) decomposition of a function. In particular, the reconstruction error is used to measure the quality of an embedding. As an application, the study of large simulation data from an engineering application in the automotive industry (car crash simulation) is performed.

  1. Statistical mechanics of low-dimensional Ginzburg-Landau fields. Some new results

    International Nuclear Information System (INIS)

    Barsan, V.

    1987-08-01

    The Ginzburg-Landau theory for low-dimensional systems is approached using the transfer matrix method. Analitical formulae for the thermodynamical quantities of interest are obtained in the one-dimensional case. An exact expression for the free energy of of a planar array of linear chains is deduced. A good agrement with numerical and experimental data is found.(authors)

  2. Low Dimensionality Effects in Complex Magnetic Oxides

    Science.gov (United States)

    Kelley, Paula J. Lampen

    Complex magnetic oxides represent a unique intersection of immense technological importance and fascinating physical phenomena originating from interwoven structural, electronic and magnetic degrees of freedom. The resulting energetically close competing orders can be controllably selected through external fields. Competing interactions and disorder represent an additional opportunity to systematically manipulate the properties of pure magnetic systems, leading to frustration, glassiness, and other novel phenomena while finite sample dimension plays a similar role in systems with long-range cooperative effects or large correlation lengths. A rigorous understanding of these effects in strongly correlated oxides is key to manipulating their functionality and device performance, but remains a challenging task. In this dissertation, we examine a number of problems related to intrinsic and extrinsic low dimensionality, disorder, and competing interactions in magnetic oxides by applying a unique combination of standard magnetometry techniques and unconventional magnetocaloric effect and transverse susceptibility measurements. The influence of dimensionality and disorder on the nature and critical properties of phase transitions in manganites is illustrated in La0.7 Ca0.3MnO3, in which both size reduction to the nanoscale and chemically-controlled quenched disorder are observed to induce a progressive weakening of the first-order nature of the transition, despite acting through the distinct mechanisms of surface effects and site dilution. In the second-order material La0.8Ca0.2MnO3, a strong magnetic field is found to drive the system toward its tricritical point as competition between exchange interactions in the inhomogeneous ground state is suppressed. In the presence of large phase separation stabilized by chemical disorder and long-range strain, dimensionality has a profound effect. With the systematic reduction of particle size in microscale-phase-separated (La, Pr

  3. Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids

    NARCIS (Netherlands)

    Kamminga, Machteld E.; Fang, Honghua; Filip, Marina R.; Giustino, Feliciano; Baas, Jacobus; Blake, Graeme R.; Loi, Maria Antonietta; Palstra, Thomas T. M.

    2016-01-01

    We use a layered solution crystal growth technique to synthesize high-quality single crystals of phenylalkylammonium lead iodide organic/inorganic hybrid compounds. Single-crystal X-ray diffraction reveals low-dimensional structures consisting of inorganic sheets separated by bilayers of the organic

  4. Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Sharpes, Nathan [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Abdelkefi, Abdessattar [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Priya, Shashank [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Bio-Inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2015-08-31

    Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm{sup 2} area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.

  5. Design of an image encryption scheme based on a multiple chaotic map

    Science.gov (United States)

    Tong, Xiao-Jun

    2013-07-01

    In order to solve the problem that chaos is degenerated in limited computer precision and Cat map is the small key space, this paper presents a chaotic map based on topological conjugacy and the chaotic characteristics are proved by Devaney definition. In order to produce a large key space, a Cat map named block Cat map is also designed for permutation process based on multiple-dimensional chaotic maps. The image encryption algorithm is based on permutation-substitution, and each key is controlled by different chaotic maps. The entropy analysis, differential analysis, weak-keys analysis, statistical analysis, cipher random analysis, and cipher sensibility analysis depending on key and plaintext are introduced to test the security of the new image encryption scheme. Through the comparison to the proposed scheme with AES, DES and Logistic encryption methods, we come to the conclusion that the image encryption method solves the problem of low precision of one dimensional chaotic function and has higher speed and higher security.

  6. Statistical mapping of the effect of knee extension on thigh muscle viscoelastic properties using magnetic resonance elastography

    International Nuclear Information System (INIS)

    Barnhill, Eric; Kennedy, Paul; Van Beek, Edwin J R; Roberts, Neil; Hammer, Steven; Brown, Colin

    2013-01-01

    Skeletal muscle viscoelastic properties reflect muscle microstructure and neuromuscular activation. Elastographic methods, including magnetic resonance elastography, have been used to characterize muscle viscoelastic properties in terms of region of interest (ROI) measurements. The present study extended this approach to create thresholded pixel-by-pixel maps of viscoelastic properties of skeletal muscle during rest and knee extension in eleven subjects. ROI measurements were taken for individual quadricep muscles and the quadriceps region as a whole, and the viscoelastic parameter map pixels were statistically tested at positive false discovery rate q ⩽ 0.25. ROI measurements showed significant (p ⩽ 0.05) increase in storage modulus (G′) and loss modulus (G″), with G″ increasing more than G′, in agreement with previous findings. The q-value maps further identified the vastus intermedius as the primary driver of this change, with greater G″/G′ increase than surrounding regions. Additionally, a cluster of significant decrease in G″/G′ was found in the region of vastus lateralis below the fulcrum point of the lift. Viscoelastic parameter mapping of contracted muscle allows new insight into the relationship between physiology, neuromuscular activation, and human performance. (paper)

  7. Simplified Occupancy Grid Indoor Mapping Optimized for Low-Cost Robots

    Directory of Open Access Journals (Sweden)

    Javier Garrido

    2013-10-01

    Full Text Available This paper presents a mapping system that is suitable for small mobile robots. An ad hoc algorithm for mapping based on the Occupancy Grid method has been developed. The algorithm includes some simplifications in order to be used with low-cost hardware resources. The proposed mapping system has been built in order to be completely autonomous and unassisted. The proposal has been tested with a mobile robot that uses infrared sensors to measure distances to obstacles and uses an ultrasonic beacon system for localization, besides wheel encoders. Finally, experimental results are presented.

  8. Computational methods for constructing protein structure models from 3D electron microscopy maps.

    Science.gov (United States)

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-10-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Time-resolved three-dimensional magnetic resonance velocity mapping of chronic thoracic aortic dissection. A preliminary investigation

    International Nuclear Information System (INIS)

    Amano, Yasuo; Sekine, Tetsuro; Tanaka, Keiji; Takagi, Ryo; Kumita, Shinichiro; Suzuki, Yuriko

    2011-01-01

    The blood flow patterns of chronic thoracic aortic dissection are complicated, and their clinical significance remains unknown. We evaluated the technical and clinical potentials of time-resolved 3-dimensional (3D) magnetic resonance (MR) velocity mapping for assessing these patterns. We used data collected from time-resolved 3D phase-contrast MR imaging of 16 patients with chronic thoracic aortic dissection to generate time-resolved 3D MR velocity mapping that included 3D streamline and path line. We investigated blood flow patterns of this disease in the mapping and compared them with the morphological changes of the patent false lumen. Time-resolved 3D MR velocity mapping visualized rapid flow at the entry and in the true lumen immediately distal to the entry. We observed slower helical or laminar flow in the patent false lumen. In patients with disease progression, slower helical flow following rapid entry jet collided with the outer wall of the false lumen and was also observed in a growing ulcer-like projection. We showed the potential of time-resolved 3D MR velocity mapping for visualizing pathologic flow patterns related to chronic thoracic aortic dissection. (author)

  10. Lack of evidence for low-dimensional chaos in heart rate variability

    DEFF Research Database (Denmark)

    Kanters, J K; Holstein-Rathlou, N H; Agner, E

    1994-01-01

    INTRODUCTION: The term chaos is used to describe erratic or apparently random time-dependent behavior in deterministic systems. It has been suggested that the variability observed in the normal heart rate may be due to chaos, but this question has not been settled. METHODS AND RESULTS: Heart rate...... in the experimental data, but the prediction error as a function of the prediction length increased at a slower rate than characteristic of a low-dimensional chaotic system. CONCLUSION: There is no evidence for low-dimensional chaos in the time series of RR intervals from healthy human subjects. However, nonlinear...

  11. Low-dimensional gravities as gauge theories with non-compact groups

    International Nuclear Information System (INIS)

    Cangeni, D.

    1993-01-01

    In another note presented in these Proceedings it is shown that the two main lineal gravities can be given a gauge formulation. If it is already known that one of them the Sitter model - is a dimensional reduction of a Chern-Simons model in (2+1) dimensions, it was not clear whether the other one - the extended Poincare model follows from a similar reduction. The purpose of this note is to show that this is indeed the case provide we start in 2+1 dimensions with an extension ISO(2,1) of the Poincare groups as gauge group of a Chern-Simons model. We first show that this model gives a new proposal for gravity in 2*1 dimensions, since we get classically the Einstein's equations. Performing then a dimensional reduction, we recover not only the extended Poincare model but also the de Sitter one; hence, both lineal gravities get unified in the reduced model. (Author) 6 refs

  12. Using low-cost drones to map malaria vector habitats.

    Science.gov (United States)

    Hardy, Andy; Makame, Makame; Cross, Dónall; Majambere, Silas; Msellem, Mwinyi

    2017-01-14

    There is a growing awareness that if we are to achieve the ambitious goal of malaria elimination, we must compliment indoor-based vector control interventions (such as bednets and indoor spraying) with outdoor-based interventions such as larval source management (LSM). The effectiveness of LSM is limited by our capacity to identify and map mosquito aquatic habitats. This study provides a proof of concept for the use of a low-cost (drone (DJI Phantom) for mapping water bodies in seven sites across Zanzibar including natural water bodies, irrigated and non-irrigated rice paddies, peri-urban and urban locations. With flying times of less than 30 min for each site, high-resolution (7 cm) georeferenced images were successfully generated for each of the seven sites, covering areas up to 30 ha. Water bodies were readily identifiable in the imagery, as well as ancillary information for planning LSM activities (access routes to water bodies by road and foot) and public health management (e.g. identification of drinking water sources, mapping individual households and the nature of their construction). The drone-based surveys carried out in this study provide a low-cost and flexible solution to mapping water bodies for operational dissemination of LSM initiatives in mosquito vector-borne disease elimination campaigns. Generated orthomosaics can also be used to provide vital information for other public health planning activities.

  13. Magnetic resonance imaging and three-dimensional ultrasound of carotid atherosclerosis: mapping regional differences.

    Science.gov (United States)

    Krasinski, Adam; Chiu, Bernard; Fenster, Aaron; Parraga, Grace

    2009-04-01

    To evaluate differences in carotid atherosclerosis measured using magnetic resonance imaging (MRI) and three-dimensional ultrasound (3DUS). Ten subject volunteers underwent carotid 3DUS and MRI (multislice black blood fast spin echo, T1-weighted contrast, double inversion recovery, 0.5 mm in-plane resolution, 2 mm slice, 3.0 T) within 1 hour. 3DUS and MR images were manually segmented by two observers providing vessel wall and lumen contours for quantification of vessel wall volume (VWV) and generation of carotid thickness maps. MRI VWV (1040 +/- 210 mm(3)) and 3DUS VWV (540 +/- 110 mm(3)) were significantly different (P Power Doppler US confirmed that heterogeneity in the common carotid artery in all patients resulted from apparent flow disturbances, not atherosclerotic plaque. MRI and 3DUS VWV were significantly different and carotid maps showed homogeneous thickness differences and heterogeneity in specific regions of interest identified as MR flow artifacts in the common carotid artery.

  14. Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials.

    Science.gov (United States)

    Liang, Liangbo; Zhang, Jun; Sumpter, Bobby G; Tan, Qing-Hai; Tan, Ping-Heng; Meunier, Vincent

    2017-12-26

    Ever since the isolation of single-layer graphene in 2004, two-dimensional layered structures have been among the most extensively studied classes of materials. To date, the pool of two-dimensional materials (2DMs) continues to grow at an accelerated pace and already covers an extensive range of fascinating and technologically relevant properties. An array of experimental techniques have been developed and used to characterize and understand these properties. In particular, Raman spectroscopy has proven to be a key experimental technique, thanks to its capability to identify minute structural and electronic effects in nondestructive measurements. While high-frequency (HF) intralayer Raman modes have been extensively employed for 2DMs, recent experimental and theoretical progress has demonstrated that low-frequency (LF) interlayer Raman modes are more effective at determining layer numbers and stacking configurations and provide a unique opportunity to study interlayer coupling. These advantages are due to 2DMs' unique interlayer vibration patterns where each layer behaves as an almost rigidly moving object with restoring forces corresponding to weak interlayer interactions. Compared to HF Raman modes, the relatively small attention originally devoted to LF Raman modes is largely due to their weaker signal and their proximity to the strong Rayleigh line background, which previously made their detection challenging. Recent progress in Raman spectroscopy with technical and hardware upgrades now makes it possible to probe LF modes with a standard single-stage Raman system and has proven crucial to characterize and understand properties of 2DMs. Here, we present a comprehensive and forward-looking review on the current status of exploiting LF Raman modes of 2DMs from both experimental and theoretical perspectives, revealing the fundamental physics and technological significance of LF Raman modes in advancing the field of 2DMs. We review a broad array of materials, with

  15. Three-dimensional mapping of salt load in the Murray-Darling Basin, 1 Steps in calibration of airborne electromagnetic surveys

    NARCIS (Netherlands)

    Cresswell, R.G.; Dent, D.L.; Jones, G.; Galloway, D.

    2004-01-01

    An airborne electromagnetic survey yields a three-dimensional map of ground electrical conductivity. The remotely sensed data are translated into salt load by field and laboratory calibration: drilling, measurement of borehole conductivity, electrical conductivity of 1 : 5 soil¿water extracts

  16. Grammatical complexity for two-dimensional maps

    International Nuclear Information System (INIS)

    Hagiwara, Ryouichi; Shudo, Akira

    2004-01-01

    We calculate the grammatical complexity of the symbol sequences generated from the Henon map and the Lozi map using the recently developed methods to construct the pruning front. When the map is hyperbolic, the language of symbol sequences is regular in the sense of the Chomsky hierarchy and the corresponding grammatical complexity takes finite values. It is found that the complexity exhibits a self-similar structure as a function of the system parameter, and the similarity of the pruning fronts is discussed as an origin of such self-similarity. For non-hyperbolic cases, it is observed that the complexity monotonically increases as we increase the resolution of the pruning front

  17. Grammatical complexity for two-dimensional maps

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Ryouichi; Shudo, Akira [Department of Physics, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397 (Japan)

    2004-11-05

    We calculate the grammatical complexity of the symbol sequences generated from the Henon map and the Lozi map using the recently developed methods to construct the pruning front. When the map is hyperbolic, the language of symbol sequences is regular in the sense of the Chomsky hierarchy and the corresponding grammatical complexity takes finite values. It is found that the complexity exhibits a self-similar structure as a function of the system parameter, and the similarity of the pruning fronts is discussed as an origin of such self-similarity. For non-hyperbolic cases, it is observed that the complexity monotonically increases as we increase the resolution of the pruning front.

  18. Grammatical complexity for two-dimensional maps

    Science.gov (United States)

    Hagiwara, Ryouichi; Shudo, Akira

    2004-11-01

    We calculate the grammatical complexity of the symbol sequences generated from the Hénon map and the Lozi map using the recently developed methods to construct the pruning front. When the map is hyperbolic, the language of symbol sequences is regular in the sense of the Chomsky hierarchy and the corresponding grammatical complexity takes finite values. It is found that the complexity exhibits a self-similar structure as a function of the system parameter, and the similarity of the pruning fronts is discussed as an origin of such self-similarity. For non-hyperbolic cases, it is observed that the complexity monotonically increases as we increase the resolution of the pruning front.

  19. Classical and quantum investigations of four-dimensional maps with a mixed phase space

    International Nuclear Information System (INIS)

    Richter, Martin

    2012-01-01

    Systems with more than two degrees of freedom are of fundamental importance for the understanding of problems ranging from celestial mechanics to molecules. Due to the dimensionality the classical phase-space structure of such systems is more difficult to understand than for systems with two or fewer degrees of freedom. This thesis aims for a better insight into the classical as well as the quantum mechanics of 4D mappings representing driven systems with two degrees of freedom. In order to analyze such systems, we introduce 3D sections through the 4D phase space which reveal the regular and chaotic structures. We introduce these concepts by means of three example mappings of increasing complexity. After a classical analysis the systems are investigated quantum mechanically. We focus especially on two important aspects: First, we address quantum mechanical consequences of the classical Arnold web and demonstrate how quantum mechanics can resolve this web in the semiclassical limit. Second, we investigate the quantum mechanical tunneling couplings between regular and chaotic regions in phase space. We determine regular-to-chaotic tunneling rates numerically and extend the fictitious integrable system approach to higher dimensions for their prediction. Finally, we study resonance-assisted tunneling in 4D maps.

  20. An Image Encryption Scheme Based on Hyperchaotic Rabinovich and Exponential Chaos Maps

    Directory of Open Access Journals (Sweden)

    Xiaojun Tong

    2015-01-01

    Full Text Available This paper proposes a new four-dimensional hyperchaotic map based on the Rabinovich system to realize chaotic encryption in higher dimension and improve the security. The chaotic sequences generated by Runge-Kutta method are combined with the chaotic sequences generated by an exponential chaos map to generate key sequences. The key sequences are used for image encryption. The security test results indicate that the new hyperchaotic system has high security and complexity. The comparison between the new hyperchaotic system and the several low-dimensional chaotic systems shows that the proposed system performs more efficiently.

  1. Effective method for construction of low-dimensional models for heat transfer process

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, D.G.; Prokopov, V.G.; Sherenkovskii, Y.V.; Fialko, N.M.; Yurchuk, V.L. [National Academy of Sciences of Ukraine, Kiev (Ukraine). Inst. of Engineering Thermophysics

    2004-12-01

    A low-dimensional model based on the method of proper orthogonal decomposition (POD) and the method of polyargumental systems (MPS) for thermal conductivity problems with strongly localized source of heat has been presented. The key aspect of these methods is that they enable to avoid weak points of other projection methods, which consists in a priori choice of basis functions. It enables us to use the MPS method and the POD method as convenient means to construct low-dimensional models of heat and mass transfer problems. (Author)

  2. Power Doppler flow mapping and four-dimensional ultrasound for evaluating tubal patency compared with laparoscopy.

    Science.gov (United States)

    Soliman, Amr A; Shaalan, Waleed; Abdel-Dayem, Tamer; Awad, Elsayed Elbadawy; Elkassar, Yasser; Lüdders, Dörte; Malik, Eduard; Sallam, Hassan N

    2015-12-01

    To study the accuracy of four-dimensional (4D) ultrasound and power Doppler flow mapping in detecting tubal patency in women with sub-/infertility, and compare it with laparoscopy and chromopertubation. A prospective study. The study was performed in the outpatient clinic and infertility unit of a university hospital. The sonographic team and laparoscopic team were blinded to the results of each other. Women aged younger than 43 years seeking medical advice due to primary or secondary infertility and who planned to have a diagnostic laparoscopy performed, were recruited to the study after signing an informed consent. All of the recruited patients had power Doppler flow mapping and 4D hysterosalpingo-sonography by injecting sterile saline into the fallopian tubes 1 day before surgery. Registering Doppler signals, while using power Doppler, both at the tubal ostia and fimbrial end and the ability to demonstrate the course of the tube especially the isthmus and fimbrial end, while using 4D mode, was considered a patent tube. Out of 50 recruited patients, 33 women had bilateral patent tubes and five had unilateral patent tubes as shown by chromopertubation during diagnostic laparoscopy. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for two-dimensional power Doppler hysterosalpingography were 94.4%, 100%, 100%, 89.2%, and 96.2%, respectively and for 4D ultrasound were 70.4%, 100%, 100%, 70.4%, and 82.6%, respectively. Four-dimensional saline hysterosalpingography has acceptable accuracy in detecting tubal patency, but is surpassed by power Doppler saline hysterosalpingography. Power Doppler saline hysterosalpingography could be incorporated into the routine sub-/infertility workup. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Two-dimensional photon-echo spectroscopy at a conical intersection: A two-mode pyrazine model with dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Sala, Matthieu; Egorova, Dassia

    2016-12-20

    The multi-dimensional electronic spectroscopy of ultrafast nuclear dynamics at conical intersections (CI) is an emerging field of investigation, which profits also from the recent extension of the techniques to the UV domain. We present a detailed computational study of oscillatory signatures in two-dimensional (2D) photon-echo spectroscopy (also known as 2D electronic spectroscopy, 2DES) for the two-mode pyrazine model with dissipation. Conventional 2D signals as well as the resulting beating maps are considered. Although of a reduced character, the model captures quite well all the main signatures of the excited-state dynamics of the molecule. Due to the ultrafast relaxation via the CI and no excited-state absorption from the low-lying dark state, the oscillatory components of the signal are found to be predominantly determined by the ground state bleach contribution. They reflect, therefore, the ground-state vibrational coherence induced in the Raman active mode. Beating maps provide a way to experimentally differentiate between ground state bleach and stimulated emission oscillatory components. The ultrafast decay of the latter constitutes a clear indirect signature of the CI. In the considered model, because of the sign properties of the involved transition dipole moments, the dominance of the ground-state coherence leads to anti-correlated oscillations of cross peaks located at symmetric positions with respect to the main diagonal.

  4. Mapping of Chlamydia trachomatis proteins by immobiline-polyacrylamide two-dimensional electrophoresis: spot identification by N-terminal sequencing and immunoblotting

    DEFF Research Database (Denmark)

    Bini, L; Sanchez-Campillo, M; Santucci, A

    1996-01-01

    Proteins from purified elementary bodies of Chlamydia trachomatis were separated by two-dimensional gel electrophoresis on nonlinear wide-range immobilized pH gradients in the first dimension and polyacrylamide gradient gels in the second dimension. The maps obtained with this system are highly...

  5. Fully three dimensional simulations of rotating convection at low Prandtl number

    Science.gov (United States)

    Kaplan, E.; Schaeffer, N.; Cardin, P.

    2016-12-01

    Rotating thermal convection in spheres or spherical shells has been extensively studied for Prandtl number unity.However, planetary cores are made of liquid metals which have low Prandtl numbers Pr ≤ 0.1. Recently, using a quasi-geostrophic approximation, Guervilly & Cardin (2016) have studied nonlinear convection in rotating full sphere with internal heating at low Prandtl (0.01 ≤ Pr ≤ 0.1) and Ekman (10-8 ≤ Ek ≤ 10-5 ) numbers. They have found a bifurcation between a weak branch characterized by thermal Rossby waves and a strong branch characterized by a strong zonal flow with multiple jets. In these quasi-geostrophic simulations, where vorticity is defined to be constant along the axis of rotation, these bifurcations could be super- or sub-critical or exhibit hysteresis depending on the Ek and Prnumbers of the simulations. Here we present fully three dimensional simulations carried out over a portion of the parameter space (down to Ek = 10-6, Pr = 0.01) that confirm the scaling and bifurcations of the weak and strong branches found in the QG models. Additionally, by modeling the full flow we get information about the full meridional circulation of the convective fluid. The vigorous flows of the sub-critical strong branch may help to generate powerful dynamos before an inner-core has been formed, with a heat flux extracted from the mantle very close to the adiabatic flux.

  6. A Natural Extension of Standard Warped Higher-Dimensional Compactifications: Theory and Phenomenology

    Science.gov (United States)

    Hong, Sungwoo

    Warped higher-dimensional compactifications with "bulk'' standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a "little hierarchy problem'' remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mechanism of "vectorlike confinement'', with TeV-scale Kaluza-Klein excitations of the gauge and gravitational fields dual to spin-0,1,2 composites. Unlike the minimal warped model, these low-lying excitations have predominantly flavor-blind and flavor/CP-safe interactions with the standard model. In addition, the usual leading decay modes of the lightest KK gauge bosons into top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to all pairs of SM fermions, and a novel channel--decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. We present a detailed phenomenological study of the latter cascade decay processes. Remarkably, this scenario also predicts small deviations from flavor-blindness originating from virtual effects of Higgs/top compositeness at O(10) TeV, with subdominant resonance decays into a pair of Higgs/top-rich final states, giving the LHC an early "preview'' of the nature of the resolution of the hierarchy

  7. TPSLVM: a dimensionality reduction algorithm based on thin plate splines.

    Science.gov (United States)

    Jiang, Xinwei; Gao, Junbin; Wang, Tianjiang; Shi, Daming

    2014-10-01

    Dimensionality reduction (DR) has been considered as one of the most significant tools for data analysis. One type of DR algorithms is based on latent variable models (LVM). LVM-based models can handle the preimage problem easily. In this paper we propose a new LVM-based DR model, named thin plate spline latent variable model (TPSLVM). Compared to the well-known Gaussian process latent variable model (GPLVM), our proposed TPSLVM is more powerful especially when the dimensionality of the latent space is low. Also, TPSLVM is robust to shift and rotation. This paper investigates two extensions of TPSLVM, i.e., the back-constrained TPSLVM (BC-TPSLVM) and TPSLVM with dynamics (TPSLVM-DM) as well as their combination BC-TPSLVM-DM. Experimental results show that TPSLVM and its extensions provide better data visualization and more efficient dimensionality reduction compared to PCA, GPLVM, ISOMAP, etc.

  8. Correlation functions of one-dimensional bosons at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M. [CNRS, ENS Lyon (France). Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Institute, Moscow (Russian Federation)

    2010-12-15

    We consider the low-temperature limit of the long-distance asymptotic behavior of the finite temperature density-density correlation function in the one-dimensional Bose gas derived recently in the algebraic Bethe Ansatz framework. Our results confirm the predictions based on the Luttinger liquid and conformal field theory approaches. We also demonstrate that the amplitudes arising in this asymptotic expansion at low-temperature coincide with the amplitudes associated with the so-called critical form factors. (orig.)

  9. Image Encryption Technology Based on Fractional Two-Dimensional Triangle Function Combination Discrete Chaotic Map Coupled with Menezes-Vanstone Elliptic Curve Cryptosystem

    Directory of Open Access Journals (Sweden)

    Zeyu Liu

    2018-01-01

    Full Text Available A new fractional two-dimensional triangle function combination discrete chaotic map (2D-TFCDM with the discrete fractional difference is proposed. We observe the bifurcation behaviors and draw the bifurcation diagrams, the largest Lyapunov exponent plot, and the phase portraits of the proposed map, respectively. On the application side, we apply the proposed discrete fractional map into image encryption with the secret keys ciphered by Menezes-Vanstone Elliptic Curve Cryptosystem (MVECC. Finally, the image encryption algorithm is analysed in four main aspects that indicate the proposed algorithm is better than others.

  10. Magnetometry of low-dimensional electron and hole systems

    Energy Technology Data Exchange (ETDEWEB)

    Usher, A [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Elliott, M [School of Physics and Astronomy, Cardiff University, Queens Buildings, Cardiff CF24 3AA (United Kingdom)], E-mail: a.usher@exeter.ac.uk, E-mail: elliottm@cf.ac.uk

    2009-03-11

    The high-magnetic-field, low-temperature magnetic properties of low-dimensional electron and hole systems reveal a wealth of fundamental information. Quantum oscillations of the thermodynamic equilibrium magnetization yield the total density of states, a central quantity in understanding the quantum Hall effect in 2D systems. The magnetization arising from non-equilibrium circulating currents reveals details, not accessible with traditional measurements, of the vanishingly small longitudinal resistance in the quantum Hall regime. We review how the technique of magnetometry has been applied to these systems, the most important discoveries that have been made, and their theoretical significance. (topical review)

  11. Three-dimensional geologic mapping of the Cenozoic basin fill, Amargosa Desert basin, Nevada and California

    Science.gov (United States)

    Taylor, Emily M.; Sweetkind, Donald S.

    2014-01-01

    Understanding the subsurface geologic framework of the Cenozoic basin fill that underlies the Amargosa Desert in southern Nevada and southeastern California has been improved by using borehole data to construct three-dimensional lithologic and interpreted facies models. Lithologic data from 210 boreholes from a 20-kilometer (km) by 90-km area were reduced to a limited suite of descriptors based on geologic knowledge of the basin and distributed in three-dimensional space using interpolation methods. The resulting lithologic model of the Amargosa Desert basin portrays a complex system of interfingered coarse- to fine-grained alluvium, playa and palustrine deposits, eolian sands, and interbedded volcanic units. Lithologic units could not be represented in the model as a stacked stratigraphic sequence due to the complex interfingering of lithologic units and the absence of available time-stratigraphic markers. Instead, lithologic units were grouped into interpreted genetic classes, such as playa or alluvial fan, to create a three-dimensional model of the interpreted facies data. Three-dimensional facies models computed from these data portray the alluvial infilling of a tectonically formed basin with intermittent internal drainage and localized regional groundwater discharge. The lithologic and interpreted facies models compare favorably to resistivity, aeromagnetic, and geologic map data, lending confidence to the interpretation.

  12. Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics

    Science.gov (United States)

    Shastry, Tejas Attreya

    Thin-film photovoltaics offer the promise of cost-effective and scalable solar energy conversion, particularly for applications of semi-transparent solar cells where the poor absorption of commercially-available silicon is inadequate. Applications ranging from roof coatings that capture solar energy to semi-transparent windows that harvest the immense amount of incident sunlight on buildings could be realized with efficient and stable thin-film solar cells. However, the lifetime and efficiency of thin-film solar cells continue to trail their inorganic silicon counterparts. Low-dimensional nanomaterials, such as carbon nanotubes and two-dimensional metal dichalcogenides, have recently been explored as materials in thin-film solar cells due to their exceptional optoelectronic properties, solution-processability, and chemical inertness. Thus far, issues with the processing of these materials has held back their implementation in efficient photovoltaics. This dissertation reports processing advances that enable demonstrations of low-dimensional nanomaterials in thin-film solar cells. These low-dimensional photovoltaics show enhanced photovoltaic efficiency and environmental stability in comparison to previous devices, with a focus on semiconducting single-walled carbon nanotubes as an active layer component. The introduction summarizes recent advances in the processing of carbon nanotubes and their implementation through the thin-film photovoltaic architecture, as well as the use of two-dimensional metal dichalcogenides in photovoltaic applications and potential future directions for all-nanomaterial solar cells. The following chapter reports a study of the interaction between carbon nanotubes and surfactants that enables them to be sorted by electronic type via density gradient ultracentrifugation. These insights are utilized to construct of a broad distribution of carbon nanotubes that absorb throughout the solar spectrum. This polychiral distribution is then shown

  13. The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps

    Science.gov (United States)

    Simpson, D. J. W.

    2018-05-01

    In two-parameter bifurcation diagrams of piecewise-linear continuous maps on , mode-locking regions typically have points of zero width known as shrinking points. Near any shrinking point, but outside the associated mode-locking region, a significant proportion of parameter space can be usefully partitioned into a two-dimensional array of annular sectors. The purpose of this paper is to show that in these sectors the dynamics is well-approximated by a three-parameter family of skew sawtooth circle maps, where the relationship between the skew sawtooth maps and the N-dimensional map is fixed within each sector. The skew sawtooth maps are continuous, degree-one, and piecewise-linear, with two different slopes. They approximate the stable dynamics of the N-dimensional map with an error that goes to zero with the distance from the shrinking point. The results explain the complicated radial pattern of periodic, quasi-periodic, and chaotic dynamics that occurs near shrinking points.

  14. Dimensional and correlation effects of charged excitons in low-dimensional semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Roennow, Troels F; Pedersen, Thomas G [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, 9220 Aalborg Oest (Denmark); Cornean, Horia D, E-mail: tfr@nanophysics.d [Department of Mathematical Sciences, Aalborg University, Frederik Bajers Vej 7G, 9220 Aalborg (Denmark)

    2010-11-26

    In this paper, we investigate the existence of bound trion states in fractional dimensional nanostructures, in terms of variational calculus. We start with trial states, then we refine the result with the help of the Hartree-Fock approximation and finally we use a partial basis expansion. We show that Hartree-Fock significantly underestimates the trion binding energy and that the correlation energy is comparable with the trion binding energy. Furthermore we calculate the binding energies of positive and negative trions restricted to a large subspace of functions, which we expect to span the low-lying eigenstates of the full Hamiltonian. We find that the difference between the positive and negative trion binding energies varies very little for the electron-hole mass fractions m{sub e}/m{sub h} = {sigma} in [0.8; 1.0] and that the difference between the positive and negative trion energies grows as the dimension decreases. Finally, we compare a cylindrical effective-mass model of a typical carbon nanotube, with a fractional dimensional model with D = 1.71. We find very good agreement between the trion binding energies predicted by the two models.

  15. Dimensional and correlation effects of charged excitons in low-dimensional semiconductors

    International Nuclear Information System (INIS)

    Roennow, Troels F; Pedersen, Thomas G; Cornean, Horia D

    2010-01-01

    In this paper, we investigate the existence of bound trion states in fractional dimensional nanostructures, in terms of variational calculus. We start with trial states, then we refine the result with the help of the Hartree-Fock approximation and finally we use a partial basis expansion. We show that Hartree-Fock significantly underestimates the trion binding energy and that the correlation energy is comparable with the trion binding energy. Furthermore we calculate the binding energies of positive and negative trions restricted to a large subspace of functions, which we expect to span the low-lying eigenstates of the full Hamiltonian. We find that the difference between the positive and negative trion binding energies varies very little for the electron-hole mass fractions m e /m h = σ in [0.8; 1.0] and that the difference between the positive and negative trion energies grows as the dimension decreases. Finally, we compare a cylindrical effective-mass model of a typical carbon nanotube, with a fractional dimensional model with D = 1.71. We find very good agreement between the trion binding energies predicted by the two models.

  16. Analysis of Human Fibroadenomas Using Three-Dimensional Impedance Maps

    Science.gov (United States)

    Dapore, Alexander J.; King, Michael R.; Harter, Josephine; Sarwate, Sandhya; Oelze, Michael L.; Zagzebski, James A.; Do, Minh N.; Hall, Timothy J.

    2012-01-01

    Three-dimensional impedance maps (3DZMs) are virtual volumes of acoustic impedance values constructed from histology to represent tissue microstructure acoustically. From the 3DZM, the ultrasonic backscattered power spectrum can be predicted and model based scatterer properties, such as effective scatterer diameter (ESD), can be estimated. Additionally, the 3DZM can be exploited to visualize and identify possible scattering sites, which may aid in the development of more effective scattering models to better represent the ultrasonic interaction with underlying tissue microstructure. In this study, 3DZMs were created from a set of human fibroadenoma samples. ESD estimates were made assuming a fluid-filled sphere form factor model from 3DZMs of volume 300 × 300 × 300 µm. For a collection of 33 independent human fibroadenoma tissue samples, the ESD was estimated to be 111 ± 40.7 µm. The 3DZMs were then investigated visually to identify possible scattering sources which conformed to the estimated model scatterer dimensions. This estimation technique allowed a better understanding of the spatial distribution and variability of the estimates throughout the volume. PMID:21278015

  17. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  18. Topological organization of (low-dimensional) chaos

    International Nuclear Information System (INIS)

    Tufillaro, N.B.

    1992-01-01

    Recent progress toward classifying low-dimensional chaos measured from time series data is described. This classification theory assigns a template to the time series once the time series is embedded in three dimensions. The template describes the primary folding and stretching mechanisms of phase space responsible for the chaotic motion. Topological invariants of the unstable periodic orbits in the closure of the strange set are calculated from the (reconstructed) template. These topological invariants must be consistent with ampersand ny model put forth to describe the time series data, and are useful in invalidating (or gaining confidence in) any model intended to describe the dynamical system generating the time series

  19. Profiling analysis of low molecular weight heparins by multiple heart-cutting two dimensional chromatography with quadruple time-of-flight mass spectrometry.

    Science.gov (United States)

    Ouyang, Yilan; Zeng, Yangyang; Rong, Yinxiu; Song, Yue; Shi, Lv; Chen, Bo; Yang, Xinlei; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-09-01

    Low molecular weight heparins (LMWHs) are polydisperse and microheterogenous mixtures of polysaccharides used as anticoagulant drugs. Profiling analysis is important for obtaining deeper insights into the structure of LMWHs. Previous oligosaccharide mapping methods are relatively low resolution and are unable to show an entire picture of the structural complexity of LMWHs. In the current study a profiling method was developed relying on multiple heart-cutting, two-dimensional, ultrahigh performance liquid chromatography with quadruple time-of-flight mass spectrometry. This represents an efficient, automated, and robust approach for profiling LMWHs. Using size-exclusion chromatography and ion-pairing reversed-phase chromatography in a two-dimensional separation, LMW components of different sizes and LMW components of the same size but with different charges and polarities can be resolved, providing a more complete picture of a LMWH. Structural information on each component was then obtained with quadrupole time-of-flight mass spectrometry. More than 80 and 120 oligosaccharides were observed and unambiguously assigned from the LMWHs, nadroparin and enoxaparin, respectively. This method might be useful for quality control of LMWHs and as a powerful tool for heparin-related glycomics.

  20. Low cost, multiscale and multi-sensor application for flooded area mapping

    Directory of Open Access Journals (Sweden)

    D. Giordan

    2018-05-01

    Full Text Available Flood mapping and estimation of the maximum water depth are essential elements for the first damage evaluation, civil protection intervention planning and detection of areas where remediation is needed. In this work, we present and discuss a methodology for mapping and quantifying flood severity over floodplains. The proposed methodology considers a multiscale and multi-sensor approach using free or low-cost data and sensors. We applied this method to the November 2016 Piedmont (northwestern Italy flood. We first mapped the flooded areas at the basin scale using free satellite data from low- to medium-high-resolution from both the SAR (Sentinel-1, COSMO-Skymed and multispectral sensors (MODIS, Sentinel-2. Using very- and ultra-high-resolution images from the low-cost aerial platform and remotely piloted aerial system, we refined the flooded zone and detected the most damaged sector. The presented method considers both urbanised and non-urbanised areas. Nadiral images have several limitations, in particular in urbanised areas, where the use of terrestrial images solved this limitation. Very- and ultra-high-resolution images were processed with structure from motion (SfM for the realisation of 3-D models. These data, combined with an available digital terrain model, allowed us to obtain maps of the flooded area, maximum high water area and damaged infrastructures.

  1. Anticipatory synchronization via low-dimensional filters

    International Nuclear Information System (INIS)

    Pyragiene, T.; Pyragas, K.

    2017-01-01

    An anticipatory chaotic synchronization scheme based on a low-order all-pass filter is proposed. The filter is designed as a Padé approximation to the transfer function of an ideal delay line, which is used in a standard Voss scheme. We show that despite its simplicity, the filter works in an anticipatory scheme as well as an ideal delay line. It provides extremely small synchronization error in the whole interval of anticipation time where the anticipatory manifold is stable. The efficacy of our scheme is explained by an analytically solvable model of unidirectionally coupled unstable spirals and confirmed numerically by an example of unidirectionally coupled chaotic Rössler systems. - Highlights: • A new coupling scheme for anticipating chaotic synchronization is proposed. • The scheme consists of a drive system coupled to a low-dimensional filter. • Long-term anticipation is achieved without using time-delay terms. • An analytical treatment estimates the maximum anticipation time. • The method is verified for the Rössler system.

  2. Anticipatory synchronization via low-dimensional filters

    Energy Technology Data Exchange (ETDEWEB)

    Pyragiene, T., E-mail: tatjana.pyragiene@ftmc.lt; Pyragas, K.

    2017-06-15

    An anticipatory chaotic synchronization scheme based on a low-order all-pass filter is proposed. The filter is designed as a Padé approximation to the transfer function of an ideal delay line, which is used in a standard Voss scheme. We show that despite its simplicity, the filter works in an anticipatory scheme as well as an ideal delay line. It provides extremely small synchronization error in the whole interval of anticipation time where the anticipatory manifold is stable. The efficacy of our scheme is explained by an analytically solvable model of unidirectionally coupled unstable spirals and confirmed numerically by an example of unidirectionally coupled chaotic Rössler systems. - Highlights: • A new coupling scheme for anticipating chaotic synchronization is proposed. • The scheme consists of a drive system coupled to a low-dimensional filter. • Long-term anticipation is achieved without using time-delay terms. • An analytical treatment estimates the maximum anticipation time. • The method is verified for the Rössler system.

  3. Low-dimensionality and predictability of solar wind and global magnetosphere during magnetic storms

    OpenAIRE

    Zivkovic, Tatjana; Rypdal, Kristoffer

    2011-01-01

    This article is part of Tatjana Živkovics' doctoral thesis. Available in Munin at http://hdl.handle.net/10037/3231 The storm index SYM-H, the solar wind velocity v, and interplanetary magnetic field Bz show no signatures of low-dimensional dynamics in quiet periods, but tests for determinism in the time series indicate that SYM-H exhibits a significant low-dimensional component during storm time, suggesting that self-organization takes place during magnetic storms. Even though our analysis...

  4. Three-dimensional field map of the Fermilab D0 detector

    International Nuclear Information System (INIS)

    Ostiguy, J.; Yamada, R.

    1991-08-01

    The D0 detector is a general purpose hadron collider detector presently under construction at Fermilab and scheduled to be put in operation in the fall of 1991. The D0 muon detection system is composed of three major toroids referred to respectively as the Central Field (CF) toroid and the End Field (EF) toroids. The complete detector weighs in excess of 4000 metric tons and rests on a steel platform. The muon detection system was designed using standard 2D codes and flux maps inside were obtained for each of the toroids taken separately. Various magnetic field measurements were performed; discrepancies with the design calculations have been observed and attributed to three dimensional effects. In this paper, we compare the predictions of the 2D computations to 3D calculations for a fully assembled detector. We also estimate the electromagnetic forces between the toroids and discuss other 3D effects, in particular, the effect of the supporting platform. 4 refs., 3 figs

  5. The investigation for (2+1)-dimensional Eckhaus-type extension of the dispersive long wave equation

    International Nuclear Information System (INIS)

    Yan Zhenya

    2004-01-01

    The (2+1)-dimensional Eckhaus-type extension of the dispersive long wave (EEDLW) equation is investigated, which was obtained in the appropriate approximation from the basic equations of hydrodynamics. Though it has no Painleve property, we gain an auto-Baecklund transformation (aBT) by truncating the Laurent series expansion at O(w 0 ). In particular, the special one of the aBT establishes a relationship between the EEDLW equation and a set of three linear partial differential equations involving the well-known heat equation. Finally many types of new exact solutions of the EEDLW equation are found from the obtained aBT and some proper ansaetze, which may be useful to explain some physical phenomena

  6. Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes.

    Directory of Open Access Journals (Sweden)

    Mitch Bryson

    Full Text Available Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae and animal (e.g. gastropods assemblages at multiple spatial and temporal scales.

  7. Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes.

    Science.gov (United States)

    Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J; Bongiorno, Daniel

    2013-01-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  8. Transcatheter radiofrequency ablation under the guidance of three-dimensional mapping for the treatment of complex cardiac arrhythmias

    International Nuclear Information System (INIS)

    Hong Lang; Wang Hong; Lai Hengli; Ying Qiulin; Chen Zhangqiang; Lu Linxiang; Qiu Yun; Xiao Chengwei

    2010-01-01

    Objective: To investigate the effectiveness and safety of transcatheter radiofrequency ablation guided by a three-dimensional mapping system (Ensite or Carto) for the treatment of complex cardiac arrhythmias. Methods: A cohort of 123 consecutive hospitalized inpatients during the period from February 2006 to December 2008 were selected for this study. These patients suffered from various arrhythmias, including paroxysmal atrial fibrillation (n = 58), persistent or permanent atrial fibrillation (n = 10), atrial flutter (n = 13), atrial tachycardia (n = 12) and ventricular tachycardia or frequent ventricular premature beats (n = 30). Transcatheter radiofrequency ablation for arrhythmias was performed under the guidance of an EnSite3000 / NavX or Array mapping system in 80 cases, and under the guidance of a CARTO mapping system in the remaining 43 cases. Results: Successful ablation of arrhythmias was obtained by single operation in 106 cases (86.18%), including 59 cases with atrial fibrillation, 11 cases with atrial flutter, 10 cases with atrial tachycardia, and 26 cases with ventricular tachycardia or premature ventricular beat.Ablation procedure was carried out and was successful in 10 cases with a successful rate of 94.31%, including 5 cases with atrial fibrillation, 1 case with recurred atrial flutter, 1 case with recurrent atrial tachycardia, and 3 cases with ventricular tachycardia or premature ventricular beat.After operation, complications occurred in 6 cases, including cardiac tamponade in 4 cases, distal embolism of the left anterior descending coronary artery in 1 case, and pulmonary embolism in 1 case. Conclusion: Three-dimensional mapping system can clearly and stereoscopically display the cardiac structures. Therefore, this technique is of great value in guiding the transcatheter radiofrequency ablation for complex arrhythmias, in improving the success rate of ablation and in increasing the safety of the procedure. (authors)

  9. Detection of Defect-Induced Magnetism in Low-Dimensional ZnO Structures by Magnetophotocurrent.

    Science.gov (United States)

    Lorite, Israel; Kumar, Yogesh; Esquinazi, Pablo; Zandalazini, Carlos; de Heluani, Silvia Perez

    2015-09-09

    The detection of defect-induced magnetic order in single low-dimensional oxide structures is in general difficult because of the relatively small yield of magnetically ordered regions. In this work, the effect of an external magnetic field on the transient photocurrent measured after light irradiation on different ZnO samples at room temperature is studied. It has been found that a magnetic field produces a change in the relaxation rate of the transient photocurrent only in magnetically ordered ZnO samples. This rate can decrease or increase with field, depending on whether the magnetically ordered region is in the bulk or only at the surface of the ZnO sample. The phenomenon reported here is of importance for the development of magneto-optical low-dimensional oxides devices and provides a new guideline for the detection of magnetic order in low-dimensional magnetic semiconductors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Is there a map between Galilean relativity and special relativity?

    OpenAIRE

    Shariati, Ahmad; Jafari, N.

    2014-01-01

    Mandanici has provided a map which he claims to be a two way map between Galilean relativity and special relativity. We argue that this map is simply a curvilinear coordinate system on a subset of the two-dimensional Minkowski space-time, and is not a two way map between 1+1 dimensional Galilean relativity and 1+1 dimensional special relativity.

  11. A simple highly accurate field-line mapping technique for three-dimensional Monte Carlo modeling of plasma edge transport

    International Nuclear Information System (INIS)

    Feng, Y.; Sardei, F.; Kisslinger, J.

    2005-01-01

    The paper presents a new simple and accurate numerical field-line mapping technique providing a high-quality representation of field lines as required by a Monte Carlo modeling of plasma edge transport in the complex magnetic boundaries of three-dimensional (3D) toroidal fusion devices. Using a toroidal sequence of precomputed 3D finite flux-tube meshes, the method advances field lines through a simple bilinear, forward/backward symmetric interpolation at the interfaces between two adjacent flux tubes. It is a reversible field-line mapping (RFLM) algorithm ensuring a continuous and unique reconstruction of field lines at any point of the 3D boundary. The reversibility property has a strong impact on the efficiency of modeling the highly anisotropic plasma edge transport in general closed or open configurations of arbitrary ergodicity as it avoids artificial cross-field diffusion of the fast parallel transport. For stellarator-symmetric magnetic configurations, which are the standard case for stellarators, the reversibility additionally provides an average cancellation of the radial interpolation errors of field lines circulating around closed magnetic flux surfaces. The RFLM technique has been implemented in the 3D edge transport code EMC3-EIRENE and is used routinely for plasma transport modeling in the boundaries of several low-shear and high-shear stellarators as well as in the boundary of a tokamak with 3D magnetic edge perturbations

  12. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  13. Near-Integrability of Low-Dimensional Periodic Klein-Gordon Lattices

    Directory of Open Access Journals (Sweden)

    Ognyan Christov

    2018-01-01

    Full Text Available The low-dimensional periodic Klein-Gordon lattices are studied for integrability. We prove that the periodic lattice with two particles and certain nonlinear potential is nonintegrable. However, in the cases of up to six particles, we prove that their Birkhoff-Gustavson normal forms are integrable, which allows us to apply KAM theory in most cases.

  14. Simulations of three-dimensional viscoelastic flows past a circular cylinder at moderate Reynolds numbers

    KAUST Repository

    RICHTER, DAVID

    2010-03-29

    The results from a numerical investigation of inertial viscoelastic flow past a circular cylinder are presented which illustrate the significant effect that dilute concentrations of polymer additives have on complex flows. In particular, effects of polymer extensibility are studied as well as the role of viscoelasticity during three-dimensional cylinder wake transition. Simulations at two distinct Reynolds numbers (Re = 100 and Re = 300) revealed dramatic differences based on the choice of the polymer extensibility (L2 in the FENE-P model), as well as a stabilizing tendency of viscoelasticity. For the Re = 100 case, attention was focused on the effects of increasing polymer extensibility, which included a lengthening of the recirculation region immediately behind the cylinder and a sharp increase in average drag when compared to both the low extensibility and Newtonian cases. For Re = 300, a suppression of the three-dimensional Newtonian mode B instability was observed. This effect is more pronounced for higher polymer extensibilities where all three-dimensional structure is eliminated, and mechanisms for this stabilization are described in the context of roll-up instability inhibition in a viscoelastic shear layer. © 2010 Cambridge University Press.

  15. c-Map for Born–Infeld theories

    Directory of Open Access Journals (Sweden)

    L. Andrianopoli

    2016-07-01

    Full Text Available The c-map of four dimensional non-linear theories of electromagnetism is considered both in the rigid case and in its coupling to gravity. In this way theories with antisymmetric tensors and scalars are obtained, and the three non-linear representations of N = 2 supersymmetry partially broken to N = 1 related. The manifest Sp(2n and U(n covariance of these theories in their multifield extensions is also exhibited. This construction extends to H-invariant non-linear theories of Born–Infeld type with non-dynamical scalars spanning a symmetric coset manifold G/H and the vector field strengths and their duals in a symplectic representation of G as is the case for extended supergravity.

  16. Bandgap calculation of two-dimensional mixed solid-fluid phononic crystals by Dirichlet-to-Neumann maps

    International Nuclear Information System (INIS)

    Li Fenglian; Wang Yuesheng; Zhang Chuanzeng

    2011-01-01

    A numerical method based on the Dirichlet-to-Neumann (DtN) map is presented to compute the bandgaps of two-dimensional phononic crystals, which are composed of square or triangular lattices of circular solid cylinders in a fluid matrix. The DtN map is constructed using the cylindrical wave expansion in a unit cell. A linear eigenvalue problem, which depends on the Bloch wave vector and involves relatively small matrices, is formulated. Numerical calculations are performed for typical systems with various acoustic impedance ratios of the solid inclusions and the fluid matrix. The results indicate that the DtN-map based method can provide accurate results for various systems efficiently. In particular it takes into account the fluid-solid interface conditions and the transverse wave mode in the solid component, which has been proven to be significant when the acoustic impedance of the solid inclusions is close to or smaller than that of the fluid matrix. For systems with an acoustic impedance of the inclusion much less than that of the matrix, physical flat bands appear in the band structures, which will be missed if the transverse wave mode in the solid inclusions is neglected.

  17. Topological data analysis of contagion maps for examining spreading processes on networks

    KAUST Repository

    Taylor, Dane

    2015-07-21

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth\\'s surface; however, in modern contagions long-range edges - for example, due to airline transportation or communication media - allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct \\'contagion maps\\' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  18. Topological data analysis of contagion maps for examining spreading processes on networks.

    Science.gov (United States)

    Taylor, Dane; Klimm, Florian; Harrington, Heather A; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A; Mucha, Peter J

    2015-07-21

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  19. Topological data analysis of contagion maps for examining spreading processes on networks

    Science.gov (United States)

    Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.

    2015-07-01

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges--for example, due to airline transportation or communication media--allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct `contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  20. Topological data analysis of contagion maps for examining spreading processes on networks

    KAUST Repository

    Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramá r, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.

    2015-01-01

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges - for example, due to airline transportation or communication media - allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  1. A low-cost and portable realization on fringe projection three-dimensional measurement

    Science.gov (United States)

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2015-12-01

    Fringe projection three-dimensional measurement is widely applied in a wide range of industrial application. The traditional fringe projection system has the disadvantages of high expense, big size, and complicated calibration requirements. In this paper we introduce a low-cost and portable realization on three-dimensional measurement with Pico projector. It has the advantages of low cost, compact physical size, and flexible configuration. For the proposed fringe projection system, there is no restriction to camera and projector's relative alignment on parallelism and perpendicularity for installation. Moreover, plane-based calibration method is adopted in this paper that avoids critical requirements on calibration system such as additional gauge block or precise linear z stage. What is more, error sources existing in the proposed system are introduced in this paper. The experimental results demonstrate the feasibility of the proposed low cost and portable fringe projection system.

  2. Method for the visualization of landform by mapping using low altitude UAV application

    Science.gov (United States)

    Sharan Kumar, N.; Ashraf Mohamad Ismail, Mohd; Sukor, Nur Sabahiah Abdul; Cheang, William

    2018-05-01

    Unmanned Aerial Vehicle (UAV) and Digital Photogrammetry are evolving drastically in mapping technology. The significance and necessity for digital landform mapping are developing with years. In this study, a mapping workflow is applied to obtain two different input data sets which are the orthophoto and DSM. A fine flying technology is used to capture Low Altitude Aerial Photography (LAAP). Low altitude UAV (Drone) with the fixed advanced camera was utilized for imagery while computerized photogrammetry handling using Photo Scan was applied for cartographic information accumulation. The data processing through photogrammetry and orthomosaic processes is the main applications. High imagery quality is essential for the effectiveness and nature of normal mapping output such as 3D model, Digital Elevation Model (DEM), Digital Surface Model (DSM) and Ortho Images. The exactitude of Ground Control Points (GCP), flight altitude and the resolution of the camera are essential for good quality DEM and Orthophoto.

  3. One-dimensional photonic crystal design

    International Nuclear Information System (INIS)

    Mee, Cornelis van der; Contu, Pietro; Pintus, Paolo

    2010-01-01

    In this article we present a method to determine the band spectrum, band gaps, and discrete energy levels, of a one-dimensional photonic crystal with localized impurities. For one-dimensional crystals with piecewise constant refractive indices we develop an algorithm to recover the refractive index distribution from the period map. Finally, we derive the relationship between the period map and the scattering matrix containing the information on the localized modes.

  4. Mapping the fundamental niches of two freshwater microalgae, Chlorella vulgaris (Trebouxiophyceae) and Peridinium cinctum (Dinophyceae), in 5-dimensional ion space

    Science.gov (United States)

    A five dimensional experimental design, i.e. a five component ion mixture design for nitrate, phosphate, potassium, sodium and chloride projected across a total ion concentration gradient of 1-30 mM was utilized to map the ion-based, scenopoetic, or ‘Grinnellian’, niche space for two freshwater alga...

  5. Automated Plantation Mapping in Indonesia Using Remote Sensing Data

    Science.gov (United States)

    Karpatne, A.; Jia, X.; Khandelwal, A.; Kumar, V.

    2017-12-01

    Plantation mapping is critical for understanding and addressing deforestation, a key driver of climate change and ecosystem degradation. Unfortunately, most plantation maps are limited to small areas for specific years because they rely on visual inspection of imagery. In this work, we propose a data-driven approach which automatically generates yearly plantation maps for large regions using MODIS multi-spectral data. While traditional machine learning algorithms face manifold challenges in this task, e.g. imperfect training labels, spatio-temporal data heterogeneity, noisy and high-dimensional data, lack of evaluation data, etc., we introduce a novel deep learning-based framework that combines existing imperfect plantation products as training labels and models the spatio-temporal relationships of land covers. We also explores the post-processing steps based on Hidden Markov Model that further improve the detection accuracy. Then we conduct extensive evaluation of the generated plantation maps. Specifically, by randomly sampling and comparing with high-resolution Digital Globe imagery, we demonstrate that the generated plantation maps achieve both high precision and high recall. When compared with existing plantation mapping products, our detection can avoid both false positives and false negatives. Finally, we utilize the generated plantation maps in analyzing the relationship between forest fires and growth of plantations, which assists in better understanding the cause of deforestation in Indonesia.

  6. Non extensive statistics and entropic gravity in a non-integer dimensional space

    International Nuclear Information System (INIS)

    Abreu, Everton M.C.; Ananias Neto, Jorge; Godinho, Cresus F.L.

    2013-01-01

    Full text: The idea that gravity can be originated from thermodynamics features has begun with the discovering that black hole physics is connected to the thermodynamics laws. These concepts were strongly boosted after Jacobson's work, where the Einstein equations were obtained from general thermodynamics approaches. In a recent work, Padmanabhan obtained an interpretation of gravity as an equipartition law. In Verlinde's thermo gravitational formalism, the temperature and the acceleration are connected via Unruh effect. At the same time, he combined the holographic principle with an equipartition law, where the number of bits is proportional to the area of the holographic surface. Bits were used to define the microscopic degrees of freedom. With these ingredients, the entropic force combined with the holographic principle and the equipartition law originated the Newton's law of gravitation. The possible interpretation of Verlinde's result is that gravity is not an underlying concept, but an emergent one. It originates from the statistical behavior of the holographic screen microscopic degrees of freedom. Following these ideas, the current literature has grown in an accelerated production from Coulomb force and symmetry considerations of entropic force to cosmology and loop quantum. In this work we introduced the Newton's constant in a fractal space as a function of the non extensive one. With this result we established a relation between the Tsallis non extensive parameter and the dimension of this fractal space. Using Verlinde's formalism we used these fractal ideas combined with the concept of entropic gravity to calculate the number of bits of an holographic surface in this non-integer dimensional space, a fractal holographic screen. We introduced a fundamental length, a Planck-like length, into this space as a function of this fractal holographic screen radius. Finally, we consider superior dimensions in this analysis. (author)

  7. Terrestrial gamma radiation baseline mapping using ultra low density sampling methods

    International Nuclear Information System (INIS)

    Kleinschmidt, R.; Watson, D.

    2016-01-01

    Baseline terrestrial gamma radiation maps are indispensable for providing basic reference information that may be used in assessing the impact of a radiation related incident, performing epidemiological studies, remediating land contaminated with radioactive materials, assessment of land use applications and resource prospectivity. For a large land mass, such as Queensland, Australia (over 1.7 million km 2 ), it is prohibitively expensive and practically difficult to undertake detailed in-situ radiometric surveys of this scale. It is proposed that an existing, ultra-low density sampling program already undertaken for the purpose of a nationwide soil survey project be utilised to develop a baseline terrestrial gamma radiation map. Geoelement data derived from the National Geochemistry Survey of Australia (NGSA) was used to construct a baseline terrestrial gamma air kerma rate map, delineated by major drainage catchments, for Queensland. Three drainage catchments (sampled at the catchment outlet) spanning low, medium and high radioelement concentrations were selected for validation of the methodology using radiometric techniques including in-situ measurements and soil sampling for high resolution gamma spectrometry, and comparative non-radiometric analysis. A Queensland mean terrestrial air kerma rate, as calculated from the NGSA outlet sediment uranium, thorium and potassium concentrations, of 49 ± 69 nGy h −1 (n = 311, 3σ 99% confidence level) is proposed as being suitable for use as a generic terrestrial air kerma rate background range. Validation results indicate that catchment outlet measurements are representative of the range of results obtained across the catchment and that the NGSA geoelement data is suitable for calculation and mapping of terrestrial air kerma rate. - Highlights: • A baseline terrestrial air kerma map of Queensland, Australia was developed using geochemical data from a major drainage catchment ultra-low density sampling program

  8. Life extension of low and medium voltage equipment

    International Nuclear Information System (INIS)

    Bharteey, B.M.; Hart, T.J.

    1990-01-01

    Nuclear plant life extension is becoming a very important issue with the passing of each day. Within 3 to 10 years after the turn of the century, licenses of a number of nuclear power plants in the United States will expire. For the near future, new construction of nuclear power plants in the United States is expected to be inhibited, if the current economic and regulatory environment continues to persist. This situation, coupled with aging of utility equipment and the high cost of financing new construction is resulting in a growing emphasis on preserving and extending the capability of existing power plants. Until now, the utilities have placed more emphasis on high cost items, but experience shows that extending life of low cost of device/components in items like Motor Control Center Centers and switchgear pays big dividends. According to the current practice, devices of these items are replaced at the end of their assigned qualified life or attended to when there is a problem resulting in an unplanned outage. In this paper based on extensive experience in the field of motor control centers and medium switchgear, the authors proposed a cookbook methodology to determine the extent or absence of degradation and establish trends of the pertinent operational properties of devices of this type of equipment. The test results also provide satisfactory evidence of class 1E nuclear safety-related function

  9. Diffusion in higher dimensional SYK model with complex fermions

    Science.gov (United States)

    Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong

    2018-01-01

    We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.

  10. Two-dimensional gel proteome reference map of human small intestine

    Directory of Open Access Journals (Sweden)

    Canzonieri Vincenzo

    2009-03-01

    Full Text Available Abstract Background The small intestine is an important human organ that plays a central role in many physiological functions including digestion, absorption, secretion and defense. Duodenal pathologies include, for instance, the ulcer associated to Helicobacter Pylori infection, adenoma and, in genetically predisposed individuals, celiac disease. Alterations in the bowel reduce its capability to absorb nutrients, minerals and fat-soluble vitamins. Anemia and osteopenia or osteoporosis may develop as a consequence of vitamins malabsorption. Adenoma is a benign tumor that has the potential to become cancerous. Adult celiac disease patients present an overall risk of cancer that is almost twice than that found in the general population. These disease processes are not completely known. To date, a two dimensional (2D reference map of proteins expressed in human duodenal tissue is not yet available: the aim of our study was to characterize the 2D protein map, and to identify proteins of duodenal mucosa of adult individuals without duodenal illness, to create a protein database. This approach, may be useful for comparing similar protein samples in different laboratories and for the molecular characterization of intestinal pathologies without recurring to the use of surgical material. Results The enrolled population comprised five selected samples (3 males and 2 females, aged 19 to 42, taken from 20 adult subjects, on their first visit at the gastroenterology unit for a suspected celiac disease, who did not turn to be affected by any duodenal pathology after gastrointestinal and histological evaluations. Proteins extracted from the five duodenal mucosal specimens were singly separated by 2D gel electrophoresis. After image analysis of each 2D gel, 179 protein spots, representing 145 unique proteins, from 218 spots tested, were successfully identified by MALDI-TOF ms analysis. Normalized volumes, for each protein, have been reported for every gel

  11. Nanoscale mapping of the three-dimensional deformation field within commercial nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Maqbool, Muhammad Salman; Hoxley, David; Phillips, Nicholas W.; Coughlan, Hannah D.; Darmanin, Connie; Johnson, Brett C.; Harder, Ross; Clark, Jesse N.; Balaur, Eugeniu; Abbey, Brian

    2017-01-01

    The unique properties of nanodiamonds make them suitable for use in a wide range of applications, including as biomarkers for cellular tracking in vivo at the molecular level. The sustained fluorescence of nanodiamonds containing nitrogen-vacancy (N-V) centres is related to their internal structure and strain state. Theoretical studies predict that the location of the N-V centre and the nanodiamonds' residual elastic strain state have a major influence on their photoluminescence properties. However, to date there have been no direct measurements made of their spatially resolved deformation fields owing to the challenges that such measurements present. Here we apply the recently developed technique of Bragg coherent diffractive imaging (BCDI) to map the three-dimensional deformation field within a single nanodiamond of approximately 0.5 µm diameter. The results indicate that there are high levels of residual elastic strain present in the nanodiamond which could have a critical influence on its optical and electronic properties.

  12. Topics in low-dimensional field theory

    International Nuclear Information System (INIS)

    Crescimanno, M.J.

    1991-01-01

    Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density

  13. Nonlinear transport behavior of low dimensional electron systems

    Science.gov (United States)

    Zhang, Jingqiao

    The nonlinear behavior of low-dimensional electron systems attracts a great deal of attention for its fundamental interest as well as for potentially important applications in nanoelectronics. In response to microwave radiation and dc bias, strongly nonlinear electron transport that gives rise to unusual electron states has been reported in two-dimensional systems of electrons in high magnetic fields. There has also been great interest in the nonlinear response of quantum ballistic constrictions, where the effects of quantum interference, spatial dispersion and electron-electron interactions play crucial roles. In this thesis, experimental results of the research of low dimensional electron gas systems are presented. The first nonlinear phenomena were observed in samples of highly mobile two dimensional electrons in GaAs heavily doped quantum wells at different magnitudes of DC and AC (10 KHz to 20 GHz) excitations. We found that in the DC excitation regime the differential resistance oscillates with the DC current and external magnetic field, similar behavior was observed earlier in AlGaAs/GaAs heterostructures [C.L. Yang et al. ]. At external AC excitations the resistance is found to be also oscillating as a function of the magnetic field. However the form of the oscillations is considerably different from the DC case. We show that at frequencies below 100 KHz the difference is a result of a specific average of the DC differential resistance during the period of the external AC excitations. Secondly, in similar samples, strong suppression of the resistance by the electric field is observed in magnetic fields at which the Landau quantization of electron motion occurs. The phenomenon survives at high temperatures at which the Shubnikov de Haas oscillations are absent. The scale of the electric fields essential for the effect, is found to be proportional to temperature in the low temperature limit. We suggest that the strong reduction of the longitudinal resistance

  14. Low Dimensional Embedding of Climate Data for Radio Astronomical Site Testing in the Colombian Andes

    Science.gov (United States)

    Chaparro Molano, Germán; Ramírez Suárez, Oscar Leonardo; Restrepo Gaitán, Oscar Alberto; Marcial Martínez Mercado, Alexander

    2017-10-01

    We set out to evaluate the potential of the Colombian Andes for millimeter-wave astronomical observations. Previous studies for astronomical site testing in this region have suggested that nighttime humidity and cloud cover conditions make most sites unsuitable for professional visible-light observations. Millimeter observations can be done during the day, but require that the precipitable water vapor column above a site stays below ˜10 mm. Due to a lack of direct radiometric or radiosonde measurements, we present a method for correlating climate data from weather stations to sites with a low precipitable water vapor column. We use unsupervised learning techniques to low dimensionally embed climate data (precipitation, rain days, relative humidity, and sunshine duration) in order to group together stations with similar long-term climate behavior. The data were taken over a period of 30 years by 2046 weather stations across the Colombian territory. We find six regions with unusually dry, clear-sky conditions, ranging in elevations from 2200 to 3800 masl. We evaluate the suitability of each region using a quality index derived from a Bayesian probabilistic analysis of the station type and elevation distributions. Two of these regions show a high probability of having an exceptionally low precipitable water vapor column. We compared our results with global precipitable water vapor maps and find a plausible geographical correlation with regions with low water vapor columns (˜10 mm) at an accuracy of ˜20 km. Our methods can be applied to similar data sets taken in other countries as a first step toward astronomical site evaluation.

  15. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.

    Science.gov (United States)

    Ott, William; Rivas, Mauricio A; West, James

    2015-12-01

    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).

  16. Towards large-scale mapping of urban three-dimensional structure using Landsat imagery and global elevation datasets

    Science.gov (United States)

    Wang, P.; Huang, C.

    2017-12-01

    The three-dimensional (3D) structure of buildings and infrastructures is fundamental to understanding and modelling of the impacts and challenges of urbanization in terms of energy use, carbon emissions, and earthquake vulnerabilities. However, spatially detailed maps of urban 3D structure have been scarce, particularly in fast-changing developing countries. We present here a novel methodology to map the volume of buildings and infrastructures at 30 meter resolution using a synergy of Landsat imagery and openly available global digital surface models (DSMs), including the Shuttle Radar Topography Mission (SRTM), ASTER Global Digital Elevation Map (GDEM), ALOS World 3D - 30m (AW3D30), and the recently released global DSM from the TanDEM-X mission. Our method builds on the concept of object-based height profile to extract height metrics from the DSMs and use a machine learning algorithm to predict height and volume from the height metrics. We have tested this algorithm in the entire England and assessed our result using Lidar measurements in 25 England cities. Our initial assessments achieved a RMSE of 1.4 m (R2 = 0.72) for building height and a RMSE of 1208.7 m3 (R2 = 0.69) for building volume, demonstrating the potential of large-scale applications and fully automated mapping of urban structure.

  17. Extensibility and stiffness of the hamstrings in patients with nonspecific low back pain

    NARCIS (Netherlands)

    Halbertsma, JPK; Goeken, LNH; Hof, AL; Groothoff, JW; Eisma, WH; Göeken, L.N.H.

    Objective: To investigate the extensibility and stiffness of the hamstrings in patients with nonspecific low back pain (LBP). Design: An experimental design. Setting: A university laboratory for human movement analysis in a department of rehabilitation medicine. Participants: Forty subjects, a

  18. Three-Dimensional Mapping of mRNA Export through the Nuclear Pore Complex

    Directory of Open Access Journals (Sweden)

    Steven J. Schnell

    2014-11-01

    Full Text Available The locations of transcription and translation of mRNA in eukaryotic cells are spatially separated by the nuclear envelope (NE. Plenty of nuclear pore complexes (NPCs embedded in the NE function as the major gateway for the export of transcribed mRNAs from the nucleus to the cytoplasm. Whereas the NPC, perhaps one of the largest protein complexes, provides a relatively large channel for macromolecules to selectively pass through it in inherently three-dimensional (3D movements, this channel is nonetheless below the diffraction limit of conventional light microscopy. A full understanding of the mRNA export mechanism urgently requires real-time mapping of the 3D dynamics of mRNA in the NPC of live cells with innovative imaging techniques breaking the diffraction limit of conventional light microscopy. Recently, super-resolution fluorescence microscopy and single-particle tracking (SPT techniques have been applied to the study of nuclear export of mRNA in live cells. In this review, we emphasize the necessity of 3D mapping techniques in the study of mRNA export, briefly summarize the feasibility of current 3D imaging approaches, and highlight the new features of mRNA nuclear export elucidated with a newly developed 3D imaging approach combining SPT-based super-resolution imaging and 2D-to-3D deconvolution algorithms.

  19. Emergent reduced dimensionality by vertex frustration in artificial spin ice

    Science.gov (United States)

    Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; O'Brien, Liam; Watts, Justin D.; Manno, Michael; Leighton, Chris; Scholl, Andreas; Nisoli, Cristiano; Schiffer, Peter

    2016-02-01

    Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments. The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.

  20. Non-intrusive low-rank separated approximation of high-dimensional stochastic models

    KAUST Repository

    Doostan, Alireza; Validi, AbdoulAhad; Iaccarino, Gianluca

    2013-01-01

    This work proposes a sampling-based (non-intrusive) approach within the context of low-. rank separated representations to tackle the issue of curse-of-dimensionality associated with the solution of models, e.g., PDEs/ODEs, with high-dimensional random inputs. Under some conditions discussed in details, the number of random realizations of the solution, required for a successful approximation, grows linearly with respect to the number of random inputs. The construction of the separated representation is achieved via a regularized alternating least-squares regression, together with an error indicator to estimate model parameters. The computational complexity of such a construction is quadratic in the number of random inputs. The performance of the method is investigated through its application to three numerical examples including two ODE problems with high-dimensional random inputs. © 2013 Elsevier B.V.

  1. Non-intrusive low-rank separated approximation of high-dimensional stochastic models

    KAUST Repository

    Doostan, Alireza

    2013-08-01

    This work proposes a sampling-based (non-intrusive) approach within the context of low-. rank separated representations to tackle the issue of curse-of-dimensionality associated with the solution of models, e.g., PDEs/ODEs, with high-dimensional random inputs. Under some conditions discussed in details, the number of random realizations of the solution, required for a successful approximation, grows linearly with respect to the number of random inputs. The construction of the separated representation is achieved via a regularized alternating least-squares regression, together with an error indicator to estimate model parameters. The computational complexity of such a construction is quadratic in the number of random inputs. The performance of the method is investigated through its application to three numerical examples including two ODE problems with high-dimensional random inputs. © 2013 Elsevier B.V.

  2. Heat transport in low-dimensional materials: A review and perspective

    Directory of Open Access Journals (Sweden)

    Zhiping Xu

    2016-05-01

    Full Text Available Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum-mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.

  3. Trace maps for arbitrary substitution sequences

    International Nuclear Information System (INIS)

    Avishai, Y.

    1993-01-01

    The discovery of quasi-crystals and their 1-dimensional modeling have led to a deep mathematical study of Schroedinger operators with an arbitrary deterministic potential sequence. In this work we address this problem and find trace maps for an arbitrary substitution sequence. our trace maps have lower dimensionality than those of Kolar and Nori, which make them quite attractive for actual applications. (authors)

  4. A fast image encryption algorithm based on chaotic map

    Science.gov (United States)

    Liu, Wenhao; Sun, Kehui; Zhu, Congxu

    2016-09-01

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.

  5. Spectral edge: gradient-preserving spectral mapping for image fusion.

    Science.gov (United States)

    Connah, David; Drew, Mark S; Finlayson, Graham D

    2015-12-01

    This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.

  6. A q-deformed nonlinear map

    International Nuclear Information System (INIS)

    Jaganathan, Ramaswamy; Sinha, Sudeshna

    2005-01-01

    A scheme of q-deformation of nonlinear maps is introduced. As a specific example, a q-deformation procedure related to the Tsallis q-exponential function is applied to the logistic map. Compared to the canonical logistic map, the resulting family of q-logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors-a phenomenon rare in one-dimensional maps

  7. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    Science.gov (United States)

    da Costa, Diogo Ricardo; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-04-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems.

  8. Harmonic mapping character of Rosen's bimetric theory of gravity and the geometry of its harmonic mapping space

    International Nuclear Information System (INIS)

    Stoeger, W.R.; Whitman, A.P.; Knill, R.J.

    1985-01-01

    After showing that Rosen's bimetric theory of gravity is a harmonic map, the geometry of the ten-dimensional harmonic mapping space (HMS), and of its nine-dimensional symmetric submanifolds, which are the leaves of the codimension one foliation of the HMS, is detailed. Both structures are global affinely symmetric spaces. For each, the metric, connections, and Riemann, Ricci, and scalar curvatures are given. The Killing vectors in each case are also worked out and related to the ''conserved quantities'' naturally associated with the harmonic mapping character of the theory. The structure of the Rosen HMS is very much like that determined by the DeWitt metric on the six-dimensional Wheeler superspace of all positive definite three-dimensional metrics. It is clear that a slight modification of the Rosen HMS metric will yield the corresponding metric on the space of all four-dimensional metrics of Lorentz signature. Finally, interesting avenues of further research are indicated, particularly with respect to the structure and comparison of Lagrangian-based gravitational theories which are similar to Einstein's general relativity

  9. NATO Advanced Research Workshop on Optical Switching in Low-Dimensional Systems

    CERN Document Server

    Bányai, L

    1989-01-01

    This book contains all the papers presented at the NATO workshop on "Optical Switching in Low Dimensional Systems" held in Marbella, Spain from October 6th to 8th, 1988. Optical switching is a basic function for optical data processing, which is of technological interest because of its potential parallelism and its potential speed. Semiconductors which exhibit resonance enhanced optical nonlinearities in the frequency range close to the band edge are the most intensively studied materials for optical bistability and fast gate operation. Modern crystal growth techniques, particularly molecular beam epitaxy, allow the manufacture of semiconductor microstructures such as quantum wells, quantum wires and quantum dots in which the electrons are only free to move in two, one or zero dimensions, of the optically excited electron-hole pairs in these low respectively. The spatial confinement dimensional structures gives rise to an enhancement of the excitonic nonlinearities. Furthermore, the variations of the microstr...

  10. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Tian Yang-Chao; Wu Zi-Yu; Zhu Pei-Ping

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse-projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensional phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method

  11. Uniform electron gases. III. Low-density gases on three-dimensional spheres

    Energy Technology Data Exchange (ETDEWEB)

    Agboola, Davids; Knol, Anneke L.; Gill, Peter M. W., E-mail: peter.gill@anu.edu.au; Loos, Pierre-François, E-mail: pf.loos@anu.edu.au [Research School of Chemistry, Australian National University, Canberra ACT 2601 (Australia)

    2015-08-28

    By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) — and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.

  12. Stochastic Stabilityfor Contracting Lorenz Maps and Flows

    Science.gov (United States)

    Metzger, R. J.

    In a previous work [M], we proved the existence of absolutely continuous invariant measures for contracting Lorenz-like maps, and constructed Sinai-Ruelle-Bowen measures f or the flows that generate them. Here, we prove stochastic stability for such one-dimensional maps and use this result to prove that the corresponding flows generating these maps are stochastically stable under small diffusion-type perturbations, even though, as shown by Rovella [Ro], they are persistent only in a measure theoretical sense in a parameter space. For the one-dimensional maps we also prove strong stochastic stability in the sense of Baladi and Viana[BV].

  13. D-zero rototrack: first stage of D-zero 2 Tesla solenoid field mapping device

    International Nuclear Information System (INIS)

    Yamada, R.; Korienek, J.; Krider, J.; Lindenmeyer, C.; Miksa, D.; Miksa, R.

    1997-09-01

    A simple and portable field mapping device was developed at Fermilab and successfully used to test the D0 2 Tesla solenoid at Toshiba Works in Japan. A description of the mechanical structure, electric driving and control system, and software of the field mapping device is given. Four Hall probe elements of Group3 Digital Gaussmeters are mounted on the radial extension arm of a carriage, which is mounted on a central rotating beam. The system gives two dimensional motions (axial and rotational) to the Hall probes. To make the system compact and portable, we used a laptop computer with PCMCIA cards. For the control system we used commercially available software LabVIEW and Motion Toolbox, and for the data analysis we used Microsoft Excel

  14. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces

    Science.gov (United States)

    Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.

  15. The self-organizing map, a new approach to apprehend the Madden–Julian Oscillation influence on the intraseasonal variability of rainfall in the southern African region

    CSIR Research Space (South Africa)

    Oettli, P

    2013-11-01

    Full Text Available -linear classification method, the self-organizing map (SOM), a type of artificial neural network used to produce a low-dimensional representation of high-dimensional datasets, to capture more accurately the life cycle of the MJO and its global impacts...

  16. Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.

    Science.gov (United States)

    Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun

    2016-04-15

    Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Low-dimensional model of resistive interchange convection in magnetized plasma

    International Nuclear Information System (INIS)

    Bazdenkov, S.; Sato, Tetsuya

    1997-09-01

    Self-organization and generation of large shear flow component in turbulent resistive interchange convection in magnetized plasma is considered. The effect of plasma density-electrostatic potential coupling via the inertialess electron dynamics along the magnetic field is shown to play significant role in the onset of shear component. The results of large-scale numerical simulation and low-dimensional (reduced) model are presented and compared. (author)

  18. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.

    Science.gov (United States)

    Ma, Wenxiu; Ay, Ferhat; Lee, Choli; Gulsoy, Gunhan; Deng, Xinxian; Cook, Savannah; Hesson, Jennifer; Cavanaugh, Christopher; Ware, Carol B; Krumm, Anton; Shendure, Jay; Blau, C Anthony; Disteche, Christine M; Noble, William S; Duan, ZhiJun

    2018-06-01

    The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. System Considerations and Challendes in 3d Mapping and Modeling Using Low-Cost Uav Systems

    Science.gov (United States)

    Lari, Z.; El-Sheimy, N.

    2015-08-01

    In the last few years, low-cost UAV systems have been acknowledged as an affordable technology for geospatial data acquisition that can meet the needs of a variety of traditional and non-traditional mapping applications. In spite of its proven potential, UAV-based mapping is still lacking in terms of what is needed for it to become an acceptable mapping tool. In other words, a well-designed system architecture that considers payload restrictions as well as the specifications of the utilized direct geo-referencing component and the imaging systems in light of the required mapping accuracy and intended application is still required. Moreover, efficient data processing workflows, which are capable of delivering the mapping products with the specified quality while considering the synergistic characteristics of the sensors onboard, the wide range of potential users who might lack deep knowledge in mapping activities, and time constraints of emerging applications, are still needed to be adopted. Therefore, the introduced challenges by having low-cost imaging and georeferencing sensors onboard UAVs with limited payload capability, the necessity of efficient data processing techniques for delivering required products for intended applications, and the diversity of potential users with insufficient mapping-related expertise needs to be fully investigated and addressed by UAV-based mapping research efforts. This paper addresses these challenges and reviews system considerations, adaptive processing techniques, and quality assurance/quality control procedures for achievement of accurate mapping products from these systems.

  20. First-principles calculation of electronic transport in low-dimensional disordered superconductors

    Science.gov (United States)

    Conduit, G. J.; Meir, Y.

    2011-08-01

    We present a novel formulation to calculate transport through disordered superconductors connected between two metallic leads. An exact analytical expression for the current is derived and applied to a superconducting sample described by the negative-U Hubbard model. A Monte Carlo algorithm that includes thermal phase and amplitude fluctuations of the superconducting order parameter is employed, and a new efficient algorithm is described. This improved routine allows access to relatively large systems, which we demonstrate by applying it to several cases, including superconductor-normal interfaces and Josephson junctions. Moreover, we can link the phenomenological parameters describing these effects to the underlying microscopic variables. The effects of decoherence and dephasing are shown to be included in the formulation, which allows the unambiguous characterization of the Kosterlitz-Thouless transition in two-dimensional systems and the calculation of the finite resistance due to vortex excitations in quasi-one-dimensional systems. Effects of magnetic fields can be easily included in the formalism, and are demonstrated for the Little-Parks effect in superconducting cylinders. Furthermore, the formalism enables us to map the local super and normal currents, and the accompanying electrical potentials, which we use to pinpoint and visualize the emergence of resistance across the superconductor-insulator transition.

  1. Ultra-low-angle boundary networks within recrystallizing grains

    DEFF Research Database (Denmark)

    Ahl, Sonja Rosenlund; Simons, Hugh; Zhang, Yubin

    2017-01-01

    We present direct evidence of a network of well-defined ultra-low-angle boundaries in bulk recrystallizing grains of 99.5% pure aluminium (AA1050) by means of a new, three-dimensional X-ray mapping technique; dark-field X-ray microscopy. These boundaries separate lattice orientation differences o...

  2. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  3. Mapping Mesophotic Reefs Along the Brazilian Continental Margin

    Science.gov (United States)

    Bastos, A.; Moura, R.; Amado Filho, G.; Ferreira, L.; Boni, G.; Vedoato, F.; D'Agostini, D.; Lavagnino, A. C.; Leite, M. D.; Quaresma, V.

    2017-12-01

    Submerged or drowned reefs constitute an important geological record of sea level variations, forming the substrate for the colonization of modern benthic mesophotic communities. Although mapping mesophotic reefs has increased in the last years, their spatial distribution is poorly known and the worldwide occurrence of this reef habitat maybe underestimated. The importance in recognizing the distribution of mesophotic reefs is that they can act as a refuge for corals during unsuitable environmental conditions and a repository for shallow water corals. Here we present the result of several acoustic surveys that mapped and discovered new mesophotic reefs along the Eastern and Equatorial Brazilian Continental Margin. Seabed mapping was carried out using multibeam and side scan sonars. Ground truthing was obtained using drop camera or scuba diving. Mesophotic reefs were mapped in water depths varying from 30 to 100m and under distinct oceanographic conditions, especially in terms of river load input and shelf width. Reefs showed distinct morphologies, from low relief banks and paleovalleys to shelf edge ridges. Extensive occurrence of low relief banks were mapped along the most important coralline complex province in the South Atlantic, the Abrolhos Shelf. These 30 to 40m deep banks, have no more than 3 meters in height and may represent fringing reefs formed during sea level stabilization. Paleovalleys mapped along the eastern margin showed the occurrence of coralgal ledges along the channel margins. Paleovalleys are usually deeper than 45m and are associated with outer shelf rhodolith beds. Shelf edge ridges (80 to 120m deep) were mapped along both margins and are related to red algal encrusting irregular surfaces that have more than 3m in height, forming a rigid substrate for coral growth. Along the Equatorial Margin, off the Amazon mouth, shelf edge patch reefs and rhodolith beds forming encrusting surfaces and shelf edge ridges were mapped in water depths greater

  4. From mapping to virtual geography

    DEFF Research Database (Denmark)

    Kjems, Erik; Kolar, Jan

    2005-01-01

    The history of mapping goes back hundreds of years. Many books and articles have been written on this topic as many different ways to present our world. This paper will not deal with cartography in a normal sense as indicated by the headline but will face and argue the necessity of dealing...... for mapping the surface of the Earth to a plane. These efforts were driven by constraining features of the plane paper. Nowadays, in our age of multimedia and computer technology professionals are capable of building three-dimensional virtual environments of whole cities or mountain massifs. However, many...... efforts in creating such three-dimensional scenes omit that neither any mountain massif nor any city rises above a plane, but above a more complex geometric feature which is also defined in a three-dimensional space. Today, there is simply no need to figure the Earth mapped to the plane paper or to any...

  5. On higher-dimensional loop algebras, pseudodifferential operators and Fock space realizations

    International Nuclear Information System (INIS)

    Westerberg, A.

    1997-01-01

    We discuss a previously discovered extension of the infinite-dimensional Lie algebra map(M,g) which generalizes the Kac-Moody algebras in 1+1 dimensions and the Mickelsson-Faddeev algebras in 3+1 dimensions to manifolds M of general dimensions. Furthermore, we review the method of regularizing current algebras in higher dimensions using pseudodifferential operator (PSDO) symbol calculus. In particular, we discuss the issue of Lie algebra cohomology of PSDOs and its relation to the Schwinger terms arising in the quantization process. Finally, we apply this regularization method to the algebra with partial success, and discuss the remaining obstacles to the construction of a Fock space representation. (orig.)

  6. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  7. Three-dimensional low-energy topological invariants

    International Nuclear Information System (INIS)

    Bakalarska, M.; Broda, B.

    2000-01-01

    A description of the one-loop approximation formula for the partition function of a three-dimensional abelian version of the Donaldson-Witten theory is proposed. The one-loop expression is shown to contain such topological invariants of a three-dimensional manifold M like the Reidemeister-Ray-Singer torsion τ R and Betti numbers. (orig.)

  8. Predicting the bounds of large chaotic systems using low-dimensional manifolds.

    Directory of Open Access Journals (Sweden)

    Asger M Haugaard

    Full Text Available Predicting extrema of chaotic systems in high-dimensional phase space remains a challenge. Methods, which give extrema that are valid in the long term, have thus far been restricted to models of only a few variables. Here, a method is presented which treats extrema of chaotic systems as belonging to discretised manifolds of low dimension (low-D embedded in high-dimensional (high-D phase space. As a central feature, the method exploits that strange attractor dimension is generally much smaller than parent system phase space dimension. This is important, since the computational cost associated with discretised manifolds depends exponentially on their dimension. Thus, systems that would otherwise be associated with tremendous computational challenges, can be tackled on a laptop. As a test, bounding manifolds are calculated for high-D modifications of the canonical Duffing system. Parameters can be set such that the bounding manifold displays harmonic behaviour even if the underlying system is chaotic. Thus, solving for one post-transient forcing cycle of the bounding manifold predicts the extrema of the underlying chaotic problem indefinitely.

  9. Transport in low-dimensional mesoscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Syzranov, Sergey

    2011-05-05

    The work is devoted to the physics of graphene-based optoelectronics and arrays of Josephson junctions. The first part deals with transport in a graphene p-n junction irradiated by an electromagnetic field. The photocurrent in such device is calculated analytically and compared to those observed in the recent experiments on graphene photodetectors. It is shown that in a clean effectively one-dimensional junction the photocurrent oscillates as a function of gate voltages due to the interference between electron paths accompanied by the resonant photon absorption. The second part of the thesis is devoted to the construction of a Drude-like theory for the transport of Cooper pairs in weakly disordered Josephson networks and to finding the conductivity and the characteristic temperature of the commencement of strong localization. Also, it is shown that the low-temperature superconductor-insulator transition is necessarily of the first order in all 3D and in most 2D systems.

  10. Dynamic screening and electron dynamics in low-dimensional metal systems

    International Nuclear Information System (INIS)

    Silkin, V.M.; Quijada, M.; Vergniory, M.G.; Alducin, M.; Borisov, A.G.; Diez Muino, R.; Juaristi, J.I.; Sanchez-Portal, D.; Chulkov, E.V.; Echenique, P.M.

    2007-01-01

    Recent advances in the theoretical description of dynamic screening and electron dynamics in metallic media are reviewed. The time-dependent building-up of screening in different situations is addressed. Perturbative and non-perturbative theories are used to study electron dynamics in low-dimensional systems, such as metal clusters, image states, surface states and quantum wells. Modification of the electronic lifetimes due to confinement effects is analyzed as well

  11. Interchanging parameters and integrals in dynamical systems: the mapping case

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, John A.G. [Department of Mathematics, La Trobe University, Bundoora, VIC (Australia) and School of Mathematics, University of New South Wales, Sydney, NSW (Australia)]. E-mail: jagr@maths.unsw.edu.au; Apostolos, Iatrou; Quispel, G.R.W. [Department of Mathematics, La Trobe University, Bundoora, VIC (Australia)]. E-mails: A.Iatrou@latrobe.edu.au; R.Quispel@latrobe.edu.au

    2002-03-08

    We consider dynamical systems with discrete time (maps) that possess one or more integrals depending upon parameters. We show that integrals can be used to replace parameters in the original map so as to construct a different map with different integrals. We also highlight a process of reparametrization that can be used to increase the number of parameters in the original map prior to using integrals to replace them. Properties of the original map and the new map are compared. The theory is motivated by, and illustrated with, examples of a three-dimensional trace map and some four-dimensional maps previously shown to be integrable. (author)

  12. Adapting the HSV polarization-color mapping for regions with low irradiance and high polarization.

    Science.gov (United States)

    Scott Tyo, J; Ratliff, Bradley M; Alenin, Andrey S

    2016-10-15

    Many mappings from polarization into color have been developed so that polarization information can be displayed. One of the most common of these maps the angle of linear polarization into color hue and degree of linear polarization into color saturation, while preserving the irradiance information from the polarization data. While this strategy enjoys wide popularity, there is a large class of polarization images for which it is not ideal. It is common to have images where the strongest polarization signatures (in terms of degree of polarization) occur in regions of relatively low irradiance: either in shadow in reflective bands or in cold regions in emissive bands. Since the irradiance is low, the chromatic properties of the resulting images are generally not apparent. Here we present an alternate mapping that uses the statistics of the angle of polarization as a measure of confidence in the polarization signature, then amplifies the irradiance in regions of high confidence, and leaves it unchanged in regions of low confidence. Results are shown from an LWIR and a visible spectrum imager.

  13. INTRODUCTION: Physics of Low-dimensional Systems: Nobel Symposium 73

    Science.gov (United States)

    Lundqvist, Stig

    1989-01-01

    The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic systems have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas. A Nobel Symposium provides an excellent opportunity to bring together a group of prominent scientists for a stimulating exchange of new ideas and results. The Nobel Symposia are very small meetings by invitation only and the number of key international participants is typically in the range 25-40. These Symposia are arranged through a special Nobel Symposium Committee after proposal from individuals. This Symposium was sponsored by the Nobel Foundation through its Nobel Symposium Fund with grants from The

  14. Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping

    Science.gov (United States)

    Kubica, Aleksander; Beverland, Michael E.; Brandão, Fernando; Preskill, John; Svore, Krysta M.

    2018-05-01

    Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p3DCC (1 )≃1.9 % and p3DCC (2 )≃27.6 % . We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.

  15. Energy solutions in rural Africa: mapping electrification costs of distributed solar and diesel generation versus grid extension

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, S; Bodis, K; Huld, T [European Commission Joint Research Centre, Institute for Energy, Renewable Energy Unit, 2749 via Enrico Fermi, TP450, 21027 Ispra (Vatican City State, Holy See) (Italy); Moner-Girona, M, E-mail: Sandor.Szabo@ec.europa.eu [UNEP Energy Branch Division of Technology, Industry and Economics, 15 rue de Milan, F-75441, Paris CEDEX09 (France)

    2011-07-15

    Three rural electrification options are analysed showing the cost optimal conditions for a sustainable energy development applying renewable energy sources in Africa. A spatial electricity cost model has been designed to point out whether diesel generators, photovoltaic systems or extension of the grid are the least-cost option in off-grid areas. The resulting mapping application offers support to decide in which regions the communities could be electrified either within the grid or in an isolated mini-grid. Donor programs and National Rural Electrification Agencies (or equivalent governmental departments) could use this type of delineation for their program boundaries and then could use the local optimization tools adapted to the prevailing parameters.

  16. Energy solutions in rural Africa: mapping electrification costs of distributed solar and diesel generation versus grid extension

    International Nuclear Information System (INIS)

    Szabo, S; Bodis, K; Huld, T; Moner-Girona, M

    2011-01-01

    Three rural electrification options are analysed showing the cost optimal conditions for a sustainable energy development applying renewable energy sources in Africa. A spatial electricity cost model has been designed to point out whether diesel generators, photovoltaic systems or extension of the grid are the least-cost option in off-grid areas. The resulting mapping application offers support to decide in which regions the communities could be electrified either within the grid or in an isolated mini-grid. Donor programs and National Rural Electrification Agencies (or equivalent governmental departments) could use this type of delineation for their program boundaries and then could use the local optimization tools adapted to the prevailing parameters.

  17. Low-Dimensional Network Formation in Molten Sodium Carbonate.

    Science.gov (United States)

    Wilding, Martin C; Wilson, Mark; Alderman, Oliver L G; Benmore, Chris; Weber, J K R; Parise, John B; Tamalonis, Anthony; Skinner, Lawrie

    2016-04-15

    Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (F(x)(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to F(x)(Q) are obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example ~55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na(+) ions.

  18. MO-C-17A-08: Evaluation of Lung Deformation Using Three Dimensional Strain Maps

    Energy Technology Data Exchange (ETDEWEB)

    Cui, T [Duke University, Durham, NC (United States); Huang, Q [Duke Unversity, Durham, NC (United States); Miller, W [University of Virginia, Charlottesville, VA (United States); Zhong, X [Siemens Healthcare, Atlanta, GA (United States); Yin, F; Cai, J [Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: To develop a systematic approach to generate three dimensional (3D) strain maps of lung using the displacement vector field (DVF) during the respiratory deformation, and to demonstrate its application in evaluating deformable image registration (DIR). Methods: A DVF based strain tensor at each voxel of interest (VOI) was calculated from the relative displacements between the VOI and each of the six nearest neighbors. The maximum and minimum stretches of a VOI can be determined by the principal strains (E{sub 1}, E{sub 2} and E{sub 3}), which are the eigenvalues and the corresponding strain tensors. Two healthy volunteers enrolled in this study under IRB-approved protocol, each was scanned using 3D Hyperpolarized He-3 tagging-MRI and 3D proton-MRI with TrueFISP sequence at the endof- inhalation (EOI) and the end-of-exhalation (EOE) phases. 3D DVFs of tagging- and proton-MRI were obtained by the direct measurements of the tagging grid trajectory and by the DIR method implemented in commercial software. Results: 3D strain maps were successfully generated for all DVFs. The principal strain E1s were calculated as 0.43±0.05 and 0.17±0.25 for tagging-MRI and proton-MRI, respectively. The large values of E{sub 1} indicate the predominant lung motion in the superior-inferior (SI) direction. Given that the DVFs from the tagging images are considered as the ground truth, the discrepancies in the DIR-based strain maps suggest the inaccuracy of the DIR algorithm. In the E{sub 1} maps of tagging-MRI for subject 1, the fissures were distinguishable by the larger values (0.49±0.02) from the adjacent tissues (0.41±0.03) due to the larger relative displacement between the lung lobes. Conclusion: We have successfully developed a methodology to generate DVF-based 3D strain maps of lung. It can potentially enable us to better understand the pulmonary biomechanics and to evaluate and improve the DIR algorithms for the lung deformation. We are currently studying more

  19. Obtaining parton distribution functions from self-organizing maps

    International Nuclear Information System (INIS)

    Honkanen, H.; Liuti, S.; Loitiere, Y.C.; Brogan, D.; Reynolds, P.

    2007-01-01

    We present an alternative algorithm to global fitting procedures to construct Parton Distribution Functions parametrizations. The proposed algorithm uses Self-Organizing Maps which at variance with the standard Neural Networks, are based on competitive-learning. Self-Organizing Maps generate a non-uniform projection from a high dimensional data space onto a low dimensional one (usually 1 or 2 dimensions) by clustering similar PDF representations together. The SOMs are trained on progressively narrower selections of data samples. The selection criterion is that of convergence towards a neighborhood of the experimental data. All available data sets on deep inelastic scattering in the kinematical region of 0.001 ≤ x ≤ 0.75, and 1 ≤ Q 2 ≤ 100 GeV 2 , with a cut on the final state invariant mass, W 2 ≥ 10 GeV 2 were implemented. The proposed fitting procedure, at variance with standard neural network approaches, allows for an increased control of the systematic bias by enabling the user to directly control the data selection procedure at various stages of the process. (author)

  20. Extension classification method for low-carbon product cases

    Directory of Open Access Journals (Sweden)

    Yanwei Zhao

    2016-05-01

    Full Text Available In product low-carbon design, intelligent decision systems integrated with certain classification algorithms recommend the existing design cases to designers. However, these systems mostly dependent on prior experience, and product designers not only expect to get a satisfactory case from an intelligent system but also hope to achieve assistance in modifying unsatisfactory cases. In this article, we proposed a new categorization method composed of static and dynamic classification based on extension theory. This classification method can be integrated into case-based reasoning system to get accurate classification results and to inform designers of detailed information about unsatisfactory cases. First, we establish the static classification model for cases by dependent function in a hierarchical structure. Then for dynamic classification, we make transformation for cases based on case model, attributes, attribute values, and dependent function, thus cases can take qualitative changes. Finally, the applicability of proposed method is demonstrated through a case study of screw air compressor cases.

  1. Controlling chaos in dynamical systems described by maps

    International Nuclear Information System (INIS)

    Crispin, Y.; Marduel, C.

    1994-01-01

    The problem of suppressing chaotic behavior in dynamical systems is treated using a feedback control method with limited control effort. The proposed method is validated on archetypal systems described by maps, i.e. discrete-time difference equations. The method is also applicable to dynamical systems described by flows, i.e. by systems of ordinary differential equations. Results are presented for the one-dimensional logistic map and for a two-dimensional Lotka-Volterra map describing predator-prey population dynamics. It is shown that chaos can be suppressed and the system stabilized about a period-1 fixed point of the maps

  2. Terrestrial gamma radiation baseline mapping using ultra low density sampling methods.

    Science.gov (United States)

    Kleinschmidt, R; Watson, D

    2016-01-01

    Baseline terrestrial gamma radiation maps are indispensable for providing basic reference information that may be used in assessing the impact of a radiation related incident, performing epidemiological studies, remediating land contaminated with radioactive materials, assessment of land use applications and resource prospectivity. For a large land mass, such as Queensland, Australia (over 1.7 million km(2)), it is prohibitively expensive and practically difficult to undertake detailed in-situ radiometric surveys of this scale. It is proposed that an existing, ultra-low density sampling program already undertaken for the purpose of a nationwide soil survey project be utilised to develop a baseline terrestrial gamma radiation map. Geoelement data derived from the National Geochemistry Survey of Australia (NGSA) was used to construct a baseline terrestrial gamma air kerma rate map, delineated by major drainage catchments, for Queensland. Three drainage catchments (sampled at the catchment outlet) spanning low, medium and high radioelement concentrations were selected for validation of the methodology using radiometric techniques including in-situ measurements and soil sampling for high resolution gamma spectrometry, and comparative non-radiometric analysis. A Queensland mean terrestrial air kerma rate, as calculated from the NGSA outlet sediment uranium, thorium and potassium concentrations, of 49 ± 69 nGy h(-1) (n = 311, 3σ 99% confidence level) is proposed as being suitable for use as a generic terrestrial air kerma rate background range. Validation results indicate that catchment outlet measurements are representative of the range of results obtained across the catchment and that the NGSA geoelement data is suitable for calculation and mapping of terrestrial air kerma rate. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  3. On low-energy effective action in three-dimensional = 2 and = 4 supersymmetric electrodynamics

    Science.gov (United States)

    Buchbinder, I. L.; Merzlikin, B. S.; Samsonov, I. B.

    2013-11-01

    We discuss general structure of low-energy effective actions in = 2 and = 4 three-dimensional supersymmetric electrodynamics (SQED) in gauge superfield sector. There are specific terms in the effective action having no four-dimensional analogs. Some of these terms are responsible for the moduli space metric in the Coulomb branch of the theory. We find two-loop quantum corrections to the moduli space metric in the = 2 SQED and show that in the = 4 SQED the moduli space does not receive two-loop quantum corrections.

  4. Expanding Thurston maps

    CERN Document Server

    Bonk, Mario

    2017-01-01

    This monograph is devoted to the study of the dynamics of expanding Thurston maps under iteration. A Thurston map is a branched covering map on a two-dimensional topological sphere such that each critical point of the map has a finite orbit under iteration. It is called expanding if, roughly speaking, preimages of a fine open cover of the underlying sphere under iterates of the map become finer and finer as the order of the iterate increases. Every expanding Thurston map gives rise to a fractal space, called its visual sphere. Many dynamical properties of the map are encoded in the geometry of this visual sphere. For example, an expanding Thurston map is topologically conjugate to a rational map if and only if its visual sphere is quasisymmetrically equivalent to the Riemann sphere. This relation between dynamics and fractal geometry is the main focus for the investigations in this work.

  5. Fast and sensitive rigid-body fitting into cryo-EM density maps with PowerFit

    NARCIS (Netherlands)

    C.p.van Zundert, Gydo; M.j.j. Bonvin, Alexandre

    2015-01-01

    Cryo-EM is a rapidly developing method to investigate the three dimensional structure of large macromolecular complexes. In spite of all the advances in the field, the resolution of most cryo-EM density maps is too low for de novo model building. Therefore, the data are often complemented by fitting

  6. A one-dimensional Q-machine model taking into account charge-exchange collisions

    International Nuclear Information System (INIS)

    Maier, H.; Kuhn, S.

    1992-01-01

    The Q-machine is a nontrivial bounded plasma system which is excellently suited not only for fundamental plasma physics investigations but also for the development and testing of new theoretical methods for modeling such systems. However, although Q-machines have now been around for over thirty years, it appears that there exist no comprehensive theoretical models taking into account their considerable geometrical and physical complexity with a reasonable degree of self-consistency. In the present context we are concerned with the low-density, single-emitter Q-machine, for which the most widely used model is probably the (one-dimensional) ''collisionless plane-diode model'', which has originally been developed for thermionic diodes. Although the validity of this model is restricted to certain ''axial'' phenomena, we consider it a suitable starting point for extensions of various kinds. While a generalization to two-dimensional geometry (with still collisionless plasma) is being reported elsewhere, the present work represents a first extension to collisional plasma (with still one-dimensional geometry). (author) 12 refs., 2 figs

  7. Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing

    KAUST Repository

    Saidaminov, Makhsud I.

    2017-03-03

    Low-dimensional-networked (low-DN) perovskite derivatives are bulk quantum materials in which charge carriers are localized within ordered metal halide sheets, rods, or clusters that are separated by cationic lattices. After two decades of hibernation, this class of semiconductors reemerged in the past two years, largely catalyzed by the interest in alternative, more stable absorbers to CH3NH3PbI3-type perovskites in photovoltaics. Whether low-DN perovskites will surpass other photovoltaic technologies remains to be seen, but their impressively high photo- and electroluminescence yields have already set new benchmarks in light emission applications. Here we offer our perspective on the most exciting advances in materials design of low-DN perovskites for energy- and optoelectronic-related applications. The next few years will usher in an explosive growth in this tribe of quantum materials, as only a few members have been synthesized, while the potential library of compositions and structures is believed to be much larger and is yet to be discovered.

  8. Immediate effects of Graston Technique on hamstring muscle extensibility and pain intensity in patients with nonspecific low back pain.

    Science.gov (United States)

    Moon, Jong Hoon; Jung, Jin-Hwa; Won, Young Sik; Cho, Hwi-Young

    2017-02-01

    [Purpose] The purpose of this study was to analyze the effect of Graston Technique on hamstring extensibility and pain intensity in patients with nonspecific low back pain. [Subjects and Methods] Twenty-four patients with nonspecific low back pain (27-46 years of age) enrolled in the study. All participants were randomly assigned to one of two groups: Graston technique group (n=12) and a static stretching group (n=12). The Graston Technique was used on the hamstring muscles of the experimental group, while the static stretching group performed static stretching. Hamstring extensibility was recorded using the sit and reach test, and a visual analog scale was used to measure pain intensity. [Results] Both groups showed a significant improvement after intervention. In comparison to the static stretching group, the Graston technique group had significantly more improvement in hamstring extensibility. [Conclusion] The Graston Technique is a simple and effective intervention in nonspecific low back pain patients to improve hamstring extensibility and lower pain intensity, and it would be beneficial in clinical practice.

  9. Geologic Seafloor Mapping Defines Extensive Paleochannel Network Offshore of the Delmarva Peninsula, U.S.A: Implications for Mid-Atlantic Bight Evolution since the Pliocene

    Science.gov (United States)

    Brothers, L. L.; Foster, D. S.; Pendleton, E. A.; Thieler, E. R.; Baldwin, W. E.; Sweeney, E. M.

    2017-12-01

    Nearly 10,000 km of geophysical data and seafloor grab samples along with photo and video data from more than 200 seafloor stations are used to interpret seafloor and shallow subsurface geology on the Delmarva Peninsula's inner continental shelf. These USGS data are supplemented with existing National Oceanic Atmospheric Administration hydrographic survey data and Bureau of Ocean Energy Management Wind Energy Area seismic reflection profile data to support one of the most data-rich and extensive inner continental shelf studies on the U.S. Atlantic coast. Using chirp, multi-channel boomer and sparker seismic reflection profile data, we map an extensive paleochannel network from 500 meters to 30 kilometers offshore of the modern Delmarva coastline. Fluvial erosional surfaces relating to six sea-level lowstands are identified at two-way travel times between 0.01 and 0.12 ms. Paleochannels exhibit up to 30 meters of relief and the discrete complexes can be >25 kilometers wide. Based on areal distribution, stratigraphic relationships and amino acid dating results from earlier borehole studies, we interpret the infilled channels as Late Tertiary and Quaternary courses of the Delaware, Susquehanna, Potomac and York Rivers. Our study generates a detailed illustration of major river systems' paleochannel frequency, distribution and geometry and provides new insight into how coastal river systems evolve in low-gradient passive margins.

  10. Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics.

    Science.gov (United States)

    Liu, Xiaofeng; Guo, Qiangbing; Qiu, Jianrong

    2017-04-01

    Low-dimensional (LD) materials demonstrate intriguing optical properties, which lead to applications in diverse fields, such as photonics, biomedicine and energy. Due to modulation of electronic structure by the reduced structural dimensionality, LD versions of metal, semiconductor and topological insulators (TIs) at the same time bear distinct nonlinear optical (NLO) properties as compared with their bulk counterparts. Their interaction with short pulse laser excitation exhibits a strong nonlinear character manifested by NLO absorption, giving rise to optical limiting or saturated absorption associated with excited state absorption and Pauli blocking in different materials. In particular, the saturable absorption of these emerging LD materials including two-dimensional semiconductors as well as colloidal TI nanoparticles has recently been utilized for Q-switching and mode-locking ultra-short pulse generation across the visible, near infrared and middle infrared wavelength regions. Beside the large operation bandwidth, these ultrafast photonics applications are especially benefit from the high recovery rate as well as the facile processibility of these LD materials. The prominent NLO response of these LD materials have also provided new avenues for the development of novel NLO and photonics devices for all-optical control as well as optical circuits beyond ultrafast lasers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Three-dimensional neural net for learning visuomotor coordination of a robot arm.

    Science.gov (United States)

    Martinetz, T M; Ritter, H J; Schulten, K J

    1990-01-01

    An extension of T. Kohonen's (1982) self-organizing mapping algorithm together with an error-correction scheme based on the Widrow-Hoff learning rule is applied to develop a learning algorithm for the visuomotor coordination of a simulated robot arm. Learning occurs by a sequence of trial movements without the need for an external teacher. Using input signals from a pair of cameras, the closed robot arm system is able to reduce its positioning error to about 0.3% of the linear dimensions of its work space. This is achieved by choosing the connectivity of a three-dimensional lattice consisting of the units of the neural net.

  12. Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems

    International Nuclear Information System (INIS)

    Helin, T; Burger, M

    2015-01-01

    A demanding challenge in Bayesian inversion is to efficiently characterize the posterior distribution. This task is problematic especially in high-dimensional non-Gaussian problems, where the structure of the posterior can be very chaotic and difficult to analyse. Current inverse problem literature often approaches the problem by considering suitable point estimators for the task. Typically the choice is made between the maximum a posteriori (MAP) or the conditional mean (CM) estimate. The benefits of either choice are not well-understood from the perspective of infinite-dimensional theory. Most importantly, there exists no general scheme regarding how to connect the topological description of a MAP estimate to a variational problem. The recent results by Dashti and others (Dashti et al 2013 Inverse Problems 29 095017) resolve this issue for nonlinear inverse problems in Gaussian framework. In this work we improve the current understanding by introducing a novel concept called the weak MAP (wMAP) estimate. We show that any MAP estimate in the sense of Dashti et al (2013 Inverse Problems 29 095017) is a wMAP estimate and, moreover, how the wMAP estimate connects to a variational formulation in general infinite-dimensional non-Gaussian problems. The variational formulation enables to study many properties of the infinite-dimensional MAP estimate that were earlier impossible to study. In a recent work by the authors (Burger and Lucka 2014 Maximum a posteriori estimates in linear inverse problems with logconcave priors are proper bayes estimators preprint) the MAP estimator was studied in the context of the Bayes cost method. Using Bregman distances, proper convex Bayes cost functions were introduced for which the MAP estimator is the Bayes estimator. Here, we generalize these results to the infinite-dimensional setting. Moreover, we discuss the implications of our results for some examples of prior models such as the Besov prior and hierarchical prior. (paper)

  13. Diabetes and depression comorbidity and socio-economic status in low and middle income countries (LMICs: a mapping of the evidence

    Directory of Open Access Journals (Sweden)

    Leone Tiziana

    2012-11-01

    Full Text Available Abstract Non-communicable diseases account for more than 50% of deaths in adults aged 15–59 years in most low income countries. Depression and diabetes carry an enormous public health burden, making the identification of risk factors for these disorders an important strategy. While socio-economic inequalities in chronic diseases and their risk factors have been studied extensively in high-income countries, very few studies have investigated social inequalities in chronic disease risk factors in low or middle-income countries. Documenting chronic disease risk factors is important for understanding disease burdens in poorer countries and for targeting specific populations for the most effective interventions. The aim of this review is to systematically map the evidence for the association of socio-economic status with diabetes and depression comorbidity in low and middle income countries. The objective is to identify whether there is any evidence on the direction of the relationship: do co-morbidities have an impact on socio-economic status or vice versa and whether the prevalence of diabetes combined with depression is associated with socio-economic status factors within the general population. To date no other study has reviewed the evidence for the extent and nature of this relationship. By systematically mapping the evidence in the broader sense we can identify the policy and interventions implications of existing research, highlight the gaps in knowledge and suggest future research. Only 14 studies were found to analyse the associations between depression and diabetes comorbidity and socio-economic status. Studies show some evidence that the occurrence of depression among people with diabetes is associated with lower socio-economic status. The small evidence base that considers diabetes and depression in low and middle income countries is out of step with the scale of the burden of disease.

  14. Three-dimensional maps for disaster management

    NARCIS (Netherlands)

    Bandrova, T.; Zlatanova, S.; Konecny, M.

    2012-01-01

    Geo-information techniques have proven their usefulness for the purposes of early warning and emergency response. These techniques enable us to generate extensive geo-information to make informed decisions in response to natural disasters that lead to better protection of citizens, reduce damage to

  15. Linear negative magnetoresistance in two-dimensional Lorentz gases

    Science.gov (United States)

    Schluck, J.; Hund, M.; Heckenthaler, T.; Heinzel, T.; Siboni, N. H.; Horbach, J.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Gennser, U.; Mailly, D.

    2018-03-01

    Two-dimensional Lorentz gases formed by obstacles in the shape of circles, squares, and retroreflectors are reported to show a pronounced linear negative magnetoresistance at small magnetic fields. For circular obstacles at low number densities, our results agree with the predictions of a model based on classical retroreflection. In extension to the existing theoretical models, we find that the normalized magnetoresistance slope depends on the obstacle shape and increases as the number density of the obstacles is increased. The peaks are furthermore suppressed by in-plane magnetic fields as well as by elevated temperatures. These results suggest that classical retroreflection can form a significant contribution to the magnetoresistivity of two-dimensional Lorentz gases, while contributions from weak localization cannot be excluded, in particular for large obstacle densities.

  16. Gender analysis of use of participatory tools among extension workers

    African Journals Online (AJOL)

    (c2 = 0.833, p = 0.361; t = 0.737, p = 0.737, CC = 0.396) Participatory tools used by both male and female extension personnel include resource map, mobility map, transect map, focus group discussion, venn diagram, seasonal calendar, SWOT analysis, semistructured interview, daily activity schedule, resource analysis, ...

  17. Three-dimensional tori and Arnold tongues

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, Munehisa, E-mail: sekikawa@cc.utsunomiya-u.ac.jp [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya-shi 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki-shi 214-8571 (Japan); Kamiyama, Kyohei [Department of Electronics and Bioinformatics, Meiji University, Kawasaki-shi 214-8571 (Japan); Aihara, Kazuyuki [Institute of Industrial Science, the University of Tokyo, Meguro-ku 153-8505 (Japan)

    2014-03-15

    This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

  18. Topographical Hill Shading Map Production Based Tianditu (map World)

    Science.gov (United States)

    Wang, C.; Zha, Z.; Tang, D.; Yang, J.

    2018-04-01

    TIANDITU (Map World) is the public version of National Platform for Common Geospatial Information Service, and the terrain service is an important channel for users on the platform. With the development of TIANDITU, topographical hill shading map production for providing and updating global terrain map on line becomes necessary for the characters of strong intuition, three-dimensional sense and aesthetic effect. As such, the terrain service of TIANDITU focuses on displaying the different scales of topographical data globally. And this paper mainly aims to research the method of topographical hill shading map production globally using DEM (Digital Elevation Model) data between the displaying scales about 1 : 140,000,000 to 1 : 4,000,000, corresponded the display level from 2 to 7 on TIANDITU website.

  19. Applicability of vulnerability maps

    International Nuclear Information System (INIS)

    Andersen, L.J.; Gosk, E.

    1989-01-01

    A number of aspects to vulnerability maps are discussed: the vulnerability concept, mapping purposes, possible users, and applicability of vulnerability maps. Problems associated with general-type vulnerability mapping, including large-scale maps, universal pollutant, and universal pollution scenario are also discussed. An alternative approach to vulnerability assessment - specific vulnerability mapping for limited areas, specific pollutant, and predefined pollution scenario - is suggested. A simplification of the vulnerability concept is proposed in order to make vulnerability mapping more objective and by this means more comparable. An extension of the vulnerability concept to the rest of the hydrogeological cycle (lakes, rivers, and the sea) is proposed. Some recommendations regarding future activities are given

  20. Associations between Trunk Extension Endurance and Isolated Lumbar Extension Strength in Both Asymptomatic Participants and Those with Chronic Low Back Pain

    Directory of Open Access Journals (Sweden)

    Rebecca Conway

    2016-09-01

    Full Text Available Background: Strength and endurance tests are important for both clinical practice and research due to the key role they play in musculoskeletal function. In particular, deconditioning of the lumbar extensor musculature has been associated with low back pain (LBP. Due to the relationship between strength and absolute endurance, it is possible that trunk extension (TEX endurance tests could provide a proxy measure of isolated lumbar extension (ILEX strength and thus represent a simple, practical alternative to ILEX measurements. Though, the comparability of TEX endurance and ILEX strength is presently unclear and so the aim of the present study was to examine this relationship. Methods: Thirty eight healthy participants and nineteen participants with non-specific chronic LBP and no previous lumbar surgery participated in this cross-sectional study design. TEX endurance was measured using the Biering–Sorensen test. A maximal ILEX strength test was performed on the MedX lumbar-extension machine. Results: A Pearson’s correlation revealed no relationship between TEX endurance and ILEX strength in the combined group (r = 0.035, p = 0.793, the chronic LBP group (r = 0.120, p = 0.623 or the asymptomatic group (r = −0.060, p = 0.720. Conclusions: The results suggest that TEX is not a good indicator of ILEX and cannot be used to infer results regarding ILEX strength. However, a combination of TEX and ILEX interpreted together likely offers the greatest and most comprehensive information regarding lumbo-pelvic function during extension.

  1. Ultrafast dynamics of confined and localised excitons and biexcitons in low-dimensional semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Langbein, Wolfgang; Borri, Paola

    1999-01-01

    Coherent optical spectroscopy in the form of nonlinear transient four-wave mixing (TFWM) and linear resonant Rayleigh scattering (RRS) has been applied to investigate the exciton dynamics of low-dimensional semiconductor heterostructures. The dephasing times of excitons are determined from...

  2. analytic sets and extension of holomorphic maps of positive ...

    Indian Academy of Sciences (India)

    11

    (1) (1990),. 49-100. 11. F. Forstneric, Extending proper holomorphic mappings of positive codimension, Invent. Math. 95 (1989), 31-61. 12. M. Hakim, Applications holomorphes propres continues de domaines strictement pseudocon- vexes de ...

  3. Electron-hole liquid in semiconductors and low-dimensional structures

    Science.gov (United States)

    Sibeldin, N. N.

    2017-11-01

    The condensation of excitons into an electron-hole liquid (EHL) and the main EHL properties in bulk semiconductors and low-dimensional structures are considered. The EHL properties in bulk materials are discussed primarily in qualitative terms based on the experimental results obtained for germanium and silicon. Some of the experiments in which the main EHL thermodynamic parameters (density and binding energy) have been obtained are described and the basic factors that determine these parameters are considered. Topics covered include the effect of external perturbations (uniaxial strain and magnetic field) on EHL stability; phase diagrams for a nonequilibrium exciton-gas-EHL system; information on the size and concentration of electron-hole drops (EHDs) under various experimental conditions; the kinetics of exciton condensation and of recombination in the exciton-gas-EHD system; dynamic EHD properties and the motion of EHDs under the action of external forces; the properties of giant EHDs that form in potential wells produced by applying an inhomogeneous strain to the crystal; and effects associated with the drag of EHDs by nonequilibrium phonons (phonon wind), including the dynamics and formation of an anisotropic spatial structure of the EHD cloud. In discussing EHLs in low-dimensional structures, a number of studies are reviewed on the observation and experimental investigation of phenomena such as spatially indirect (dipolar) electron-hole and exciton (dielectric) liquids in GaAs/AlGaAs structures with double quantum wells (QWs), EHDs containing only a few electron-hole pairs (dropletons), EHLs in type-I silicon QWs, and spatially direct and dipolar EHLs in type-II silicon-germanium heterostructures.

  4. A spatio-temporal extension to the map cube operator

    Science.gov (United States)

    Alzate, Juan C.; Moreno, Francisco J.; Echeverri, Jaime

    2012-09-01

    OLAP (On Line Analytical Processing) is a set of techniques and operators to facilitate the data analysis usually stored in a data warehouse. In this paper, we extend the functionality of an OLAP operator known as Map Cube with the definition and incorporation of a function that allows the formulation of spatio-temporal queries. For example, consider a data warehouse about crimes that includes data about the places where the crimes were committed. Suppose we want to find and visualize the trajectory (a trajectory is just the path that an object follows through space as a function of time) of the crimes of a suspect beginning with his oldest crime and ending with his most recent one. In order to meet this requirement, we extend the Map Cube operator.

  5. Mapping high-latitude plasma convection with coherent HF radars

    International Nuclear Information System (INIS)

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B.; Villain, J.-P.; Hanuise, C.; Kelly, J.

    1989-01-01

    In this decade, a new technique for the study of ionosphere electrodynamics has been implemented in an evolving generation of high-latitude HF radars. Coherent backscatter from electron density irregularities at F region altitudes is utilized to observe convective plasma motion. The electronic beam forming and scanning capabilities of the radars afford an excellent combination of spatial (∼50 km) and temporal (∼1 min) resolution of the large-scale (∼10 6 km 2 ) convection pattern. In this paper, we outline the methods developed to synthesize the HF radar data into two-dimensional maps of convection velocity. Although any single radar can directly measure only the line-of-sight, or radial, component of the plasma motion, the convection pattern is sometimes so uniform and stable that scanning in azimuth serves to determine the transverse component as well. Under more variable conditions, data from a second radar are necessary to unambiguously resolve velocity vectors. In either case, a limited region of vector solution can be expanded into contiguous areas of single-radar radial velocity data by noting that the convection must everywhere be divergence-free, i.e., ∇·v=0. It is thus often possible to map velocity vectors without extensive second-radar coverage. We present several examples of two-dimensional velocity maps. These show instances of L shell-aligned flow in the dusk sector, the reversal of convection near magnetic midnight, and counterstreaming in the dayside cleft. We include a study of merged coherent and incoherent radar data that illustrates the applicability of these methods to other ionospheric radar systems. copyright American Geophysical Union 1989

  6. Personalized 2D color maps

    KAUST Repository

    Waldin, Nicholas; Bernhard, Matthias; Rautek, Peter; Viola, Ivan

    2016-01-01

    . In this paper we present a novel method to measure a user's ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies

  7. Performance of 3DOSEM and MAP algorithms for reconstructing low count SPECT acquisitions

    Energy Technology Data Exchange (ETDEWEB)

    Grootjans, Willem [Radboud Univ. Medical Center, Nijmegen (Netherlands). Dept. of Radiology and Nuclear Medicine; Leiden Univ. Medical Center (Netherlands). Dept. of Radiology; Meeuwis, Antoi P.W.; Gotthardt, Martin; Visser, Eric P. [Radboud Univ. Medical Center, Nijmegen (Netherlands). Dept. of Radiology and Nuclear Medicine; Slump, Cornelis H. [Univ. Twente, Enschede (Netherlands). MIRA Inst. for Biomedical Technology and Technical Medicine; Geus-Oei, Lioe-Fee de [Radboud Univ. Medical Center, Nijmegen (Netherlands). Dept. of Radiology and Nuclear Medicine; Univ. Twente, Enschede (Netherlands). MIRA Inst. for Biomedical Technology and Technical Medicine; Leiden Univ. Medical Center (Netherlands). Dept. of Radiology

    2016-07-01

    Low count single photon emission computed tomography (SPECT) is becoming more important in view of whole body SPECT and reduction of radiation dose. In this study, we investigated the performance of several 3D ordered subset expectation maximization (3DOSEM) and maximum a posteriori (MAP) algorithms for reconstructing low count SPECT images. Phantom experiments were conducted using the National Electrical Manufacturers Association (NEMA) NU2 image quality (IQ) phantom. The background compartment of the phantom was filled with varying concentrations of pertechnetate and indiumchloride, simulating various clinical imaging conditions. Images were acquired using a hybrid SPECT/CT scanner and reconstructed with 3DOSEM and MAP reconstruction algorithms implemented in Siemens Syngo MI.SPECT (Flash3D) and Hermes Hybrid Recon Oncology (Hyrid Recon 3DOSEM and MAP). Image analysis was performed by calculating the contrast recovery coefficient (CRC),percentage background variability (N%), and contrast-to-noise ratio (CNR), defined as the ratio between CRC and N%. Furthermore, image distortion is characterized by calculating the aspect ratio (AR) of ellipses fitted to the hot spheres. Additionally, the performance of these algorithms to reconstruct clinical images was investigated. Images reconstructed with 3DOSEM algorithms demonstrated superior image quality in terms of contrast and resolution recovery when compared to images reconstructed with filtered-back-projection (FBP), OSEM and 2DOSEM. However, occurrence of correlated noise patterns and image distortions significantly deteriorated the quality of 3DOSEM reconstructed images. The mean AR for the 37, 28, 22, and 17 mm spheres was 1.3, 1.3, 1.6, and 1.7 respectively. The mean N% increase in high and low count Flash3D and Hybrid Recon 3DOSEM from 5.9% and 4.0% to 11.1% and 9.0%, respectively. Similarly, the mean CNR decreased in high and low count Flash3D and Hybrid Recon 3DOSEM from 8.7 and 8.8 to 3.6 and 4

  8. Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.

    Science.gov (United States)

    Xiao, Dan; Balcom, Bruce J

    2012-07-01

    Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Sorting, Searching, and Simulation in the MapReduce Framework

    DEFF Research Database (Denmark)

    Goodrich, Michael T.; Sitchinava, Nodari; Zhang, Qin

    2011-01-01

    usefulness of our approach by designing and analyzing efficient MapReduce algorithms for fundamental sorting, searching, and simulation problems. This study is motivated by a goal of ultimately putting the MapReduce framework on an equal theoretical footing with the well-known PRAM and BSP parallel...... in parallel computational geometry for the MapReduce framework, which result in efficient MapReduce algorithms for sorting, 2- and 3-dimensional convex hulls, and fixed-dimensional linear programming. For the case when mappers and reducers have a memory/message-I/O size of M = (N), for a small constant > 0...

  10. Return-map for low-frequency fluctuations in semiconductor lasers with optical feedback

    DEFF Research Database (Denmark)

    Mørk, Jesper; Sabbatier, H.; Sørensen, Mads Peter

    1999-01-01

    We show that the phenomenon of low-frequency fluctuations (LFF) , commonly observed in semiconductor lasers with optical feedback, can be explained by a simple return-map, implying a tremendous simplification in the description of the slow time-scale dynamics of the system. Experimentally observed...

  11. Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2017-07-01

    Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  12. High resolution population maps for low income nations: combining land cover and census in East Africa.

    Directory of Open Access Journals (Sweden)

    Andrew J Tatem

    2007-12-01

    Full Text Available Between 2005 and 2050, the human population is forecast to grow by 2.7 billion, with the vast majority of this growth occurring in low income countries. This growth is likely to have significant social, economic and environmental impacts, and make the achievement of international development goals more difficult. The measurement, monitoring and potential mitigation of these impacts require high resolution, contemporary data on human population distributions. In low income countries, however, where the changes will be concentrated, the least information on the distribution of population exists. In this paper we investigate whether satellite imagery in combination with land cover information and census data can be used to create inexpensive, high resolution and easily-updatable settlement and population distribution maps over large areas.We examine various approaches for the production of maps of the East African region (Kenya, Uganda, Burundi, Rwanda and Tanzania and where fine resolution census data exists, test the accuracies of map production approaches and existing population distribution products. The results show that combining high resolution census, settlement and land cover information is important in producing accurate population distribution maps.We find that this semi-automated population distribution mapping at unprecedented spatial resolution produces more accurate results than existing products and can be undertaken for as little as $0.01 per km(2. The resulting population maps are a product of the Malaria Atlas Project (MAP: http://www.map.ox.ac.uk and are freely available.

  13. High Resolution Population Maps for Low Income Nations: Combining Land Cover and Census in East Africa

    Science.gov (United States)

    Tatem, Andrew J.; Noor, Abdisalan M.; von Hagen, Craig; Di Gregorio, Antonio; Hay, Simon I.

    2007-01-01

    Background Between 2005 and 2050, the human population is forecast to grow by 2.7 billion, with the vast majority of this growth occurring in low income countries. This growth is likely to have significant social, economic and environmental impacts, and make the achievement of international development goals more difficult. The measurement, monitoring and potential mitigation of these impacts require high resolution, contemporary data on human population distributions. In low income countries, however, where the changes will be concentrated, the least information on the distribution of population exists. In this paper we investigate whether satellite imagery in combination with land cover information and census data can be used to create inexpensive, high resolution and easily-updatable settlement and population distribution maps over large areas. Methodology/Principal Findings We examine various approaches for the production of maps of the East African region (Kenya, Uganda, Burundi, Rwanda and Tanzania) and where fine resolution census data exists, test the accuracies of map production approaches and existing population distribution products. The results show that combining high resolution census, settlement and land cover information is important in producing accurate population distribution maps. Conclusions We find that this semi-automated population distribution mapping at unprecedented spatial resolution produces more accurate results than existing products and can be undertaken for as little as $0.01 per km2. The resulting population maps are a product of the Malaria Atlas Project (MAP: http://www.map.ox.ac.uk) and are freely available. PMID:18074022

  14. Future extension of the Swedish repository for low and intermediate level waste (SFR)

    International Nuclear Information System (INIS)

    Carlsson, Jan

    2006-01-01

    The existing Swedish repository for low and intermediate level waste (SFR) is licensed for disposal of short-lived waste originated from operation and maintenance of Swedish nuclear power plants. The repository is foreseen to be extended to accommodate short-lived waste from the future decommissioning of the Nuclear Power Plants. Long-lived waste from operation, maintenance and eventually decommissioning will be stored some years before disposal in a geological repository. This repository can be build either as a further extension of the SFR facility or as a separate repository. This paper discusses the strategy of a step-wise extended repository where the extensions are performed during operation of the existing parts of the repository. It describes the process for licensing new parts of the repository (and re-license of the existing parts). (author)

  15. Measuring transient chaos in nonlinear one- and two-dimensional maps

    International Nuclear Information System (INIS)

    Buszko, Katarzyna; Stefanski, Krzysztof

    2006-01-01

    In this paper, we present results of numerical experiments on chaotic transients in families of the logistic and Henon maps. The duration of chaotic transients (the rambling time) for logistic maps estimated according to a rigorous criterion shows monotonic regularities with respect to both the period and the number of periodic window in a series of a given period. Due to inapplicability of this criterion to multidimensional maps, a more universal, though approximate, criterion is systematically studied on the family of logistic maps to optimize a choice of the free parameter value. The same approximate criterion is used to estimate rambling time for a number of periodic windows for the family of Henon maps. The dependence of the rambling time on the width of periodic windows is tested

  16. Subring Depth, Frobenius Extensions, and Towers

    Directory of Open Access Journals (Sweden)

    Lars Kadison

    2012-01-01

    Full Text Available The minimum depth d(B,A of a subring B⊆A introduced in the work of Boltje, Danz and Külshammer (2011 is studied and compared with the tower depth of a Frobenius extension. We show that d(B,A < ∞ if A is a finite-dimensional algebra and Be has finite representation type. Some conditions in terms of depth and QF property are given that ensure that the modular function of a Hopf algebra restricts to the modular function of a Hopf subalgebra. If A⊇B is a QF extension, minimum left and right even subring depths are shown to coincide. If A⊇B is a Frobenius extension with surjective Frobenius, homomorphism, its subring depth is shown to coincide with its tower depth. Formulas for the ring, module, Frobenius and Temperley-Lieb structures are noted for the tower over a Frobenius extension in its realization as tensor powers. A depth 3 QF extension is embedded in a depth 2 QF extension; in turn certain depth n extensions embed in depth 3 extensions if they are Frobenius extensions or other special ring extensions with ring structures on their relative Hochschild bar resolution groups.

  17. Damage detection on mesosurfaces using distributed sensor network and spectral diffusion maps

    International Nuclear Information System (INIS)

    Chinde, V; Vaidya, U; Laflamme, S; Cao, L

    2016-01-01

    In this work, we develop a data-driven method for the diagnosis of damage in mesoscale mechanical structures using an array of distributed sensor networks. The proposed approach relies on comparing intrinsic geometries of data sets corresponding to the undamaged and damaged states of the system. We use a spectral diffusion map approach to identify the intrinsic geometry of the data set. In particular, time series data from distributed sensors is used for the construction of diffusion maps. The low dimensional embedding of the data set corresponding to different damage levels is obtained using a singular value decomposition of the diffusion map. We construct appropriate metrics in the diffusion space to compare the different data sets corresponding to different damage cases. The developed algorithm is applied for damage diagnosis of wind turbine blades. To achieve this goal, we developed a detailed finite element-based model of CX-100 blade in ANSYS using shell elements. Typical damage, such as crack or delamination, will lead to a loss of stiffness, is modeled by altering the stiffness of the laminate layer. One of the main challenges in the development of health monitoring algorithms is the ability to use sensor data with a relatively small signal-to-noise ratio. Our developed diffusion map-based algorithm is shown to be robust to the presence of sensor noise. The proposed diffusion map-based algorithm is advantageous by enabling the comparison of data from numerous sensors of similar or different types of data through data fusion, hereby making it attractive to exploit the distributed nature of sensor arrays. This distributed nature is further exploited for the purpose of damage localization. We perform extensive numerical simulations to demonstrate that the proposed method can successfully determine the extent of damage on the wind turbine blade and also localize the damage. We also present preliminary results for the application of the developed algorithm on

  18. Detecting low-dimensional chaos by the “noise titration” technique: Possible problems and remedies

    International Nuclear Information System (INIS)

    Gao Jianbo; Hu Jing; Mao Xiang; Tung Wenwen

    2012-01-01

    Highlights: ► Distinguishing low-dimensional chaos from noise is an important issue. ► Noise titration technique is one of the main approaches on the issue. ► Problems of noise titration technique are systematically discussed. ► Solutions to the problems of noise titration technique are provided. - Abstract: Distinguishing low-dimensional chaos from noise is an important issue in time series analysis. Among the many methods proposed for this purpose is the noise titration technique, which quantifies the amount of noise that needs to be added to the signal to fully destroy its nonlinearity. Two groups of researchers recently have questioned the validity of the technique. In this paper, we report a broad range of situations where the noise titration technique fails, and offer solutions to fix the problems identified.

  19. Mapping QTL for Seed Germinability under Low Temperature Using a New High-Density Genetic Map of Rice

    Directory of Open Access Journals (Sweden)

    Ningfei Jiang

    2017-07-01

    Full Text Available Mapping major quantitative trait loci (QTL responsible for rice seed germinability under low temperature (GULT can provide valuable genetic source for improving cold tolerance in rice breeding. In this study, 124 rice backcross recombinant inbred lines (BRILs derived from a cross indica cv. Changhui 891 and japonica cv. 02428 were genotyped through re-sequencing technology. A bin map was generated which includes 3057 bins covering distance of 1266.5 cM with an average of 0.41 cM between markers. On the basis of newly constructed high-density genetic map, six QTL were detected ranging from 40 to 140 kb on Nipponbare genome. Among these, two QTL qCGR8 and qGRR11 alleles shared by 02428 could increase GULT and seed germination recovery rate after cold stress, respectively. However, qNGR1 and qNGR4 may be two major QTL affecting indica Changhui 891germination under normal condition. QTL qGRR1 and qGRR8 affected the seed germination recovery rate after cold stress and the alleles with increasing effects were shared by the Changhui 891 could improve seed germination rate after cold stress dramatically. These QTL could be a highly valuable genetic factors for cold tolerance improvement in rice lines. Moreover, the BRILs developed in this study will serve as an appropriate choice for mapping and studying genetic basis of rice complex traits.

  20. Towards a global land subsidence map

    NARCIS (Netherlands)

    Erkens, G.; Sutanudjaja, E. H.

    2015-01-01

    Land subsidence is a global problem, but a global land subsidence map is not available yet. Such map is crucial to raise global awareness of land subsidence, as land subsidence causes extensive damage (probably in the order of billions of dollars annually). With the global land subsidence map

  1. Quantitative study of quasi-one-dimensional Bose gas experiments via the stochastic Gross-Pitaevskii equation

    International Nuclear Information System (INIS)

    Cockburn, S. P.; Gallucci, D.; Proukakis, N. P.

    2011-01-01

    The stochastic Gross-Pitaevskii equation is shown to be an excellent model for quasi-one-dimensional Bose gas experiments, accurately reproducing the in situ density profiles recently obtained in the experiments of Trebbia et al.[Phys. Rev. Lett. 97, 250403 (2006)] and van Amerongen et al.[Phys. Rev. Lett. 100, 090402 (2008)] and the density fluctuation data reported by Armijo et al.[Phys. Rev. Lett. 105, 230402 (2010)]. To facilitate such agreement, we propose and implement a quasi-one-dimensional extension to the one-dimensional stochastic Gross-Pitaevskii equation for the low-energy, axial modes, while atoms in excited transverse modes are treated as independent ideal Bose gases.

  2. Higher Dimensional Mappings for Which the Area Formula Holds

    Science.gov (United States)

    Goffman, Casper; Ziemer, William P.

    1970-01-01

    For each continuous mapping of 2 space into n space, n ≥ 2, the Lebesgue area is given by the classical formula provided that the partial derivatives exist almost everywhere and belong to the class L2. The analogous question for mappings of m space into n space, 2 < m ≤ n, has been open for a long time. We answer this question in the affirmative in a more general setting. Accordingly, as a special case, we show that if a continuous mapping of m space into n space, m ≤ n, has partial derivatives which belong to Lm then the Lebesgue area is given by the classical formula. PMID:16591817

  3. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.

    Science.gov (United States)

    Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi

    2016-07-01

    Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution

  4. A Review on the Low-Dimensional and Hybridized Nanostructured Diamond Films

    Directory of Open Access Journals (Sweden)

    Hongdong Li

    2015-01-01

    Full Text Available In the last decade, besides the breakthrough of high-rate growth of chemical vapor deposited single-crystal diamonds, numerous nanostructured diamond films have been rapidly developed in the research fields of the diamond-based sciences and industrial applications. The low-dimensional diamonds of two-dimensional atomic-thick nanofilms and nanostructural diamond on the surface of bulk diamond films have been theoretically and experimentally investigated. In addition, the diamond-related hybrid nanostructures of n-type oxide/p-type diamond and n-type nitride/p-type diamond, having high performance physical and chemical properties, are proposed for further applications. In this review, we first briefly introduce the three categories of diamond nanostructures and then outline the current advances in these topics, including their design, fabrication, characterization, and properties. Finally, we address the remaining challenges in the research field and the future activities.

  5. Generalized Smooth Transition Map Between Tent and Logistic Maps

    Science.gov (United States)

    Sayed, Wafaa S.; Fahmy, Hossam A. H.; Rezk, Ahmed A.; Radwan, Ahmed G.

    There is a continuous demand on novel chaotic generators to be employed in various modeling and pseudo-random number generation applications. This paper proposes a new chaotic map which is a general form for one-dimensional discrete-time maps employing the power function with the tent and logistic maps as special cases. The proposed map uses extra parameters to provide responses that fit multiple applications for which conventional maps were not enough. The proposed generalization covers also maps whose iterative relations are not based on polynomials, i.e. with fractional powers. We introduce a framework for analyzing the proposed map mathematically and predicting its behavior for various combinations of its parameters. In addition, we present and explain the transition map which results in intermediate responses as the parameters vary from their values corresponding to tent map to those corresponding to logistic map case. We study the properties of the proposed map including graph of the map equation, general bifurcation diagram and its key-points, output sequences, and maximum Lyapunov exponent. We present further explorations such as effects of scaling, system response with respect to the new parameters, and operating ranges other than transition region. Finally, a stream cipher system based on the generalized transition map validates its utility for image encryption applications. The system allows the construction of more efficient encryption keys which enhances its sensitivity and other cryptographic properties.

  6. High-resolution mapping of two-dimensional lattice distortions in ion-implanted crystals from X-ray diffractometry data

    International Nuclear Information System (INIS)

    Nikulin, A.Y.; Gureyev, T.E.; Stevenson, A.W.; Wilkins, S.W.; Hashizume, H.; Cookson, D.

    1996-01-01

    The triple-crystal synchrotron X-ray diffractometry data described in Nikulin, Stevenson, Hashizume, Wilkins, Foran, Cookson and Garrett (J. Appl. Cryst. 28, 57-60 (1995)) has been analyzed to map out two-dimensional (2D) lattice distortions in silicon (111) crystals implanted with B + ions of 100 keV energy through a periodic SiO 2 strip pattern. The lateral periodic structure produced a series of satellite reflections associated with the 111 Bragg peak. The 2D reconstruction incorporates the use of the Petrashen-Chukhovskii method, which retrieves the phases of the Bragg waves for these satellite reflections, together with that for the fundamental. The finite Fourier series is then synthesized with the relative phases determined. Localized distortions perpendicular to the surface arising from deposited B + ions in near-surface layers of the crystal are clearly displayed with spatial resolutions of 0.016 and 0.265 μm in the depth and lateral directions respectively. For a sample with the oxide layer removed from the surface, two equally plausible strain maps have been obtained by assigning relative phases to eleven satellites using a sequential trial method and a minimum-energy method. Failed map reconstructions for the oxide-covered sample are discussed in terms of the non-unique solutions of the Petrashen-Chukhovskii phase-recovery algorithm and the ambiguous phases determined for the satellites. 16 refs., 8 figs

  7. Algebraic entropy for algebraic maps

    International Nuclear Information System (INIS)

    Hone, A N W; Ragnisco, Orlando; Zullo, Federico

    2016-01-01

    We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)

  8. Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials

    KAUST Repository

    Tizei, Luiz H. G.

    2015-03-01

    Spatially resolved electron-energy-loss spectroscopy (EELS) is performed at diffuse interfaces between MoS2 and MoSe2 single layers. With a monochromated electron source (20 meV) we successfully probe excitons near the interface by obtaining the low loss spectra at the nanometer scale. The exciton maps clearly show variations even with a 10 nm separation between measurements; consequently, the optical band gap can be measured with nanometer-scale resolution, which is 50 times smaller than the wavelength of the emitted photons. By performing core-loss EELS at the same regions, we observe that variations in the excitonic signature follow the chemical composition. The exciton peaks are observed to be broader at interfaces and heterogeneous regions, possibly due to interface roughness and alloying effects. Moreover, we do not observe shifts of the exciton peak across the interface, possibly because the interface width is not much larger than the exciton Bohr radius.

  9. Extensibility and stiffness of the hamstrings in patients with nonspecific low back pain.

    Science.gov (United States)

    Halbertsma, J P; Göeken, L N; Hof, A L; Groothoff, J W; Eisma, W H

    2001-02-01

    To investigate the extensibility and stiffness of the hamstrings in patients with nonspecific low back pain (LBP). An experimental design. A university laboratory for human movement analysis in a department of rehabilitation medicine. Forty subjects, a patient group (20) and a healthy control group (20). Subjects laid supine on an examination table with a lift frame, with left leg placed in a sling at the ankle. Straight leg raising, pulling force, and activity of hamstring and back muscles were recorded with electrodes. Patients indicated when they experienced tension or pain. The lift force, leg excursion, pelvic-femoral angle, first sensation of pain, and the electromyogram of the hamstrings and back muscles measured in an experimental straight-leg raising set-up. The patient group showed a significant restriction in range of motion (ROM) and extensibility of the hamstrings compared with the control group. No significant difference in hamstring muscle stiffness can be assessed between both groups. The restricted ROM and the decreased extensibility of the hamstrings in patients with nonspecific LBP is not caused by increased muscle stiffness of the hamstrings, but determined by the stretch tolerance of the patients.

  10. Electrocorticographic Temporal Alteration Mapping: A Clinical Technique for Mapping the Motor Cortex with Movement-Related Cortical Potentials

    Directory of Open Access Journals (Sweden)

    Zehan Wu

    2017-06-01

    Full Text Available We propose electrocorticographic temporal alteration mapping (ETAM for motor cortex mapping by utilizing movement-related cortical potentials (MRCPs within the low-frequency band [0.05-3] Hz. This MRCP waveform-based temporal domain approach was compared with the state-of-the-art electrocorticographic frequency alteration mapping (EFAM, which is based on frequency spectrum dynamics. Five patients (two epilepsy cases and three tumor cases were enrolled in the study. Each patient underwent intraoperative direct electrocortical stimulation (DECS procedure for motor cortex localization. Moreover, the patients were required to perform simple brisk wrist extension task during awake craniotomy surgery. Cross-validation results showed that the proposed ETAM method had high sensitivity (81.8% and specificity (94.3% in identifying sites which exhibited positive DECS motor responses. Moreover, although the sensitivity of the ETAM and EFAM approaches was not significantly different, ETAM had greater specificity compared with EFAM (94.3 vs. 86.1%. These results indicate that for the intraoperative functional brain mapping, ETAM is a promising novel approach for motor cortex localization with the potential to reduce the need for cortical electrical stimulation.

  11. Explorations in topology map coloring, surfaces and knots

    CERN Document Server

    Gay, David

    2013-01-01

    Explorations in Topology, Second Edition, provides students a rich experience with low-dimensional topology (map coloring, surfaces, and knots), enhances their geometrical and topological intuition, empowers them with new approaches to solving problems, and provides them with experiences that will help them make sense of future, more formal topology courses. The book's innovative story-line style models the problem-solving process, presents the development of concepts in a natural way, and engages students in meaningful encounters with the material. The updated end-of-chapter investigation

  12. Quantitative optical mapping of two-dimensional materials

    DEFF Research Database (Denmark)

    Jessen, Bjarke S.; Whelan, Patrick R.; Mackenzie, David M. A.

    2018-01-01

    The pace of two-dimensional materials (2DM) research has been greatly accelerated by the ability to identify exfoliated thicknesses down to a monolayer from their optical contrast. Since this process requires time-consuming and error-prone manual assignment to avoid false-positives from image...

  13. Muon studies of low-dimensional solid state systems

    International Nuclear Information System (INIS)

    Jestaedt, T.

    1999-04-01

    This thesis concerns the use of the technique of μSR, an abbreviation which stands for three separate types of experiments: muon spin rotation, muon spin relaxation and muon spin resonance. The experiments presented here were performed on beamlines at the ISIS facility at the Rutherford Appleton Laboratory (UK) and at the Paul Scherrer Institut (Villigen, Switzerland). The systems studied are linked by the common theme of reduced dimensionality. Results of μSR measurements on La 2-x Sr x NiO 4+δ (nickelates) are presented. In these systems the lattice constants are much smaller in two of the dimensions as compared to the third, leading to two dimensional magnetism. Earlier experiments using techniques other than μSR concentrated mainly on materials with x = 0 and δ ≠ 0. The work that I describe on La 2-x Sr x NiO 4+δ shows that, there are interesting magnetic features as a function of strontium doping, and the details of this dependence are examined. In each of the samples oscillations of the muon spin polarization were observed below a sample dependent temperature, showing that low temperature magnetic order occurs. μSR is also used to study Sr 2 LnMn 2 O 7 (the Ruddlesden- Popper phases), where Ln are various ions of the lanthanide series. These manganates have a layered structure, leading to a reduced dimensionality as compared to the related perovskite compounds of the MnO 3 series. Like the doped MnO 3 compounds, some of the Ruddlesden-Popper phases exhibit colossal magnetoresistance (CMR), all effect which initially stirred interest in the MnO 3 systems. In contrast to the MnO 3 systems, the relevant Mn 2 O 7 materials show this CMR effect over an extended temperature range. The μSR work is consistent with the existence of magnetic clusters in some of the Mn 2 O 7 materials and these clusters appear to be associated with the observation of CMR. The compound CaV 4 O 9 is the first known two-dimensional compound to exhibit a spin-gap and the effects

  14. Towards room-temperature superconductivity in low-dimensional C60 nanoarrays: An ab initio study

    Science.gov (United States)

    Erbahar, Dogan; Liu, Dan; Berber, Savas; Tománek, David

    2018-04-01

    We propose to raise the critical temperature Tc for superconductivity in doped C60 molecular crystals by increasing the electronic density of states at the Fermi level N (EF) and thus the electron-phonon coupling constant in low-dimensional C60 nanoarrays. We consider both electron and hole dopings and present numerical results for N (EF) , which increases with the decreasing bandwidth of the partly filled hu- and t1 u-derived frontier bands with the decreasing coordination number of C60. Whereas a significant increase in N (EF) occurs in two-dimensional (2D) arrays of doped C60 intercalated in-between graphene layers, we propose that the highest-Tc values approaching room temperature may occur in bundles of nanotubes filled by one-dimensional (1D) arrays of externally doped C60 or La @C60 or in diluted three-dimensional (3D) crystals where quasi-1D arrangements of C60 form percolation paths.

  15. Torus Breakdown in Noninvertible Maps

    DEFF Research Database (Denmark)

    Maistrenko, V.; Maistrenko, Yu.; Mosekilde, Erik

    2003-01-01

    We propose a criterion for the destruction of a two-dimensional torus through the formation of an infinite set of cusp points on the closed invariant curves defining the resonance torus. This mechanism is specific to noninvertible maps. The cusp points arise when the tangent to the torus at the p......We propose a criterion for the destruction of a two-dimensional torus through the formation of an infinite set of cusp points on the closed invariant curves defining the resonance torus. This mechanism is specific to noninvertible maps. The cusp points arise when the tangent to the torus...... at the point of intersection with the critical curve L-0 coincides with the eigendirection corresponding to vanishing eigenvalue for the noninvertible map. Further parameter changes lead typically to the generation of loops (self-intersections of the invariant manifolds) followed by the transformation...

  16. Capacity Bounds and Mapping Design for Binary Symmetric Relay Channels

    Directory of Open Access Journals (Sweden)

    Majid Nasiri Khormuji

    2012-12-01

    Full Text Available Capacity bounds for a three-node binary symmetric relay channel with orthogonal components at the destination are studied. The cut-set upper bound and the rates achievable using decode-and-forward (DF, partial DF and compress-and-forward (CF relaying are first evaluated. Then relaying strategies with finite memory-length are considered. An efficient algorithm for optimizing the relay functions is presented. The Boolean Fourier transform is then employed to unveil the structure of the optimized mappings. Interestingly, the optimized relay functions exhibit a simple structure. Numerical results illustrate that the rates achieved using the optimized low-dimensional functions are either comparable to those achieved by CF or superior to those achieved by DF relaying. In particular, the optimized low-dimensional relaying scheme can improve on DF relaying when the quality of the source-relay link is worse than or comparable to that of other links.

  17. Mapping the Fundamental Niches of Two Freshwater Microalgae, Chlorella vulgaris (Trebouxiophyceae and Peridinium cinctum (Dinophyceae, in 5-Dimensional Ion Space

    Directory of Open Access Journals (Sweden)

    Terence J. Evens

    2011-01-01

    Full Text Available The fundamental niche defined by five ions, NO3 −, PO4 3−, K+, Na+, and Cl−, was mapped for Chlorella vulgaris (Trebouxiophyceae and Peridinium cinctum (Dinophyceae growth rates and maximum cell densities in batch cultures. A five dimensional ion-mixture experimental design was projected across a total ion concentration gradient of 1 to 30 mM to delineate the ion-based, “potential” niche space, defined as the entire n-dimensional hypervolume demarcated by the feasible ranges of the independent factors under consideration. The growth rate-based, fundamental niche volumes overlapped for ca. 94% of the ion mixtures, although the regions of maximal growth rates and cell densities were different for each alga. Both C. vulgaris and P. cinctum exhibited similar positive responses to cations and negative responses to anions. It was determined that total ion concentration for these five ions, from 1 to 30 mM, did not directly affect either growth rate or maximal cell density for either alga, although it did play an interactive role with several ions. This study is the first that we are aware of to attempt the mapping of a multivariate, ion-based, fundamental niche volume. The implications of the experimental design utilized and the potential utility of this type of approach are discussed.

  18. Development of a low-noise, two-dimensional amplifier array

    International Nuclear Information System (INIS)

    Kishishita, Tetsuichi; Ikeda, Hirokazu; Sakumura, Takuto; Tamura, Ken-ichi; Takahashi, Tadayuki

    2009-01-01

    This paper describes the recent development of a low-noise, two-dimensional analog front-end ASIC for hybrid pixel imaging detectors. Based on the Open-IP LSI project, the ASIC is designed to meet a low-noise requirement of better than 100e - (rms) with self-triggering capability. The ASIC is intended for the readout of pixel sensors utilizing silicon (Si) and cadmium telluride (CdTe) as detector materials for spectroscopic imaging observations in the X-ray and gamma-ray regions. The readout chip consists of a 4x4 matrix of identical 270μmx270μm pixel cells and was implemented with TSMC 0.35-μm CMOS technology. Each pixel cell contains a charge-sensitive amplifier, pole-zero cancellation circuit, shaper, comparator, and peak hold circuit. Preliminary testing of the ASIC achieved an 88e - (rms) equivalent noise charge and a 25e - /pF noise slope with power consumption of 150μW per pixel.

  19. Entrainment and high-density three-dimensional mapping in right atrial macroreentry provide critical complementary information: Entrainment may unmask "visual reentry" as passive.

    Science.gov (United States)

    Pathik, Bhupesh; Lee, Geoffrey; Nalliah, Chrishan; Joseph, Stephen; Morton, Joseph B; Sparks, Paul B; Sanders, Prashanthan; Kistler, Peter M; Kalman, Jonathan M

    2017-10-01

    With the recent advent of high-density (HD) 3-dimensional (3D) mapping, the utility of entrainment is uncertain. However, the limitations of visual representation and interpretation of these high-resolution 3D maps are unclear. The purpose of this study was to determine the strengths and limitations of both HD 3D mapping and entrainment mapping during mapping of right atrial macroreentry. Fifteen patients were studied. The number and type of circuits accounting for ≥90% of the tachycardia cycle length using HD 3D mapping were verified using systematic entrainment mapping. Entrainment sites with an unexpectedly long postpacing interval despite proximity to the active circuit were evaluated. Based on HD 3D mapping, 27 circuits were observed: 12 peritricuspid, 2 upper loop reentry, 10 lower loop reentry, and 3 lateral wall circuits. With entrainment, 17 of the 27 circuits were active: all 12 peritricuspid and 2 upper loop reentry. However, lower loop reentry was confirmed in only 3 of 10, and none of the 3 lateral wall circuits were present. Mean percentage of tachycardia cycle length covered by active circuits was 98% ± 1% vs 97% ± 2% for passive circuits (P = .09). None of the 345 entrainment runs terminated tachycardia or changed tachycardia mechanism. In 8 of 15 patients, 13 examples of unexpectedly long postpacing interval were observed at entrainment sites located distal to localized zones of slow conduction seen on HD 3D mapping. Using HD 3D mapping, "visual reentry" may be due to passive circuitous propagation rather than a critical reentrant circuit. HD 3D mapping provides new insights into regional conduction and helps explain unusual entrainment phenomena. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  20. Manifold Based Low-rank Regularization for Image Restoration and Semi-supervised Learning

    OpenAIRE

    Lai, Rongjie; Li, Jia

    2017-01-01

    Low-rank structures play important role in recent advances of many problems in image science and data science. As a natural extension of low-rank structures for data with nonlinear structures, the concept of the low-dimensional manifold structure has been considered in many data processing problems. Inspired by this concept, we consider a manifold based low-rank regularization as a linear approximation of manifold dimension. This regularization is less restricted than the global low-rank regu...

  1. Cross-dimensional mapping of number, length and brightness by preschool children.

    Directory of Open Access Journals (Sweden)

    Maria Dolores de Hevia

    Full Text Available Human adults in diverse cultures, children, infants, and non-human primates relate number to space, but it is not clear whether this ability reflects a specific and privileged number-space mapping. To investigate this possibility, we tested preschool children in matching tasks where the dimensions of number and length were mapped both to one another and to a third dimension, brightness. Children detected variation on all three dimensions, and they reliably performed mappings between number and length, and partially between brightness and length, but not between number and brightness. Moreover, children showed reliably better mapping of number onto the dimension of length than onto the dimension of brightness. These findings suggest that number establishes a privileged mapping with the dimension of length, and that other dimensions, including brightness, can be mapped onto length, although less efficiently. Children's adeptness at number-length mappings suggests that these two dimensions are intuitively related by the end of the preschool years.

  2. Enhancing the beamforming map of spherical arrays at low frequencies using acoustic holography

    DEFF Research Database (Denmark)

    Tiana Roig, Elisabet; Torras Rosell, Antoni; Fernandez Grande, Efren

    2014-01-01

    Recent studies have shown that the localization of acoustic sources based on circular arrays can be improved at low frequencies by combining beamforming with acoustic holography. This paper extends this technique to the three dimensional case by making use of spherical arrays. The pressure captur...

  3. New developments in the theoretical treatment of low dimensional strongly correlated systems.

    Science.gov (United States)

    James, Andrew J A; Konik, Robert M; Lecheminant, Philippe; Robinson, Neil; Tsvelik, Alexei M

    2017-10-09

    We review two important non-perturbative approaches for extracting the physics of low- dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of confor- mal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symme- tries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1+1D quantum chro- modynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics. © 2017 IOP Publishing Ltd.

  4. Interest rates mapping

    Science.gov (United States)

    Kanevski, M.; Maignan, M.; Pozdnoukhov, A.; Timonin, V.

    2008-06-01

    The present study deals with the analysis and mapping of Swiss franc interest rates. Interest rates depend on time and maturity, defining term structure of the interest rate curves (IRC). In the present study IRC are considered in a two-dimensional feature space-time and maturity. Exploratory data analysis includes a variety of tools widely used in econophysics and geostatistics. Geostatistical models and machine learning algorithms (multilayer perceptron and Support Vector Machines) were applied to produce interest rate maps. IR maps can be used for the visualisation and pattern perception purposes, to develop and to explore economical hypotheses, to produce dynamic asset-liability simulations and for financial risk assessments. The feasibility of an application of interest rates mapping approach for the IRC forecasting is considered as well.

  5. Low-level radioactive waste associated with plant life extension

    International Nuclear Information System (INIS)

    Sciacca, F.; Zigler, G.; Walsh, R.

    1992-01-01

    Many utilities operating nuclear power plants are expected to seek to extend the useful life of their plants through license renewal. These US Nuclear Regulatory Commission (NRC) licensees are expected to implement enhanced inspection, surveillance, testing, and monitoring (ISTM) as needed to detect and mitigate age-related degradation of important structures, systems, and components (SSCs). In addition, utilities may undertake various refurbishment and upgrade activities at these plants to better assure economic and reliable power generation. These activities performed for safety and/or economic reasons can result in radioactive waste generation, which is incremental to that generated in the original licensing term. Work was performed for the NRC to help define and characterize potential environmental impacts associated with nuclear plant license renewal and plant life extension. As part of this work, projections were made of the types and quantities of low-level radioactive waste (LLRW) likely to be generated by licensee programs. These projections were needed to estimate environmental impacts related to the disposal of such wastes

  6. [Effect of extensively hydrolyzed formula on growth and development of infants with very/extremely low birth weight].

    Science.gov (United States)

    Gu, Chun-Yan; Jiang, Hui-Fen; Wang, Jin-Xiu

    2017-08-01

    To study the effect of extensively hydrolyzed formula on the growth and development in very low birth weight (VLBW) and extremely low birth weight (ELBW) infants. A total of 375 VLBW or ELBW infants were enrolled and divided into an observation group (187 infants) and a control group (188 infants) using a random number table. The infants in the observation group were given extensively hydrolyzed formula, and when the amount of extensively hydrolyzed formula reached 10 mL/time, it was changed to the standard formula for preterm infants. The infants in the control group were given standard formula for preterm infants. Both groups were fed for 4 consecutive weeks and were compared in terms of incidence rate of feeding intolerance, time to establish full enteral feeding, time to complete meconium excretion, number of spontaneous bowel movements, growth and development, motilin level at 4 and 10 days after feeding, and incidence rate of infection. Compared with the control group, the observation group had a lower rate of feeding intolerance (Pdevelopment, and reduce the incidence of infection in VLBW and ELBW infants.

  7. Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids

    International Nuclear Information System (INIS)

    Jakeman, John D.; Archibald, Richard; Xiu Dongbin

    2011-01-01

    In this paper we present a set of efficient algorithms for detection and identification of discontinuities in high dimensional space. The method is based on extension of polynomial annihilation for discontinuity detection in low dimensions. Compared to the earlier work, the present method poses significant improvements for high dimensional problems. The core of the algorithms relies on adaptive refinement of sparse grids. It is demonstrated that in the commonly encountered cases where a discontinuity resides on a small subset of the dimensions, the present method becomes 'optimal', in the sense that the total number of points required for function evaluations depends linearly on the dimensionality of the space. The details of the algorithms will be presented and various numerical examples are utilized to demonstrate the efficacy of the method.

  8. State of the water in crosslinked sulfonated poly(ether ether ketone). Two-dimensional differential scanning calorimetry correlation mapping

    Energy Technology Data Exchange (ETDEWEB)

    Al Lafi, Abdul G. [Department of Chemistry, Atomic Energy Commission, Damascus, P.O. Box 6091 (Syrian Arab Republic); Hay, James N., E-mail: cscientific9@aec.org.sy [The School of Metallurgy and Materials, College of Physical Sciences and Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-07-20

    Highlights: • 2D-DSC mapping was applied to analyze the heat flow responses of hydrated crosslinked sPEEK. • Two types of loosely bond water were observed. • The first was bond to the sulfonic acid groups and increased with ion exchange capacity. • The second was attributed to the polar groups introduced by ions irradiation and increased with crosslinking degree. • DSC combined with 2D mapping provides a powerful tool for polymer structural determination. - Abstract: This paper reports the first application of two-dimensional differential scanning calorimetry correlation mapping, 2D-DSC-CM to analyze the heat flow responses of sulphonated poly(ether ether ketone), sPEEK, films having different ion exchange capacity and degrees of crosslinks. With the help of high resolution and high sensitivity of 2D-DSC-CM, it was possible to locate two types of loosely bound water within the structure of crosslinked sPEEK. The first was bound to the sulfonic acid groups and dependent on the ion exchange capacity of the sPEEK. The second was bound to other polar groups, either introduced by irradiation with ions and dependent on the crosslinking degree or present in the polymer such as the carbonyl groups or terminal units. The results suggest that the ability of the sulfonic acid groups in the crosslinked sPEEK membranes to adsorb water molecules is increased by crosslinking, probably due to the better close packing efficiency of the crosslinked samples. DSC combined with 2D correlation mapping provides a fast and powerful tool for polymer structural determination.

  9. High-Dimensional Modeling for Cytometry: Building Rock Solid Models Using GemStone™ and Verity Cen-se'™ High-Definition t-SNE Mapping.

    Science.gov (United States)

    Bruce Bagwell, C

    2018-01-01

    This chapter outlines how to approach the complex tasks associated with designing models for high-dimensional cytometry data. Unlike gating approaches, modeling lends itself to automation and accounts for measurement overlap among cellular populations. Designing these models is now easier because of a new technique called high-definition t-SNE mapping. Nontrivial examples are provided that serve as a guide to create models that are consistent with data.

  10. Time Series Analysis of the Bacillus subtilis Sporulation Network Reveals Low Dimensional Chaotic Dynamics.

    Science.gov (United States)

    Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C; Ihekwaba, Adaoha E C

    2016-01-01

    Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering

  11. A computationally efficient simulator for three-dimensional Monte Carlo simulation of ion implantation into complex structures

    International Nuclear Information System (INIS)

    Li Di; Wang Geng; Chen Yang; Li Lin; Shrivastav, Gaurav; Oak, Stimit; Tasch, Al; Banerjee, Sanjay; Obradovic, Borna

    2001-01-01

    A physically-based three-dimensional Monte Carlo simulator has been developed within UT-MARLOWE, which is capable of simulating ion implantation into multi-material systems and arbitrary topography. Introducing the third dimension can result in a severe CPU time penalty. In order to minimize this penalty, a three-dimensional trajectory replication algorithm has been developed, implemented and verified. More than two orders of magnitude savings of CPU time have been observed. An unbalanced Octree structure was used to decompose three-dimensional structures. It effectively simplifies the structure, offers a good balance between modeling accuracy and computational efficiency, and allows arbitrary precision of mapping the Octree onto desired structure. Using the well-established and validated physical models in UT-MARLOWE 5.0, this simulator has been extensively verified by comparing the integrated one-dimensional simulation results with secondary ion mass spectroscopy (SIMS). Two options, the typical case and the worst scenario, have been selected to simulate ion implantation into poly-silicon under various scenarios using this simulator: implantation into a random, amorphous network, and implantation into the worst-case channeling condition, into (1 1 0) orientated wafers

  12. Development of a low cost, GPS-based upgrade to a standard handheld gamma detector for mapping environmental radioactive contamination

    International Nuclear Information System (INIS)

    Paridaens, J.

    2006-01-01

    A low cost extension to a standard handheld radiation monitor was developed, allowing one to perform outdoor georeferenced gamma measurements. It consists of a commercial wireless Bluetooth[reg] GPS receiver, a commercial RS-232 to Bluetooth[reg] converter combined with a standard Bluetooth[reg] enabled pocket personal computer (PPC). The system is intended for use in difficult to access areas, typically for foot campaigns. As the operator walks, a straightforward homemade visual basic program alternately reads GPS position and gamma dose rate into the PPC, creating a data log. This allows a single operator on foot to map between 50 and 200 ha of environmental radiation per day in very rugged areas, depending on the accessibility of the terrain and the detail required. On a test field with known contamination, a spatial precision of about 5-10 m was obtainable. The device was also used to reveal complex contamination patterns in the flooding zones of a radioactively contaminated small river

  13. Development of a low cost, GPS-based upgrade to a standard handheld gamma detector for mapping environmental radioactive contamination.

    Science.gov (United States)

    Paridaens, J

    2006-02-01

    A low cost extension to a standard handheld radiation monitor was developed, allowing one to perform outdoor georeferenced gamma measurements. It consists of a commercial wireless Bluetooth GPS receiver, a commercial RS-232 to Bluetooth converter combined with a standard Bluetooth enabled pocket personal computer (PPC). The system is intended for use in difficult to access areas, typically for foot campaigns. As the operator walks, a straightforward homemade visual basic program alternately reads GPS position and gamma dose rate into the PPC, creating a data log. This allows a single operator on foot to map between 50 and 200 ha of environmental radiation per day in very rugged areas, depending on the accessibility of the terrain and the detail required. On a test field with known contamination, a spatial precision of about 5-10 m was obtainable. The device was also used to reveal complex contamination patterns in the flooding zones of a radioactively contaminated small river.

  14. Development of a low cost, GPS-based upgrade to a standard handheld gamma detector for mapping environmental radioactive contamination

    Energy Technology Data Exchange (ETDEWEB)

    Paridaens, J. [Belgian Nuclear Research Centre, SCK.CEN, Boeretang 200, B2400 Mol (Belgium)]. E-mail: jparidae@sckcen.be

    2006-02-15

    A low cost extension to a standard handheld radiation monitor was developed, allowing one to perform outdoor georeferenced gamma measurements. It consists of a commercial wireless Bluetooth[reg] GPS receiver, a commercial RS-232 to Bluetooth[reg] converter combined with a standard Bluetooth[reg] enabled pocket personal computer (PPC). The system is intended for use in difficult to access areas, typically for foot campaigns. As the operator walks, a straightforward homemade visual basic program alternately reads GPS position and gamma dose rate into the PPC, creating a data log. This allows a single operator on foot to map between 50 and 200 ha of environmental radiation per day in very rugged areas, depending on the accessibility of the terrain and the detail required. On a test field with known contamination, a spatial precision of about 5-10 m was obtainable. The device was also used to reveal complex contamination patterns in the flooding zones of a radioactively contaminated small river.

  15. Development and Clinical Evaluation of a Three-Dimensional Cone-Beam Computed Tomography Estimation Method Using a Deformation Field Map

    International Nuclear Information System (INIS)

    Ren, Lei; Chetty, Indrin J.; Zhang Junan; Jin Jianyue; Wu, Q. Jackie; Yan Hui; Brizel, David M.; Lee, W. Robert; Movsas, Benjamin; Yin Fangfang

    2012-01-01

    Purpose: To develop a three-dimensional (3D) cone-beam computed tomography (CBCT) estimation method using a deformation field map, and to evaluate and optimize the efficiency and accuracy of the method for use in the clinical setting. Methods and Materials: We propose a method to estimate patient CBCT images using prior information and a deformation model. Patients’ previous CBCT data are used as the prior information, and the new CBCT volume to be estimated is considered as a deformation of the prior image volume. The deformation field map is solved by minimizing deformation energy and maintaining new projection data fidelity using a nonlinear conjugate gradient method. This method was implemented in 3D form using hardware acceleration and multi-resolution scheme, and it was evaluated for different scan angles, projection numbers, and scan directions using liver, lung, and prostate cancer patient data. The accuracy of the estimation was evaluated by comparing the organ volume difference and the similarity between estimated CBCT and the CBCT reconstructed from fully sampled projections. Results: Results showed that scan direction and number of projections do not have significant effects on the CBCT estimation accuracy. The total scan angle is the dominant factor affecting the accuracy of the CBCT estimation algorithm. Larger scan angles yield better estimation accuracy than smaller scan angles. Lung cancer patient data showed that the estimation error of the 3D lung tumor volume was reduced from 13.3% to 4.3% when the scan angle was increased from 60° to 360° using 57 projections. Conclusions: The proposed estimation method is applicable for 3D DTS, 3D CBCT, four-dimensional CBCT, and four-dimensional DTS image estimation. This method has the potential for significantly reducing the imaging dose and improving the image quality by removing the organ distortion artifacts and streak artifacts shown in images reconstructed by the conventional Feldkamp

  16. Development and evaluation of a specialized task taxonomy for spatial planning - A map literacy experiment with topographic maps

    Science.gov (United States)

    Rautenbach, Victoria; Coetzee, Serena; Çöltekin, Arzu

    2017-05-01

    Topographic maps are among the most commonly used map types, however, their complex and information-rich designs depicting natural, human-made and cultural features make them difficult to read. Regardless of their complexity, spatial planners make extensive use of topographic maps in their work. On the other hand, various studies suggest that map literacy among the development planning professionals in South Africa is not very high. The widespread use of topographic maps combined with the low levels of map literacy presents challenges for effective development planning. In this paper we address some of these challenges by developing a specialized task taxonomy based on systematically assessed map literacy levels; and conducting an empirical experiment with topographic maps to evaluate our task taxonomy. In such empirical studies if non-realistic tasks are used, the results of map literacy tests may be skewed. Furthermore, experience and familiarity with the studied map type play a role in map literacy. There is thus a need to develop map literacy tests aimed at planners specifically. We developed a taxonomy of realistic map reading tasks typically executed during the planning process. The taxonomy defines six levels tasks of increasing difficulty and complexity, ranging from recognising symbols to extracting knowledge. We hypothesized that competence in the first four levels indicates functional map literacy. In this paper, we present results from an empirical experiment with 49 map literate participants solving a subset of tasks from the first four levels of the taxonomy with a topographic map. Our findings suggest that the proposed taxonomy is a good reference for evaluating topographic map literacy. Participants solved the tasks on all four levels as expected and we therefore conclude that the experiment based on the first four levels of the taxonomy successfully determined the functional map literacy of the participants. We plan to continue the study for the

  17. Lumbar kinematic variability during gait in chronic low back pain and associations with pain, disability and isolated lumbar extension strength.

    Science.gov (United States)

    Steele, James; Bruce-Low, Stewart; Smith, Dave; Jessop, David; Osborne, Neil

    2014-12-01

    Chronic low back pain is a multifactorial condition with many dysfunctions including gait variability. The lumbar spine and its musculature are involved during gait and in chronic low back pain the lumbar extensors are often deconditioned. It was therefore of interest to examine relationships between lumbar kinematic variability during gait, with pain, disability and isolated lumbar extension strength in participants with chronic low back pain. Twenty four participants with chronic low back pain were assessed for lumbar kinematics during gait, isolated lumbar extension strength, pain, and disability. Angular displacement and kinematic waveform pattern and offset variability were examined. Angular displacement and kinematic waveform pattern and offset variability differed across movement planes; displacement was highest and similar in frontal and transverse planes, and pattern variability and offset variability higher in the sagittal plane compared to frontal and transverse planes which were similar. Spearman's correlations showed significant correlations between transverse plane pattern variability and isolated lumbar extension strength (r=-.411) and disability (r=.401). However, pain was not correlated with pattern variability in any plane. The r(2) values suggested 80.5% to 86.3% of variance was accounted for by other variables. Considering the lumbar extensors role in gait, the relationship between both isolated lumbar extension strength and disability with transverse plane pattern variability suggests that gait variability may result in consequence of lumbar extensor deconditioning or disability accompanying chronic low back pain. However, further study should examine the temporality of these relationships and other variables might account for the unexplained variance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Three dimensional mapping of strontium in bone by dual energy K-edge subtraction imaging

    International Nuclear Information System (INIS)

    Cooper, D M L; Chapman, L D; Carter, Y; Zhouping, W; Wu, Y; Panahifar, A; Duke, M J M; Doschak, M; Britz, H M; Bewer, B

    2012-01-01

    The bones of many terrestrial vertebrates, including humans, are continually altered through an internal process of turnover known as remodeling. This process plays a central role in bone adaptation and disease. The uptake of fluorescent tetracyclines within bone mineral is widely exploited as a means of tracking new tissue formation. While investigation of bone microarchitecture has undergone a dimensional shift from 2D to 3D in recent years, we lack a 3D equivalent to fluorescent labeling. In the current study we demonstrate the ability of synchrotron radiation dual energy K-edge subtraction (KES) imaging to map the 3D distribution of elemental strontium within rat vertebral samples. This approach has great potential for ex vivo analysis of preclinical models and human tissue samples. KES also represents a powerful tool for investigating the pharmokinetics of strontium-based drugs recently approved in many countries around the globe for the treatment of osteoporosis. (paper)

  19. NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surfaces

    Science.gov (United States)

    Torrey, M. D.; Mjolsness, R. C.; Stein, L. R.

    1987-07-01

    Presented is the NASA-VOF3D three-dimensional, transient, free-surface hydrodynamics program. This three-dimensional extension of NASA-VOF2D will, in principle, permit treatment in full three-dimensional generality of the wide variety of applications that could be treated by NASA-VOF2D only within the two-dimensional idealization. In particular, it, like NASA-VOF2D, is specifically designed to calculate confined flows in a low g environment. The code is presently restricted to cylindrical geometry. The code is based on the fractional volume-of-fluid method and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report provides a brief discussion of the numerical method, a code listing, and some sample problems.

  20. Expanding the bovine milk proteome through extensive fractionation.

    Science.gov (United States)

    Nissen, Asger; Bendixen, Emøke; Ingvartsen, Klaus Lønne; Røntved, Christine Maria

    2013-01-01

    Bovine milk is an agricultural product of tremendous value worldwide. It contains proteins, fat, lactose, vitamins, and minerals. It provides nutrition and immunological protection (e.g., in the gastrointestinal tract) to the newborn and young calf. It also forms an important part of human nutrition. The repertoire of proteins in milk (i.e., its proteome) is vast and complex. The milk proteome can be described in detail by mass spectrometry-based proteomics. However, the high concentration of dominating proteins in milk reduces mass spectrometry detection sensitivity and limits detection of low abundant proteins. Further, the general health and udder health of the dairy cows delivering the milk may influence the composition of the milk proteome. To gain a more exhaustive and true picture of the milk proteome, we performed an extensive preanalysis fractionation of raw composite milk collected from documented healthy cows in early lactation. Four simple and industrially applicable techniques exploring the physical and chemical properties of milk, including acidification, filtration, and centrifugation, were used for separation of the proteins. This resulted in 5 different fractions, whose content of proteins were compared with the proteins of nonfractionated milk using 2-dimensional liquid chromatography tandem mass spectrometry analysis. To validate the proteome analysis, spectral counts and ELISA were performed on 7 proteins using the ELISA for estimation of the detection sensitivity limit of the 2-dimensional liquid chromatography tandem mass spectrometry analysis. Each fractionation technique resulted in identification of a unique subset of proteins. However, high-speed centrifugation of milk to whey was by far the best method to achieve high and repeatable proteome coverage. The total number of milk proteins initially detected in nonfractionated milk and the fractions were 635 in 2 replicates. Removal of dominant proteins and filtering for redundancy across the

  1. Invariants, Attractors and Bifurcation in Two Dimensional Maps with Polynomial Interaction

    Science.gov (United States)

    Hacinliyan, Avadis Simon; Aybar, Orhan Ozgur; Aybar, Ilknur Kusbeyzi

    This work will present an extended discrete-time analysis on maps and their generalizations including iteration in order to better understand the resulting enrichment of the bifurcation properties. The standard concepts of stability analysis and bifurcation theory for maps will be used. Both iterated maps and flows are used as models for chaotic behavior. It is well known that when flows are converted to maps by discretization, the equilibrium points remain the same but a richer bifurcation scheme is observed. For example, the logistic map has a very simple behavior as a differential equation but as a map fold and period doubling bifurcations are observed. A way to gain information about the global structure of the state space of a dynamical system is investigating invariant manifolds of saddle equilibrium points. Studying the intersections of the stable and unstable manifolds are essential for understanding the structure of a dynamical system. It has been known that the Lotka-Volterra map and systems that can be reduced to it or its generalizations in special cases involving local and polynomial interactions admit invariant manifolds. Bifurcation analysis of this map and its higher iterates can be done to understand the global structure of the system and the artifacts of the discretization by comparing with the corresponding results from the differential equation on which they are based.

  2. Measurement of low radioactivity in underground laboratories by means of many-dimensional spectrometry; Messung geringer Radioaktivitaet in Untertagelaboratorien mit Hilfe mehrdimensionaler Spektrometrie

    Energy Technology Data Exchange (ETDEWEB)

    Niese, Siegfried

    2008-01-15

    In this contribution beside the possibilities for the measurements in underground laboratories also the application of the many-dimensional spectrometry is considered, under which coincidence, anticoincidence, and time-resolving spectrometric are to be understood. Very extensively the interaction of cosmic radiation with matter is considered.

  3. ABC-model analysis of gain-switched pulse characteristics in low-dimensional semiconductor lasers

    Science.gov (United States)

    Bao, Xumin; Liu, Yuejun; Weng, Guoen; Hu, Xiaobo; Chen, Shaoqiang

    2018-01-01

    The gain-switching dynamics of low-dimensional semiconductor lasers is simulated numerically by using a two-dimensional rate-equation model. Use is also made of the ABC model, where the carrier recombination rate is described by a function of carrier densities including Shockley - Read - Hall (SRH) recombination coefficient A, spontaneous emission coefficient B and Auger recombination coefficient C. Effects of the ABC parameters on the ultrafast gain-switched pulse characteristics with high-density pulse excitation are analysed. It is found that while the parameter A has almost no obvious effects, the parameters B and C have distinctly different effects: B influences significantly the delay time of the gain-switched pulse, while C affects mainly the pulse intensity.

  4. FPGA Implementation of one-dimensional and two-dimensional cellular automata

    International Nuclear Information System (INIS)

    D'Antone, I.

    1999-01-01

    This report describes the hardware implementation of one-dimensional and two-dimensional cellular automata (CAs). After a general introduction to the cellular automata, we consider a one-dimensional CA used to implement pseudo-random techniques in built-in self test for VLSI. Due to the increase in digital ASIC complexity, testing is becoming one of the major costs in the VLSI production. The high electronics complexity, used in particle physics experiments, demands higher reliability than in the past time. General criterions are given to evaluate the feasibility of the circuit used for testing and some quantitative parameters are underlined to optimize the architecture of the cellular automaton. Furthermore, we propose a two-dimensional CA that performs a peak finding algorithm in a matrix of cells mapping a sub-region of a calorimeter. As in a two-dimensional filtering process, the peaks of the energy clusters are found in one evolution step. This CA belongs to Wolfram class II cellular automata. Some quantitative parameters are given to optimize the architecture of the cellular automaton implemented in a commercial field programmable gate array (FPGA)

  5. Nonlinear dynamics of the relativistic standard map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Horton, W.

    1991-01-01

    Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map (ST). Thus, it is natural to pose the question asking how the relativistic effects change the nonlinear dynamical behavior described by the classical ST map. The authors show that the speed of light limits the rate of advance of the phase in the relativistic standard map (RST) and introduces KAM surfaces persisting in the high momentum region. The RST map is a two parameter (k, β = ω/kc) family of dynamics reducing to the ST map when β → 0. For β ≠ 0 the relativity suppresses the onset of stochasticity. Chernikov et al. has also reported this effect. They have carried out extensive studies of nonlinear dynamics of the RST map and found very intricate structure of mixing of the higher order periodic orbits and chaotic orbits. They have shown that no matter how its gets chaotic the symmetry properties of the RST map determines its nonlinear dynamical behavior. 1 ref

  6. Creating a literature database of low-calorie sweeteners and health studies: evidence mapping

    Directory of Open Access Journals (Sweden)

    Ding Ding Wang

    2016-01-01

    Full Text Available Abstract Background Evidence mapping is an emerging tool used to systematically identify, organize and summarize the quantity and focus of scientific evidence on a broad topic, but there are currently no methodological standards. Using the topic of low-calorie sweeteners (LCS and selected health outcomes, we describe the process of creating an evidence-map database and demonstrate several example descriptive analyses using this database. Methods The process of creating an evidence-map database is described in detail. The steps include: developing a comprehensive literature search strategy, establishing study eligibility criteria and a systematic study selection process, extracting data, developing outcome groups with input from expert stakeholders and tabulating data using descriptive analyses. The database was uploaded onto SRDR™ (Systematic Review Data Repository, an open public data repository. Results Our final LCS evidence-map database included 225 studies, of which 208 were interventional studies and 17 were cohort studies. An example bubble plot was produced to display the evidence-map data and visualize research gaps according to four parameters: comparison types, population baseline health status, outcome groups, and study sample size. This plot indicated a lack of studies assessing appetite and dietary intake related outcomes using LCS with a sugar intake comparison in people with diabetes. Conclusion Evidence mapping is an important tool for the contextualization of in-depth systematic reviews within broader literature and identifies gaps in the evidence base, which can be used to inform future research. An open evidence-map database has the potential to promote knowledge translation from nutrition science to policy.

  7. Creating a literature database of low-calorie sweeteners and health studies: evidence mapping.

    Science.gov (United States)

    Wang, Ding Ding; Shams-White, Marissa; Bright, Oliver John M; Parrott, J Scott; Chung, Mei

    2016-01-05

    Evidence mapping is an emerging tool used to systematically identify, organize and summarize the quantity and focus of scientific evidence on a broad topic, but there are currently no methodological standards. Using the topic of low-calorie sweeteners (LCS) and selected health outcomes, we describe the process of creating an evidence-map database and demonstrate several example descriptive analyses using this database. The process of creating an evidence-map database is described in detail. The steps include: developing a comprehensive literature search strategy, establishing study eligibility criteria and a systematic study selection process, extracting data, developing outcome groups with input from expert stakeholders and tabulating data using descriptive analyses. The database was uploaded onto SRDR™ (Systematic Review Data Repository), an open public data repository. Our final LCS evidence-map database included 225 studies, of which 208 were interventional studies and 17 were cohort studies. An example bubble plot was produced to display the evidence-map data and visualize research gaps according to four parameters: comparison types, population baseline health status, outcome groups, and study sample size. This plot indicated a lack of studies assessing appetite and dietary intake related outcomes using LCS with a sugar intake comparison in people with diabetes. Evidence mapping is an important tool for the contextualization of in-depth systematic reviews within broader literature and identifies gaps in the evidence base, which can be used to inform future research. An open evidence-map database has the potential to promote knowledge translation from nutrition science to policy.

  8. Optimized eight-dimensional lattice modulation format for IM-DD 56 Gb/s optical interconnections using 850 nm VCSELs

    DEFF Research Database (Denmark)

    Lu, Xiaofeng; Tatarczak, Anna; Lyubopytov, Vladimir

    2017-01-01

    In this paper a novel eight-dimensional lattice optimized modulation format, Block Based 8-dimensional/8-level (BB8), is proposed, taking into account the tradeoff between high performance and modulation simplicity. We provide an experimental performance comparison with its n-level pulse amplitude...... threshold. A simplified bit-to-symbol mapping and corresponding symbol-to-bit demapping algorithms, together with a hyperspace hard-decision, are designed specifically for applications of short-reach data links. These algorithms are expected to use affordable computational resources with relatively low...

  9. Circularly polarized near-field optical mapping of spin-resolved quantum Hall chiral edge states.

    Science.gov (United States)

    Mamyouda, Syuhei; Ito, Hironori; Shibata, Yusuke; Kashiwaya, Satoshi; Yamaguchi, Masumi; Akazaki, Tatsushi; Tamura, Hiroyuki; Ootuka, Youiti; Nomura, Shintaro

    2015-04-08

    We have successfully developed a circularly polarized near-field scanning optical microscope (NSOM) that enables us to irradiate circularly polarized light with spatial resolution below the diffraction limit. As a demonstration, we perform real-space mapping of the quantum Hall chiral edge states near the edge of a Hall-bar structure by injecting spin polarized electrons optically at low temperature. The obtained real-space mappings show that spin-polarized electrons are injected optically to the two-dimensional electron layer. Our general method to locally inject spins using a circularly polarized NSOM should be broadly applicable to characterize a variety of nanomaterials and nanostructures.

  10. Characteristics of exciton photoluminescence kinetics in low-dimensional silicon structures

    CERN Document Server

    Sachenko, A V; Manojlov, E G; Svechnikov, S V

    2001-01-01

    The time-resolved visible photoluminescence of porous nanocrystalline silicon films obtained by laser ablation have been measured within the temperature range 90-300 K. A study has been made of the interrelationship between photoluminescence characteristics (intensity, emission spectra, relaxation times, their temperature dependencies and structural and dielectric properties (size and shapes of Si nanocrystals, oxide phase of nanocrystal coating, porosity). A photoluminescence model is proposed that describes photon absorption and emission occurring in quantum-size Si nanocrystals while coupled subsystems of electron-hole pairs and excitons take part in the recombination. Possible excitonic Auger recombination mechanism in low-dimensional silicon structures is considered

  11. Interpretability of Multivariate Brain Maps in Linear Brain Decoding: Definition, and Heuristic Quantification in Multivariate Analysis of MEG Time-Locked Effects.

    Science.gov (United States)

    Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea

    2016-01-01

    Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms

  12. Absence of vortex condensation in a two dimensional fermionic XY model

    International Nuclear Information System (INIS)

    Cecile, D. J.; Chandrasekharan, Shailesh

    2008-01-01

    Motivated by a puzzle in the study of two-dimensional lattice quantum electrodynamics with staggered fermions, we construct a two-dimensional fermionic model with a global U(1) symmetry. Our model can be mapped into a model of closed packed dimers and plaquettes. Although the model has the same symmetries as the XY model, we show numerically that the model lacks the well-known Kosterlitz-Thouless phase transition. The model is always in the gapless phase showing the absence of a phase with vortex condensation. In other words the low energy physics is described by a noncompact U(1) field theory. We show that by introducing an even number of layers one can introduce vortex condensation within the model and thus also induce a Kosterlitz-Thouless transition.

  13. Generalized exact holographic mapping with wavelets

    Science.gov (United States)

    Lee, Ching Hua

    2017-12-01

    The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.

  14. The dimensional salience solution to the expectancy-value muddle: an extension.

    Science.gov (United States)

    Newton, Joshua D; Newton, Fiona J; Ewing, Michael T

    2014-01-01

    The theory of reasoned action (TRA) specifies a set of expectancy-value, belief-based frameworks that underpin attitude (behavioural beliefs × outcome evaluations) and subjective norm (normative beliefs × motivation to comply). Unfortunately, the most common method for analysing these frameworks generates statistically uninterpretable findings, resulting in what has been termed the 'expectancy-value muddle'. Recently, however, a dimensional salience approach was found to resolve this muddle for the belief-based framework underpinning attitude. An online survey of 262 participants was therefore conducted to determine whether the dimensional salience approach could also be applied to the belief-based framework underpinning subjective norm. Results revealed that motivations to comply were greater for salient, as opposed to non-salient, social referents. The belief-based framework underpinning subjective norm was therefore represented by evaluating normative belief ratings for salient social referents. This modified framework was found to predict subjective norm, although predictions were greater when participants were forced to select five salient social referents rather than being free to select any number of social referents. These findings validate the use of the dimensional salience approach for examining the belief-based frameworks underpinning subjective norm. As such, this approach provides a complete solution to addressing the expectancy-value muddle in the TRA.

  15. Bose-Einstein condensation in chains with power-law hoppings: Exact mapping on the critical behavior in d-dimensional regular lattices.

    Science.gov (United States)

    Dias, W S; Bertrand, D; Lyra, M L

    2017-06-01

    Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d>4.

  16. Bose-Einstein condensation in chains with power-law hoppings: Exact mapping on the critical behavior in d -dimensional regular lattices

    Science.gov (United States)

    Dias, W. S.; Bertrand, D.; Lyra, M. L.

    2017-06-01

    Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d >4 .

  17. Weakly infinite-dimensional spaces

    International Nuclear Information System (INIS)

    Fedorchuk, Vitalii V

    2007-01-01

    In this survey article two new classes of spaces are considered: m-C-spaces and w-m-C-spaces, m=2,3,...,∞. They are intermediate between the class of weakly infinite-dimensional spaces in the Alexandroff sense and the class of C-spaces. The classes of 2-C-spaces and w-2-C-spaces coincide with the class of weakly infinite-dimensional spaces, while the compact ∞-C-spaces are exactly the C-compact spaces of Haver. The main results of the theory of weakly infinite-dimensional spaces, including classification via transfinite Lebesgue dimensions and Luzin-Sierpinsky indices, extend to these new classes of spaces. Weak m-C-spaces are characterised by means of essential maps to Henderson's m-compacta. The existence of hereditarily m-strongly infinite-dimensional spaces is proved.

  18. Mapping the space of genomic signatures.

    Directory of Open Access Journals (Sweden)

    Lila Kari

    Full Text Available We propose a computational method to measure and visualize interrelationships among any number of DNA sequences allowing, for example, the examination of hundreds or thousands of complete mitochondrial genomes. An "image distance" is computed for each pair of graphical representations of DNA sequences, and the distances are visualized as a Molecular Distance Map: Each point on the map represents a DNA sequence, and the spatial proximity between any two points reflects the degree of structural similarity between the corresponding sequences. The graphical representation of DNA sequences utilized, Chaos Game Representation (CGR, is genome- and species-specific and can thus act as a genomic signature. Consequently, Molecular Distance Maps could inform species identification, taxonomic classifications and, to a certain extent, evolutionary history. The image distance employed, Structural Dissimilarity Index (DSSIM, implicitly compares the occurrences of oligomers of length up to k (herein k = 9 in DNA sequences. We computed DSSIM distances for more than 5 million pairs of complete mitochondrial genomes, and used Multi-Dimensional Scaling (MDS to obtain Molecular Distance Maps that visually display the sequence relatedness in various subsets, at different taxonomic levels. This general-purpose method does not require DNA sequence alignment and can thus be used to compare similar or vastly different DNA sequences, genomic or computer-generated, of the same or different lengths. We illustrate potential uses of this approach by applying it to several taxonomic subsets: phylum Vertebrata, (superkingdom Protista, classes Amphibia-Insecta-Mammalia, class Amphibia, and order Primates. This analysis of an extensive dataset confirms that the oligomer composition of full mtDNA sequences can be a source of taxonomic information. This method also correctly finds the mtDNA sequences most closely related to that of the anatomically modern human (the Neanderthal

  19. Existence of Lipschitz selections of the Steiner map

    Science.gov (United States)

    Bednov, B. B.; Borodin, P. A.; Chesnokova, K. V.

    2018-02-01

    This paper is concerned with the problem of the existence of Lipschitz selections of the Steiner map {St}_n, which associates with n points of a Banach space X the set of their Steiner points. The answer to this problem depends on the geometric properties of the unit sphere S(X) of X, its dimension, and the number n. For n≥slant 4 general conditions are obtained on the space X under which {St}_n admits no Lipschitz selection. When X is finite dimensional it is shown that, if n≥slant 4 is even, the map {St}_n has a Lipschitz selection if and only if S(X) is a finite polytope; this is not true if n≥slant 3 is odd. For n=3 the (single-valued) map {St}_3 is shown to be Lipschitz continuous in any smooth strictly-convex two-dimensional space; this ceases to be true in three-dimensional spaces. Bibliography: 21 titles.

  20. Correlation of Photocatalytic Activity with Band Structure of Low-dimensional Semiconductor Nanostructures

    Science.gov (United States)

    Meng, Fanke

    Photocatalytic hydrogen generation by water splitting is a promising technique to produce clean and renewable solar fuel. The development of effective semiconductor photocatalysts to obtain efficient photocatalytic activity is the key objective. However, two critical reasons prevent wide applications of semiconductor photocatalysts: low light usage efficiency and high rates of charge recombination. In this dissertation, several low-dimensional semiconductors were synthesized with hydrothermal, hydrolysis, and chemical impregnation methods. The band structures of the low-dimensional semiconductor materials were engineered to overcome the above mentioned two shortcomings. In addition, the correlation between the photocatalytic activity of the low-dimensional semiconductor materials and their band structures were studied. First, we studied the effect of oxygen vacancies on the photocatalytic activity of one-dimensional anatase TiO2 nanobelts. Given that the oxygen vacancy plays a significant role in band structure and photocatalytic performance of semiconductors, oxygen vacancies were introduced into the anatase TiO2 nanobelts during reduction in H2 at high temperature. The oxygen vacancies of the TiO2 nanobelts boosted visible-light-responsive photocatalytic activity but weakened ultraviolet-light-responsive photocatalytic activity. As oxygen vacancies are commonly introduced by dopants, these results give insight into why doping is not always beneficial to the overall photocatalytic performance despite increases in absorption. Second, we improved the photocatalytic performance of two-dimensional lanthanum titanate (La2Ti2 O7) nanosheets, which are widely studied as an efficient photocatalyst due to the unique layered crystal structure. Nitrogen was doped into the La2Ti2O7 nanosheets and then Pt nanoparticles were loaded onto the La2Ti2O7 nanosheets. Doping nitrogen narrowed the band gap of the La2Ti 2O7 nanosheets by introducing a continuum of states by the valence

  1. ADC mapping of benign and malignant breast tumors

    International Nuclear Information System (INIS)

    Woodhams, R.; Matsunaga, Keiji; Kan, Shinichi; Hata, Hirofumi; Iwabuchi, Keiichi; Kuranami, Masaru; Watanabe, Masahiko; Hayakawa, Kazushige; Ozaki, Masanori

    2005-01-01

    The purpose of this study was to investigate the utility of diffusion-weighted imaging (DWI) and the apparent diffusion coefficient (ADC) value in differentiating benign and malignant breast lesions and evaluating the detection accuracy of the cancer extension. We used DWI to obtain images of 191 benign and malignant lesions (24 benign, 167 malignant) before surgical excision. The ADC values of the benign and malignant lesions were compared, as were the values of noninvasive ductal carcinoma (NIDC) and invasive ductal carcinoma (IDC). We also evaluated the ADC map, which represents the distribution of ADC values, and compared it with the cancer extension. The mean ADC value of each type of lesion was as follows: malignant lesions, 1.22±0.31 x 10 -3 mm 2 /s; benign lesions, 1.67±0.54 x 10 -3 mm 2 /s; normal tissues, 2.09±0.27 x 10 -3 mm 2 /s. The mean ADC value of the malignant lesions was statistically lower than that of the benign lesions and normal breast tissues. The ADC value of IDC was statistically lower than that of NIDC. The sensitivity of the ADC value for malignant lesions with a threshold of less than 1.6 x 10 -3 mm 2 /s was 95% and the specificity was 46%. A full 75% of all malignant cases exhibited a near precise distribution of low ADC values on ADC maps to describe malignant lesions. The main causes of false negative and underestimation of cancer spread were susceptibility artifact because of bleeding and tumor structure. Major histologic types of false-positive lesions were intraductal papilloma and fibrocystic diseases. Fibrocystic diseases also resulted in overestimation of cancer extension. DWI has the potential in clinical appreciation to detect malignant breast tumors and support the evaluation of tumor extension. However, the benign proliferative change remains to be studied as it mimics the malignant phenomenon on the ADC map. (author)

  2. CONSTRAINING THE MILKY WAY POTENTIAL WITH A SIX-DIMENSIONAL PHASE-SPACE MAP OF THE GD-1 STELLAR STREAM

    International Nuclear Information System (INIS)

    Koposov, Sergey E.; Rix, Hans-Walter; Hogg, David W.

    2010-01-01

    The narrow GD-1 stream of stars, spanning 60 0 on the sky at a distance of ∼10 kpc from the Sun and ∼15 kpc from the Galactic center, is presumed to be debris from a tidally disrupted star cluster that traces out a test-particle orbit in the Milky Way halo. We combine Sloan Digital Sky Survey (SDSS) photometry, USNO-B astrometry, and SDSS and Calar Alto spectroscopy to construct a complete, empirical six-dimensional (6D) phase-space map of the stream. We find that an eccentric orbit in a flattened isothermal potential describes this phase-space map well. Even after marginalizing over the stream orbital parameters and the distance from the Sun to the Galactic center, the orbital fit to GD-1 places strong constraints on the circular velocity at the Sun's radius V c = 224 ± 13 km s -1 and total potential flattening q Φ = 0.87 +0.07 -0.04 . When we drop any informative priors on V c , the GD-1 constraint becomes V c = 221 ± 18 km s -1 . Our 6D map of GD-1, therefore, yields the best current constraint on V c and the only strong constraint on q Φ at Galactocentric radii near R ∼ 15 kpc. Much, if not all, of the total potential flattening may be attributed to the mass in the stellar disk, so the GD-1 constraints on the flattening of the halo itself are weak: q Φ,halo > 0.89 at 90% confidence. The greatest uncertainty in the 6D map and the orbital analysis stems from the photometric distances, which will be obviated by GAIA.

  3. Life extension of MAPS-2 by replacement of boiler hairpin type heat exchangers

    International Nuclear Information System (INIS)

    Tripathi, J.C.; Rastogi, S.K.; Rastogi, A.K.

    2006-01-01

    The steam generating equipment in MAPS-1 and 2 are Hairpin type comprises of eight boiler assemblies arranged in two banks of four boilers each. Each hairpin type heat exchangers consist of 195 Monel-400 tubes of 12.7 mm OD x 1.24 mm WT. One boiler assembly consists of eleven inverted U type heat exchangers (called hairpin type heat exchangers) mounted in parallel on inlet and outlet heavy water manifolds and connected to steam drum through individual short riser. Heavy water flows through these tubes where as feed water enters the shell at the bottom of one leg called pre-heat leg. After commissioning of MAPS-2 in 1985, five hairpins of MAPS-2 developed leak during the course of operation by the year 1999. Absence of physical access for health assessment of steam generator tube and lack of provision for tube sheet cleaning to remove the deposits on feed water side had caused pile and resulted in tube failures by under deposit pitting corrosion. All the 88 hairpins of MAPS-2 were replaced to extend the plant life when MAPS-2 was taken out of grid for En-masse Coolant Channel Replacement job (EMCCR) in the year 2001 - 03. The long shutdown of MAPS units for EMCCR was considered to be cost effective since unscheduled plant shut downs on account of tube leaks could be avoided. (author)

  4. Hierarchical low-rank approximation for high dimensional approximation

    KAUST Repository

    Nouy, Anthony

    2016-01-07

    Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.

  5. Hierarchical low-rank approximation for high dimensional approximation

    KAUST Repository

    Nouy, Anthony

    2016-01-01

    Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.

  6. Low Dimensional Semiconductor Structures Characterization, Modeling and Applications

    CERN Document Server

    Horing, Norman

    2013-01-01

    Starting with the first transistor in 1949, the world has experienced a technological revolution which has permeated most aspects of modern life, particularly over the last generation. Yet another such revolution looms up before us with the newly developed capability to control matter on the nanometer scale. A truly extraordinary research effort, by scientists, engineers, technologists of all disciplines, in nations large and small throughout the world, is directed and vigorously pressed to develop a full understanding of the properties of matter at the nanoscale and its possible applications, to bring to fruition the promise of nanostructures to introduce a new generation of electronic and optical devices. The physics of low dimensional semiconductor structures, including heterostructures, superlattices, quantum wells, wires and dots is reviewed and their modeling is discussed in detail. The truly exceptional material, Graphene, is reviewed; its functionalization and Van der Waals interactions are included h...

  7. Three-dimensional tokamak equilibria and stellarators with two-dimensional magnetic symmetry

    International Nuclear Information System (INIS)

    Garabedian, P.R.

    1997-01-01

    Three-dimensional computer codes have been developed to simulate equilibrium, stability and transport in tokamaks and stellarators. Bifurcated solutions of the tokamak problem suggest that three-dimensional effects may be more important than has generally been thought. Extensive calculations have led to the discovery of a stellarator configuration with just two field periods and with aspect ratio 3.2 that has a magnetic field spectrum B mn with toroidal symmetry. Numerical studies of equilibrium, stability and transport for this new device, called the Modular Helias-like Heliac 2 (MHH2), will be presented. (author)

  8. Event maps in a stick-slip system

    DEFF Research Database (Denmark)

    Galvanetto, Ugo; Knudsen, Carsten

    1997-01-01

    This paper describes a one-dimensional map generated by a two degree-of-freedom mechanical system that undergoes self-sustained oscillations induced by dry friction. The iterated map allows a much simpler representation and a better understanding of some dynamic features of the system. Some appli...

  9. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining.

    Science.gov (United States)

    Truccolo, Wilson

    2016-11-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.

  10. Explorative analysis of 2D color maps

    OpenAIRE

    Steiger, Martin; Bernard, Jürgen; Thum, Simon; Mittelstädt, Sebastian; Hutter, Marco; Keim, Daniel A.; Kohlhammer, Jörn

    2015-01-01

    Color is one of the most important visual variables in information visualization. In many cases, two-dimensional information can be color-coded based on a 2D color map. A variety of color maps as well as a number of quality criteria for the use of color have been presented. The choice of the best color map depends on the analytical task users intend to perform and the design space in choosing an appropriate 2D color map is large. In this paper, we present the ColorMap-Explorer, a visual-inter...

  11. Experimental Validation of Plastic Mandible Models Produced by a "Low-Cost" 3-Dimensional Fused Deposition Modeling Printer.

    Science.gov (United States)

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-03-22

    The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field.

  12. One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures

    DEFF Research Database (Denmark)

    Belykh, Vladimir N.; Mosekilde, Erik

    1996-01-01

    The paper presents a qualitative analysis of coupled map lattices (CMLs) for the case of arbitrary nonlinearity of the local map and with space-shift as well as diffusion coupling. The effect of synchronization where, independently of the initial conditions, all elements of a CML acquire uniform...... dynamics is investigated and stable chaotic time behaviors, steady structures, and traveling waves are described. Finally, the bifurcations occurring under the transition from spatiotemporal chaos to chaotic synchronization and the peculiarities of CMLs with specific symmetries are discussed....

  13. ICTP Summer Course on Low-Dimensional Quantum Field Theories for Condensed Matter Physicists

    CERN Document Server

    Morandi, G; Lu, Y

    1995-01-01

    This volume contains a set of pedagogical reviews covering the most recent applications of low-dimensional quantum field theory in condensed matter physics, written by experts who have made major contributions to this rapidly developing field of research. The main purpose is to introduce active young researchers to new ideas and new techniques which are not covered by the standard textbooks.

  14. Conservative Initial Mapping For Multidimensional Simulations of Stellar Explosions

    International Nuclear Information System (INIS)

    Chen, Ke-Jung; Heger, Alexander; Almgren, Ann

    2012-01-01

    Mapping one-dimensional stellar profiles onto multidimensional grids as initial conditions for hydrodynamics calculations can lead to numerical artifacts, one of the most severe of which is the violation of conservation laws for physical quantities such as energy and mass. Here we introduce a numerical scheme for mapping one-dimensional spherically-symmetric data onto multidimensional meshes so that these physical quantities are conserved. We validate our scheme by porting a realistic 1D Lagrangian stellar profile to the new multidimensional Eulerian hydro code CASTRO. Our results show that all important features in the profiles are reproduced on the new grid and that conservation laws are enforced at all resolutions after mapping.

  15. Surficial geologic map of the Dillingham quadrangle, southwestern Alaska

    Science.gov (United States)

    Wilson, Frederic H.

    2018-05-14

    The geologic map of the Dillingham quadrangle in southwestern Alaska shows surficial unconsolidated deposits, many of which are alluvial or glacial in nature. The map area, part of Alaska that was largely not glaciated during the late Wisconsin glaciation, has a long history reflecting local and more distant glaciations. Late Wisconsin glacial deposits have limited extent in the eastern part of the quadrangle, but are quite extensive in the western part of the quadrangle. This map and accompanying digital files are the result of the interpretation of black and white aerial photographs from the 1950s as well as more modern imagery. Limited new field mapping in the area was conducted as part of a bedrock mapping project in the northeastern part of the quadrangle; however, extensive aerial photographic interpretation represents the bulk of the mapping effort.

  16. Using travel times to simulate multi-dimensional bioreactive transport in time-periodic flows.

    Science.gov (United States)

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2016-04-01

    In travel-time models, the spatially explicit description of reactive transport is replaced by associating reactive-species concentrations with the travel time or groundwater age at all locations. These models have been shown adequate for reactive transport in river-bank filtration under steady-state flow conditions. Dynamic hydrological conditions, however, can lead to fluctuations of infiltration velocities, putting the validity of travel-time models into question. In transient flow, the local travel-time distributions change with time. We show that a modified version of travel-time based reactive transport models is valid if only the magnitude of the velocity fluctuates, whereas its spatial orientation remains constant. We simulate nonlinear, one-dimensional, bioreactive transport involving oxygen, nitrate, dissolved organic carbon, aerobic and denitrifying bacteria, considering periodic fluctuations of velocity. These fluctuations make the bioreactive system pulsate: The aerobic zone decreases at times of low velocity and increases at those of high velocity. For the case of diurnal fluctuations, the biomass concentrations cannot follow the hydrological fluctuations and a transition zone containing both aerobic and obligatory denitrifying bacteria is established, whereas a clear separation of the two types of bacteria prevails in the case of seasonal velocity fluctuations. We map the 1-D results to a heterogeneous, two-dimensional domain by means of the mean groundwater age for steady-state flow in both domains. The mapped results are compared to simulation results of spatially explicit, two-dimensional, advective-dispersive-bioreactive transport subject to the same relative fluctuations of velocity as in the one-dimensional model. The agreement between the mapped 1-D and the explicit 2-D results is excellent. We conclude that travel-time models of nonlinear bioreactive transport are adequate in systems of time-periodic flow if the flow direction does not change

  17. Low frequency phononic band structures in two-dimensional arc-shaped phononic crystals

    International Nuclear Information System (INIS)

    Xu, Zhenlong; Wu, Fugen; Guo, Zhongning

    2012-01-01

    The low frequency phononic band structures of two-dimensional arc-shaped phononic crystals (APCs) were studied by the transfer matrix method in cylindrical coordinates. The results showed the first phononic band gaps (PBGs) of APCs from zero Hz with low modes. Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials. These properties can be efficiently used in a structure for low frequencies that are forbidden, or in a device that permits a narrow window of frequencies. -- Highlights: ► We report a new class of quasi-periodic hetero-structures, arc-shaped phononic crystals (APCs). ► The results show the first PBGs start with zero Hz with low modes. ► Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials.

  18. Calculation of stochastic broadening due to low mn magnetic perturbation in the simple map in action-angle coordinates

    Science.gov (United States)

    Hinton, Courtney; Punjabi, Alkesh; Ali, Halima

    2009-11-01

    The simple map is the simplest map that has topology of divertor tokamaks [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Let. A 364, 140--145 (2007)]. Recently, the action-angle coordinates for simple map are analytically calculated, and simple map is constructed in action-angle coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)]. Action-angle coordinates for simple map cannot be inverted to real space coordinates (R,Z). Because there is logarithmic singularity on the ideal separatrix, trajectories cannot cross separatrix [op cit]. Simple map in action-angle coordinates is applied to calculate stochastic broadening due to the low mn magnetic perturbation with mode numbers m=1, and n=±1. The width of stochastic layer near the X-point scales as 0.63 power of the amplitude δ of low mn perturbation, toroidal flux loss scales as 1.16 power of δ, and poloidal flux loss scales as 1.26 power of δ. Scaling of width deviates from Boozer-Rechester scaling by 26% [A. Boozer, and A. Rechester, Phys. Fluids 21, 682 (1978)]. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.

  19. An n-dimensional pseudo-differential operator involving the Hankel ...

    Indian Academy of Sciences (India)

    dimensional Hankel transformation is defined. The symbol class H m is introduced. It is shown that p.d.o.'s associated with symbols belonging to this class are continuous linear mappings of the -dimensional Zemanian space H ( I n ) into itself.

  20. Reduction of multi-dimensional laboratory data to a two-dimensional plot: a novel technique for the identification of laboratory error.

    Science.gov (United States)

    Kazmierczak, Steven C; Leen, Todd K; Erdogmus, Deniz; Carreira-Perpinan, Miguel A

    2007-01-01

    The clinical laboratory generates large amounts of patient-specific data. Detection of errors that arise during pre-analytical, analytical, and post-analytical processes is difficult. We performed a pilot study, utilizing a multidimensional data reduction technique, to assess the utility of this method for identifying errors in laboratory data. We evaluated 13,670 individual patient records collected over a 2-month period from hospital inpatients and outpatients. We utilized those patient records that contained a complete set of 14 different biochemical analytes. We used two-dimensional generative topographic mapping to project the 14-dimensional record to a two-dimensional space. The use of a two-dimensional generative topographic mapping technique to plot multi-analyte patient data as a two-dimensional graph allows for the rapid identification of potentially anomalous data. Although we performed a retrospective analysis, this technique has the benefit of being able to assess laboratory-generated data in real time, allowing for the rapid identification and correction of anomalous data before they are released to the physician. In addition, serial laboratory multi-analyte data for an individual patient can also be plotted as a two-dimensional plot. This tool might also be useful for assessing patient wellbeing and prognosis.

  1. Three-Dimensional Computer Graphics Brain-Mapping Project

    Science.gov (United States)

    1988-03-24

    1975-76, one of these brains was hand digitized. It was then reconstructed three dimensionally, using an Evans and Sutherland Picture System 2. This...Yakovlev Collection, we use the Evans and Sutherland Picture System 2 which we have been employing for this purpose for a dozen years. Its virtue is...careful, experimentally designed new protocol (See Figure 20). Most of these heads were imaged with Computed Tomography, thanks to Clint Stiles of Picker

  2. Sources of uncertainty in flood inundation maps

    Science.gov (United States)

    Bales, J.D.; Wagner, C.R.

    2009-01-01

    Flood inundation maps typically have been used to depict inundated areas for floods having specific exceedance levels. The uncertainty associated with the inundation boundaries is seldom quantified, in part, because all of the sources of uncertainty are not recognized and because data available to quantify uncertainty seldom are available. Sources of uncertainty discussed in this paper include hydrologic data used for hydraulic model development and validation, topographic data, and the hydraulic model. The assumption of steady flow, which typically is made to produce inundation maps, has less of an effect on predicted inundation at lower flows than for higher flows because more time typically is required to inundate areas at high flows than at low flows. Difficulties with establishing reasonable cross sections that do not intersect and that represent water-surface slopes in tributaries contribute additional uncertainties in the hydraulic modelling. As a result, uncertainty in the flood inundation polygons simulated with a one-dimensional model increases with distance from the main channel.

  3. Reconstructing 3D Face Model with Associated Expression Deformation from a Single Face Image via Constructing a Low-Dimensional Expression Deformation Manifold.

    Science.gov (United States)

    Wang, Shu-Fan; Lai, Shang-Hong

    2011-10-01

    Facial expression modeling is central to facial expression recognition and expression synthesis for facial animation. In this work, we propose a manifold-based 3D face reconstruction approach to estimating the 3D face model and the associated expression deformation from a single face image. With the proposed robust weighted feature map (RWF), we can obtain the dense correspondences between 3D face models and build a nonlinear 3D expression manifold from a large set of 3D facial expression models. Then a Gaussian mixture model in this manifold is learned to represent the distribution of expression deformation. By combining the merits of morphable neutral face model and the low-dimensional expression manifold, a novel algorithm is developed to reconstruct the 3D face geometry as well as the facial deformation from a single face image in an energy minimization framework. Experimental results on simulated and real images are shown to validate the effectiveness and accuracy of the proposed algorithm.

  4. Monolithic active pixel sensors (MAPS) in a VLSI CMOS technology

    CERN Document Server

    Turchetta, R; Manolopoulos, S; Tyndel, M; Allport, P P; Bates, R; O'Shea, V; Hall, G; Raymond, M

    2003-01-01

    Monolithic Active Pixel Sensors (MAPS) designed in a standard VLSI CMOS technology have recently been proposed as a compact pixel detector for the detection of high-energy charged particle in vertex/tracking applications. MAPS, also named CMOS sensors, are already extensively used in visible light applications. With respect to other competing imaging technologies, CMOS sensors have several potential advantages in terms of low cost, low power, lower noise at higher speed, random access of pixels which allows windowing of region of interest, ability to integrate several functions on the same chip. This brings altogether to the concept of 'camera-on-a-chip'. In this paper, we review the use of CMOS sensors for particle physics and we analyse their performances in term of the efficiency (fill factor), signal generation, noise, readout speed and sensor area. In most of high-energy physics applications, data reduction is needed in the sensor at an early stage of the data processing before transfer of the data to ta...

  5. Classical and quantum phases of low-dimensional dipolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartarius, Florian

    2016-09-22

    In this thesis we present a detailed study of the phase diagram of ultracold bosonic atoms confined along a tight atomic wave guide, along which they experience an optical lattice potential. In this quasi-one dimensional model we analyse the interplay between interactions and quantum fluctuations in (i) determining the non-equilibrium steady state after a quench and (ii) giving rise to novel equilibrium phases, when the interactions combine the s-wave contact interaction and the anisotropic long range dipole-dipole interactions. In detail, in the first part of the thesis we study the depinning of a gas of impenetrable bosons following the sudden switch of of the optical lattice. By means of a Bose-Fermi mapping we infer the exact quantum dynamical evolution and show that in the thermodynamic limit the system is in a non-equilibrium steady state without quasi-long range order. In the second part of the thesis, we study the effect of quantum fluctuations on the linear-zigzag instability in the ground state of ultracold dipolar bosons, as a function of the strength of the transverse confinement. We first analyse the linear-zigzag instability in the classical regime, and then use our results to develop a multi-mode Bose-Hubbard model for the system. We then develop several numerical methods, to determine the ground state.

  6. The predictive value of endorectal 3 Tesla multiparametric magnetic resonance imaging for extraprostatic extension in patients with low, intermediate and high risk prostate cancer.

    Science.gov (United States)

    Somford, D M; Hamoen, E H; Fütterer, J J; van Basten, J P; Hulsbergen-van de Kaa, C A; Vreuls, W; van Oort, I M; Vergunst, H; Kiemeney, L A; Barentsz, J O; Witjes, J A

    2013-11-01

    We determined the positive and negative predictive values of multiparametric magnetic resonance imaging for extraprostatic extension at radical prostatectomy for different prostate cancer risk groups. We evaluated a cohort of 183 patients who underwent 3 Tesla multiparametric magnetic resonance imaging, including T2-weighted, diffusion weighted magnetic resonance imaging and dynamic contrast enhanced sequences, with an endorectal coil before radical prostatectomy. Pathological stage at radical prostatectomy was used as standard reference for extraprostatic extension. The cohort was classified into low, intermediate and high risk groups according to the D'Amico criteria. We recorded prevalence of extraprostatic extension at radical prostatectomy and determined sensitivity, specificity, positive predictive value and negative predictive value of multiparametric magnetic resonance imaging for extraprostatic extension in each group. Univariate and multivariate analyses were performed to identify predictors of extraprostatic extension at radical prostatectomy. The overall prevalence of extraprostatic extension at radical prostatectomy was 49.7% ranging from 24.7% to 77.1% between low and high risk categories. Overall staging accuracy of multiparametric magnetic resonance imaging for extraprostatic extension was 73.8%, with sensitivity, specificity, positive predictive value and negative predictive value of 58.2%, 89.1%, 84.1% and 68.3%, respectively. Positive predictive value of multiparametric magnetic resonance imaging for extraprostatic extension was best in the high risk cohort with 88.8%. Negative predictive value was highest in the low risk cohort with 87.7%. With an odds ratio of 10.3 multiparametric magnetic resonance imaging is by far the best preoperative predictor of extraprostatic extension at radical prostatectomy. For adequate patient counseling, knowledge of predictive values of multiparametric magnetic resonance imaging for extraprostatic extension is

  7. Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam.

    Science.gov (United States)

    Rydzewski, J; Nowak, W

    2016-04-12

    In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand-protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [ Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015 , 143 ( 12 ), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam-camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events.

  8. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    International Nuclear Information System (INIS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space

  9. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    Energy Technology Data Exchange (ETDEWEB)

    Nedialkova, Lilia V.; Amat, Miguel A. [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Chemical and Biological Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 (United States); Hummer, Gerhard, E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main (Germany)

    2014-09-21

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  10. Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments.

    Science.gov (United States)

    Choi, Ji Yeh; Hwang, Heungsun; Timmerman, Marieke E

    2018-03-01

    Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode, to explain the maximum variance of the data. Functional PARAFAC permits the entities in different modes to be smooth functions or curves, varying over a continuum, rather than a collection of unconnected responses. The existing functional PARAFAC methods handle functions of a one-dimensional argument (e.g., time) only. In this paper, we propose a new extension of functional PARAFAC for handling three-way data whose responses are sequenced along both a two-dimensional domain (e.g., a plane with x- and y-axis coordinates) and a one-dimensional argument. Technically, the proposed method combines PARAFAC with basis function expansion approximations, using a set of piecewise quadratic finite element basis functions for estimating two-dimensional smooth functions and a set of one-dimensional basis functions for estimating one-dimensional smooth functions. In a simulation study, the proposed method appeared to outperform the conventional PARAFAC. We apply the method to EEG data to demonstrate its empirical usefulness.

  11. Three-dimensional mapping of light transmittance and foliage distribution using lidar

    International Nuclear Information System (INIS)

    Todd, K.W.; Csillag, F.; Atkinson, P.M.

    2003-01-01

    The horizontal and vertical distributions of light transmittance were evaluated as a function of foliage distribution using lidar (light detection and ranging) observations for a sugar maple (Acer saccharum) stand in the Turkey Lakes Watershed. Along the vertical profile of vegetation, horizontal slices of probability of light transmittance were derived from an Optech ALTM 1225 instrument's return pulses (two discrete, 15-cm diameter returns) using indicator kriging. These predictions were compared with (i) below canopy (1-cm spatial resolution) transect measurements of the fraction of photosynthetically active radiation (FPAR) and (ii) measurements of tree height. A first-order trend was initially removed from the lidar returns. The vertical distribution of vegetation height was then sliced into nine percentiles and indicator variograms were fitted to them. Variogram parameters were found to vary as a function of foliage height above ground. In this paper, we show that the relationship between ground measurements of FPAR and kriged estimates of vegetation cover becomes stronger and tighter at coarser spatial resolutions. Three-dimensional maps of foliage distribution were computed as stacks of the percentile probability surfaces. These probability surfaces showed correspondence with individual tree-based observations and provided a much more detailed characterization of quasi-continuous foliage distribution. These results suggest that discrete-return lidar provides a promising technology to capture variations of foliage characteristics in forests to support the development of functional linkages between biophysical and ecological studies. (author)

  12. Higher-dimensional generalizations of the Watanabe–Strogatz transform for vector models of synchronization

    Science.gov (United States)

    Lohe, M. A.

    2018-06-01

    We generalize the Watanabe–Strogatz (WS) transform, which acts on the Kuramoto model in d  =  2 dimensions, to a higher-dimensional vector transform which operates on vector oscillator models of synchronization in any dimension , for the case of identical frequency matrices. These models have conserved quantities constructed from the cross ratios of inner products of the vector variables, which are invariant under the vector transform, and have trajectories which lie on the unit sphere S d‑1. Application of the vector transform leads to a partial integration of the equations of motion, leaving independent equations to be solved, for any number of nodes N. We discuss properties of complete synchronization and use the reduced equations to derive a stability condition for completely synchronized trajectories on S d‑1. We further generalize the vector transform to a mapping which acts in and in particular preserves the unit ball , and leaves invariant the cross ratios constructed from inner products of vectors in . This mapping can be used to partially integrate a system of vector oscillators with trajectories in , and for d  =  2 leads to an extension of the Kuramoto system to a system of oscillators with time-dependent amplitudes and trajectories in the unit disk. We find an inequivalent generalization of the Möbius map which also preserves but leaves invariant a different set of cross ratios, this time constructed from the vector norms. This leads to a different extension of the Kuramoto model with trajectories in the complex plane that can be partially integrated by means of fractional linear transformations.

  13. First results from the characterization of a three-dimensional deep N-well MAPS prototype for vertexing applications

    International Nuclear Information System (INIS)

    Ratti, L.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Re, V.; Traversi, G.

    2013-01-01

    The prototype of a three-dimensional (3D) monolithic active pixel sensor (MAPS) has been characterized. The device, featuring a 20μm pitch, was designed based on the same approach that was adopted in developing the so-called deep N-well (DNW) MAPS in planar CMOS process. The new 3D design relies upon stacking two homogeneous tiers fabricated in a 130 nm CMOS technology. Different kinds of test structures, including single pixels, 3×3 arrays and 8×8 and 16×16 matrices were tested. Functionality of the collecting deep N-well electrode, the analog front-end and the digital readout electronics has been demonstrated. Inter-tier communication was found to work properly in the case of redundant interconnection and could be exploited for the test of the analog pixel section. On the other hand, inter-tier interconnections based on individual bond pads were proven ineffective likely due to wafer misalignment. -- Highlights: ► First results on the characterization of 3D DNW monolithic sensor. ► Functionality of the analog and digital sections is demonstrated. ► DNW collecting electrode is tested by means of a laser source. ► A non-linear model for charge preamplifier response is discussed. ► Redundant vertical interconnection is shown to work properly.

  14. First results from the characterization of a three-dimensional deep N-well MAPS prototype for vertexing applications

    Energy Technology Data Exchange (ETDEWEB)

    Ratti, L., E-mail: lodovico.ratti@unipv.it [Università di Pavia, Dipartimento di Elettronica, Via Ferrata 1, I-27100 Pavia (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Gaioni, L. [INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Manazza, A. [Università di Pavia, Dipartimento di Elettronica, Via Ferrata 1, I-27100 Pavia (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Università di Bergamo, Dipartimento di Ingegneria Industriale, Via Marconi 5, I-24044 Dalmine (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2013-01-21

    The prototype of a three-dimensional (3D) monolithic active pixel sensor (MAPS) has been characterized. The device, featuring a 20μm pitch, was designed based on the same approach that was adopted in developing the so-called deep N-well (DNW) MAPS in planar CMOS process. The new 3D design relies upon stacking two homogeneous tiers fabricated in a 130 nm CMOS technology. Different kinds of test structures, including single pixels, 3×3 arrays and 8×8 and 16×16 matrices were tested. Functionality of the collecting deep N-well electrode, the analog front-end and the digital readout electronics has been demonstrated. Inter-tier communication was found to work properly in the case of redundant interconnection and could be exploited for the test of the analog pixel section. On the other hand, inter-tier interconnections based on individual bond pads were proven ineffective likely due to wafer misalignment. -- Highlights: ► First results on the characterization of 3D DNW monolithic sensor. ► Functionality of the analog and digital sections is demonstrated. ► DNW collecting electrode is tested by means of a laser source. ► A non-linear model for charge preamplifier response is discussed. ► Redundant vertical interconnection is shown to work properly.

  15. Dimensional synthesis of a 3-DOF parallel manipulator with full circle rotation

    Science.gov (United States)

    Ni, Yanbing; Wu, Nan; Zhong, Xueyong; Zhang, Biao

    2015-07-01

    Parallel robots are widely used in the academic and industrial fields. In spite of the numerous achievements in the design and dimensional synthesis of the low-mobility parallel robots, few research efforts are directed towards the asymmetric 3-DOF parallel robots whose end-effector can realize 2 translational and 1 rotational(2T1R) motion. In order to develop a manipulator with the capability of full circle rotation to enlarge the workspace, a new 2T1R parallel mechanism is proposed. The modeling approach and kinematic analysis of this proposed mechanism are investigated. Using the method of vector analysis, the inverse kinematic equations are established. This is followed by a vigorous proof that this mechanism attains an annular workspace through its circular rotation and 2 dimensional translations. Taking the first order perturbation of the kinematic equations, the error Jacobian matrix which represents the mapping relationship between the error sources of geometric parameters and the end-effector position errors is derived. With consideration of the constraint conditions of pressure angles and feasible workspace, the dimensional synthesis is conducted with a goal to minimize the global comprehensive performance index. The dimension parameters making the mechanism to have optimal error mapping and kinematic performance are obtained through the optimization algorithm. All these research achievements lay the foundation for the prototype building of such kind of parallel robots.

  16. Stability and electronic properties of low-dimensional nanostructures

    Science.gov (United States)

    Guan, Jie

    As the devices used in daily life become smaller and more concentrated, traditional three-dimensional (3D) bulk materials have reached their limit in size. Low-dimensional nanomaterials have been attracting more attention in research and getting widely applied in many industrial fields because of their atomic-level size, unique advanced properties, and varied nanostructures. In this thesis, I have studied the stability and mechanical and electronic properties of zero-dimensional (0D) structures including carbon fullerenes, nanotori, metallofullerenes and phosphorus fullerenes, one-dimensional (1D) structures including carbon nanotubes and phosphorus nanotubes, as well as two-dimensional (2D) structures including layered transition metal dichalcogenides (TMDs), phosphorene and phosphorus carbide (PC). I first briefly introduce the scientific background and the motivation of all the work in this thesis. Then the computational techniques, mainly density functional theory (DFT), are reviewed in Chapter 2. In Chapter 3, I investigate the stability and electronic structure of endohedral rare-earth metallofullerene La C60 and the trifluoromethylized La C60(CF3)n with n ≤ 5. Odd n is preferred due to the closed-shell electronic configuration or large HOMO-LUMO gap, which is also meaningful for the separation of C 60-based metallofullerenes. Mechanical and electronic properties of layered materials including TMDs and black phosphorus are studied in Chapter 4 and 5. In Chapter 4, a metallic NbSe2/semiconducting WSe2 bilayer is investigated and besides a rigid band shift associated with charge transfer, the presence of NbSe2 does not modify the electronic structure of WSe2. Structural similarity and small lattice mismatch results in the heterojunction being capable of efficiently transferring charge acrossthe interface. In Chapter 5, I investigate the dependence of stability and electronic band structure on the in-layer strain in bulk black phosphorus. In Chapters 6, 7 and

  17. Image Encryption Algorithm Based on a Novel Improper Fractional-Order Attractor and a Wavelet Function Map

    Directory of Open Access Journals (Sweden)

    Jian-feng Zhao

    2017-01-01

    Full Text Available This paper presents a three-dimensional autonomous chaotic system with high fraction dimension. It is noted that the nonlinear characteristic of the improper fractional-order chaos is interesting. Based on the continuous chaos and the discrete wavelet function map, an image encryption algorithm is put forward. The key space is formed by the initial state variables, parameters, and orders of the system. Every pixel value is included in secret key, so as to improve antiattack capability of the algorithm. The obtained simulation results and extensive security analyses demonstrate the high level of security of the algorithm and show its robustness against various types of attacks.

  18. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials.

    Science.gov (United States)

    Jiang, Chenchen; Lu, Haojian; Zhang, Hongti; Shen, Yajing; Lu, Yang

    2017-01-01

    In the past decades, in situ scanning electron microscopy (SEM) has become a powerful technique for the experimental study of low-dimensional (1D/2D) nanomaterials, since it can provide unprecedented details for individual nanostructures upon mechanical and electrical stimulus and thus uncover the fundamental deformation and failure mechanisms for their device applications. In this overview, we summarized recent developments on in situ SEM-based mechanical and electrical characterization techniques including tensile, compression, bending, and electrical property probing on individual nanostructures, as well as the state-of-the-art electromechanical coupling analysis. In addition, the advantages and disadvantages of in situ SEM tests were also discussed with some possible solutions to address the challenges. Furthermore, critical challenges were also discussed for the development and design of robust in situ SEM characterization platform with higher resolution and wider range of samples. These experimental efforts have offered in-depth understanding on the mechanical and electrical properties of low-dimensional nanomaterial components and given guidelines for their further structural and functional applications.

  19. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials

    Directory of Open Access Journals (Sweden)

    Chenchen Jiang

    2017-01-01

    Full Text Available In the past decades, in situ scanning electron microscopy (SEM has become a powerful technique for the experimental study of low-dimensional (1D/2D nanomaterials, since it can provide unprecedented details for individual nanostructures upon mechanical and electrical stimulus and thus uncover the fundamental deformation and failure mechanisms for their device applications. In this overview, we summarized recent developments on in situ SEM-based mechanical and electrical characterization techniques including tensile, compression, bending, and electrical property probing on individual nanostructures, as well as the state-of-the-art electromechanical coupling analysis. In addition, the advantages and disadvantages of in situ SEM tests were also discussed with some possible solutions to address the challenges. Furthermore, critical challenges were also discussed for the development and design of robust in situ SEM characterization platform with higher resolution and wider range of samples. These experimental efforts have offered in-depth understanding on the mechanical and electrical properties of low-dimensional nanomaterial components and given guidelines for their further structural and functional applications.

  20. Quasipolynomial generalization of Lotka-Volterra mappings

    Science.gov (United States)

    Hernández-Bermejo, Benito; Brenig, Léon

    2002-07-01

    In recent years, it has been shown that Lotka-Volterra mappings constitute a valuable tool from both the theoretical and the applied points of view, with developments in very diverse fields such as physics, population dynamics, chemistry and economy. The purpose of this work is to demonstrate that many of the most important ideas and algebraic methods that constitute the basis of the quasipolynomial formalism (originally conceived for the analysis of ordinary differential equations) can be extended into the mapping domain. The extension of the formalism into the discrete-time context is remarkable as far as the quasipolynomial methodology had never been shown to be applicable beyond the differential case. It will be demonstrated that Lotka-Volterra mappings play a central role in the quasipolynomial formalism for the discrete-time case. Moreover, the extension of the formalism into the discrete-time domain allows a significant generalization of Lotka-Volterra mappings as well as a whole transfer of algebraic methods into the discrete-time context. The result is a novel and more general conceptual framework for the understanding of Lotka-Volterra mappings as well as a new range of possibilities that become open not only for the theoretical analysis of Lotka-Volterra mappings and their generalizations, but also for the development of new applications.

  1. Quasipolynomial generalization of Lotka-Volterra mappings

    International Nuclear Information System (INIS)

    Hernandez-Bermejo, Benito; Brenig, Leon

    2002-01-01

    In recent years, it has been shown that Lotka-Volterra mappings constitute a valuable tool from both the theoretical and the applied points of view, with developments in very diverse fields such as physics, population dynamics, chemistry and economy. The purpose of this work is to demonstrate that many of the most important ideas and algebraic methods that constitute the basis of the quasipolynomial formalism (originally conceived for the analysis of ordinary differential equations) can be extended into the mapping domain. The extension of the formalism into the discrete-time context is remarkable as far as the quasipolynomial methodology had never been shown to be applicable beyond the differential case. It will be demonstrated that Lotka-Volterra mappings play a central role in the quasipolynomial formalism for the discrete-time case. Moreover, the extension of the formalism into the discrete-time domain allows a significant generalization of Lotka-Volterra mappings as well as a whole transfer of algebraic methods into the discrete-time context. The result is a novel and more general conceptual framework for the understanding of Lotka-Volterra mappings as well as a new range of possibilities that become open not only for the theoretical analysis of Lotka-Volterra mappings and their generalizations, but also for the development of new applications. (author)

  2. FROM ZERO-DIMENSIONAL TO 2-DIMENSIONAL CARBON NANOMATERIALS - part I: TYPES OF CNs

    Directory of Open Access Journals (Sweden)

    Cătălin IANCU

    2012-05-01

    Full Text Available In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. In this review paper are presented some of the most important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. The synthesis techniques are used to produce specific kinds of low-dimensional carbon nanomaterials such as zero-dimensional CNs (including fullerene, carbon-encapsulated metal nanoparticles, nanodiamond, and onion-like carbons, one-dimensional carbon nanomaterials (including carbon nanofibers and carbon nanotubes, and two-dimensional carbon nanomaterials (including graphene and carbon nanowalls.

  3. A low threshold nanocavity in a two-dimensional 12-fold photonic quasicrystal

    Science.gov (United States)

    Ren, Jie; Sun, XiaoHong; Wang, Shuai

    2018-05-01

    In this article, a low threshold nanocavity is built and investigated in a two-dimensional 12-fold holographic photonic quasicrystal (PQC). The cavity is formed by using the method of multi-beam common-path interference. By finely adjusting the structure parameters of the cavity, the Q factor and the mode volume are optimized, which are two keys to low-threshold on the basis of Purcell effect. Finally, an optimal cavity is obtained with Q value of 6023 and mode volume of 1.24 ×10-12cm3 . On the other hand, by Fourier Transformation of the electric field components in the cavity, the in-plane wave vectors are calculated and fitted to evaluate the cavity performance. The performance analysis of the cavity further proves the effectiveness of the optimization process. This has a guiding significance for the research of low threshold nano-laser.

  4. Directional filtering for linear feature enhancement in geophysical maps

    NARCIS (Netherlands)

    Sykes, M.P.; Das, U.C.

    2000-01-01

    Geophysical maps of data acquired in ground and airborne surveys are extensively used for mineral, groundwater, and petroleum exploration. Lineaments in these maps are often indicative of contacts, basement faulting, and other tectonic features of interest. To aid the interpretation of these maps, a

  5. The bane of low-dimensionality clustering

    DEFF Research Database (Denmark)

    Cohen-Addad, Vincent; de Mesmay, Arnaud; Rotenberg, Eva

    2018-01-01

    geometric problems such as the traveling salesman problem, or computing an independent set of unit spheres. While these problems benefit from the so-called (limited) blessing of dimensionality, as they can be solved in time nO(k1--1/d) or 2

  6. K-FIX: a computer program for transient, two-dimensional, two-fluid flow. THREED: an extension of the K-FIX code for three-dimensional calculations

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1978-10-01

    The transient, two-dimensional, two-fluid code K-FIX has been extended to perform three-dimensional calculations. This capability is achieved by adding five modification sets of FORTRAN statements to the basic two-dimensional code. The modifications are listed and described, and a complete listing of the three-dimensional code is provided. Results of an example problem are provided for verification

  7. Hyperspectral analysis of cultural heritage artifacts: pigment material diversity in the Gough Map of Britain

    Science.gov (United States)

    Bai, Di; Messinger, David W.; Howell, David

    2017-08-01

    The Gough Map, one of the earliest surviving maps of Britain, was created and extensively revised over the 15th century. In 2015, the map was imaged using a hyperspectral imaging system while in the collection at the Bodleian Library, Oxford University. The goal of the collection of the hyperspectral image (HSI) of the Gough Map was to address questions such as enhancement of faded text for reading and analysis of the pigments used during its creation and revision. In particular, pigment analysis of the Gough Map will help historians understand the material diversity of its composition and potentially the timeline of, and methods used in, the creation and revision of the map. Multiple analysis methods are presented to analyze a particular pigment in the Gough Map with an emphasis on understanding the within-material diversity, i.e., the number and spatial layout of distinct red pigments. One approach for understanding the number of distinct materials in a scene (i.e., endmember selection and dimensionality estimation) is the Gram matrix approach. Here, this method is used to study the within-material differences of pigments in the map with common visual color. The application is a pigment analysis tool that extracts visually common pixels (here, the red pigments) from the Gough Map and estimates the material diversity of the pixels. Results show that the Gough Map is composed of at least five kinds of dominant red pigments with a particular spatial pattern. This research provides a useful tool for historical geographers and cartographic historians to analyze the material diversity of HSI of cultural heritage artifacts.

  8. Significant improvement in one-dimensional cursor control using Laplacian electroencephalography over electroencephalography

    Science.gov (United States)

    Boudria, Yacine; Feltane, Amal; Besio, Walter

    2014-06-01

    Objective. Brain-computer interfaces (BCIs) based on electroencephalography (EEG) have been shown to accurately detect mental activities, but the acquisition of high levels of control require extensive user training. Furthermore, EEG has low signal-to-noise ratio and low spatial resolution. The objective of the present study was to compare the accuracy between two types of BCIs during the first recording session. EEG and tripolar concentric ring electrode (TCRE) EEG (tEEG) brain signals were recorded and used to control one-dimensional cursor movements. Approach. Eight human subjects were asked to imagine either ‘left’ or ‘right’ hand movement during one recording session to control the computer cursor using TCRE and disc electrodes. Main results. The obtained results show a significant improvement in accuracies using TCREs (44%-100%) compared to disc electrodes (30%-86%). Significance. This study developed the first tEEG-based BCI system for real-time one-dimensional cursor movements and showed high accuracies with little training.

  9. Activation of zero-error classical capacity in low-dimensional quantum systems

    Science.gov (United States)

    Park, Jeonghoon; Heo, Jun

    2018-06-01

    Channel capacities of quantum channels can be nonadditive even if one of two quantum channels has no channel capacity. We call this phenomenon activation of the channel capacity. In this paper, we show that when we use a quantum channel on a qubit system, only a noiseless qubit channel can generate the activation of the zero-error classical capacity. In particular, we show that the zero-error classical capacity of two quantum channels on qubit systems cannot be activated. Furthermore, we present a class of examples showing the activation of the zero-error classical capacity in low-dimensional systems.

  10. Comparative analysis of extracted heights from topographic maps ...

    African Journals Online (AJOL)

    Topographic maps represent the three-dimensional landscape by providing relief information in the form of contours in addition to plan information on which natural and man-made landmarks are quite accurately represented. Height information, extractible from topographic maps, comes in handy for most land use planning.

  11. A unified theoretical framework for mapping models for the multi-state Hamiltonian.

    Science.gov (United States)

    Liu, Jian

    2016-11-28

    We propose a new unified theoretical framework to construct equivalent representations of the multi-state Hamiltonian operator and present several approaches for the mapping onto the Cartesian phase space. After mapping an F-dimensional Hamiltonian onto an F+1 dimensional space, creation and annihilation operators are defined such that the F+1 dimensional space is complete for any combined excitation. Commutation and anti-commutation relations are then naturally derived, which show that the underlying degrees of freedom are neither bosons nor fermions. This sets the scene for developing equivalent expressions of the Hamiltonian operator in quantum mechanics and their classical/semiclassical counterparts. Six mapping models are presented as examples. The framework also offers a novel way to derive such as the well-known Meyer-Miller model.

  12. Experimental Validation of Plastic Mandible Models Produced by a “Low-Cost” 3-Dimensional Fused Deposition Modeling Printer

    Science.gov (United States)

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. Results The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Conclusions Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456

  13. Three-dimensional shear transformation zone dynamics model for amorphous metals

    International Nuclear Information System (INIS)

    Homer, Eric R; Schuh, Christopher A

    2010-01-01

    A fully three-dimensional (3D) mesoscale modeling framework for the mechanical behavior of amorphous metals is proposed. The model considers the coarse-grained action of shear transformation zones (STZs) as the fundamental deformation event. The simulations are controlled through the kinetic Monte Carlo algorithm and the mechanical response of the system is captured through finite-element analysis, where STZs are mapped onto a 3D finite-element mesh and are allowed to shear in any direction in three dimensions. Implementation of the technique in uniaxial creep tests over a wide range of conditions validates the model's ability to capture the expected behaviors of an amorphous metal, including high temperature flow conforming to the expected constitutive law and low temperature localization in the form of a nascent shear band. The simulation results are combined to construct a deformation map that is comparable to experimental deformation maps. The flexibility of the modeling framework is illustrated by performing a contact test (simulated nanoindentation) in which the model deforms through STZ activity in the region experiencing the highest shear stress

  14. Aspects of quantum corrections in a Lorentz-violating extension of the abelian Higgs Model

    Energy Technology Data Exchange (ETDEWEB)

    Brito, L.C.T.; Fargnoli, H.G. [Universidade Federal de Lavras, MG (Brazil); Scarpelli, A.P. Baeta [Departamento de Policia Federal, Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Full text: We have investigated new aspects related to the four-dimensional abelian gauge-Higgs model with the addition of the Carroll-Field-Jackiw term (CFJ). We have focused on one-loop quantum corrections to the photon and Higgs sectors and we have analyzed what kind of effects are induced at the quantum level by spontaneous gauge symmetry breaking due the presence of the CFJ term. We have shown that new finite and non-ambiguous Lorentz-breaking terms are induced in both sectors at second order in the background vector. Specifically in the pure gauge sector, a CPT-even aether term (free from ambiguities) is induced. A CPT-even term is also induced in the pure Higgs sector. Both terms have been mapped in the Standard Model Extension. Besides, aspects of the one-loop renormalization of the background vector dependent terms have been studied. The new divergences due the presence of the CFJ term were shown to be worked out by the renormalization condition which requires the vanishing of the vacuum expectation value of the Higgs field. So at one loop the CFJ term does not spoil the well known renormalizability of the model without Lorentz symmetry breaking terms. The calculations have been done within dimensional methods and in an arbitrary gauge choice. (author)

  15. An extension of fuzzy decisi

    Directory of Open Access Journals (Sweden)

    Basem Mohamed Elomda

    2013-07-01

    Full Text Available This paper presents a new extension to Fuzzy Decision Maps (FDMs by allowing use of fuzzy linguistic values to represent relative importance among criteria in the preference matrix as well as representing relative influence among criteria for computing the steady-state matrix in the stage of Fuzzy Cognitive Map (FCM. The proposed model is called the Linguistic Fuzzy Decision Networks (LFDNs. The proposed LFDN provides considerable flexibility to decision makers when solving real world Multi-Criteria Decision-Making (MCDM problems. The performance of the proposed LFDN model is compared with the original FDM using a previously published case study. The result of comparison ensures the ability to draw the same decisions with a more realistic decision environment.

  16. Canonical, stable, general mapping using context schemes.

    Science.gov (United States)

    Novak, Adam M; Rosen, Yohei; Haussler, David; Paten, Benedict

    2015-11-15

    Sequence mapping is the cornerstone of modern genomics. However, most existing sequence mapping algorithms are insufficiently general. We introduce context schemes: a method that allows the unambiguous recognition of a reference base in a query sequence by testing the query for substrings from an algorithmically defined set. Context schemes only map when there is a unique best mapping, and define this criterion uniformly for all reference bases. Mappings under context schemes can also be made stable, so that extension of the query string (e.g. by increasing read length) will not alter the mapping of previously mapped positions. Context schemes are general in several senses. They natively support the detection of arbitrary complex, novel rearrangements relative to the reference. They can scale over orders of magnitude in query sequence length. Finally, they are trivially extensible to more complex reference structures, such as graphs, that incorporate additional variation. We demonstrate empirically the existence of high-performance context schemes, and present efficient context scheme mapping algorithms. The software test framework created for this study is available from https://registry.hub.docker.com/u/adamnovak/sequence-graphs/. anovak@soe.ucsc.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Chimera states in Gaussian coupled map lattices

    Science.gov (United States)

    Li, Xiao-Wen; Bi, Ran; Sun, Yue-Xiang; Zhang, Shuo; Song, Qian-Qian

    2018-04-01

    We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order parameter is derived from a self-consistency condition in order to represent the collective state.

  18. Universal Curve of Optimum Thermoelectric Figures of Merit for Bulk and Low-Dimensional Semiconductors

    Science.gov (United States)

    Hung, Nguyen T.; Nugraha, Ahmad R. T.; Saito, Riichiro

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Analytical formulas for thermoelectric figures of merit and power factors are derived based on the one-band model. We find that there is a direct relationship between the optimum figures of merit and the optimum power factors of semiconductors despite of the fact that the two quantities are generally given by different values of chemical potentials. By introducing a dimensionless parameter consisting of the optimum power factor and lattice thermal conductivity (without electronic thermal conductivity), it is possible to unify optimum figures of merit of both bulk and low-dimensional semiconductors into a single universal curve that covers many materials with different dimensionalities.

  19. Further results for crack-edge mappings by ray methods

    International Nuclear Information System (INIS)

    Norris, A.N.; Achenbach, J.D.; Ahlberg, L.; Tittman, B.R.

    1984-01-01

    This chapter discusses further extensions of the local edge mapping method to the pulse-echo case and to configurations of water-immersed specimens and transducers. Crack edges are mapped by the use of arrival times of edge-diffracted signals. Topics considered include local edge mapping in a homogeneous medium, local edge mapping algorithms, local edge mapping through an interface, and edge mapping through an interface using synthetic data. Local edge mapping is iterative, with two or three iterations required for convergence

  20. Accuracy of Gray‑scale and Three‑dimensional Power Doppler ...

    African Journals Online (AJOL)

    Background: Morbidly adherent placenta (MAP) is usually associated with excess blood loss, bladder injuries, and hysterectomies. Aim: This study was designed to evaluate the accuracy of grayscale and three-dimensional (3D) power Doppler ultrasound parameters in the diagnosis of MAP. Subjects and Methods: Fifty ...

  1. The Generalized Internal/External Frame of Reference Model: An Extension to Dimensional Comparison Theory

    Science.gov (United States)

    Möller, Jens; Müller-Kalthoff, Hanno; Helm, Friederike; Nagy, Nicole; Marsh, Herb W.

    2016-01-01

    The dimensional comparison theory (DCT) focuses on the effects of internal, dimensional comparisons (e.g., "How good am I in math compared to English?") on academic self-concepts with widespread consequences for students' self-evaluation, motivation, and behavioral choices. DCT is based on the internal/external frame of reference model…

  2. Influence of Implant Position on Stress Distribution in Implant-Assisted Distal Extension Removable Partial Dentures: A 3D Finite Element Analysis.

    Science.gov (United States)

    Memari, Yeganeh; Geramy, Allahyar; Fayaz, Amir; Rezvani Habib Abadi, Shirin; Mansouri, Yasaman

    2014-09-01

    Distal extension removable partial denture is a prosthesis with lack of distal dental support with a 13-fold difference in resiliency between the mucosa and the periodontal ligament, resulting in leverage during compression forces. It may be potentially destructive to the abutments and the surrounding tissues. The aim of this study was to assess the effect of implant location on stress distribution, in distal extension implant assisted removable partial dentures. Three-dimensional models of a bilateral distal extension partially edentulous mandible containing anterior teeth and first premolar in both sides of the arch, a partial removable denture and an implant (4×10mm) were designed. With the aid of the finite element program ANSYS 8.0, the models were meshed and strictly vertical forces of 10 N were applied to each cusp tip. Displacement and von Mises Maps were plotted for visualization of results. When an implant was placed in the second premolar region, the highest stress on implant, abutment tooth and cancellous bone was shown. The lowest stress was shown on implant and bone in the 1(st) molar area. Implants located in the first molar area showed the least distribution of stresses in the analyzed models.

  3. NeatMap--non-clustering heat map alternatives in R.

    Science.gov (United States)

    Rajaram, Satwik; Oono, Yoshi

    2010-01-22

    The clustered heat map is the most popular means of visualizing genomic data. It compactly displays a large amount of data in an intuitive format that facilitates the detection of hidden structures and relations in the data. However, it is hampered by its use of cluster analysis which does not always respect the intrinsic relations in the data, often requiring non-standardized reordering of rows/columns to be performed post-clustering. This sometimes leads to uninformative and/or misleading conclusions. Often it is more informative to use dimension-reduction algorithms (such as Principal Component Analysis and Multi-Dimensional Scaling) which respect the topology inherent in the data. Yet, despite their proven utility in the analysis of biological data, they are not as widely used. This is at least partially due to the lack of user-friendly visualization methods with the visceral impact of the heat map. NeatMap is an R package designed to meet this need. NeatMap offers a variety of novel plots (in 2 and 3 dimensions) to be used in conjunction with these dimension-reduction techniques. Like the heat map, but unlike traditional displays of such results, it allows the entire dataset to be displayed while visualizing relations between elements. It also allows superimposition of cluster analysis results for mutual validation. NeatMap is shown to be more informative than the traditional heat map with the help of two well-known microarray datasets. NeatMap thus preserves many of the strengths of the clustered heat map while addressing some of its deficiencies. It is hoped that NeatMap will spur the adoption of non-clustering dimension-reduction algorithms.

  4. Assessing IT Projects Success with Extended Fuzzy Cognitive Maps & Neutrosophic Cognitive Maps in comparison to Fuzzy Cognitive Maps

    Directory of Open Access Journals (Sweden)

    Kanika Bhutani

    2016-08-01

    Full Text Available IT projects hold a huge importance to economic growth. Today, half of the capital investments are in IT technology. IT systems and projects are extensive and time consuming; thus implying that its failure is not affordable, so proper feasibility study of assessing project success factors is required. A current methodology like Fuzzy Cognitive Maps has been experimented for identifying and evaluating the success factors in IT projects, but this technique has certain limitations. This paper discusses two new approaches to evaluate IT project success: Extended Fuzzy Cognitive Maps (E-FCM & Neutrosophic Cognitive Maps (NCM.The limitations of FCM like non consideration for non-linear, conditional, time delay weights and indeterminate relations are targeted using E-FCM and NCM in this paper.

  5. Harmonic maps of the bounded symmetric domains

    International Nuclear Information System (INIS)

    Xin, Y.L.

    1994-06-01

    A shrinking property of harmonic maps into R IV (2) is proved which is used to classify complete spacelike surfaces of the parallel mean curvature in R 4 2 with a reasonable condition on the Gauss image. Liouville-type theorems of harmonic maps from the higher dimensional bounded symmetric domains are also established. (author). 25 refs

  6. Visualizing the Logistic Map with a Microcontroller

    Science.gov (United States)

    Serna, Juan D.; Joshi, Amitabh

    2012-01-01

    The logistic map is one of the simplest nonlinear dynamical systems that clearly exhibits the route to chaos. In this paper, we explore the evolution of the logistic map using an open-source microcontroller connected to an array of light-emitting diodes (LEDs). We divide the one-dimensional domain interval [0,1] into ten equal parts, an associate…

  7. Gravity Maps of Antarctic Lithospheric Structure from Remote-Sensing and Seismic Data

    Science.gov (United States)

    Tenzer, Robert; Chen, Wenjin; Baranov, Alexey; Bagherbandi, Mohammad

    2018-02-01

    Remote-sensing data from altimetry and gravity satellite missions combined with seismic information have been used to investigate the Earth's interior, particularly focusing on the lithospheric structure. In this study, we use the subglacial bedrock relief BEDMAP2, the global gravitational model GOCO05S, and the ETOPO1 topographic/bathymetric data, together with a newly developed (continental-scale) seismic crustal model for Antarctica to compile the free-air, Bouguer, and mantle gravity maps over this continent and surrounding oceanic areas. We then use these gravity maps to interpret the Antarctic crustal and uppermost mantle structure. We demonstrate that most of the gravity features seen in gravity maps could be explained by known lithospheric structures. The Bouguer gravity map reveals a contrast between the oceanic and continental crust which marks the extension of the Antarctic continental margins. The isostatic signature in this gravity map confirms deep and compact orogenic roots under the Gamburtsev Subglacial Mountains and more complex orogenic structures under Dronning Maud Land in East Antarctica. Whereas the Bouguer gravity map exhibits features which are closely spatially correlated with the crustal thickness, the mantle gravity map reveals mainly the gravitational signature of the uppermost mantle, which is superposed over a weaker (long-wavelength) signature of density heterogeneities distributed deeper in the mantle. In contrast to a relatively complex and segmented uppermost mantle structure of West Antarctica, the mantle gravity map confirmed a more uniform structure of the East Antarctic Craton. The most pronounced features in this gravity map are divergent tectonic margins along mid-oceanic ridges and continental rifts. Gravity lows at these locations indicate that a broad region of the West Antarctic Rift System continuously extends between the Atlantic-Indian and Pacific-Antarctic mid-oceanic ridges and it is possibly formed by two major

  8. Low-Dimensional Organic Tin Bromide Perovskites and Their Photoinduced Structural Transformation.

    Science.gov (United States)

    Zhou, Chenkun; Tian, Yu; Wang, Mingchao; Rose, Alyssa; Besara, Tiglet; Doyle, Nicholas K; Yuan, Zhao; Wang, Jamie C; Clark, Ronald; Hu, Yanyan; Siegrist, Theo; Lin, Shangchao; Ma, Biwu

    2017-07-24

    Hybrid organic-inorganic metal halide perovskites possess exceptional structural tunability, with three- (3D), two- (2D), one- (1D), and zero-dimensional (0D) structures on the molecular level all possible. While remarkable progress has been realized in perovskite research in recent years, the focus has been mainly on 3D and 2D structures, with 1D and 0D structures significantly underexplored. The synthesis and characterization of a series of low-dimensional organic tin bromide perovskites with 1D and 0D structures is reported. Using the same organic and inorganic components, but at different ratios and reaction conditions, both 1D (C 4 N 2 H 14 )SnBr 4 and 0D (C 4 N 2 H 14 Br) 4 SnBr 6 can be prepared in high yields. Moreover, photoinduced structural transformation from 1D to 0D was investigated experimentally and theoretically in which photodissociation of 1D metal halide chains followed by structural reorganization leads to the formation of a more thermodynamically stable 0D structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Treefall Gap Mapping Using Sentinel-2 Images

    Directory of Open Access Journals (Sweden)

    Iván Barton

    2017-11-01

    Full Text Available Proper knowledge about resources in forest management is fundamental. One of the most important parameters of forests is their size or spatial extension. By determining the area of treefall gaps inside the compartments, a more accurate yield can be calculated and the scheduling of forestry operations could be planned better. Several field- and remote sensing-based approaches are in use for mapping but they provide only static measurements at high cost. The Earth Observation satellite mission Sentinel-2 was put in orbit as part of the Copernicus programme. With the 10-m resolution bands, it is possible to observe small-scale forestry operations like treefall gaps. The spatial extension of these gaps is often less than 200 m2, thus their detection can only be done on sub-pixel level. Due to the higher temporal resolution of Sentinel-2, multiple observations are available in a year; therefore, a time series evaluation is possible. The modelling of illumination can increase the accuracy of classification in mountainous areas. The method was tested on three deciduous forest sites in the Börzsöny Mountains in Hungary. The area evaluation produced less than 10% overestimation with the best possible solutions on the sites. The presented work shows a low-cost method for mapping treefall gaps which delivers annual information about the gap area in a deciduous forest.

  10. Three-dimensional study of flow past a square cylinder at low Reynolds numbers

    International Nuclear Information System (INIS)

    Saha, A.K.; Biswas, G.; Muralidhar, K.

    2003-01-01

    The spatial evolution of vortices and transition to three-dimensionality in the wake of a square cylinder have been numerically studied. A Reynolds number range between 150 and 500 has been considered. Starting from the two-dimensional Karman vortex street, the transition to three-dimensionality is found to take place at a Reynolds number between 150 and 175. The three-dimensional wake of the square cylinder has been characterized using indicators appropriate for the wake of a bluff body as described by the earlier workers. In these terms, the secondary vortices of Mode-A are seen to persist over the Reynolds number range of 175-240. At about a Reynolds number of 250, Mode-B secondary vortices are present, these having predominantly small-scale structures. The transitional flow around a square cylinder exhibits an intermittent low frequency modulation due to the formation of a large-scale irregularity in the near-wake, called vortex dislocation. The superposition of vortex dislocation and the Mode-A vortices leads to a new pattern, labelled as Mode-A with dislocations. The results for the square cylinder are in good accordance with the three-dimensional modes of transition that are well-known in the circular cylinder wake. In the case of a circular cylinder, the transition from periodic vortex shedding to Mode-A is characterized by a discontinuity in the Strouhal number-Reynolds number relationship at about a Reynolds of 190. The transition from Mode-A to Mode-B is characterized by a second discontinuity in the frequency law at a Reynolds number of ∼250. The numerical computations of the present study with a square cylinder show that the values of the Strouhal number and the time-averaged drag-coefficient are closely associated with each other over the range of Reynolds numbers of interest and reflect the spatial structure of the wake

  11. Generalized Low-Temperature Fabrication of Scalable Multi-Type Two-Dimensional Nanosheets with a Green Soft Template.

    Science.gov (United States)

    Wang, Lanfang; Song, Chuang; Shi, Yi; Dang, Liyun; Jin, Ying; Jiang, Hong; Lu, Qingyi; Gao, Feng

    2016-04-11

    Two-dimensional nanosheets with high specific surface areas and fascinating physical and chemical properties have attracted tremendous interests because of their promising potentials in both fundamental research and practical applications. However, the problem of developing a universal strategy with a facile and cost-effective synthesis process for multi-type ultrathin 2 D nanostructures remains unresolved. Herein, we report a generalized low-temperature fabrication of scalable multi-type 2 D nanosheets including metal hydroxides (such as Ni(OH)2, Co(OH)2, Cd(OH)2, and Mg(OH)2), metal oxides (such as ZnO and Mn3O4), and layered mixed transition-metal hydroxides (Ni-Co LDH, Ni-Fe LDH, Co-Fe LDH, and Ni-Co-Fe layered ternary hydroxides) through the rational employment of a green soft-template. The synthesized crystalline inorganic nanosheets possess confined thickness, resulting in ultrahigh surface atom ratios and chemically reactive facets. Upon evaluation as electrode materials for pseudocapacitors, the Ni-Co LDH nanosheets exhibit a high specific capacitance of 1087 F g(-1) at a current density of 1 A g(-1), and excellent stability, with 103% retention after 500 cycles. This strategy is facile and scalable for the production of high-quality ultrathin crystalline inorganic nanosheets, with the possibility of extension to the preparation of other complex nanosheets. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Note: Interpolation for evaluation of a two-dimensional spatial profile of plasma densities at low gas pressures

    International Nuclear Information System (INIS)

    Oh, Se-Jin; Kim, Young-Chul; Chung, Chin-Wook

    2011-01-01

    An interpolation algorithm for the evaluation of the spatial profile of plasma densities in a cylindrical reactor was developed for low gas pressures. The algorithm is based on a collisionless two-dimensional fluid model. Contrary to the collisional case, i.e., diffusion fluid model, the fitting algorithm depends on the aspect ratio of the cylindrical reactor. The spatial density profile of the collisionless fitting algorithm is presented in two-dimensional images and compared with the results of the diffusion fluid model.

  13. Multiple Kernel Sparse Representation based Orthogonal Discriminative Projection and Its Cost-Sensitive Extension.

    Science.gov (United States)

    Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen

    2016-07-07

    Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.

  14. Low-Cost Mapping and Publishing Methods for Landscape Architectural Analysis and Design in Slum-Upgrading Projects

    Directory of Open Access Journals (Sweden)

    Jörg Rekittke

    2011-10-01

    Full Text Available The research project “Grassroots GIS” focuses on the development of low-cost mapping and publishing methods for slums and slum-upgrading projects in Manila. In this project smartphones, collaborative mapping and 3D visualization applications are systematically employed to support landscape architectural analysis and design work in the context of urban poverty and urban informal settlements. In this paper we focus on the description of the developed methods and present preliminary results of this work-in-progress.

  15. Extension of noncommutative soliton hierarchies

    International Nuclear Information System (INIS)

    Dimakis, Aristophanes; Mueller-Hoissen, Folkert

    2004-01-01

    A linear system, which generates a Moyal-deformed two-dimensional soliton equation as an integrability condition, can be extended to a three-dimensional linear system, treating the deformation parameter as an additional coordinate. The supplementary integrability conditions result in a first-order differential equation with respect to the deformation parameter, the flow of which commutes with the flow of the deformed soliton equation. In this way, a deformed soliton hierarchy can be extended to a bigger hierarchy by including the corresponding deformation equations. We prove the extended hierarchy properties for the deformed AKNS hierarchy, and specialize to the cases of deformed NLS, KdV and mKdV hierarchies. Corresponding results are also obtained for the deformed KP hierarchy. A deformation equation determines a kind of Seiberg-Witten map from classical solutions to solutions of the respective 'noncommutative' deformed equation

  16. Multispectral embedding-based deep neural network for three-dimensional human pose recovery

    Science.gov (United States)

    Yu, Jialin; Sun, Jifeng

    2018-01-01

    Monocular image-based three-dimensional (3-D) human pose recovery aims to retrieve 3-D poses using the corresponding two-dimensional image features. Therefore, the pose recovery performance highly depends on the image representations. We propose a multispectral embedding-based deep neural network (MSEDNN) to automatically obtain the most discriminative features from multiple deep convolutional neural networks and then embed their penultimate fully connected layers into a low-dimensional manifold. This compact manifold can explore not only the optimum output from multiple deep networks but also the complementary properties of them. Furthermore, the distribution of each hierarchy discriminative manifold is sufficiently smooth so that the training process of our MSEDNN can be effectively implemented only using few labeled data. Our proposed network contains a body joint detector and a human pose regressor that are jointly trained. Extensive experiments conducted on four databases show that our proposed MSEDNN can achieve the best recovery performance compared with the state-of-the-art methods.

  17. Two-dimensional mapping of underdosed areas using radiochromic film for patients undergoing total skin electron beam radiotherapy

    International Nuclear Information System (INIS)

    Gamble, Lisa M.; Farrell, Thomas J.; Jones, Glenn W.; Hayward, Joseph E.

    2005-01-01

    Purpose: To demonstrate the viability of radiochromic film as an in vivo, two-dimensional dosimeter for the measurement of underdosed areas in patients undergoing total skin electron beam (TSEB) radiotherapy. The results were compared with thermoluminescent dosimeter measurements. Methods and Materials: Dosimetry results are reported for an inframammary fold of 2 patients treated using a modified version of the Stanford six-position (i.e., six-field and dual-beam) TSEB technique. The results are presented as contour plots of film optical density and percentage of dose. A linear dose profile measured from film was compared with the thermoluminescent dosimeter measurements. Results: The results showed that the percentage doses as measured by film are in good agreement with those measured by the thermoluminescent dosimeters. The isodose contour plots provided by film can be used as a two-dimensional dose map for a patient when determining the size of the supplemental patch fields. Conclusion: Radiochromic film is a viable dosimetry tool that the radiation oncologist can use to understand the surface dose heterogeneity better across complex concave regions of skin to help establish more appropriate margins to patch underdosed areas. Film could be used for patients undergoing TSEB for disorders such as mycosis fungoides or undergoing TSEB or regional skin electron beam for widespread skin metastases from breast cancer and other malignancies

  18. Dimensional and correlation effects of charged excitons in low-dimensional semiconductors

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2010-01-01

    In this paper, we investigate the existence of bound trion states in fractional dimensional nanostructures, in terms of variational calculus. We start with trial states, then we refine the result with the help of the Hartree–Fock approximation and finally we use a partial basis expansion. We show...

  19. Personalized 2D color maps

    KAUST Repository

    Waldin, Nicholas

    2016-06-24

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.

  20. On the use of one-dimensional position sensitive detector for x-ray diffraction reciprocal space mapping: Data quality and limitations

    International Nuclear Information System (INIS)

    Masson, Olivier; Boulle, Alexandre; Guinebretiere, Rene; Lecomte, Andre; Dauger, Alain

    2005-01-01

    A homemade x-ray diffractometer using one-dimensional position sensitive detector (PSD) and well suited to the study of thin epitaxial layer systems is presented. It is shown how PSDs can be advantageously used to allow fast reciprocal space mapping, which is especially interesting when analyzing poor crystalline and defective layers as usually observed with oxides and ceramics films. The quality of the data collected with such a setup and the limitations of PSDs in comparison with the use of analyzer crystals are discussed. In particular, the effects of PSD on angular precision, instrument resolution and corrections that must be applied to raw data are presented